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Abstract

Traditionally, standard Lagrangian-type finite elements, such as linear quads and
triangles, have been the elements of choice in the field of topology optimization.
However, finite element meshes with these conventional elements exhibit the well-
known "checkerboard" pathology in the iterative solution of topology optimization
problems. A feasible alternative to eliminate such long-standing problem consists of
using hexagonal (honeycomb) elements with Wachspress-type shape functions. The
features of the hexagonal mesh include two-node connections (i.e. two elements are
either not connected or connected by two nodes), and three edge-based symmetry
lines per element. In contrast, quads can display one-node connections, which can
lead to checkerboard; and only have two edge-based symmetry lines. In addition,
Wachspress rational shape functions satisfy the partition of unity condition and lead
to conforming finite element approximations. We explore the Wachspress-type
hexagonal elements and present their implementation using three approaches for
topology optimization: element-based, continuous approximation of material
distribution, and minimum length-scale through projection functions. Examples are
presented that demonstrate the advantages of the proposed element in achieving
checkerboard-free solutions and avoiding spurious fine-scale patterns from the

design optimization process.
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1. Introduction

Topology optimization methods seek to find the optimal layout or topology of a
fixed amount of material that satisfies a required set of design demands. With
significant advancements in the recent years and application to a wide range of
practical problems, topology optimization has emerged as a powerful and robust
tool for the design of structural, mechanical, and material systems. Despite the
maturity of the field, however, there remains a class of numerical issues such as the
well-known checkerboard problem that continues to be the focus of extensive
research. This work introduces a new element for the implementation of topology
optimization and demonstrates its effectiveness in removing the checkerboard

pathology.

1.1 Literature Review

Traditionally, the topology design is formulated as a material distribution problem,
in which every point of the candidate design domain represents either a material or
a void region. However, the optimal material distribution problem as such is ill-
posed, lacking solutions in the continuum setting (Murat and Tartar 1985; Kohn and
Strang 1986; Sigmund and Peterson 1998). The existence of solutions may be
achieved through a relaxation of the solid/void formulation. For example, the
homogenization method, introduced by Bendsge and Kikuchi (1988), extends the
space of admissible designs to include solutions with microstructural features,
whose homogenized properties are used to determine the mechanical behavior of
the design. Likewise, the Solid Isotropic Material with Penalization (SIMP) model

relaxes the original “0-1” problem by considering a continuous material “density” as



the design variable and a power-law relation for interpolating the material
properties of the intermediate densities (Bendsge 1989; Zhou and Rozvany 1991).
This interpolation also serves as a penalization that steers the optimization
procedure toward a final design without intermediate densities. For a discussion on
the relationship between the two methods and the physical interpretation of the
SIMP model refer to Bendsge and Sigmund (1999). Unfortunately, the topology
optimization solutions with both methodologies suffer from the checkerboard
phenomenon, where the optimized designs may contain patches of alternating
material and void elements.

The checkerboard solutions appear as a result of inadequate or poor
numerical modeling. Diaz and Sigmund (1995) attributed the formation of
checkerboard as a local instability to the error in the finite element approximation.
The checkerboard pattern has an artificially high stiffness when modeled by lower
order finite elements so it is economical in the optimization process. In a related
investigation, Jog and Haber (1996) addressed general numerical instabilities in
topology optimization by formulating the corresponding mixed variational problem
and concluded that insufficient interpolation of the displacement field can lead to
unstable modes. Again, it was confirmed that the degree of approximation and
choice of finite elements plays a crucial role in the appearance of numerical
anomalies such as checkerboard. Therefore, it is expected that more accurate
modeling of the mechanical behavior of the design would alleviate the checkerboard
problem. In fact, higher-order discretizations using quadratic displacement
elements have been shown to be more stable even though the final designs may
exhibit mild forms of checkerboard, depending on the severity of the penalization
(Diaz and Sigmund 1995). Non-conforming elements can also give checkerboard-
free solutions since they correctly capture the vanishing stiffness of checkerboard
(Jang et al. 2003, 2005). The drawback of using non-conforming shape functions is
that they do not preserve the continuity of the field across elements; they allow
negative field approximation and may suffer from other numerical issues (e.g. lack

of convergence).



The abovementioned studies were primarily concerned with the effects of
finite element modeling on the stability of topology optimization in the context of
element-based formulation, in which the design variable is the uniform density
assigned to each displacement element. It turns out that this discontinuous
representation of the material field is conducive to the appearance of checkerboard.
Considering the representation of the design field, a handful of methods of
checkerboard suppression introduce explicit restrictions on the local variation of
the material density so that the undesirable material layouts like checkerboard are
avoided. Poulsen (2002a) used a descriptor function to identify corner contacts
throughout the design domain at each iteration step and added a constraint to
prohibit their formation. Expanding on this idea, Pomezanski et al. (2005) explored
other possible “corner contact” functions that could also eliminate the grey
checkerboards. To achieve geometric control over the formation of checkerboard,
Wavelet methods have also been applied to topology optimization (Poulsen 2002b;
Yoon and Kim 2005). Petersson and Sigmund (1998) discussed the addition of slope
constraints to control the density gradient and concluded that this approach can
establish a well-behaved topology optimization procedure by arbitrarily weakening
the numerical instabilities.

Other methods have been proposed that constrain the gradient of material
field implicitly by using nodal densities as the design variables. In one approach
(Matsui and Terada 2004; Rahmatalla and Swan 2004), the continuity of the
material field is enforced by using finite element shape functions to interpolate the
density throughout the design domain from nodal densities. As a result of this
choice of density field representation, the discontinuous checkerboard patches are
naturally excluded from the design space. However, other forms of numerical
instabilities such as “islanding” and “layering” effects have been observed with these
formulations (Rahmatalla and Swan 2004). Alternatively, Guest et al. (2004) used a
projection function with an embedded length scale to extract element densities from
nodal densities. This method has the added effect of establishing a minimum

member size and generating mesh-independent solutions. The problem of mesh-



dependency, linked to the ill-posedness of the continuum problem, arises when the
optimal designs have finer members as more refined meshes are used. Since the
checkerboard is a fine-scaled feature, it may be removed if a proper length scale is
imposed on the optimization. Other methods that address the mesh-dependency
problem include the perimeter control (Ambrosio and Buttazzo 1993; Haber et al.
1996), density and sensitivity filters (Bruns 2005; Wang and Wang 2005),
monotonicity-based method (Poulsen 2003), regularized density control (Borrvall
and Petersson 2001b), and more recently the morphology-based techniques
(Sigmund 2007). Although these methods have the desirable effects of generating
mesh-independent solutions and in some cases improved convergence, there
remains interest in obtaining checkerboard-free solutions without imposing any
further constraints. The topology designs based on these approaches may be very
sensitive to the choice of parameters (e.g. filter characteristics) and can potentially
augment the physical model and the optimization process.

It is evident from the above discussion that the approximation of the two
distinct fields of displacement and density greatly influences the stability of the
topology optimization problem. In this work, we address the checkerboard issue by
introducing the Wachspress hexagonal element which possesses desirable
characteristics in representing both fields: the hexagonal mesh prohibits one-node
connections and subsequently checkerboard patterns, while the interpolation
functions of the Wachspress element eliminate the appearance of spurious fine-
scale patterns from the design optimization. Thus, checkerboard-free solutions are
obtained without any further restrictions or filtering.

Topology optimization with honeycomb meshes has also been explored by
Saxena and Saxena (2007) and Langelaar (2007). For two-dimensional problems,
the discretization is constructed using lower order finite elements in both cases:
Saxena and Saxena (2007) split each hexagon into two quads while Langelaar
(2007) uses the union of six triangles to achieve the desired discretization. We note
that the choice of dividing the hexagonal elements in such an approach is not

unique. For instance, the hexagonal cells can be either split vertically, or along the



left or right diagonal and this introduces ambiguity in the finite element
discretization (see Figure 3 of Saxena and Saxena 2007). Moreover, this approach is
limited to constant element density formulations since T3/T3 and Q4/Q4 elements
suffer from islanding/layering instabilities. Our proposed approach of using
Wachspress shape functions circumvents such issues and can be readily extended
for continuous density representations as it defines an actual finite element (see
Section 3). The use of Wachspress shape functions was first presented in the
Multiscale and Functionally Graded Materials (M&FGM 2006) Conference (Talischi
et. al. 2008).

1.2 Thesis Organization

The remainder of the thesis is organized as follows: in the next two chapters, we
discuss the geometric properties of the new element (chapter 2) and the
construction of Wachspress shape functions (chapter 3). In chapter 4, we present
the numerical integration scheme for the new element. Next we outline the topology
optimization formulation for the compliance minimization problem with different
material field representations. In chapter 6, we address the stability of the
hexagonal Wachspress element by investigating its susceptibility to fine-scale
patterns. We show numerical results for the new implementation in chapter 7 to
confirm its robustness. Finally, we conclude the thesis with some remarks in chapter
8.



2. Hexagonal Elements and Role of Meshing

Before discussing the construction and properties of the Wachspress hexagonal
element, it is constructive to make a few remarks regarding the role of meshing in
topology optimization. First we note that even though it is possible to use a non-
uniform mesh, it is customary to model topology optimization problems with
uniform meshes. When employing non-uniform meshes, great care must be taken to
avoid favoring any part of the design domain because a priori one does not know
where the final solution will lie. For example, in adaptive schemes where one
attempts to obtain high resolution solutions inexpensively, the criteria for adaptive
refinement or de-refinement of the mesh becomes a critical issue in correctly
capturing the optimal solution (Maute and Ramm 1995; Costa and Alvez 2003;
Wang 2007). Moreover, the greatest portion of the computational cost in some
topology optimization problems, such as compliance minimization, is due to solving
the equilibrium equations and a uniform mesh eliminates the need for repeated

computation of various local stiffness matrices (Borrvall and Petersson 2001a).

Fig. 1 Quadrilateral meshes can display one-node connections, while in a hexagonal mesh two
connected elements always share two nodes through an edge connection

If we restrict ourselves to uniform meshes, there are only three possible

regular tessellations in two dimensions, namely those generated by equilateral



triangles, squares, and hexagons (see, for example, Chavey 1989). Since the first two
have been widely utilized in topology optimization, it is reasonable to explore the
other possibility as a feasible alternative. In fact, we recognize that the hexagonal
tessellation is distinguished from the other two in that it does not allow for corner
contacts. That is, two connected hexagonal tiles must share an edge and have two
common vertices (see Figure 1). Consequently, unlike triangular and quadrilateral
grids, the hexagonal tessellation, by the virtue of its geometry, constrains the
material layout and naturally excludes the unwanted formation of checkerboard and
one-node hinges. Note that higher-order triangular and quadrilateral elements may
suffer from one-node hinges even though the more accurate approximation of the
displacement field may mitigate the checkerboard problem. Employing hexagonal
meshes, on the other hand, simply eliminates the possibility of checkerboard and
one-node hinge formations without the need for imposing any further restrictions.
Another appealing feature of the hexagonal element is that it has more lines of
symmetry per element compared to the triangular and square elements and,
consequently, suffers from less directional constraint and allows for a more flexible

arrangement of the final layout in the optimization process (Figure 2).
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Fig. 2 The Q4 element has two edge-based symmetry lines, while the hexagonal element has three
edge-based symmetry lines

We must point out that in order to model a domain with straight boundaries
using a hexagonal mesh, it is necessary to insert one layer of triangular and
quadrilateral elements along the boundary (see Figure 3). Linear triangular (T3)

and bilinear quadrilateral elements (Q4) are used in this study. The difference in



element size must be considered when enforcing the volume constraint, and the
related parameters must be adjusted accordingly. Since only one layer of these
elements is needed to straighten the boundary, their effect on the optimization
procedure is expected to be negligible. In fact our numerical experiments show that

the optimal solutions remain qualitatively unchanged when these elements are

placed around the boundary.

(b)
Fig. 3 Domain discretization with Wachspress hexagonal mesh: (a) domain without “boundary”
elements (b) domain with “boundary” elements (standard quads and triangles)



3. Wachspress Shape Functions

In this work, we adopt Wachspress rational interpolation functions for the proposed
hexagonal element. Wachspress introduced general interpolants for convex
polygons, and his pioneering work provided a basis for further development of
polygonal finite element formulations (Wachspress 1975). Wachspress interpolants
were developed using concepts of projective geometry and are the lowest order
functions that satisfy the conditions of boundedness, linear precision, and global
continuity (Warren 2003; Sukumar and Malsch 2005). Although the Wachspress
method can be extended to obtain higher order shape functions, the element
examined in this work is a first-order element.

For an n-sided polygon, the Wachspress shape functions N; for i = 1,2, ...,n

are given by the ratio of two polynomials, with degree n — 2 for the numerator, and

n — 3 for the denominator (e.g. Dasgupta 2003):

Py_5(x1,x7)

N;(x1,x2) = P (%) (1)

In the following paragraphs, we discuss a geometric construction of these shape
functions based on the algebraic equations of the edges of the polygonal domain.
Alternatively, it is possible to compute the coefficients of the numerator and the
denominator of Wachspress functions symbolically (Dasgupta 2003) or numerically
(Dalton 1985).

Let (), denote the regular hexagonal domain (see Figure 4). The shape

function N;, corresponding to node i, is given by:

24202143 A4 () A145 (%)
9( @)

Ni(x) = ¢;



where 4;,,(x) = 0 represents the straight line going through nodes i and i + 1 while
q(x) = 0 is the equation of the circle encompassing the points of intersection of the
extensions of the edges. It is understood that 1, = 4;, 43 = 1, and so on. In other
words, the numerator is the product of the equations of the edges not intersecting

the given node. The c; coefficient is a normalizing factor, which is given by:

c. = q(Xi)
YT M2 (Xi) A3 (XD A g (Xi) Ay (X7) (3)

Here x; represents the nodal coordinates. A typical conforming shape function is

shown in Figure 5.

/ qxy,x3) =0
\\

A1 (x1,%5) =0

As(x1,%2) =0

Fig. 4 Hexagonal element domain illustrated for the construction of Wachspress shape functions
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Fig. 5 Typical Wachspress shape function (the value of the shape function is raised on the edges for
better visualization)

Wachspress rational shape functions satisfy the necessary conditions for
conforming Galerkin approximations (Sukumar and Tabarraei 2004; Sukumar and
Malsch 2005). First, these shape functions are bounded, non-negative and form a

partition of unity:

6
ZNi(x) =1, 0<N(X <1 4)
i=1

Since the Wachspress shape functions are non-negative, they can be used to
interpolate the density field (see discussion on CAMD in Section 5). This is not
possible with higher order (e.g. Q8 and Q9 quads) or non-conforming elements.
Furthermore, they exhibit the Kronecker-delta property which simplifies applying

the necessary boundary conditions:
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0, i#j
Ni(x;) = 8 = {1, i=j (5)
Also, these shape functions can reproduce a linear function (exhibit linear

precision), and thus satisfy the sufficient condition of convergence for second-order

partial differential equations:
6
D NOx =% ©)
i=1

Finally, the Wachspress shape functions provide C° continuous field
approximations over the domain, and thus lead to a conforming representation. The
element performance in solving second-order boundary-value elliptical problems
has been studied by Gout (1985), who compared this element with polynomial finite

elements of the same degree.
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4. Numerical Integration of Hexagonal Elements

For uniform meshes, the constant element density implementation using the SIMP
model requires the computation of the stiffness matrix only once while in the CAMD
approach (see Chapter 5 for more details), the element stiffness matrices are
evaluated at each iteration step. Therefore the efficiency of the integration method
must be considered in choosing the appropriate scheme. One possibility is to
partition the element into triangular regions and apply the commonly used
quadrature rules on each triangle (Sukumar and Tabarraei 2004). An alternative is
to use the quadrature rules developed for polygonal domains, specifically the fully
symmetric quadrature for regions with regular hexagonal symmetry given by
Lyness and Monegato (1977). We have adopted the second approach since it is more
practical and uses the least number of quadrature points for a given degree of

accuracy.

Fig. 6 Schematic illustration of the quadrature rule for the regular hexagonal element: integration
points are shown with “x” marks

13



The method is illustrated in Figure 6. The quadrature rule is invariant under
60° rotation due to the hexagonal symmetry of the integration region, and may be

expressed in the following form:

Q% wofO0) + ) D wif (0 +5) )
e j=1

i=1

Here w; represents the weight corresponding to the quadrature point at distance 7;
from the origin and angle a; + ”i/3 from the horizontal axis for each 1 < i < 6. The

list of quadrature points for various values of j can be found in the original reference
(Lyness and Monegato 1977), and for completeness, are provided in Table 1. In our

implementation, we used N = 1 (corresponding to degree 5 polynomial accuracy).

Table 1 - Quadrature parameters as defined in equation 7

N % 7j wj
0 0.000000000000000 0.000000000000000 0.255952380952381
1 1 0.000000000000000 0.748331477354788 0.124007936507936
0 0.000000000000000 0.000000000000000 0.174588684325077
2 1 0.000000000000000 0.657671808727194 0.115855303626943
2 0.523681372148045 0.943650632725263 0.021713248985544
0 0.000000000000000 0.000000000000000 0.110826547228661
1 0.000000000000000 0.792824967172091 0.037749166510143
3 2 0.523598775598299 0.537790663359878 0.082419705350590
3 0.523598775598299 0.883544457934942 0.028026703601157
0 0.000000000000000 0.000000000000000 0.087005549094808
1 0.000000000000000 0.487786213872069 0.071957468118574
4 2 0.000000000000000 0.820741657108524 0.027500185650866
3 0.523598775598299 0.771806696813652 0.045248932131663
4 0.523598775598299 0.957912268790000 0.007459892497607
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5. Topology Optimization Formulations

The performance of the proposed hexagonal element is assessed through the
implementation of benchmark compliance minimization problems. In this class of
problems, the objective is to find the least compliant (i.e. stiffest) layout of a fixed
volume of material within a pre-defined design domain, subjected to given traction
and displacement boundary conditions. As mentioned before, the topology or layout
of the structure is commonly described by a material “density” design variable. By
convention, density value of one at any point in the design domain signifies a
material region while the voids are represented by zero density. Subsequently, the
designed structure () is defined as the material subset of the design domain ():
ZORI (®)
As mentioned before, the problem is relaxed to allow for continuous
variation of density in [p,,in, 1]. Placing the positive lower bound p,,,;,, helps prevent
the singularities of the global stiffness matrix. In this work, we use SIMP as the
material model which gives the following power-law relation to define the stiffness

of intermediate densities:

Ex) = p(xX)PE°, p>1

Pmin = p(X) <1 (9)

where E° denotes the stiffness of the solid phase. With value of p greater than 1, the
stiffness of the intermediate densities becomes small compared to their
contribution to total volume of the structure, making them unfavorable in the
optimization process. Therefore, this penalization steers the optimization process

to a 0-1 design.
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Using this density parameter as the design variable, the minimum
compliance problem in the discrete form is formulated as (see, for example, Bendsge

and Sigmund 2003):
min:  c(p,u) = fTu
pou

s.t.: K(p)u=f (10)

fpdVSVS
Q

Here c(p, u) is the objective function (i.e. the compliance of the structure) and f and
u are the global force and displacement vectors. Moreover, K represents the global
stiffness matrix, which is dependent on the density distribution. The parameter V; is
the specified maximum volume of structural material.

In order to solve this optimization problem, we must choose a proper
discretization of the design field. We consider the following three different
approaches for implementation of the Wachspress hexagonal element:

(1) Element-based

(2) Continuous Approximation of Material Distribution (CAMD)

(3) Projection Method to achieve minimum length scale
Although these approaches do not exhaust the possible discretizations of the density
field, we have limited our investigation of the Wachspress element to these cases in
order to assess its performance against the corresponding numerical problems,
namely the checkerboard and islanding/layering instabilities, and mesh-

dependency.

5.1 Element-Based Approach

In the element based approach, a uniform density parameter p, is assigned to each
displacement finite element. The element densities become the design variables, and

their sensitivities are calculated using the adjoint method:

16



dc JK,

= —uT
ap. ¢ dpe

u, = —pp, uiKlu, (11)

As discussed previously, the element-based implementation using linear triangular

and bilinear quadrilateral displacement elements suffer from the checkerboard.

5.2 Continuous Approximation of Material Distribution (CAMD)

Alternatively, we can define the design parameters to be the nodal densities, from
which the density through the domain is interpolated. An appealing feature of this
density parameterization is that, irrespective of the interpolation scheme, the local
variation of density is restricted. Since adjacent elements share nodal densities, the
change from solid to void must occur across at least one element, thus making the
checkerboard formation impossible. We consider two possible interpolation
schemes. Based on the concept of graded elements (Kim and Paulino 2002; Silva et
al. 2007), we use shape functions to obtain the density within each element and

throughout the design domain:

p(x) = Zn: 26: N (%) pf (12)

e=1i=1

Here p{ denotes the nodal density of element e, which is taken to be coincident with
the corresponding displacement node (Figure 7). Incidentally, this condition is not
necessary and one may explore the cases where the displacement and density
meshes are not coincident. This approach for topology optimization is referred to as
the Continuous Approximation of Material Distribution (CAMD) (Matsui and Terada
2004). In an investigation by Rahmatalla and Swan (2004) it was discovered that
even though the solutions with Q4/Q4 do not exhibit the checkerboard patterns,

they may suffer from other numerical instabilities such as “islanding” and “layering.”

17



This observation is also confirmed by Jog and Haber’s (1996) study, in which they
determined the Q4/Q4 implementation to be unstable.
The sensitivities of the objective function with respect to the nodal densities

in the CAMD implementation can be computed as follows:

dc Z r 0K,
opf L apr e (13)

eEeSs;

Here S; is the set of all elements sharing node i, and K, is given by:

p

6
K, N? p$ | BTC°BdQ (14)
=1

Qe \ 4

where B denotes the strain-displacement matrix and C° is the constitutive matrix of
the solid phase. Using this relation, we can compute the sensitivity of the stiffness

matrix with respect to the nodal densities:

p—1

6
JdK
> ::f pNf ZNjep]‘? BTC°BdQ (15)
Pi Q¢ =
(a) (b)

Fig. 7 A schematic illustration of the displacement and density approximation: (a) H6/U element (b)
H6/H6 element (CAMD). Larger blue circle represents displacement nodes, while smaller grey circle
represents the density design variable

18



5.3 Projection Method

The other scheme explored in this work is the use of projection functions with a
fixed length scale. Proposed by Guest et al. (2004) for Q4 discretization, the method
also uses nodal densities as design variables, and assigns to each element a uniform
density based on a projection of nodal densities surrounding that element. By
choosing a fixed physical radius r;,,;;, independent of the mesh, one can obtain mesh-
independent designs with prescribed minimum member size. The element density is
given by a weighted average of nodal densities that are within radius r;,;,, from the

centroid of that element:

_ Xies, Wipi

p =
¢ Ziese w;

(16)

Here we have implemented linear weight functions (Figure 8), which are given by:

_Tmin =7 <
Wi = P Ti = Tmin (17)
min

where 7; is the distance of the node i from the centroid of element e. However, other
weight functions can also be explored.

We must point out that it is possible to couple the projection scheme with the
CAMD approach by applying the projection function on the nodal densities instead
of the element densities. The shape functions can be used to interpolate the density
within each element, guaranteeing a prescribed level of smoothness of the density
field throughout the domain, while observing the required length-scale. This is
especially useful in imposing minimum length scale for topology optimization
design of functionally graded structures, where it is necessary to have C° continuity
of density field to capture the gradation of material properties. Topology

optimization of graded structures can be accomplished by means of the FGM-SIMP

19



(Functionally Graded Material - Solid Isotropic Material with Penalization)

formulation by Paulino and Silva (2005).

(b) Tmin

Fig. 8 Projection function: illustration of (a) the domain of influence and (b) the linear weight
function

20



6. Discussion on Stability of Wachspress Element

As discussed before, two elements in a hexagonal mesh either share one edge or are
not connected at all. Therefore, the geometric nature of the hexagonal Wachspress
element can eliminate the severe error in the density representation that is
observed with the Q4 elements in the form of checkerboard. However, undesired
small scale patterns may still be possible with the hexagonal mesh. In this section,
we demonstrate that with the proposed formulation, such patterns do not appear as
easily as the checkerboard of Q4 elements, establishing the Wachspress element as a
more stable element for topology optimization. We accomplish this task by studying
the overall stiffness of candidate patterns of hexagonal elements using numerical
homogenization. As discussed by Diaz and Sigmund (1995), the appearance of
checkerboard in topology stiffness design can be linked to the poor finite element
modeling that overestimates its stiffness. As a result of this artificially high stiffness,
the checkerboard is stiffer than other arrangements of material and is favored in the
optimization process. Following this reasoning, we investigate the susceptibility of
topology optimization formulation with Wachspress elements to similar anomalies
by considering the behavior of the possible fine scale patterns in the hexagonal
mesh (see Figure 9). In this section, we discuss the numerical procedure for
determining the homogenized stiffness of these patterns and compare the results

with those obtained for the Q4 element.
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Pattern 1

Pattern 2

Pattern 3

Pattern 4

Checkerboard

Fig. 9 Small scale patterns of hexagonal elements and their corresponding unit cells
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The overall stiffness of the patterns may be represented by the homogenized
stiffness of repetitive unit cells. According to the theory of numerical
homogenization (see, for example, Bendsge and Sigmund 2003), the homogenized

stiffness is calculated as:

1 dxp!
Clla = mfy <Cijkl = Cijpq £ ay (18)

where C;j, are elastic stiffness coefficients at a given point in the unit cell; Cgkl are

homogenized stiffness coefficients; Y s the periodic domain, which is the area of the
unit cell shown in Figure 9; and )(,’,fl are characteristic displacements obtained by

solving the following equation:

fC-- aLz’fl%defC--kl%dY Yv eV, 19
y ijpq ayq ay,- . 13} ay], ’ ( )

Here V), is the set of all Y-periodic functions.
Using finite element discretization, one obtains the characteristic

displacement by solving the following equation:
Ky D = £ (20)

where K is the standard stiffness matrix; and f*D is the material load

corresponding to test strain kl, calculated from:

fkl — z.f BTC (y)SO(kl)dy
i, e Le (21)

In this expression, B, is the standard kinematic matrix; C, is the constitutive matrix,

and £V is the test strain. The homogenized stiffness tensor is given by:

1 - iy
Clia = 137 2.0 = XK (10 = ) e2)
e
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It is worth noting that for the imposition of periodic boundary conditions, we
have used regular node numbering along with multipoint constraints (e.g., Cook et.
al. 2002). This is different from the traditional treatment of periodicity that involves
the use of repeated node numbers. Such an approach in the context of
homogenization with polygonal cells is discussed by Diaz and Benard (2003).

We study four arbitrary small scale patterns of hexagonal mesh, which may
appear in topology optimization results. These patterns are those with potentially
high stiffness and are shown in Figure 9. The results of this investigation are
illustrated in Figure 10 where the stiffness of hexagonal patterns along with the
checkerboard of Q4 elements and homogenous material distribution are plotted.
Also included in the plot is the stiffness of the homogenous material distribution
subjected to no penalization. In all other cases, the penalization parameter is taken
as 3.

For each pattern, the density of “black” elements is increased from 0 to 1. The
horizontal axis shows the total volume fraction of the pattern. Note that each plot
ends at the point corresponding to the configuration shown in Figure 9 with black
elements having density of one. Therefore, the checkerboard plot terminates at
volume fraction 0.5 while the plot for pattern 1 ends at volume fraction of 2/3 (this
pattern has 4 black elements and 2 white elements in its unit cell). Only the result of
CH ,, is calculated. Other stiffness coefficients can be computed in a similar manner.

As shown in Figure 10, the black-white checkerboard pattern avoids
penalization: the black-white checkerboard (volume fraction 0.5), modeled by Q4
elements, has stiffness equal to the homogenous distribution with no penalization
(p = 1). This is in agreement with the results presented by Diaz and Sigmund
(1995). The patterns of hexagonal elements, however, are not as overly stiff as the
checkerboard pattern because their stiffness curves lie below the line of no
penalization. Moreover, the homogenized stiffness of the hexagonal patterns is
closer to the stiffness of penalized homogeneous distribution (obtained using SIMP
with p = 3). These results demonstrate that the formation of undesired small scale

patterns in the results of topology optimization is alleviated when using Wachspress
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hexagonal elements. As we shall see in the next section, the topology optimization

results obtained with the Wachspress elements confirm this conclusion.

1
0
--Checkerboard Uniform Dist. without Penal. g ’,’
0.9 =1 A
=O-Pattern 1 (p=b) i
N n Pid !
0.8 =O-Pattern 2 Black-white ) /" ,"
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0.7 || &Pattern 3 penalization gl /
-~ /
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1111 - /
0 o5 /s
1111 - ','

0.4 o

I” ’/
0.3 - #C
- ’/
0.2 Uniform Dist. with Penal.
‘ (p=3)
0.1

Fig. 10 Comparison between the stiffness of hexagonal element patterns, checkerboard pattern, and

0.4

0.5
Volume fraction

0.6 0.7 0.8 0.5

homogeneous distribution of material (SIMP with p = 3 is used unless otherwise noted)
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7. Numerical Results

The benchmark MBB-beam problem (see, for example, Olhoff et al. 1991) is solved
using the Wachspress hexagonal element and results are compared with the
corresponding Q4 implementation. Due to the symmetry of the problem, only half of
the MBB-beam is considered (Figure 11). The beam has an aspect ratio of 6:1, and
three levels of mesh discretization are used. The Poisson’s ratio of the material is
taken to be 0.3, while I is 50% of volume of the design domain. We solved the
minimum compliance problem using the Method of Moving Asymptotes (MMA)
developed by Svanberg (1987). In addition, we used a continuation method on the

value of p to avoid converging to local minima. The value of p was gradually

increased (using increments of 0.5) from 1 to 4 after sufficient convergence for each
value of p. The optimization results for the element-based and projection schemes
are plotted using the element densities p,. For the CAMD results, the continuous
density p(x) is shown in an average sense: the average of p; is obtained and plotted

for each hexagonal element.

=)

Fig. 11 Schematic representation of the design domain, loading and boundary conditions for MBB

(Messerschmitt-Bolkow-Blohm) beam problem. Notice that the non-hexagonal elements on the
boundary are either triangles or quads
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In Figure 12, the results of the element-based formulation for the Q4 element
and the hexagonal element for various levels of mesh refinement are shown. The
solutions with Q4 implementation contain patches of checkerboard while no such
fine scale patterns are observed with the Wachspress implementation. Note that no
filtering technique or density gradient was imposed and thus the checkerboard-free
property of the hexagonal element is attributed essentially to its geometric features

and interpolation characteristics.

PN,

I

Fig. 12 MBB beam design with element-based formulation: (a)-(c) results with Q4 elements and (d)-
(f) results with H6/U (hexagonal) elements. Boundary elements were added to achieve domain
closure. The mesh discretization is 60 x 20, 90 x 30, 120 X 40 from top to bottom, respectively, for
both implementations

Figure 13 shows the results of CAMD approach for the MBB-beam design for
both Q4 and Wachspress implementation. Note that in this case, the density and
displacement fields are interpolated using the same shape functions for each
element discretization. We can observe that the Q4/Q4 results suffer from spurious
islanding and layering patterns, which is in agreement with the findings of
Rahmatalla and Swan (2004). The designs using Wachspress elements, however,
show no signs of such instability. Therefore, the Wachspress element performance
in this case is attributed to its interpolation characteristics. We note that our
numerical results for the MBB-beam agree closely with the exact analytical solutions

derived by Lewinski et al. (1994).
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Fig. 13 MBB beam design with CAMD approach: (a)-(c) results with Q4/Q4 elements and (d)-(f)
results with H6/H6 (hexagonal) elements. Boundary elements were added to achieve domain

closure. The mesh discretization is 60 X 20, 90 x 30, 120 X 40 from top to bottom, respectively for
both implementations

Finally, the results using projection scheme are presented in Figure 14. The
radius of the projection 1y,,;,, is taken to be 0.15 of the height of the beam and
independent of the mesh size. We can see that despite the change in the level of
mesh refinement, the same design is obtained in all cases. The length scale imposed

on the optimization through r,,;, guarantees mesh-independent solutions that

satisfy the required minimum member size.

(a)

(b)

(c)
Fig. 14 MBB beam design with projection approach (7,,;, = 0.15h where h is the height of the beam):

(a)-(c) results with hexagonal elements. The mesh discretization is 60 X 20, 90 x 30, 120 X 40 from
top to bottom, respectively
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8. Concluding Remarks and Extensions

In this work, the checkerboard pathology in topology optimization is addressed and
circumvented by means of a new finite element. The proposed hexagonal element
with Wachspress-type shape functions is shown to possess advantages over
conventional finite elements. Geometric properties of the hexagonal element, such
as two-node connections and symmetry in three edge-based directions, are among
its distinguishing features. As discussed and demonstrated by examples, the use of
hexagonal elements eliminates the formation of checkerboard and other numerical
anomalies, and provides a robust and stable means for solving topology
optimization problems.

The present approach may be extended to three-dimensional topology
optimization by noting the features employed to eliminate the checkerboard and
other instabilities. Such extension requires: (i) a mesh that excludes point and edge
contact, i.e., a mesh in which two connected elements share a face; and (ii) selection
of an appropriate finite element interpolation or enrichment scheme.

A few remarks regarding the use of honeycomb finite elements are in order.
Reliance on a particular finite element formulation may naturally impose limitations
from practical perspective. Such objection can also be made to the use of
nonconforming or higher order elements. Indeed there is a trade-off: conventional
elements like quads and triangles are widely used but suffer from serious
instabilities unless additional constraints are imposed. The implementation of these
constraints is not always straightforward or desirable. On the other hand, particular
formulations, such as the one presented in this work, may be better suited for
topology optimization, even though they are less commonly used. Moreover, there
have been several recent papers in the literature (see review paper by Sukumar and

Malsch 2005) that address polygonal finite elements. As these elements become
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more popular and widespread, solutions such as the one contributed by our work
have the potential to become more popular and practical.

The honeycomb element together with the topology optimization
formulation has promising extensions, such as design of microelectromechanical
systems and piezoelectric actuators (Carbonari et al. 2007a&b, Sigmund 2001).
Future investigations include the use of higher-order Wachspress elements (see, for
example, Gout 1985). In addition, the CAMD approach may be investigated for
meshes in which the displacement and density locations are not coincident in the
element, which would allow for a more flexible density field discretization.
Furthermore, nonlinear weight functions can be studied in conjunction with the
projection method (see Section 5.3). Such considerations have the potential to lead

to enhanced Wachspress elements for high-fidelity topology optimization.
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