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ABSTRACT

This paper proposes an efficient gradient-based optimization algorithm to

solve reliability-based topology optimization (RBTO) of structures under

loading and material uncertainties. Topology optimization is a powerful de-

sign tool as it can provide the most efficient material layout for structural

design problems under given conditions and limitations. However, most at-

tempts are formulated in a deterministic manner, which may be impractical

as this formulation ignores the inherent uncertainty and randomness in struc-

tural design problems. The objective of RBTO considered in this research

is to identify the optimal topology of truss structures with minimum weight

which also satisfy certain requirements on the reliability of the structures.

As a subtopic of reliability-based design optimization (RBDO), RBTO prob-

lems are primarily performed with algorithms based on a first-order reliabil-

ity method (FORM) which are well developed in the literature for RBDO.

However, those algorithms may lead to deficient or even invalid results for

RBTO problems since the gradient of probabilistic constraint, calculated by

first order approximation, is not accurate enough for RBTO to converge cor-

rectly regardless of how accurate the failure probability is approximated. A

segmental multi-point linearization (SML) method is proposed for a more ac-

curate estimation of failure probability and its gradient. Numerical examples

show that the RBTO algorithm based on the SML is more stable numerically

and is able to converge to a solution that is closer to the true optimum than

conventional FORM-based algorithms. The obtained optimal topology can

serve as a starting point for engineers to make the design of structures both

economic and reliable.

ii



To my parents, for their unconditional love and support.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to express my profound gratitude to my ad-

visors, Professor Glaucio H. Paulino and Professor Paolo Gardoni. Without

their trust, patient guidance, and encouragement through the process of this

master thesis, this work would never have been accomplished. I am inspired

by their enthusiasm to research, attention to detail, and their dedication to

the profession. I feel that I have learned a lot from them.

I greatly appreciate my colleagues, Cameron Talischi, Arun Gain, Tomas

Zegard, Sofie Leon, Daniel Spring, Junho Chun, Evgueni Filipov, Heng Chi,

Xiaojia Zhang, Tuo Zhao, Maryam Eidini, Adeildo Soares Ramos Jr., Luis

Arnaldo, Peng Wei, Armin Tabandeh, Roberto Guidotti, Hao Xu, Andrea

Brignone, Marco Andreini, for always being helpful and supportive during

my graduate study. Being along with them helps me to learn how to become

professional in my academic life. Special thanks are due to Junho Chun and

Armin Tabandeh, who denote their time to help me revise and polish the

thesis.

In addition, I would like to thank all of my friends. Although many of them

are on the other side of the Pacific Ocean, they all give me close support.

The author also wants to acknowledge the courtesy from Dr. Svanberg for

the MATLAB code of MMA.

I am grateful for the financial support from National Science Foundation

through the research grant 1234243.

Finally, and most importantly, I wish to thank my parents, Tianxiong Liu

and Wenhong Zhang. All of my accomplishment and success should owe to

my parents. No words can describe how I appreciate them for what they

have done for me.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . x

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2 GROUND STRUCTURE APPROACH . . . . . 4
2.1 Nested Formulation . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Sensitivity Analysis of Compliance . . . . . . . . . . . . . . . 7

CHAPTER 3 RELIABILITY-BASED DESIGN OPTIMIZA-
TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Reliability Methods . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 A Review of RBDO Approaches . . . . . . . . . . . . . . . . . 12
3.3 Gradient of Probability Function . . . . . . . . . . . . . . . . 15

CHAPTER 4 RELIABILITY-BASED TOPOLOGY OPTI-
MIZATION FORMULATION . . . . . . . . . . . . . . . . . . 21
4.1 Segmental Multi-Point Linearization for Sensitivity Calculation 22
4.2 Improvement of Reliability Assessment . . . . . . . . . . . . . 27
4.3 SML-Based RBTO Algorithm . . . . . . . . . . . . . . . . . . 29

CHAPTER 5 NUMERICAL EXAMPLES . . . . . . . . . . . . . 33
5.1 A Benchmark Problem . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Symmetric Crane Arm Design . . . . . . . . . . . . . . . . . . 34
5.3 Unsymmetric Crane Arm Design . . . . . . . . . . . . . . . . 40
5.4 T-shaped Building Design . . . . . . . . . . . . . . . . . . . . 43

v



CHAPTER 6 CONCLUDING REMARKS AND SUGGES-
TIONS FOR FUTURE WORK . . . . . . . . . . . . . . . . . 47
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



LIST OF TABLES

5.1 Statistics of Random Variables for Example 4. . . . . . . . . . 44

vii



LIST OF FIGURES

2.1 The four levels of the ground structure on a 4 × 4 grid.
(a)Level 1: 72 non-overlapping members. (b)Level 2: 120
non-overlapping members. (c)Level 3: 176 non-overlapping
members. (d)Level 4: 200 non-overlapping members. . . . . . 5

3.1 Illustration of FORM and SORM. . . . . . . . . . . . . . . . . 11
3.2 Trajectory of the optimization process of RIA and PMA in

the standard normal random space. . . . . . . . . . . . . . . . 13
3.3 Geometric representation of general continuous limit state

surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Geometric representation of affine limit state surface. . . . . . 18

4.1 Graphical illustration of the proposed segmental multi-
point linearization method (SML), where green triangle
refers to the reference point, blue circles refer to sample
point, (±i) represent u(±i). . . . . . . . . . . . . . . . . . . . . 23

4.2 Parabolic limit state function. . . . . . . . . . . . . . . . . . . 26
4.3 Comparison of approximations of sensitivity. . . . . . . . . . . 28
4.4 SML for parabolic limit state surface. . . . . . . . . . . . . . . 28
4.5 Comparison of approximations of failure probability. . . . . . . 29

5.1 Benchmark problem for RBTO. (a) Domain, loading and
boundary conditions. (b) Optimal topology. . . . . . . . . . . 33

5.2 Design domain and boundary conditions of example 2. . . . . 35
5.3 Ground structure used to do RBTO which has 440 non-

overlapping members. . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Optimal topology by DTO. . . . . . . . . . . . . . . . . . . . 37
5.5 Optimal topology by FORM-based PMA. . . . . . . . . . . . . 37
5.6 Contour plot of G(u,x∗) for optimal design of Fig. 5.5.

The blue circle indicates the design point computed by the
PMA; the green triangle refers to the actual position of
design point; the red solid curve is the limit state surface
described by G(u,x∗) = 0. . . . . . . . . . . . . . . . . . . . . 37

5.7 Another optimal topology by FORM-based PMA. . . . . . . . 38

viii



5.8 Optimal topology by SML-based RIA taking design point
the reference point. . . . . . . . . . . . . . . . . . . . . . . . . 38

5.9 Optimal topology by SML-based RIA enforcing reference
point to be on the line u1 = u2. . . . . . . . . . . . . . . . . . 38

5.10 Contour plot of G(u,x∗) for optimal design of Fig. 5.8.
The blue circle indicates the sample points; the green tri-
angle refers to the design point(s); the green triangle refers
to the actual position of design point; the red solid curve
is the limit state surface described by G(u,x∗) = 0. . . . . . . 39

5.11 Contour plot of G(u,x∗) for optimal design of Fig. 5.9.
The blue circle indicates the sample points; the green tri-
angle refers to the design point(s); the green triangle refers
to the actual position of design point; the red solid curve
is the limit state surface described by G(u,x∗) = 0. . . . . . . 40

5.12 Design domain and boundary conditions of example 3. . . . . 41
5.13 Optimal topology by DTO. . . . . . . . . . . . . . . . . . . . 41
5.14 Optimal topology by FORM-based PMA. . . . . . . . . . . . . 41
5.15 Optimal topology by SML-based RIA with design point

being the reference point. . . . . . . . . . . . . . . . . . . . . . 42
5.16 Contour plot of G(u,x∗) for optimal design of Fig. 5.15.

The blue circle indicates the sample points; the green tri-
angle refers to the design point; the red solid curve is the
limit state surface described by G(u,x∗) = 0. . . . . . . . . . . 43

5.17 Probability distribution of Young’s modulus E. . . . . . . . . 44
5.18 Optimal topology by SML-based RIA considering random-

ness of E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.19 T-shaped building design. (a) Domain, loading and bound-

ary conditions. (b) Ground structure used to perform RBTO
which contains 526 non-overlapping members. . . . . . . . . . 45

5.20 Optimal topology by DTO. . . . . . . . . . . . . . . . . . . . 45
5.21 Optimal topology by SML-based RIA on the ground struc-

ture shown in Fig. 5.19b. . . . . . . . . . . . . . . . . . . . . . 46
5.22 Optimal topology by SML-based RIA on a refined ground

structure with 26180 members. . . . . . . . . . . . . . . . . . 46

ix



LIST OF ABBREVIATIONS

FORM First Order Reliability Method

SORM Second Order Reliability Method

MCS Monte Carlo Simulation

PDF Probability Density Function

CDF Cumulative Distribution Function

DTO Deterministic Topology Optimization

RTO Robust Topology Optimization

RBDO Reliability-Based Design Optimization

RBTO Reliability-Based Topology Optimization

CRBTO Component Reliability-Based Topology Optimization

SRBTO System Reliability-Based Topology Optimization

C.C. Correlation Coefficient(s)

SML Segmental Multi-Point Linearization

MMA Method of Moving Asymptote

SLP Sequential Linear Programming

CONLIN Convex Linearization Method

RIA Reliability Index Approach

PMA Performance Measure Approach

MTOP Multiresolution Topology Optimization

MPP Most Probable Point

x



NOMENCLATURE

x Design variables (i.e. member areas)

v Original random variables

u Transformed random variables

ρ Density of members

b Volume of members

V Weight of structure; volume of structure if ρ = 1

d Nodal displacement

F Load vector

l An artificial vector of weights

C lTd; total compliance of structure if l = F

K Global Stiffness matrix

K0
j Constant element stiffness matrix

Cmax Threshold on compliance

xmin Lower bounds of member areas

xmax Upper bounds of member areas

g(v) Limit state function in original random space

G(u) Limit state function in standard normal space

m Number of design variables

n Number of random variables

Pf Failure probability

xi



P t
f Target failure probability

I(v) Indicator function

u∗ Design point

ut Most probable point

ϕ(·) Standard normal PDF

ϕn(·) n-variate standard normal PDF

Φ(·) Standard normal CDF

Φn(·) n-variate standard normal CDF

β Reliability index

β1 Reliability index approximated by FORM

βt Target reliability index

λ, γi Lagrange multipliers

f(x) Objective function of RBDO

h(x) Equality constraints of RBDO

S Limit state surface

T Probability preserving transformation of random variables

Q Rotational matrix

R The constant rotational matrix used in SML

p Number of sample points in SML

u(+i)/u(−i) Sample point on the positive/negative part of axis i

β̃ Approximation of reliability index

r Radius of search region

e Unit vector of axis direction

α Step size in optimization

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Topology optimization allows engineers to design structures that possess

most efficient use of material with desired structural behavior. In recent

years, as a popular research topic, topology optimization has been applied to

engineering problems in a wide range of fields, for example, building design,

vehicle design, and human facial reconstruction [1, 2, 3]. Most of the research

has been formulated in a deterministic manner, however, deterministic topol-

ogy optimization (DTO) has limited use for realistic design problems where

the inherent uncertainties in loading conditions, material properties and man-

ufacturing process cannot be neglected. There are three main strategies to

address this concern, namely robust topology optimization (RTO), model

updating, and reliability-based topology optimization (RBTO) [4]. The goal

of the RTO is to find a structure that is relatively insensitive with respect

to uncertainties in design conditions [5, 6]. Model updating is usually per-

formed with evolutionary algorithms which employ a large number of simu-

lations to identify the best solution(s) to a structural design problem and is

often formulated as multi-objective optimization [7, 8]. On the other hand,

RBTO aims to manage the effect of uncertainties on structural performance

in terms of failure probability during topology optimization process. The

advantage of the RBTO is that it allows a quantitative control over the un-

certainties, which follows modern design philosophy, while requiring relatively

low computational cost. The RBTO is performed at two levels: component

reliability-based topology optimization (CRBTO) which considers each fail-

ure mode individually, and system reliability-based topology optimization

(SRBTO) which deals with a combination of failure modes simultaneously.

In this research, we focus on the CRBTO for truss layouts with random loads
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and material properties.

The truss layout optimization is performed using a ground structure ap-

proach, where the optimal layout of a truss structure is extracted from a

very dense set of potential joints and bars by sizing the members and allow-

ing them to vanish [9, 10, 11, 12]. Another popular approach of topology

optimization, called density approach, aims to find the best material distri-

bution within a continuum [2, 13]. An important motivation of using the

ground structure approach is that it provides directly the truss layout on

a base grid so that it is particularly applicable for design of modular space

structures [14]. A so-called nested formulation [15] of the ground structure

approach is implemented in our RBTO algorithm.

As a design problem, the RBTO can be regarded as a subtopic of a

reliability-based design optimization (RBDO) which has a rich literature.

The RBDO perform design optimization in conjunction with reliability anal-

ysis by defining probabilistic constraints due to the presence of random vari-

ables. There are two major approaches for RBDO in the literature: the

Reliability Index Approach (RIA), which directly presents the probabilis-

tic constraint in the optimization; and the Performance Measure Approach

(PMA), which constructs target performance function(s) by an inverse relia-

bility analysis [16]. The two approaches are usually implemented in conjunc-

tion with a first-order reliability method (FORM), which is an approximation

method of reliability analysis. There are also some variations of these two ap-

proaches, for example, Royset et al. [17, 18, 19] proposed decoupled RBDO

formulations that use a more thorough inverse reliability analysis than the

traditional FORM-based PMA and allows for heuristic updates of probability

approximation.

Direct implementation of RIA or PMA results in a double loop optimiza-

tion scheme since the reliability analysis or inverse reliability analysis requires

an iterative process to find the most likely failure point or the most probable

point (MPP) [16]. In order to reduce the computational cost, single loop

algorithms [20, 21, 22, 23] have been developed, which employ the Karush-

Kuhn-Tucker (KKT) conditions of the inner loop for a direct estimation of

the FORM-based reliability analysis or inverse reliability analysis. Some

authors have implemented these methods to solve RBTO problems. For ex-

ample, Silva et al. [24] conducted a study comparing several selected RBDO

algorithms including single loop PMA and double loop RIA. Nguyen et al.
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[25] applied a single loop algorithm to SRBTO using a density based multi-

resolution topology optimization (MTOP). Mogami et al. [26] employed a

traditional double loop RIA to solve RBTO problems on ground structures.

Other methods such as Monte Carlo simulation (MCS) based stochastic op-

timization [27] and equivalent perturbation based robust optimization [28]

are also used to perform RBTO.

However, whether it is proper to directly apply RBDO methods to RBTO

problems needs to be discussed. Unlike common RBDO problem, which usu-

ally involves several parameters to be optimized, RBTO has a large number of

design variables, meaning that the solution space is of high dimension. For a

gradient-based optimization, the accuracy of the sensitivity information may

severely affect convergence. For DTO, there exists an analytical solution for

the gradients of objective and constraint functions with respect to design

variables. However, for RBTO, an analytical solution for the sensitivity of

the probabilistic constraint has not been clearly addressed in the context of

the RBDO, and a one-point first order approximation of the sensitivity is

widely used. Although many researchers have successfully applied RBDO

algorithms to some RBTO problems, it is observed that those algorithms

may not work for all problems. This research adopts RIA for RBTO with a

new method that provides more accurate sensitivity than the FORM-based

approximation which, in addition, improves the accuracy of the reliability

analysis involved in the optimization.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 gives a background knowledge

about the ground structure approach. Chapter 3 reviews several popular

reliability methods, and revisits the RIA and PMA by analyzing the KKT

optimality conditions. An analytical expression for the sensitivity of failure

probability is also derived. In Chapter 4, the complete formulation of the

new algorithm is addressed. The new technique for sensitivity calculation is

proposed and its auxiliary benefits on improving reliability analysis is stated.

The optimizer used is also discussed. Then in Chapter 5, the new algorithm

is compared with DTO and a FORM-based algorithm via several numerical

examples. Finally, the conclusions are summarized in Chapter 6.
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CHAPTER 2

GROUND STRUCTURE
APPROACH

Configuration optimization of trusses and frames has been studied since

1900’s. The first work in the truss layout optimization was developed by

Michell [29] in 1904. He derived several important analytical solutions of

optimal layout of structures. Nowadays, thanks to the dramatic progress of

computer technology, the optimization problem is performed using efficient

numerical methods. Among many approaches for truss layout optimization,

the ground structure approach is one of the most popular approaches. Ad-

mittedly, there are some unsolved issues with ground structure approach,

such as instability at nodes and intersection of members, but as intended to

provide conceptual designs, the approach is still an attractive choice.

The ground structure is basically a dense truss structure obtained by in-

terconnecting fixed node points. Although there is no rule for the placement

of nodes, the most popular choice is to place them on an orthogonal grid.

Fig. 2.1 shows different levels of a ground structure on a 4 × 4 orthogonal

base grid. As we can see in Fig. 2.1d, a full level ground structure connects

every pair of nodes. For more detailed information about the connectivity

levels of ground structure, we refer to [2, 11, 12]. Overlapping members need

to be removed to avoid numerical instability. In general, the more members

in the ground structure, the larger solution space (for the topology) we have.

2.1 Nested Formulation

The nested formulation of the ground structure approach is used in this re-

search. Another approach is called simultaneous formulation. The difference

between the two formulations is how the equilibrium equation is handled in

the optimization [15]. The simultaneous formulation is described as follows:
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(a) (b)

(c) (d)

Figure 2.1: The four levels of the ground structure on a 4× 4 grid. (a)Level
1: 72 non-overlapping members. (b)Level 2: 120 non-overlapping members.
(c)Level 3: 176 non-overlapping members. (d)Level 4: 200 non-overlapping
members.

min
x,d

V = ρTb

s.t. K(x)d = F

C(d)−Cmax 6 0 (2.1)

xmin 6x 6 xmax

where b is the volume vector of elements which is defined as product of

element length and element area; ρ is a vector of material density which be-

comes a vector of 1’s, if V represents the volume of the structure. K(x)d = F

is the equation for equilibrium and compatibility of structure where K is the

stiffness matrix, d is the nodal displacement vector and F is the load vec-

tor. xmin and xmax are the lower and upper bounds for design variables (i.e.

member areas). The quantity C is defined as C(d) = lTd, which is a linear

combination of nodal displacement. In this research we take l = F, thus C

becomes the total compliance of the structure. We know that compliance is

the inner product of the external force vector and the nodal displacement
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vector, which physically means the work done by external forces. Essen-

tially, a structure with smaller compliance under given loads has a larger

stiffness. The compliance and volume is a popular pair utilized in structural

optimization, of which another common version is taking the compliance as

the objective and volume as a constraint.

The main difference between simultaneous formulation and nested formu-

lation is that the later one regards the compliance of structure under equilib-

rium as an implicit function of design variables. This results in the following

optimization formulation:

min
x

V = ρTb

s.t. C(x)− Cmax 6 0 (2.2)

xmin 6 x 6 xmax

where C(x) = FTd(x) = FTK−1(x)F, which indicates that we have to

solve the linear system d = K−1(x)F every time the compliance C is evalu-

ated.

By comparing the two formulations, we can find that the nested formula-

tion involves less design variables than the simultaneous formulation which

has the nodal displacement as additional design variables. Nested formula-

tion also eliminates a set of equality constraints in the optimization. Typi-

cally, for a DTO problem, the nested formulation leads to a convex program-

ming problem with unique global optimum. Although this property is not

preserved as we convert the problem into a probability constrained optimiza-

tion, the nested formulation requires less computational cost since a linear

system can be solved efficiently by many well developed numerical solvers.

The obtained optimal design will not remove any potential bars. To get the

optimal topology, a typical approach is to apply a cutoff strategy: members

with cross-sectional areas xi < ηxmax will be ignored in the output topology,

where η is an artificial parameter to control how much information is wanted.

This strategy may present results with unbalanced nodes and unconnected

elements, but mostly the topology will be clearly implied and serves well

for purpose of conceptual design. However, this is still a field that can be

improved for ground structure approach and will be considered in future
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researches.

2.2 Sensitivity Analysis of Compliance

To perform a gradient-based optimization, the sensitivity is necessary. The

derivatives of the volume is rather simple to derive since it is a linear func-

tion. The sensitivity of compliance, however, requires some efforts to obtain.

Attributing to the effort researchers have done, the derivation of sensitivity

of compliance can be found in many literatures [2, 15, 30]. There are two

different methods to obtain the sensitivity, namely the direct differentiation

method and the adjoint variable method. For compliance, both methods

yield a same result. We will briefly summarize the process by the direct dif-

ferentiation method since it is more straightforward than the other method.

We consider C(x) = FTd(x). Taking derivative with respect to xj, since

in this research F is not a function of x, the derivative can be written as:

∂C(x)

∂xj
= FT∂d(x)

∂xj
(2.3)

The derivative of the equilibrium equation with respect to xj is given by:

∂K(x)

∂xj
d + K(x)

∂d

∂xj
=
∂F

∂xj
= 0 (2.4)

Rearranging terms of Eq. (2.4), we obtain:

∂d(x)

∂xj
= −K−1 ∂K

∂xj
d

= −K−1
∂(
∑m

j=1 xjK
0
j)

∂xj
d

= −K−1K0
jd (2.5)

where K0
j is the element stiffness matrix of the jth element in global coordi-

nates of degrees of freedom divided by the member area xj, which is called

constant element stiffness matrix [15]; and m is the number of elements (i.e.

number of design variables). Substituting Eq. (2.5) to Eq. (2.3), and con-

sidering the symmetry of the stiffness matrix K, we obtain:
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∂C

∂xj
= −dTK0

jd (2.6)

Eq. (2.6) is not very costly to compute since K0
j is a sparse matrix with only

16 non-zero entries at most, but it requires to be evaluated component-wise

of x.
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CHAPTER 3

RELIABILITY-BASED DESIGN
OPTIMIZATION

3.1 Reliability Methods

In this section, we will briefly review several most popular reliability meth-

ods, namely the first-order reliability method (FORM), the second-order re-

liability method (SORM) and Monte Carlo simulation (MCS). We will not

discuss much details, thus for further interest, we refer to [31, 32, 33]. The

methods of reliability theory are concerned with estimating the failure prob-

ability, Pf , of engineering system. In the context of structural reliability,

reliability index, β, is a common measure of reliability which is defined as

β = Φ−1(1− Pf ), where Φ(·) is the cumulative distribution function (CDF)

of a standard normal distribution and Φ−1(·) is its inverse operation.

Consider a set of random variables v with a joint probability density func-

tion (PDF), fv(v). A function g(v), called a limit state function, is defined

to determine the Boolean status of either safe or fail. By convention, a real-

ization of v that makes g(v) 6 0 is a failure event. And the surface described

by g(v) = 0 is called limit state surface which delimits the failure domain

and safe domain in the random space. Mathematical expression for Pf leads

to an integration:

Pf =

∫
g(v)60

fv(v)dv (3.1)

Since the joint distribution of original random variables are usually difficult

ot deal with. To perform a reliability analysis, a common initiation is to

perform a probability preserving transformation u = T (v), where u is a

vector of independent standard normal random variables. This will transform

Eq. (3.1) into:
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Pf =

∫
G(u)60

ϕn(u)du (3.2)

where ϕn(·) is the multi-variate standard normal PDF with uncorrelated

components and G(u) = g(T−1(u)). However, the integral in Eq. (3.2)

is not tractable to compute, especially in multidimensional random space.

Hence, numerical methods are developed to approximate Pf .

One approach is by taking samples and collecting the discrete data to esti-

mate Pf . Since a set of independent standard normal distribution can be gen-

erated using well-developed numerical processes, a MCS is often performed

by first generating a large number of realizations of u and transforming them

back to the original random space of v. The probability of failure is then

approximated as:

Pf ≈
1

N

N∑
i=1

I(v) (3.3)

where N is the number of samples and I(v) is an indicator function:

I(v) =

{
1 if g(v) 6 0

0 if g(v) > 0
(3.4)

There are many variations of MCS but we will limit our discussion on the

basic ideas.

The standard normal space of transformed random variables u is rotational

symmetric and the value of ϕn(u) decays exponentially as moving away from

the origin. Based on these properties, the FORM takes a linear expansion of

the limit state surface at the point of maximum probability density which is

called the most likely failure point (as shown in Fig. 3.1). This point is also

named a design point or, the most central point. The point is conventionally

denoted as u∗, and it is defined as follows:

u∗ = argmin
u
{‖u‖ | G(u) = 0} (3.5)

By definition, the most likely failure point is the closet point to the ori-

gin on the limit state surface. The linear expansion at this point yields an

approximated failure probability as
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Pf ≈ 1− Φ(‖u∗‖) = Φ(−‖u∗‖) (3.6)

which only requires a little computational cost. If the reliability index

measured by FORM is denoted as β1, it is straightforward to obtain that

β1 = ‖u∗‖. The effort to find u∗ is mathematically an optimization prob-

lem with equality constraint. Researchers have developed algorithm partic-

ularly for this kind of problem, which is called HL-RF algorithm, named

after Hasofer, Lind, Rackwitz, and Fiessler [34]. An improved version of the

HL-RF algorithm proposed by Zhang and Der Kiureghian [35] employs line-

searching and damping parameter to make the original version more robust.

Essentially, the improved HL-RF algorithm is categorized to the family of

Steepest-Descent algorithms.

2u

1u

FORM

SORM

( ) 0G =u

O

Failure Domain

Safe Domain
( ) 0G >u

( ) 0G <u

Limit State Surface

*u

Figure 3.1: Illustration of FORM and SORM.

In order to improve the accuracy, researchers further considered using a

second-order quadratic expansion of the limit state surface. The expansion is

also taking at the most likely failure point since the region near the most likely

failure point is of the most importance as it has relatively high probability

density. The second order expansion requires information about the Hessian

of limit state function. The Hessian is the matrix contains second order

derivatives of a function which is usually expensive to compute. In addition,

an eigenvalue analysis of the Hessian needs to be performed in order to

11



obtain the principle curvatures of the limit state surface, since the solution

for probability integral with quadratic limit state function is written in terms

of principle curvatures. Different methods have been proposed to compute

the principle curvature and many times approximation is used. Moreover,

the exact result for probability integral with quadratic limit state function

proposed by Tvedt still requires integration [32]. The current known SORM

is essentially based on an expression proposed by Breitung [36]. This simple

and famous result is obtained by an asymptotic analysis as:

Pf ≈ Φ(−β1)
n−1∏
i=1

(1− β1κi)
−1/2 (3.7)

where κi’s are the principle curvatures of the limit state surface at u∗ and n

is the number of transformed random variables. Intuitively, the result can be

regarded as an update of FORM by a curvature correction term. However,

this expression is only valid for β1 > 1 and β1κi 6 1 for all i [32].

For practical applications, FORM often tends to be sufficiently accurate,

and it is the most popular technique for reliability assessment that is required

in RBDO algorithms.

3.2 A Review of RBDO Approaches

In this section, previous approaches of RBDO will be revisited via a check

of KKT optimality conditions. Consider a generic formulation of RBDO

problems with one reliability component:

min
x
f(x)

s.t. Pf =

∫
G(x,u)<0

ϕn(u)du 6 P t
f (3.8)

h(x) 6 0

where P t
f is the target failure probability; x is the vector of design variables; u

is the vector of transformed random variables; f(x) is the objective function;

G(x,u) is the limit state function that defines failure event; and h(x) is a

set of deterministic constraints such as lower and upper bounds of x.

12



Theoretically, the KKT optimality conditions of the mathematical model

of RBDO (Eq. 3.8) would become:

1. Stationary condition: ∇xf + λ∇xPf +
∑
γi∇xhi = 0

2. Primal feasibility: Pf − P t
f 6 0, hi 6 0 ∀i

3. Dual feasibility: λ > 0, γi > 0 ∀i

4. Complementary slackness: λ(Pf − P t
f ) = 0, γihi = 0 ∀i

where λ and γi’s are Lagrange multipliers. The KKT conditions are necessary

for a solution to be optimal. In RBDO, due to the presence of probabilistic

constraint, the stationary condition and primal feasibility are only approxi-

mately satisfied at the optimum. Different RBDO algorithms have different

approximations about the KKT conditions and may differ with the process

to achieve a solution. We will show that RIA and PMA share the same

approximations about the KKT conditions, in particular ∇xPf and Pf , and

RBDO algorithms based on first order expansion of the limit state function,

may not work for RBTO.

Design point 
of optimal design 

tβ

PMA
RIA

1u

2u( , *) 0G =u x

O

( , ) 0iG =u x

0( , ) 0G =u x

Figure 3.2: Trajectory of the optimization process of RIA and PMA in the
standard normal random space.

In the RIA formulation, the reliability constraints are considered directly.

The sensitivity of failure probability with respect to design variables is used

13



to get the search direction in topology optimization. An analytical expression

for the derivative ∇xβ is derived by Hohenbichler and Rackwitz [37] under

assumption of an affine limit state function.

∇xβ =
1

‖∇uG∗‖
∇xG

∗ (3.9)

where G∗ denotes G(x,u∗), which is the limit state function evaluated at

the design point u∗ with current design x when it is evaluated. Since Pf =

1−Φ(β), we have dPf/dβ = −ϕ(β). By applying the chain rule, we obtain:

∇xPf = − ϕ(β)

‖∇uG∗‖
∇xG

∗ (3.10)

The KKT stationary condition of RIA is then given by:

∇xf + λRIA
[
− ϕ(β)

‖∇uG∗‖
∇xG

∗
]

+
∑

γi∇xhi = 0 (3.11)

As stated before, Eq. (3.9) and (3.10) are derived based on the assumption

that the limit state function is affine. For nonlinear limit state functions, the

expressions can be regarded as the sensitivity of the reliability index obtained

by FORM (i.e. β1). Thus, in the rest of this thesis, Eqs. (3.9) and (3.10)

will be stated as FORM-based sensitivity approximation. In general, differ-

entiation of an approximate expression would enlarge the error. Therefore,

some times even though the FORM provides a good approximation of the Pf ,

the sensitivity ∇xPf calculated by FORM-based approximation could have

a large error.

The PMA formulation applies inverse FORM reliability analysis. The

approach defines a target performance function Gt(x) = G(x,ut) and incor-

porates it as it is a deterministic constraint of topology optimization, where

ut is an estimation of the design point of the optimal design which is also

called the most probable point (MPP) and is updated at each iteration as

ut = argmin
u
{G(x,u) | ‖u‖ = βt = Φ−1(1− P t

f )} (3.12)

Usually approximated ut is used to reduce computational cost. The ad-

vantage of PMA is that it is not very sensitive to the accuracy of ut, thus

single loop algorithms, which involve a coarse approximation of ut, are usu-

ally developed based on PMA. However, when the optimum is achieved and
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the probabilistic constraint become active, ut converges to the design point

of the final design [16]. The KKT stationary condition of the PMA becomes:

∇xf + λPMA(−∇xG
∗) +

∑
γi∇xhi = 0 (3.13)

Equation (3.11) and (3.13) are the same except the second term that has

a different coefficient. If the probabilistic constraint is active and the design

point is unique, the two approaches will yield λPMA = ϕ(β)
‖∇uG∗‖λ

RIA, thus the

KKT conditions become identical. Hence, although PMA tends to be more

robust than RIA, it does not improve the result of the optimization since it is

mathematically equivalent to RIA when the problem is well posed. If we look

at the iteration process, PMA and RIA have different paths to achieve the

same design point of the same “optimal” design. The trajectories of RIA and

PMA in the random space are illustrated in Fig. 3.2, where x∗ refers to the

“optimal” design, x0 is the initial design, and xi represent one intermediate

design of the optimization process.

Many algorithms which are developed based on RIA and PMA incorpo-

rate SORM, MCS or other reliability methods to improve the approximation

of the primal feasibility condition (i.e. Pf ) [19, 25], but little attention has

been paid to the accuracy of the stationary condition which is instead more

influential to the optimal topology than the feasibility condition. Further-

more, the error in sensitivity is cumulative since it determines the search

direction at each iteration of gradient-based optimization scheme. Since the

obtained stationary condition is approximated based on an one-point linear

expansion of the limit state surface, for problems with a nonlinear limit state

surface like RBTO, the validity of using FORM-based algorithms need to be

reconsidered.

3.3 Gradient of Probability Function

In order to examine the influence of the error introduced by the approxima-

tion of ∇xPf in FORM-based approaches, an analytical solution of ∇xPf for

general limit state functions is needed. In the derivation, we will only assume

that the limit state function is smooth and continuous.

Based on the assumption, for each point on the limit state surface, if we
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take a perturbation δx on the design variables, it would move to a new

location in the random variable space. If the movement is denoted as δu, the

following equation has to be satisfied

δG(u,x) = ∇xG(u,x)δx +∇uG(u,x)δu = 0 (3.14)

G∇u

G∇u

2u

1u

( , ) 0G =u x

G∇u

SAFE 
DOMAIN

FAILURE 
DOMAIN

1'u
2'u

D∆

( , ) 0G δ+ =u x x

d fPδ

Figure 3.3: Geometric representation of general continuous limit state
surface.

The limit state surface in the u-space can be regarded as a level set of the

surface G(u,x) = 0 in the hybrid space of random variables u and design

variables x at a certain level of x. The coordinates x are orthogonal to u

since the random variables are independent from the design variables. Hence,

the small change δu, which is due to the perturbation δx, will along the same

direction of ∇uG(u,x). We rotate the coordinate system of the u-space such

that the axis e′1 is in the opposite direction of ∇uG(u,x). Denote the new

coordinates as u′ = Qu = [u′1, û
′]T, where the rotational operator Q is a

function of u and x. Notice that Q is not the same for different points on

limit state surface. Then Eq. (3.14) can be rewritten in the form as:

δG(u,x) = ∇xG(u,x)δx + ‖∇uG(u,x)‖δu′1 = 0 (3.15)

The change of failure probability due to a perturbation of x is the integration

of probability density function over the change of the failure domain. The
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change of failure domain is denoted as ∆D, which is the region between the

dashed curve and solid curve in Fig. 3.3. Thus we can obtain:

δPf =

∫
G(u,x+δx)60

ϕ(u)du−
∫
G(u,x)60

ϕ(u)du =

∫
∆D

ϕ(u)du (3.16)

Taking a small piece of the ∆D and calculating the volume under the prob-

ability density function, we obtain:

dδPf = ϕn(u′)δu′1δû
′ (3.17)

where δû′ = δu′2δu
′
3...δu

′
n and n is the number of random variables. Substi-

tuting (3.15) into (3.17), we obtain

dδPf = −ϕn(u′)
∇xGδx

‖∇uG‖
δû′ (3.18)

Taking the limit δu → 0 and integrating dδPf over the limit state surface,

an integral expression for the change of failure probability is obtained:

δPf =

∫
S′

dδPf =

∫
S′
−ϕn(u′)

∇xGδx

‖∇uG‖
dû′ (3.19)

where S and S ′ are the limit state surface in original coordinates and rotated

coordinates. Rearranging the terms, we can get the sensitivity of the failure

probability with respect to design variables as:

∂Pf
∂x

=
δPf
δx

=

∫
S′
−ϕn(u′)

∇xG

‖∇ug‖
dû′ =

∫
S′
−ϕn(u′)

‖∇ug‖
∇xGdS ′ (3.20)

Although Q is not a constant operator, since rotational matrix is orthogonal,

the determinant of Q always has the value 1. Hence, dS ′ = (detQ)dS =

dS. Also since the standard normal space is rotational symmetric, ϕn(u′) =

ϕn(u). Eq. (3.20) can be rewritten in the original coordinate as

∂Pf
∂x

= −
∫
S

ϕn(u)

‖∇uG‖
∇xGdS (3.21)

A different version of Eq. (3.21) has been proposed by Royset and Polak

[27] that is derived inversely from discrete form of failure probability. Also a

more complete expression is found in the paper by Uryasev [38] published in
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1994 where the probability distributions of u are considered also a function

of x. The expression for the gradient of failure probability with respect to

design variable is a surface integral over the limit state surface. Thus for the

FORM-based approximation, which is calculated only at the design point,

the error can be very large since a lot of information is missing. For example,

if the design have an impact on the curvature of the limit state surface, the

approximated sensitivity which is based on linear expansion at one point

on limit state surface would never capture this kind of influence. This will

be illustrated in the first numerical example. In spite of the fact that the

influence of this error differs for different problems because some problems

are sensitive to search direction while some are not, examples reveal that the

error in sensitivity computation can exceed the tolerance of RBTO problems.

In the case of limit state functions with multiple design points, which is not

very rare in RBTO problems, it is reported that FORM-based algorithms

have convergence issues [24].

In the following, we will show that when applying to affine limit state

function, Eq. (3.21) will be the same with Eq. (3.10). Consider an affine

limit state function:

G(u,x) = a(x)Tu + b(x) (3.22)

1u

2u

( , ) 0G =u x
*G∇u

G∇u

G∇u

SAFE 
DOMAIN

FAILURE 
DOMAIN

2u’
1u’

( ,0)β

( , ) 0G δ+ =u x x

Figure 3.4: Geometric representation of affine limit state surface.
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And we have:

∇xG = [∇a]u +∇b (3.23)

where a(x) is a vector function of x and b(x) is a scalar function of x. Because

the function is affine in u, ∇uG remains a constant vector for a given design

x. Thus by the definition of the operator Q, it will also remain unchanged

for each point on the limit state surface. Denoting u∗ as the design point,

we now have

u′∗ =

[
β

0

]
= Qu∗ (3.24)

where β = ‖u∗‖, which is the reliability index. Other points on the limit

state surface can be expressed as:

u′ =

[
β

û′

]
= Qu (3.25)

where the first component is the same with the design point and the other

components are denoted as û′. Due to the fact that ϕn(u) = ϕn(u′) =

ϕ(β)ϕn−1(û′), Eq. (3.21) can be rewritten in the following way:

∇xPf = −
∫
S′

ϕ(β)ϕn−1(û′)

‖∇uG‖
∇xGdS ′

= − ϕ(β)

‖∇uG∗‖

∫
S′
ϕn−1(û′)∇xGdS ′ (3.26)

Substituting Eq. (3.23) and Eq. (3.25) in Eq. (3.26), we have:

∇xPf = − ϕ(β)

‖∇uG∗‖

∫
S′
ϕn−1(û′)

(
[∇a]Q−1

[
β

û′

]
+∇b

)
dS ′

= − ϕ(β)

‖∇uG∗‖

∫
S′
ϕn−1(û′)

[
[∇a]Q−1

([
β

0

]
+

[
0

û′

])
+∇b

]
dS ′

(3.27)

Realizing that ϕn−1(û′) is an even function of û′ and [∇a]Q−1

[
0

û′

]
is an odd
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function, the integration yields:

∇xPf = − ϕ(β)

‖∇uG∗‖

∫
S′
ϕn−1(û′)

(
[∇a]T−1

[
β

0

]
+∇b

)
dS ′ (3.28)

Substituting Eq. (3.23) and (3.24) in Eq. (3.28), since
∫
S′
ϕn−1(û′)dS ′ = 1,

we can obtain:

∇xPf = − ϕ(β)

‖∇uG∗‖

∫
S′
ϕn−1(û′)∇xG

∗dS ′

= − ϕ(β)

‖∇uG∗‖
∇xG

∗
∫
S′
ϕn−1(û′)dS ′

= − ϕ(β)

‖∇uG∗‖
∇xG

∗ (3.29)

Finally Eq. (3.10) by Hohenbichler and Rackwitz [37] which is developed

based on affine assumption of limits state function is recovered from the

general integral form of derivative of failure probability.
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CHAPTER 4

RELIABILITY-BASED TOPOLOGY
OPTIMIZATION FORMULATION

Inherited from the nested formulation described in Chapter 2, the mathe-

matical formulation of the RBTO problem considered in this thesis is stated

as follows:

min
x

V = 1Tb

s.t. P [C(x)− Cmax < 0]− P t
f 6 0 (4.1)

xmin 6x 6 xmax

where 1 is a vector of 1’s as mentioned in Chapter 2. The design variables

x are member areas of the ground structure. The only difference between

formulation (4.1) with (2.2) is that the deterministic constraint on the com-

pliance becomes a probabilistic constraint due to the introduction of random

variables. A small value ε = 10−4 is assigned to xmin in order to prevent

singularity of the structural stiffness matrix K.

Based on the formulation, the RBTO algorithm is developed in the manner

of RIA, where we directly state the probability constraint in the optimization.

Different from the traditional RIA, the sensitivity will be calculated using

a new approximation. Details about the new approximation is addressed

in Section 1 of this Chapter. Section 2 discusses the auxiliary benefit of

this method on reliability assessment. Finally, the optimization algorithm is

discussed in Section 3.
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4.1 Segmental Multi-Point Linearization for Sensitivity

Calculation

For most cases, the integral in Eq. (3.21) is not computationally tractable

since it is a multi-dimensional surface integral. However, we can make ap-

proximation by taking multi-point linearization of the limit state surface. As

the term ϕn(u)
‖∇uG‖ is just a scalar, the integral can be regarded as a weighted sum

of ∇xG on the limit state surface. Inspired by numerical integration, instead

of integrating over the curved surface, the proposed method takes a multi-

point discrete representation of the integral. Eq. (3.10) can be regarded as

a one-point discrete representation of Eq. (3.21). A discrete representation

can be described in the following form:

∇xPf = −
∫
S

ϕn(u)

‖∇uG‖
∇xGdS

≈
p∑
j=1

Wj∇xG
j (4.2)

where Wj is the corresponding weight for ∇xG
j evaluated at point j and p

is the number of discrete components ∇xG
j. The approximation of ∇xPf

involves two main steps: (1) choose sample points; (2) calculate weight Wj

based on a local linearization of limit state surface around sample points. Eq.

(3.10) can be regarded as a special case where the only one sample point is

chosen to be the design point and the weight is calculated to be − ϕ(β)
‖∇uG∗‖ by

taking a tangent linearization of the limit state surface at the design point.

There are several guidelines for choosing the sample points. First, since

Eq. (3.21) is a surface integral, the sample points should not be away from

the surface. Second, the information should be collected from the region

that is close to the origin of the u-space. The reason is that the value of

ϕ(u) only depends on the distance of the point to the origin in the standard

normal space (i.e. ‖u‖) and decays very quickly as the distance increases.

Additionally, the sample points should not be too close to each other in

order to avoid repetitive information since based on our assumption there is

no jumps in the function and ∇xG and ∇uG should vary smoothly. Based on

these guidelines, we propose a simple scheme to determine the sample points

systematically.
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Figure 4.1: Graphical illustration of the proposed segmental multi-point
linearization method (SML), where green triangle refers to the reference
point, blue circles refer to sample point, (±i) represent u(±i).

The method is summarized as follows:

1. Select a reference point u(+1);

2. Rotate the coordinates such that the reference point lies on the positive

part of the first axis of the new coordinates;

3. Search for intersection points of the new axes and the limit state sur-

face within radius r = kβ̃ from the origin, where k is a user defined

parameter and β̃ is the approximated reliability index of current design.

4. Finally the sample points are taken as the intersection points including

the reference point.

The rotation of coordinates is achieved by a constant orthogonal transfor-

mation R such that u′(+1) = Ru(+1) = [‖u(+1)‖, 0, . . . , 0]T. The rotational

matrix R is easy to compute by replacing the first column of an identity

matrix by u(+1)/‖u(+1)‖ and applying a QR factorization to the matrix, for
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example, a Gram-Schmidt process. We denote the positive direction of the

new axes i as e′+i and the negative as e′−i. The computation of the intersection

points can be done by solving the 1D nonlinear equation G(x, αi(e
′
i)) = 0 for

αi and the solution is simply αie
′
i. There are many well developed algorithms

that are efficient and robust for solving 1D nonlinear equations such as the

bisection method. If for one direction there is no intersection point inside

the hypersphere with r = kβ̃, we will assume that the intersection point is

located at infinity (i.e. no intersection). For example, point u(+2) in Fig. 4.1

is not a sample point and it is taken to be at the infinity of direction e′+2.

The parameter k defines how large the search region is. Mostly, it should

have a value between 2 and 5 in order to make sure that nonlinearity of the

limit state surface is captured by the sample points that are too far from the

origin. The reference point is the intersection of the limit state surface with

the positive part of axis 1.

To determine the weights, first the limit state surface is linearized at the

sample points such that it is approximated by several segments of hyper-

planes. For example, we assume that the jth sample point is on the positive

direction of axis i and it is denoted as u(+i). The hyperplane determined by

u(+i) must pass the sample point and be orthogonal to e+i. The gradient with

respect to u of the affine function that describes the hyperplane is defined

as ∇uG
je′+i, which is the projection of the gradient of limit state function at

the sample point onto direction e+i. Graphically, the approximation looks

like fitting the limit state surface with a “box”. The “box” is shown in Fig.

4.1 with black dashed lines. The limit state function is linearized not only

with respect to random variables u but also design variables x at the sample

points. Therefore, on each hyperplane, ∇uG and ∇xG remains constant.

This segmental linearization is consistent with the idea in Eq. 4.2:

∇xPf = −
∫
S

ϕn(u)

‖∇uG‖
∇xGdS

≈
p∑
j=1

∫
Sj

− ϕn(u)

‖∇uG‖
∇xGdSj

=

p∑
j=1

−

∫
Sj
ϕn(u)dSj

‖∇uGje′+i‖
∇xG

j (4.3)
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where Sj is one of the planar segments which appears as a face of the “box”;

p is the number of sample point (i.e. the number of planar segments). Com-

paring with Eq. 4.2, we can find the weight for discrete component ∇xG
j at

jth sample point simply defined by:

Wj = −

∫
Sj
ϕn(u)dSj

‖∇uGje′+i‖
(4.4)

Then we need to integrate the integral term in Eq. (4.4). We still suppose

u(+i) is the jth sample point. Using the orthogonality between adjacent planar

segments and the rotational symmetry of the standard normal space, we can

obtain:

∫
Sj

ϕn(u)dSj = ϕ(‖u(+i)‖)
∫
S′j

ϕn−1(û′)dS ′j

= ϕ(‖u(+i)‖)
n∏

k=1,k 6=i

(
Φ(‖u(+k)‖) + Φ(‖u(−k)‖)− 1

)
(4.5)

where S ′j is Sj described in the new rotated coordinates; n is the dimension

of random space (i.e. number of transformed random variables). If u(±k) is

not a sample point, we take Φ(‖u(±k)‖) = Φ(∞) = 1. Substituting Eq. (4.5)

to Eq. (4.4), the weight can be computed as:

Wj = − ϕ(‖u(+i)‖)
‖∇uGje′+i‖

n∏
k=1,k 6=i

(
Φ(‖u(+k)‖) + Φ(‖u(−k)‖)− 1

)
(4.6)

The idea of using segmental linear functions to approximate nonlinear limit

state surface is not novel. In [33], a so-called multi-point FORM (also named

as polyhedral approximation) is addressed for approximating failure probabil-

ity, which adopts locally most central points to construct a tangent bounding

polyhedron of the limit state surface. Different from the multi-point FORM,

the proposed segmental multi-point linearization method (SML) is devel-

oped for the purpose of sensitivity calculation. Thus, instead of bounding

the limit state surface with a tangent polyhedron to get a narrow bound of

failure probability, the SML interpolates the limit state function with an or-

thogonal “box” which leads directly to a multi-point discrete approximation

of the sensitivity of failure probability. In addition, the points we choose to
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construct linearization are not necessarily local or global most central points

and they can be generated systematically. This allows a great flexibility in

the linearization of nonlinear limit state surfaces and does not require special

iterative numerical techniques for searching the local and global most cen-

tral points [39]. However, in the future, as we exploring different variations

of SML, the linearization scheme of multi-point FORM can be one of the

possibilities.

To test the performance of the method, a simple illustrative numerical

example is conducted. Consider a limit state function defined as follows:

G(x, u1, u2) = −xu2
1 − u2 + c (4.7)

c

1u

2u

Change of Pf due to 
curvature variation

FORM 

Safe Domain

Failure Domain

Figure 4.2: Parabolic limit state function.

where x is the design variable; u1 and u2 are random variables; and c is a

system parameter which is the intercept of the curve G = 0 with axis u2.

Function G is directly defined in the standard normal random space, thus

there is no need to do the transformation of random variables. The function

G has also been used by Der Kiureghian and Dakessian [39] in the study of

limit state surface with multiple local design points. The design variable x

controls the curvature of the limit state surface. The function is properly

designed such that the analytical solution for the unique design point stays

at (0, c) for any x 6 0.5 and c > 1.0. The reliability index obtained by

FORM is then β1 = c and corresponding approximate failure probability

equals 1 − Φ(c). If the FORM-based approximation is used to compute the

sensitivity of Pf with respect to x, we will get:

∂Pf
∂x

= − ϕ(β)

‖∇uG∗‖
(−u2

1)|u1=0 = 0 (4.8)
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The zero here should not be interpreted as a special case. Instead, it

illustrates the inability of the FORM-based approximation (i.e. Eq. (3.10))

to capture any change of probability due to variations on curvature of the

limit state surface. In this example, as x changes its value, the failure domain

will also change. The corresponding change in Pf can be quite significant but

Eq. (4.8) would never reflect this change as shown in Fig. 4.2. Fig. 4.3 shows

the normalized values of the sensitivity calculated by different methods for

different values of c. The sensitivity is normalized by the failure probability

obtained by FORM (i.e. Pf,1 = 1−Φ(c)) in order to demonstrate the relative

importance of the sensitivity. We chose c to be 2 and 3 because they are

the most commonly used target reliabilities for structural engineering. The

exact solution is obtained by numerical quadrature of Eq. (3.21). This can

be done since there are only two random variables and one design variable

involved in this problem. In general, Eq. (3.21) is very hard to be evaluated

by numerical integration. The finite difference (FD) method is performed

using a central difference scheme, and Pf (x±∆x) is evaluated by MCS with

coefficient of variation (c.o.v.) equals 0.5%. From Fig. 4.3 one can see that

the approximated sensitivity obtained by the proposed method approximates

the exact value quite well. For positive curvatures (i.e. x < 0), the proposed

method is the same with FORM-based approximation, but in this case, both

of them provide good approximations of the sensitivity. The reason is that

for a limit state surface with positive curvature, the change of failure domain

due to change of x is located relatively far away from the origin thus the

change in Pf is almost negligible. As the curvature becomes negative and

the absolute value of it becomes large, the proposed method will start to

make improvement while FORM-based approximation cannot provide any

useful information.

4.2 Improvement of Reliability Assessment

Requiring no additional computation, the calculated weights can also be used

to improve the approximation of Pf . The idea here resembles the multi-point

FORM. In consistence with the “box” representation of the limit state sur-

face, the region inside the “box” can approximates the safe domain as shown

in Fig. 4.4. Due to the orthogonality between adjacent linear segments, the

27



−0.5 0 0.5

0

1

2

3

4

5

6

7

8

9

10

x
 

 

dP
f

dx
/P

f ,
1

[
]

Exact
SML Approximation
FD Method
FORM-based Approximation

(a) c = 2.

Exact
I-FORM Approximation
FD Method
Traditional Approximation

−0.5 0 0.5

0

10

20

30

40

50

60

70

80

90

100

x
 

 

dP
f

dx
/P

f ,
1

[
]

Exact
SML Approximation
FD Method
FORM-based Approximation

(b) c = 3.

Figure 4.3: Comparison of approximations of sensitivity.

failure probability is given by:

Pf = 1−
n∏
i=1

(
Φ(‖u(+i)‖) + Φ(‖u(−i)‖)− 1

)
(4.9)

c

1u

2u

Safe Domain

Failure Domain
SML

Figure 4.4: SML for parabolic limit state surface.

If the design point is taken as the reference point, the above expression

can be regarded as a modification of traditional FORM approximated Pf .

The obtained Pf will be larger or equal to the Pf obtained by traditional

FORM. It turns out to improve FORM when FORM underestimates the

failure probability; it will provide same value with FORM when FORM makes

a fairly good approximation or when FORM is conservative.

This simple scheme is applied to the limit state function in previous section

to examine its accuracy. Fig. 4.5 shows the failure probability obtained by

FORM, SML, SORM and MCS. The MCS is performed with c.o.v equals to

2.5%. The SORM approximation is based on Breitung’s formula (see Section

3.1). The result shows that SML is better than FORM and even comparable
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Figure 4.5: Comparison of approximations of failure probability.

with SORM. A problem with SORM is that it will not be valid for limit state

surfaces with large negative curvature [32].

In this Chapter, we only consider that the origin is inside the safe domain.

However, for the case that the origin is in the failure domain, one can use the

scheme to approximate the probability of safety (i.e. Ps) and the sensitivity

of safe probability (i.e. ∇xPs), and then use the equality Pf = 1− Ps to get

Pf and ∇xPf .

4.3 SML-Based RBTO Algorithm

In this section, we are going to discuss how to apply the SML method in

optimization process and how to choose and adjust the optimizer.

Since the sensitivity is calculated by combining the information from mul-

tiple points for the SML, the optimization process becomes naturally more

stable and robust than the traditional approaches using one-point discrete

approximation of sensitivity. Because there is only one point used to calculate

the sensitivity, if the point (i.e. u∗ for RIA or ut for PMA) change its location

rapidly, the traditional approaches may suffer huge jumps in the calculated

sensitivity. However, for a SML-based approach, even though the sample

points could be quite different among different iterations, the weighted sum

of sensitivity approximation would stay relative stable in value since the

weights are calculated adaptively. Actually, we have a quite large flexibility

in choosing the reference point. The reference point is not required to be
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dominating, so it can be any point that is on the limit state surface or even

just near the surface. This allows a single loop scheme to be possible. A

rigorous search for the reference point at each iteration is not required even

if the design point is set to be the reference point. We can use the existing

procedures in single loop RBDO methods to get the approximated design

point [23, 24, 20, 21, 16]. In this work, we adopt an incomplete improved

HL-RF search to get the design point. The location of the design point is up-

dated simultaneously with the design variables by using the updating formula

of improved HL-RF algorithm within one step of the topology optimization

iteration and recycling the data as the starting point for next iteration. Sim-

ilar strategy that is based on original HL-RF algorithm can be found in [20].

The design point is suggested to be the reference point due to two reasons:

1. It is the closest point on the limit state surface to the origin, thus the

information at the design point is of the most importance if neglecting

the effect of the denominator, ‖∇uG‖, in Eq. (3.21);

2. Taking the design point as the reference point makes sure that the algo-

rithm convert to FORM-based algorithm when the limit state function

does not have a large negative curvature.

However, it is not restricted to use the design point as reference point.

As an example of other possible reference point, one can specify a particular

direction that the reference point has to be on and solve a 1-D nonlinear equa-

tion to get the reference point that is on the limit state surface. Additionally,

heuristic update of the approximated Pf is also possible. As implemented in

other RBDO algorithms [19, 25], SORM, MCS or other reliability methods

can be used to get a more precise failure probability rather than using the

SML for reliability analysis as described in previous section.

The optimizer used in this research is the Method of Moving Asymptotes

(MMA) [40], which is quite popular for structural optimization. It turns out

that some other popular nonlinear programming techniques, namely Sequen-

tial Linear Programming (SLP) and Convex Linearization Method (CON-

LIN), are special cases of MMA [40, 15]. Thus one advantage of using MMA

is that it provides a unified library of some popular programming meth-

ods, and we can make choices just by adjusting the artificial parameters.

The MMA code used in this research is a simplified version of MMA which is
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specially developed for compliance-volume optimization in the book by Klar-

bring and Christensen [15]. The general code of MMA written by Svanberg

is used as a reference. In our implementation, as we adjust the parameter to

achieve and improve convergence, we finally make the MMA method equiva-

lent to CONLIN. In our experiments, CONLIN works very well for topology

optimization with probabilistic constraint. The CONLIN method was de-

veloped by Fleury which is published one year earlier than MMA in 1986

[41], and it is now rarely used in DTO because of its slow convergence. The

reason for its slow convergence is that the method makes a too conservative

convex approximation of the original problem [15]. Thus for a convex opti-

mization problem like the nested formulation, the convergence will turn out

to be slow. However, for RBTO which is not a convex optimization in most

cases, a conservative approximation is indeed preferred. Intuitively, when

doing RBTO, as the design variables being updated, the limit state surface

in the random space also varies. For most RBTO methods, including the

proposed one, they use discrete point(s) to track the change of limit state

surface, which requires an update of the point(s) at each iteration as well. If

the design variables changes too fast, the numerical method may not be able

to update the point(s) correctly to capture the change of limit state surface

especially for single loop approaches. Since the problem is not convex, the

optimization can easily diverge due to an error in one step of iteration.

Even though CONLIN tends to make conservative updates, we can still

observe some oscillatory behavior. To eliminate the oscillations, an adaptive

limiter on step size is added to the updating scheme. Optimizers like CON-

LIN and MMA will calculate the value of design variables for next iteration

directly instead of calculating a step like most other optimizers do, so our

updating scheme appears as follows:

xk+1 = α(x̄k+1 − xk) + xk (4.10)

where k is the current step number; x̄k+1 is the output of the optimizer; α

is the adaptive step size which is defined as:

α =

{
cfast if sgn(xki − xki ) = sgn(x̄k+1

i − xki )
cslow if sgn(xki − xki ) 6= sgn(x̄k+1

i − xki )
(4.11)

The two parameters cslow and cfast controls the step size. The limiter is ap-
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plied to each design variables. When a member keep increasing or decreasing

its size during the optimization process, it should be safe to make a relatively

large step size (i.e. cfast); in contrast, when a member size oscillates, we

should use a smaller step size (i.e. cslow) to limit the potential of divergence.

The choice of cfast and cslow depends on specific problem. In general, they

work well with the setting cfast = 0.6 and cslow = 0.1. This heuristic method

works effectively as we perform the RBTO problems. Although as a trade-

off, more number of iterations is needed to converge, for most problems, we

can get smooth convergence other than divergence or oscillation.
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CHAPTER 5

NUMERICAL EXAMPLES

5.1 A Benchmark Problem

The first example for RBTO is a benchmark problem proposed by Rozvany

[42]. The analytical solution for the problem has been derived. It can be

used to check the validity of numerical methods for RBTO. The problem is

depicted in Fig. 5.1a. The design domain has a width L = 2 and depth D =

1. The horizontal force H is the only random variable. H is characterized by

a normal distribution with a mean of 0 and a standard deviation of 1. The

vertical force V is fixed with a value of 3 acting downwards. Young’s modulus

E is taken as a unit value. The formulation of the optimization problem is

described in Section 5. The threshold for the compliance is Cmax = 1. The

target failure probability is 0.0027, which corresponds to βt = 2.7822, as

proposed in [42].

The analytical solution of the problem is given by a two-bar truss as

shown in Fig. 5.1b with α = 35.26439◦ and a non-dimensional volume of

2.44949. The non-dimensional volume is defined as V/AL, where A is the

α
1

1

2

V
H

(a)

α
1

1

2

V
H

(b)

Figure 5.1: Benchmark problem for RBTO. (a) Domain, loading and
boundary conditions. (b) Optimal topology.
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cross-sectional area of the members and L is the width of the design do-

main. The numerical solution by the proposed algorithm is extracted from

a ground structure on a 40 × 2 grid with full connectivity, which results in

4322 non-overlapping potential members in total. The obtained topology is

almost the same with the analytical solution. It has an angle α = 34.9920

and non-dimensional volume of 2.4530. The difference is mainly due to the

discrete nature of the ground structure approach.

Some FORM-based methods can also provide correct answer to the prob-

lem [24]. However, our new method achieves the optimum in a more rea-

sonable way. For this benchmark problem, it is clear that there are two

symmetric design points. One corresponds to H towards left and the other

refers to the case when H is acting to the right. As discussed before, most of

the FORM-based algorithms would calculate the sensitivity at only one point

in the random space. Therefore, the optimal structure is actually designed

for either H to the left or to the right but not both. The only reason that

a correct result can be obtained is because linear elastic material behaves

the same in tension and compression, so the direction of H does not really

matter in this particular case. While the SML-based algorithm proposed in

this thesis takes a combination of derivatives evaluated at both design points

and the optimization is performed considering both H to the left and right.

Therefore, even though the proposed method does not show its advantage

in this benchmark problem, it is more logically rational and computationally

robust in general. The advantage will be demonstrated in detail in following

examples.

5.2 Symmetric Crane Arm Design

In this example, we are going to demonstrate the advantage of the new

method by comparing the results of DTO, FORM-based PMA and the pro-

posed SML-based RIA. The objective is to minimize the volume of the struc-

ture with a probabilistic constraint described in terms of compliance. Con-

sider a crane arm design in a domain shown in Fig. 5.2. The topology

optimization is performed on a 9 × 3 ground structure with level 6 nodal

connectivity in horizontal direction and level 3 in vertical direction as shown

in Fig. 5.3. The material of the structure is linear elastic with Young’s
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Modulus E = 100. The structure is subjected to two independent vertical

loads acting on the two tips of the crane. Each of them is assumed to follow

a normal distribution with mean of 7.0 and standard deviation of 3.0. The

limit on compliance is set to be Cmax = 1.2. Since there are only two random

variables involved, we can plot the limit state surface in a 2-D plot in order

to compare the obtained optimal designs in detail.

First, a DTO is conducted. The two loads take their mean values multi-

plied by a safety factor of 2. The obtained optimal design is shown in Fig.

5.4. The members are plotted with thickness proportional to computed mem-

ber areas. The volume of the structure is 96 (rounded off). However, this

topology of structure is not stable. It is a common issue of DTO that it can

provide optimal topology of structure that is not stable. Due to the small

lower bound of the members in nested formulation of the ground structure

approach, the optimal structure still has a little bit of resistance to collapse

in its computational model. The actual failure probability is then measured

to be 0.96 by a Monte Carlo simulation with c.o.v. equals 2.5%. In the

rest of the thesis, the actual failure probabilities are all refers to the result

obtained by MCS since the c.o.v. is set to be small and the obtained failure

probability is very close to the true value.

3

1

1

V1 V2

Figure 5.2: Design domain and boundary conditions of example 2.

Next, a FORM-based RBTO is perform using a single loop PMA. The

target failure probability is P t
f = 0.0013 which corresponds to a target relia-

bility index of 3.0. Fig. 5.5 shows the obtained optimal design. The result

has an optimal volume equals 89 and actual Pf = 0.6554. The contour plot

of compliance function is plotted in Fig. 5.7. The thick curve is the limit
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3

1

1

Figure 5.3: Ground structure used to do RBTO which has 440
non-overlapping members.

state surface of G = 0 in the standard normal random space, where u1 and

u2 are the transformed random variables of the vertical force V1 and V2. We

can see that the MPP which is expected to be the design point of final design

converges to a point that is a local maximum point with respect to ‖u‖. This

happens with single loop methods, since they use the solution of the KKT

necessary conditions of Eq. (3.12) to replace the thorough search for ut. The

MPP in blue circle in Fig. 5.7 satisfies the necessary conditions but is not

the expected ut. The invalid design is obtained because of a cumulation of

error in sensitivity calculation during the optimization process. With differ-

ent settings of initial point for ut, we may get different optimal topologies,

for example the one shown in Fig. 5.7. If double loop PMA, which we also

tried, is used, the optimization will not be able to converge. Same thing

happens with double loop RIA. This is due to the fact that the initial design

has a limit state function that are symmetric about the line u1 = u2 in the

random space, thus either the u∗ in RIA or ut in PMA will oscillate between

two points as the structure been optimized either for the case V1 > V2 or

V1 < V2. Similar behavior of FORM-based gradient methods for RBTO with

density approach is reported in the paper by Silva et al [24].

The SML-based algorithm is then performed to the problem. We consider

two variations of the algorithm: (1) set the reference point to be the design

point; (2) enforce the reference point to be in the direction of u1 = u2,

which corresponds to V1 = V2. The optimal structural layout obtained by

formulation (1) is presented in Fig. 5.8 and the result by (2) is shown in Fig.
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Figure 5.4: Optimal topology by DTO.

Figure 5.5: Optimal topology by FORM-based PMA.

−50

−50

−50

−50

−50

−40

−40

−40

−40

−40

−30

−30

−30

−30

−30

−30

−20

−20

−20

−20

−20

−20

−10

−10

−10

−10

−10

−10

0

0

0

0

0

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

1u

2u

Contour of Compliance

Figure 5.6: Contour plot of G(u,x∗) for optimal design of Fig. 5.5. The
blue circle indicates the design point computed by the PMA; the green
triangle refers to the actual position of design point; the red solid curve is
the limit state surface described by G(u,x∗) = 0.
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Figure 5.7: Another optimal topology by FORM-based PMA.

Figure 5.8: Optimal topology by SML-based RIA taking design point the
reference point.

Figure 5.9: Optimal topology by SML-based RIA enforcing reference point
to be on the line u1 = u2.
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Figure 5.10: Contour plot of G(u,x∗) for optimal design of Fig. 5.8. The
blue circle indicates the sample points; the green triangle refers to the
design point(s); the green triangle refers to the actual position of design
point; the red solid curve is the limit state surface described by
G(u,x∗) = 0.

5.9. The two results are very similar, the first one has an optimal volume

equals 121 with actual reliability index of 2.8 and the second one has a volume

of 114 and reliability index of 2.7. In terms of safe probability (i.e. 1− Pf ),
the errors are 0.13% and 0.22% compare to the target reliability 0.9987. The

design loads and domain are all symmetric thus the optimal topology should

also be symmetric. However, the first one is close to a symmetric design but

not exactly symmetric. By specifying the direction of reference point, the

second one converges to a symmetric optimal design because the reference

point is on the symmetry axis of the limit state function, which makes the

symmetry of initial design being preserved. The example shows that the

choice of reference point is quite flexible, and we can make our choices to

get desired features, for example symmetric topology as in this example.

Fig. 5.10 and Fig. 5.11 are the contour plots of the limit state functions

for the obtained optimal designs. Taking the design point as the reference

point results in 4 sample points. The safe region is approximated by a closed
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Figure 5.11: Contour plot of G(u,x∗) for optimal design of Fig. 5.9. The
blue circle indicates the sample points; the green triangle refers to the
design point(s); the green triangle refers to the actual position of design
point; the red solid curve is the limit state surface described by
G(u,x∗) = 0.

“box” as shown in dashed lines in both figures. The second form yields 3

sample points, and they are symmetric about the line u1 = u2. The “box”

is not closed and the limit state surface is approximated by three segments.

Although none of the two design points is captured, we still get a good

approximation of the sensitivity.

5.3 Unsymmetric Crane Arm Design

In the previous example, the FORM-based methods cannot provide a valid

design. Furthermore, We will show that even in the case that the FORM-

based RBTO algorithm could provide valid design, the design may not be

optimal. In this example, the design domain is modified to be unsymmetric.

The design domain is now a 4 by 1 rectangle with the loads still on the two

tips but not symmetric about support (see Fig. 5.12). The ground structure
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used to do the optimization is a 12 × 3 grid with level 6 nodal connectivity

which contains 629 non-overlapping members. The target reliability index is

set to be 2.0. which is equivalent to have P t
f = 0.0228. The Young’s modulus

E, limitation on compliance Cmax, vertical forces V1 and V2 are the same

with the previous example. The PMA used in the last example is performed

as a representation of the FORM-based methods.

4

1

1

V1 V2

Figure 5.12: Design domain and boundary conditions of example 3.

Figure 5.13: Optimal topology by DTO.

Figure 5.14: Optimal topology by FORM-based PMA.

DTO is also performed with a safety factor of 2 (see Fig. 5.13). The

optimal topology by DTO is stable for this problem with a volume of 286,

but as we test the design by MCS, the reliability index is only 1.04. Fig.
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Figure 5.15: Optimal topology by SML-based RIA with design point being
the reference point.

5.14 shows the optimal topology obtained by the PMA. For this problem, the

MPP ut successfully converges to the unique design point of the final design.

The result has a volume equals 274 and the actual reliability index is 1.5.

Unlike its performance in the previous example, the obtained design is valid.

However, comparing to the design obtained by the new approach (as shown

in Fig. 5.15), the design by SML-based RIA is closer to the optimal design

than FORM-based single loop PMA. The proposed new method converges to

a design with volume of 278 and a reliability index, obtained by MCS, of 1.9.

The two designs are almost same in volume but the design by SML-based

approach has a higher reliability, which means that the material is assigned

more efficiently by the proposed algorithm than the conventional FORM-

based algorithm. Although we cannot prove rigorously that the new method

converges to a global optimum, we can still conclude that the new approach

provides a better result than the traditional method. The error in sensitivity

makes the numerical solution of FORM-based algorithms not close to the

real optimum that satisfies the KKT conditions. The contour plot of the

limit state function of the design obtained by SML-based algorithm is shown

in Fig. 5.16. We can see that the reference point coincides with the design

point of the final design. This reference point generates 3 sample points in

total.

To incorporate the randomness in material property, we add the Young’s

modulus as an additional random variable which has a lognormal distribution

with a mean of 100 and a standard deviation of 10. The lognormal distribu-

tion is employed because it cannot have a negative value, which matches the

physical nature of Young’s modulus. The PDF of E is plotted in Fig. 5.17.

The optimal design has a volume equals 286 and actual reliability index of

1.9. Comparing to the design with a fixed E, the volume increases due to
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Figure 5.16: Contour plot of G(u,x∗) for optimal design of Fig. 5.15. The
blue circle indicates the sample points; the green triangle refers to the
design point; the red solid curve is the limit state surface described by
G(u,x∗) = 0.

the introduction of uncertainty in material property. The optimal topology

is presented in Fig. 5.18, which is also slightly different with the one without

considering randomness of E.

5.4 T-shaped Building Design

The final example is a comprehensive design problem towards potential re-

alistic applications. We are going to design the structural components of a

T-shaped building as shown in Fig. 5.19a. The design domain has a concave

geometry rather than a simple rectangle. This is to show that the algorithm

is universally suitable to handle arbitrary design domains. The design do-

main can be generated by the algorithm developed by Zegard and Paulino

which is based on restriction zone method [12]. The ground structure used

to perform the optimization is shown in Fig. 5.19b. The structure carries

two vertical loads (V1 and V2), and two horizontal loads H1 and H2. The four
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Figure 5.17: Probability distribution of Young’s modulus E.

Figure 5.18: Optimal topology by SML-based RIA considering randomness
of E.

forces and Young’s modulus are taken as random variables in this problem.

The probability distributions of the random variables can be found in Table.

5.1. The building is fixed at the bottom. Unlike the previous examples, the

random variables in this problem are not independent to each other. V1 and

V2 are correlated with a correlation coefficient (C.C.) of 0.2; H1 and H2 have

a correlation coefficient of 0.7. This makes the problem more practical.

Table 5.1: Statistics of Random Variables for Example 4.

Variable Distribution Type Mean Standard Deviation C.C.

V1 Normal -5 2
0.2

V2 Normal -5 2
H1 Normal 0 3

0.7
H2 Normal 0 3
E Lognormal 100 10 0.0

The DTO provides a result shown in Fig. 5.20. The magnitude of loads

are the mean values multiplied by a safety factor of 2. The design has an

optimal volume equals 225. However, it is nearly an unstable structure.
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Figure 5.19: T-shaped building design. (a) Domain, loading and boundary
conditions. (b) Ground structure used to perform RBTO which contains
526 non-overlapping members.

Figure 5.20: Optimal topology by DTO.

The problem is also performed with the single loop PMA used in previous

examples. However, the algorithm fails to converge. Fig. 5.21 shows the

optimal design considering uncertainties in load and material property by

SML-based RIA with target reliability index of 3.0. The reference point is

set to be in the direction of [1, 1, 0, 0, 0] as the vector of random variables

denoted in the order of [V1, V2, H1, H2, E]. Employing the SML-based RIA,

the optimal design is computed to have an optimal volume of 582. The actual

failure probability measured by MCS equals 0.006, which corresponds to a

reliability index of 2.51. As we increase the number of potential members,

we can get a refined optimal topology. The topology shown in Fig. 5.22 is
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Figure 5.21: Optimal topology by SML-based RIA on the ground structure
shown in Fig. 5.19b.

Figure 5.22: Optimal topology by SML-based RIA on a refined ground
structure with 26180 members.

extracted from a ground structure with 26180 bars. The volume of structure

and reliability is almost the same as the one in Fig. 5.21 with only the

volume decreasing by 2. The members shown are not plotted proportional

to computed member areas in order to make sure that the details can be

better presented. Although the refined topology may not be very useful

for structural design since it is hard to construct, it could provide useful

information about the analytical solution of BRTO problems.
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CHAPTER 6

CONCLUDING REMARKS AND
SUGGESTIONS FOR FUTURE
WORK

The random nature and uncertain variation of design conditions can tremen-

dously affect how we design a structure. The deterministic topology opti-

mization techniques which are formulated without consideration of the in-

trinsic uncertainty and randomness in structural design problems may cause

the optimal design to be impractical in real circumstances.

Reliability based topology optimization provides a balance between econ-

omy and reliability of a structural design. In this thesis, a RBTO algorithm is

proposed for truss layout design problems with uncertainties in design. The

algorithm adopts the segmental multi-point linearization method to improve

the approximation of failure probability and its sensitivity with respect to

design variables. The SML-based algorithm is more suitable for RBTO prob-

lems with nonlinear limit state functions than conventional FORM-based al-

gorithms that are adopted without considering the special property of topol-

ogy optimization.

Several examples are conducted considering uncertainties in loading condi-

tions and material property (Youngs modulus for linear elastic design). The

optimal designs obtained by the proposed method are generally closer to the

true optimum than the result obtained by DTO or other FORM-based algo-

rithms because the SML-based algorithm approximates the KKT conditions

better. In the cases that the traditional methods cannot converge or cannot

converge to a valid design, the SML-based algorithm is more numerically

robust and stable as it can converge to a valid optimum. It is also worth

to notice that the proposed method reduces to the traditional FORM-based

RIA automatically when the limit state function is linear or nearly linear if

the design point is selected to be the reference point. In addition, as a single

loop gradient-based algorithm the computational efficiency of the algorithm

is quite attractive as compared to other methods based on large number of

simulations for example the model updating approach. Structural engineers
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should find the obtained solutions reasonable and useful because the grid-

based nature of ground structure approach allows the resultant truss layout

to be used in structural design without too much effort on abstracting useful

information from the optimal topology.

6.1 Contributions

1. Pointed out that for RBTO problems, the conventional FORM-based

algorithms may not be suitable;

2. Introduced the integral form of gradient of failure probability to RBDO;

3. Developed a SML method for sensitivity calculation of probabilistic

constraint and reliability analysis in reliability-based optimization;

4. Proposed an efficient optimization algorithm based on SML for RBTO

on ground structures.

6.2 Suggestions for Future Work

1. Explore variations of the SML method, for example SML with different

linearization schemes;

2. Implement the SML-based algorithm to solve 3-D RBTO problems, for

example realistic design of buildings and bridges;

3. Generalize the SML-based algorithm to solve RBDO problems with

non-linear limit state functions.
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