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Abstract 
 

The topology optimization problem is generally an ill-posed problem, where the 

solution is not unique. Because of that, implementation of topology optimization 

faces complications such as mesh-dependency of the solution, and numerical 

instabilities. Also, the results obtained by topology optimization are not usually 

fabrication friendly due to the fine and arbitrary patterns. An effective method 

that addresses both above mentioned issues consists of imposing a minimum 

length scale to the resulting structural members. Several approaches to achieve 

minimum length scale in topology optimization have been proposed in the 

literature. However, while some problems are solved, others are created or remain 

unsolved; and the search for better methods continues. In this thesis, we review 

several prominent approaches and propose a new approach to achieve minimum 

length scale. We discuss the potential of the new approach for obtaining other 

fabrication and design constraints, in addition to the minimum length scale 

constraint. Thus the new approach has the potential of improving the quality of 

topology optimization in various engineering applications where design 

constraints must be placed. 
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Chapter 1 :  Introduction 
 

Topology optimization is a relatively new branch of structural optimization. 

Unlike shape and size optimization, topology optimization parameterizes 

structures using material points in a way similar to defining an image by pixels. 

In a continuum setting, the feasible design space includes all configurations (i.e. 

shape, size and connectivity) in a given domain [1, 2]. 

In this work, we propose a general method for restricting directly the 

topological design space and eliminating undesirable patterns from the solutions. 

The task is achieved by introducing additional layers of design variables. The 

design space is constructed based on design variables using new projection 

schemes. 

 

1.1 Background and literature review 
 

The desired result of topology optimization is the domain containing either 

material regions or void regions. However, it is mathematically difficult to work 

with integer variables, thus relaxation is usually applied. By allowing 

intermediate material density between 0 and 1, objective and constraint functions 

become continuous and differentiable. To obtain integer final solution, 

intermediate density is penalized (with the same volume, it leads to reduced 

stiffness for intermediate material). At the early stage, the homogenization 

method [3, 4, 5] was used to derive the stiffness of intermediate density based on 

certain configurations of microstructures. However, final solutions are not 

supposed to contain porous microstructures. Thus, the derivation of the stiffness 
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of intermediate material density based on the homogenization approach only 

serves as a mean of penalization. Later on, the Solid Isotropic Material with 

Penalization (SIMP) approach was proposed [6, 7] as a more straightforward way 

to interpolate the stiffness of intermediate density. The SIMP material model was 

originally thought of as a fictitious material model but, later on, it was proved [8] 

that there exist microstructures corresponding to the stiffness derived by the 

SIMP model if the penalization parameter is sufficiently large. 

It is generally known that continuum topology optimization is an ill-posed 

problem, for which a unique solution does not exist. Finer patterns of the 

topology usually yield more optimized solution, thus the solution tends to be in 

the form of microstructures. When finite element discretization is used for the 

topology and state variable, the ill-posedness of the problem manifests in the 

form of mesh-dependency of the solution. Although a unique topology may be 

obtained for each specific discretization, qualitatively different topologies are 

obtained for different mesh resolutions. In order to achieve uniqueness of the 

solution, the design space must be limited by imposing additional restrictions on 

the final topology. Checkerboard like numerical instability [9, 10] is under the 

same category. A significant amount of literature has been dedicated to solving 

this problem and numerous methods have been proposed. 

 The methods to solve the aforementioned complications of topology 

optimization fall into three categories. The first category applies filters. The 

second category reduces the design space directly. The third category imposes 

additional constraints to the optimization problem. Existing approaches include 

filters [17] of density [18,] or sensitivities [20, 10, 21]; restriction of the design 

space using wavelet [24, 25]; The use of implicit functions and regularization [26], 

or nodal design variables and projection functions [27] to restrict design space; 

the perimeter control implemented by Haber et al. [11] (based on the theory by 

Ambrosio and Buttazzo [12]), and further studied by Peterson [13]; gradient 

constraints, either global or local [14, 15, 16]; monotonicity based length scale [22, 

23]. 
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 By choosing suitable design variables and projection schemes, we may 

restrict the design space as desired. Based on this concept, a new method is 

proposed herein. It is applied to solve two important problems of topology 

optimization. One is the problem related to checkerboard problem, non-

uniqueness of the 0-1 solution, mesh dependency of the solution and obtaining 

minimum length scale. The other is the problem of imposing manufacturing 

constraints so that the solution is meaningful and economical for fabrication. In 

this work, we will cover the first application in detail and give an introduction to 

the second application. 

 

1.2 Elements for topology optimization 
 

In general, one may use two interpolations in a topology optimization problem. 

One is used to approximate the displacement field, and the other is used to 

approximate the material density field. Thus, appropriate notation for elements 

for topology optimization is needed [33]. The quadrilateral element (Q4) 

implemented with the element based approach is denoted as Q4/U, where the Q4 

is the element used to approximate the displacement field and U refers to 

uniform material density inside each element. The Q4 element used with the 

CAMD approach is denoted as Q4/Q4, meaning Q4 element is used for both the 

displacement field and the material density field. Similarly, Q8/U, Q8/Q4, and so 

on are possible elements in 2D. In 3D, similar notation can be used. For example, 

B8/U denotes the brick element implemented with the element based approach; 

B8/B8 element denotes the brick element implemented with the CAMD approach 

where B8 is used to approximate both the displacement field and material 

density field. Figure 1 shows examples of elements for topology optimization. 
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Q4/Q4Q4/U

B8/B8B8/U

bothdisplacement material density

 

Figure 1 : Examples of elements for topology optimization. 

 

1.3 Element-based problem description 
 

The problem to be addressed is stated in the finite element discretization setting, 

e.g. using elements such as Q4/U or B8/U (Figure 1). The objective is to 

minimize the mean compliance, or in other words, to maximize the stiffness of 

the structure. The constraint is the total volume of material used in the 

structure. The material density in each element is assumed to be constant and is 

represented by one design variable (ρe). This approach is called the element-based 

approach. For the relaxed problem, the SIMP [3, 8, 7, 29] model is assumed, 

where the stiffness of intermediate density is proportional to the density raised to 

a penalization power p. The problem statement is as follows: 
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where θ  is the objective function to be minimized; n  is the number of elements 

in the domain; eE is the elastic tensor corresponding to intermediate densities; oE  

is the elastic tensor of  the base material (i.e. with density equal to 1); K  is the 

stiffness matrix which is a function of the material properties, i.e. ( )e≡K K E ; oV  

is the upper bound constraint on the total volume of the structure; and minρ  is a 

small value to avoid singularity of the stiffness matrix. 

The objective function θ  should be dependent on displacement, otherwise the 

problem becomes trivial and needs no finite element analysis (FEA). In case of 

the minimum compliance problem, the objective function is calculated as follows: 

( )( )
n

pT T
e e o e

e=1
= =θ ρ ρ∑u, u Ku u K u  (2)

 

Instead of the SIMP model, an alternative is to use the homogenization 

approach [4, 5] with certain microstructure patterns to interpolate the stiffness of 

intermediate density. As intermediate densities are not preferred in the final 

solution, homogenization only serves as a mean to relax the integer problem. 

 

1.4 Continuous approximation of material distribution 
(CAMD) 

 

So far, the most common formulation for topology optimization is the so-called 

element-based approach, where the material density field is parameterized by 

giving one material density value to each finite element. However, material 
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density is naturally a field where each point in the domain can assume a value. 

There have been attempts to solve topology optimization problems by 

considering the material density as a field and solving for displacement field and 

material density field simultaneously [32]. Matsui and Terada [28], and 

Rahmatalla and Swan [33] proposed to approximate the material density field the 

same way we do for the displacement field in finite element analysis. Material 

density field inside of a finite element is interpolated using nodal values and 

shape functions. The determination of element matrices follows the graded finite 

element formulation, which can be found in the work by Kim and Paulino [34]. 

The approach is called the Continuous Approximation of Material Distribution 

(CAMD) approach. 

According to the CAMD approach, the topology optimization problem is 

parameterized using material densities at nodes. During the optimization process, 

nodal densities are updated and optimized. The topology of the final structure is 

represented by the material density field, which is interpolated using nodal 

densities and shape functions. 

 Matsui and Terada [28], and Rahmatalla and Swan [33] used the standard 

Q4 element and bilinear shape functions for the material density field (i.e. the 

Q4/Q4 element of Figure 1.) Higher order interpolation for the displacement field 

usually yields more accurate and well defined results. However, it is not 

recommended to use higher order interpolation for the material density field to 

avoid spurious material density values, such as negative values or values greater 

than 1. 

 

1.4.1 Problem statement 
 

In this section, the topology problem statement is described in a finite element 

setting. We seek to minimize an objective function θ  which is typically 

dependent on displacement field u  and material density. The objective function 
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should be dependent at least on the displacement field, otherwise the problem 

becomes trivial and no iteration process is required. Each optimization step will 

update the design variables, which is the material density at nodes nρ  such that 

the objective function is improved. Material density inside each finite element is 

interpolated from nodal densities of nodes (e.g. 4 nodes for the Q4 element) using 

bilinear shape functions. Elasticity tensor of the intermediate density is 

interpolated using a material interpolation model, such as the Solid Isotropic 

Material with Penalization (SIMP), using Hashin-Strikman bounds [35, 36], or 

using homogenization of certain microstructure pattern [4, 5]. The displacement 

field must satisfy the equilibrium condition. In addition, the solution must satisfy 

constraints, such as the bounds on material density (0 1θ≤ ≤ ) or limit on total 

volume fraction oV V≤ . 

The following CAMD problem statement adopts the SIMP model: 

( )

1

min     ( , )

s.t.      

           
           
           ( , ) 0     1..

N

i i
i
p

o

j

N

g j m

θ ρ

ρ

ρ

ρ

=

= Ψ

=

=

≤ =

∑
Ψ

u

E E
K E u f

u

 
(3)

where θ  is the objective function to be minimized; iΨ  are densities at node i ; ρ  

is the material density field (inside elements); N  is the number of nodes of each 

element; iN  is the shape function associated with node i ; E  is the elasticity 

tensor of materials with intermediate density; oE  is the elasticity tensor of solid 

material (with 1ρ = ); ( )≡K K E  is the stiffness matrix; and m  is number of 

general constraints. 

According to the graded finite element formulation by Kim and Paulino [34], 

the element stiffness matrices are obtained using Gauss quadrature. Material 

densities are evaluated at Gauss points by interpolation using shape functions. In 

addition to the standard topology optimization steps, the implementation of the 
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CAMD approach includes calculation of material density at Gauss points based 

on nodal values and shape functions; and calculation of sensitivities with respect 

to nodal densities based on sensitivities with respect to densities at Gauss points. 

 

1.4.2 Sensitivities with respect to nodal densities 
 

Sensitivities of a function f , which is either an objective function or a constraint 

function, with respect to nodal densities is calculated by the chain-rule,  

i i

f f dρ
ρ ρ ρΩ

∂ ∂ ∂
= Ω

∂ ∂ ∂∫  (4)

where f ρ∂ ∂  at a point is defined as the gradient of f  with respect to change in 

ρ  in a unit domain (e.g. unit area for 2D and unit volume for 3D) at that point. 

The sensitivity f ρ∂ ∂  is calculated using a traditional method, which is usually 

adjoint method [37]. For a point inside a finite element having node i , iρ ρ∂ ∂  is 

given as follows. 

i
i

Nρ
ρ
∂

=
∂

 (5)

 

Thus, the finite element form of the sensitivities expression is 

i e

e
i e

Si

f f N d
ρ ρΩ

∂ ∂
= Ω

∂ ∂∑ ∫  (6)

 

where iS  is the set of all elements sharing node i ; eΩ  is the sub-domain inside 

element e ; and e
iN  is the shape function corresponding to node i  of element e . 

Usually, the expression for sensitivities with respect to nodal densities is 

evaluated using Gauss quadrature. 
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1.4.3 Numerical instabilities with CAMD approach 
 

Rahmatalla and Swan [33] have reported “islanding” and “layering” phenomena 

with the implementation of CAMD. This type of numerical instabilities resembles 

the well-known checkerboard problem in the element-based implementation. The 

reason for these patterns to appear in final topological results is that these 

patterns overestimate the stiffness making them more advantageous than the 

homogeneous distribution with the same material density when penalization 1q >  

is applied. In other words, they avoid the penalization to some extent. Figure 2 

shows the three patterns and Figure 3 provides quantitative comparison of the 

stiffness of those patterns together with the homogeneous distribution. The 

homogenized stiffness is calculated as 

1 kl
pH

ijkl ijkl ijpqY
q

C C C dY
Y y

χ⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂⎝ ⎠

∫  (7)

where H
ijklC  are stiffness coefficients at a point in the domain; H

ijklC  are 

homogenized stiffness coefficients; Y  is the periodic domain; 1 2,kl klχ χ  are 

characteristic displacements obtained by solving the following microscopic 

equation [5] 

kl kl
p pi i

ijpq ijklY Y
q j q j

v vC dY C dY
y y y y
χ χ∂ ∂∂ ∂

=
∂ ∂ ∂ ∂∫ ∫   for all  ( )1 2, hv v v V= ∈  (8)

where hV  is the set of all Y -periodic functions. Due to the geometry of the 

patterns and the use of the Q4 element for discretization, the characteristic 

displacements vanish. The expression for the stiffness coefficients is reduced as 

follows: 

1H
ijkl ijklY
C C dY

Y
= ∫  (9)
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Figure 2 : Checkerboard, “layering”, and “islanding” patterns in 2D. 
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Figure 3 : Homogenized stiffness of different checkerboard-like patterns with 

intermediate volume fraction. 

 

For the checkerboard pattern in Figure 2 (a), the homogenized stiffness 

coefficients are 

( )1 2
2

pH o
ijkl ijklC Cρ=  with [ ]0,0.5ρ =  (10)

where o
ijklC  are the stiffness coefficients of the solid material ( 1ρ = ); p  is the 

penalization parameter. For the “layering” and “islanding” patterns given in 
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Figure 2 (b) and (c), Gauss quadrature can be used to evaluate the integrals as 

follows: 

( )
4 4

1 2
1 1

,
p

H o
ijkl ijkl n n g g

g n
C C N y yρ

= =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ ∑  (11)

where 2nρ ρ=  at half of the nodes and 0nρ =  at the others; [ ]0,0.5ρ =  as in the 

case of checkerboard pattern. The factor of the homogenized stiffness coefficients 

to the original ones are illustrated in Figure 3. As shown, the checkerboard 

patterns over estimate the stiffness the most. “Layering” and “islanding” patterns 

also overestimate the stiffness but to a smaller extent. That explains why CAMD 

approach is less susceptible to numerical instabilities. 

The implementation of the CAMD approach without filtering technique in 3D 

also shows isolated layers, bars and islands. These patterns resemble the 

“layering” and “islanding” patterns in 2D. Figure 4 shows the results obtained 

with the element based approach and CAMD approach without using filtering 

technique. Although the patterns of  checkerboard, “layering” and “islanding” look 

different, they are all numerical instabilities [10] caused by the error in the finite 

element discretization. 

 

1.5 Thesis Organization 
 

We present a new scheme to achieve minimum length scale to the topology. This 

projection scheme does not involve any restriction on the gradient of material 

density and does not produce the fading effect that is seen with the filtering 

technique and nodal projection approach proposed by Guest et al. [27]. The new 

scheme is different from the nodal projection approach [27] in the projection 

functions from the nodal design variables space onto element densities space. The 

new scheme does not cause gray areas around structural members. We also 

propose the application of the new scheme on top of other approaches such as the 

element-based, CAMD [28], and even the nodal projection approach. 
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(b) 30x10x10 B8/U elements 
(c) 60x20x20 B8/U elements 

(d) 30x10x10 B8/B8 elements (e) 60x20x20 B8/B8 elements 

p
(a) Domain configuration

?

 

 

Figure 4 : Numerical instabilities (checkerboard-like) in 3D for element based and 

CAMD approaches. 
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We introduce additional layers of variables on top of the existing layer of 

element (or nodal) densities of each approach. The new projection scheme is 

employed for the projection of the design variable layer onto the element (or 

nodal) density layer. The projection of the second “layer” of nodal variables onto 

the element density depends on the original projection function of each approach. 

With the CAMD approach, for example, the latter projection is the interpolation 

of material density based on the nodal values using shape functions. It provides 

smoothening effect to enhance convergence toward global optima. The first 

projection imposes the minimum length scale. 

The thesis is organized as follows. First we introduce the topology 

optimization problem and review the most prominent existing approaches to 

solving complications of topology optimization. Then we present in detail the new 

scheme to achieve minimum length scale. The proposed scheme naturally imposes 

a minimum length scale and solves the ill-posedness of the topology optimization 

problem (i.e. the non-uniqueness of the solution in the continuum setting and 

mesh-dependency problem in the discrete setting) without adding any constraints 

to the original optimization problem or using any filtering technique. Afterwards, 

we discuss the generalization of the proposed method and an extension to achieve 

design constraints with the design of stiffened plates. Finally, conclusions are 

inferred and suggestions for future work are provided. 
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Chapter 2 :   On existing methods to 
address minimum length scale 

 

Various methods have been proposed in the literature to address the 

aforementioned complications of topology optimization. As discussed in Chapter 

1, the methods fall into three categories. 

• Filtering (of densities or sensitivities) 

• Reduction of the design space 

• Imposition of additional constraints 

In this chapter, we review four methods which are representative of the three 

categories. Those methods are: filter of sensitivities (first category); the nodal 

projection (second category); perimeter constraint (third category); and 

monotonicity based length scale (third category). Then we discuss other 

approaches and some key points for successful methods of topology optimization. 

 

2.1 Filtering technique 
 

Filtering technique includes both filtering of densities and filtering of sensitivities. 

Filter usually prevents sharp change of material densities from 0 to 1, therefore it 

prevents thin structural members. By specifying the filter radius, which is 

independent of element size, the problem of mesh-dependency of the solutions is 

solved. Also, checkerboard problem is eliminated by means of filtering because 

checkerboard patterns are patterns with the thinnest structural members. Many 

filters have been proposed in the literature [10, 17, 18, 19, 20, 21], however, the 

most used one so far is the filter of sensitivities by Sigmund [10, 20, 21]. 
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The filter of sensitivities is applied to modify the actual sensitivities in each 

optimization step. The modified sensitivities are then used in gradient based 

optimization update. The flowchart illustrating the optimization process and the 

application of the filter is provided in Figure 5. 

The modification of the sensitivities follows: 

1

1

1 N

f fN
fe f

e f
f

w
w

θ θρ
ρ ρρ =

=

∂ ∂
=

∂ ∂∑
∑

 
(12)

where fw  is the weight factor defined by 

( )min ,       if   element  lies within the filter circle centered at " ''
0                         otherwisef

r r e f f e
w

⎧ −⎪= ⎨
⎪⎩

 (13)

in which ( ),r e f  is the distance between the center of gravity of element “ e ” and 

element “ f ”. Moreover, f  denotes elements which fall within the filter circle 

centered at element “e ” with radius minr , and f  is defined as 

( ){ }min| ,f N r e f r∈ ≤  (14)

Figure 6 shows the filter circle and related entities. 

The filter of sensitivities does not work exactly as the common low-pass filter 

used in image processing. It favors low density elements around high density ones 

instead of merely smoothening the sensitivities distribution. Figure 7 shows the 

densities distribution, the original sensitivities and the filtered sensitivities. 

The disadvantage of the filter is that the results obtained usually contain 

elements of intermediate densities or gray areas around structural members, as 

depicted by Figure 7(a). These gray elements are not preferred in case a 0-1 

structure is sought. 

Another disadvantage of the filter of sensitivities is that the solution obtained 

does not satisfy the optimality criteria. However, the solution is practically close 

enough to the optimum solution in the engineering sense. The likely reason for 

the filter of sensitivities to be so effective and favorable is that it enhances the 

convergence to global optima, especially for minimum compliance problems, 
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Filter sensitivities

Finite element analysis

Initial guess

Result ρe

yes

no
Converged?

Sensitivity analysis w.r.t. ρ

Update ρ using filtered sensitivities

 

 

Figure 5 : Flowchart of topology optimization using filter of sensitivities. 
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Figure 6 : The filter circle. 
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Filtered
sensitivities
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Figure 7 : Effect of the sensitivities filter. The above illustrations were obtained 

from a computer simulation. 

 

besides the effects common to all other filters. With the filter of sensitivities, 

structural members, after they are formed, can easily change their locations 

during the optimization process. In other words, structural members are not 

trapped in local minima after they are formed. We will not go further into this 

discussion because the global convergence itself is a major topic of research and is 

not the main focus of this thesis. 

 

2.2 Nodal design variables and projection functions 
 

Guest et al. [27] proposed an approach which implicitly prevents sharp change of 

material density from 0 to 1. The approach ensures that the change of density 

from 0 to 1 occur over a minimum length. Gray areas around structural members 

can not be narrower than a minimum length, which is specified by the user. 

Thus, checkerboard patterns are eliminated and structural members are thought 

of as having minimum length scale by converting gray areas into equivalent solid 

ones. 
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The essence of the approach lies in the introduction of design variables 

located at nodes and projection functions to obtain element densities from nodal 

variables. Density of an element is calculated as the weighted average of the 

nodal design variables in its neighborhood, which are determined by the 

minimum length scale parameter. 

Let nd  denote all design variables associated with nodes; and let eρ  be the 

value of material density at element “ e ”. Assume that the change of material 

density is required to occur over a minimum length of minr . We obtain eρ  from 

nd  as 

( )e nf dρ =  (15)

where f  is the projection function. A linear projection is defined as 

( )
( )

( )
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−
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∑

 (16)

where id  is the design variable located at node i , and eS  is the set of nodes in 

the domain of influence of element ( )ee Ω , which is the circle of  radius minr  and 

center at element “ e ”.  

rmin

r

i

e

Ωe

1
w(r)

rmin rmin
r

(a) Domain of influence (b) Weight function  

Figure 8 : Domain of influence and weight function for the nodal projection 

approach. 

The weight function w  is defined as 
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where ier  is the distance between nodes “ i ” and element “e ”, i.e. 

ie i er x x= −  (18)

The topology optimization problem definition is revised accordingly: 
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where θ  is the objective function, ig  are constraint functions, and m  is the 

number of constraints. 

(a) Distribution of dn (b) Distribution of ρe
 

Figure 9 : Illustration for the linear projection scheme. 

 

Sensitivities with respect to nodal design variables are obtained based on 

those with respect to element densities using chain-rule: 

( ) ( ) e

ei e id d
ρ

ρ∈Ω

∂ • ∂ • ∂
=

∂ ∂ ∂∑  (20)

in which, Ω  is the entire domain, but e idρ∂ ∂  is non-zero only at nodes “e ” 

whose influence domain ( eΩ ) contains node i . The sensitivity e idρ∂ ∂  is given by 
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As usual, the sensitivity ( ) eρ∂ • ∂  is obtained using a traditional method such as 

the adjoint method. Figure 9 illustrates how the projection works.  

During the optimization process, only nodal design variables are updated by 

the optimization update module. The structure is determined by element 

densities which are obtained from nodal design variables and the projection 

function. In other words, the optimization module does not update the topology 

directly as the traditional approach does. Instead, it updates the topology 

indirectly through the nodal design variables. The flowchart of the optimization 

process is illustrated in Figure 10. 

Obtain sensitivity w.r.t. dn

Obtain ρe based on dn

Finite element analysis based on ρe

Initial guess (for ρe and dn)

Result ρe

yes

no
Converged?

Sensitivity analysis w.r.t. ρe

Update dn

 

Figure 10 : Flowchart for the implementation of the nodal projection approach. 
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The common effect of the filter of sensitivities and the nodal projection is the 

fading or gray areas around structural members. The nodal projection approach 

is mathematically consistent and provides a restriction on the gradient of 

material density distribution while the filter of densities does not. However, the 

nodal projection approach may not induce the global convergence as well as the 

filter of densities does. Guest et al. [27] also proposed a non-linear projection to 

mitigate the fading effect. However, the proposed exponential expression with the 

power of order 25 makes the optimization process ill-conditioned and may even 

jeopardize the results. 

It is worth noting that the slope constrained topology optimization by 

Petersson and Sigmund [14] may have the same effect as the nodal projection 

approach. By adding a constraint on maximum slope of every point in the 

domain based on a length scale, a well-posed problem is achieved. The 

checkerboard problem is eliminated and mesh-independent solution can be 

achieved. However, it also introduces gray areas around structural member, 

which is an undesirable side effect. 

 

2.3 Perimeter constraint 
 

Haber et al. [11] implemented an upper bound constraint on the total perimeter 

of the structure to solve the problem of non-uniqueness of solutions in topology 

optimization. The theoretical background for the method is developed by 

Ambrosio and Buttazzo [12]. Petersson [13] did further study on the approach. 

The idea is that structures perforated with more number of small holes will have 

larger total perimeters than those with large holes and less number of holes (see 

Figure 11). Therefore, an upper bound constraint on the total perimeter of the 

solution prevents the creation of large number of holes in the solution. In other 

words, the constraint specifically excludes finest patterns of structural members 

from the solution. Note that extremely fine patterns usually exist in optimal 
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solutions of topology optimization problems, and are the root of the 

complications such as non-uniqueness of the solution, checkerboard problem and 

mesh dependency of the solution. Exclusion of those patterns from the design 

space guarantees existence of solution. 

(a) Structure with two large holes (b) Structure with many small holes

 

Figure 11 : Structures with larger holes (a) have fewer perimeters than structures 

with smaller holes (b) when both have the same volume. 

 

The topology optimization problem statement corresponding to perimeter 

constraint approach is revised as follows: 
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where θ  is the objective function to be minimized; n  is the number of elements 

in the domain; eE is the elastic tensor corresponding to intermediate densities; oE  

is the elastic tensor of  the base material (i.e. with normalized density equal to 

1); ( )e≡K K E  is the stiffness matrix; oV  is the upper bound constraint on the 
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total volume of the structure; minρ  is a small value to avoid singularity of the 

stiffness matrix; P  is the total perimeter of the structure and *P  is a designer-

specified value corresponding to the upper bound constraint on the perimeter. 

In a binary problem setting, the total perimeter P  is ready to be calculated. 

However, it is not practical to solve the topology optimization in the binary 

setting. Often, relaxed problem, where intermediate material density is allowed, is 

employed. With continuum formulation, the perimeter can be defined as 

\ j j

P d dρ ρ
Ω Γ Γ

≡ ∇ Ω + Γ∫ ∫  (23)

where \ jΩ Γ  denotes the sub-domain obtained by subtracting jΓ  (the sub-

domain where there is jump in material density) from Ω  (the whole design 

domain); ρ∇  is the gradient of material density; and ρ  is the jump in material 

density across the domain jΓ .  

In order to circumvent numerical problems with the non-differentiability of 

the absolute function, regularization function can be used. Refer to Haber’s work 

[11] for further details of regularized functions. 

In case the element-based approach is used, material density within each 

element is treated as constant. The first term in the expression of the total 

perimeter (P ) equals zero. The expression of P  may be re-written as 

1

K

k k
k

P ρ
=

≡ ∑  (24)

where K  is the number of element interface; k  is the length of interface k ; and 

k
ρ  is the jump in material density at interface k . 

 Expression (24) is ready to be implemented with the finite element method 

used to solve the displacement field. The regularized expression for total 

perimeter (P ) is as follows, 

2 2
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k k
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P ρ ε ε
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⎝ ⎠∑  (25)
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where ε  is a smoothing parameter, which should be chosen relative to the 

element size. 

Although the perimeter constraint imposes dimensional parameters to the 

solution, it does not prevent local thinning of structural members [27]. The 

designer can control the number of holes but not a minimum member size, which 

is more favorable. In other words, the perimeter control does not provide an 

explicit length scale as in [22]. The perimeter of a structure may not be 

significant in the engineering point of view, unless in special cases, where one is 

concerned with painting areas, for example. Also, it is not trivial to determine 

the perimeter upper bound, especially for 3D structures, for a meaningful design. 

Complication in the implementation is also a drawback for the method. With 

the finite element implementation, a structural member with zigzagged boundary 

has much more perimeter than the one with straight boundary. Thus the solution 

is biased towards straight members. Also, it is observed that corners are always 

rounded because rounded corners have smaller perimeter. Note that the optimum 

structures (obtained with other approaches) do not usually have rounded corners. 

Rounded corners are indeed a side effect of the approach. 

 

2.4 Monotonicity based length scale 
 

Poulsen [22, 23, 24] proposed an approach to prevent the local thinning of 

structural members by checking the material distribution around each and every 

point (elements) in the domain. If the gradient of the material distribution is 

monotonic within a circle of specific size around each point (element) in the 

domain, then structural members that are thinner than the diameter of the circle 

will not be generated. The idea is like passing a “looking glass” (see Figure 12) 

around the domain to detect the non-monotonic distribution of material and 

eliminate it by imposing a constraint to the optimization problem. 
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Figure 12 : The “looking glass” and 4 test directions. The gradient of material 

distribution is non-monotonic in the horizontal, vertical and two diagonal 

directions, indicating that the member violates the minimum length scale. 

 

The monotonicity is checked in 4 directions at each point. Those directions 

include horizontal, vertical and two diagonal directions. The monotonicity is 

indicated by an indicator function that takes zero for monotonic distribution and 

a positive number for non-monotonic distribution. The global indicator function 

is obtained by summing up the indicator function at all points (elements) in the 

domain. Thus, we can see that if the minimum length scale is not violated at any 

point (element) in the domain, the global indicator function assumes zero. If 

there exist points (elements) where the length scale is violated in the domain, the 

global indicator function is greater than zero. The more the minimum length 

scale is violated, the larger (and positive) the global indicator function will be. 

Thus, by constraining the global indicator function to be zero, we can ensure that 

the minimum length scale is achieved. To circumvent numerical problems, the 

global indicator function is constrained to be smaller than a small positive 

number instead of zero. 

The topology problem statement using the monotonicity based length scale 

approach is defined as follows: 
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where L  denotes the global indicator function; and δ  denotes a small positive 

number  replacing zero to avoid numerical problems. The remaining notation in 

the above statement is the same as in the perimeter constraint method — see 

Equation (22). 

The indicator function is defined as 

( )
p

e
e v

L M v
∈Ω ∈Λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑  (27)

where Ω  denotes the design domain; Λ  denotes the search direction space, which 

usually contains 4 directions (refer to Figure 12); v  denotes the vector containing 

elements in each search direction (see Figure 13); p  denotes an implementation 

parameter tuned to enhance global convergence; eM  denotes the local indicator 

function corresponding to element “ e ”. The function ( )eM v  is zero if the change 

in densities of vector v  is monotonic, and greater than zero if the change is non-

monotonic. It is expressed by 

1

1 1
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Figure 13 : Densities in vector v  and cyclic manner of the calculation of the local 

indicator function. 
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The function ( )A x  is a regularization for the absolute value of the jump in 

densities between element i  and element 1i + , i.e. 

2 2( )A x x ε ε= + −  (29)

where ε  is a small positive number. 

(a) Acute corner (b) Obtuse corner
 

Figure 14 : Monotonicity of the gradient of the material distribution is violated 

at corners, although corners do not violate the minimum member size. 

 

The known problem with this approach, as the author also pointed out, is the 

problem with corners. Corners, either with acute or obtuse angle, violate the 

monotonicity of the gradient of material distribution, although corners do not 

violate the minimum member size. Figure 14 shows that there is a direction at 

corners where the gradient of material distribution is non-monotonic. 

Because corners violate the monotonicity constraint, the method struggles to 

reduce the indicator function at corner locations. The result is that we have a 

mess in the corner regions. Figure 15, which is taken from [22], shows the results 

obtained using the monotonicity based length scale applied to the Messerschmitt-

Bolkow-Blohm (MBB) beam. This problem is also solved using the new 

approach. The minimum member size is 20% of the beam height. The result is 
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shown in Figure 16 for comparison. Notice that the problems at the corners are 

alleviated with the new approach. 

 

Figure 15 : Result extracted from reference [22], which illustrates that the 

monotonicity based length scale method leads to problems at corners. 

 

 

Figure 16 : Beam example using the new approach: minimum member size is 20% 

of the beam height; volume fraction is 45%; Poisson’s ratio is 0.3; and 

penalization is 3 without continuation. The discretization (180x30 Q4 elements) 

is the same as the one in Figure 15. 

 

2.5 Discussion of approaches 
 

There are other methods in the literature, which deal with ill-posedness, mesh-

dependence, checkerboard problem, and minimum length scale. For instance, 

Poulsen [23] proposed the use of wavelet space to parameterize the design space 

and to eliminate corner contacts and fine structural members from the solutions. 

Zhou and Rozvany [6], and Pomezanski [30] proposed and discussed an extended 

SIMP algorithm with direct corner contact control (CO-SIMP), in which a corner 

contact function (CCF) is used to penalize corner contacts and, as claimed by the 

authors, to correct the finite element method (FEM) errors associated with direct 

corner contacts. Jang et al. [31] proposed the use of non-conforming quadrilateral 
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elements to achieve checkerboard-free topology optimization. The approach does 

alleviate checkerboard problems but does not incorporate any length scale to the 

solution. Also, the quality of an element used for topology optimization must be 

assessed based on the overall performance to generate optimum, high-fidelity and 

manufacturing friendly structures. The non-conforming elements must be assessed 

for the aforementioned quality to be claimed as good elements for topology 

optimization. 

Through the study of various approaches to well-posed, checkerboard-free, 

mesh-independent topology optimization solutions, we came to the following 

essential points for a successful approach: 

• Limit the design space by excluding fine structural patterns from the 

admissible  design space 

• Achieve minimum length scale (i.e. minimum member size) for the 

solution 

It is noticed that approaches that achieve the above two points by imposing 

additional constraint to the optimization problem statement are not 

advantageous in terms of implementation and achieving global optimum. Those 

approaches include perimeter constraint and monotonicity based length scale. 

Adding constraints, especially those related to local quantities, usually causes 

harm to the convergence of the solution to global optimum. That is the reason 

why those approaches are relatively difficult to implement. Approaches that 

achieve the two aforementioned points naturally without imposing additional 

constraints to the optimization problems, such as the filter of sensitivities and the 

nodal projection approaches, are more advantageous in terms of convergence to 

global optimum. 

While achieving the aforementioned two essential points, existing approaches 

introduce undesirable side effects, such as gray areas, irregular corners, difficulty 

in obtaining global convergence, etc. In this work, we look at the essential points 

more directly and propose a direct approach to the points with minimum side 
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effects. The new approach will be implemented on top of the traditional element-

based, nodal projection, and CAMD formulations. 
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Chapter 3 : A new scheme to achieve 
minimum length scale 

 

A natural conclusion from the previous chapter is that restricting the feasible 

design space by excluding fine structural patterns is the essence of the solution to 

problems relating to non-uniqueness, mesh dependency, checkerboard patterns, 

and minimum length scale. In this chapter, we propose an approach to achieve 

minimum length scale for structural members without imposing any additional 

constraint and without inducing gray areas around structural members. Our 

proposed approach ensures directly that all structural members smaller than a 

designer-specified size are eliminated from the admissible design space. All 

problems as mentioned above are solved without any side effect to the final 

topological results. 

 

3.1 Overview 
 

The minimum length scale for topological results is obtained by introducing an 

additional design variable layer to the topology optimization problem and using 

the maximum function to project the intermediate design variable onto the 

material density space. The projection function can be understood as a rule to 

construct the structure based on intermediate design variables. The projection 

function will ensure that undesirable patterns are not feasible in the design 

domain. No constraints need to be imposed on the design variables, yet part of 

the material density distribution is eliminated from the design space. The part of 

design space that is eliminated corresponds exactly to the finest structural 

patterns, which is the root cause of many problems in topology optimization. 
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Figure 17 shows the idea of the projection and Figure 18 shows schematically the 

result of the projection. 

d

ρ

 

Figure 17 : Projecting design variable layer (d) onto density layer (ρ). 

(a) Distribution of design variable (b) Distribution of material density

rmin

rmin

 
Figure 18 : Result of the projection: schematic illustration. 

 

During the topology optimization process, sensitivities of objective and 

constraint functions with respect to intermediate design variables are calculated 

based on those with respect to material densities. The optimization module will 

update intermediate design variables based on the sensitivities information. The 

structure is obtained by projecting intermediate design variables onto material 

densities layer. The finite element analysis used to obtain the response field (e.g. 

displacement) is based only on the projected structure. 
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3.2 Problem statement 
 

The new scheme to achieve minimum length scale will be applied on top of 

three existing approaches: 

• element based 

• continuous approximation of material distribution (CAMD) 

• nodal projection 

The topology optimization problem statements, corresponding to each approach, 

are described in this section. This illustrates the generality of the proposed 

scheme. 

 

3.2.1 The new scheme applied to the element-based approach 
 

We seek to minimize an objective function θ  which is typically dependent on 

displacement and material density. The objective function should be dependent 

at least on the displacement, otherwise the problem becomes trivial and no 

iteration process is required. The objective function is minimized by varying a set 

of design variables (d ). Material density is assumed constant inside each 

element. Element densities ( ρ ) are obtained by projecting the design variables 

using a specified projection rule (defined by the function f ). The minimization is 

subjected to constraints, which can be equality or inequality constraints. Typical 

of those constraints are the box constraint on element densities (0 1ρ≤ ≤ ) and 

total volume constraint ( oV V≤ ). The objective and constraint functions are 

calculated based on element densities. The displacement field is implicitly defined 

by the equilibrium equation. The problem statement based on the finite element 

discretization and the SIMP material interpolation model is given by: 
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where θ  is the objective function to be minimized; d  is the vector containing 

design variables; ρ  is the vector containing element material densities; eρ  is the 

material density of element e ; n  is the number of element in the domain; eE  is 

the elasticity tensor of materials with intermediate density; oE  is the elasticity 

tensor of solid material (with 1ρ = ); m  is number of general constraints; 

( )e e e≡K K E  is the stiffness matrix; the summation (1..n) denotes the assembly 

of element stiffness matrix; u  is the displacement vector; and f  is the load 

vector. Details of the projection function f  will be provided in Section 3.3. 

 

3.2.2 The new scheme applied to the CAMD approach 
 

The CAMD approach [28, 33] does not possess a minimum length scale and 

naturally possesses a certain level of smoothening effect. To achieve the minimum 

length scale for the CAMD approach, we introduce another layer of nodal 

variables on top of the existing nodal variables. The variables in the new layer 

are used as design variables, which are updated by the iterative optimization 

process. Starting from the design variables, we use the projection function to 

obtain nodal densities, which are then used to calculate element stiffness matrices 

according to the CAMD approach. 

We seek to minimize an objective function θ  which is typically dependent on 

displacement and material density. The objective function is minimized by 

varying a set of design variables ( d ). Nodal densities (Ψ ) are obtained by 

projecting the design variables using a specified projection rule (defined by the 
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function f ). Material density inside each element ( ρ ) is obtained from nodal 

densities (Ψ ) using shape functions. Element matrices are calculated using the 

graded finite element formulation by Kim and Paulino [34]. The minimization is 

subjected to constraints, which can be either equality or inequality constraints. 

Typical of those constraints are the box constraint on element densities 

(0 1≤ Ψ ≤ ), and total volume constraint ( oV V≤ ). The objective and constraint 

functions are calculated based on nodal densities (Ψ ) using graded finite element 

formulation [34]. Displacement field is implicitly defined by the equilibrium 

equation. The problem statement based on the finite element discretization and 

the SIMP material interpolation model is given by: 
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where θ  is the objective function we wish to minimize; d  is the vector containing 

design variables; Ψ  is the vector containing nodal densities; ρ  is the material 

density field (inside elements); N  is the number of nodes of each element; iN  is 

the shape function associated with node i ; E  is the elasticity tensor of materials 

with intermediate density; oE  is the elasticity tensor of solid material (with 

1ρ = ); ( )≡K K E  is the stiffness matrix; u  is the displacement vector; f  is the 

load vector.; and m  is number of general constraints. 

According to the graded finite element formulation [34], the element stiffness 

matrix is obtained using Gauss quadrature. Material densities are evaluated at 

Gauss points by interpolation using shape functions. The implementation of the 

CAMD approach includes the calculation of material density at Gauss points 

based on nodal values and shape functions, and the calculation of sensitivities 
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with respect to nodal densities based on sensitivities with respect to densities at 

Gauss points. 

 

3.2.3 The new scheme applied to the nodal projection approach 
 

The nodal projection approach by Guest et al. [27] also provides a smoothening 

effect because it possesses restriction on the gradient of material density. 

Moreover, the nodal projection approach itself imposes a minimum length scale. 

However, it induces “gray” areas of material, which is not practically meaningful. 

In this section, the new scheme is implemented on top of the nodal projection 

approach. The implementation takes advantage of the smoothening effect of the 

nodal projection approach, and the minimum length scale of the new projection 

scheme. Thus, it allows separate control over two effects: length scale and 

smoothening. 

The nodal projection approach is similar to the CAMD approach in that they 

both employ nodal variables as design variables. The differences are in the 

assumption of the material distribution and the projection/interpolation of 

material density inside each element. The CAMD approach assumes continuous 

material distribution inside each element and uses shape functions for 

interpolation. The nodal projection approach assumes constant material density 

for each element and uses projection functions to obtain element material 

density. 

The implementation of the new projection scheme with nodal projection 

approach is similar to its implementation for CAMD approach. Notice, however, 

that there are two values of length scale involved in this process (see Figure 19): 

one is used by the original nodal projection approach itself (let us denote it by 

sr ); the other is used by the new projection scheme (let us denote it by r ). The 

parameter sr  serves the purpose of smoothening the optimization problem. The 

parameter r  serves as a minimum length scale. Larger sr  provides more 
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smoothening but also causes greater fading effect. Continuation of r , with larger 

value at the beginning of the optimization process and minimum value at the end 

of the process when the solution has sufficiently converged is a good option. 

 

` `
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rs

(b) Nodal densities(a) Design variables (c) Element densities
 

Figure 19 : Illustration of length scales ( r  and sr ). One “black” design variable 

creates a circular region of “black” nodal densities, which then create “gray” and 

“black” regions of element density. 

 
We use a relatively small value for sr  ( sr =1) and the linear projection for the 

numerical example provided in this paper. With that setting, the projection from 

nodal densities to element densities becomes very simple: the material density of 

each element is simply the average of the four nodal values of the nodal densities. 

In this case, the final topology can be represented directly by the nodal densities 

so that the fading effect problem is circumvented. 

The problem statement is described as follows: 
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where θ  is the objective function we wish to minimize; d  is the vector containing 

design variables; Ψ  is the vector containing nodal densities; ρ  is element 

material densities; f  is the projection function used for the new scheme; sf  is 

the projection function used for the nodal projection approach; E  is the elasticity 

tensor of materials with intermediate density; oE  is the elasticity tensor of solid 

material; ( )e e e≡K K E  is the stiffness matrix; the summation (1..n) denotes the 

assembly of element stiffness matrices; u  is the displacement vector; f  is the 

load vector; and m  is number of general constraints. 

 

3.3 The projection function 
 

In the previous section, we have mentioned about the projection function to 

obtain densities from design variables. For each implementation, the projection 

function is given as follows: 

• element-based: ( )f=ρ d  

• CAMD : ( )f=Ψ d  

• nodal projection: ( )f=Ψ d  

(33)

In the above, d  denotes the vector of design variables; ρ  and Ψ  denote element 

densities and nodal densities, respectively. 

In this section, we describe the projection function for the first case: the 

projection between design variables and element densities. The other two cases 

are similar. Also, for the sake of visualization, the description is in a two-

dimensional context. However, the approach is valid in a three-dimensional 

context as well. The projection employs the maximum function: 

max( )
i

i jj
dρ

∈Ω
=  (34)

where iρ  is the material density of element (or node) i , assumed to be located at 

the centroid of the element (or at the node); jd  is the design variable located at 
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the centroid of element (or node) j ; and iΩ  is the sub-domain corresponding to 

element (or node) i . More explanation for the notation follows. 

The arrangements of design variables and element densities (i.e. their 

locations) are coincident. At the centroid of each element (or at each node) there 

is a material density and a design variable. In Figure 21, element (or nodal) 

densities and design variables are shown in two separate drawings for clarity. 

However, those two drawings should be understood as superposed. The two can 

take different values. The relation between the element (or nodal) densities and 

design variables are determined only by the projection. 

The sub-domain iΩ  corresponding to element (or node) i  is defined as a circle 

with its center located at the centroid of element (or at the node) i  and radius 

equal minr . For a discretized problem, iΩ  are the set of nodes j  defined by Figure 

20 and: 

( ) min  if  i i jj r r r r∈Ω ≡ − <  (35)

r i

r j

Ωi

r mi
n

node i

node j

r

 

Figure 20 : Sub-domain corresponding to point i  (either element or node). 

 
Note that minr  is a designer-defined parameter, which determines the minimum 

length scale of the topological solution. Physically, minr  is half of the minimum 

size of structural members in the optimized structure. The parameter j  is any 

element (or node) that lies within iΩ . Figure 21 illustrates the sub-domain and 

related entities. 
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Figure 21 : Sub-domain of node (or element) i. 

min 1.5r =

min 2.5r =

DensitiesDesign variables

DensitiesDesign variables

DensitiesDesign variables

(a) Example with integer design variables

(b) Example with “gray” design variables

(c) Results obtained from actual simulation

min 2.5r =

 

Figure 22 : Results of the new projection scheme. 
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Figure 22 shows the results of the projection to illustrate how it actually 

works. Figure 22(a) shows the result of the projection with the minimum member 

size obtained. Observe that the resulting structural member (densities) cannot be 

thinner because the design variables cannot shrink more. Figure 22(b) shows how 

gray areas in the design variable layer are projected to density layer. Figure 22(c) 

shows a result taken directly from actual simulation. 

 

3.4 Mapping between design variables and material 
densities 

 

To facilitate the implementation of the new approach, we provide in this section 

an explanation of the new projection scheme from a different perspective. The 

projection using the maximum function described in previous sections is 

essentially a mapping between design variables and element (or nodal) densities. 

Each element (or nodal) density is equal to one design variable, in other words, 

mapped to one design variable. One design variable may control the value of one 

or more than one element (or nodal) densities. The forward mapping is defined as 

the mapping from design variables to element (or nodal) densities. The inverse 

mapping is the one from element (or nodal) densities to design variables. Figure 

23 illustrates both the forward and the inverse mapping. 

DensitiesDesign variables

(b) Inverse maping

DensitiesDesign variables

(a) Forward mapping
 

Figure 23 : Forward and inverse mapping. 
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The forward and inverse mapping are sufficient to calculate element (or 

nodal) densities from design variables, and calculate sensitivities with respect to 

design variables from sensitivities with respect to element (or nodal) densities. 

The calculation of element (or nodal) densities from design variables is formally 

known as the projection of design variable layer onto the element (or nodal) 

density layer. The calculation of sensitivities with respect to design variable from 

element (or nodal) densities may be understood as the inverse of the projection. 

The mapping changes during the optimization process. The change occurs 

between consecutive iteration steps when design variables are updated at the end 

of each iteration step. It is obvious that during one iteration step, neither the 

design variables are changed, nor the mapping. Therefore the projection is 

consistent inside each iteration step. After the update of design variables, the 

mapping is refreshed, the structure is re-analyzed, objective and constraint 

functions are re-calculated, and sensitivities are re-evaluated. 

The mapping facilitates the calculation of sensitivities with respect to design 

variables. In general, the sensitivities with respect to element (or nodal) densities 

are calculated using traditional methods, such as adjoint method. The 

sensitivities with respect to design variables are calculated from the sensitivities 

with respect to element (or nodal) densities using chain rule. The mapping serves 

to bridge the two classes of sensitivities. 

 

3.5 Sensitivity analysis 
 

The calculation of sensitivities with respect to design variables based on 

sensitivities with respect to element (or nodal) densities is provided. The 

calculation of sensitivities with respect to element (or nodal) densities for element 

based approach using adjoint method can be found in Bendsoe and Sigmund’s 

book [38]; for the CAMD approach, see Matsui and Terada [28]; and for the 

nodal projection approach, see Guest et al. [27]. 
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Suppose we need to calculate the sensitivities of a function Θ , which may be 

an objective or constraint function, with respect to design variables. The function 

Θ  can be considered as a function of element (or nodal) densities ρ , which are 

again a function of design variables d , i.e. ( )( )dρΘ ≡ Θ . Let us look at the 

sensitivity with respect to a specific design variable id . We will determine the 

variation of design variable ( idδ ), the variation of element (or nodal) densities 

(δρ ), and then the variation of the function δΘ . In the previous section, we have 

discussed about the mapping between design variables and element (or nodal) 

densities. Let us assume that the mapping is known and iS  is the set of element 

(or nodal) densities, which are mapped to the design variable id . See Figure 24 

for an illustration. 

(a) Design variables (b) Element (or nodal) densities

di Siρ j

mapping

Ω

 

Figure 24 : Relating design variables (d ) and element (or nodal) densities ( ρ ). 

 

The variation of id  causes the variation of a number of element (or nodal) 

densities, which belong to the influence set iS  as follows: 

( )
      for      

,
0          otherwise

i i
j i i

d j S
d d

δ
δρ δ

∈⎧
= ⎨
⎩

 (36)

The variation of the function Θ  is calculated as 
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( ) ( )( ), ,
i i

i i i k i i
k j S j Sk j j

d d d d dδ ρ δρ δ δρ δ δ
ρ ρ ρ∈Ω ∈ ∈

⎛ ⎞∂Θ ∂Θ ∂Θ
Θ = = = ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ ∑ ∑  (37)

Thus, the sensitivity of the function Θ with respect to design variable id  is 

expressed as 

ij Si jd ρ∈

∂Θ ∂Θ
=

∂ ∂∑  (38)

where jρ∂Θ ∂  are sensitivities with respect to element (or nodal) densities. The 

calculation of those depends on the type of function and type of problem, such as 

minimum compliance, compliant mechanism, inverse homogenization, and so on. 

The details of those calculations are not included in this thesis but can be easily 

found in published literature. See, for example, reference [38] for sensitivities with 

respect to element densities in element based approach, reference [28] for 

sensitivities with respect to nodal densities in the CAMD approach, and reference 

[27] for sensitivities with respect to nodal densities in the nodal projection 

approach. 

The influence set iS  is built for each iteration step while doing the projection. 

For each element (or nodal) density iρ , the maximum design variable is sought 

among the sub-domains iΩ . Then a mapping is created to link the element (or 

nodal) density and the maximum design variable. 

It is worth discussing an important case that arises during the sensitivity 

analysis: the case when the influence set iS  is empty. In this case, the design 

variable id  does not control any element (or nodal) densities. Therefore changes 

in that design variable does not lead to any change in element (or nodal) 

densities. Mathematically, that means the sensitivity with respect to the design 

variable id  vanishes in the current iteration step. However, empirically, the 

simulation works better if we treat the sensitivities with respect to the design 

variable id  as unknown for this case. The treatment of zero sensitivities and 

unknown sensitivities can be the same or different depending on the type of 



 45

problem and optimization update scheme. In general, zero sensitivities do not 

lead to zero updatee for the corresponding design variablee. On the other hand, 

unknown sensitivities lead to unchanged (zero update) design variables for the 

current optimization step.  

 

3.6 Discussion 
 

The essence of the new projection scheme lies in its simplicity and effectiveness. 

The new scheme excludes from the design space structural members which are 

finer than a designer-specified minimum length scale parameter. The outcome is a 

natural restriction of the feasible design space with only undesirable solutions 

eliminated. The new scheme avoids patterns that cause problems in topology 

optimization, such as non-uniqueness of the solution, mesh-dependency, 

numerical instabilities, and manufacturing unfriendliness. Compared to other 

approaches, the exclusion of undesirable design space is done in the most direct 

manner. Thus there are no pronounced side effects commonly seen in other 

approaches, such as gray areas, rounded and messy corners, and directional bias. 
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Chapter 4 : Numerical implementation 
of the minimum length scale scheme 

 

The new projection scheme is general and applicable to various topology 

optimization problems. To illustrate, the implementation for the minimum 

compliance problem is provided. We seek to minimize the compliance (or 

maximize the stiffness) with a constraint on total volume of the structure. The 

compliance is defined as 
Tc = u f  (39)

And the volume constraint is 

oV dV Vρ
Ω

= ≤∫  (40)

This section contains pseudo-codes and flowcharts for the implementation of the 

new scheme on top of three approaches: element-based, CAMD, and nodal 

projection. 

 

4.1 Element-based approach 
 

The basic implementation for the element-based approach is adopted from 

Sigmund’s educational paper [20]. The modification for the new scheme is 

provided below. It is further illustrated with the flowcharts given in Figure 25 

and Figure 26, and the pseudo-code 1 through 4. 

Figure 25 illustrates the main flowchart for implementing the new projection 

scheme with the element-based approach. At the beginning of the program, an 

array containing information of the sub-domains iΩ  for every element is built. 
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Each element will be assigned a list of elements that lie within the circle defining 

Ω . The sub-domain information kept for the entire program cycle. It is used for 

the projection from the design variable layer onto element density layer (Figure 

22), which is essentially the search for the maximum design variable that controls 

each element density. 

The initial guess for design variables is chosen to be the same as the initial 

guess for element densities. The map between design variables and element 

densities is initialized so that the design variable at any element is mapped to the 

element density at that element. 

After the calculation of sensitivities with respect to element densities, a 

summation process is carried out to calculate sensitivities with respect to design 

variables. This is essentially a loop over all elements and at each cycle. 

Sensitivity with respect to the element density is added to the sensitivity with 

respect to the design variable, which is mapped to that element. Note that the 

mapping has been built earlier (see Section 3.4). 

The Optimality Criteria Update is employed as the optimizer (see Figure 26). 

The inner loop to find the Lagrangian multiplier is modified. At each of the inner 

iteration steps, the design variables are updated according to the current value of 

the Lagrangian multiplier. Element densities are obtained by the new projection, 

which is essentially the search for maximum design variable within the sub-

domain of each element. Then total volume is calculated and compared to the 

upper bound constraint. A Newton bisectional scheme is followed to modify the 

Lagrangian multiplier until the volume constraint is satisfied. At each of the 

inner iteration steps, the result of the projection mapping is recorded in an array. 

The mapping at the final step of the inner iteration loop is the mapping for the 

calculation of sensitivities for the next step. Other optimizers, such as the MMA 

[39], need to be modified to output the mapping. The flowchart of the main 

program is given in Figure 25, and the flowchart of the Optimality Criteria 

Update sub-function is given in Figure 26. 
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Starting guess with homogeneous d

Set starting mapping (homogeneous)

Set starting density ρ to homogeneous

Perform Finite Element Analysis

Calculate sensitivities w.r.t. ρ (e.g. using adjoint method) 
; c V

ρ ρ
∂ ∂
∂ ∂

Calculate sensitivities w.r.t. d

( ) volume fraction, 1.. ,  : number of elementsd i i n n= =

( ) volume fraction, 1.. ,  where  is number of elementsi i n nρ = =

based on ρ

( ) ( ) ;  ,  w h ere    
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c V
d d d ρ∈

∂ ∂ ∂ • ∂ •=
∂ ∂ ∂ ∂∑

Update d, ρ, and the mapping with
Optimality Criteria Update

Converged?no

yes

Build sub-domain information

 

Figure 25 : Flowchart for implementing the new projection scheme with the 

element-based approach: main program. The Optimality Criteria (OC) Update is 

given in Figure 26. 
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Figure 26 : Flowchart for implementing the new projection scheme with the 

element-based approach: Optimality Criteria (OC) Update. 
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The pseudo-code for the implementation with the element-based approach is 

provided below. 

 

Pseudo-code 1: Main function 

 

Notes: 

Input parameters 

nelx: number of elements in x direction 

nely: number of elements in y direction 

Vo: averaged volume fraction 

p: penalization parameter 

rmin: length scale parameter (half of the minimum member width) 

 

Selected internal variables 

xd: design variables 

xe: element densities 

dc_xd: Sensitivities of the compliance w.r.t. design variables 

dc_xe: Sensitivities of the compliance w.r.t. element densities 

change: maximum change of element densities between two iterations 

enum: element id 

ne: number of elements belonging to sub-domain of each element 

elistx: list of column numbers of element sub-domain 

elisty: list of row numbers of element sub-domain 

mapx: list of col number of the design variable mapped to element 

mapy: list of row number of the design variable mapped to element 

KE: element stiffness matrix of solid material 

c: objective function (which is the compliance in this case) 

Ue: element displacement, vector 

 

01: xd ← Vo ; xe ← Vo  

02: dc_xe  ← 0 ; dc_xe  ← 0 

    << Build the list of adjacent elements >> 

03: FOR all elements in the domain (having row ely and column elx) DO 

04:    enum ← nelx(elx-1) + ely 

05:    FOR all elements (having row nly and column nlx) DO 

06:       r ← − + −2 2( ) ( )elx nlx ely nly  

07:       IF r ≤ rmin THEN 

08:          ne(enum,1) ← ne(enum) + 1 

09:          elistx(enum,ne(enum)) ← nlx 

10:          elisty(enum,ne(enum)) ← nly 
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11:       END IF  

12:    END FOR 

13: END FOR 

    << Initialize the map from element densities to design variables >> 

14: FOR all elements in the domain (having row ely and column elx) DO 

15:    mapy(ely,elx) ← ely 

16:    mapx(ely,elx) ← elx 

17: END FOR 

18: CALL (lk) sub-function to compute (KE) 

    << Start iteration >> 

19: WHILE change > 0.01 DO 

20:    loop ← loop + 1 

21:    CALL sub-function (FE) with (nelx,nely,xe,penal) to compute (U)  

22:    << Calculate compliance and sens w.r.t. elem densities >> 

23:    c ← 0 

24:    FOR all elements in the domain (having row ely and column elx) DO 

25:       Extract (Ue) from (U) 

26:       c ← c + xe(ely,elx)p(Ue)’(KE)(Ue) 
27:       dc_xe(ely,elx) ← -(p)xe(ely,elx)(p-1)(Ue)’(KE)(Ue) 
28:    END FOR 

       << Calculate sensitivities w.r.t. design variables >> 

29:    tempdc ← 0 ; nan ← 0 

30:    FOR all elements in the domain (having row ely and column elx) DO 

31:       tempdc(mapy(ely,elx),mapx(ely,elx)) ← dc_xe(ely,elx) 

32:       nan(mapy(ely,elx),mapx(ely,elx)) ←  

          nan(mapy(ely,elx),mapx(ely,elx)) + 1 

33:    END FOR 

       << Normalize the sens by dividing by the influenced volume >> 

34:    FOR all elements in the domain (having row ely and column elx) DO 

35:          IF nan(ely,elx) > 0 THEN 

36:             dc_xd(ely,elx) ← tempdc(ely,elx)/nan(ely,elx); 

37:          ELSE 

38:             dc_xd(ely,elx) ← dc_xe(ely,elx); 

39:          END IF 

40:    END FOR 

41:    xdold ← xd ; xeold ← xe 

42:    CALL (OC) sub-function with 

43:         (nelx,nely,xd,volfrac,dc_xd,ne,elistx,elisty) 

44:      to compute (xd,xe,mapy,mapx) 

45:    Output (loop, c, change, total volume) 

46:    Plot (xe) for visualization 

47: END WHILE      
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Pseudo-code 2: Sub-function OC 

 

Notes: 

Input variables: 

nelx: number of element in x direction 

nely: number of element in y direction 

xd: current design variables 

Vo: volume fraction 

dc_xd: sensitivities w.r.t. design variables 

ne: number of elements belonging to subdomain of each element 

elistx: list of column numbers of element sub-domain 

elisty: list of row numbers of element sub-domain 

 

Output variables: 

xdnew: updated design variables 

xenew: updated element densities 

mapx: list of col number of the design variable mapped to element 

mapy: list of row number of the design variable mapped to element 

 

Selected local variables: 

maxnodey: row number of the maximum design variables in range 

maxnodex: col number of the maximum design variables in range 

enum: element id 

l1, l2, lmid: temporary values of the Lagrangian multipliers used by 

              the bi-sectioning algorithim 

 

01: l1 ← 0 

02: l2 ← 100000 

03: move ← 0.2 

 

04: WHILE l2-l1 > 1e-4 DO 

05:    mapy  ← 0 ; mapx ← 0  

06:    lmid ← 0.5(l2 + l1) 

07:   xdnew ←

{ } { }

{ } { }

⎧ −⎛ ⎞− ≤ −⎪ ⎜ ⎟
⎝ ⎠⎪

⎪ −⎪ ⎛ ⎞− − ≤⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ −⎛ ⎞⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

dc_xd
xd move   xd xd move

lmid

dc_xd
xd move   xd move xd

lmid

dc_xd
xd            

lmid

1 / 4

1 / 4

1 / 4

max ,0.001 if max ,0.001

min ,0.001 if min ,0.001

otherwise
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08:    xnew ← 0 

09:    FOR all elements in the domain (having row ely and column elx) DO 

10:       enum ← nely(elx-1)+ely 

11:       FOR all elements (i) in the sub-domain DO 

12:          IF xenew(ely,elx)<xdnew(elisty(enum,i),elistx(enum,i)) THEN 

13:             xenew(ely,elx) ← xdnew(elisty(enum,i),elistx(enum,i)) 

14:             maxnodey ← elisty(enum,i) 

15:             maxnodex ← elistx(enum,i) 

16:          END IF 

17:       END FOR 

18:       mapy(ely,elx) ← maxnodey 

19:       mapx(ely,elx) ← maxnodex 

20:    END FOR 

21:    IF total volume > Vo THEN 

22:       l1 = lmid 

23:    ELSE 

24:       l2 = lmid 

25:    END IF 

26: END WHILE 

 

 

Pseudo-code 3: Sub-function FE 

 

Notes: 

Input variables: 

nelx: number of element in x direction 

nely: number of element in y direction 

x: element densities 

p: penalization parameter 

 

Output variables: 

U: Displacement vector 

 

Selected local variables 

KE: element stiffness matrix of solid material 

K: global stiffness matrix 

F: global load vector 

edof: element degrees of freedom 

fixeddofs: prescribed degrees of freedom 

alldofs: all degrees of freedom 

freedofs: free degrees of freedom 
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01: CALL sub-function (lk) to compute (KE) 

02: K ← 0 

03: F ← 0 

04: FOR all elements in the domain (having row ely and column elx) DO 

05:    Build element degrees of freedom table 

06:    Assemble (K) using (xe(ely,elx))P(KE) and element dofs table 

07: END FOR 

    << Define loads and supports >> 

08: F(2(nely+1)nelx+nely/2+1)) ← 1 

09: fixeddofs ← 1 : 2(nely+1) 

10: alldofs ← 1 : 2(nely+1)(nelx+1) 

11: freedofs ← alldofs ∩ fixeddofs 
12: Extract Kff corresponding to freedofs 

13: Extract Fff corresponding to freedofs 

14: Solve linear system (Kff)(Uff) = Kff for Uff 

15: U(fixeddofs) ← 0  

 

 

Pseudo-code 4: Sub-function lk 

 

Notes: 

Input variables: none 

Output variables: KE 

 

Selected local variables: 

E: Young’s modulus 
nu: Poison’s ratio 
k: vector of temporary values 

 

01: E ← 1  

02: nu ← 0.3 

03: k ← [1/2-nu/6, 1/8+nu/8, -1/4-nu/12, -1/8+3*nu/8, -1/4+nu/12, 

        -1/8-  nu/8, nu/6, 1/8-3*nu/8] 

04: KE ← E/(1-nu2)[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 

                k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 

                k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 

                k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 

                k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4) 

                k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 

                k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 

                k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)] 
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4.2 CAMD approach 
 

The basic implementation for the CAMD approach is adopted from Matsui and 

Terada [28]. The modification for the new scheme is similar to the modification 

done with the element-based approach; however, the element densities are 

replaced by the nodal densities. 

The difference between the implementation with the element-based and 

CAMD approach is as follows. For the element-based approach, material density 

is assumed constant in side each element. Element matrices of intermediate 

densities are proportional to that of the basic material by a factor of pρ , where 

ρ  is the element density and p  is the penalization factor. For the CAMD 

approach, material density is assumed to be continuously varying inside each 

element and is interpolated using nodal values and shape functions. Element 

matrices must be integrated for each element using, for example, the graded 

finite element formulation by Kim and Paulino [34]. The output topology of the 

CAMD approach is the continuous material density field which is interpolated 

from nodal values instead of solid and void element as in the case of the element-

based approach. 

The flowchart for CAMD approach is the same as that of the element-based 

approach because all the differences are hidden in the finite element analysis and 

the calculation of sensitivities with respect to ρ . Details of those calculations can 

be found in reference [28]. 

 

4.3 The nodal projection approach 
 

The basic implementation for the nodal projection approach is adopted from the 

paper by Guess et al. [27]. See Section 2.2 for more information of the basic nodal 
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projection approach. In the Matlab code implementation, the inner projection of 

the original nodal projection approach is simplified by fixing the smoothening 

parameter sr  to 1. The implementation described in this section is for a general 

case when both the length scale parameter r  and smoothening parameter sr  are 

user-defined. See Figure 24 for more information of r  and sr . The explanation of 

the implementation is further illustrated with the flowcharts given in Figure 27 

and Figure 28. 

Essentially, two consecutive projection schemes are carried out in order to 

obtain element densities from design variables. The first is the new scheme which 

uses the maximum function. The second is the original linear projection by Guess 

et al. [28] using the weighted average function. The first projection helps 

achieving minimum member size and the second helps smoothening the 

optimization process. 

At the beginning of the program, two arrays containing information of the 

sub-domains iΩ  and s
iΩ  for every element is built. Each element will be assigned 

a list of elements that lie within the circle defining iΩ  and s
iΩ . The information 

of sub-domains is kept for the entire program cycle. It is used for the projection 

from the design variable layer onto nodal density layer (which is essentially the 

search for the maximum design variable that control each element density), and 

from the nodal densities layer to element density layer (which is the weighted 

average smoothening process.) 

The initial guess for design variables is chosen to be the same as the initial 

guess for nodal densities, and initial element densities are calculated from initial 

nodal densities. The map between design variables and nodal densities is 

initialized so that the design variable any node is mapped to the nodal density at 

that node. 

After the calculation of sensitivities with respect to element densities, 

sensitivities with respect to nodal densities are calculated based on the inverse of 

the weighted averaging function. Then a summation process is carried out to 
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calculate sensitivities with respect to design variables from sensitivities with 

respect to nodal densities. This is essentially a loop over all nodes and at each 

cycle. For all nodes, sensitivity with respect to each nodal density is added to the 

sensitivity with respect to the design variable, which is mapped to that nodal 

density. Note that the mapping has been built earlier. 

A modified version of the Optimality Criteria Update [20] is employed as the 

optimizer (see Figure 28). As before, the inner loop to find the Lagrangian 

multiplier is modified. At each of the inner iteration steps, the design variable is 

updated according to the current value of the Lagrangian multiplier. Nodal 

densities are obtained by the projection, which is essentially the search for 

maximum design variable within the sub-domain of each node. Element densities 

are calculated based on the weighted averaging function. Element densities are 

summed up to obtain the total volume, which are then compared to the upper 

bound constraint. A Newton bisectional scheme is followed to modify the 

Lagrangian multiplier until the volume constraint is satisfied. At each of the 

inner iteration step, the result of the projection mapping is recorded in an array. 

The mapping at the final step of the inner iteration loop is the one used for the 

calculation of sensitivities for the next step. The flowchart of the main program is 

given in Figure 27, and the flowchart of the Optimality Criteria Update sub-

function is given in Figure 28. 
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Figure 27 : Flowchart for implementing the new projection scheme with the nodal 

projection approach: main program. The Optimality Criteria (OC) Update is 

given in Figure 28. 
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Figure 28 : Flowchart for implementing the new projection scheme with the nodal 

projection approach: Optimality Criteria (OC) Update. 
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Chapter 5 :   Numerical Examples 
 

For numerical verification, the traditional minimum compliance problem is solved 

for a cantilever beam. The SIMP model is used for the interpolation of stiffness 

tensor of intermediate material density. A penalization factor of p=3 is used 

without continuation. Poisson’s ratio is 0.3 for the solid material. Total volume 

fraction is 50%. In all examples, the finite element mesh resolution is 80x50 

elements. 

The example below is similar to the one in Figure 5(b) of the paper by Guest 

et al. [27]. The configuration of the beam is illustrated in Figure 29. The problem 

is solved using each of the three implementations with minimum length scale 

scheme: element-based, CAMD, and nodal projection. The results are compared 

with those obtained by the original approaches.   

 

P

80 elements

50
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Figure 29 : Configuration of the cantilever beam problem. 
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5.1 Results obtained using the element-based 
approach 

 

Figure 30 compares the topologies obtained by using the traditional element-

based implementation: the result of Figure 30(a) is obtained without applying the 

sensitivity filtering technique by Sigmund [20]; the result of Figure 30(b) is 

obtained using of sensitivity filtering technique with a filtering radius equal 2.5 

times element size; the result of Figure 30(c) is obtained using the new scheme to 

impose a minimum length scale. The length scale parameter is also set to 2.5 

times element size. Note that a filtering radius of 2.5 is not exactly equivalent to 

the length scale parameter of 2.5 imposed by the new scheme. The reason is that 

the structural members obtained using the filtering technique contain “gray” 

edges, while the structural members obtained by imposing a minimum length 

scale with the new scheme are essentially solid. It is clear that without applying 

filtering or imposing minimum length scale, numerical instabilities (e.g. 

checkerboard patterns) appear. The filtering technique eliminates checkerboard 

patterns but also induce gray areas around the edges of structural members. The 

new scheme also solves the checkerboard problem, guarantees the exact minimum 

length scale, and does not cause the fading effect as in the case of the filtering 

technique. 
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(a) Topology obtained without minimum length scale and without filtering 

 

(b) Topology obtained by applying the filter of sensitivities with min 2.5r =  

 

 (c) Topology obtained using the minimum length scale scheme with min 2.5r =  

 

Figure 30 : Results obtained with the element-based approach: mesh size is 80x50 

elements; volume fraction is 50%; and Poison’s ratio is 0.3. 
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5.2  Results obtained using CAMD approach 
 

The result obtained by means of the original version of the CAMD approach by 

Matsui and Terada [28] is compared to the result obtained using the new scheme 

on top of the CAMD approach (Figure 31). A minimum length scale parameter 

min 2.5r =  times element size is applied. The topology obtained by the original 

CAMD without imposing minimum length scale includes very thin structural 

members and a minor symptom of “layering” phenomenon (which is equivalent to 

checkerboard instabilities in the element-based approach). In contrast, the 

topology obtained with the new scheme comprises only structural members that 

satisfy minimum length scale. Notice the minimum length scale is strictly 

achieved without any additional fading effect. 

 

(a) Topology obtained by the original CAMD 

 

 (b) Topology obtained using the new scheme with min 2.5r =  

Figure 31 : Results obtained with the CAMD approach: mesh size is 80x50 

elements; volume fraction is 50%; and Poison’s ratio is 0.3. 
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5.3 Results obtained using nodal projection approach 
 

The result obtained by means of the nodal projection by Guest et al. [27] is 

compared to the result obtained using the new projection scheme on top of the 

original nodal projection approach with the linear projection (see Figure 32). For 

the implementation of the new projection scheme, a minimum length scale 

parameter min 2.5r =  times element size is applied. For the original nodal 

projection approach, a minimum length scale min 4.0r =  is applied. Note that the 

minimum length scale in the original nodal projection approach is defined on gray 

 

(a) Topology obtained using the original nodal projection with min 4.0r =  

 

 (b) Topology obtained using the new scheme with 1sr =  and 2.5r =  

Figure 32 : Results obtained with the nodal projection approach: mesh size is 

80x50 elements; volume fraction is 50%; and Poison’s ratio is 0.3.
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elements. Empirically, we observe that that min 4r =  including gray elements is 

equivalent to min 2.5r =  on totally solid members. This assumption is validated by 

the fact that if min 2.5r =  is applied for the original nodal projection approach, a 

different topology with finer structural members will result. It is clear from the 

result that the new scheme generates a sharp topology which strictly satisfies the 

minimum length scale, while the result obtained by the original nodal projection 

approach contains much undesirable gray areas. 

 

5.4 Design evolution 
 

In order to provide the reader with more information about the convergence 

process with the new projection scheme, the design evolution is given in Figure 

33, Figure 34, and Figure 35. Note that no continuation or filtering technique is 

involved in the optimization process. The penalization parameter 3p =  and the 

length scale factor min 2.5r =  are set from the beginning and remain constant 

throughout the optimization process. Poisson’s ratio is 0.3 for the solid material. 

Total volume fraction is 50%. In all examples, the finite element mesh resolution 

is 80x50 elements. In Figure 33 and Figure 34, notice that smoothly changed 

topologies are generated in intermediate steps, and sharp topologies are obtained 

at the end. 

The design evolution for both design variable and topology are shown in 

Figure 35 considering the new minimum length scale scheme on top of the nodal 

projection approach. In order to visualize the distribution of design variables, 

they are treated as density of an area of element size located at the design 

variable location. 
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(a) n=0 (b) n=1 

 

(c) n=10 

 

(d) n=20 

 

(e) n=30 
 

 (f) final step 

 

Figure 33 : Design evolutions with the new scheme applied to element based 

approach (n is the iteration step.) 

 

 

(a) n=0 (b) n=1 (c) n=10 

 

(d) n=20 (e) n=30  (f) n=50 

 

Figure 34 : Design evolutions with the new scheme applied to CAMD approach 

(n is the iteration step.) 
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n=1 

 

n=1 

 

n=5 

 

n=5 

 

n=20 

 

n=20 

 

n=40 

 

n=40 

 

Final step 
 

Final step 

(a) Distribution of design variables (b) Distribution of element densities 

Figure 35 : Design evolutions with the new scheme applied to nodal projection 

approach (n is the iteration step.) 
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5.5 Limitation 
 

In case coarse meshes are used to solve sensitive problems, we observe the 

existence of patches of intermediate density in the final topology. This 

phenomenon is distinguishable from the fading effect observed with filtering and 

other techniques. In this case, the optimization is struggling to satisfy the volume 

constraint while keeping the minimum length scale for structural members. 

However, the problem vanishes when mesh resolution is sufficiently high. Refer to 

Figure 36 for more information. This issue is illustrated by Figure 36. 

 

       

(a) Cantilever beam is solved with 60x20 elements and min 1.5r = : gray structural 

members are observed. 

 

 

(b) Cantilever beam is solved with 120x40 elements and min 3.0r = : gray structural 

members disappear. 

 

Figure 36 : Influence of mesh discretization on the minimum length scale scheme: 

(a) gray members appear when coarse mesh is used for sensitive problems; 

(b) finer mesh solves the problem. 
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Chapter 6 :  Exploring additional layers 
of design variables 

 

The concept of using additional layers of design variables to achieve desired 

restriction on design space can successfully exclude fine patterns from the feasible 

design space. The new scheme solves many complications in topology 

optimization and help achieving the minimum length scale, one of the important 

manufacturing constraints. However, the concept can be generalized to be the 

construction of feasible design space from additional design variable layers. It has 

the potential to help achieving various other important and interesting 

constraints, such as manufacturing constraints. 

 

6.1 Constructing the feasible design space from layers 
of design variables 

 

The main part of this thesis describes the new scheme, which introduces an 

additional layer of design variables and a projection using the maximum function 

to achieve the minimum length scale for the topology optimization. From a 

broader point of view, what we do in the new scheme is to construct the feasible 

design space from an additional layer of design variables. The way we construct 

the feasible design space using the maximum function excludes undesirable fine 

patterns. 

Design space for topology optimization has a unique characteristic, which is 

not present in classical structural optimization. Element densities do not only 

have values but also locations. They form a physical space (1D, 2D or 3D) that 
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can be manipulated. We can construct a feasible design space that does not 

contain the topological layouts that should not to appear in the solution. The 

feasible design space should contain all possible layouts other than undesired ones 

so that the solution will be the true optimum solution. We may use as many 

additional design variable layers as necessary. Each design variable layer may 

assume a different domain. Through appropriate choices of domains for design 

variable layers and the constructing rule (i.e. the projection), one can construct a 

feasible design space suitable for various purposes. This idea is explored in this 

Chapter. 

 

6.2 Design of stiffened plates 
 

Stiffened plates have many applications in the engineering world. Figure 37 

shows the applications of stiffened plates to two extreme cases: a high-tech 

structure of the airframe of a modern airplane; and a massive structure of a civil 

engineering bridge. To ensure that the results obtained by topology optimization 

are in the form of stiffened plates is a formidable task. That is why the state-of-

the-art application of topology optimization [40] for this type of structure is 

limited to the two-dimensional imitation of the rib patterns. A real three-

dimensional simulation may be achieved using the general concept of constructing 

feasible design space from additional layers of design variables and projection 

schemes. 

In the stiffener problem, the domain is 3D. The feasible design space is 

constructed from two layers of design variables named wd and sd . The domains 

of the two layers of design variables are 2D areas corresponding to the mid-plane 

of the original design domain. The 3D structure in the form of stiffened plates is 

constructed by the following projection rules, which is defined as follows: 
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(a) Aircraft frame

(b) Bridge girder  

Figure 37 : Applications of stiffened plates (photo in (a) was taken from Altair 

Engineering.) 



 72

 

max( , )

max( )
i

i

w w s
i j jj

s s
i jj

d d

d

ρ

ρ
∈Ω

∈Ω

=

=
 (41)

where w
iρ  is the density of the web element corresponding to location i  of the 

cross section; s
iρ  is the density of all stiffener elements (i.e. elements outside of 

the web) corresponding to location i  of the cross section; iΩ  is the subdomain of 

element i  of the cross section, which is essentially a circle with radius minr  (refer 

to previous sections for more explanations.) 

Figure 38 shows schematically the topology constructed using the rule defined 

in Equation (41) with min 2.5r =  times element size. Notice that the resulting 

structure has the form of a stiffened plate. 

sd wd

ρ

 

Figure 38 : Constructing the topology of a stiffened plate from two design 

variable layers. 
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A preliminary result for the stiffened plate problem is shown in Figure 39 (a). 

The green elements represent the web and the gray elements represent the 

stiffeners. Figure 39 (b) shows the interpretation of the result. 

  

 

 

(a) Original result

(b) Interpretation of the result
 

Figure 39 : Preliminary result of the stiffened plate problem: mesh size is 

20x20x5; volume fraction is 50%; the thickness of the web (green) is one element; 

and stiffeners (gray) height is 2 elements. 
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Chapter 7 :   Summary and future work 
 

Complications of topology optimization problems include non-existence, mesh-

dependency, and checkerboard instabilities of its solutions. An extensive 

literature has been dedicated to the study and approaches to address those 

complications. Moreover, one of the remaining obstacles to topology optimization 

is manufacturability of its solutions. In this thesis, we review various approaches 

to solve complications of topology optimization and to achieve manufacturability 

of the results. Then we present a new approach, which is shown to be more 

advantageous than existing approaches in achieving minimum length scale and 

solving complications of topology optimization problems. We also discuss the 

generalization and extension of the approach to show that it has the potential of 

improving the quality of topology optimization in various applications where 

design constraints must be placed. This chapter summarizes the content of the 

work and provides suggestions for future extensions. 

 

7.1  Summary 
 

This work first provides background information about topology optimization 

and the complications of the problem. Formulation of the minimum compliance 

problem is given with two basic design parameterization approaches: the 

traditional element based; and the continuous approximation of material 

distribution (CAMD). Then existing methods to solve complications and achieve 

minimum length scale are reviewed in moderate details. Four methods are 
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discussed: filter of sensitivities [10, 20, 21], nodal design variables and projection 

functions [27], perimeter constraint [11, 12, 13], and monotonicity-based length 

scale [22, 23, 24]. A discussion about the essential points for a successful 

approach is also provided. 

 Based on the understanding of the aforementioned essential points, a new 

scheme is developed to achieve minimum length scale in topology optimization. 

The new scheme employs the idea of constructing the feasible design space using 

an additional layer of design variable and the maximum projection function. The 

projection scheme ensures that all structural members in the solution satisfy a 

minimum member size, while not inducing undesirable side effects commonly 

observed in other approaches. The new scheme is implemented on top of three 

basic implementations: the traditional element based; the CAMD; and the nodal 

projection. 

 The idea of constructing feasible design space is also generalized to the 

construction of feasible design space with more than one layer of design variables 

to achieve fabrication and design constraints other than the minimum member 

size. A projection scheme to achieve stiffened plate patterns is given to 

demonstrate the idea the potential of the approach in practical applications. 

Further unexplored areas are discussed in the following section. 

7.2  Suggestions for future work 
 

Two main areas for future works are: 

• development of tailored schemes to achieve various types of design and 

fabrication constraints 

• alternative smoothening techniques to augment the maximum projection 

scheme and enhance convergence to global optima. 

 In the first area of extension, there are many design and fabrication 

constraints that arise from practical applications. We have addressed two of 

them: the minimum length scale; and the stiffener pattern. We also have an 
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ongoing work, which employs the projection scheme to constrain the maximum 

material gradient in the design of functionally graded microstructures (material 

design). Other fabrication constraints include the following: 

• Casting constraint such as mold removing direction, and extrusion 

• Repetitive patterns, for example, to ensure the similarity of products 

• Maximum member size 

• Desired patterns to account for other design aspects 

The method to achieve those constraints may include the choice of appropriate 

design variable spaces, the combination of those spaces using the maximum 

projection, and the exploration of other constructing functions. 

 The second extension work is intended to improve the performance of the new 

projection scheme. The desired integer (0-1) solution for topology optimization 

makes the problem very sensitive to local optima. Once the densities are updated 

to either zero or one, they are usually trapped to those values and prevent the 

structure to evolve to global optima. A method, such as the filtering of 

sensitivities, provides smoothening effects besides the minimum length scale. 

However, the new projection scheme proposed in this work does not provide any 

smoothening effect during the iterative solution process. Thus, for problems 

where the topology changes too much during the optimization evolution, the 

solution may be far from global optimum. The smoothening effect may be in the 

form of mathematical regularization or any scheme that facilitates the change in 

location of structural members after they are formed during the design evolution. 
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Appendices 
 

Matlab codes of the implementation with the element-based, CAMD and nodal 

projection approach. 

 

Appendix A 
 

Matlab code for the implementation with element-based approach 
 

001  % Topology Optimization Program %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

002  %   With minimum length scale achieved by the new method (maximum projection) 

003  %   Implemented with element based approach 

004  %   Usage: file_name(nelx,nely,volfrac,penal1,penal2,rmin) 

005  %   nelx: number of elements in x direction 

006  %   nely: number of elements in y direction 

007  %   volfrac: averaged volume fraction 

008  %   penal: penalization parameter 

009  %   rmin: lentgh scale parameter (half of the minimum member width) 

010  % 

011  % Selected List of variables:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

012  %   xd: design variables, matrix nely rows and nelx columns 

013  %   xe: element densities, matrix nely rows and nelx columns 

014  %   dc_xd: Sensitivities of the compiance w.r.t. design variables 

015  %   dc_xe: Sensitivities of the compiance w.r.t. element densities 

016  %   loop: iteration number 

017  %   change: maximum change of element densities between two consecutive steps 

018  %   ne: number of elements belonging to subdomain of each element, vector nelx 

019  %       *nely rows  

020  %   elemlistx: list of column numbers of elements belonging to subdomain of  

021  %      each element, matrix nelx*nely rows, number of columns depends on rmin 

022  %   elemlisty: list of row numbers of elements belonging to subdomain of each  

023  %           element, matrix nelx*nely rows, number of columns depends on rmin 

024  %   mapx: list of column number of the design variable corresponding to each 

025  %         element density, matrix nely rows and nelx column 

026  %   mapy: list of row number of the design variable corresponding to each 

027  %         element density, matrix nely rows and nely column 

028  %   KE: element stiffness matrix of solid material 

029  %   c: objective function which is the compliance in this case 

030  %   Ue: element displacement, vector 

031  % 

032  % List of sub-functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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033  %   FE: sub-function to caryout finite element analysis, returns displacement 

034  %   lk: sub-function to calculate element stiffness matrix of solid material 

035  %   OC: sub-function to update design variable and calculate material densities 

036  %       from design 

037  %       variables, this is a revised version of the OC from Sigmund’s code 

038  % 

039  function lengthscale_element_based(nelx,nely,volfrac,penal,rmin); 

040  % Initialize %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

041  xd(1:nely,1:nelx) = volfrac;  

042  xe(1:nely,1:nelx) = volfrac; 

043  dc_xd=zeros(nely,nelx); 

044  dc_xe=zeros(nely,nelx); 

045  loop = 0; 

046  change = 1.; 

047  % Build the list of adjacent elements (with radius rmin)%%%%%%%%%%%%%%%%%%%%%%% 

048  ne=zeros(nely*nelx,1); 

049  elemlistx=zeros(nely*nelx,(2*round(rmin)+1)^2); 

050  elemlisty=zeros(nely*nelx,(2*round(rmin)+1)^2); 

051  for ely=1:nely 

052     for elx=1:nelx 

053        % Search a rectangular area only %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

054        elemnumber=nely*(elx-1)+ely; 

055        for nly=max((ely-floor(rmin)),1):min((ely+floor(rmin)),nely) 

056           for nlx=max((elx-floor(rmin)),1):min((elx+floor(rmin)),nelx) 

057              r=sqrt((elx-nlx)^2+(ely-nly)^2); 

058              if r<=rmin 

059                 ne(elemnumber,1)=ne(elemnumber,1)+1; 

060                 elemlistx(elemnumber,ne(elemnumber,1))=nlx; 

061                 elemlisty(elemnumber,ne(elemnumber,1))=nly; 

062              end 

063           end 

064        end 

065     end 

066  end 

067  % Initialize the map from element densities to design variables %%%%%%%%%%%%%%% 

068  for ely=1:nely 

069     for elx=1:nelx 

070        mapy(ely,elx)=ely; 

071        mapx(ely,elx)=elx; 

072     end 

073  end 

074  % Load element stiffness matrix for solid material %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

075  [KE] = lk; 

076  % 

077  % Start iteration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

078  while change > 0.01 

079     loop = loop + 1; 

080     % FE- analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

081     [U]=FE(nelx,nely,xe,penal);  

082     % Calculate compliance and sensitivities w.r.t. element densities %%%%%%%%%% 

083     c = 0.; 

084     for ely = 1:nely 

085        for elx = 1:nelx 

086           n1 = (nely+1)*(elx-1)+ely;  
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087           n2 = (nely+1)* elx   +ely; 

088           Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); 

089           c= c + xe(ely,elx)^penal*Ue’*KE*Ue; 

090           dc_xe(ely,elx)=penal*xe(ely,elx)^(penal-1)*Ue’*KE*Ue; 

091        end 

092     end 

093     % Calculate sensitivities w.r.t. design variables %%%%%%%%%%%%%%%%%%%%%%%%%% 

094     tempdc=zeros(nely,nelx); 

095     nan=zeros(nely,nelx); 

096     for ely = 1:nely 

097        for elx = 1:nelx 

098           tempdc(mapy(ely,elx),mapx(ely,elx))=tempdc(mapy(ely,elx), ... 

099              mapx(ely,elx))-dc_xe(ely,elx); 

100           nan(mapy(ely,elx),mapx(ely,elx))=nan(mapy(ely,elx),mapx(ely,elx))+1; 

101        end 

102     end 

103     % Normalize the sensitivities by dividing by the influenced volume %%%%%%%%% 

104     for ely = 1:nely 

105        for elx = 1:nelx 

106           if nan(ely,elx)>0 

107              dc_xd(ely,elx)=tempdc(ely,elx)/nan(ely,elx); 

108           else 

109              dc_xd(ely,elx)=-dc_xe(ely,elx); 

110           end 

111        end 

112     end 

113     % Update design variables with the revised Optimality Criteria sub-function  

114     xdold=xd; xeold=xe; 

115     [xd,xe,mapy,mapx]  = OC(nelx,nely,xd,volfrac,dc_xd,ne,elemlistx,elemlisty); 

116     % Print results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

117     change = max(max(abs(xd-xdold))); 

118     disp([’ It.: ’ sprintf(’%4i’,loop) ’ Obj.: ’ sprintf(’%10.4f’,c) ... 

119           ’ Vol.: ’ sprintf(’%6.3f’,sum(sum(xe))/(nelx*nely)) ... 

120           ’ ch.: ’ sprintf(’%6.3f’,change )]) 

121     % Plot element densities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

122     colormap(gray); imagesc(-xe); axis equal; axis tight; axis off;pause(1e-6); 

123     % Recording pictures for animations if required 

124     %  picturename=strcat(’temp’,sprintf(’%0i’,loop),’.tif’); 

125     %  pic= getframe(gcf); 

126     %  imwrite(pic.cdata, picturename); 

127  end 

128  % 

129  % SUB FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

130  %%%%%%%%%% OPTIMALITY CRITERIA UPDATE - revised %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

131  % Input variables: 

132  %   nelx: number of element in x direction 

133  %   nely: number of element in y direction 

134  %   xd: current design variables, matrix nely rows and nelx columns 

135  %   volfrac: volume fraction 

136  %   dc_xd: sensitivities w.r.t. design variables 

137  %   ne: number of elements belonging to subdomain of each element, vector 

138  %       nelx*nely rows  

139  %   elemlistx: list of column numbers of elements belonging to subdomain of 

140  %       each element, matrix nelx*nely rows, number of columns depends on rmin 
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141  %   elemlisty: list of row numbers of elements belonging to subdomain of each 

142  %              element, matrix nelx*nely 

143  % Output variables: 

144  %   xdnew: updated design variables, matrix nely rows and nelx columns 

145  %   xenew: updated element densities, matrix nely rows and nelx columns 

146  %   mapx: updated list of column number of the design variable corresponding to 

147  %         each element density, matrix nely rows and nelx column 

148  %   mapy: updated list of row number of the design variable corresponding to 

149  %         each element density, matrix nely rows and nelx column 

150  % List of selected local variables 

151  %   maxnodey: store the row number of the maximum design variables in range 

152  %             while doing the search for maximum design variable for an 

153  %             element density 

154  %   maxnodex: store the column number of the maximum design variables in 

155  %             range while doing the search for maximum design variable for 

156  %             an element density 

157  %   l1, l2, lmid: temporary values of the Lagrangian multipliers used by the 

158  %                 bi-sectioning algorithim 

159  function [xdnew,xenew,mapy,mapx]= ... 

160     OC(nelx,nely,xd,volfrac,dc_xd,ne, elemlistx,elemlisty) 

161  l1 = 0; l2 = 100000; move = 0.2; 

162  while (l2-l1 > 1e-4) 

163     mapy=zeros(nely,nelx); 

164     mapx=zeros(nely,nelx); 

165     lmid = 0.5*(l2+l1); 

166     xdnew = ... 

167        max(0.001,max(xd-move,min(1.,min(xd+move,xd.*(-dc_xd./lmid).^0.25)))); 

168     volume=0; 

169     xenew=zeros(nely,nelx); 

170     % loop all elements in the design domain 

171     for elx=1:nelx 

172        for ely=1:nely 

173           elemnumber=nely*(elx-1)+ely; 

174           % loop all element in the sub-domain of each element 

175           for i=1:ne(elemnumber) 

176              if xenew(ely,elx) < ... 

177                 (xdnew(elemlisty(elemnumber,i), elemlistx(elemnumber,i))-1.e-5) 

178                 xenew(ely,elx) = ... 

179                 xdnew(elemlisty(elemnumber,i), elemlistx(elemnumber,i)); 

180                 maxnodey=elemlisty(elemnumber,i); 

181                 maxnodex=elemlistx(elemnumber,i); 

182              end 

183           end 

184           mapy(ely,elx)=maxnodey; mapx(ely,elx)=maxnodex; 

185        end 

186     end 

187     if sum(sum(xenew)) - volfrac*nelx*nely > 0 

188        l1 = lmid; 

189     else 

190        l2 = lmid; 

191     end 

192  end 

193  % 

194  % FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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195  % Input variables: 

196  %   nelx: number of element in x direction 

197  %   nely: number of element in y direction 

198  %   x: element densities, matrix nely rows and nelx columns 

199  %   penal: penalization parameter 

200  % Output variables: 

201  %   U: Displacement vector 

202  % List of selected local variables 

203  %   KE: element stiffness matrix of solid material 

204  %   K: global stiffness matrix 

205  %   F: global load vector 

206  %   edof: element degrees of freedom 

207  %   fixeddofs: prescribed dofs, vector 

208  %   alldofs: all dofs, vector 

209  %   freedofs: free dofs, vector 

210  function [U]=FE(nelx,nely,x,penal) 

211  [KE] = lk; 

212  K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)); 

213  F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1); 

214  for elx = 1:nelx 

215     for ely = 1:nely 

216        n1 = (nely+1)*(elx-1)+ely;  

217        n2 = (nely+1)* elx   +ely; 

218        edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]; 

219        K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE; 

220     end 

221  end 

222  % Define loads and supports %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

223  % Load and bc condition is for a cantilever beam fixed at left end 

224  % Subject to a vertical load at the middle of the right edge 

225  F(((nely+1)*nelx+nely/2+1)*2,1) = 1; 

226  fixeddofs   = [1:2*(nely+1),1]; 

227  alldofs     = [1:2*(nely+1)*(nelx+1)]; 

228  freedofs    = setdiff(alldofs,fixeddofs); 

229  % Solve the linear system %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

230  U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);       

231  U(fixeddofs,:)= 0; 

232  % 

233  % ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

234  function [KE]=lk 

235  E = 1.;  

236  nu = 0.3; 

237  k=[ 1/2-nu/6   1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...  

238        -1/4+nu/12 -1/8-nu/8  nu/6       1/8-3*nu/8]; 

239  KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 

240     k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 

241     k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 

242     k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 

243     k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4) 

244     k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 

245     k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 

246     k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)]; 
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Appendix B 
 

Matlab code for the implementation with CAMD approach 
 

001  % Topology Optimization Program %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

002  %   With minimum length scale achieved by the new method (maximum projection) 

003  %   Implemented with the CAMD approach 

004  %   Usage: file_name(nelx,nely,volfrac,penal1,penal2,rmin) 

005  %   nelx: number of elements in x direction 

006  %   nely: number of elements in y direction 

007  %   volfrac: averaged volume fraction 

008  %   penal: starting penalization parameter 

009  %   rmin: lentgh scale parameter (half of the minimum member width) 

010  % 

011  % Selected List of variables:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

012  %   ndx: number of nodes in x direction 

013  %   ndy: number of node in y direction 

014  %   xd: design variables, matrix ndy rows and ndx columns 

015  %   xn: nodal densities, matrix ndy rows and ndx columns 

016  %   dv: derivative of total volume w.r.t nodal densities 

017  %   dc_xd: Sensitivities of the compiance w.r.t. design variables 

018  %   dc_xn: Sensitivities of the compiance w.r.t. nodal densities 

019  %   loop: iteration number 

020  %   change: maximum change of element densities between two consecutive steps 

021  %   nn: number of nodes belonging to subdomain of each node, vector ndx 

022  %       , ndy rows  

023  %   nodelistx: list of column numbers of nodes belonging to subdomain of  

024  %             each node, matrix ndx*ndy rows, number of columns depends on rmin 

025  %   nodelisty: list of row numbers of nodes belonging to subdomain of each  

026  %           node, matrix ndx*ndy rows, number of columns depends on rmin 

027  %   mapx: list of column number of the design variable corresponding to each 

028  %         nodal density, matrix nely rows and ndx column 

029  %   mapy: list of row number of the design variable corresponding to each 

030  %         element density, matrix nely rows and ndy column 

031  %   a, b, c, and d: values of shape functions at four Gauss points 

032  %   K1, K2, K3, and K4: Integrand B’DB at four Gauss points for solid material 

033  %   dKEr1, dKEr2, dKEr3, dKEr4: Derivative of the integrand B’DB w.r.t nodal  

034  %         densities evaluated at four Gauss points 

035  %   c: objective function which is the compliance in this case 

036  %   Ue: element displacement, vector 

037  % 

038  % List of sub-functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

039  %   FE: sub-function to caryout finite element analysis, returns displacement 

040  %   lk: sub-function to calculate element stiffness matrix of solid material 

041  %   OC: sub-function to update design variable and calculate material densities 

042  %       from design 

043  %       variables, this is a revised version of the OC from Sigmund’s code 
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044   

045  function lengthscale_CAMD(nelx,nely,volfrac,penal,rmin); 

046  % Initialize %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

047  xd(1:(nely+1),1:(nelx+1)) = volfrac; 

048  xn(1:nely+1,1:nelx+1) = volfrac; 

049  dc_xd=zeros(nely+1,nelx+1); 

050  dc_xn=zeros(nely+1,nelx+1); 

051  dv=zeros((nely+1),(nelx+1)); 

052  loop = 0; 

053  change = 1.; 

054  % Build the list of adjacent nodes (with radius rmin)%%%%%%%%%%%%%%%%%%%%%%%%%% 

055  nn=zeros((nely+1)*(nelx+1),1); 

056  nodelistx=zeros((nely+1)*(nelx+1),(2*round(rmin)+1)^2); 

057  nodelisty=zeros((nely+1)*(nelx+1),(2*round(rmin)+1)^2); 

058  ndy=nely+1; 

059  ndx=nelx+1; 

060  for cny=1:ndy 

061     for cnx=1:ndx 

062        %search a rectangular area only %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

063        nodenumber=ndy*(cnx-1)+cny; 

064        for nly=max((cny-floor(rmin)),1):min((cny+floor(rmin)),ndy) 

065           for nlx=max((cnx-floor(rmin)),1):min((cnx+floor(rmin)),ndx) 

066              r=sqrt((cnx-nlx)^2+(cny-nly)^2); 

067              if r<=rmin 

068                 nn(nodenumber,1)=nn(nodenumber,1)+1; 

069                 nodelistx(nodenumber,nn(nodenumber,1))=nlx; 

070                 nodelisty(nodenumber,nn(nodenumber,1))=nly; 

071              end 

072           end 

073        end 

074     end 

075  end 

076  % Initialize the map from nodal densities to design variables %%%%%%%%%%%%%%%%% 

077  for cny=1:ndy 

078     for cnx=1:ndx 

079        mapy(cny,cnx)=cny; 

080        mapx(cny,cnx)=cnx; 

081     end 

082  end 

083  % Sensitivities of constraint function V with respect to nodal densities %%%%%% 

084  for ely = 1:nely 

085     for elx = 1:nelx 

086        yn1 = ely; xn1=elx; 

087        yn2 = ely; xn2=elx+1; 

088        yn3 = ely+1; xn3=elx+1; 

089        yn4 = ely+1; xn4=elx; 

090        dv(yn1,xn1)=dv(yn1,xn1)+0.25; 

091        dv(yn2,xn2)=dv(yn2,xn2)+0.25; 

092        dv(yn3,xn3)=dv(yn3,xn3)+0.25; 

093        dv(yn4,xn4)=dv(yn4,xn4)+0.25; 

094     end 

095  end 

096  % Calculate B’*D*B at four Gauss points %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

097  [K1,K2,K3,K4] = lk; 
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098  % Values of shape functions 

099  a=1/4*(1+1/sqrt(3))^2; 

100  b=1/6; 

101  c=1/4*(1-1/sqrt(3))^2; 

102  d=1/6; 

103  % 

104  % Start iteration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

105  while (change > 0.01) | (penal <= penal2) 

106     loop = loop + 1; 

107     % FE- analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

108     [U,K]=FE(nelx,nely,xn,penal); 

109     % Calculate compliance and sensitivities w.r.t. nodal densities %%%%%%%%%%%% 

110     dc_xn=zeros(nely+1,nelx+1); 

111     c=0; 

112     for ely = 1:nely 

113        for elx = 1:nelx 

114           yn1 = ely; xn1=elx; 

115           yn2 = ely; xn2=elx+1; 

116           yn3 = ely+1; xn3=elx+1; 

117           yn4 = ely+1; xn4=elx; 

118           KE=K1*([a d c b]* ... 

119              [xn(yn1,xn1);xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^penal+ ... 

120              K2*([b a d c]* ... 

121              [xn(yn1,xn1);xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^penal+ ... 

122              K3*([c b a d]* ... 

123              [xn(yn1,xn1);xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^penal + ... 

124              K4*([d c b a]* ... 

125              [xn(yn1,xn1);xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^penal; 

126           dKEr1=K1*([a d c b]*[xn(yn1,xn1); ... 

127                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*a + ... 

128              K2*([b a d c]*[xn(yn1,xn1); ... 

129                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*b + ... 

130              K3*([c b a d]*[xn(yn1,xn1); ... 

131                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*c + ... 

132              K4*([d c b a]*[xn(yn1,xn1); ... 

133                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*d; 

134           dKEr2=K1*([a d c b]*[xn(yn1,xn1); ... 

135                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*d + ... 

136              K2*([b a d c]*[xn(yn1,xn1); ... 

137                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*a + ... 

138              K3*([c b a d]*[xn(yn1,xn1); ... 

139                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*b + ... 

140              K4*([d c b a]*[xn(yn1,xn1); ... 

141                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*c; 

142           dKEr3=K1*([a d c b]*[xn(yn1,xn1); ... 

143                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*c + ... 

144              K2*([b a d c]*[xn(yn1,xn1); ... 

145                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*d + ... 

146              K3*([c b a d]*[xn(yn1,xn1); ... 

147                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*a + ... 

148              K4*([d c b a]*[xn(yn1,xn1); ... 

149                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*b; 

150           dKEr4=K1*([a d c b]*[xn(yn1,xn1); ... 

151                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*b + ... 
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152              K2*([b a d c]*[xn(yn1,xn1); ... 

153                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*c + ... 

154              K3*([c b a d]*[xn(yn1,xn1); ... 

155                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*d + ... 

156              K4*([d c b a]*[xn(yn1,xn1); ... 

157                 xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^(penal-1)*penal*a; 

158           n1 = (nely+1)*(elx-1)+ely;  

159           n2 = (nely+1)* elx   +ely; 

160           Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); 

161           c= c- Ue’*KE*Ue; 

162           dc_xn(yn1,xn1)=dc_xn(yn1,xn1)-Ue’*dKEr1*Ue; 

163           dc_xn(yn2,xn2)=dc_xn(yn2,xn2)-Ue’*dKEr2*Ue; 

164           dc_xn(yn3,xn3)=dc_xn(yn3,xn3)-Ue’*dKEr3*Ue; 

165           dc_xn(yn4,xn4)=dc_xn(yn4,xn4)-Ue’*dKEr4*Ue; 

166        end 

167     end 

168     % Normalize the sensitivities w.r.t. nodal densities %%%%%%%%%%%%%%%%%%%%%%% 

169     dc_xn=dc_xn./dv; 

170     % Calculate sensitivities w.r.t. design variables %%%%%%%%%%%%%%%%%%%%%%%%%% 

171     tempdc=zeros(nely+1,nelx+1); 

172     nan=zeros(nely+1,nelx+1); 

173     for cny = 1:ndy 

174        for cnx = 1:ndx 

175           tempdc(mapy(cny,cnx),mapx(cny,cnx))= ... 

176              tempdc(mapy(cny,cnx),mapx(cny,cnx)) -dc_xn(cny,cnx); 

177           nan(mapy(cny,cnx),mapx(cny,cnx))= ... 

178              nan(mapy(cny,cnx),mapx(cny,cnx))+1; 

179        end 

180     end 

181     % Normalize the sensitivities w.r.t. design variables %%%%%%%%%%%%%%%%%%%%%% 

182     for cny = 1:ndy 

183        for cnx = 1:ndx 

184           if nan(cny,cnx)>0 

185              dc_xd(cny,cnx)=-tempdc(cny,cnx)/nan(cny,cnx); 

186           else 

187              dc_xd(cny,cnx)=dc_xn(cny,cnx); 

188           end 

189        end 

190     end 

191     % Update design variables with the revised Optimality Criteria sub-function  

192     xdold=xd;xnold=xn; 

193     [xd,xn,mapy,mapx] = ... 

194        OC(ndx,ndy,xd,volfrac,dc_xd,dv,nn,nodelistx,nodelisty); 

195     %Calculate xe (densities inside element) based on xn (nodal volume fraction 

196     %according to two illustration scheme: avaraged and continuous 

197     nofpixel=min(floor(700/nelx),floor(400/nely)); 

198     xecontinuous=zeros(nofpixel*nely,nofpixel*nelx); 

199     for ely=1:nely 

200        for elx=1:nelx 

201           yn1 = ely; xn1=elx; 

202           yn2 = ely; xn2=elx+1; 

203           yn3 = ely+1; xn3=elx+1; 

204           yn4 = ely+1; xn4=elx; 

205           xe(ely,elx)=(xn(yn1,xn1)+xn(yn2,xn2)+xn(yn3,xn3)+xn(yn4,xn4))/4; 
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206           for i=1:nofpixel 

207              for j=1:nofpixel 

208                 tx=(j-nofpixel/2)/nofpixel*2; ty=(nofpixel/2-i)/nofpixel*2; 

209                 xecontinuous((ely-1)*nofpixel+i,(elx-1)*nofpixel+j)= ... 

210                    xn(yn1,xn1)*1/4*(1-tx)*(1+ty) + ... 

211                    xn(yn2,xn2)*1/4*(1+tx)*(1+ty) + ... 

212                    xn(yn3,xn3)*1/4*(1+tx)*(1-ty) + ... 

213                    xn(yn4,xn4)*1/4*(1-tx)*(1-ty); 

214              end 

215           end 

216        end 

217     end 

218     % Print results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

219     change = max(max(abs(xd-xdold))); 

220     disp([’ It.: ’ sprintf(’%4i’,loop) ’ Obj.: ’ sprintf(’%10.4f’,-c) ... 

221           ’ Vol.: ’ sprintf(’%6.3f’,sum(sum(xe))/(nelx*nely)) ... 

222           ’ ch.: ’ sprintf(’%6.3f’,change )]) 

223     % Plot element densities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

224     colormap(gray); 

225     %imagesc(-xe); axis equal; axis tight; axis off;pause(1e-6); 

226     imagesc(-xecontinuous); axis equal; axis tight; axis off;pause(1e-6); 

227  end 

228  % 

229  % SUB FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

230  %%%%%%%%%% OPTIMALITY CRITERIA UPDATE - revised %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

231  % Input variables: 

232  %   ndx: number of nodes in x direction 

233  %   ndy: number of nodes in y direction 

234  %   xd: current design variables, matrix ndy rows and ndx columns 

235  %   volfrac: volume fraction 

236  %   dc_xd: sensitivities w.r.t. design variables, matrix ndy rows and ndx cols 

237  %   dv: derivative of total volume w.r.t nodal densities 

238  %   nn: number of nodes belonging to subdomain of each node, vector 

239  %       ndx*ndy rows  

240  %   nodelistx: list of column numbers of nodes belonging to subdomain of 

241  %       each node, matrix ndx*ndy rows, number of columns depends on rmin 

242  %   nodelisty: list of row numbers of nodes belonging to subdomain of each 

243  %              node, matrix ndx*ndy 

244  % Output variables: 

245  %   xdnew: updated design variables, matrix ndy rows and ndx columns 

246  %   xnnew: updated nodal densities, matrix ndy rows and ndx columns 

247  %   mapx: updated list of column number of the design variable corresponding to 

248  %         each nodal density, matrix ndy rows and ndx column 

249  %   mapy: updated list of row number of the design variable corresponding to 

250  %         each nodal density, matrix ndy rows and ndx column 

251  % List of selected local variables 

252  %   maxnodey: store the row number of the maximum design variables in range 

253  %             while doing the search for maximum design variable for an 

254  %             nodal density 

255  %   maxnodex: store the column number of the maximum design variables in 

256  %             range while doing the search for maximum design variable for 

257  %             an nodal density 

258  %   l1, l2, lmid: temporary values of the Lagrangian multipliers used by the 

259  %                 bi-sectioning algorithim 
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260  function [xdnew,xnnew,mapy,mapx]= ... 

261     OC(ndx,ndy,xd,volfrac,dc_xd,dv,nn,nodelistx,nodelisty)   

262  l1 = 0; l2 = 100000; move = 0.2; 

263  while (l2-l1 > 1e-4) 

264     mapy=zeros(ndy,ndx); 

265     mapx=zeros(ndy,ndx); 

266     lmid = 0.5*(l2+l1); 

267     xdnew = max(0.001,max(xd-move,min(1.,min(xd+move,xd.*(-dc_xd./lmid).^0.25)))); 

268     xnnew=zeros(ndy,ndx); 

269     % loop all nodes in the design domain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

270     for cnx=1:ndx 

271        for cny=1:ndy 

272           nodenum=ndy*(cnx-1)+cny; 

273           % loop all nodes in the sub-domain of each node %%%%%%%%%%%%%%%%%%%%%% 

274           for i=1:nn(nodenum) 

275              if xnnew(cny,cnx)<xdnew(nodelisty(nodenum,i),nodelistx(nodenum,i)) 

276                 xnnew(cny,cnx)=xdnew(nodelisty(nodenum,i),nodelistx(nodenum,i)); 

277                 maxnodey=nodelisty(nodenum,i); maxnodex=nodelistx(nodenum,i); 

278              end 

279           end 

280           mapy(cny,cnx)=maxnodey; mapx(cny,cnx)=maxnodex; 

281        end 

282     end 

283     if sum(sum(xnnew.*dv)) - volfrac*(ndx-1)*(ndy-1) > 0 

284        l1 = lmid; 

285     else 

286        l2 = lmid; 

287     end 

288  end 

289  % 

290  % FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

291  % Input variables: 

292  %   nelx: number of element in x direction 

293  %   nely: number of element in y direction 

294  %   x: element densities, matrix nely rows and nelx columns 

295  %   penal: penalization parameter 

296  % Output variables: 

297  %   U: Displacement vector 

298  % List of selected local variables 

299  %   a, b, c, and d: values of shape functions at four Gauss points 

300  %   K1, K2, K3, and K4: Integrand B’DB at four Gauss points for solid material 

301  %   K: global stiffness matrix 

302  %   F: global load vector 

303  %   edof: element degreed of freedom 

304  %   fixeddofs: prescribed dofs, vector 

305  %   alldofs: all dofs, vector 

306  %   freedofs: free dofs, vector 

307  function [U,K]=FE(nelx,nely,xn,penal) 

308  [K1,K2,K3,K4] = lk; 

309  a=1/4*(1+1/sqrt(3))^2; b=1/6; c=1/4*(1-1/sqrt(3))^2; d=1/6; 

310  K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)); 

311  F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1); 

312  for elx = 1:nelx 

313     for ely = 1:nely 



 88

314        yn1 = ely; xn1=elx; 

315        yn2 = ely; xn2=elx+1; 

316        yn3 = ely+1; xn3=elx+1; 

317        yn4 = ely+1; xn4=elx; 

318        KE=K1*([a d c b]* ... 

319           [xn(yn1,xn1);xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^penal + ... 

320           K2*([b a d c]* ... 

321           [xn(yn1,xn1);xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^penal + ... 

322           K3*([c b a d]* ... 

323           [xn(yn1,xn1);xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^penal + ... 

324           K4*([d c b a]* ... 

325           [xn(yn1,xn1);xn(yn2,xn2);xn(yn3,xn3);xn(yn4,xn4)])^penal; 

326        n1 = (nely+1)*(elx-1)+ely;  

327        n2 = (nely+1)* elx   +ely; 

328        edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]; 

329        K(edof,edof) = K(edof,edof) + KE; 

330     end 

331  end 

332  % Define loads and supports %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

333  % Load and bc condition is for a cantilever beam fixed at left end 

334  % Subject to a vertical load at the middle of the right edge 

335  F(((nely+1)*nelx+nely/2+1)*2,1) = 1; 

336  fixeddofs   = [1:2*(nely+1),1]; 

337  alldofs     = [1:2*(nely+1)*(nelx+1)]; 

338  freedofs    = setdiff(alldofs,fixeddofs); 

339  % Solve the linear system 

340  U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);       

341  U(fixeddofs,:)= 0; 

342  % 

343  %%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

344  function [K1,K2,K3,K4]=lk 

345  E = 1.;  

346  nu = 0.3; 

347  % In this place are expressions for K1, K2, K3, and K4, which are the B’*D*B 

348  % at GPs. The Matlab script below to generates the matrices 

 

 

Matlab script to generate K1, K2, K3, and K4 used for the CAMD code 
 

001  % This script computes symbolically K1, K2, K3 & K4 used in the CAMD code %%%%% 

002  syms K K1 K2 K3 K4 B x n ro1 ro2 ro3 ro4 nu p 

003  %shape functions 

004  N1=1/4*(1-x)*(1+n); 

005  N2=1/4*(1+x)*(1+n); 

006  N3=1/4*(1+x)*(1-n); 

007  N4=1/4*(1-x)*(1-n); 

008  B=[diff(N1,x) 0 diff(N2,x) 0 diff(N3,x) 0 diff(N4,x) 0; 

009     0 diff(N1,n) 0 diff(N2,n) 0 diff(N3,n) 0 diff(N4,n); 

010     diff(N1,n) diff(N1,x) diff(N2,n) diff(N2,x) diff(N3,n) ... 

011        diff(N3,x) diff(N4,n) diff(N4,x)]; 

012  E=[1 nu 0; 
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013          nu 1 0; 

014          0 0 0.5*(1-nu)]; 

015  % Ks will be multiplied by Elastic/(1-nu^2) in the CAMD code %%%%%%%%%%%%%%%%%% 

016  x=-1/1.7321;n=1/1.7321; 

017  K1=eval(B’*E*B); 

018  x=1/1.7321;n=1/1.7321; 

019  K2=eval(B’*E*B); 

020  x=1/1.7321;n=-1/1.7321; 

021  K3=eval(B’*E*B); 

022  x=-1/1.7321;n=-1/1.7321; 

023  K4=eval(B’*E*B); 

024  %Output to screen 

025  K1, K2, K3, K4 
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Appendix C 
 

Matlab code for the implementation with nodal projection approach 
 

001  % Topology Optimization Program %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

002  %   With minimum length scale achieved by the new method (maximum projection) 

003  %   Implemented with nodal projection approach 

004  %   Usage: file_name(nelx,nely,volfrac,penal1,penal2,rmin) 

005  %   nelx: number of elements in x direction 

006  %   nely: number of elements in y direction 

007  %   volfrac: averaged volume fraction 

008  %   penal: penalization parameter 

009  %   rmin: lentgh scale parameter (half of the minimum member width) 

010  % 

011  % Selected List of variables:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

012  %   ndx: number of nodes in x direction 

013  %   ndy: number of nodes in y direction 

014  %   xd: design variables, matrix ndy rows and ndx columns 

015  %   xn: nodal densities, matrix ndy rows and ndx columns 

016  %   rhoelement: density of an element, scalar 

017  %   dc_xd: Sensitivities of the compiance w.r.t. design variables 

018  %   dc_xn: Sensitivities of the compiance w.r.t. nodal densities 

019  %   loop: iteration number 

020  %   change: maximum change of element densities between two consecutive steps 

021  %   nn: number of elements belonging to subdomain of each node, vector ndx 

022  %       *ndy rows  

023  %   nodelistx: list of column numbers of nodes belonging to subdomain of  

024  %        node element, matrix ndx*ndy rows, number of columns depends on rmin 

025  %   nodelisty: list of row numbers of nodes belonging to subdomain of each  

026  %           node, matrix ndx*ndy rows, number of columns depends on rmin 

027  %   mapx: list of column number of the design variable corresponding to each 

028  %         nodal density, matrix ndy rows and ndx column 

029  %   mapy: list of row number of the design variable corresponding to each 

030  %         nodal density, matrix ndy rows and ndy column 

031  %   KE: element stiffness matrix of solid material 

032  %   c: objective function which is the compliance in this case 

033  %   Ue: element displacement, vector 

034  % 

035  % List of sub-functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

036  %   FE: sub-function to caryout finite element analysis, returns displacement 

037  %   lk: sub-function to calculate element stiffness matrix of solid material 

038  %   OC: sub-function to update design variable and calculate material densities 

039  %       from design 

040  %       variables, this is a revised version of the OC from Sigmund’s code 

041  % 

042  function lengthscale_nodal_approach(nelx,nely,volfrac,penal,rmin); 

043  % Initialize %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

044  xd(1:(nely+1),1:(nelx+1)) = volfrac; 

045  xn(1:nely+1,1:nelx+1) = volfrac; 
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046  dc_xd=zeros(nely+1,nelx+1); 

047  dc_xn=zeros(nely+1,nelx+1); 

048  dv=zeros((nely+1),(nelx+1)); 

049  loop = 0; 

050  change = 1.; 

051  % Build the list of adjacent nodess (with radius rmin)%%%%%%%%%%%%%%%%%%%%%%%%% 

052  nn=zeros((nely+1)*(nelx+1),1); 

053  nodelistx=zeros((nely+1)*(nelx+1),(2*round(rmin)+1)^2); 

054  nodelisty=zeros((nely+1)*(nelx+1),(2*round(rmin)+1)^2); 

055  ndy=nely+1; 

056  ndx=nelx+1; 

057  for cny=1:ndy 

058     for cnx=1:ndx 

059        % Search a rectangular area only %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

060        nodenumber=ndy*(cnx-1)+cny; 

061        for nly=max((cny-floor(rmin)),1):min((cny+floor(rmin)),ndy) 

062           for nlx=max((cnx-floor(rmin)),1):min((cnx+floor(rmin)),ndx) 

063              r=sqrt((cnx-nlx)^2+(cny-nly)^2); 

064              if r<=rmin 

065                 nn(nodenumber,1)=nn(nodenumber,1)+1; 

066                 nodelistx(nodenumber,nn(nodenumber,1))=nlx; 

067                 nodelisty(nodenumber,nn(nodenumber,1))=nly; 

068              end 

069           end 

070        end 

071     end 

072  end 

073  % Initialize the map from element densities to design variables %%%%%%%%%%%%%%% 

074  for cny=1:ndy 

075     for cnx=1:ndx 

076        mapy(cny,cnx)=cny; 

077        mapx(cny,cnx)=cnx; 

078     end 

079  end 

080  % Sensitivities of constraint function V with respect to nodal densities %%%%%% 

081  for ely = 1:nely 

082     for elx = 1:nelx 

083        yn1 = ely; xn1=elx; 

084        yn2 = ely; xn2=elx+1; 

085        yn3 = ely+1; xn3=elx+1; 

086        yn4 = ely+1; xn4=elx; 

087        dv(yn1,xn1)=dv(yn1,xn1)+0.25; 

088        dv(yn2,xn2)=dv(yn2,xn2)+0.25; 

089        dv(yn3,xn3)=dv(yn3,xn3)+0.25; 

090        dv(yn4,xn4)=dv(yn4,xn4)+0.25; 

091     end 

092  end 

093  % Load element stiffness matrix for solid material %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

094  [KE] = lk; 

095  % 

096  % Start iteration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

097  while (change > 0.01) | (penal <= penal2) 

098     loop = loop + 1; 

099     % FE- analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
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100     [U]=FE(nelx,nely,xn,penal); 

101     % Calculate compliance and sensitivities w.r.t. element densities %%%%%%%%%% 

102     dc_xn=zeros(ndy,ndx); 

103     obj=0; 

104     for ely = 1:nely 

105        for elx = 1:nelx 

106           yn1 = ely; xn1=elx; 

107           yn2 = ely; xn2=elx+1; 

108           yn3 = ely+1; xn3=elx+1; 

109           yn4 = ely+1; xn4=elx; 

110           rhoelement=(xn(yn1,xn1)+xn(yn2,xn2)+xn(yn3,xn3)+xn(yn4,xn4))/4; 

111           n1 = (nely+1)*(elx-1)+ely;  

112           n2 = (nely+1)* elx   +ely; 

113           Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); 

114           obj= obj-rhoelement^penal*Ue’*KE*Ue; 

115           dc_xn(yn1,xn1)=dc_xn(yn1,xn1)-penal*rhoelement^(penal-1)*Ue’*KE*Ue; 

116           dc_xn(yn2,xn2)=dc_xn(yn2,xn2)-penal*rhoelement^(penal-1)*Ue’*KE*Ue; 

117           dc_xn(yn3,xn3)=dc_xn(yn3,xn3)-penal*rhoelement^(penal-1)*Ue’*KE*Ue; 

118           dc_xn(yn4,xn4)=dc_xn(yn4,xn4)-penal*rhoelement^(penal-1)*Ue’*KE*Ue; 

119        end 

120     end 

121     % Normalize the sensitivities w.r.t. nodal densities %%%%%%%%%%%%%%%%%%%%%%% 

122     dc_xn=dc_xn./dv; 

123     % Calculate sensitivities w.r.t. design variables %%%%%%%%%%%%%%%%%%%%%%%%%% 

124     tempdc=zeros(nely+1,nelx+1); 

125     nan=zeros(nely+1,nelx+1); 

126     for cny = 1:ndy 

127        for cnx = 1:ndx 

128           tempdc(mapy(cny,cnx),mapx(cny,cnx))= ... 

129              tempdc(mapy(cny,cnx),mapx(cny,cnx))- ... 

130              dc_xn(cny,cnx); 

131           nan(mapy(cny,cnx),mapx(cny,cnx))= ... 

132              nan(mapy(cny,cnx),mapx(cny,cnx))+1; 

133        end 

134     end 

135     % Normalize the sensitivities by dividing by the influenced volume %%%%%%%%% 

136     for cny = 1:ndy 

137        for cnx = 1:ndx 

138           if nan(cny,cnx)>0 

139              dc(cny,cnx)=-tempdc(cny,cnx)/nan(cny,cnx); 

140           else 

141              dc(cny,cnx)=dc_xn(cny,cnx); 

142           end 

143        end 

144     end 

145     % Update design variables with the revised Optimality Criteria sub-function  

146     xdold=xd;xnold=xn; 

147     [xd,xn,mapy,mapx] = ... 

148        OC(ndx,ndy,xd,volfrac,dc,dv,nn,nodelistx,nodelisty); 

149     %Calculate xe based on xn (nodal volume fraction) 

150     %according to two illustration scheme: avaraged and continuous 

151     nofpixel=min(floor(700/nelx),floor(400/nely)); 

152     for ely=1:nely 

153        for elx=1:nelx 
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154           yn1 = ely; xn1=elx; 

155           yn2 = ely; xn2=elx+1; 

156           yn3 = ely+1; xn3=elx+1; 

157           yn4 = ely+1; xn4=elx; 

158           xe(ely,elx)=(xn(yn1,xn1)+xn(yn2,xn2)+xn(yn3,xn3)+xn(yn4,xn4))/4; 

159        end 

160     end 

161     % Print results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

162     change = max(max(abs(xd-xdold))); 

163     disp([’ It.: ’ sprintf(’%4i’,loop) ’ Obj.: ’ sprintf(’%10.4f’,-obj) ... 

164           ’ Vol.: ’ sprintf(’%6.3f’,sum(sum(xe))/(nelx*nely)) ... 

165           ’ ch.: ’ sprintf(’%6.3f’,change )]) 

166     % Plot nodal densities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

167     colormap(gray); imagesc(-xn); axis equal; axis tight; axis off;pause(1e-6); 

168  end 

169  % 

170  % SUB FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

171  %%%%%%%%%% OPTIMALITY CRITERIA UPDATE - revised %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

172  % Input variables: 

173  %   ndx: number of nodes in x direction 

174  %   ndy: number of nodes in y direction 

175  %   xd: current design variables, matrix ndy rows and ndx columns 

176  %   volfrac: volume fraction 

177  %   dc_xd: sensitivities w.r.t. design variables, matrix ndy rows and ndx cols 

178  %   dv: derivative of total volume w.r.t nodal densities 

179  %   nn: number of nodes belonging to subdomain of each node, vector 

180  %       ndx*ndy rows  

181  %   nodelistx: list of column numbers of nodes belonging to subdomain of 

182  %       each node, matrix ndx*ndy rows, number of columns depends on rmin 

183  %   nodelisty: list of row numbers of nodes belonging to subdomain of each 

184  %              node, matrix ndx*ndy 

185  % Output variables: 

186  %   xdnew: updated design variables, matrix ndy rows and ndx columns 

187  %   xnnew: updated nodal densities, matrix ndy rows and ndx columns 

188  %   mapx: updated list of column number of the design variable corresponding to 

189  %         each nodal density, matrix ndy rows and ndx column 

190  %   mapy: updated list of row number of the design variable corresponding to 

191  %         each nodal density, matrix ndy rows and ndx column 

192  % List of selected local variables 

193  %   maxnodey: store the row number of the maximum design variables in range 

194  %             while doing the search for maximum design variable for an 

195  %             nodal density 

196  %   maxnodex: store the column number of the maximum design variables in 

197  %             range while doing the search for maximum design variable for 

198  %             an nodal density 

199  %   l1, l2, lmid: temporary values of the Lagrangian multipliers used by the 

200  %                 bi-sectioning algorithim 

201  function [xdnew,xnnew,mapy,mapx]= ... 

202     OC(ndx,ndy,xd,volfrac,dc_xd,dv,nn,nodelistx,nodelisty)   

203  l1 = 0; l2 = 100000; move = 0.2; 

204  while (l2-l1 > 1e-4) 

205     mapy=zeros(ndy,ndx); 

206     mapx=zeros(ndy,ndx); 

207     lmid = 0.5*(l2+l1); 
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208     xdnew = max(0.001,max(xd-move,min(1.,min(xd+move,xd.*(-dc_xd./lmid).^0.25)))); 

209     volume=0; 

210     xnnew=zeros(ndy,ndx); 

211     % loop all nodes in the design domain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

212     for cnx=1:ndx 

213        for cny=1:ndy 

214           nodenumber=ndy*(cnx-1)+cny; 

215           % loop all nodes in the sub-domain of each node %%%%%%%%%%%%%%%%%%%%%% 

216           for i=1:nn(nodenumber) 

217              if xnnew(cny,cnx) < ... 

218                    xdnew(nodelisty(nodenumber,i),nodelistx(nodenumber,i))  

219                 xnnew(cny,cnx) = ... 

220                    xdnew(nodelisty(nodenumber,i),nodelistx(nodenumber,i)); 

221                 maxnodey=nodelisty(nodenumber,i);maxnodex=nodelistx(nodenumber,i); 

222              end 

223           end 

224           mapy(cny,cnx)=maxnodey; mapx(cny,cnx)=maxnodex; 

225        end 

226     end 

227     if sum(sum(xnnew.*dv)) - volfrac*(ndx-1)*(ndy-1) > 0 

228        l1 = lmid; 

229     else 

230        l2 = lmid; 

231     end 

232  end 

233  % 

234  %%%%%%%%%% FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

235  % Input variables: 

236  %   nelx: number of element in x direction 

237  %   nely: number of element in y direction 

238  %   xn: nodal densities, matrix ndy rows and ndx columns 

239  %   rhoelement: density of an element, scalar 

240  %   penal: penalization parameter 

241  % Output variables: 

242  %   U: Displacement vector 

243  % List of selected local variables 

244  %   KE: element stiffness matrix of solid material 

245  %   K: global stiffness matrix 

246  %   F: global load vector 

247  %   edof: element degrees of freedom 

248  %   fixeddofs: prescribed dofs, vector 

249  %   alldofs: all dofs, vector 

250  %   freedofs: free dofs, vector 

251  function [U]=FE(nelx,nely,xn,penal) 

252  [KE] = lk; 

253  a=1/4*(1+1/sqrt(3))^2; b=1/6; c=1/4*(1-1/sqrt(3))^2; d=1/6; 

254  K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)); 

255  F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1); 

256  for elx = 1:nelx 

257     for ely = 1:nely 

258        yn1 = ely; xn1=elx; 

259        yn2 = ely; xn2=elx+1; 

260        yn3 = ely+1; xn3=elx+1; 

261        yn4 = ely+1; xn4=elx; 
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262        rhoelement=(xn(yn1,xn1)+xn(yn2,xn2)+xn(yn3,xn3)+xn(yn4,xn4))/4;       

263        n1 = (nely+1)*(elx-1)+ely;  

264        n2 = (nely+1)* elx   +ely; 

265        edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]; 

266        K(edof,edof) = K(edof,edof) + rhoelement^penal*KE; 

267     end 

268  end 

269  % Define loads and supports %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

270  % Load and bc condition is for a cantilever beam fixed at left end 

271  % Subject to a vertical load at the middle of the right edge 

272  F(((nely+1)*nelx+nely/2+1)*2,1) = 1; 

273  fixeddofs   = [1:2*(nely+1),1]; 

274  alldofs     = [1:2*(nely+1)*(nelx+1)]; 

275  freedofs    = setdiff(alldofs,fixeddofs); 

276  % Solve the linear system %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

277  U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);       

278  U(fixeddofs,:)= 0; 

279  % 

280  %%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

281  function [KE]=lk 

282  E = 1.;  

283  nu = 0.3; 

284  k=[ 1/2-nu/6   1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...  

285        -1/4+nu/12 -1/8-nu/8  nu/6       1/8-3*nu/8]; 

286  KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 

287     k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 

288     k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 

289     k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 

290     k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4) 

291     k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 

292     k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 

293     k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)]; 
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