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Abstract

This work explores the use of manufacturing-type constraints, in particular pattern gradation

and repetition, in the context of layout optimization. By placing constraints on the design

domain in terms of number and size of repeating patterns along any direction, the concep-

tual design for buildings is facilitated. To substantiate the potential future applications of

this work, examples within the context of high-rise building design are presented. Successful

development of such ideas will lead to practical engineering solutions, especially during the

building design process. Throughout this work, a continuous topology optimization formu-

lation is utilized with compliance as the objective function and constraints on the pattern

geometry. Examples are given to illustrate the ideas developed both in two-dimensional and

three-dimensional building configurations.
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Chapter 1

Introduction

Topology optimization is a relatively new and powerful tool in the field of structural me-

chanics [Rozvany, 2001]. Currently, its applications span from mechanical engineering to

aerospace engineering [Krog et al., 2004, Sigmund, 2000, Carbonari and Paulino, 2009,

Schramm et al., 2002]. The ideas presented in this thesis attempt to transition the technol-

ogy towards the area of structural engineering by exploring the patterns associated with the

conceptual design of the bracing systems of buildings. In this chapter, the background infor-

mation on topology optimization is discussed with a follow-up section on layout optimization

and its use of manufacturing constraints. Next, a review of pattern repetition is given and

then discussed in the context of the conceptual design of high-rise buildings to motivate a

new technique known as pattern gradation. Finally, the organization of this thesis is briefly

outlined.

1.1 Background on Topology Optimization

Several optimization techniques have been developed to reduce the expenses associated with

structural design by satisfying specific design criteria while using less material. For example,

size optimization adds or subtracts cross-sectional area from each member where appropriate

to satisfy such design criteria. In this method, the shape or connectivity of members may

not change, but they may be removed during the process. Size optimization is often used to

find the optimal thicknesses of plate elements. An alternative technique, shape optimization,

looks at the shape of the initial material layout in a design domain and morphs the shape

boundaries to obtain an optimal solution. In this case, the optimization can reshape the
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material inside the domain, but retains its topological properties such as number of holes

[Bendsoe and Sigmund, 2003, Haslinger and Makinen, 2003].

An optimization tool commonly used in the design industry is the use of genetic algo-

rithms, where principles from nature and natural selection can be used to identify the ideal

form for a function in a specific landscape (see Gerfen [August 2009]). Though this technique

works on a wide range of problems and does not require the use of potentially complicated

derivatives, it often requires more function evaluations and is not necessarily convergent,

even to local minima [Rozvany, 2008].

To overcome some of the limitations present in the above techniques, topology opti-

mization is introduced. Topology optimization is a mathematical, usually (but not always)

gradient-based design tool which determines the location in a design domain to place ma-

terial based on the loads and boundary conditions for a specific objective (i.e. a target

deflection, compliance, etc.). The feasible solutions can have any shape, size or connectivity.

In this technique, the finite element method (FEM) is applied by splitting a design domain

into several small pieces, known as finite elements. In a topology optimization solution, each

element is used to represent the conceptual design in the same fashion as a pixel of an image

by containing a density that is either solid (black) or void (white).

1.2 Layout Optimization Issues

The spatial arrangement of material, often known in the literature as the layout problem,

is of key importance for the design and usability of many engineering products [Cagan

et al., 2002]. Specifically, in building design, the manner in which material is distributed is

significant for engineers to develop a lateral bracing system or create a conceptual design for

structural members.

While topology optimization is a very powerful tool for design, often the resulting topolo-

gies produced consist of complex geometries and poor material layouts which are of little

value to real-world problems due to expense and ease of manufacturing. An example of a
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typical topology optimization result without manufacturing constraints is given in Figure

1.1. Therefore, in order to make the results more significant from an engineering perspec-

tive, several constraints can and should be imposed (see Figure 1.1(c) with symmetry and

pattern gradation constraints). For example, Guest et al. [2004] proposed a method to limit

the minimum member size through a fixed-length scale which was also extended to an in-

tegrated scheme which includes both maximum and minimum member control concurrently

by means of a penalization factor aimed at providing more control on member sizes Guest

[2009]. These methods project the neighboring design variables onto the element density,

which also eliminates numerical instabilities such as checkerboarding (patches of alternating

black and white material) or mesh dependence (different solutions for different levels of mesh

refinement). Similarly, Almeida et al. [2009] developed a method to control the minimum

hole size by proposing an inverse projection scheme. The work by Le [2006] implements

a minimum length scale to eliminate undesirable patterns in the topological design space

by introducing additional layers of design variables. By adapting and applying these tech-

nologies for this work, structural engineers can extend topology optimization to design the

structural systems of buildings by looking at the constraints on the size and shape of the

available materials. Moreover, the minimum member size control has been included in this

work to achieve meaningful results.

Alternatively, several sensitivity and density filters have been developed as manufacturing

constraints as well. Bourdin [2001] proposed a filtering technique by regularizing the density

field through the use of a convolution operator to replace the point-wise element densities.

Borrvall and Petersson [2001] also implemented a different density filter through regularized

density control. Then, Wang and Wang [2005] developed a bilateral filtering technique to

perform checkerboard-free, mesh dependent, edge preserving topology optimization. Simi-

larly, work on sensitivity filters has been done by Sigmund [1997, 2001]. For a discussion on

such techniques, the reader may refer to the review paper by Sigmund and Petersson [1998].

Later, Sigmund [2007] proposed density filters using the idea of morphology-based black

and white filters to alleviate gray regions between solid and void material which provided
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(a) (b) (c) (d)

Figure 1.1: Topology optimization design for cantilever: (a) design domain subject to lateral load, (b)
without consideration of manufacturing constraints, (c) with pattern gradation and symmetry constraints,
(d) proposed design based on interpretation of topology optimization result

control over the minimum member and hole sizes as an additional feature. An alterna-

tive to the filtering techniques is the perimeter-control studied by Ambrosio and Buttazzo

[1993] and Haber et al. [1996]. The use of a constraint on perimeter-control alleviated the

mesh-dependence problem (in addition to the checkerboarding instability as well).

Several other geometrical manufacturing constraints have been developed for application

to topology optimization, such as extrusion of a constant cross-section to produce three

dimensional structures [Ishii and Aomura, 2004, Zhou et al., 2002]. Moreover, Zuo et al.

[2006] added other constraints, including minimum hole size and symmetry to produce more

practical designs by incorporating the method of moving asymptotes (MMA) with wavelets.

Such techniques may be applicable and relevant for high-rise buildings and could later serve

as an extension to this work.
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1.3 Pattern Repetition and Gradation

Pattern repetition has been previously implemented in topology optimization for a variety

of problems. Almeida et al. [2010] developed manufacturing constraints, specifically pattern

repetition and symmetry, to functionally graded materials (FGMs) on both a global and

local scale. Huang and Xie [2008] used the bidirectional evolutionary structural optimization

(ESO) to come up with the optimal designs of periodic structures by splitting the design

domains into unit cells that are constrained to have the same material layouts. However, it

has been shown that often times ESO methods can produce nonoptimal solutions [Zhou and

Rozvany, 2001].

Other work has been done using periodicity, or pattern repetition, for the design of mi-

crostructures. Paulino et al. [2009] developed a material design method which combines

topology optimization with homogenization to design periodic functionally graded compos-

ites. In Qiu et al. [2009] the effects of 2D periodic repetition and cyclic-symmetry for

cellular structures were studied using super-elements and perimeter control. Also topology

optimization has been applied to periodic microstructures in electromagnetic material for

wave propagation [Nomura et al., 2009] and for lightweight cellular materials [Zhang and

Sun, 2006]. However, rather than looking at a small scale, this work proposes the application

of pattern repetition to a larger scale for the conceptual design of buildings. Additionally,

in modern architecture often times patterns are asymmetric to account for layout and space

considerations or aesthetic value.

Furthermore, the next logical step is to extend the concept of pattern repetition, or

periodic structures, by changing the size and shape of the patterns. In this work, this

concept is described as pattern gradation. By geometrically grading such repeating patterns

in a structure, or more specifically in a building, it is possible for structural engineers to

come up with a conceptual design for the optimal lateral bracing systems and/or the optimal

angles for the diagonal bracing to follow. Moreover, by optimizing the structural system,

the consumption of resources would be reduced. According to the manual for Leadership
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in Energy and Environmental Design (LEED R©) [U.S, 2005], buildings currently account for

one-third of our total energy, two-thirds of our electricity, and one-eighth of our water supply.

In addition, the current standard in the construction industry for sustainable design [U.S,

2005] acknowledges under the category “Innovation & design process” that a new building,

which shows a significant reduction in the use of materials would be awarded up to 4 points in

the rating system. By optimizing the amount of natural resources used, such green buildings

potentially may impact public health and the environment, reduce operating expenses and

create a sustainable community.

1.4 On Application of Manufacturing Constraints to Buildings

Manufacturing constraints in topology optimization are relevant and necessary to extend

the current solutions to the structural engineering industry. For instance, manufacturing

constraints can be imposed on the minimum and maximum member sizes for topology op-

timization designs in accordance with the available minimum and maximum sizes in the

American Institute of Steel Construction (AISC) specifications for steel shapes [Ame, 2005].

Within these shapes, a designer must check the limit states associated with each member.

Thus, a constraint on the allowable stress levels can be imposed as well.

With respect to the dynamic analysis of a structure, it may be valuable to target a

certain frequency by means of a period optimization. For example, typically the first period

for a building should be the longitudinal period as opposed to the torsional period since

the torsional period discomforts occupants the most. Moreover, some design codes (such as

the Chinese design codes Min [2003, 2002]) enforce that the ratio of the longitudinal and

torsional periods must be higher than a certain value. This situation introduces the necessity

for manufacturing constraints on the periods of a structure.

In the design phase of a building, for example, one may need to run a pipe through a

beam to integrate the structural system with the mechanical electrical and plumbing (MEP)

systems. A manufacturing constraint on a minimum or maximum hole size in a domain could
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be applied in this situation to create a conceptual design for the beam which incorporates

space for such a hole.

Furthermore in regards to the glass curtain wall of a high-rise building, custom cut glass

shapes typically result in very costly designs. A manufacturing constraint on the exterior

cladding will decrease the need for special shapes. Here, pattern repetition is imposed so

glass shapes can be cut in the same fashion and panels are repeated throughout the height

of the structure.

For the structural system of a concrete building, formwork is manufactured to pour each

component. With a manufacturing constraint on pattern repetition, the formwork can be

reused from floor to floor, increasing the speed with which the building can be constructed.

In the case of a steel building with pattern repetition, the same connections can be used

throughout the height of the building. By repeating the same connections, the cost can be

lowered and the quality control of such connections is increased.

The need for a manufacturing constraint on the geometric pattern gradation, or the

stretching and shrinking of patterns along the height of a building, becomes very clear when

by considering the structural members of a building. Under typical loading conditions, the

columns of a building will always be larger in size at its base and smaller towards the top. We

introduce the pattern gradation constraint as an effective means to smoothly transition the

design from one extreme to another. This concept can be further explored in the context of

bracing angles. For example, the lateral design at the top of a high-rise building is controlled

by shear loads and the optimal bracing angle is 45 degrees. However, buildings typically suffer

from overturning moments, due to wind loads, near the base. Here the bracing angle should

be much larger in the range of 65-70 degrees [Moon et al., 2007]. Again, the patterns from

the base to the top of the building will transition from having a 70 to 75 degree angle to a

45 degree angle.

In addition to transitioning, the pattern gradation can also be applicable in the context

of constraints on the height of a floor. For instances where a certain level in a building might

need to be taller to house the mechanical equipment, the gradation can be used to maintain
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the structural integrity and aesthetics while slightly adjusting the size and capacity of the

members.

Finally, we motivate this work to aid the conceptual design process of a structure by in-

troducing manufacturing constraints in the context of layout optimization, with an emphasis

placed on the pattern gradation constraint as an application for high-rise buildings.

1.5 Thesis Organization

This thesis is organized as follows: the background information of the topology optimization

is discussed in Chapter 2 and then this formulation is extended to include the effects of

pattern repetition and gradation for two methods in Chapter 3. Next, the computational

implementation in Matlab R© for the current work is described in Chapter 4 and some pseudo-

code is provided. Following in Chapter 5 are the numerical results obtained for both 2D and

3D problems, with some applications to high-rise building design. Finally, a summary and

conclusion are given with suggestions for the extension of this work in the future.
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Chapter 2

Background Information

In this chapter, the background information pertaining to the topology optimization formu-

lation and finite element (FE) framework is discussed, including the governing equations,

different approaches and methodologies used in this work. Additionally, the implementa-

tion aspects are included with a description of the multiresolution topology optimization

(MTOP) approach and its advantages for modeling large scale structures such as high-rise

buildings.

2.1 Topology Optimization Framework

Topology optimization consists of searching for the optimal layout of material in a given

design domain in terms of an objective function. Throughout this thesis, the aim is to

maximize the stiffness of the structure (i.e. building in most of the examples presented). The

minimum compliance problem can be stated in terms of the density, ρ, and the displacements,

u, as follows:

min
ρ,u

c(ρ,u) (2.1)

s.t. K(ρ)u = f∫
Ω

ρ dV ≤ Vs

ρ(x) ∈ [0, 1]∀x ∈ Ω

The compliance of the structure is denoted by c, K(ρ) represents the global stiffness matrix,

which depends on the material densities, while u and f are the vectors of nodal displace-
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ments and forces, respectively. The volume constraint, Vs, represents the maximum volume

permitted for the design of the structure. The design, or topology of the solution, is deter-

mined by the material density, ρ: a zero density value signifies a void whereas one represents

solid material.

It is well-known that the topology optimization problem presented here is ill-posed, or

lacks a solution in the continuum setting [Peterson and Sigmund, 1998, Kohn and Strang,

1986a,b,c]. Thus, by applying relaxation to allow continuous variation of density in the

range [ρmin, 1] rather than restricting each density to an integer value of 0 or 1 the existence

of a solution is guaranteed. Here, ρmin is a small parameter greater than zero specified to

avoid singularities of the global stiffness matrix, K(ρ).

For example, the Solid Isotropic Material with Penalization (SIMP) [Rovzany et al., 1992,

Zhou and Rovzany, 1991, Bendsoe, 1989, Bendsoe and Sigmund, 1999] model expresses the

stiffness for each element as a function of the density using the following well-known power-

law relationship:

E(x) = ρ(x)pE0 (2.2)

where E0 describes the Young’s modulus of the solid material and p is a penalization param-

eter with p ≥ 1. Here, the material properties are continuously dependent on the amount

of material at each point. By penalizing the densities, the stiffness for any ρ < 1 is small

compared to its contribution toward the volume, leading the density towards 0 or 1 rather

than remaining in the intermediate range. Moreover, the overall optimization is influenced

towards the desired solid-void design and the discrete nature of the design can be recovered.

2.2 Finite Elements for Topology Optimization

The element type used for the finite element analysis in this work is a standard bilinear

4-node quadrilateral (Q4) or 8-node brick (B8) which is computationally more efficient than

higher order elements. However, a common concern associated with the Q4 and B8 elements

are the appearance of checkerboarding, a numerical phenomenon of alternating regions of
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Figure 2.1: Example of “checkerboarding” phenomenon for Q4 elements in FE mesh for topology optimiza-
tion

solid and void material present in the topology optimization designs (see Figure 2.1). Since

the checkerboarding phenomenon overestimates the stiffness of a region or patch of elements,

these patches are numerically advantageous and tend to appear frequently in topology op-

timization. To overcome this problem, a higher order element, such as a Q8 or Q9 could be

employed for small penalization parameters with SIMP (see Jog and Haber [1996], Diaz and

Sigmund [1995]); however, there is a significant increase in the computational time due to

the higher number of degrees of freedom associated with these elements.

As an alternate solution for checkerboarding, additional manufacturing constraints could

also be applied such as a filter, where the density or sensitivity is computed as a weighted

average of the element and its closest neighbors. However, filters typically suffer from mesh

dependence, or the incidence of obtaining different solutions for different discretizations of

the FE mesh. A mesh-independent projection scheme with a fixed length scale can also be

imposed in this work where the Q4 element is used in combination with a projection method

in a similar manner to Guest et al. [2004] and Almeida et al. [2009].

For the pattern gradation two distinct formulations are used: the element-based approach

where material is constant throughout each finite element and design variables are located at

the element centroids or nodes (nodal design variable approach), and the CAMD approach,

where material is approximated by a continuous field. These approaches are described in

detail in what follows.
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2.2.1 Element-Based Approach

In the uniform element density formulation, each finite element contains one design variable,

ρe, which represents a constant material density throughout the element. The element

stiffness matrix can be expressed in the 2D parent domain as:

Ke =

∫
Ωe

BTCB dA =

∫ 1

−1

∫ 1

−1

BT (ρpeC
0)BJ dξdη (2.3)

where B is the strain-displacement matrix, C0 is the constitutive matrix of the solid material,

ξ and η are the natural coordinates, and J is the determinate of the Jacobian matrix.

Assuming a state of plane-stress, C0 is given in terms of the Young’s Modulus for solid

material, E0, and Poisson’s ratio, ν, as

C0 =
E0

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (2.4)

For the 3D parent domain, the equations are instead given as:

Ke =

∫
Ωe

BTCB dV =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BT (ρpeC
0)BJ dξdηdζ (2.5)

and

C0 =
E0

(1 + ν) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2
− ν 0 0

0 0 0 0 1
2
− ν 0

0 0 0 0 0 1
2
− ν


(2.6)
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In expression (2.3) or (2.5), the material density of each element can be collected out of the

integrand as follows:

Ke = ρpe

∫ 1

−1

∫ 1

−1

BTC0BJ dξdη = ρpeK
0
e (2.7)

or for 3D

Ke = ρpe

∫ 1

−1

∫ 1

−1

∫ 1

−1

BTC0BJ dξdηdζ = ρpeK
0
e (2.8)

where K0
e represents the stiffness matrix for a solid element.

For the element-based approach, the objective function is the compliance, c, which is

defined as

c = fTu (2.9)

This scalar function is discretized for the optimization as:

c =
∑
e

uTe (ρpeKe)ue (2.10)

where e denotes each element in the domain. Accordingly, the sensitivity of the compliance

can be computed with respect to each element as:

∂c

∂ρe
= −uTe

∂Ke

∂ρe
ue = −pρp−1

e uTeK
0
eue (2.11)

Similarly, the sensitivities of the volume constraint are computed as:

∂V

∂ρe
=

∫
Ωe

dV = V (Ωe) (2.12)

2.2.2 Continuous Approximation of Material Distribution

An alternative method to the element-based approach is the Continuous Approximation of

Material Distribution (CAMD) [Matsui and Terada, 2004, Rahmatalla and Swan, 2004]. This

method uses a continuous material density field over the entire domain in a similar fashion

to the displacement field for FEM (see Figure 2.2). Accordingly, the material density at
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: An illustration representing the different 2D/3D element types: (a),(b) uniform element densities
with design variables at the centroid, (c),(d) uniform element densities with design variables at the nodes,
(e),(f) element with continuous material density field (CAMD). Larger gray circles represent the design
variables while smaller white circles are the element densities
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a point x inside the finite element is computed through an interpolation scheme using the

shape functions N e
j , given by Matsui and Terada [2004] as:

ρ(x) =
m∑
j=1

N e
j (x)ρej (2.13)

where the nodal densities become the design variables. In the expression above, N e
j is the

shape function for node j of element e evaluated at the desired point, x, and ρej is the

corresponding density at node j for element e, and m is the number of nodes of the finite

element (i.e. m = 4 for a Q4 or m = 8 for a B8 element).

The compliance and sensitivity calculated in the previous section must now be modified

for the CAMD implementation. The sensitivities can be computed with respect to the nodal

densities as:

∂c

∂ρj
= −

∑
e∈Ωj

uTe
∂Ke

∂ρj
ue (2.14)

where Ωj is given as the domain of neighboring elements that share node j. Similar to the

element-based approach previously described, the element stiffness matrix can be defined as

Ke =

∫
Ωe

BTCB dA =

∫
Ωe

BT (ρpC0)B dA =

∫ 1

−1

∫ 1

−1

(
m∑
i=1

N e
i (x)ρei

)p

BTC0BJ dξdη

(2.15)

or for 3D,

Ke =

∫
Ωe

BTCB dV =

∫
Ωe

BT (ρpC0)B dV =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
m∑
i=1

N e
i (x)ρei

)p

BTC0BJ dξdηdζ

(2.16)

Expressions (2.15) and (2.16) differ from (2.7) and (2.8) in the way the element densities

are treated according to Equation (2.13). To perform the numerical integration, Equation

(2.15), or (2.16), are rewritten using a Gaussian quadrature rule with Q points as

Ke =

Q∑
GP=1

wGP

(
m∑
i=1

N e
i (xGP )ρei

)p

BT (xGP )C0B(xGP )J (2.17)
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where xGP and wGP represent the location and weight respectively of each integration point.

Now, using (2.3) to compute the sensitivities for the optimization, the sensitivity of the

stiffness matrix with respect to the nodal densities is written as

∂Ke

∂ρej
=

∫ 1

−1

∫ 1

−1

pN e
j

(
m∑
i=1

N e
i ρ

e
i

)p−1

BTC0BJ dξdη (2.18)

or for 3D

∂Ke

∂ρej
=

∫ 1

−1

∫ 1

−1

∫ 1

−1

pN e
j

(
m∑
i=1

N e
i ρ

e
i

)p−1

BTC0BJ dξdηdζ (2.19)

Equations (2.18) and (2.19) can be expressed in terms of numerical integration as:

∂Ke

∂ρej
=

Q∑
GP=1

pN e
j (xGP )(ρGPe )p−1KGP

e (2.20)

where N e
j (xGP ) is the shape function for node j of element e located at the Gauss point GP ,

and KGP
e is the integrand computed at point GP . The volume associated with the CAMD

problem formulation is computed by integrating all the densities over the design domain

given by

V =

∫
Ω

ρdV =
∑
e

∫
Ωe

(
m∑
j=1

ρejN
e
j

)
dV =

∑
e

m∑
j=1

∫
Ωe

ρejN
e
j dV (2.21)

so the sensitivity of the volume is computed as

∂V

∂ρej
=
∑
e∈Ωj

∫
Ωe

N e
j dV (2.22)

where Ωj is the set of elements which share node j. Equation (2.21) is numerically evaluated

using a Gaussian quadrature rule as:

∂V

∂ρej
=
∑
e∈Ωj

m∑
GP=1

wGPN
e
j (xGP ) (2.23)

The CAMD element formulation is suggested here as an alternative to the element-based

approach to obtain a smoother gradation. The element-based approach uses piecewise con-
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stant functions to model the densities over the finite element, while the CAMD models the

densities using the shape functions so the densities vary within each element. Naturally,

the concept of graded structures using the generalized isoparametric formulation [Kim and

Paulino, 2002] can be applied since the densities are computed using the shape functions

for this approach. The CAMD formulation will be revisited in the following chapter and

discussed in more detail with an application to pattern gradation.

2.3 Projection Scheme

To avoid checkerboarding or other numerical instabilities (known as “islanding” and “lay-

ering”), a projection scheme using a fixed length scale is implemented. According to Guest

et al. [2004] and Almeida et al. [2009], the density of each element is computed by taking

a weighted average of the neighboring design variables which lie inside the region, Ωe. This

region, Ωe is selected as the space enclosed by a fixed physical radius, rmin in any direction

from the centroid of element e that is independent of the mesh. The density of element

e is then assigned by projecting a uniform density computed from the neighboring nodal

densities.

Even though various weighting functions can be used, this work explores a linear pro-

jection scheme (q = 1). For this case, the weighting function can be described by a conic

section centered about the element centroid, with unit height and base of 2rmin, where rmin

is the mesh-independent fixed length scale. Accordingly, the weights corresponding to this

scheme are given by

wej =


(

1− rej
rmin

)q
r ≤ rmin

0 r > rmin.

(2.24)

where wej is the weight for node j of element e, rej denotes the length from the element which

we are computing the density to the element centroid (or node) that lies in the domain of
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(a) (b)

Figure 2.3: Projection scheme for uniform elements with design variables at centroids (a) and nodes (b)

influence, Ωe. For each element the density is then taken as the weighted average

ρe =

∑
j∈Ωe

wejρ
e
j∑

j∈Ωe
wej

(2.25)

Since the element densities are computed as a function of the nodal design variables, the

sensitivities must be modified as

∂c

∂ρej
=

∂c

∂ρe

∂ρe
∂ρj

=
∂c

∂ρe

(
wej∑
j∈Ωe

wej

)
(2.26)

By using the projection method above, all of the members in the resulting design are in-

directly forced to be larger than the dimension rmin so the optimal solutions become more

reasonable to manufacture from an industrial standpoint.

If a constraint on the maximum member size were of interest, the fixed length scale rmax

[Guest, 2009] could be employed by adding a constraint to specify the minimum allowed

volume of voids in any particular test region. Moreover, the minimum and maximum member

size constraints may be coupled by imposing both constraints for the minimum and maximum

volume of voids to give designers more control over manufacturability and cost. As an

alternative approach, [Almeida et al., 2009] considers an inverse projection scheme to enforce

a minimum hole size in the final topology. For the inverse projection, the element densities
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(a) (b)

Figure 2.4: Illustration of two different weighting functions for the projection scheme: (a) linear, (b) inverse

are computed using the weights given by

wej =
(

rej
rmin

)q
, r ≤ rmin (2.27)

as displayed in Figure 2.3. Using this scheme, both the minimum hole size and the minimum

member size must be of at least radius rmin.

One more important point to consider is that for either of the direct or inverse projections

presented, the weighting function does not necessarily have to be linear as shown. Alternate

power-law weighting functions, such as parabolic, cubic, etc. can be generated by raising

the expressions given in Equations (2.24) and (2.27) to the power q > 1. Additionally, other

forms of weighting functions (sinusoidal, exponential, logarithmic, etc.) for the projection

scheme could be explored.

2.4 Multiresolution Topology Optimization Implementation

The work presented here includes the multiresolution topology optimization (MTOP) im-

plementation by Nguyen et al. [2010] where each finite element of the displacement mesh

contains several density elements. This implementation allows high-resolution designs with-

out increasing the computational cost. In MTOP, three distinct meshes are superimposed:

the displacement mesh for the finite element analysis, the density mesh to represent the

material distribution over the domain, and the design variable mesh to perform the opti-
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Displacement mesh Superimposed mesh Design variable mesh

displacement element densities design variables

Figure 2.5: Sample Q4/n9 MTOP element

Figure 2.6: Sample B8/n27 MTOP element

mization. The design variable mesh is distinct from the density mesh since the density of

each element is computed using the projection scheme described in Section 2.3 by projecting

a region of design variables onto each element density. Then, the resulting element densities

are used in the computation of the element stiffness matrices and sensitivities.

The current bottleneck in topology optimization problems is the finite element analysis

since a large number of progressively ill-conditioned linear systems must be solved for the

equilibrium equation, Ku = f . Thus, by placing several design variable and element densities

within each finite element of the coarse mesh (in which the displacements are computed),

the time spent on the finite element analysis (FEA) can be reduced (see Figure 2.5 for 2D

or Figure 2.6 for the 3D case). This technique accommodates large-scale problems and leads

to high-resolution results in a reasonable CPU time.
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A few modifications need to be made to account for this multilevel scheme. The stiffness

matrix used is computed in the same manner as in the previous cases where ρe refers to the

density at each displacement element for both the element-based and CAMD approaches.

However, for the element based approach since each displacement element contains several

densities, these densities must be averaged to obtain ρe. For the CAMD approach, the

density is computed using the density at the Gauss points and the interpolation in Equation

(2.13).

Similarly, the projection method is implemented with the same weighting functions as

described in Section 2.3. To obtain the high-quality designs, the design variable mesh should

be projected onto the density mesh where the densities are located either at the element

centroids or nodes. Additionally, when calculating the sensitivities, the chain rule must

be applied to account for the projection as stated previously in Equation (2.26) and the

sensitivity of the compliance for each element remains the same as Equation (2.11) where

Ke is computed using the coarse displacement mesh and ρe is the element density computed

from the projection of the fine mesh of design variables onto the fine density mesh.

Some issues arise concerning the integration of the stiffness matrix. Since MTOP elements

are used in this work, a study was conducted to determine whether or not the results would

benefit from using a higher-order integration. Because each element contains several density

elements which are used to compute the element stiffness matrix, it could be more accurate

to use more quadrature points. For an MTOP element with 25 design variables and densities

per displacement element, denoted as Q4/n25, it might be beneficial to use a 5 x 5 quadrature

rule as opposed to the usual 2 x 2 rule. The optimization of a half-MBB beam was carried out

as shown in Figure 2.7 with varied Gauss quadrature rules for the same resolution meshes.

The compliance values are given for the respective rules. Here, the FEA is performed on a

mesh of 60 x 20 elements with a 240 x 80 design variable mesh, or 16 design variables and

densities per Q4 displacement element (MTOP Q4/n16 elements) as shown in Figure 2.7(b).

The results presented here prove that 2 x 2 Gaussian integration is satisfactory, since the

computed sensitivities and objective functions are essentially the same (see Table 2.1).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Comparison of sensitivities for different orders of integration for MBB Beam discretized with
Q4/n16 elements: 60 x 20 element densities with 240 x 80 design variables. Order of Gauss quadrature: (a)
2, (b) 3, (c) 4, and (d) 5
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Table 2.1: Values of Compliance for Different Orders of Integration for CAMD MTOP Elements

Element Density Mesh Order of Quadrature Compliance

30 x 10 2 209.9062
30 x 10 3 209.8951
30 x 10 4 209.8948
30 x 10 5 209.8948

48 x 16 2 210.7241
48 x 16 3 210.7186
48 x 16 4 210.7186
48 x 16 5 210.7185

60 x 20 2 211.2914
60 x 20 3 211.2902
60 x 20 4 211.2902
60 x 20 5 211.2902

120 x 40 2 213.4746
120 x 40 3 213.4745
120 x 40 4 213.4745
120 x 40 5 213.4745

240 x 80 2 215.8331
240 x 80 3 215.8331
240 x 80 4 215.8331
240 x 80 5 215.8331

To validate the MTOP approach for this work, the effect of varying the levels of refinement

of the FEM mesh versus the design variable mesh were studied for a constant order of Gauss

quadrature. The results are presented in Table 2.2. As expected, as the finite element mesh

is refined for a constant design variable mesh, monotonic convergence is observed. Moreover,

this sensitivity analysis shows similar results for a refinement level of 16 design variables per

finite element as three finite elements per design variable.

Table 2.2: Values of Compliance for Different Levels of Refinement of FEM Meshes for CAMD MTOP
Elements

Design Variable Mesh Element Density Mesh Compliance

240 x 80 30 x 10 209.9062
240 x 80 48 x 16 210.7241
240 x 80 60 x 20 211.2914
240 x 80 120 x 40 213.4746
240 x 80 240 x 80 215.8331
240 x 80 480 x 160 218.2252
240 x 80 720 x 240 219.6310

23



(a) (b)

(c) (d)

Figure 2.8: Study of the influence of various finite element meshes on the sensitivities for a constant design
variable mesh (240 x 80) (a) 30 x 10 (b) 48 x 16 (c) 240 x 80 (d) 720 x 240
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Chapter 3

Pattern Gradation and Repetition

For the topology optimization formulations in Chapter 2, the concept of pattern gradation is

introduced as a new constraint in the context of layout optimization. In this work (presented

first in Stromberg et al. [2009]), a “pattern” is defined as the number of times a particular ge-

ometric feature repeats over a domain. Here, the ideas behind pattern repetition constraints

in topology optimization designs (sometimes known as “periodic structures”) are discussed

with an application to the geometric stretching and shrinking of these patterns over the do-

main (referred to as gradation). Furthermore, a mapping scheme is proposed to map design

variables from one pattern to the next throughout the domain for the element-based and

CAMD approaches as presented in Chapter 2. Following, the advantages and disadvantages

of each technique are briefly discussed.

The key idea behind the pattern gradation for the conceptual design of buildings presented

in this work is a mapping scheme between design variables. The mapping scheme proposed

in this section allows patterns of different sizes to be repeated along the height of a building

to satisfy the constraints discussed in Chapter 1 for shear and overturning moments. To

achieve such constraints for any set of graded patterns, the largest pattern is considered

first. The design variables from the mesh over the domain that the largest pattern covers

are projected onto the smaller domains using two different techniques - one for the element-

based approach and a second for the CAMD. These approaches are discussed next in this

section.
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3.1 Element-Based Mapping Scheme

To incorporate the pattern gradation constraint, the topology optimization problem state-

ment must be revised as follows in terms of the design variables, ρd and nodal displacements,

u:

min
ρ,u

c(ρd,u) (3.1)

s.t. K(ρd)u = f∫
Ω

ρ(ρd) dV ≤ Vs

ρ(x) ∈ [0, 1]∀x ∈ Ω

where the element densities and the design variables now become independent. Thus, the

compliance and stiffness can be expressed in terms of the design variables ρd. The element

densities ρe are a function of the design variables through a mapping scheme.

3.1.1 Gradation Along One Axis

For the element-based approach mapping in one direction, the largest domain is first satu-

rated with design variables at the element nodes. These design variables are considered as

the primary design variables (shown in grey in Figure 3.1). The primary design variables

are mapped onto the smaller domains to create the mapped design variables (shown in black

in Figure 3.1). Here, each pattern domain is shown by the blue colored pattern. Then, the

element densities are computed using the projection method as described in Section 2.3 over

the entire domain of design variables, which include both the primary and mapped design

variables.

For gradation in one direction, a pattern is defined by the region of the design domain

partitioned by two coordinates, denoted xn−1 and xn respectively for the nth pattern. In

Figure 3.1, for example, the pattern gradation is being performed in the x-direction. Thus,

we specify pattern 1 by selecting the coordinates x0 and x1 as bounds. This concept is
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Figure 3.1: Illustration of element-based mapping scheme from x to x∗ for pattern gradation along one axis.
Mapped design variables are shown in black and 3 pattern constraints are highlighted in blue gradient color.

carried over for each of the n patterns.

The proposed mapping scheme for gradation in the x-direction gives the locations of the

mapped design variables, x∗ with respect to the pattern sizes as

x∗ =
n−1∑
i=0

(xi+1 − xi) + αn(x− xn) (3.2)

where αn is a scaling factor of the nth pattern from the largest domain (which holds the

primary design variables). This scaling parameter αn is defined as:

αn =
xn+1 − xn
x1 − x0

(3.3)

Similarly, for one directional gradation along the y-axis:

y∗ =
n−1∑
i=0

(yi+1 − yi) + βn(y − yn) (3.4)

where y∗ is the location of the mapped design variable and y is the location of the original

design variable. Correspondingly, the scale factor is:

βn =
yn+1 − yn
y1 − y0

(3.5)

For the element-based approach, the values of mapped design variables correspond to the

values of the primary design variables, ρ∗ = ρ; only the locations of these points change
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during the mapping scheme. The optimization on the design variables of the largest section

is performed first and the subsequently smaller sections are updated. More details on the

computational implementation are included in the following chapter.

3.1.2 Gradation Along Two or Three Axes

The mapping scheme can be extended for gradation in two directions following a two step

procedure: the patterns are graded along one axis first using the largest pattern. Subse-

quently, these patterns are graded in the other direction using the patterns from the initial

gradation. For example, if the patterns are graded along both the x and y axes, first the

largest pattern is selected. This pattern is mapped along the x axis using the gradation

scheme. Later, these patterns are mapped along the y axis. A schematic of this mapping

procedure is shown in Figure 3.2. For the bidirectional gradation, Equations (3.2) and (3.4)

still apply, but they are performed sequentially.

Furthermore, this technique can be generalized to three dimensions by the same proce-

dure. For example, for pattern gradation along the x, y, and z axes the largest pattern is

mapped sequentially in these three directions. Equations (3.2) and (3.4) still apply and an

additional equation for the z-direction is introduced using a new scale factor, γn, as follows:

z∗ =
n−1∑
i=0

(zi+1 − zi) + γn(z − zn) (3.6)

where

γn =
zn+1 − zn
z1 − z0

(3.7)

3.2 Continuous Approximation of Material Distribution

Mapping Scheme

The CAMD method considers a continuous material field over the design domain. Therefore,

it is necessary to compute the densities for the mapped domains at the nodes to accurately
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Figure 3.2: Schematic for gradation in two directions. Mapped design variables are shown in black.
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Figure 3.3: Illustration of CAMD mapping scheme: original element shown on left, interpolated design
variables shown in black on right

approximate this material field. The following interpolation method is proposed to compute

the nodal densities for each of the n mapped patterns. The nodes of the largest pattern are

first mapped onto the domains of the smaller patterns similar to the element-based scheme

described by Equations (3.2) and (3.4). The densities at the nodes of the smaller patterns

are then computed by interpolating the mapped nodal densities of the largest pattern. The

notation ρ∗d and ρ∗d+1 is introduced for the mapped nodes closest to any node of the n patterns

(see Figure 3.3). The equation for the mapped densities is

ρ∗ = ρd +
x∗ − x∗d
αn

(ρd+1 − ρd) (3.8)

where x∗d marks the location of the mapped design variable ρd in the current nth pattern, ρ∗

is the new mapped density calculated at x∗ and ρd, ρd+1 are the nodes of the largest design

domain to interpolate from (Figure 3.3), and αn is still described by Equation (3.3). If αn

is replaced with βn or γn and (x∗ − x∗d) with (y∗ − y∗d) or (z∗ − z∗d) the gradation would

be performed in the y-direction or z-direction instead of the x-direction. Additionally, the
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gradation in two or three directions can be carried out using the same technique described in

the previous section where the largest pattern is graded in one direction first and later this

set of patterns is graded in the other direction via Equation (3.8). The sensitivities of the

design variables need to be modified to account for the interpolation employed to compute

the mapped nodal densities (see Equation 3.8). This will be described in detail in Section

3.4.

3.3 Comparison of Mapping Schemes

The pattern gradation described in the previous sections introduces additional computational

expenses for the mapping scheme and sensitivity computations. However, these costs can be

reduced by gathering the required data, such as the mapping information from the primary

set of design variables to the mapped set of design variables for these schemes once, before

the actual optimization is performed. For example, in the element-based approach at the

beginning of the code the set of nodes in Sd for each of the design variables and the mapped

locations of these design variables for each of the patterns are stored to easily compute the

one-to-one density mapping and chain rule for the sensitivity evaluation on the fly. Likewise,

in the CAMD approach for each node the information of which densities to interpolate from

is stored to compute the nodal densities in a timely fashion. Then the evaluation using

the updated design variables after each iteration is straightforward since only the design

variables of the largest pattern need to be optimized at each iteration.

The element-based mapping scheme is easier to implement but requires storing many

more design variables, especially when the ratio of the size of the largest domain to the

smallest one is significantly high since there will be many design variables compacted into

very small region. On the contrary, CAMD is computationally less intensive due to the

smaller number of design variables. However, at the beginning of the analysis an expensive

search must be performed once to find the correct primary design variables for the mapped

design variables to interpolate from. Moreover, this interpolation scheme associated with

31



Table 3.1: Comparison of Mapping Schemes

Approach Pros Cons
Element-based • no interpolation needed • large number of design variables re-

quired
• one-to-one mapping of design variables
• sensitivities evaluation simple using one-
to-one mapping

CAMD • smaller number of design variables • interpolation necessary for nodal densi-
ties

• smoother variation of density within el-
ements

• initial search for nodes to interpolate
from is expensive
• more storage space required
• sensitivity evaluation more complex

the CAMD approach is by nature more expensive than the one-to-one mapping used in the

element-based approach. In conclusion, the CAMD approach, despite requiring storage of a

small number of design variables, is computationally more expensive.

3.4 Sensitivities Update

The sensitivities of the design variables are computed using a chain rule since the smaller do-

mains get their designs from the larger domains because each element density ρe is a function

of the design variables ρd through the mapping schemes. Therefore, for both the element-

based and CAMD approaches, the sensitivity of the objective function is now modified to

include the chain rule as follows:

∂c

∂ρd
=
∑ ∂c

∂ρe

∂ρe
∂ρd

(3.9)

The contributions of each design variable towards the sensitivities of the primary design

variables, ρd, are summed over each node of each element over the entire domain.

For the element-based scheme due to the one-to-one mapping, the sensitivity of each

element density with respect to its primary design variable is

∂ρe
∂ρd

= 1 (3.10)
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where e is an element that gets its density from the mapping design variable d. Equation

(3.9) can now be simplified as

∂c

∂ρd
=
∑
e∈Sd

∂c

∂ρe
(3.11)

where Sd denotes the subset of design variables sharing the same density. For example, if

there are n patterns present, Sd contains n values.

In the CAMD mapping scheme, the sensitivities of each node must include the contribu-

tions from the nodes that are interpolated from ρd and ρd+1. Thus, for each mapped element

e the following two relationships ensue:

∂ρe
∂ρd

= 1− x∗ − x∗d
αn

(3.12)

and

∂ρe
∂ρd+1

=
x∗ − x∗d
αn

(3.13)

In these equations αn describes the gradation in the x-direction. The gradation in the y-

direction or z-direction is similarly derived. For gradation along two or three axes, the

sensitivities are the same, but they must be computed sequentially.

3.5 Projection Update

For the previously discussed approaches, the design domains for each repetition of a graded

pattern are scaled from the largest pattern. Thus the projection weighting function must be

reformulated over the graded patterns. In this work, a new projection scheme is proposed

by changing the domain of influence for element e to be elliptical in shape to satisfy the

gradation constraint. This can be attributed to the fact that the mapped distances between

design variables are scaled by the factor αn or βn. The ellipse has a major axis of 2rmin

and a minor axis of 2αnrmin corresponding to a circle scaled in one direction (see Figure

3.4(c)). Some difficulties arise when this domain of influence lies over a boundary of the

patterns. Thus, a hybrid between a circular region and an elliptical region is proposed for
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the projection scheme (see 3.4(b)). The weights are now computed as

wej =


(
rmin−rej
rmin

)q
r ≤ rmin

0 r > rmin

(3.14)

where rej is described by

rej =



xj − xe xjεΩe, x0 ≤ xj ≤ x1, x0 ≤ xe ≤ x1

(xj−x1)

αn
+ (x1 − xe) xjεΩe, x1 < xj, x0 ≤ xe ≤ x1

(xe−x1)
αn

+ (x1 − xj) xjεΩe, x1 < xe, x0 ≤ xj ≤ x1

(xj−xe)

αn
xjεΩe, x1 < xj, x1 < xe

0 otherwise

(3.15)

These modifications allow the design to be continuous throughout the domain while still

enforcing the pattern constraints. With the revised weights above, the domain, Ωe, over

which the projection is computed remains in theory the same as a domain with no gradation

in which the largest pattern is repeated n times.

34



(a) (b)

(c)

Figure 3.4: Examples of three different projection domains for pattern gradation: (a) circular, (b) hybrid,
and (c) elliptical. The design variables are shown in white; these design variables are mapped in black for
the graded pattern.
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Chapter 4

Computational Implementation

The computational implementation of the theory discussed in Chapters 2 and 3 is described

in this chapter. The computations were carried out using Matlab R©. The visualization of

the results was done using Matlab R© primarily for 2D problems and Tecplot R© for the 3D

problems. The specifics behind the Matlab coding are discussed next.

Both the CAMD and the element-based approaches are implemented as mentioned in

the previous chapter; however, the two methods differ in some aspects. For example, in the

pattern gradation mapping function, the CAMD code gathers first the information needed

for the interpolation between nodes. Then, in the integration of the stiffness matrix, the

densities of the material at each Gauss point must be used. On the other side, the element-

based approach consists of a uniform density throughout the element so the density for the

element can be used.

4.1 Implementation Issues

The flowchart in Figure 4.1 outlines the general ideas behind the code, which is designed to

guarantee robustness. The first step is reading a mesh. In this work, the mesh is generated

either using a mesher written in Matlab R© or using the PATRAN R© software package. After

generation, the mesh is refined to a very fine level for the MTOP implementation. The

original mesh passed to the program is used as the displacement mesh in the finite element

analysis. The necessary data is then gathered for the manufacturing constraints mapping,

which includes pattern gradation and symmetry. Depending on the approach used in the

solution (i.e. element-based or CAMD) the information collected varies. For the element-
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Figure 4.1: Flowchart of Computer Code for Pattern Gradation
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based approach, the locations of the new design variables are required. Such locations simply

coincide with the nodes of the mesh for the CAMD approach. Moreover, the CAMD approach

must store the necessary information for the interpolation of the primary design variables

in the optimization. After all the required information is collected for both approaches, a

search is performed over the design domain to gather information for the projection using

a fixed-length scale. Specifically, the weights for each density element are computed and

stored for use throughout the iterations. There is an option for the user to select which

projection scheme to use (direct or inverse) along with which curve (linear, parabolic, cubic,

etc.)

The optimization process begins with a simple initialization of all of the design variables

and densities uniformly over the domain to the specified volume fraction. Here we also set

the minimum values for the intermediate densities, ρmin = 0.001 to prevent the singularity

of the stiffness matrix discussed earlier. Next, the element stiffness matrix can be computed

once at the beginning (if all elements are of the same size).

After these initial steps, the loop for the actual optimization begins where first the ele-

ment densities are computed using the updated design variables from the pattern gradation

mapping. Then, the element densities can be updated using the weights computed in the

projection map. Now, these updated densities are given to the finite element analysis func-

tion, which computes the global stiffness matrix and updates the forces accordingly. Then

Cholesky decomposition is applied to solve the system of equations. The resulting displace-

ments are used to then compute the compliance and corresponding sensitivities which are

finally given to the MMA solver (see Svanberg [1987]) for the update. Convergence criteria

is checked and the code terminates if it is satisfied. Finally, the solution is plotted using

Matlab R© or Tecplot R©.

The pseudo-code for the 2D element-based implementation is provided in the Appendix.
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4.2 Discussion

The search to gather the required information for the projection method implemented has

a very high computational cost. To alleviate some of these costs, the domain of design vari-

ables can be partitioned into sections of size rmin by rmin. Then, for each element, only the

neighboring sections need to be searched, rather than the entire design domain. The map-

ping function for the pattern gradation implementation poses an additional computational

expense as well. A similar approach to that of finding the weights for the projection can be

used at the beginning of the code so that this routine must complete only once, reducing

this expense.

One last point to mention is that all of the coding presented here uses constraints based

on the model’s geometry rather than the input mesh. For example, pattern sizes and radius

of projection are specified in terms of geometrical coordinates instead of number of elements.

This provides for a more general coding since upon refinement of a mesh, it is unnecessary

to scale the parameters accordingly.
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Chapter 5

Numerical Results

Several examples with various numbers and sizes of patterns are solved for the pattern

gradation implementation presented in this work. In this chapter, two-dimensional examples

are given including cantilever beams subject to lateral loads while the three-dimensional

examples given explore building-like domains subject to wind loadings. All examples are

run using SIMP with continuation from p = 1 to 4 with steps of size 0.5. The Poisson’s ratio

is 0.3 and Young’s Modulus, E = 1.0. Examples are given next for both the element-based

and CAMD approaches.

5.1 Domain with Two Patterns

Using the element-based approach with the design variables placed at the nodes, the can-

tilever beam problem in Figure 5.1 is solved with the modified projection scheme as described

in Section 3.5. The primary and mapped design variables are shown in Fig. 5.1(b) in blue

and red respectively. The domain is 10 x 30 units with the fine mesh containing 80 x 240

elements. The volume fraction for this example is 0.5 and the minimum member size is 1.2

units. The patterns shown have a ratio of 2:1.

5.2 Domain with Five Patterns

Next, an example is given for a two-dimensional building-like problem subject to a lateral

wind loading and pattern constraints as displayed in Figure 5.2(a). The domain is 10 x 30

units with the fine mesh containing 80 x 240 elements. The volume fraction for this example

40



(a) (b) (c) (d)

Figure 5.1: Element-based approach for pattern gradation in a cantilever beam with 2 patterns: (a) problem
statement, (b) design variable mesh, (c) topology optimization solution and (d) proposed design. Mapped
design variables are shown in red.

is 0.5 and the minimum member size is 1.2 units. As shown in the figure, some similarities

can be observed in comparison with the lateral bracing system of the John Hancock building

in Chicago, IL.

5.3 Bidirectional Gradation for Deep Beam

The effect of grading the patterns along two axes is given in Figure 5.3 for a deep cantilever

beam supported along the left edge with a point load at the lower right tip. The element

formulation for this example is the continuous approximation of material distribution with

an interpolation scheme described in Sections (2.2.2) and (3.1.2). The result given is for

a mesh size of 40 x 20, with the MTOP fine mesh of 200 x 100 (Q4/n25 elements). This

example was run with continuation from p = 1 to 4 with steps of size 0.5.
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(a) (b) (c)

Figure 5.2: Illustration of the concept of pattern gradation along the height of a building (similar to the
John Hancock building in Chicago, IL)
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(a) (b)

Figure 5.3: Example of pattern gradation along both x and y axes using CAMD mapping scheme: (a)
pattern gradation constraints (in blue) (b) topology optimization result

5.4 Torsional Building with Four Patterns

Figure 5.4 is an example of a building subject to a torsion load. The finite element mesh

is 10x10x30 with the same pattern constraints as the 2D example given in Figure 5.2. The

result here was run using SIMP with p = 3. Figure 5.4(a) and (b) show the solution with

MTOP B8/n8 elements, while Figure 5.4(c) and (d) show the results for MTOP B8/n27

elements.

5.5 Building Core

Figure 5.5 illustrates a conceptual design for a building core system to support the can-

tilevered slabs shown in (a). This structure is subject to pattern gradation constraints of

15, 12, 10, 8, 7, 5 and 3 from bottom to top to achieve a desirable transition from a large

bracing angle at the base of the structure to resist the overturning moment due to wind

loads and a shallow angle at the top to resist the large shear loads. The design domain is

10 x 10 x 50 here with 16,000 elements and a minimum member size of 1.0.
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(a) (b)

Figure 5.4: Illustration of pattern gradation for conceptual design of building subject to torsional load (a)
for 10x10x30 mesh (b) and 10x10x30 with MTOP Q4/b8 elements

(a) (b) (c) (d) (e)

Figure 5.5: Illustration of pattern gradation for conceptual design of building core. (a),(b) Design domain,
(c) FEM Mesh (20 x 20 x 120), (d),(e) Proposed core design using pattern gradation. Images (a) and (b)
courtesy of Skidmore, Owings & Merrill, LLP (SOM)
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5.6 Diagrid Structure with Wind Loading

Figures 5.6, 5.7 and 5.8 illustrate a conceptual design for a diagrid structure with a square

base transitioning to a circle around the top. The meshing of this structure is illustrated

in Figure 5.6 where the cross-sectional views are shown along the height of the tower at 0,

30, 60, and 80m. In Figure 5.7 the results are shown for an analysis performed for a wind

loading in one direction with symmetry and wind loads with symmetry applied about the

center in two directions.

To emphasize the patterns of the geometry, Figure 5.8 shows the natural pattern that

develops along the shear lines in addition to an analysis performed with pattern gradation

constraints. The design domain is 10 x 10 x 80 here with a minimum member size of 1.0.

Notice the resulting designs follow the principal stress trajectories, the columns increase in

size from the top of the building to the base, the diagonals intersect at 45 degrees along the

neutral axis with larger angles at the base than the top, and the load flows in a naturally

cascading pattern.

5.7 Discussion and Limitations

The work presented in this section would benefit tremendously from the use of a more ad-

vanced data structure (see Celes et al. [2005]) since it can be quite complex to use the

multiresolution scheme (MTOP) for general meshes. Currently, the connectivity relation-

ships between the coarse mesh of displacements and the fine meshes of design variables or

densities are unknown. A more elaborate scheme using multiple meshes should be considered

to advance this work further for general meshes.
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(a) (b) (c) (d)

Figure 5.6: Illustration of meshing for diagrid structure: (a) SOM’s Lotte Tower, (b) Finite element mesh,
(c),(d) Cross-section views at 0, 30, 60, and 80m. Image (a) courtesy of Skidmore, Owings & Merrill, LLP
(SOM)
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(a) (b) (c)

Figure 5.7: Illustration of pattern gradation for conceptual design of diagrid structure: (a) SOM’s Lotte
Tower, (b) Wind loading about 1 axis and symmetry, (c) Wind loading about 2 axes and symmetry. Image
(a) courtesy of Skidmore, Owings & Merrill, LLP (SOM)
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(a) (b) (c)

Figure 5.8: Illustration of pattern gradation for conceptual design of diagrid structure: (a) SOM’s Lotte
Tower, (b) Torsion loading without constraints, (c) Pattern gradation constraints. Image (a) courtesy of
Skidmore, Owings & Merrill, LLP (SOM)
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Chapter 6

Concluding Remarks and Extensions

Pattern gradation is necessary to advance topology optimization towards more practical

designs for constructibility of high-rise buildings. By adding constraints on the patterns,

both engineers and architects are able to develop aesthetically appealing modern designs

while satisfying structural requirements. Moreover, using the techniques presented in this

work, structural engineers can design the diagrid-type lateral bracing systems of buildings

by identifying along the height of the building the optimal angles for the diagonal mem-

bers therefore allowing a smooth transition between the sharp angle at the base to resist

overturning moments and the shallow angle at the top to account for shear loads.

The primary contributions of this work can be briefly summarized as follows:

• Conceptual design for buildings by placing constraints on the design domain in terms

of number and size of repeating patterns along any direction

• Development of mappings to geometrically grade the patterns

• Incorporation of projection techniques in conjunction with the mappings (use of ellip-

tical rather than circular domains of influence)

6.1 Suggestions for Future Work

While the work presented here is sufficient for smaller-scale designs, it would benefit tremen-

dously by exploring in more detail the computational expenses associated with non-coincident

FEM displacement and design variable meshes to be used on a larger scale. Moreover, by

studying the sensitivities associated with non-coincident meshes, a basis could be established
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for error estimators. Future work includes the optimization of large scale problems using

Topological Data Structure (TopS) [Celes et al., 2005] integrated with finite element analysis

(TopFEM) and topology optimization.

Furthermore, some additional building design considerations to investigate in more detail

include the sizing of members from topology optimization results in addition to other objec-

tive functions or constraints which might include deflection considerations, stress constraints

and stability issues. The work here would also benefit from studying the nonlinear behavior

associated with large deflections for high-rise buildings and other structures. A few other

extensions of this work including the modeling of subdomains, extension to other types of

finite elements, and the integration with commercial software are described in more detail

next.

Modeling of Subdomains

Within the context of building design, it might be useful for the designer to look a component

of a structural system, such as a deep transfer beam. The present work could be extended

to model subdomains of the structural system using static decomposition where the loads

and designs of connecting members or adjacent subdomains are replaced with boundary

conditions.

Extension to Other Finite Elements

Though Q4 and B8 elements were sufficient for the examples given in this work, topology op-

timization for buildings could become more robust by including other types of finite elements

such as beams, plates and shells. The use of Q4 or B8 elements are not as robust as plates,

shells, or beams because each of these finite elements have explicit terms (shape functions)

for the moment and shear components, while the Q4 or B8 only has nodal forces. These

moment and shear components are advantageous to have since they make these elements

more compatible with the current design codes. Moreover, an analysis using higher-order

elements could be performed efficiently using an application programming interface (API)
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to call an FEM software, such as ABAQUS R© or ANSYS R© and then integrating the results

with the optimization process.

Integration with Commercial Software

Finally, a continuation of this work is to explore a more interactive framework between the

structural engineering presented here and the architectural parameters both technical (need

for stairs, elevators, mechanical openings, etc.) and aesthetic (design value of the structure).

More specifically, this work would benefit the structural engineering industry by extending

its capabilities to integrate with architectural software, especially exporting the geometry of

results to AutoCAD R© or others. Additionally, a user friendly interface with input parameters

could be created to incorporate structural engineering, aesthetics and topology optimization

for use in today’s design companies.

Multiscale Topology Optimization

To understand the behavior of an entire structural system, it is crucial to consider all of

its features at multiple scales. For example on the global scale, there is the design of the

lateral system (diagonal bracing or core) to be optimized. At the local scale, there are the

individual beams and columns which comprise the structural system. The way the global

and local loads are transferred and how each scale interacts must be carefully analyzed to

perform topology optimization for an entire structural system.
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Appendix A

Pseudo-Code for Pattern Gradation
in Topology Optimization

==============================================================================

Pseudo-Code for main function

==============================================================================

Inputs:

element: a cell structure containing each node in cell i,1 for element i

node: the locations of each node i stored as nodes(i,:) = [x, y]

supp: the list of supports as supp(i,:) = [node, constraint x, constraint y] where

constraint is 0(free) or 1(fixed)

load: the list of loads as [node, force x, force y]

element MTOP: the connectivity of the underlying fine mesh to be used for the design

variable and density meshes for the MTOP implementation

node MTOP: the nodal locations corresponding to the MTOP elements

rmin: the radius of projection

p: the penalization factor for SIMP

rfnmt: the amount each direction is refined for MTOP implementation

volfrac: the volume fraction constraint

Selected function variables:

xe: element

xd: design variables for entire domain

xmc: primary design variables for pattern

c: compliance

dc: sensitivities of the compliance

KE: element stiffness matrix

Ue: element displacements

==============================================================================

CALL sub-function (mc map) with (element,node) to compute (mc vals)

CALL sub-function (proj map) with (element,node,rmin) to compute (weights)

xe <- volfrac; xd <- volfrac; xmc <- volfrac;

c <- 0; dc <- 0; xmin <- 0.001;

CALL sub-function (lk) to compute (KE)

<< Loop for optimization >>

FOR all values of penalization DO

FOR all loops until max iter DO

CALL sub-function (proj_densities) with (weights,xe) to compute (xe)

CALL sub-function (mc_dvs) with (mc_vals,x_mc) to compute (xd)

<< FE Analysis >>

CALL sub-function (FE) with (element,element MTOP,node,node MTOP,supp,load,xe,p,KE,rfnmt)

to compute (U)
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<< Objective function and sensitivity analysis >>

CALL (sens) with (element,element MTOP,node,node MTOP,U) to compute (c,dc)

<< Update design variables using Svanberg’s MMA sub-routine >>

CALL (mmasub) with (constraint,c,xold1,xold2,dc,dv) to compute (xmma)

xold2 <- xold1; xold1 <- xd; xd <- xmma;

<< Check convergence >>

IF change < 0.01 THEN

break;

END IF

Print (loop,c,volume,change)

END FOR

END FOR

Plot converged solution

==============================================================================

Pseudo-code for mc_map sub-function

==============================================================================

Inputs:

element: a cell structure containing each node in cell i,1 for element i

node: the locations of each node i stored as nodes(i,:) = [x, y]

Outputs:

mc_vals: mapping values for primary design variables to secondary design variables

centroids: centroids of each element

area: vector of areas of each element

proj_dvs: locations of all primary and secondary design variables

==============================================================================

User prompt for x min, x max, y min, y max of primary design domain

FOR all elements DO

Compute the centroid and area of each element using polyarea

END FOR

<< Get domain of primary design variables >>

FOR all elements DO

Search for design variables in [x min,x max]&[y min,y max]

mc_vals{dv,1} <- primary design variable

END FOR

FOR each pattern DO

FOR each design variable DO

new_dv project primary design variable onto smaller domain

mc_vals{dv,1} <- [mc vals{dv,1}, new dv]

proj_dvs <- location of new projected design variable

END FOR

END FOR

==============================================================================

Pseudo-code for proj_map sub-function

==============================================================================

Inputs:

element: a cell structure containing each node in cell i,1 for element i

node: the locations of each node i stored as nodes(i,:) = [x, y]

rmin: minimum radius of projection
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Outputs:

weights: list of projection weights

==============================================================================

prompt user for projection scheme (linear, inverse, parabolic, etc.)

<< Search for design variables within projection radius >>

FOR each density DO

x <- x coordinate of element centroid;

y <- y coordinate of element centroid;

z <- z coordinate of element centroid;

FOR each design variable DO

r <- sqrt((x+xi)^2+(y+yi)^2)

IF r < rmin THEN

compute and store weights using appropriate scheme

END IF

END FOR

END FOR

<< Normalize weights for each density >>

FOR each density DO

weights <- weights/sum(weights{element})

END FOR

==============================================================================

Pseudo-code for proj_densities sub-function

==============================================================================

Inputs:

x_old: current element (or nodal) densities

weights: computed weights from projection mapping

Output:

x_new: updated densities

==============================================================================

FOR all elements in domain DO

x_new <- (weights{element}*x_old(elements))/sum(weights{element})

END FOR

==============================================================================

Pseudo-code for mc_dvs sub-function

==============================================================================

Inputs:

x primary: the primary design variables

mc_vals: the mapping values

Output:

x_mapped: the values of the secondary or mapped design variables

==============================================================================

FOR all design variables in the domain DO

FOR each primary design variable DO

x_mapped <- x_primary using mc_vals
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END FOR

END FOR

==============================================================================

Pseudo-code for FE sub-function

==============================================================================

Inputs:

element: a cell structure containing each node in cell i,1 for element i

node: the locations of each node i stored as nodes(i,:) = [x, y]

supp: the list of supports as supp(i,:) = [node, constraint x, constraint y] where

constraint is 0(free) or 1(fixed)

load: the list of loads as [node, force x, force y]

element MTOP: the connectivity of the underlying fine mesh to be used for the design

variable and density meshes for the MTOP implementation

node MTOP: the nodal locations corresponding to the MTOP elements

rmin: the radius of projection

p: the penalization factor for SIMP

rfnmt: the amount each direction is refined for MTOP implementation

volfrac: the volume fraction constraint

element MTOP

node MTOP

xe: element densities from previous iteration

KE: element stiffness matrix

Outputs:

U: vector of displacements for each node

Select function variables:

K: global stiffness matrix

edof: element degrees of freedom

fixed_dofs: prescribed degrees of freedom (from supp)

free_dofs: degrees of freedom

all_dofs: the union of fixed dofs and free dofs

==============================================================================

CALL sub-function (lk) to compute (KE) if not done previously

K <- 0; f <- 0;

FOR all elements in the domain DO

get degrees of freedom for each element

assemble global stiffness matrix using dofs

END FOR

<< Define loads and supports >>

nload <- size of load

f(load(1:nload,1)) <- load(1:nload,2)

f(load(1:nload,1)+nnode) <- load(1:nload,3)

fixed_dofs <- prescribed dofs

all_dofs <- 1:2*nnode

free_dofs = all_dofs - fixed_dofs

<< Solve for nodal displacements >>

Solve linear system using K(free dofs,free dofs),f(free dofs) for U(free dofs)

U(fixed_dofs) <- 0

==============================================================================
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Pseudo-code for lk sub-function

==============================================================================

Inputs:

node: the locations of each node i stored as nodes(i,:) = [x, y]

enode: list of nodes corresponding to the element

Outputs:

K: global stiffness matrix

Selected local variables:

B: strain-displacement matrix

C: plane-stress constitutive matrix

J0: Jacobian matrix relating natural to physical coordinates

==============================================================================

E = 1; nu = 0.3;

C = E/(1-nu^2)*[1 nu 0; nu 1 0; 0 0 (1-nu)/2];

Q <- locations of Gauss Quadrature points

W<-weights of Gauss Quadrature points

FOR each quadrature point DO

CALL (shapequad) sub-routine to compute (N,dNdx) using (Q,W)

compute Jacobian

assemble B using dNdx

K <- KE + B’*C*B*W*det(J0)

END

==============================================================================

Pseudo-code for shapequad sub-function

==============================================================================

Input:

x: x-coordinate of location to compute N, dNdx

y: y-coordinate of location to compute N, dNdx

Outputs:

N: evaluation of shape functions at point (x,y)

dNdxi: evaluation of shape function derivatives at point (x,y)

==============================================================================

N = 1/4[(1-x)*(1-y);(1+x)*(1-y);(1+x)*(1+y);(1-x)*(1+y)]

dNdxi = 1/4[-(1-y) (1-y) (1+y) -(1+y); -(1-x) -(1+x) (1+x) (1-x)]

==============================================================================

Pseudo-code for sens sub-function

==============================================================================

Inputs:

element: a cell structure containing each node in cell i,1 for element i

node: the locations of each node i stored as nodes(i,:) = [x, y]

U: nodal displacements

weights: weights computed in proj map

Outputs:
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c: compliance (objective function)

dc_d: sensitivities of the objective function with respect to projection and then

manufacturing constraints

==============================================================================

c <- 0;

FOR all elements DO

get edofs

calculate c using U(edofs)

calculate dc

END FOR

<< Calculate sensitivities using projection >>

FOR all elements DO

compute dc_x using (dc,weights)

END FOR

<< Calculate sensitivities using manufacturing constraints >>

FOR all design variables DO

FOR each primary design variable DO

compute dc_d using dc_x

END FOR

END FOR

==============================================================================
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