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Abstract

A library of nonlinear solution schemes including load, displacement, arc-length, work, gen-
eralized displacement, and orthogonal residual control are cast into a unified framework for
solving nonlinear finite element systems. Each of these solution schemes differs in the use of
a constraint equation for the incremental-iterative procedure. The governing finite element
equations and constraint equation for each solution scheme are combined into a single matrix
equation, which characterizes the unified approach. This theoretical model leads naturally to
an effective object-oriented implementation and potential for integration into a finite element
analysis code. Using this framework, the strengths and weaknesses of the various solution
schemes are examined through several numerical examples.
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Chapter 1

Introduction

Nonlinear problems are prevalent in structural and continuum mechanics, and there is high
demand for computation tools to solve these problems. Many methods and algorithms have
been developed to solve such problems over the past forty years. Despite these efforts,
no single algorithm is capable of solving any and all nonlinear problems; depending on the
system and the degree of nonlinearity, one solution scheme may be preferred over another. In
this Chapter a brief review of nonlinear systems is presented including sources of nonlinearity
in structural systems and typical characteristics of nonlinear behavior. Next is a discussion
of existing nonlinear solution schemes, some of which are explored in more detail later in this
thesis and others are provided as a reference for the reader. Afterwards is a motivation for
the Unified Library of Nonlinear Solvers. Finally, the organization of this thesis is outlined.

1.1 Nonlinear systems

Nonlinear behavior can arise from either material or geometric nonlinearity. In the former,
the constitutive relation describing the material is itself nonlinear and the structural response
associated with physical phenomena such as plasticity or strain-softening must be captured.
In the latter, nonlinearity is due to changes in geometry, arising from large strains and/or
rotations, which enter the formulation from a nonlinear strain-displacement relationship,
and may occur even if the constitutive relation in linear [76]. Furthermore, in geometric
nonlinearity the applied loads will either have an effect on the deformed configuration, or
the configuration will have an effect on the load, (e.g. follower loads [100]).

Nonlinear behavior in structural systems is seen, for example, in the load versus displacement
curve. A linear system implies that the load is linearly related to the displacement, and
clearly this is not the case for nonlinear systems. The load versus displacement curve is also
referred to as the solution or equilibrium path, as it is comprised of points which satisfy
equilibrium conditions throughout the loading history.

Nonlinear problems arising from either geometric or material nonlinearity feature critical
points along the solution path. Critical points or stability points, shown in Figure 1.1,
are points on the solution path where the structure loses stability (e.g. buckling) or where
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bifurcation occurs (i.e. solution switches to two or more branches). Load limit points occur
when a local maximum or minimum load is reached on the load versus displacement curve, as
shown at points A and D in Figure 1.1. A horizontal tangent is present at load limit points.
Displacement limit points, shown at points B and C in Figure 1.1, occur at vertical tangents
on the solution curve. Displacement limit points are also commonly referred to as snap-back
points or turning points in the literature. Methods capable of passing displacement limit
points are said to capture snap-back behavior.

Other important characteristics of an equilibrium path are stiffening and softening, loading
and unloading, and stable and unstable regions. Softening occurs from points O to A in
Figure 1.1, while stiffening occurs beyond point D. Loading and unloading is straightforward
and corresponds to an increase or decrease in the load, respectively. In Figure 1.1, loading
occurs from points O to A and again from D to E, while unloading occurs from points A to
D.

Stability is directly related to load limit points, as shown in Figure 1.1, where the region
between the load limit points is unstable. The unstable region following a load limit point
corresponds to a physical instability in the structural system, such as buckling. Using the
theory of stability in a conservative system, a critical point occurs when the stiffness matrix
in singular [80]. One class of methods (load control methods, discussed in Section 1.2.1.1)
for tracing nonlinear load versus displacement curves is not capable of capturing behavior
beyond a load limit point, and instead these methods yield snap-through behavior. As
shown in Figure 1.2, the dashed part of the equilibrium path is not traced; the curve snaps
through and only the portions with increasing loads are captured. Hence, these methods
miss unstable regions of the equilibrium curve (dashed line in Figure 1.2).

Tracing an equilibrium path beyond the simple linear region and into a nonlinear region is a
complicated task in structural analysis. In fact, in many cases, it may seem unnecessary to
trace a path beyond the first load limit point. However, the full equilibrium path, including
critical points and regions of instability, gives more information about the structural behavior
than a simpler analysis [27]. Once a structure passes a load limit point, the nature of the
unloading may be of importance to the analyst, rather than just the loading behavior.
Additionally, information about the structural response past a displacement limit point may
be of importance. For instance, if snap-back behavior was not captured in Figure 1.1, the
structure would appear to have a sharp drop in the load at point B and the nature of the
unloading would be lost.

2
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1.2 Review of nonlinear solution schemes

A nonlinear equilibrium path can be traced by means of either a purely incremental procedure
or an incremental-iterative procedure. In an incremental procedure, shown in Figure 1.3, the
load is applied at relatively small load steps and the structure is assumed to respond linearly
within each step. This method is simple to implement and is computationally inexpensive,
however as the solution progresses, it diverges considerably from the actual equilibrium path
because equilibrium is not guaranteed at every step [64, 95]. Conversely, in an incremental-
iterative procedure, a series of iterations or corrections are performed at each incremental
step until a specified convergence criterion is satisfied, Figure 1.4. If convergence, which
is typically a tolerance on the unbalanced forces, is achieved before a maximum number of
iterations is reached then equilibrium is satisfied for that step. The incremental-iterative
approach is accurate, but it comes with a higher computational cost. Incremental-iterative
procedures are used for highly nonlinear behavior, as purely incremental methods are in-
adequate. The incremental-iterative scheme will be discussed in further detail in Section
2.1.

Within the context of incremental-iterative procedures, the stiffness of the structure can
either follow a standard or modified update. The standard method, also referred to as
the Standard Newton-Raphson method, is to update the stiffness matrix at each iteration,
Figure 1.4(a). In the modified method, the stiffness is calculated once at the beginning
of the incremental step and held constant for subsequent iterations, Figure 1.4(b). The
modified method requires fewer computations, but convergence is generally slower than with
the standard method [64]. For an extended discussion on nonlinear systems and overview of
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Figure 1.4: Incremental-iterative procedures with (a) standard and (b) constant stiffness updates

nonlinear solution schemes, the reader is directed to following text books [14, 9, 18, 29, 30, 76]

1.2.1 Development of nonlinear solution schemes

Six nonlinear solution schemes are examined in this work: load control method, displacement
control method, work control method, arc-length control method, generalized displacement
control method, and the orthogonal residual procedure. The development of these methods
will be briefly discussed in the next subsection, followed by a review of other nonlinear solu-
tion schemes not implemented in this work. Detailed formulations of the six aforementioned
schemes will be presented in the next chapters.

1.2.1.1 Supported methods

Common and widely used methods for solving nonlinear systems of equations in structural
mechanics are load control, or Newton-Raphson, type algorithms, and displacement control
algorithms. Both methods are effective for solving problems with limited nonlinearity, but
break down at load and displacement limit points, respectively. A detailed discussion of the
formulation and implementation of these methods into the (N + 1) space is given in Section
2.3. Many advances in nonlinear solvers consist of variations of these basic methods. Powell
and Simons [74] extended the load control method to capture load and displacement limit
points by decomposing the displacement vector into separate increments each weighted by
various criteria, thus making the method flexible for use with different types of nonlinear
problems. Simons and Bergan [89] and Fujii et al. [43] developed extensions of the traditional
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displacement control method capable of capturing snap-back behavior, which was a weakness
of the original formulation.

Further advances of nonlinear solution schemes lead to arc-length type methods where both
the load and displacement are incremented simultaneously, thus allowing for recovery of both
load and displacement limit points. Extensive review on the development and progress of this
method is available in the literature, so only a brief overview will be given here. Wempner
[92] and Riks [79] applied the method to geometrically nonlinear structures. The incremental
load is varied through an additional constraint equation that describes the surface over which
the next point on the equilibrium path lies. This additional constraint equation destroys the
symmetry and increases the bandwidth of the original system. Subsequent modifications
by Crisfield [27] used the decomposition proposed by Batoz and Dhatt [11] to preserve the
symmetry and bandwidth of the original system, thus making the method appropriate for
standard finite element codes.

The arc-length method is generally successful at capturing complex nonlinear behavior, how-
ever, weakness have been identified and subsequent improvements have been made by several
authors [81, 89, 56]. Carrera [20] documented the failure of several versions of the arc-length
method related to factors including the constraint equation, linearization, and computer
precision. Some improvements and extensions of the arc-length methods are described in
Section 2.3, and a few others are briefly reviewed here. Forde and Stiemer [42] identified
orthogonality relationships among various versions of the arc-length method and general-
ized the formulation in terms of them. Al-Rasby [1] developed an arc-length method using
diagonal scaling matrices to remove inconsistencies associated with mixed units (i.e. dis-
placements, rotations, forces and moments). Mallardo and Alessandri [62] improved the
nonlinear capabilities of the Boundary Element Method (BEM) from only load or displace-
ment type control to arc-length control, thus allowing for complex nonlinear problems to be
solved by the BEM. Similarly, Mukherjee and Chandra [66] and Chandra and Mukherjee
[22, 23] presented boundary element formulations for large strain deformations of plasticity
and viscoplasticity, thus incorporating both geometric and material nonlinearity. Paulino
and Liu [73] also use a BEM formulation to model nonlinear materials with applications
to nonlinear fracture mechanics and J integral calculations. Meshless methods, based on
boundary integral equations, have also been used to analyze nonlinear elastoplastic prob-
lems [63]. Ritto-Corrêa and Camotim [82] developed techniques to use in conjunction with
the arc-length method to ensure (i) the proper root of the quadratic equation resulting in
the load parameter is chosen and (ii) the detection of convergence to wrong solutions.

A new method, called the work control method, was developed in the mid 1980’s to alleviate
the issue of inconsistent physical units associated with the arc-length method. The method,
which can be found in the papers by Yang and McGuire [96] and Bathe and Dvorkin [10],

6



will be discussed in detail in Section 2.3. Improvements were made to this method as
it suffered difficulties near displacement limit points for certain problems. Lin et al. [59]
developed a method to address the inconsistent units in the arc-length method and weakness
at snap-back of the work-control method using the work weighted state vector to control
the incremental length throughout the solution tracing process. Chen and Blandford [24]
developed a work-increment control algorithm, which was an improvement over other work
increment type algorithms in that it is quadratically convergent. A stabilized form of the
work control method was presented by Kouhia [52] who reformulated the load parameter to
be well defined even in areas of snap-back.

The generalized displacement control method by Yang and Sheih [97] overcomes the problems
previously mentioned for other algorithms. The formulation and justification of the method
are presented in Section 2.3. The method has been used with success by the authors when
studying large deflection of trusses [99, 91], and ultimate load carrying capacity of structures
considering both member and structure instability [58], to name a few areas of application.

Krenk [53] presented algorithm called the orthogonal residual procedure which uses an or-
thogonality condition to determine to optimal sign and direction of the next load step. The
method was later modified [54], then presented in a stabilized form [52]. While the method is
not as widely used as other methods (i.e arc-length type methods), it has been recently been
utilized by authors to solve nonlinear equations associated with the extended finite element
method (FEM) applied to cohesive crack growth [2, 3, 65]. A detailed discussion and several
modifications and improvements will be discussed in Chapter 3.

1.2.1.2 Other methods

In the area of nonlinear solution schemes, most methods are extensions and improvements to
those already established, the most common being traditional load control methods and more
powerful arc-length methods. However, other families of methods exist which are not directly
related to those discussed above. For instance, accurate and quick converging iterative solvers
have been presented by Golbabai and Javidi [45] and Golbabai and Javidi [45] using the
homotopy perturbation method by He [46]. Additional quick converging methods have been
shown to achieve cubic and super cubic convergence [32, 5, 68]. Quadrature formulas have
also been used to develop cubically-convergent incremental-iterative procedures [67, 69]. Also
to improve convergence over typical Newton-Raphson type methods, families of higher order
methods have been developed, including a fourth-order method by King [50], a third order
method by Darvishi and Barati [31], and an eighth-order method by Bi et al. [17], to name
a few. In addition to higher order Newton-type methods, Babajee et al. [4] have studied
third order Chebyshev-type methods for solving systems of nonlinear equations. Recently,
Shin et al. [88] compared higher order methods with Newton-Krylov methods and found the
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Newton-Krylov methods perform better, if the system is sparse, as the size of the problem
increases.

Many methods are available for solving nonlinear problems, and several are even successful
at tracing beyond load and displacement limit points. However, these methods typically
do not directly compute the location of such stability points. Many methods rely on the
inspection of the determinant of the stiffness matrix for the location of stability points, but a
more rigorous approach was needed. Wriggers and Simo [93] appended a constraint equation
that characterizes load and displacement limit points to the system of nonlinear equations;
thus the solution of the extended system not only yields the load parameter and displace-
ment field, but also information about stability points. Fujii and Okazawa [44] developed a
technique to pinpoint stability points both locally and globally that performed better than
previous bisection or bracketing techniques. Rezaiee-Pajand and Vejdani-Noghreiyan [78]
presented a method to locate multiple bifurcation points in structures using eigenvalue per-
turbation of the tangent stiffness matrix. Lopez [60] increased the range of validity over
traditional methods for computing singular points with a robust algorithm using asymp-
totic extrapolation in the predictor phase of the continuation method, resulting in a more
accurate location of limit points. Similarly, Korelc [51] computed the location of critical
points with the extended system formulation and automatic differentiation, which resulted
in significantly increased convergence.

Nonlinear solution methods have been applied extensively for nonlinear analysis of structural
systems. For example, Yang et al. [98] present a simple formulation for nonlinear elastic
structural systems that utilizes different components of the tangent stiffness matrix depend-
ing on the degree of nonlinearity of the system. Hrinda [49] analyzed highly geometrically
nonlinear 3D truss systems to determine their actual load carrying capacity, which often oc-
curs beyond the first limit point. Both linear and nonlinear solution methods were utilized
by Saffari et. al. [83] to capture the response of space trusses beyond limit points. Also,
Wang et al. conducted post-buckling analysis of structural systems using a combination of a
genetic algorithm and a quasi-Newton method to determine the multiple equilibrium states
of the nonlinear system.

In addition to individual solution schemes, libraries and tool kits for solving systems modeled
by partial differential equations have also been developed. The Portable, Extensible Toolkit
for Scientific Computation (PETSc) [8, 6, 7], for instance, is a suite of routines designed
to solve large-scale applications through utilization of parallel linear and nonlinear solvers,
including a parallel Newton-based solver. Similarly, the Library of Continuation Algorithms,
LOCA [84], was developed at Sandia National Laboratories in Albuquerque, New Mexico to
perform stability analysis on large scale problems by tracking multiple solution branches and
bifurcation points. The software, LOCA, supports a variety of algorithms as one algorithm
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is not sufficient to solve all problems.

1.2.2 Motivation for a library of nonlinear solution schemes

It is clear from the review in the previous section that it is nearly impossible to develop one
single method capable of solving any general nonlinear problem. Depending on the problem
and the severity of the nonlinearities, modifications to solution algorithms are necessary to
recover the entire equilibrium path. Bergan et al. [16] stated

“a computer program for non-linear analysis should possess several alternative
algorithms for the solution of the non-linear system. These procedures should
also allow for the possibility of an extensive control over the solution process by
parameters that are input to the program. Such a scheme would lead to increased
flexibility, and the experienced user has the possibility of obtaining improved
reliability and efficiency for the solution of a particular problem.”

Many authors have developed families of nonlinear solution schemes, which can be adjusted
by the user depending on the problem. In the early days of development of nonlinear solution
schemes Mondkar and Powell [64] developed a library of algorithms based on the standard
and modified Newton-Raphson method. Seven solution schemes were formulated from 11
control parameters (stiffness update type and frequency, convergence tolerance, etc.) and
tested on several nonlinear structural systems. Clark and Hancock [25] used the concept
of load increment from the standard or modified Newton-Raphson method to unify several
nonlinear solution schemes through a single load factor. The specific incremental-iterative
procedure depends on the chosen constraint equation, which is used to calculate the unifying
load factor. The constraint equations are based on iterations at constant load, displacement,
work, arc-length, or minimum residual. Yang and Sheih [97] and Yang and Kuo [95] presented
a similar library of nonlinear solvers unified through a single load parameter, and included
the generalized displacement control method. More recently Rezaiee-Pajand et al. [77]
unified five nonlinear solution schemes through a single general constraint equation. The
schemes were identified by five different constraints, including minimizing error by means of
its length, area, or perimeter, and then the strengths and weaknesses of each algorithm were
evaluated.

The library of nonlinear solution schemes explored in this work is similar to its predecessors in
that several solution schemes, defined by a constraint equation, are unified into a single space
by means of a load parameter. The methods include load control, displacement control, work
control, arc-length control, generalized displacement control, and the orthogonal residual
procedure, which until now have not been incorporated into a collection of unified schemes.
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The unified schemes are formulated and implemented such that (i) additional nonlinear
solution schemes are readily incorporated and (ii) integration into a finite element analysis
code is straightforward.

1.3 Thesis organization

The remainder of this thesis is organized as follows: the unified approach and the (N + 1)
space formulation are discussed in Chapter 2. Also in this chapter, five of the six nonlinear
solution schemes are discussed and cast into the (N + 1) space. The sixth nonlinear solution
scheme, ORP, and its variations are discussed in more detail in Chapter 3. Next, in Chapter
4, the object-oriented implementation of the unified library, called NLS++, and complete
class structure is presented. Five nonlinear systems are analyzed with NLS++ and their
results discussed in Chapter 5. Finally, a summary of this work is presented with suggestions
for improvements and future extensions.
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Chapter 2

Unified approach to nonlinear
solution schemes

Nonlinear solution schemes have been studied extensively for use with the finite element
method to solve complex material and geometrically nonlinear problems. The following
solution schemes are presented in the context of the unified approach: load control, dis-
placement control, arc-length control, work control, generalized displacement control, and
orthogonal residual. The solution schemes are inherently different in their formulations and
therefore feature unique constraint equations for the incremental-iterative procedure. The
governing finite element equation and constraint equations are combined into a single ma-
trix equation, which will be used to characterize the unified approach. In this Chapter,
incremental-iterative schemes for solving nonlinear systems of finite element equations are
first reviewed. Next, the formulation of the (N + 1) dimensional space is presented. Finally,
various algorithms, including load control, displacement control, arc-length method, work
control method, and generalized displacement control are discussed using this approach. The
orthogonal residual procedure will be discussed in more detail in the next Chapter.

2.1 Overview of incremental-iterative schemes

Numerical methods for solving nonlinear finite element systems generally adopt an
incremental-iterative procedure, where at each incremental step a series of iterations is per-
formed until a specified convergence criterion is reached. Figure 2.1 illustrates the basic idea,
adopted by most incremental-iterative methods, using a single degree of freedom system.
Here the increment is denoted with the superscript i, iterations within the ith incremental
step are denoted with the subscript j, and ξ is a load scaling factor.

As shown in Figure 2.1, for a certain step i, the method for solving nonlinear systems starts
from a load increment vector, denoted by ∆p i . The first estimate of the incremental
displacement vector, ∆ui, can be calculated using the linearized tangent stiffness, Ki

0, which
is calculated at the beginning of the increment.

Ki
0∆ui = ∆p i (2.1)
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Figure 2.1: Incremental-iterative scheme for solving nonlinear problems

Due to the nonlinear nature of the problem, the internal forces q ≡ q(u), evaluated at

u = ui−1 + ∆ui (2.2)

are not in equilibrium with the externally applied forces p, given by

p = pi−1 + ∆p i (2.3)

Thus, an unbalanced force or a residual is generated, which is expressed by

r = p− q(u) (2.4)

To establish equilibrium, the iterative steps inside each increment generates a series of load
and displacement updates, given by δpij and δuij, respectively. Hence, the total load and
displacement at the jth iteration of the ith incremental step are given by

∆uij = ∆uij−1 + δuij (2.5)

∆pij = ∆pij−1 + δpij (2.6)

where ∆uij is the incremental displacement vector in iteration j of step i, δuij is the iterative
displacement vector in iteration j of step i, ∆pij is the incremental force vector in iteration
j of step i, and δpij is the iterative force vector in iteration j of step i. The iterative process
continues until, in a certain iteration j, the residual rij , obtained by

rij = pi−1 + ∆pij − q(ui−1 + ∆uij) (2.7)

is sufficiently small in a certain norm (e.g. Euclidean) with respect to a reference value. If
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the convergence criterion is not satisfied, a new iteration (j ← j + 1) is processed and a
new iterative displacement vector δuij is calculated using a linearized stiffness relation [95].
Essentially, an iteration consists of the solution of a system of equations linearized about the
current state of the nonlinear problem.

2.2 N+1 dimensional space formulation

In nonlinear finite element analysis [29, 9, 14, 76, 95]the governing system of nonlinear
equations to be solved at the jth iteration of the ith incremental step is given by

Ki
j−1δuij = pij − qij−1 (2.8)

where Ki
j−1 is the tangent matrix, δuij is the displacement vector, pij is the external force

vector, and qij−1 is the internal load vector. The unified approach decomposes this system
and reformulates the nonlinear solution process into an (N + 1) dimensional space, which
includes N displacement components (δuij) and one load parameter (δλij) [97]. The load
parameter is first introduced through the force relation, where δpij is replaced with δλijp

pij = pi−1 + ∆pij−1 + δpij (2.9)

pij = pi−1 + ∆pij−1 + δλijp (2.10)

Equations 2.7, 2.8, and 2.10, are combined to give the following system of equations

Ki
j−1δuij = rij−1 + δλijp (2.11)

Equation 2.11 is a system of N equations with (N + 1) unknowns, therefore an additional
constraint equation of the general form

Φ(δu, δλ) = 0 (2.12)

must be added to the system. The particular constraint equation, as proposed by Yang and
Kuo [95], has the form

aij · δuij + bijδλ
i
j = cij (2.13)

Equations 2.11 and 2.13 yield a system of (N + 1) equations and (N + 1) unknowns, shown
in matrix form  Ki

j−1 −p
(aij)T bij

 δuj
δλij

 =

 rij−1

cij

 (2.14)
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The augmented system matrix is no longer symmetric and has a significantly increased
bandwidth due to the added load parameter. The solution of this system with a traditional
method would be computationally undesirable with respect to both storage and efficiency.
However, Batoz and Dhatt presented a technique to overcome this problem [11]. It consists
of decomposing the iterative displacement vector into two parts

δuij = δλijδuI ij + δuII ij (2.15)

then Equation 2.11 becomes
Ki
j−1δuI ij = p

Ki
j−1δuII ij = rij−1

(2.16)

It is clear that Equations 2.16 and 2.11 are mathematically equivalent by means of Equation
2.15. The components of the total iterative displacement, δuI ij and δuII ij are computed
using the original system matrix, Ki

j−1. Thus, the banded and symmetric properties of the
original system remain intact [55]. Finally, the load parameter is needed to compute the
total displacement for the jth iteration of the ith incremental step. Solving Equation 2.13 for
the load parameter and combining with Equation 2.15 yields

δλij =
cij − aij · δuII ij
aij · δuI ij + bij

(2.17)

The constraint equation will be directly associated with a particular nonlinear solution
scheme. Or, in other words, the formulation of each nonlinear solution scheme will give
rise to the constraint parameters, aij, bij, and cij.

2.3 Nonlinear solution schemes

A number of nonlinear solution procedures have been proposed to trace equilibrium paths,
such as load control, displacement control, work control, arc-length and generalized dis-
placement control. The general aspects and modifications for the N+1 dimensional space
formulation of the aforementioned methods are discussed in this section. One additional
nonlinear solution scheme, the orthogonal residual procedure, will be discussed in detail in
Chapter 3.

2.3.1 Load control method (LCM)

Traditionally, load control or Newton-type methods have been the most popular ones to
solve nonlinear system of equations [79, 64]. Furthermore, many advances in nonlinear
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solvers consist of variations of the basic Newton-Raphson method [74, 70]. This method
is the simplest to cast into the (N + 1) dimensional space because, by definition of the
algorithm, the external loads are computed at the first iteration of each incremental step
and held constant throughout the remaining iterations in the step. Hence, this method is
also referred to a the load control method, as illustrated in Figure 2.2.

δλij =

 prescribed value
0

for j = 1
for j ≥ 2

(2.18)

Comparing Equation 2.18 and Equation 2.17, one obtains the constraint parameters are
clearly:

aij = 0 (2.19)
bij = 1 (2.20)

cij =

 ∆λ
0

for j = 1
for j ≥ 2

(2.21)

where ∆λ is a prescribed initial load factor. Because the Newton-Raphson method imposes
the load factor, the system has only N unknowns and the decomposition of Equation 2.11
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is not needed. Instead, the system can be solved from Equation 2.11 directly

Ki
j−1δui1 = ∆λp for j = 1

Ki
j−1δuij = rij−1 for j ≥ 2

(2.22)

The tangent matrix, Ki
j−1, may either be computed in accordance with the standard Newton-

Raphson method or with the modified Newton-Raphson method. In the former method, the
tangent matrix is calculated at the beginning of each iteration, while in the latter the tangent
matrix is only computed at the beginning of each incremental step and held constant for
each iteration (i.e. Ki

j−1 = Ki
0 for j ≥ 2). The modified Newton-Raphson method has a

lower computational cost at each iteration than the standard version, but convergence will
be slower.

While this method is very widely used, it is not inherently robust. Since the externally
applied loads are kept constant, this method has difficulties near load limit points. Yang
and Sheih [97] further showed that the constraint parameters imposed by this method will
yield unbounded displacements near load limit points when the tangent matrix is nearly
singular.

2.3.2 Displacement control method (DCM)

Analogous to the Newton-Raphson method with a fixed load parameter, the displacement
control method uses a fixed displacement component as the control parameter to trace the
equilibrium path. In multi-degree of freedom system, one displacement component is selected
as the control component, denoted δuijCTRL

.

δuijCTRL
=

 prescribed value
0

for j = 1
for j ≥ 2

(2.23)

Solving Equation 2.15 for the control parameter with respect to the control component gives

δλij =
δuijCTRL

− δuII ijCTRL

δuI ijCTRL

(2.24)

On the first iteration the residual will be zero, so δuII ij must also be zero, as evident from
Equation 2.16. Then the expression for δλij reduces to the following
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δλij =



δui
jCTRL

δuI
i
jCTRL

for j = 1

−δuII
i
jCTRL

δuI
i
jCTRL

for j ≥ 2

(2.25)

Now comparing Equation 2.25 and Equation 2.17, the constraint parameters are

aij =
[0, 0, ...1, ..., 0]︸ ︷︷ ︸

control displacement
(2.26)

bij = 0 (2.27)

cij =

 ∆u
0

for j = 1
for j ≥ 2

(2.28)

The final expression for the load factor is given by

δλij =



∆u
δuI

i
jCTRL

for j = 1

−δuII
i
jCTRL

δuI
i
jCTRL

for j ≥ 2

(2.29)

where ∆u is the prescribed initial displacement. For this reason, the displacement control
method works well for load limit points, however it may fail near displacement limit points.
Figure 2.3 illustrates the behavior of the displacement control method. Yang and Sheih
[97] further showed that at displacement limit points the control displacement, δuI ijCTRL

,
approaches zero, and the load parameter approaches infinity, hence numerical instability
occurs at displacement limit points.

The main drawback of this method is that the control parameter is selected intuitively or
empirically, and remains fixed during the whole path-tracing process. Fujii et al. [43] devised
a technique to systematically select the best control parameter. A decreasing component of
the displacement vector typically suggests that a displacement limit point may be approach-
ing in that component. However, the largest component of the displacement vector is the
least likely component to experience a displacement limit point. The best candidate for
the control component is therefore the one with the maximum absolute value of displace-
ment. The sign of this component should also be retained to ensure the correct direction
of equilibrium tracing. With this minor modification, the displacement control method can
potentially capture displacement limit points.

The previous two solution methods keep either the external load or displacement constant
through iterations, giving difficulties in load and displacement limit points, respectively. To
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circumvent those problems, methods which allow simultaneous changes of both the load and
displacement levels, along the incremental-iterative process, have been extensively explored
in the technical literature. These methods treat the load level as an additional variable, so
that the equilibrium configuration can be followed beyond limit points.

2.3.3 Arc-length control method (ALCM)

The most typical example of a nonlinear solution scheme which considers simultaneous iter-
ation on both the load and displacement variables is the arc-length method. The premise of
the arc length method is to impose a constraint where the norm (i.e. Euclidean norm) of the
increment, (∆uij,∆pij), is prescribed for the first iteration and held constant at subsequent
iterations. An arc-length, ∆sij, is calculated at the beginning of each increment and held
constant throughout the iterations.

∆sij =

 prescribed value
0

j = 1
j ≥ 2

(2.30)

There are several versions of the arc-length method, including cylindrical, spherical, elliptical
and linearized. The general constraint equation, which can represent all of these variations
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is of the form
∆uij ·∆uij + η∆pij ·∆pij = (∆si)2

Replacing ∆pij with ∆λijp, as before, the constraint equation now becomes

∆uij ·∆uij + η(∆λij)2(p · p) = (∆sij)2 (2.31)

where η is a non-negative real parameter, which is unique for each version of the arc-length
method. Figure 2.4 illustrates the incremental-iterative procedure of the arc-length method
for a one dimensional problem. An initial arc-length is determined in accordance with
Equation 2.31, then subsequent iterations lie on the constraint surface created by the arc.
Iterations eventually converge, which is shown in the Figure as the intersection of the arc and
the equilibrium path. Notice that the constraint equation is applied to the entire incremental
step, rather than to the particular iteration, i.e. ∆uij and ∆λij are used rather than δuij and
δλij, respectively.

Spherical arc-length control method

The spherical arc-length method, [27, 75], sets the scaling parameter to one. The constraint
equation becomes

∆uij ·∆uij + (δλij)2(p · p) = (∆sij)2 (2.32)
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The constraint equation now represents a sphere in three dimensional space, as shown in
Figure 2.5. Through several benchmark problems, Bellini and Chulya [13] demonstrated
that in areas of very high slope this method may have difficulties. The initial arc-length may
be adjusted such that is its very small, however this increases the number of incremental
steps to trace the entire equilibrium path, thereby increasing computational time.

Cylindrical arc-length control method

As indicated by Crisfield [27], the cylindrical arc-length method consists of setting η to zero.
Bellini and Chulya [13] illustrated the effectiveness of this version in capturing sharp turns at
load limit points. The constraint equation represents a cylinder in three dimensional space,

∆uij ·∆uij = (∆sij)2 (2.33)

as it is illustrated by Figure 2.6.
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Elliptical arc-length control method

The most general form is the elliptical arc-length method, where η > 0 and η 6= 1. Figure
2.7 shows that the constraint equation represents an ellipsoid in three dimensional space.
Park [72] has proposed a method where the scaling parameter, η, is the current stiffness
parameter, introduced by Bergan [16]. Bellini and Chulya [13] documented the success of
this particular version of the elliptical arc-length method.

Linearized arc-length control method

The linearized arc-length method was studied by Wempner [92] and Riks [79], and investi-
gated further by Riks [80] and Crisfield [27]. These methods are also referred to as orthogonal
arc-length methods because, in general, a norm constraint is imposed at the first iterative
step, then an orthogonality condition is met in subsequent iterations of that increment. The
orthogonality condition determines the type of linearized arc-length method. For example, in
the Fixed Normal Plane version, the iterative vectors (δuij, δpij) are orthogonal to the initial
incremental vector (δuij, δpij). In the Updated Normal Plane version, on the other hand, the
iterative vectors (δuij, δpij) are orthogonal to the previous incremental vector(δuij, δpij). The
linearized versions are shown in Figure 2.9.
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When the general nonlinear constraint equation, 2.31, of the arc-length method is adopted,
a quadratic equation in terms of δλij is obtained. It is necessary to adopt a set of rules to
treat either real or complex roots obtained from the quadratic equation. For real roots, in
general, the selected root is the one that corresponds to the smallest change in the direction
of the iterative displacement vector compared to the previous displacement vector [13, 28].
Lam and Morley [56] have presented a methodology for treating the complex roots that can
arise in the above mentioned quadratic equation.

The constraint equation given in Equation 2.31 can be written with respect to the iterations
rather than the increments. The inner product of p with itself will be taken as unity, since
the reference load vector can always be expressed as a unit vector. Then the constraint
equation becomes

δui1 · δuij + ηδλi1δλ
i
j = (∆sij)2 (2.34)

Now combining Equations 2.34 and 2.30 and comparing with Equation 2.13, one obtains the
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constraint parameters below

aij = δui1 = δλi1δuI i1 (2.35)
bij = ηδλi1 (2.36)

cij =

 (∆S)2

0
for j = 1
for j ≥ 2

(2.37)

where ∆S is the prescribed arc-length to be assigned at the first iteration and held constant
for subsequent iterations. The load factor is then given by

δλij =


± ∆S√

δuI
i
1·δuI

i
1+η

for j = 1

− δui
1·δuII

i
j

δui
1·δuI

i
j+ηδλi

1
for j ≥ 2

(2.38)

The sign of the load factor in the previous equation is based on whether the system is soft-
ening, in which case the sign should be negative, or stiffening, in which case the sign should
be positive. However, this method does not specify this criteria explicitly. The arc-length
method is widely used for highly nonlinear problems because it can capture nonlinearities
at load limit points and has the potential to capture behavior even at displacement limit
points.

A potential shortcoming of this method, however, is that the terms in the expression for
δλij are of different units. For example, the load parameter, δλi1, is a scalar, while the
displacements δu contain both translations and rotations, which are of different orders of
magnitude [96]. In areas near displacement limit points with very high gradient it is possible
that δλi1 is so large that the sign of δλij depends only on the angle between δui1 and δuII ij.
It follows that the sign of δλij may change incorrectly, causing numerical divergence near
displacement limit points [97]. It should be noted that the load factor should only change
sign at areas of load limit points, not at displacement limit points.

2.3.4 Work control method (WCM)

The work control method was studied by Bathe and Dvorkin [10] and Yang and McGuire
[96]. Yang and McGuire identified the motivation for the method, which was to overcome
the issue of inconsistent physical units, as discussed for the arc-length method. This method
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uses a constant work increment, δW i
j , through the iterations of an incremental step

δW i
j =

 prescribed value
0

for j = 1
for j ≥ 2

(2.39)

The constraint equation is given by

δW i
j = δλijp · δuij (2.40)

The constraint parameters can be determined directly from Equation 2.40, i.e.

aij = δλijp (2.41)
bij = 0 (2.42)

cij =

 ∆W
0

for j = 1
for j ≥ 2

(2.43)

where ∆W is the prescribed work increment. Substituting Equation 2.15 into δuij in Equation
2.40 and noting that δuII ij = 0 on the first iteration, one obtains

δλij =


±
√∣∣∣∣ ∆W

p·δuI
i
1

∣∣∣∣ for j = 1

−p·δuII
i
1

p·δuI
i
1

for j ≥ 2

(2.44)

Unlike the arc-length method, the sign of the load parameter is easily determined. The
term inside the square root, called the current stiffness parameter [96], indicates whether
the system is stiffening or softening. The sign of this term should be applied to the load
parameter: if the term is positive the system is stiffening and the load parameter should
increase, and if it is negative the stiffness is decreasing and the load parameter should also
decrease.

Some weaknesses of the work control method have been examined by Yang and Sheih [97]. A
potentially problematic situation occurs when there are a small number of degrees of freedom
and the displacement associated with the major forcing direction tends to snap back (i.e.
at a displacement limit point). The quantity p · δuI i1 will tend to zero forcing the load
parameter to infinity. Thus this method only has limited success near displacement limit
points. Additionally, the presence of the reference load vector in the expression for δλij may
have adverse effects because it is somewhat arbitrary and does not represent the structural
system.
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2.3.5 Generalized displacement control method (GDCM)

The generalized displacement control method was investigated by Yang and Sheih [97] as
a result of the limitations discussed for other methods. Noticing that numerical stability
depends on the selection of the constraint parameters, the following values were adopted:

aij = δλi1δuI i−1
1 (2.45)

bij = 0 (2.46)

cij =

 generalized displacement
0

for j = 1
for j ≥ 2

(2.47)

Plugging the constraint parameters into Equation 2.17 one obtains an expression for δλij

δλij =
cij − δλi1

(
δuI i−1

1 · δuII ij
)

δλi1
(
δuI i−1

1 · δuI ij
) (2.48)

which, when recalling that δuII i1 = 0 when j = 1, simplifies to

δλi1 =

√√√√ ci1
δuI i−1

1 · δuI i1
(2.49)

δλij = −
δuI i−1

1 · δuII ij
δuI i−1

1 · δuI ij
(2.50)

Let δuI1
1 = δuI0

1 and solve Equation 2.49 for cij, the generalized displacement,

cij =

 (δλ1
1)2 (δuI1

1 · δuI1
1)

0
for j = 1
for j ≥ 2

(2.51)

Now the expression for δλi1 becomes

δλi1 = ±δλ1
1

(∣∣∣∣∣ δuI1
1 · δuI1

1

δuI i−1
1 · δuI i1

∣∣∣∣∣
) 1

2

(2.52)

Similar to the work control method, the generalized displacement control method adjusts
the sign of the load parameter based on the stiffness of the system. The generalized stiffness
parameter (GSP), defined below, will be positive for stiffening systems and negative for
softening systems. The behavior of the GSP, including sign changes of load parameter, is
illustrated in Figure 2.10.
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Figure 2.10: Generalized stiffness parameter used in the generalized displacement control method

GSP = δuI1
1 · δuI1

1

δuI i−1
1 · δuI i1

(2.53)

The load parameter at the first iteration of each incremental step is simply

δλi1 = ±δλ1
1 |GSP |

1
2 (2.54)

Use of this physical quantity to represent the stiffness of the system makes this method
computationally effective. The stiffness of the structure is measured with respect to the first
incremental step, so stiffening and softening behavior are readily identified. Furthermore,
the GSP changes sign only immediately after load limit points, meaning the direction of the
load will only change at load limit points, not at displacement limit points, as with other
methods. It can also be shown that the GSP remains bounded while tracing the equilibrium
path.

While the generalized displacement control algorithm is very successful at capturing complex
nonlinear behavior at both load and displacement limit points, it is not as widely used as
the various versions of the arc-length method. Cardoso and Fonseca [19] identified that this
method can actually be seen as an orthogonal arc-length method. The constraint equation
posed by the generalized displacement method can be written as an orthogonal arc length
constraint where adjustments in the radius of the arc are dependent on the value of the GSP.
Furthermore, by viewing the generalized displacement control method as a variation of the
arc-length method, many extensions and improvements made to arc-length methods could
also apply to the generalized displacement control method.
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Chapter 3

Orthogonal residual procedure

The orthogonal residual procedure is the sixth nonlinear solution algorithm included in the
unified scheme formulation. It is more complex, in terms of formulating the procedure into
the (N + 1) dimensional space, than the other solvers discussed in the previous Chapter.
In this Chapter the original orthogonal residual procedure is presented followed by a few
modifications and stabilizations. Then the formulation of the original algorithm into the
N+1 dimensional space is discussed. Finally the implementation of the orthogonal residual
load factor in the context of the N+1 dimensional space is presented.

3.1 Basic formulation

The orthogonal residual procedure (ORP), investigated by Krenk in 1995 [53], adjusts the
load increment at each iterative step such that the current displacement increment is or-
thogonal to the current residual. The orthogonality constraint is based on the following
arguments: the direction of the current displacement increment, Duij, is taken as the best
estimate of the direction of the actual displacement increment. The magnitude, however, will
increase or decrease based on the projection of the residual force on the current displacement
increment. The magnitude of the current displacement increment should not change; there-
fore the orthogonality between the residual and the current displacement increment should
be enforced

uij ·∆rij = 0 (3.1)

as illustrated by Figure 3.1 (a).

To justify why the residual should not change the magnitude of the current displacement,
consider the case where the residual and current displacement increment are not orthogonal,
as shown in Figure 3.1 (b). First, note the order in which computations occur in the jth

iteration. The incremental displacement is calculated using the tangent matrix and residual
vector from the previous iteration

δuij = (Ki
j−1)−1rij−1 (3.2)
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Figure 3.1: Orthogonality constraint of the orthogonal residual procedure

then the increment displacement is updated

∆uij = ∆uij−1 + δuij (3.3)

and finally the residual is calculated. Again, the direction of the current displacement
increment should not change, as it was calculated in the previous iteration and is taken
as the best estimate of the actual displacement direction. If the residual is not orthogonal to
the current displacement increment, then the iterative displacement increment, duij, should
have accounted for the induced displacement by the residual when it was calculated in
the previous iteration. Changing the iterative displacement will also change the current
displacement increment through Equation 3.3. If the magnitude of the current displacement
increment changes due to the residual, then the calculation of the current displacement
increment in the previous iterative step was not optimal.

The load factor, xij, is calculated from the orthogonality constraint and is applied to the
current load increment.

pi = pi−1 + x
i
jDp i (3.4)

The internal forces, q, are calculated from the previous values of the displacement increment.
Similarly to Equation 2.7, the residual is

rij = pi−1 + ξij∆p i − q(ui−1 + ∆uij) (3.5)

The optimal load increment factor is obtained by inserting Equation 3.5 into the constraint
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Equation, 3.1.

ξij = −

[
pi−1 − q(ui−1 + ∆uij)

]
·∆uij

∆p i ·∆uij
(3.6)

A flowchart of the ORP code is shown in Figure 3.2. To improve the robustness of the ORP
algorithm a few conditions are checked throughout the code, as indicated by the shaded
“A”, “B”, “C” circles and first conditional statement in Figure 3.2. These conditions aim
to address three important concerns when solving nonlinear problems: (1) a maximum dis-
placement increment, (2) a displacement direction criterion, and (3) a procedure to modify
the equilibrium iterations if convergence is not met.

(1) Maximum displacement increment

Near load limit points the stiffness is very small, which will result in very large incremen-
tal and iterative displacements after solving ∆ui1 = (Ki

0)−1∆p i and δuii = (Ki
j−1)−1rij−1,

respectively. Therefore it is necessary to impose a maximum incremental and iterative dis-
placement. The maximum incremental displacement is calculated at the first shaded circle
“A” in Figure 3.2

∆ui1 = (Ki
0)−1∆p i (3.7)

If
∥∥∥∆ui1

∥∥∥ > Umax =⇒ ∆ui1 = Umax

‖∆ui1‖
∆ui1 (3.8)

The maximum iterative displacement is calculated at the second shaded circle “A” in Figure
3.2, i.e.

δuii = (Ki
j−1)−1rij−1 (3.9)

If
∥∥∥δuij∥∥∥ > Umax =⇒ δuij = Umax∥∥∥δuij∥∥∥δuij (3.10)

(2) Displacement direction criterion

The first conditional statement in Figure 3.2 accounts for changes of direction in the displace-
ment. If the direction of the displacement increment is reversed relative to the previously
converged displacement increment then the sign of the load and displacement increments are
changed. Such a reversal of direction will occur at load limit points.

(3a) Modification for convergence problems

The maximum number of iterations is specified by the user when solving nonlinear problems.
If convergence is not met within those iterations, the iterative procedure can be restarted
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with half the initial displacement and load increments at the shaded circle “B” in Figure
3.2. Then the maximum displacement increment imposed by shaded circle “A” would also
be reduced

∆p i ← 1
2∆p i (3.11)

∆ui1 ←
1
2∆ui1 (3.12)

Umax ←
1
2Umax (3.13)

(3b) Modification for convergence problems

Information from the previous load increment may be used to overcome convergence problems
in the current increment. The load increment can be scaled by a ratio of the desired number
of iterations, denoted IteD, and the actual number of iterations used to reach equilibrium in
the last incremental step, denoted IteA [28, 13]

∆p i =
(
IteD

IteA

)α
∆p i−1 (3.14)

as illustrated by the shaded circle “C” in Figure 3.2.

The exponent α is typically chosen to be 0.5-2.0. Of course, this procedure is dependent on
the behavior of the previous step, thus it may be ineffective for problems with very sudden
changes.

3.1.1 Modifications of the orthogonal residual procedure

The original orthogonal residual procedure has the potential to capture complex nonlinear-
ities at load and displacement limit points associated with nonlinear finite element systems
of equations. Krenk [53] compares the algorithm to arc-length type methods claiming that
it can be more effective. Unlike some arc-length methods, the ORP iterations do not lock
on a hyperplane. Locking on a hyperplane is problematic, particularly if that hyperplane
does not intersect the actual equilibrium path. Since the iteration surfaces are curved, it is
implied that the ORP can handle both load and displacement limit points. However, further
investigation by Krenk and Hededal [54] and later by Kouhia [52] indicated that the original
formulation has weaknesses around displacement limit points.

Krenk and Hededal [54] modified the procedure by imposing a second orthogonality con-
straint that adjusts the displacement iteration in addition to the first constraint that adjusts
the load increment. The dual orthogonality procedure is derived using the original orthogo-
nality constraint, rij ·∆uij = 0, and a modified Newton-Raphson approach with quasi-Newton
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modifications of the stiffness matrix. When a BFGS type update with the Sherman-Morrison
formula is used, the following expression for the inverse of the stiffness matrix is obtained

(Ki
j)−1 =

[
I−

∆uij(∆qij)T

∆qij ·∆uij

]
(Ki

0)−1
[
I−

∆qij(∆uij)T

∆qij ·∆uij

]
+

∆uij(∆uij)T

∆qij ·∆uij
(3.15)

The iterative displacement is obtained through

δuij = (Ki
j)−1rij (3.16)

δuij =
{[

I−
∆uij(∆qij)T

∆qij ·∆uij

]
(Ki

0)−1
[
I−

∆qij(∆uij)T

∆qij ·∆uij

]
+

∆uij(∆uij)T

∆qij ·∆uij

}
rij (3.17)

Applying the orthogonality condition, the iterative displacement is simply

δuij =
{[

I−
∆uij(∆qij)T

∆qij ·∆uij

]
(Ki

0)−1
}

rij (3.18)

It can be shown that this simple expression for the iterative displacement is the result of
an orthogonality condition between the current displacement iteration and the internal force
increment. First, note that in Quasi-Newton methods, such as the one used in this procedure,
the current stiffness matrix satisfies a linear stiffness relation for an already converged set of
displacements and internal force increments

Ki
j∆uij = ∆qij (3.19)

Starting from the original orthogonality constraint, and substituting relations 3.16 and 3.19,
one obtains the second orthogonality condition between the current displacement iteration
and internal force increment.

∆uij · rij = 0 (3.20)
(∆uij)TKi

jδuij = 0 (3.21)
∆qij · δuij = 0 (3.22)

Like the ORP, the dual orthogonality procedure also requires the additional checks to improve
robustness, which are listed in the previous section.

Kouhia [52] presented a stabilized version of the original ORP by relaxing the orthogonality
constraint near displacement limit points. First, the load increment factors, xij, used in the
original ORP “are modified by the procedure, and thus do not add up to the total increase
of load” [53]. Kouhia modified the load increment factors such that they would be additive
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within an incremental step. Using the new load factor, δλij, one obtains the orthogonality
condition

∆uij ·
(
rij−1 − δλijp

)
= 0 (3.23)

Furthermore, the orthogonality condition is relaxed

∆uij ·
(
rij−1 − δλijp

)
= τsign(uij−1 · p)

∥∥∥uij−1

∥∥∥ ‖p‖ δλij (3.24)

where τ is a dimensionless non-negative stabilization parameter that can be related to the
current stiffness parameter proposed by Bergan et. al [16], hence τ should be large at dis-
placement limit points and small at load limit points. The norms in Equation 3.24 should
be scaled with positive definite diagonal matrices to make the quantities dimensionally ho-
mogeneous. The following definition is used for the inner product

cos(a,b) = a · b
‖a‖ ‖b‖

(3.25)

Equation 3.24 is solved for the load factor

δλij =
(∆uij)T (rij−1)

sign((uij−1)Tp)
∥∥∥uij−1

∥∥∥ ‖p‖ (
∣∣∣cos(∆uij,p)

∣∣∣+ τ)

Kouhia demonstrated the improvement of the stabilized version over the original ORP
through numerical examples.

3.2 Formulation into N+1 dimensional space

The N + 1 dimensional space unifies multiple nonlinear solution schemes through the load
increment factor, Dlij. However, the load increment factor, xij, used in ORP is not used in the
same context. In the ORP theory the load increment factors are calculated at each iteration
and are not dependent on any previous load increment factor. In the N+1 dimensional space
each load increment factor is dependent on the previous, similarly to the modification made
by Kouhia, i.e.

∆λij = ∆λij−1 + δλij (3.26)

Figure 3.3 shows the dependence of Dlij on previous iterations, while xij is independent at
each iteration.

To unify the ORP into the N + 1 dimension space, the load factor, ∆λij, must be included
in the constraint equation. From Figure 3.3 the equivalence between the load factors can be
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expressed as
pi−1 + ξij∆p i = λi−1p + ∆λij−1p + δλijp (3.27)

Then this is inserted into Equation 3.5, and the residual becomes

rij = (λi−1 + ∆λij−1 + δλij)p− q(ui−1 + ∆uij) (3.28)

Finally, one can solve for the load factor, δλij, to obtain

δλij =

[
q(ui−1 + ∆uij)

]
·∆uij

(p ·∆uij)
− (λi−1 + ∆λi−1

j ) (3.29)

Rearranging terms, Equation 3.29 can be written in the form of the N +1 dimensional space
constraint, Equation 2.13,

[
q(ui−1 + ∆uij)

]
· δuij − p ·∆uijδλ

i
j = λi−1 + ∆λi−1

j −
[
q(ui−1 + ∆uij)

]
·∆ui−1

j (3.30)
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Thus, the constraint parameters are

aij =

 0
q(ui−1 + ∆uij)

for j = 1
for j ≥ 2

(3.31)

bij =

 1
−p ·∆uij

for j = 1
for j ≥ 2

(3.32)

cij =

 δλ

λi−1 + ∆λi−1
j −

[
q(ui−1 + ∆uij)

]
·∆ui−1

j

for j = 1
for j ≥ 2

(3.33)

where δλ is the prescribed initial load parameter. A flowchart of the steps to compute the
ORP load factor in the context of the unified schemes is shown in Figure 3.4. After the
load factor is calculated, the function computes the displacement increment to be used in
the next calculation of the load factor. The maximum displacement increment is calculated
at the first iteration of the first step using the initial load parameter and an initial scale
factor, β, both prescribed by the user. The load parameter and displacement increments are
then scaled by a ratio of the magnitude of the new displacement increment to the maximum
displacement increment.
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Chapter 4

Computational implementation

The unified approach to nonlinear solution schemes for the finite element method lends it-
self well to an object-oriented implementation. This is due in part to the fact that the
incremental-iterative process is generalized in such a way that many nonlinear solution
schemes can be formulated into the N+1 dimensional space. The purpose of this Chap-
ter is to outline the computational implementation of the unified schemes and demonstrate
its usability in solving nonlinear finite element problems.

4.1 Object-oriented programming

Object oriented programming for the finite element method was originally introduced to
overcome limitations of conventional finite element analysis software [41]. Two series of
articles by Zimmermann and co-authors discuss the concepts of object oriented programming
and the implementation of a finite element code in object-oriented programming languages
[101, 35, 34, 102, 37, 38, 39]. Mackie [61] demonstrated the benefits and advantages of
object oriented programming for the finite element method, with emphasis on inheritance
and virtual methods. Scholz [86] presented a finite element program with vector and matrix
classes to represent and manipulate quantities symbolically. Donescu [33] generalized the idea
of object-oriented finite element codes for a large range of initial/boundary value problems,
rather than for specialized problems.

In more recent years object-oriented programming techniques have been used to improve the
data storage associated with finite element codes. Celes et al. [21] developed a topological
data structure, TopS, for efficient representation of finite element meshes. In fact, TopS was
further improved using parallel computing with an object-oriented framework [36]. Recently,
Heng [48] reviewed object-oriented programming over the past 15 years and introduced
a method for finite element programs using software design patterns to improve software
quality and reduce development time.

The present discussion of object-orient finite element programing is not meant to be a com-
prehensive review. For a more detailed discussion the reader is directed to the technical
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literature. In the remainder of this section the features of object-oriented programming that
are pertinent to the implementation of the unified schemes will be discussed [85].

Object

Objects consist of data and functions, which performs actions on the data. The object
encapsulates the data, called instance variables, and the functions in order to preserve each
from outside interference. The unified schemes were implemented such that three main
objects are utilized: a model, a linear solver and a nonlinear algorithm. The model object
contains variables to describe the model, such as the number of equations, and functions to
operate on the model, such as one to compute the internal force vector. Similarly, the linear
solver object contains all necessary functions to solve the linear system Ax = b. Finally,
the nonlinear algorithm object holds the parameters input by the user and a function to
compute the load factor.

Class

The class is the foundation of object-oriented programming. It defines a new data type
through functions that operate on its data. Objects are instances of classes, so a class is
essentially a plan describing how to build an object. The model, linear solver, and nonlinear
algorithm objects described in the previous section are instances of the model, linear solver,
and nonlinear algorithm classes, respectively. Each class contains the definitions of what the
object will be.

Functions

Functions are the building blocks of object-oriented programs. They are simply subroutines
that contain programming statements to perform tasks on data. The unified schemes are
built of a single executable function, called “main”, and several internal functions. The
“main” function collects the inputs from the user, then builds the model, linear solver,
and nonlinear algorithm objects from their respective class definitions, and finally calls
the “solver” function, which performs analysis. The nonlinear computations are performed
through the “solver” function, rather than the “main” function, which allows for a clean,
and easily readable code.

Inheritance

Inheritance is the process whereby a new object is derived from an existing one by acquiring
properties from the existing object. The new derived (child) class inherits data and functions
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Figure 4.1: Class hierarchy through inheritance

from its parent class. In this way, inheritance supports a hierarchical program design, as
shown in Figure 4.1. The unified schemes naturally feature a hierarchical design - the
nonlinear algorithm classes are children of a parent nonlinear algorithm class. Rather than
each nonlinear algorithm class defining its own number of equations, it simply refers to its
parent class, thus the number of equations only needs to be stored in one place. Conversely,
the function to compute the load factor must be implemented in each nonlinear algorithm
class because it is computed differently for each.

4.2 The NLS++

A simple, robust, and object-oriented (C++) computer program, called NLS++ (NonLinear
Solver), implements the nonlinear solution schemes discussed in previous Chapters. Through
the unified approach, the solvers share a common interface and only vary in the computation
of the load parameter, which is determined by each solver’s unique constraint Equation
[55]. This module is used to thoroughly test the solution schemes and characterize their
performance in capturing various nonlinearities. In this section, the structure and usage of
the NLS++ code are discussed.
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4.2.1 Class hierarchy

The NLS++ code is organized into three distinct components, each of which consists of a
family of classes: Model, Control, and Linear Solver. A separate application class creates
instances of these components to execute the nonlinear analysis.

Model class

All model classes inherit properties from the parent model class, whose purpose is to represent
the finite element model of the system to be solved. The primary function of the model class
is to compute and store information associated with the system, including the tangent matrix,
and internal and external load vectors. Because the model class stores the system tangent
matrix, it also stores information needed to solve the linear system (e.g. profile and sparsity
pattern).

Three element types currently supported in NLS++ are bar, two-dimensional beam and
three-dimensional beam elements. Rather than using structural elements, the user can also
define the nonlinear problem directly in terms of a nonlinear function, in which case the
function class would be used. New elements are easily added by creating a new child class
that inherits the instance variables and functions from the parent class. The benefit of the
object-oriented approach is evident here because inheritance and polymorphism are heavily
relied upon. Consider the following example: when the application class needs the tangent
matrix to solve Ku = f , it calls the tangent matrix function of the parent class. However, the
actual computation of the tangent matrix is done in the particular child class. The parent
class serves as the interface, and the application knows nothing of the child class. Therefore
a single application class can run any number of elements, provided they are children of
the parent model class. Figure 4.2 illustrates the model class hierarchy with the supported
elements as children. As shown in Figure 4.2, a function or new elements is easily represented
in NLS++ through the variables and functions inherited from the parent model class.

Linear solver class

The purpose of the linear solver class is simply to solve the linear system, i.e. Ku = f . Child
classes of the parent linear system class are different implementations of linear solvers and
include Crout and conjugate gradient solvers. For the purpose of this work, the Crout solver
was used as the primary linear solver for symmetric systems. One small non-symmetric
example is presented in Section 5.2; a simple 2 × 2 solver, in which the stiffness matrix is
inverted (tenable for 2× 2 systems), was utilized. Please refer to Section 6.1 for a discussion
on future improvements to handle general non-symmetric systems.
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Figure 4.3: Control class hierarchy

Control class

The parent control class is the engine of the NLS++ code, in the sense that it has the function
that traces the equilibrium path via the incremental-iterative procedure. Children of the
parent control class are the nonlinear solution schemes discussed in the previous sections,
as shown in Figure 4.3. The child classes have one function that is not implemented in
the parent class, called Lambda, which computes the load factor for that nonlinear scheme.
The incremental-iterative procedure is implemented in the parent control class and is shared
among all the nonlinear solution schemes. As shown in Figure 4.3, a new nonlinear solution
scheme is easily implemented, provided the constraint condition can be written in the form
of Equation 2.13.

The incremental-iterative procedure implemented in the parent control class is illustrated in
Figure 4.4. The flow chart represents the operations performed on the jth iteration of the
ith incremental step. The diamond-shaped boxes are conditional statements, and the shaded
elliptical box is the only part that changes for each algorithm.
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Figure 4.4: Incremental-iterative procedure of the unified scheme
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Table 4.1: Application class
1. Read input files
2. Create a new model
3. Initialize model
4. Create a new linear solver
5. Create a new control for nonlinear solver
6. Call solver function of control

4.2.2 Implementation into finite element analysis software

The object oriented nature of NLS++ makes it a good candidate for implementation into the
object oriented finite element analysis software, TopFEM (see section 6.1). The integration
will require a child of the existing analysis class in TopFEM be developed. Rather than
utilize the limited TopFEM nonlinear solver, it would instead call the solver functions of
NLS++. Therefore, the model would be represented by TopFEM, but the nonlinear solu-
tion computations would take place in NLS++. No modification to the original codes are
required, and only an additional class is needed for the two code to communicate. This is
the desirable solution because each code could still be run independently.

4.2.3 NLS++ usage

The simple class hierarchy of NLS++ was designed as such so that the code would be
executed by a simple application class, requiring minimal work from the end user. Essen-
tially, new instances of the three classes discussed in the previous section are created, the
incremental-iterative procedure is called, and the analysis is executed. Table 4.1 lists the
steps of the application class.

Data is passed into NLS++ via various input files: a model file and algorithm file. The
model file contains information about the finite element model including the element type
(i.e., bar or beam), finite element mesh (i.e. nodes, elements, connectivity), boundary condi-
tions, applied loads and displacements, and material properties. The algorithm file contains
information about the nonlinear solution scheme including type, initial control factor, maxi-
mum number of steps and iterations, convergence tolerance, and type of linear solver. Table
4.2 shows initial control factor required for each nonlinear solution scheme.

Additional inputs required for a few of the nonlinear solution schemes are given in table 4.3.
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Table 4.2: Nonlinear solution scheme inputs
Algorithm type Initial control factor

Load control method Load increment, ∆λ i

Displacement control method Displacement increment, ∆u i

Arc-length control method Arc-length increment, ∆S i

Work control method Work increment, ∆W i

Generalized displacement control method Load parameter, δλ1
1

Orthogonal residual procedure Iterative load increment, δλ

Table 4.3: Additional inputs for selected nonlinear solution schemes
Algorithm type Additional parameter 1 Additional parameter 2

Displacement control method Control degree of freedom Constant or variable displacement
Arc-length control method Constant or variable arc-length n/a

Orthogonal residual procedure Initial incremental scale factor, β n/a
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Chapter 5

Applications and examples

The ability of the solution schemes to capture nonlinear behavior is tested in this chapter
with five examples. The examples include two functions: one uni-dimensional and one multi-
dimensional, and three structural systems: the Von Mises Truss, 12 Bar Truss, and Lee
Frame. These examples were chosen because they feature a host of nonlinearities, including
load and displacement limit points and large fluctuations in stiffness. The structural systems
exhibit geometrically nonlinear behavior by means of very large displacements. It should be
noted that material nonlinearity is not explicitly explored in the following examples; please
refer to Section 6.1 for suggestions on examples solving material nonlinear problems with
NLS++.

Unless otherwise stated, all computation results were obtained with a maximum of 40 it-
erations per step and a convergence tolerance (see Figure 4.4) of 10−4 assigned to each
algorithm. In general, all algorithms used a standard, rather than modified, update to the
stiffness matrix.

5.1 Uni-dimensional function

The first example to test the nonlinear solution schemes is a single-degree-of-freedom prob-
lem. The function was used by Chen and Blandford [24] to test their work increment control
method. While the function is very simple to incorporate into NLS++, it features some
complex nonlinearities such as two load limit points and an infinite slope, thus making it a
good candidate to evaluate the nonlinear solution schemes.

The uni-dimensional function is given by

f(u) = −3sign(u)|u| 13 + 4u+ 1 (5.1)
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where the sign function is defined as

sign(x) =


−1 for x < 0
0 for x = 0
1 for x > 0

(5.2)

The internal load is simply given by Equation 5.1. Derivation of Equation 5.1 with respect
to the degree of freedom, u, gives the tangent stiffness.

df

du
= − 1
|u| 23

+ 4 (5.3)

From Equation 5.3, it is clear that load limit points (horizontal tangents) will occur at
u = ±1

8 , and that the slope will be infinite at u = 0. The exact solution is plotted in Figure
5.1.
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Figure 5.1: Exact solution to uni-dimensional function

5.1.1 Computational results

Each solution scheme was applied to the uni-dimensional function; the results are shown in
Figures 5.2-5.4. As expected, the load control method could not capture the full behavior
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at the load limit points. When the load factor reaches the first local maximum of 2, the
method continues to increase load, therefore snapping through the softening behavior shown
in Figure 5.1. Since the load can only increase with the load control method, only stiffening
behavior can be captured, as shown in Figure 5.2.

The remainder of the nonlinear solution schemes fully captured the behavior, as shown in
Figures 5.3 and 5.4. Again, this behavior is expected because all of the methods are capable
of capturing load limit points. It should be noted that methods that have difficulty near
displacement limit points (i.e. displacement control method and work control method) were
able to capture the full behavior of this example, because even though there is a vertical
tangent at u = 0, there is no snap-back.
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Figure 5.2: Solution to the uni-dimensional function example using the LCM
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Figure 5.3: Solution to the uni-dimensional function example using the DCM, WCM, GDCM, and
ORP (GDCM solution shown)
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Figure 5.4: Solution to the uni-dimensional function example using the ALCM

The parameters adopted in each algorithm and resulting behavior are given in Table 5.1. The
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spherical version of the arc-length method (i.e. η = 1) was employed in this example and all
subsequent examples. It should be noted that a fairly small control factor and large number
of steps were required for the arc-length control method. There is very small change in the
displacement corresponding to a very large change in the load near the vertical tangent.
Other methods that increment the load and displacement independently can recover the
curve between the maximum and minimum load with very few steps, as shown in Figure
5.3. However, the step size in the constant update arc-length control method is defined by
an arc of the same radius at every step, so the method cannot make large jumps in either
load or displacement in one step. Therefore, several steps at small increments are required,
as shown in Figure 5.4. The tolerance was also adjusted to 10−1 to allow for the largest
possible step size while still recovering the correct solution path.

Table 5.1: Summary of the uni-dimensional function example
Algorithm Max. steps Control factor Scale factor Converged/diverged

LCM 50 0.08 n/a Snaps through

DCM 100 0.02 n/a Fully converged

ALCM* 325 0.02 n/a Fully converged

WCM 95 0.001 n/a Fully converged

GDCM 60 0.1 n/a Fully converged

ORP 55 1.0 0.1 Fully converged

* Convergence tolerance = 10−1

5.2 Two-dimensional function

The next example to test the nonlinear solution schemes is a function of two variables, i.e.
u1 and u2. It features complex nonlinearities including load and displacement limit points
for both degrees of freedom.

The problem is given by a vector of external and internal forces [90], shown below

p =
 40

15

 (5.4)

q(u) =
 10u1 + 0.4u3

2 − 5u2
2

0.4u3
1 − 3u2

1 + 10u2

 (5.5)

Derivation of the internal force vector in Equation 5.5 with respect to the degrees of freedom,
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Figure 5.5: Solution to the two-dimensional function example using the LCM

u1 and u2, gives the components of the tangent stiffness matrix

Kij = ∂qi
∂uj

(5.6)

K(u) =
 10 1.2u2

2 − 10u2

1.2u2
1 − 6u1 10

 (5.7)

5.2.1 Computational results

The equilibrium curves traced by each of the nonlinear solution schemes are shown in Figures
5.5-5.11. The load control method snapped through at the first limit points on each curve
and diverged at the next load limit point encountered, as shown in Figure 5.5. The snap
through behavior is expected because the load continues to increase after the initial load
limit points, hence the solution scheme was able to converge to the next points. Next, a
displacement limit point occurs in the second degree of freedom, however since the load is
still increasing, the load control method captured this behavior. Divergence occurred at the
next load limit point in the second degree of freedom. Snap through behavior could not have
occurred because the load only decreases after this point.

Figures 5.6 and 5.7 show the equilibrium paths obtained using the displacement control
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method with the first and second degree of freedom as the control degree of freedom, re-
spectively. In both cases, the first load limit points are captured by the method, which is
expected because the displacement, not load, is incremented at each step. In general, the
displacement control method captures behavior up to a displacement limit point in the con-
trol degree of freedom. In Figure 5.6, the equilibrium path is traced until the displacement
limit point in the first degree of freedom is reached. Notice that the displacement limit point
in the second degree of freedom is captured. This is due to the fact that the displacement is
only incremented for the first degree of freedom. In Figure 5.7 however, the solution scheme
diverges much earlier at the displacement limit point of the second degree of freedom.
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Figure 5.6: Solution to the two-dimensional Function example using the DCM with u1 as the
control displacement

The variable displacement control method, discussed in Chapter 2, was also employed and
the results are shown in Figure 5.8. The entire equilibrium path was traced with the method
because the control degree of freedom changes automatically when a displacement limit point
is approaching in that degree of freedom. The control displacements and snap back locations
are listed in Table 5.2 and correspond to the labels in Figure 5.8. From steps 1-73 the control
displacement is u1, and a displacement limit points is encountered at step 58 in degree of
freedom u2 (Label 1 in 5.8). At step 74 the control displacement changes to u2, and snap
back is captured in degree of freedom u1 at step 158 (Label 2 in 5.8). The final change is
control degree of freedom occurs in step 217, after which point two snap back points are
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Figure 5.7: Solution to the two-dimensional function example using the DCM with u2 as the control
displacement

passed in degree of freedom u2 (Labels 3 and 4 in 5.8). These automatic changes in the
control degree of freedom allow the method to recover the entire solution path.
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Figure 5.8: Solution to the two-dimensional function example using the variable DCM

Table 5.2: Summary of the variable DCM for the two-dimensional function
Step Control displacement Snap back

1-73 u1 Step 58 in u2 (Label 1 in Figure 5.8)

74-216 u2 Step 158 in u1 (Label 2 in Figure 5.8)

217-445 u1 Step 266 in u2 (Label 3 in Figure 5.8)

Step 398 in u2 (Label 4 in Figure 5.8)

Figures 5.9 and 5.10 show the results using the work control method and orthogonal resid-
ual procedure, respectively. Both methods fail to capture the equilibrium curve beyond the
second set of load limit points. The work control method fails because the sign of the load
increment factor, δλij, oscillates at every iteration (j) until the maximum number of itera-
tions is reached. Similarly, the sign of the load increment factor in the orthogonal residual
procedure artificially changes, and the method begins tracing the previously converged solu-
tion curve. This behavior in the orthogonal residual procedure requires more investigation
into the computational implementation. Please refer to Chapter 6 for further discussion.

Finally, Figure 5.11 shows the full equilibrium path trace by both the arc-length control
method and the generalized displacement control method. Table 5.3 shows the parameters
used and behavior captured for this two degree of freedom example. Notice in the table that
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Figure 5.9: Solution to the two-dimensional function example using the WCM
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Figure 5.10: Solution to the two-dimensional function example using the ORP
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Figure 5.11: Solution to the two-dimensional function example using the ALCM and GDCM (
ALCM solution shown)

the number of steps used for the arc-length control method and the generalized displacement
control method are similar, but the control factor for the arc-length control method is five
times greater. Recall from Table 4.2 though that the control factors represent different
quantities for each scheme and cannot be directly compared. In the generalized displacement
control method the control factor is only used once at the first iteration of the first step,
and the load factor is adjusted by the algorithm for all subsequent steps and iterations. The
control factor in the arc-length control method, however, is used once at every step.
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Table 5.3: Summary of the two-dimensional function example
Algorithm Max. steps Control factor Scale factor Converged/diverged

LCM 100 0.04 n/a Diverged at step 54

DCMs,1 200 0.05 n/a Diverged at step 179

DCMs,2 200 0.02 n/a Diverged at step 156

DCMv,1 445 0.1 n/a Fully converged

DCMv,2 190 0.1 n/a Fully converged

ALCM 700 0.05 n/a Fully converged

WCM 300 0.01 n/a Diverged at step 202

GDCM 650 0.01 n/a Fully converged

ORP 100 0.1 1.0 Diverged at step 50
s Standard v Variable
1 Fixed control coordinate: u1

2 Fixed control coordinate: u2

5.3 Von Mises truss

The Von Mises Truss is a two-degree of freedom system consisting of two bar (truss) elements
loaded indirectly through a spring of stiffness C, as shown in Figure 5.12. It has been studied
by several authors, including Bergan [15], Bazant and Cedolin [12], and Yang and Sheih [97],
among others. Although very simple, this example can be used to demonstrate the ability
of the nonlinear solution algorithms to capture both load and displacement limit points, as
well as sudden changes of direction in the equilibrium paths.

2u

L A, E, L A, E,

P

C
2

1u
H

P

Figure 5.12: Von Mises truss schematic

The Von Mises Truss, shown in Figure 5.12 was assigned the following data (consistent units
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are assumed):

• Reference Load Vector:{1.0, 0.0}T

• EA = 1.0

• H = 5.0

• L = 10.0

A derivation of the finite element matrices (i.e. stiffness matrix and internal load vector)
using the data above is shown in Appendix A. The behavior of this structure depends
strongly on the stiffness of the spring, C, Figure 5.13. While snap-through behavior is
always present, snap-back behavior will only result if the spring stiffness is below the critical
value, Ccr = 0.030940 in this case (see Appendix A). In the examples in the next section C
was chosen to be 0.02 to obtain snap-back behavior, and 0.04 for no snap-back behavior.

u1

C = CCR

C < C
CR

C > CCR

P

Figure 5.13: Equilibrium paths for the Von Mises truss with varying spring stiffness, C

5.3.1 Computational results

Figures 5.14 through 5.19 show the nonlinear behavior captured by each of the solution
schemes. As expected, the load control method failed to trace the equilibrium path beyond
the load limit point, as shown in Figure 5.14.

The variable displacement control method captured the full equilibrium path with snap back
behavior when either of the degrees of freedom was chosen as the control, shown in Figure

59



0 0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0.05

0.06

Displacement

Lo
ad

 F
ac

to
r

 

 

DOF u1
DOF u2

Figure 5.14: Solution to the Von Mises truss example using the LCM

5.16. However, the standard displacement control could only trace the full equilibrium curve
when degree of freedom u2 was the control because there is no snap back in this degree of
freedom. When u1 was chosen as the control displacement, the method snaps through at the
displacement limit point and does capture the snap back behavior, as illustrated in Figure
5.15.

The arc-length control method, generalized displacement control method and orthogonal
residual procedure also successfully captured the full equilibrium path for the system with
snap-back behavior, shown in Figure 5.16.
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Figure 5.15: Solution to the Von Mises truss example with C = 0.02 using the DCM with u1 as
the control displacement
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Figure 5.16: Solution to the Von Mises truss example with C = 0.02 using the DCM with u2 as
the control displacement, variable DCM, ALCM, GDCM, and ORP (GDCM solution shown)
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Figure 5.17: Solution to the Von Mises truss example with C = 0.04 using the WCM

The work control method was only successful at capturing the full load-displacement curve
when no snap-back behavior is present, Figure 5.17. When the spring stiffness is chosen
such that snap-back behavior should be present (i.e. C = 0.02), the method fails at the
displacement limit point, Figure 5.18. This behavior is expected from the work control
method because the snap back occurs in the major forcing direction. The external load
vector contains only one load, and since snap back occurs in the loading direction, the
displacement increment in that direction is zero. The denominator of the load parameter in
Equation 2.44 becomes unbounded and the method diverges.

The orthogonal residual procedure captured the full equilibrium paths for both the snap-
back and no snap-back scenarios, however the parameters are quite different between the two
cases. A larger control factor, larger scale factor, and fewer steps could be used in the system
without snap-back behavior. In order for the orthogonal residual procedure to capture snap
back, the step size had to be smaller than the case with no snap back, as shown in Figures
5.20 and 5.19, respectively. Table 5.4 provides a summary of all parameters and the resulting
behavior of each algorithm.
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Figure 5.18: Solution to the Von Mises truss example with C = 0.02 using the WCM
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Figure 5.19: Solution to the Von Mises truss example with C = 0.04 using the ORP
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Figure 5.20: Solution to the Von Mises truss example with C = 0.02 using the ORP

Table 5.4: Summary of the Von Mises truss example
Algorithm C Max. steps Control factor Scale factor Converged/diverged

LCM 0.02 100 0.001 n/a Diverged at step 56

DCMs,1 0.02 100 0.1 n/a Snaps through

DCMs,2 0.02 100 0.1 n/a Fully converged

DCMv,1 0.02 100 0.3 n/a Fully converged

DCMv,2 0.02 80 0.1 n/a Fully converged

ALCM 0.02 100 0.17 n/a Fully converged

WCM 0.02 100 0.0002 n/a Diverged at step 41

WCM 0.04 50 0.0001 n/a Fully converged

GDCM 0.02 100 0.0025 n/a Fully converged

ORP 0.02 65 0.005 1 Fully converged

ORP 0.04 190 0.0025 0.5 Fully converged
s Standard v Variable
1 Fixed control coordinate: u1

2 Fixed control coordinate: u2
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5.4 Twelve bar truss

This example consists of a 12-bar truss structure as illustrated in Figure 5.21a. It has been
studied by Yang and Leu [94] and Krenk and Hededal [54], among others. This example
features highly nonlinear behavior: the load changes direction eight times and the structure
experiences several very large changes in stiffness through the load history.

The 12 Bar Truss, shown in Figure 5.21 was assigned the following data (constant units are
assumed):

• Reference Load Vector:{0.0, 0.75, 0.25}T

• EA = 1.0

The finite element matrices for the bar elements used in this problem are derived in Ap-
pendix A. For the present work, double symmetry has been considered and, therefore, the
deformations of the structure can be described by three displacement components (u1, u2,
and u3) as shown in Figure 5.21b. The relative dimensions are shown in Figure 5.21.

For a complete explanation of the expected behavior of this structure, the reader is referred
to Krenk and Hendal [54].

5.4.1 Computational results

The computational results are shown in Figures 5.22 through 5.25. All of the solution
schemes captured the full nonlinear behavior except the load control method and work
control method. As expected, the load control method failed at the first load limit point.
Similarly, the work control method failed near snap back points in the loading directions.
As shown in Figure 5.22, the method fails near snap back points in the u2 and u3 direction,
which are also loading directions. The arc-length control method, generalized displacement
control method, and the orthogonal residual procedure captured the full behavior shown in
Figure 5.23.
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1.3 Space Truss [7]

This example consists of a 12-bar truss structure as illustrated in Figure (16). It has been

studied by Yang and Leu [6] and Krenk and Hededal [7]. For the present work, double symmetry

has been considered and, therefore, the deformations of the structure can be described by three

displacement components (u1, u2, and u3) as shown in Figure (16b).
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Figure 5.21: 12 bar truss schematic
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Figure 5.22: Solution to the 12 bar truss example using the WCM
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Figure 5.23: Solution to the 12 bar truss example using the ALCM, GDCM and ORP (ALCM
solution shown)
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Figure 5.24: Displacement-displacement curves for the 12 bar truss

From the displacement-displacement curves shown in Figure 5.24, it is seen that no linear
combination of the displacement components increases monotonically, therefore a traditional
displacement control method could not capture the full behavior [54]. The variable dis-
placement control method, however, does capture the full equilibrium path when variable
displacement was employed, as shown in Figure 5.25. The method automatically changes
the control displacement when a displacement limit point is likely approaching. The control
displacements and snap back locations are listed in Table 5.5 and correspond to the labels
in Figure 5.25. From steps 12-25 the control displacement is u1, and no displacement limit
points are encountered. At step 26 the control displacement changes to u2, and snap back is
captured in degree of freedom u3 (label 2 in Figure 5.25c) and u1 (label 3 in Figure 5.25a).
Then again at step 63, the control displacement switches to u3 and snap back is captured
in degree of freedom u2 (label 4 in Figure 5.25b). These automatic changes in the control
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degree of freedom allow the method to recover the entire solution path.
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Figure 5.25: Solution to the 12 bar truss example using the variable DCM
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Table 5.5: Summary of the variable DCM for the 12 bar truss
Step Control displacement Snap back

1 u1 none

2-11 u2 Step 8 in u3 (Label 1 in 5.25c)

12-25 u1 none

26-62 u2 Step 30 in u3 (Label 2 in 5.25c)

Step 47 in u1 (Label 3 in 5.25a)

63-125 u3 Step 103 in u2 (Label 4 in 5.25b)

Step 137 in u1 (Label 5 in 5.25a)

Step 141 in u3 (Label 6 in 5.25c)

126-222 u2 Step 175 in u1 (Label 7 in 5.25a)

Step 209 in u3 (Label 8 in 5.25c)

Step 213 in u1 (Label 9 in 5.25a)

223-302 u3 Step 251 in u2 (Label 10 in 5.25b)

303-377 u2 Step 337 in u1 (Label 11 in 5.25a)

Step 372 in u3 (Label 12 in 5.25c)

378-429 u1 none

430-465 u2 Step 446 in u3 (Label 13 in 5.25c)

Table 5.6: Summary of the 12 bar truss example
Algorithm Max. steps Control factor Scale factor Converged/diverged

LCM 100 0.001 n/a Diverged at step 70

DCMv,1 465 0.01 n/a Fully converged

ALCM 165 0.05 n/a Fully converged

WCM 100 0.0002 n/a Diverged at step 52

GDCM 115 0.025 n/a Fully converged

ORP 650 0.0025 2 Fully converged
v Variable 1 Fixed control coordinate: u1
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5.5 Lee frame

The Lee frame is a well known example for evaluating nonlinear solvers, for which an ana-
lytical solution exists [57]. Schweizerhof and Wriggers [87] compared updated and spherical
plane path following schemes using the Lee frame discretized with beam elements. Parente
and Vaz [71] used this example discretized with quadratic isoparametric 8-node elements for
shape design sensitivity analysis for nonlinear structures.

Deformation of the structure is characterized by large rigid body displacements and rotations
resulting in instability. The behavior is highly nonlinear with two load limit points and snap-
back behavior (i.e. displacement limit point).

The Lee Frame, shown in Figure 5.26, was discretized with 10 beam elements, each with the
following properties (consistent units are assumed):

• EA = 4320

• GJ = 2160

• EI = 1440

The finite element matrices for the beam elements used in this problem are derived in Ap-
pendix A.

Px
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G I,

 A, E, 2u
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120

120

Figure 5.26: Lee frame schematic
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Figure 5.27: Solution to Lee frame example using the WCM

5.5.1 Computational results

The equilibrium paths for the Lee frame example are shown in Figures 5.27 to 5.29. The
results are also summarized in Table 5.7. The nonlinear solution schemes generally behaved
as expected and as they did in the previous examples. The load control method only captured
behavior up to the first load limit point. The work control method failed at the snap
back point in degree of freedom u2, which is also the loading direction, shown in Figure
5.27. The variable displacement control method, arc-length control method and generalized
displacement control method captured the full behavior shown in Figure 5.28.

The orthogonal residual procedure was not able to capture the entire solution path beyond
the snap back points. As shown in Figure5.29, the method diverges at the first displacement
limit point when the scale factor, β, is 0.01. The scale factor was adjusted to 0.02 and the
method traced more of the equilibrium path, but diverged at the second displacement limit
point, Figure 5.30. This suggests (1) the method is very sensitive to the scale factor input
by the user, and (2) the method has difficulty near displacement limit points. Please refer
to Section 6.1 for a detailed discussion of the implementation suggestions to improve these
issues.
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Figure 5.28: Solution to Lee Frame example using the variable DCM, ALCM, and GDCM (GDCM
solution shown)
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Figure 5.29: Solution to Lee frame example using the ORP with β = 0.01
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Figure 5.30: Solution to Lee frame example using the ORP with β = 0.02

Table 5.7: Summary of the Lee frame example
Algorithm Max. steps Control factor Scale factor Converged/diverged

LCM 100 0.05 n/a Diverged at step 40

DCMv,1 100 0.1 n/a Fully converged

ALCM 80 5 n/a Fully converged

WCM 300 0.004 n/a Diverged at step 180

GDCM 80 0.3 n/a Fully converged

ORP 23000 0.1 0.01 Diverged at step 9173

ORP 14000 0.1 0.02 Diverged at step 13676
v Variable 1Fixed control coordinate: u1
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Chapter 6

Conclusions and future work

Geometric and material nonlinearity are prevalent in computational mechanics, and algo-
rithms to capture these behaviors are critical to the analysis of such problems. The unified
library of solution schemes is capable of solving complex nonlinear problems, including func-
tions of multiple variables or structural systems comprised of bar or beam elements. Six
nonlinear solution schemes are unified into a single code by augmenting the system of N
unknowns and including one additional unknown, a load parameter δλ. An additional con-
straint equation is introduced for each algorithm, and the new system of (N + 1) unknowns
is solved by decomposing the unknown field (i.e. iterative displacement vector).

The implementation of NLS++ into an object-oriented framework is a natural approach
because the (N + 1) space formulation is generalized to include any number of algorithms.
The straight-forward implementation makes usage of NLS++ very easy, thus giving users the
ability to solve complex nonlinear problems quickly. The six algorithms were tested exten-
sively with five simple examples featuring very complex nonlinear behavior. The strengths
and weaknesses of the algorithms are evident from the results in Chapter 5. While most
algorithms behaved as expected, the testing gave rise to some needed implementation im-
provements, particularly for the orthogonal residual procedure, which is discussed in Section
6.1 below.

6.1 Suggestions for future work

The unified library of nonlinear solution schemes is a comprehensive set of algorithms suitable
for a range of nonlinear computational mechanics problems. Some improvements, however,
are necessary to increase the efficiency and functionality of each algorithm. Furthermore,
extensions of the current work will expand the capabilities of the library to an even larger
class of nonlinear problems.
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Improved implementation of the orthogonal residual procedure

The ORP required special attention to formulate into the (N + 1) dimensional space, which
may have resulted in some of the unexpected behavior. First, the ORP has problems near
displacement limit points. This problem was overcome in most of the examples in Chapter
5 by careful selection of the control factor and scale factor, however, divergence occurred at
displacement limit points in Section 5.5. Therefore, a very beneficial improvement to the
method would be automatic detection of displacement limit points. The current implemen-
tation of the ORP could be enhanced to include the relaxed orthogonality condition near
displacement limit points presented by Kouhia [52]. Another approach, similar to that used
in the variable displacement control method, is to enforce the orthogonality constraint only
on those degrees of freedom which are not likely to experience snap back at a given step.

Another problem associated with the ORP is seen in Section 5.2 where the method artificially
changes the sign of the load factor then bounces back on the curve and traces the previously
converged solution path. The second recommended improvement to the ORP is to insert a
condition to check if the method is capturing a previously converged solution path. Ritto-
Correa and Camotim[82] developed a method to guarantee that arc-length type methods do
not bounce back on previously converged solution paths. If the constraint equation of the
ORP could be reformulated into an arc-length type constraint, then this method may be
utilized.

Integration into finite element analysis software

Two structural elements were used to describe the structural systems studied in this work:
the bar and beam element, which are implemented in the software. In order to represent a
wider range of problem, NLS++ should be extended to support continuum finite elements
(i.e. T3, Q4, T6, Q8, etc.). Furthermore, the full potential of NLS++ to capture highly
nonlinear behavior can be achieved by integrating it into a general finite element analysis
package. The software, TopFEM, is an object oriented finite element analysis code that uti-
lizes TopS [21], a topological data structure for representing finite element meshes. Although
TopFEM can represent large scale problems and can be used for complex analysis including
topology optimization and dynamic fracture simulation, the present capability to capture
highly nonlinear behavior is minimal. Integration of NLS++ into TopFEM would therefore
greatly improve the capabilities of both object-oriented analysis codes.

Efficient linear solvers

The incremental-iterative procedure to solve nonlinear problems results in solving a linearized
system at each step. Therefore an efficient linear solver is always necessary, even in nonlinear
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analysis. The systems analyzed in this work were relatively small, so the efficiency of the
linear solver was not an issue. However, if NLS++ is used to solve large systems of equa-
tions, a faster and more sophisticated linear solver will be necessary. A future investigation
related to NLS++ is then to implement and test various linear system solvers. Linear solvers
for both symmetric and non-symmetric matrices should be tested. The question of whether
to use direct or iterative solvers should also be addressed. Direct solvers, such as Gaussian
elimination or LU decomposition, will produce the exact solution assuming exact arithmetic
is used and are applicable to any type of linear system (e.g. symmetry, positive definiteness,
etc. are not required), thereby making them a good candidate for NLS++. These methods,
however, are known to be computationally expensive, especially as the problem size increases
[47]. Conversely, iterative solvers attempt to solve the problem through successive approx-
imations beginning from an initial estimate. Optimization based iterative solvers seem to
be better suited for NLS++ than stationary iterative solvers, such as the Jacobi method
or Gauss-Seidel method, which have slow convergence rates. Iterative solvers, in general,
require less storage and fewer operations than direct solvers, making them more effective
for large systems. The conjugate gradient method for example, is very efficient for large
problems, however, it is only applicable to symmetric, positive-definite systems [47]. Other
optimization based solvers applicable to non-symmetric matrices, such as the bi-conjugate
gradient method or the generalized minimum residual method, may be explored for NLS++
in order to represent a larger class of problems. Given the variability of the linear solvers, the
current implementation of NLS++ would benefit from a library of linear solvers, in which
the user could select the most appropriate one for the problem at hand.

Additional nonlinear solvers

The unified library of nonlinear solvers and its object-oriented implementation easily supports
the addition of solution schemes. In addition to the six solvers examined in this work, the
strain control and strain ratio control algorithms are also implemented in the library. These
solvers are similar to the displacement control method discussed in this work, however,
instead of incrementing the displacements of one of the degrees of freedom, the strain or rate
of strain is incremented. Thorough testing of these schemes is necessary to evaluate their
effectiveness in capturing nonlinear behavior.

Furthermore, several versions of the arc-length method were discussed in Chapter 2, however
only the spherical version was tested in this work. A natural extension would therefore be
to implement the remaining versions of the arc-length method and evaluate the effectiveness
of each at capturing complex nonlinearity. Recommendations could then be made as to the
most powerful and efficient version for various type of behavior.
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6.2 Lessons learned

As a result of the computational tests performed in Chapter 5, the most effective algorithms
for capturing highly nonlinear behavior, in the present implementation, are the variable dis-
placement control method, arc-length method, and generalized displacement control method.
These methods successfully traced the full equilibrium paths of in each of the examples in
Chapter 5, and seem well suited for application to more complex systems. Of these three
methods, the generalized displacement control method was the most consistent, requiring
little variation in input parameter values from one example to the next. The (N + 1) dimen-
sional space formulation, variety of supported algorithms, and object-oriented design make
the NLS++ a powerful tool for solving nonlinear systems of equations.
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Appendix A

Nonlinear finite element formulation

One of two incremental formulations may be used to describe the elements of a nonlinear
problem: Total Lagrangian (TL) formulation and Updated Lagrangian (UL) formulation.
In the TL formulation all static and kinematic variables refer to the original undeformed
configuration, while in the UL formulation all variables refer to the last known deformed
configuration. Both formulations include nonlinear effects due to large displacements and
rotations (geometric nonlinearity) and can include large strain behavior if such nonlinearity is
modeled in the constitutive relationship (material nonlinearity) [29, 40]. The TL formulation
for geometric nonlinearity was used to develop the governing linearized equations for the
structural system examples in Chapter 5 (i.e. Von Mises Truss, 12 Bar Truss, Lee Frame).
The structural elements used in the Von Mises and 12 bar truss are prismatic bar elements
that resist longitudinal loads and can undergo large displacements and rotations. The Lee
Frame is comprised of beam elements that can resist longitudinal and transverse loads applied
between its supports as well as large rotations.

The focus of the appendix is the nonlinear finite element formulation of bar elements. First
the principle of virtual work is reviewed in Section A.1, followed by the derivation of the
finite element matrices for bar elements in section A.2. An additional approach for obtaining
the equilibrium equations of the Von Mises Truss and derivation of its critical spring stiffness
are presented in section A.3.

A.1 Principle of virtual work

The notation adopted in this study will first be reviewed [95, 9, 76]. Configurations are
denoted Ci, where i = 0, 1, 2. C0 refers to the original undeformed configuration, C1 refers
to the last known configuration, and C2 refers to the current (unknown) configuration, as
illustrated in Figure A.1. A left superscript denotes the configuration in which the quantity
occurs. A left subscript denotes the configuration in which the quantity is measured. So
i
jQ refers to the quantity Q that occurs in the Ci configuration, but is measured in the Cj
configuration. A quantity with no left superscript and only a left subscript refers to an
incremental quantity occurring between the C1 and C2 configurations.
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Figure A.1: C0, C1, and C2 configurations

The principle of virtual work is given by

δW =
ˆ

2V

(
2
2σij

)
δ
(

2
2eij

)
d 2V −

ˆ
2V

(
2
2bi
)
δ (ui) d 2V −

ˆ
2S

(
2
2ti
)
δ (ui) d 2S = 0 (A.1)

where σij is the Cauchy stress tensor, eij is the infinitesimal strain increment tensor, bi is the
body force vector (measured per unit volume), ti is the boundary traction vector (measured
per unit surface area), ui in the unknown displacement field, and δ is the Variational symbol
acting on δ.

In Equation A.1, all values are measured in the current configuration, C2. However Equa-
tion A.1 cannot be solved directly because the current configuration is unknown in nonlinear
analysis. To overcome this problem, the integrals in Equation A.1 will be transformed to
integrals over a configuration which is known. In the case of the Total Lagrangian formu-
lation the known configuration is the original undeformed configuration, C0. The following
identities will be used [9]

ˆ
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)
δ
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ˆ
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(
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)
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ˆ
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(
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)
δ (ui) d 0V (A.3)

ˆ
2S

(
2
2ti
)
δ (ui) d 2S =

ˆ
0S

(
2
0ti
)
δ (ui) d 0S (A.4)

where Sij is the Second Piola-Kirchhoff stress tensor and Eij is the Green-Lagrange strain
tensor.
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Plugging Equations A.2-A.4 into Equation A.1 gives
ˆ
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where

δ
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=
ˆ
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(
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2
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δ (ui) d 0S (A.7)

The virtual Green-Lagrange strain tensor in the C2 configuration is given by strain increment
in the the C1 configuration plus the incremental strain occurring between the C1 to C2

configurations, but measured in the C0 configuration. Notice that δ (1
0Eij) is zero because it

is not a function of the unknown displacements.

δ
(

2
0Eij

)
= δ

(
1
0Eij

)
+ δ (0εij) (A.8)

= δ (0εij) (A.9)
= δ (0eij) + δ (0ηij) (A.10)

where δ (0eij) and δ (0ηij) are the linear and nonlinear components of the Green-Lagrange
strain increment tensor.

Then equation A.6 becomes
ˆ

0V

(
2
0Sij

)
δ (0εij) d 0V − δ

(
2
0R
)

= 0 (A.11)

The components of the second Piola-Kirchhoff stress in the C2 configuration are the stress in
the C1 configuration plus the stress increment occurring between the C1 to C2 configurations,
but measured in the C0 configuration.
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(
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= 0 (A.13)

Examining the statement of the principle of virtual work for the equilibrium configuration,
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C1, δ (1
0R) is identified as
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Equation A.13 becomes
ˆ
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ˆ
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Now use the constitutive relation to replace 0Sij in terms of strains, that is 0Sij = (0Cijkl) (0εkl),
and assume displacement increments between configurations are small so δ (0εij) ≈ δ (0eij),
thereby linearizing the equation.

ˆ
0V

(0Cijkl) (0ekl) δ (0eij) d 0V +
ˆ

0V

(
1
0Sij

)
δ (0ηij) = δ

(
2
0R
)
− δ

(
1
0R
)

(A.17)

The above statement is the weak form of the finite element model based on the Total La-
grangian formulation, which can now be modified for different element types to determine
the finite element matrices. In the next section the weak form will be used to derive the
finite element matrices for the bar element.

A.2 Nonlinear finite element matrices for bar elements

Several simplifications of Equation A.17 may be made for bar elements. Only the axial
component of the stress and strain tensors need be considered, and the constitutive tensor,
Cijkl, reduces to E, the modulus of elasticity.
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(A.18)

The linear and nonlinear components of the strain reduce to

exx = ∂u

∂x
= ∆u

L
(A.19)
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 (A.20)
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where

∆u = ua − ub (A.21)
∆v = va − vb (A.22)
∆w = wa − wb (A.23)

The displacement vector consists of three degrees of freedom at each end, see Figure A.2

uT =
{
ua va wa ub vb wb

}

Similarly, the force vectors in the C1 and C2 configurations contain three forces at each end
(

1
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2
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}

More simplifications can be made because a bar element can only resist axial force. The
transverse shear forces vanish, that is Fya = Fza = Fyb = Fzb = 0 and the axial forces are
equal and opposite Fxa = −Fxb. Now each of the terms in Equation A.18 can be written
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Assembling equations and admitting the arbitrary nature of the virtual displacements δu,
the incremental finite element equation is

(Ke + Kg) u = 2
0f−1

0f (A.28)

where Ke is the elastic stiffness matrix and Kg is the geometric stiffness matrix, given below.

Ke = EA

L



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(A.29)

Kg =
1
0Fx
L



1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1


(A.30)

A.3 Equilibrium equations for the Von Mises truss

An alternative approach to derive the nonlinear finite element matrices (i.e. tangent stiffness
matrix and internal load vector) for the Von Mises Truss is the the principle of stationary
potential energy. Because the Von Mises Truss is a relatively simple structure, the equilib-
rium equations can be derived for the entire system directly. The total potential energy of a
system, Π, is comprised of the internal strain energy, U , and the potential due to externally
applied loads, V .

Π = U + V (A.31)

The principle is applicable to conservative systems, meaning that the work done by internal
and external forces are independent of the path taken between the undeformed and deformed
configurations. Furthermore, the load versus displacement relationship may be linear or
nonlinear. The principle of stationary potential energy states that “Among all admissible
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configurations of a conservative system, those that satisfy the equations of equilibrium make
the potential energy stationary with respect to small admissible variations of displacement.”
[26]
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Figure A.3: Reference and deformed configurations of Von Mises truss. The first degree of free-
dom, u1, is the displacement of the end of the spring. The second degree of freedom, u2, is the
displacement of the top node of the truss.

The strain energy stored in the system is the sum of the strain energies in the bars and in the
spring, moving from the undeformed (reference) configuration to the deformed configuration.
As shown in Figure A.3, the bars have length L in undeformed configuration and are deformed
to length L′ in the deformed configuration, while the spring experiences a change in length
given by u1 − u2. The strain energy is therefore

U = 2Ubar + Uspring (A.32)

where

Uspring = 1
2C(u1 − u2)2, Ubar = 1

2
EA

L
(L′ − L)2 (A.33)

Using the geometry of the system shown in Figure A.3, the strain energy stored in each bar
can be written

Ubar = 1
2
EA

L

[√
(H − u2)2 +B2 − L

]2
= 1

2
EA

L

[√
L2 − 2Hu2 + u2

2 − L
]2

(A.34)

Combining Equations A.32, A.33, and A.34, one obtains the total strain energy in the system

U = EA

L

[√
L2 − 2Hu2 + u2

2 − L
]2

+ 1
2C(u1 − u2)2 (A.35)
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The potential energy due to externally applied load, P , is given by

V = −Pu1 (A.36)

Inserting Equations A.35 and A.36 into Equation A.31, the total potential energy of the
system is

Π = EA

L

[√
L2 − 2Hu2 + u2

2 − L
]2

+ 1
2C(u1 − u2)2 − Pu1 (A.37)

The equations of equilibrium, and therefore the finite element matrices, will be derived by
applying the Principle of Stationary Potential Energy to the potential energy of the system
given in Equation A.37. The potential energy is stationary when small admissible variations
of displacement are zero, hence

∂Π
∂u

= 0 (A.38)

The equilibrium equations can then be written in general matrix form

Ku = q(u)= p (A.39)

where K is the tangent stiffness matrix, q(u) is the internal load vector, p is the external
load vector, and u is the displacement vector. The finite element matrices and vectors are
given by the following expressions

Kij = ∂U

∂ui∂uj
(A.40)

qi = ∂U

∂ui
(A.41)

pi = ∂V

∂ui
(A.42)

and the displacement vector is simply

u =

 u1

u2

 (A.43)

Using Equations A.40-A.42, the equations of equilibrium for the Von Mises Truss are:

 C −C

SYMM 2
(
EA
L

)(
1 + L(H2−L2)

(L2−2Hu2+u2
2)

3
2

)
+ C


 u1

u2

 =

 P

0

 (A.44)

87



Critical spring stiffness for the Von Mises truss

The stiffness of the spring in the Von Mises Truss dictates the overall behavior of the system.
Stiffness below a critical value result in snap back behavior, while value above do not. Snap
back begins when the tangent line to the solution curve is vertical. Using the equations of
equilibrium, ∂Π/∂u1 = 0 and ∂Π/∂u2 = 0, with the total potential energy in Equation A.37
gives

∂Π
∂u1

= C(u1 − u2)− P = 0 (A.45)

∂Π
∂u2

= 2EA
L

(u2 −H)
1− L√

L2 − 2Hu2 + u2
2

− C (u1 − u2) = 0 (A.46)

Combining equations A.45 and A.46 gives

P = 2EA
L

(u2 −H)
1− L√

L2 − 2Hu2 + u2
2

 (A.47)

Snap back occurs in the u1 component, which mathematically corresponds to ∂Π/∂u1 = 0.
Additionally the onset of snap back occurs at u1 = H and P = 0 (i.e. when the structure
reaches a plane configuration). First express P in terms of u1 using Equation A.45, then
differentiate with respect to P , i.e.

P = 2EA
L

(
u1 −

P

C
−H

)1− L√
L2 − 2H

(
u1 − P

C

)
+
(
u1 − P

C

)2

 (A.48)

1 = 2EA
L

(
∂u1

∂P
− 1
C

)1− L√
L2 − 2H

(
u1 − P

C

)
+
(
u1 − P

C

)2

+

2EA
L

(
u1 −

P

C
−H

)L
2

[
L2 − 2H

(
u1 −

P

C

)
+
(
u1 −

P

C

)2]− 3
2
 (A.49)

(
2H

(
1
C
− ∂u1

∂P

)
+ 2

(
u1 −

P

C

)(
∂u1

∂P
− 1
C

))

The critical case occurs when ∂u1/∂P = 0, u1 = H, and P = 0 ), which yields the following
expression for the Ccr

Ccr = 2EA
L

(
L√

L2 −H2
− 1

)
(A.50)

Finally, the values from Section 5.3 give the critical spring stiffness, Ccr = 0.03094.
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Appendix B

The NLS++ code and sample input
files

B.1 Implementation of NLS++ in C++

B.1.1 Main

1 // ---------------------------------------------------- //
2 // Main.cpp - Main program for testing the NLS library . //
3 // ---------------------------------------------------- //
4
5 // Include Statements
6 # include <stdio.h>
7 # include <stdlib .h>
8 # include <string .h>
9

10 // NLS library
11 # include <nls.h>
12 # include " modbeam2 .h"
13 # include " modbeam3 .h"
14 # include " modfunc .h"
15 # include " modfunc_mt .h"
16 # include "modst.h"
17 # include "utl.h"
18
19 // Main Program :
20 int main(int argc , char* argv []) {
21
22 /* Declare variables */
23 char sMod [80];
24 int iAlg;
25 int iLinSys ;
26 int iLinSysMaxIter ;
27 double iLinSysTol ;
28 cControl * pcCtrl ;
29 sControl sCtrl;
30 cModel * pcModel ;
31 cLinSys * pcLinSys ;
32
33 /* Check arguments */
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34 if (argc < 3) {
35 fprintf (stderr , "Usage :\n n1s model_file algorithm_file \n");
36 exit (-1);
37 }
38
39 /* Get arguments from argv */
40 char * pcModFileName = new char[ strlen (argv [1]) +1];
41 char * pcAlgFileName = new char[ strlen (argv [2]) +1];
42 strcpy ( pcModFileName ,argv [1]); // model file name
43 strcpy ( pcAlgFileName ,argv [2]); // algorithm file
44
45 /* Open model file */
46 FILE *fpi = fopen( pcModFileName , "r" );
47 if( !fpi ) {
48 printf ( "\n\ nModel file %s not found ...\n\n", pcModFileName );
49 exit( -1 );
50 }
51 read_string ( fpi , sMod );
52
53 /* Close model file */
54 fclose (fpi);
55
56 /* Create a new model */
57 if( strcmp (sMod , " function " ) == 0) {
58 pcModel = new cModelFunction ( pcModFileName );
59 } else if( strcmp (sMod , " function_mt " ) == 0) {
60 pcModel = new cModelFunction_MT ( pcModFileName );
61 } else if( strcmp (sMod , " space_truss ") == 0) {
62 printf ("\n\ ncreating a cModelSpaceTruss (%s)\n", pcModFileName );
63 pcModel = new cModelSpaceTruss ( pcModFileName );
64 } else if( strcmp ( sMod , " plane_frame " ) == 0 ) {
65 printf ("\n\ ncreating a cModelBeam2D ( %s )\n", pcModFileName );
66 pcModel = new cModelBeam2D ( pcModFileName );
67 } else if( strcmp ( sMod , " space_frame " ) == 0 ) {
68 printf ("\n\ ncreating a cModelBeam3D ( %s )\n", pcModFileName );
69 pcModel = new cModelBeam3D ( pcModFileName );
70 } else {
71 printf ( "\n\ nModel not available ...\n\n" );
72 exit( -1 ); }
73
74 /* Initialize model */
75 pcModel ->Init( );
76
77 /* Open algorithm file */
78 fpi = fopen( pcAlgFileName , "r" );
79 if( !fpi ) {
80 printf ( "\n\ nAlgoritm file %s not found ...\n\n", pcAlgFileName );
81 exit( -1 );
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82 }
83
84 /* Read the linear solver */
85 fscanf ( fpi , "%d", & iLinSys );
86 if( ( iLinSys == 1) || ( iLinSys == 2) )
87 fscanf ( fpi , "%d%lf", & iLinSysMaxIter , & iLinSysTol );
88
89 /* Create a new LinSys ( LinearSystems ) */
90 switch ( iLinSys ) {
91 case 0:
92 pcLinSys = new cCroutProfile ( );
93 break;
94 case 1:
95 pcLinSys = new cPCGProfile ( iLinSysMaxIter , iLinSysTol );
96 break;
97 default :
98 printf ( "\n\ nLinear solver not available ...\n\n" );
99 exit( -1 );

100 break;
101 }
102
103 /* Read algorithm type */
104 fscanf ( fpi , "%d%d%lf", &iAlg , &sCtrl.UpdateType , &sCtrl. CtrlFactor );
105 if( iAlg == 1 ) fscanf ( fpi , "%d%d", &sCtrl.CtrlEq , &sCtrl. CtrlType );
106 if( iAlg == 2 ) fscanf ( fpi , "%d", &sCtrl. CtrlType );
107 if( iAlg == 5 ) fscanf ( fpi , "%lf", &sCtrl. CtrlIniFactor );
108 if( iAlg == 6 ) fscanf ( fpi , "%lf", &sCtrl. CtrlIniFactor );
109 if( iAlg == 7 ) fscanf ( fpi , "%d%d", &sCtrl.CtrlEq , &sCtrl. CtrlType );
110 if( iAlg == 8 ) fscanf ( fpi , "%lf", &sCtrl. CtrlIniFactor );
111 fscanf (fpi ,"%d%d%lf",& sCtrl.NumMaxStep ,& sCtrl.NumMaxIte ,& sCtrl.Tol );
112
113
114 /* Close algorithm file */
115 fclose ( fpi );
116
117 /* Create new control */
118 switch ( iAlg ) {
119 case 0:
120 pcCtrl = new cNewtonRaphson ( pcModel , &sCtrl , pcLinSys );
121 break;
122 case 1:
123 pcCtrl = new cDisplacementControl ( pcModel , &sCtrl , pcLinSys );
124 break;
125 case 2:
126 pcCtrl = new cArcLengthControl ( pcModel , &sCtrl , pcLinSys );
127 break;
128 case 3:
129 pcCtrl = new cWorkControl ( pcModel , &sCtrl , pcLinSys );
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130 break;
131 case 4:
132 pcCtrl = new cGenDisplacementControl (pcModel , &sCtrl , pcLinSys );
133 break;
134 case 5:
135 pcCtrl = new cOrthResidualControl ( pcModel , &sCtrl , pcLinSys );
136 break;
137 case 6:
138 pcCtrl = new cStrainRatioControl ( pcModel , &sCtrl , pcLinSys );
139 break;
140 case 7:
141 pcCtrl = new cStrainControl ( pcModel , &sCtrl , pcLinSys );
142 break;
143 case 8:
144 pcCtrl = new cOldOrthResidualControl (pcModel , &sCtrl , pcLinSys );
145 break;
146 default :
147 printf ( "\n\ nAlgorithm not available ...\n\n" );
148 exit( -1 );
149 break;
150 }
151
152 /* Run */
153 pcCtrl -> Solver ( );
154
155 /* Free memory */
156 delete pcCtrl ;
157 delete pcModel ;
158 return 1;
159 }
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B.1.2 Model classes: headers and definitions

1 // ---------------------------------------------------- //
2 // Model .h - Model Class Header //
3 // ---------------------------------------------------- //
4 # ifndef _MODEL_H_
5 # define _MODEL_H_
6 # include <stdio.h>
7
8 class cLinSys ;
9

10 class cModel {
11 protected :
12 int _iNumEpsEq ;
13 int _iNumEq ;
14 int _iNumGra ;
15 FILE ** _afOut ;
16
17 public :
18 cModel ( void ) { };
19 virtual ~ cModel ( void );
20 int NumEpsEq ( void );
21 int NumEq ( void );
22 virtual int Profile ( int * );
23 virtual int SparsityPattern ( int ** );
24 virtual void Convergence ( double , double * );
25 virtual void Init ( void )= 0;
26 virtual void InternalVector ( double *, double * ) = 0;
27 virtual void Reference ( double * ) = 0;
28 virtual void TangentMatrix ( double *, cLinSys * ) = 0;
29 virtual void StrainVector ( double *, double * ) { }
30 virtual void DeltaStrainVector ( double *, double *, double * ){ }
31
32 protected :
33 void InitFile ( void );
34 };
35 #endif
36
37 // ---------------------------------------------------- //
38 // Model.cpp - Model Class Definition //
39 // ---------------------------------------------------- //
40 # include <stdio.h>
41 # include " mempack / mempack .h"
42 # include "model/model.h"
43
44 cModel :: ~ cModel ( void ) {
45 for( int i = 0; i < _iNumGra ; i++ ) fclose ( _afOut [i] );
46 MemFree ( _afOut );
47 _iNumEq = 0;
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48 }
49
50 int cModel :: NumEpsEq ( void ) {
51 return ( _iNumEpsEq );
52 }
53
54 int cModel :: NumEq ( void ) {
55 return ( _iNumEq );
56 }
57
58 int cModel :: Profile ( int * piProfile ) {
59 // Generate profile vector (full matrix )
60 if ( piProfile ==0) return ( 0 );
61 for( int i = 0; i < _iNumEq ; i++ ) piProfile [i] = 0;
62 return ( 1 );
63 }
64
65 int cModel :: SparsityPattern ( int ** piSparsity ) {
66 // Generate sparticity matrix (full matrix )
67 if ( piSparsity ==0) return ( 0 );
68 for( int i = 0; i < _iNumEq ; i++ ) {
69 for( int j = 0; j < _iNumEq ; j++ )
70 piSparsity [i][j] = 1;
71 }
72 return ( 1 );
73 }
74
75 void cModel :: Convergence ( double dFactor , double *pdSol ) {
76 for( int i = 0; i < _iNumGra ; i++ )
77 fprintf ( _afOut [i], "%f %f\n", pdSol[i], dFactor );
78 }
79
80 void cModel :: InitFile ( void ) {
81 _afOut = (FILE **) MemAlloc ( _iNumEq , sizeof (FILE *) );
82 for( int i = 0; i < _iNumEq ; i++ ) {
83 char fn [50];
84 sprintf ( fn , "nls%d.out", i );
85 _afOut [i] = fopen( fn , "w" );
86 fprintf ( _afOut [i], "%f %f\n", 0.0, 0.0 );
87 }
88 }
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1 // ---------------------------------------------------- //
2 // ModST.h - Space Truss Class Header //
3 // ---------------------------------------------------- //
4 # ifndef _MODST_H_
5 # define _MODST_H_
6
7 # include <nls.h>
8
9 class cLinSys ;

10
11 class cModelSpaceTruss : public cModel {
12
13 protected :
14 int _iNumNodes ; // Number of nodes
15 int _iNumDofsOfNodes ;
16 int _iNumElms ; // Number of elements
17 double ** _paCoord ; // List of coordinates (x, y and z)
18 double ** _paLoad ; // List of loads (px , py and pz)
19 int ** _paDof ; // List of degree of freedom (u, v and w)
20 int ** _paInc ; // List of incidences ( initial and final)
21 double ** _paProp ; // List of properties (EA , N0 and L0)
22 int ** _paGra ; // List of plots (node and direction )
23
24 public :
25 cModelSpaceTruss ( char * filename );
26 ~ cModelSpaceTruss ( void );
27 void Init ( void );
28 void Convergence ( double , double * );
29 void InternalVector ( double *, double * );
30 void Reference ( double * );
31 void TangentMatrix ( double *, cLinSys * );
32 void DeltaStrainVector ( double *, double *, double * );
33 void StrainVector ( double *, double * );
34
35 protected : double Ldef ( int , double * );
36
37 };
38 #endif
39
40 // ---------------------------------------------------- //
41 // ModST.cpp - Space Truss Class Definition //
42 // ---------------------------------------------------- //
43 # include <math.h>
44 # include <stdlib .h>
45 # include "modst.h"
46 # include "utl.h"
47
48 /* Constructor for space truss objects */
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49 cModelSpaceTruss :: cModelSpaceTruss ( char * filename )
50 : _iNumDofsOfNodes (3) , cModel ( ) {
51 int i, j;
52 int id;
53 int num_load , num_sup ;
54 char mod_type [80];
55 FILE *in = NULL;
56
57 // Read data file
58 in = fopen( filename , "r" );
59 if( !in ) {
60 printf ( "\n\n ### %s not defined !!! ###\n\n", filename );
61 exit( -1 );
62 }
63
64 read_string ( in , mod_type );
65 fscanf ( in , "%d", & _iNumNodes );
66 _paCoord = ( double **) MemAlloc ( _iNumNodes , sizeof ( double *) );
67 _paLoad = ( double **) MemAlloc ( _iNumNodes , sizeof ( double *) );
68 _paDof = (int **) MemAlloc ( _iNumNodes , sizeof (int *) );
69
70 for( i = 0; i < _iNumNodes ; i++ ) {
71 _paCoord [i] = ( double *) MemAlloc ( 3, sizeof ( double ) );
72 for( j = 0; j < 3; j++ )
73 fscanf ( in , "%lf", & _paCoord [i][j] );
74
75 _paLoad [i] = ( double *) MemAlloc ( 3, sizeof ( double ) );
76 _paDof [i] = (int *) MemAlloc ( 3, sizeof (int) );
77 for( j = 0; j < 3; j++ ) {
78 _paLoad [i][j] = 0.;
79 _paDof [i][j] = 0;
80 }
81 }
82
83 fscanf ( in , "%d", & num_sup );
84 for( i = 0; i < num_sup ; i++ ) {
85 fscanf ( in , "%d", &id );
86 for( j = 0; j < 3; j++ ) fscanf ( in , "%d", & _paDof [id][j] );
87 }
88
89 fscanf ( in , "%d", & num_load );
90 for( i = 0; i < num_load ; i++ ) {
91 fscanf ( in , "%d", &id );
92 for( j = 0; j < 3; j++ ) fscanf ( in , "%lf", & _paLoad [id][j] );
93 }
94
95 fscanf ( in , "%d", & _iNumElms );
96 _paInc = (int **) MemAlloc ( _iNumElms , sizeof (int *) );
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97 _paProp = ( double **) MemAlloc ( _iNumElms , sizeof ( double *) );
98
99 for( i = 0; i < _iNumElms ; i++ ) {

100 _paInc [i] = (int *) MemAlloc ( 2, sizeof (int) );
101 _paProp [i] = ( double *) MemAlloc ( 3, sizeof ( double ) );
102 for( j = 0; j < 2; j++ ) fscanf ( in , "%d", & _paInc [i][j] );
103 for( j = 0; j < 2; j++ ) fscanf ( in , "%lf", & _paProp [i][j] );
104 }
105
106 fscanf ( in , "%d", & _iNumGra );
107 _paGra = (int **) MemAlloc ( _iNumGra , sizeof (int *) );
108 for( i = 0; i < _iNumGra ; i++ ) {
109 _paGra [i] = (int *) MemAlloc ( 2, sizeof (int) );
110 for( j = 0; j < 2; j++ ) fscanf ( in , "%d", & _paGra [i][j] );
111 }
112
113 // Close data file
114 fclose ( in );
115
116 // Compute initial length of the bars
117 for( i = 0; i < _iNumElms ; i++ ) {
118 _paProp [i][2] = 0.;
119 for( j = 0; j < 3; j++ )
120 _paProp [i ][2]+= pow( _paCoord [ _paInc [i ][1]][ j]-
121 _paCoord [ _paInc [i ][0]][ j], 2.0 );
122 _paProp [i][2] = sqrt( _paProp [i][2] );
123 }
124
125 // Generate d.o.f.
126 _iNumEq = 0;
127 for( i = 0; i < _iNumNodes ; i++ )
128 for( j = 0; j < 3; j++ )
129 _paDof [i][j] = ( _paDof [i][j] == 0 ) ? _iNumEq ++ : -1;
130
131 // Define number of strain components
132 _iNumEpsEq = _iNumElms ;
133 }
134
135 /* Destructor for bar element objects */
136 cModelSpaceTruss :: ~ cModelSpaceTruss ( void ) {
137 int i;
138
139 // Free all memory
140 for( i = 0; i < _iNumNodes ; i++ ) {
141 MemFree ( _paCoord [i] );
142 MemFree ( _paLoad [i] );
143 MemFree ( _paDof [i] );
144 }
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145
146 MemFree ( _paCoord );
147 MemFree ( _paLoad );
148 MemFree ( _paDof );
149
150 for( i = 0; i < _iNumElms ; i++ ) {
151 MemFree ( _paInc [i] );
152 MemFree ( _paProp [i] );
153 }
154
155 MemFree ( _paInc );
156 MemFree ( _paProp );
157
158 for( i = 0; i < _iNumGra ; i++ )
159 MemFree ( _paGra [i] );
160
161 MemFree ( _paGra );
162 }
163
164 /* Initalize output file */
165 void cModelSpaceTruss :: Init ( void ) {
166
167 char fn [50];
168 char *dir [3] = { "u", "v", "w" };
169 _afOut = (FILE **) MemAlloc ( _iNumGra , sizeof (FILE *) );
170
171 for( int i = 0; i < _iNumGra ; i++ ) {
172 sprintf ( fn , "node%d%s.out", _paGra [i][0] , dir[ _paGra [i][1]] );
173 _afOut [i] = fopen( fn , "w" );
174 fprintf ( _afOut [i], "%f %f\n", 0.0, 0.0 );
175 }
176 }
177
178 /* Print convergence data */
179 void cModelSpaceTruss :: Convergence
180 ( double dFactor , double *pdSol ) {
181 for( int i = 0; i < _iNumGra ; i++ ) {
182 int dof = _paDof [ _paGra [i ][0]][ _paGra [i ][1]];
183 double u = (dof >= 0) ? pdSol[dof] : 0.0;
184 fprintf ( _afOut [i], "%f %f\n", u, dFactor );
185 }
186 }
187
188 /* Computes strain vetcor */
189 void cModelSpaceTruss :: StrainVector ( double *u, double *e ) {
190 for( int i = 0; i < _iNumElms ; i++ )
191 e[i] = (Ldef( i, u ) - _paProp [i][2]) / _paProp [i][2];
192 }
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193
194 /* Computes incremental strain vector */
195 void cModelSpaceTruss :: DeltaStrainVector
196 ( double *u, double *du , double *de ) {
197
198 int i, j, k;
199 int edof [6];
200 double cdef [2][3];
201 double duelm [2][3];
202
203 for( i = 0; i < _iNumElms ; i++ ) {
204 double ldef = Ldef( i, u );
205 for( j = 0; j < 2; j++ )
206 for( k = 0; k < 3; k++ ) {
207 edof [3*j+k] = _paDof [ _paInc [i][j]][k];
208 cdef[j][k] = _paCoord [ _paInc [i][j]][k];
209 duelm[j][k] = 0.0;
210 if( edof [3*j+k] >= 0 ) {
211 cdef[j][k] += u[edof [3*j+k]];
212 duelm[j][k] = du[edof [3*j+k]];
213 }
214 }
215 de[i] = 0.0;
216 for( j = 0; j < 3; j++ )
217 de[i] += (cdef [1][j] - cdef [0][j]) *
218 (duelm [1][j] - duelm [0][j]);
219 de[i] *= 1.0 / (ldef * _paProp [i][2]);
220 }
221 }
222
223 /* Computes internal force vector for a TL bar element */
224 void cModelSpaceTruss :: InternalVector
225 ( double *u, double *f ) {
226
227 int i, j, k;
228 int edof [6];
229 double fe [6];
230 double cdef [2][3];
231 MathVecZero ( _iNumEq , f );
232
233 for( i = 0; i < _iNumElms ; i++ ) {
234 double ldef = Ldef( i, u );
235 double n = _paProp [i][0] / _paProp [i][2] *
236 (ldef - _paProp [i][2]) + _paProp [i][1];
237 double coef = n / ldef;
238 for( j = 0; j < 2; j++ )
239 for( k = 0; k < 3; k++ ) {
240 edof [3*j+k] = _paDof [ _paInc [i][j]][k];
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241 cdef[j][k] = _paCoord [ _paInc [i][j]][k];
242 if( edof [3*j+k] >= 0 ) cdef[j][k] += u[edof [3*j+k]];
243 }
244 for( j = 0; j < 3; j++ ) {
245 fe[j] = - coef * (cdef [1][j] - cdef [0][j]);
246 fe[j+3] = coef * (cdef [1][j] - cdef [0][j]);
247 }
248 for( j = 0; j < 6; j++ )
249 if( edof[j] >= 0 ) f[edof[j]] += fe[j];
250 }
251 }
252
253 /* Computes reference vector for a bar element */
254 void cModelSpaceTruss :: Reference ( double * pdReference ) {
255 int i,j;
256 for( i = 0; i < _iNumNodes ; i++ )
257 for( j = 0; j < _iNumDofsOfNodes ; j++ )
258 if( _paDof [i][j] >= 0 )
259 pdReference [ _paDof [i][j]] = _paLoad [i][j];
260 }
261
262 /* Computes tangent stiffness matrix for a TL bar element */
263 void cModelSpaceTruss :: TangentMatrix
264 ( double *u, cLinSys *kt ) {
265
266 int i, j, k;
267 int edof [6];
268 double ke [6][6];
269 double cdef [2][3];
270
271 // initialize total matrix
272 kt ->Zero ();
273
274 for( i = 0; i < _iNumElms ; i++ ) {
275 // updated length of the element
276 double ldef = Ldef( i, u );
277 // stress in element (Hooke ’s Law)
278 double n = _paProp [i][0] / _paProp [i][2] *
279 (ldef - _paProp [i][2]) + _paProp [i][1];
280
281 // compute deformed length
282 for( j = 0; j < 2; j++ ) {
283 for( k = 0; k < 3; k++ ) {
284 edof [3*j+k] = _paDof [ _paInc [i][j]][k];
285 cdef[j][k] = _paCoord [ _paInc [i][j]][k];
286 if( edof [3*j+k] >= 0 )
287 cdef[j][k] += u[edof [3*j+k]];
288 }
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289 }
290
291 // element tangent matrix
292 for( j = 0; j < 3; j++ ) {
293 for( k = 0; k < 3; k++ ) {
294 double coef = ( _paProp [i][0] - _paProp [i][1]) /
295 (ldef * ldef * ldef) * (cdef [1][j] - cdef [0][j]) *
296 (cdef [1][k] - cdef [0][k]);
297
298 ke[j][k] = coef;
299 if( j == k ) ke[j][k] += n / ldef;
300
301 ke[j+3][k] = - coef;
302 if( j == k ) ke[j+3][k] -= n / ldef;
303
304 ke[j][k+3] = - coef;
305 if( j == k ) ke[j][k+3] -= n / ldef;
306
307 ke[j+3][k+3] = coef;
308 if( j == k ) ke[j+3][k+3] += n / ldef;
309 }
310 }
311
312 // add any new contribution to total tangent matrix
313 for( j = 0; j < 6; j++ ) {
314 if( edof[j] >= 0 ) {
315 for( k = 0; k < 6; k++ ) {
316 if( edof[k] >= 0 && edof[j] >= edof[k] )
317 kt ->AddA(edof[j],edof[k],ke[j][k]);
318 }
319 }
320 }
321 }
322 }
323
324 /* Computes deformed length of a bar element */
325 double cModelSpaceTruss :: Ldef ( int elm , double *u ) {
326 int i, j;
327 int edof [6];
328 double cdef [2][3];
329
330 for( i = 0; i < 2; i++ ) {
331 for( j = 0; j < 3; j++ ) {
332
333 // gets element dofs for this element
334 edof [3*i+j] = _paDof [ _paInc [elm ][i]][j];
335
336 // gets node locations for this element

101



337 cdef[i][j] = _paCoord [ _paInc [elm ][i]][j];
338
339 //if its a free dof then edof [3*i+j] != 0, add the
340 // previous displacement associated with that dof
341 if( edof [3*i+j] >= 0 ) cdef[i][j] += u[edof [3*i+j]];
342 }
343 }
344
345 double ldef = 0.0;
346 for( i = 0; i < 3; i++ )
347 ldef += pow( cdef [1][i] - cdef [0][i], 2.0 );
348
349 // returns new length of the element - deformed length
350 return ( sqrt( ldef ) );
351 }
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1 // ---------------------------------------------------- //
2 // Modfunc .h - Unidimensional Function Class Header //
3 // ---------------------------------------------------- //
4 # ifndef _MODFUNC_H_
5 # define _MODFUNC_H_
6
7 # include <nls.h>
8
9 class cLinSys ;

10
11 class cModelFunction : public cModel {
12
13 public :
14 cModelFunction ( char * filename );
15 ~ cModelFunction ( void );
16 void Init ( void );
17 void InternalVector ( double *, double * );
18 void Reference ( double * );
19 void TangentMatrix ( double *, cLinSys * );
20 };
21 #endif
22
23 // ------------------------------------------------------ //
24 // Modfunc .cpp - Unidimensional Function Class Definition //
25 // ------------------------------------------------------ //
26 # include <math.h>
27 # include " modfunc .h"
28
29 /* Constructor for unidimensional function object */
30 cModelFunction :: cModelFunction ( char * filename ) :
31 cModel ( ) {
32 _iNumEq = _iNumGra = 1;
33 }
34
35 /* Destructor for unidimensional function object */
36 cModelFunction :: ~ cModelFunction ( void ) { }
37
38 /* Initialize output file */
39 void cModelFunction :: Init ( void ) {
40 _afOut = (FILE **) MemAlloc ( _iNumEq , sizeof (FILE *) );
41 for( int i = 0; i < _iNumEq ; i++ ) {
42 char fn [50];
43 sprintf ( fn , " function_ %d.out", i );
44 _afOut [i] = fopen( fn , "w" );
45 fprintf ( _afOut [i], "%f %f\n", 0.0, 0.0 ); }
46 }
47
48 /* Compute internal force vector */
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49 void cModelFunction :: InternalVector ( double *u, double *f ) {
50 double x = u[0] - 1.0;
51 f[0] = (x < 0 ? 3 : -3) * pow( fabs(x), 1.0/3.0 ) + 4 * x + 1;
52 }
53
54 /* Compute reference load vector */
55 void cModelFunction :: Reference ( double *f ) {
56 f[0] = 1; // unit load
57 }
58
59 /* Compute tangent matrix ( derivative of internal force */
60 void cModelFunction :: TangentMatrix ( double *u, cLinSys *kt ) {
61 double x = u[0] - 1.0; // shift curve
62 double k = x == 0 ? -1e32 : -1 / pow( fabs(x), 2/3.0 ) + 4;
63 kt ->Zero (); // zero tangent matrix
64 kt ->AddA (0,0,k); // add component to total matrix
65 }
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1 // -------------------------------------------------------- //
2 // Modfunc_mt .h - Two - dimensional Function Class Header //
3 // -------------------------------------------------------- //
4 # include <nls.h>
5
6 class cLinSys ;
7
8 class cModelFunction_MT : public cModel {
9 public :

10 cModelFunction_MT ( char * filename );
11 ~ cModelFunction_MT ( void );
12
13 void Init ( void );
14 void InternalVector ( double *, double * );
15 void Reference ( double * );
16 void TangentMatrix ( double *, cLinSys * );
17 };
18
19 // -------------------------------------------------------- //
20 // Modfunc_mt .h - Two - dimensional Function Class Definition //
21 // -------------------------------------------------------- //
22 # include <math.h>
23 # include " modfunc_mt .h"
24
25 /* Constructor for two - dimensional function */
26 cModelFunction_MT :: cModelFunction_MT ( char * filename ) : cModel ( ) {
27 _iNumEq = _iNumGra = 2;
28 }
29 /* Destructor for two - dimensional function */
30 cModelFunction_MT :: ~ cModelFunction_MT ( void ) { }
31
32 /* Initialize output file */
33 void cModelFunction_MT :: Init ( void ) {
34 InitFile ( );
35 }
36
37 /* Compute internal load vector */
38 void cModelFunction_MT :: InternalVector ( double *u, double *f ) {
39 f[0] = 10.0 * u[0] + 0.4 * pow(u[1], 3) - 5.0 * pow(u[1], 2);
40 f[1] = 0.4 * pow(u[0], 3) - 3.0 * pow(u[0] ,2) + 10 * u[1];
41 }
42
43 /* Compute external load vector */
44 void cModelFunction_MT :: Reference ( double *f ) {
45 f[0] = 40.0;
46 f[1] = 15.0;
47 }
48
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49 /* Compute tangent stiffness matrix */
50 void cModelFunction_MT :: TangentMatrix ( double *u, cLinSys *kt ) {
51 double k11 = 10.0;
52 double k12 = 1.2 * u[1] * u[1] - 10.0 * u[1];
53 double k21 = 1.2 * u[0] * u[0] - 6.0 * u[0];
54 double k22 = 10.0;
55 kt ->FillA (0, 0, k11);
56 kt ->FillA (0, 1, k12);
57 kt ->FillA (1, 0, k21);
58 kt ->FillA (1, 1, k22);
59 }
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B.1.3 Linear system class: header and definition

1 // -------------------------------------------------------- //
2 // Crout .h - This header file contains the public data structure
3 // definitions for the crout linear system class.
4 // -------------------------------------------------------- //
5 # ifndef _CROUT_LINSYS_H_
6 # define _CROUT_LINSYS_H_
7 # include " linearsystem .h"
8
9 class cModel ;

10 // -----------------------------------------------------
11 // Crout Linear System class:
12
13 class cCroutProfile : public cLinSys {
14 protected :
15 int * _piProfile ;
16 double ** _paA;
17 int _isFactorized ;
18
19 public :
20 cCroutProfile ( void );
21 virtual ~ cCroutProfile ( void );
22 virtual void Init ( cModel * );
23 virtual void Zero ( void );
24 virtual void AddA (int , int , double );
25 virtual void FillA ( int , int , double );
26 virtual void Solve ( double *x );
27 virtual void Solve ( double *b, double *x );
28 virtual void Solve2x2NonSym ( double *b, double *x );
29 };
30 #endif
31
32 // -------------------------------------------------------- //
33 // Crout.cpp - Crout linear system class definition
34 // -------------------------------------------------------- //
35 # include " linsys /crout.h"
36 # include " mempack / mempack .h"
37 # include " mathpack / mathpack .h"
38 # include "model/model.h"
39 # include <math.h>
40 # include <linsys .h>
41
42 // Public functions :
43
44 cCroutProfile :: cCroutProfile ( )
45 : _piProfile (0) , _paA (0) , _isFactorized (0) { }
46
47 cCroutProfile :: ~ cCroutProfile ( void ) {
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48 if (_paA !=0) MemProfileFree ( _paA , _iNumEq , _piProfile );
49 if ( _piProfile !=0) MemFree ( _piProfile );
50 }
51
52 /* Initialize */
53 void cCroutProfile :: Init ( cModel * pcModel ) {
54 // Release previously allocated values
55 if (_paA !=0) MemProfileFree ( _paA , _iNumEq , _piProfile );
56 if ( _piProfile !=0) MemFree ( _piProfile );
57
58 // assign daat
59 _iNumEq = pcModel ->NumEq( );
60 _piProfile = (int *) MemAlloc ( _iNumEq , sizeof (int) );
61 pcModel -> Profile ( _piProfile );
62 _paA = MemProfileAlloc ( _iNumEq , _piProfile );
63 }
64
65 /* Zero matrix components */
66 void cCroutProfile :: Zero ( ) {
67 int i,j;
68 for(i=0;i< _iNumEq ;i++) {
69 for(j= _piProfile [i];j<=i;j++) {
70 _paA[i][j] = 0.;
71 }
72 }
73 _isFactorized = 0;
74 }
75
76 /* Adds component to stiffness matrix */
77 void cCroutProfile :: AddA ( int i, int j, double k ) {
78 if (i <= j) { // in upper triangle or on main diagonal
79 if (i >= _piProfile [j]) {
80 _paA[j][i] += k;
81 } else {
82 // element not defined ;
83 }
84 } else { // in lower triangle
85 if (j >= _piProfile [i]) {
86 _paA[i][j] += k;
87 } else {
88 // element not defined ;
89 }
90 }
91 _isFactorized = 0;
92 }
93
94 /* Inserts component in stiffness matrix */
95 void cCroutProfile :: FillA ( int i, int j, double k ) {
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96 _paA[i][j] = k;
97 _isFactorized = 0;
98 }
99

100 /* Solves Ax=b */
101 void cCroutProfile :: Solve ( double *_pdDx ) {
102 if( _isFactorized ) {
103 Crout_Profile ( 3, _paA , _pdDx , _iNumEq , _piProfile );
104 } else {
105 if (_pdDx ==0)
106 Crout_Profile ( 2, _paA , _pdDx , _iNumEq , _piProfile );
107 else
108 Crout_Profile ( 1, _paA , _pdDx , _iNumEq , _piProfile );
109 _isFactorized = 1;
110 }
111 }
112
113 /* Solves Ax=b */
114 void cCroutProfile :: Solve ( double *b, double *_pdDx ) {
115 // copy b to _pdDx , so now _pdDx = b
116 MathVecAssign ( _iNumEq , _pdDx , b );
117 Solve( _pdDx );
118 }
119
120 /* Solves 2x2 non symmetric system by inverting stiffness matrix */
121 void cCroutProfile :: Solve2x2NonSym ( double *b, double *_pdDx ) {
122 double x, y, det;
123 det = _paA [0][0] * _paA [1][1] - _paA [0][1] * _paA [1][0];
124
125 if ( abs ( det ) < 1.0e -15 ) {
126 b[0] = b[1] = 0.0;
127 } else {
128 x = ( b[0] * _paA [1][1] - b[1] * _paA [0][1] ) / det;
129 y = ( b[1] * _paA [0][0] - b[0] * _paA [1][0] ) / det;
130 _pdDx [0] = x; _
131 pdDx [1] = y;
132 }
133 }
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B.1.4 Nonlinear solution schemes classes: headers and definitions

1 // -------------------------------------------------------- //
2 // Ctrl.h - This header file contains the public data structure
3 // definitions for the control class.
4 // -------------------------------------------------------- //
5 # ifndef _CTRL_H_
6 # define _CTRL_H_
7
8 class cModel ; class cLinSys ;
9

10 typedef enum _updatetype {
11 STANDARD ,
12 MODIFIED
13 } eUpdate ;
14
15 typedef enum _ctrltype {
16 CONSTANT ,
17 VARIABLE
18 } eCtrlType ;
19
20 typedef struct _control {
21 int CtrlEq ;
22 double CtrlFactor ;
23 double CtrlIniFactor ;
24 eCtrlType CtrlType ;
25 int NumMaxIte ;
26 int NumMaxStep ;
27 double Tol;
28 eUpdate UpdateType ;
29 } sControl ;
30
31 // Control Class:
32 class cControl {
33 protected :
34 sControl _sControl ;
35 int _iConvFlag ;
36 int _iCurrIte ;
37 int _iCurrStep ;
38 cModel * _pcModel ;
39 int _iNumEq ;
40 cLinSys * _pcLinSys ;
41 double * _pdReference ;
42 double _dTotFactor ;
43
44 public :
45 cControl ( cModel *, sControl *, cLinSys * );
46 virtual ~ cControl ( void );
47 virtual void Solver ( void ) = 0;
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48 };
49 #endif
50
51 // -------------------------------------------------------- //
52 // Ctrl.cpp - Control class definition
53 // -------------------------------------------------------- //
54 # include "ctrl.h"
55 # include " mempack / mempack .h"
56 # include "model/model.h"
57 # include " linsys / linearsystem .h"
58
59 /* Constructor for control object */
60 cControl :: cControl ( cModel *pcModel , sControl *psControl , cLinSys * pcLinSys ) {
61 _pcModel = pcModel ;
62 _sControl = * psControl ;
63 _pcLinSys = pcLinSys ;
64 _iNumEq = pcModel ->NumEq( );
65 _pdReference = ( double *) MemAlloc ( _iNumEq , sizeof ( double ) );
66 pcModel -> Reference ( _pdReference ); _pcLinSys ->Init( pcModel );
67 }
68
69 /* Destructor for control object */
70 cControl :: ~ cControl ( void ) {
71 MemFree ( _pdReference );
72 }
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1 // -------------------------------------------------------- //
2 // UniSch .h - This header file contains the public data structure
3 // definitions for the control problem class.
4 // -------------------------------------------------------- //
5 # ifndef _UNISCH_H_
6 # define _UNISCH_H_
7 # include "ctrl/ctrl.h"
8
9 class cLinSys ;

10
11 class cUnifiedSchemes : public cControl {
12 protected :
13 // Incremental state vector due to reference vector
14 double * _pdDx1 ;
15 // Incremental state vector due to unbalance vector
16 double * _pdDx2 ;
17 // Incremental load factor vector
18 double _dLambda ;
19 // Euclidean norm of reference vector
20 double _dNormReference ;
21 // External contribution for unbalance vector
22 double *_pdUe;
23 // Internal contribution for unbalance vector
24 double *_pdUi;
25 // Total state variable vector - total displacement
26 double *_pdX;
27 // Total state variable vector - residual
28 double *_pdR;
29
30 public :
31 cUnifiedSchemes ( cModel *, sControl *, cLinSys * );
32 virtual ~ cUnifiedSchemes ( void );
33 void Solver ( void );
34
35 protected :
36 int CheckConvergence ( void );
37 virtual void Lambda ( void ) = 0;
38 };
39 #endif
40
41 // -------------------------------------------------------- //
42 // UniSch .cpp - This file contains base class routines
43 // which are common among a number of different control
44 // algorithm solution classes .
45 // -------------------------------------------------------- //
46 # include <math.h>
47 # include <stdlib .h>
48 # include <stdio.h>
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49 # include <time.h>
50 # include "ctrl/ unisch / unisch .h"
51 # include " mathpack / mathpack .h"
52 # include " mempack / mempack .h"
53 # include " linsys / linearsystem .h"
54 # include "model/model.h"
55 # define TIMING
56
57 /* Constructor for Unified Schemes object */
58 cUnifiedSchemes :: cUnifiedSchemes
59 ( cModel *pcModel , sControl *psControl , cLinSys * pcLinSys ) :
60 cControl ( pcModel , psControl , pcLinSys ) {
61 // allocate space
62 _pdDx1 = ( double *) MemAlloc ( _iNumEq , sizeof ( double ) );
63 _pdDx2 = ( double *) MemAlloc ( _iNumEq , sizeof ( double ) );
64 _pdUe = ( double *) MemAlloc ( _iNumEq , sizeof ( double ) );
65 _pdUi = ( double *) MemAlloc ( _iNumEq , sizeof ( double ) );
66 _pdR = ( double *) MemAlloc ( _iNumEq , sizeof ( double ) );
67 _pdX = ( double *) MemAlloc ( _iNumEq , sizeof ( double ) );
68 _dTotFactor = 0.0;
69 _dNormReference = MathVecNorm ( _iNumEq , _pdReference );
70 }
71
72 /* Destructor for Unified Schemes object */
73 cUnifiedSchemes :: ~ cUnifiedSchemes ( void ) {
74 // free memory
75 MemFree ( _pdDx1 );
76 MemFree ( _pdDx2 );
77 MemFree ( _pdUe );
78 MemFree ( _pdUi );
79 MemFree ( _pdR );
80 MemFree ( _pdX );
81 }
82
83 /* Solve nonlinear system */
84 void cUnifiedSchemes :: Solver ( void ) {
85
86 #ifdef TIMING
87 double tic = clock ();
88 #endif
89
90 int ite;
91
92 // initialize current step
93 _iCurrStep = 1;
94
95 // Outer Loop - Continues until max number of steps
96 //is reached or until solution diverges
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97 do {
98 // initialize current iteration and set convergence to false
99 _iConvFlag = 0;

100 _iCurrIte = 1;
101
102 // Inner loop - Continues until convergence achieved
103 //or max permitted iterations is exceeded
104 do {
105 // Compute tangent matrix if first iteration or
106 //if this is a standard update
107 //If this is modified then only compute tangent
108 // matrix on first iteration
109 if( _iCurrIte == 1 || _sControl . UpdateType == STANDARD ) {
110 // model computes tangent matrix
111 _pcModel -> TangentMatrix (_pdX , _pcLinSys );
112 // Linear system solves Ax=b
113 _pcLinSys ->Solve( _pdReference , _pdDx1 );
114 }
115
116 if( _iCurrIte == 1) {
117 // zero out _pdDx2
118 MathVecZero (_iNumEq , _pdDx2 );
119 } else {
120 _pcLinSys ->Solve( _pdR , _pdDx2 );
121 }
122
123 // compute lambda for current iteration , stores value in _dLambda
124 Lambda ( );
125
126 // update total load factor for this step (outer loop)
127 _dTotFactor += _dLambda ;
128
129 // compute _pdUe = _dLambda * _pdReference
130 // external load vector for this iteration
131 MathVecAdd1 ( _iNumEq , _pdUe , _dLambda , _pdReference );
132
133 // compute _pdX = _dLambda * _pdDx1 + _pdDx2
134 MathVecAdd2 ( _iNumEq , _pdX , _dLambda , _pdDx1 , _pdDx2 );
135
136 // sets up internal vector , gets stored in _pdUi
137 _pcModel -> InternalVector ( _pdX , _pdUi );
138 // calculate residual
139 } while( ! CheckConvergence ( ) && ++ _iCurrIte <= _sControl . NumMaxIte );
140
141 // print results of convergering or not
142 if( _iConvFlag ) {
143 _pcModel -> Convergence ( _dTotFactor , _pdX );
144 // printf ( "\n" );
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145 } else {
146 printf ( "\n\n\t ### Convergence not achieved (Step %d) !!! ###\n\n", _iCurrStep );
147 break;
148 }
149 // next step
150 } while( ++ _iCurrStep <= _sControl . NumMaxStep );
151
152 #ifdef TIMING
153 double toc = clock ();
154 printf (" Solution time =%f\n", (toc -tic)/ CLOCKS_PER_SEC );
155 #endif
156 }
157
158 /* Checks if iterative procedure has converged */
159 int cUnifiedSchemes :: CheckConvergence ( void ) {
160
161 // assign external load vector to residual , external load vector
162 //is all of the previous external loads plus the
163 // lambda * referenceLoad for this iteration
164 MathVecAssign ( _iNumEq , _pdR , _pdUe );
165
166 // right hand side of governing equation , ie K_(j -1)* deltaU_j = p_j - f_(j -1)
167 MathVecSub ( _iNumEq , _pdR , _pdUi );
168
169 double Error = MathVecNorm ( _iNumEq , _pdR );
170 Error /= _dNormReference ;
171
172 // check if error is less than tolerance
173 _iConvFlag = Error <= _sControl .Tol;
174
175 return ( _iConvFlag );
176 }
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B.1.4.1 Load factor functions

1 /* Load Control Method */
2 void cNewtonRaphson :: Lambda ( void ) {
3 _dLambda = _iCurrIte == 1 ? _sControl . CtrlFactor : 0.0;
4 }
5
6 /* Displacement Control Method ( including variable displacement ) */
7 void cDisplacementControl :: Lambda ( void ) {
8 int i;
9

10 if( _iCurrIte == 1 ) {
11 if( _iCurrStep != 1 && _sControl . CtrlType == VARIABLE ) {
12 for( i = 0; i < _iNumEq ; i++ ) {
13 _pdL[i] += fabs( _pdX[i] - _pdXPrv [i] );
14 _pdXPrv [i] = _pdX[i];
15 }
16
17 int EqMax = 0;
18
19 // implementation of Fujii et al 1992 for best control parameter
20 // find degree of freedom with the largest displacement
21 for( i = 1; i < _iNumEq ; i++ ) {
22 if( fabs( _pdDx1 [i] ) > fabs( _pdDx1 [EqMax] ) )
23 EqMax = i;
24 }
25
26 //if the control DOF is not the one with
27 // the max displacement , switch the control dof
28 // keep the sign of the max dof
29 if( EqMax != _iCtrlEq ) {
30 int Dir = ( _pdDx1 [EqMax] * _pdDx1 [ _iCtrlEq ] > 0 ? 1 : -1 );
31 _dCtrlFactor *= Dir * _pdL[EqMax] / _pdL[ _iCtrlEq ];
32 _iCtrlEq = EqMax;
33 }
34 }
35 _dLambda = _dCtrlFactor / _pdDx1 [ _iCtrlEq ];
36 } else {
37 _dLambda = - _pdDx2 [ _iCtrlEq ] / _pdDx1 [ _iCtrlEq ];
38 }
39 }
40
41 /* Arc - length method */
42 void cArcLengthControl :: Lambda ( void ) {
43
44 if( _iCurrIte == 1 ) {
45 MathVecAssign ( _iNumEq , _pdDx1_i_11 , _pdDx1_i1 );
46 _dLambda = sqrt( pow( _sControl .CtrlFactor , 2.0 ) /
47 (1.0 + MathVecDot ( _iNumEq , _pdDx1 , _pdDx1 )) );
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48 MathVecAssign ( _iNumEq , _pdDx1_i1 , _pdDx1 );
49
50 if( _iCurrStep != 1 )
51 if( MathVecDot ( _iNumEq , _pdDx1_i_11 , _pdDx1_i1 ) < 0 )
52 _iDir *= -1;
53
54 _dLambda *= _iDir;
55
56 if( _eCtrlType == VARIABLE ) {
57 _dSumLambda = _dLambda ;
58 MathVecAssign1 ( _iNumEq , _pdSumDx , _dLambda , _pdDx1 );
59 }
60 } else {
61 if( _eCtrlType == CONSTANT ) {
62 _dLambda = - MathVecDot ( _iNumEq , _pdDx1_i1 , _pdDx2 ) /
63 ( MathVecDot ( _iNumEq , _pdDx1_i1 , _pdDx1 ) + 1);
64 } else {
65 _dLambda = - MathVecDot ( _iNumEq , _pdSumDx , _pdDx2 ) /
66 ( MathVecDot ( _iNumEq , _pdSumDx , _pdDx1 ) + _dSumLambda );
67 _dSumLambda += _dLambda ;
68 MathVecAdd2 ( _iNumEq , _pdSumDx , _dLambda , _pdDx1 , _pdDx2 );
69 }
70 }
71 }
72
73 /* Work Control Method */
74 void cWorkControl :: Lambda ( void ) {
75 double Csp;
76 double sign;
77
78 if( _iCurrIte == 1 ) {
79 Csp = _sControl . CtrlFactor / MathVecDot ( _iNumEq , _pdReference , _pdDx1 );
80 _dLambda = sqrt( fabs( Csp ) );
81
82 if( Csp < 0.0 )
83 _dLambda *= -1;
84 } else {
85 _dLambda = - MathVecDot ( _iNumEq , _pdReference , _pdDx2 )
86 / MathVecDot ( _iNumEq , _pdReference , _pdDx1 );
87 }
88 }
89
90 /* Generalized Displacement Control Method */
91 void cGenDisplacementControl :: Lambda ( void ) {
92
93 if( _iCurrIte == 1 ) {
94 if( _iCurrStep == 1 ) {
95 MathVecZero ( _iNumEq , _pdSumDx );
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96
97 MathVecAssign ( _iNumEq , _pdDx1_i1 , _pdDx1 );
98 MathVecAssign ( _iNumEq , _pdDx1_i_11 , _pdDx1 );
99

100 _dN2_Dx1_11 = MathVecDot ( _iNumEq , _pdDx1 , _pdDx1 );
101
102 _dLambda = _sControl . CtrlFactor ;
103 } else {
104 MathVecAssign ( _iNumEq , _pdDx1_i_11 , _pdDx1_i1 );
105 MathVecAssign ( _iNumEq , _pdDx1_i1 , _pdDx1 );
106
107 double Gsp = _dN2_Dx1_11 /
108 MathVecDot ( _iNumEq , _pdDx1_i_11 , _pdDx1 );
109
110 _dLambda = sqrt( fabs( Gsp ) ) * _sControl . CtrlFactor ;
111
112 if( MathVecDot ( _iNumEq , _pdSumDx , _pdDx1 ) < 0 )
113 _dLambda *= -1;
114
115 MathVecZero ( _iNumEq , _pdSumDx );
116 }
117 } else {
118 _dLambda = - MathVecDot ( _iNumEq , _pdDx1_i_11 , _pdDx2 ) /
119 MathVecDot ( _iNumEq , _pdDx1_i_11 , _pdDx1 );
120 }
121 MathVecAdd2 ( _iNumEq , _pdSumDx , _dLambda , _pdDx1 , _pdDx2 );
122 }
123
124 /* Orthogonal Residual Procedure */
125 void cOrthResidualControl :: Lambda ( void ) {
126 if( _iCurrIte == 1 ) {
127 _dLambda = _sControl . CtrlFactor ;
128
129 if( MathVecDot ( _iNumEq , _pdSumDx , _pdDx1 ) < 0 )
130 _dLambda *= -1;
131
132 MathVecAssign1 ( _iNumEq , _pdSumDx , _dLambda , _pdDx1 );
133
134 if( _iCurrStep == 1 )
135 _dMaxDx = _sControl . CtrlIniFactor * MathVecNorm ( _iNumEq , _pdSumDx );
136 else {
137 _dCurrDx = MathVecNorm ( _iNumEq , _pdSumDx );
138 if( _dCurrDx > _dMaxDx ) {
139 _dLambda *= _dMaxDx / _dCurrDx ;
140 MathVecScale ( _iNumEq , _dMaxDx / _dCurrDx , _pdSumDx );
141 }
142 }
143 } else {
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144 _dLambda = MathVecDot ( _iNumEq , _pdUi , _pdSumDx ) /
145 MathVecDot ( _iNumEq , _pdReference , _pdSumDx ) - _dTotFactor ;
146
147 MathVecAssign2 ( _iNumEq , _pdDx , _dLambda , _pdDx1 , _pdDx2 );
148 _dCurrDx = MathVecNorm ( _iNumEq , _pdDx );
149 if( _dCurrDx > _dMaxDx ) {
150 _dLambda *= _dMaxDx / _dCurrDx ;
151 MathVecScale ( _iNumEq , _dMaxDx / _dCurrDx , _pdDx2 );
152 }
153 MathVecAdd2 ( _iNumEq , _pdSumDx , _dLambda , _pdDx1 , _pdDx2 );
154 }
155 }
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B.2 Sample input files

B.2.1 Model input file example: twelve bar truss

’space_truss ’ // Model type
4 // Number of nodes
0 0 0 // Node positions
-1 0.283 1
-1 1.697 1
0 1.697 0
4 // Number of boundary conditions
0 1 1 1 // Node number , d_x , d_y , d_z
1 1 0 0
2 1 1 0
3 1 1 1
2 // Number of loads
1 0 0 -0.75 // Node number , f_x , f_y , f_z
2 0 0 -0.25
4 // Number of elements
0 1 1 0 // node1 , node2 , EA , initial stress
1 2 0.5 0
0 2 1 0
2 3 0.5 0
3 // Number of displacement curves
1 1 //node , d.o.f
1 2
2 2

B.2.2 Algorithm input file examples

Linear solver Algorithm Update type
0: Crout solver 0: Load control 0: Standard

1: Displacement control 1: Modified
2: Arc-length control
3: Work control
4: Generalized displacement control
5 Orthogonal residual

B.2.2.1 Load control method

0 // linear solver
0 0 0.001 // algorithm , update type , initial control factor
100 40 0.0001 // max steps , max iterations , convergence tolerance
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B.2.2.2 Displacement control method

0 // linear solver
1 0 0.01 0 1 // algorithm , update type , initial control factor ,

// control d.o.f., constant (0) or variable (1)
465 40 0.0001 // max steps , max iterations , convergence tolerance

B.2.2.3 Arc-length control method

0 // linear solver
2 0 0.05 0 // algorithm , update type , initial control factor ,

// constant (0) or variable (1)
163 20 0.0001 // max steps , max iterations , convergence tolerance

B.2.2.4 Work control method

0 // linear solver
3 0 0.0002 // algorithm , update type , initial control factor
100 40 0.0001 // max steps , max iterations , convergence tolerance

B.2.2.5 Generalized displacement control method

0 // linear solver
4 0 0.025 // algorithm , update type , initial control factor
112 20 0.0001 // max steps , max iterations , convergence tolerance

B.2.2.6 Orthogonal residual procedure

0 // linear solver
5 0 0.0025 2 // algorithm , update type , initial control factor ,

// initial incremental scale factor
650 40 0.0001 // max steps , max iterations , convergence tolerance
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