
c© 2014 Xiaojia(Shelly) Zhang



MACRO-ELEMENT APPROACH FOR TOPOLOGY OPTIMIZATION
OF TRUSSES USING A GROUND STRUCTURE METHOD

BY

XIAOJIA(SHELLY) ZHANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Civil Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor Glaucio H. Paulino



Abstract

In this thesis, the generation of initial ground structures for generic domains
in two and three dimensions are discussed. Two methods of discretization are
compared: Voronoi-based discretizations and structured quadrilateral dis-
cretizations. In addition, a simple and effective member generation approach
is proposed: the Macro-element approach; which can be implemented with
both types of discretization. The features of the approach are discussed: effi-
cient generation of initial ground structures; reduction in matrix bandwidth
for global stiffness matrix; finer control of bar connectivity; and reduction of
overlapped bars. Numerical examples are presented which display the fea-
tures of the proposed approach, and highlight the comparison with literature
results and traditional ground structure generation methods.
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Chapter 1

Introduction

1.1 Motivation

The ground structure method (GSM) [2, 3, 4] , is a technique for truss layout
optimization. The generation of the initial ground structure, as a crucial com-
ponent of the ground structure method, has so far received little attention in
literature. Smith [5] proposed an approach for the generation of ground struc-
tures, using unstructured meshes to represent the design domain. However,
the approach he proposes requires additional preprocessing steps; including
the decomposition of design elements and the generation of boundary faces.
In this thesis, a simple and effective approach is proposed for generation of
ground structures, namely the Macro-element approach. This approach is
capable of generating ground structures for design domains of non-trivial ge-
ometries with ease, and does not require any additional information on the
outer and inner boundaries of the domain. This approach is proposed in a
general setting – it may be combined with any type of discretization, includ-
ing quadrilateral and Voronoi-based elements in two or three dimensional
domains. The elastic formulation is adopted in this thesis [3].

One limitation associated with the traditional GSM is that, for concave
domains Ω, as illustrated in Figure 1.1(a), or for separated design domains,
Ω1 and Ω2, as illustrated in Figure 1.1(b); one needs to verify that connections
don’t fall outside the boundary (for concave domains), or cross the border of
separated design domains. With the approach presented in this thesis, these
problems are naturally avoided.

1.2 Background on Ground Structure Method

In GSM, the structural domain is first discretized by nodes, and then the
nodes are connected by the truss members. For a full-level ground structure,
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(a) (b)

Figure 1.1: Optimization problems using traditional GSM with solid lines for
allowed connections and dashed lines for violated connections: (a) concave
domain; (b) convex domain with separated design regions.

all nodes in the domain are connected to one another. This leads to a fully
populated global stiffness matrix, which adds to the computational cost [6].
Alternatively, definitions of different connectivity levels have been described
in the literature [7]. The basic idea behinds the different levels is that, in
general, long bars are not needed in the ground structure. Thus, many bars
in full-leveled ground structures are unused in the optimization process [8].
In addition, lower levels of connectivity may reduce the computational cost
associated with these unused bars in the optimization. However, one problem
with the leveling method is that the assignment of a sufficient connectivity
level is problem dependent, making it impractical to define a general ground
structure level for all problems. Different connectivity levels can result in
different topologies for the same problem, as illustrated in Figure 1.2, Figure
1.3 and Figure 1.4: final topology from level 2 ground structure in Figure
1.3(b) has the fewest number of bars, while topology from full level in Figure
1.4(b) provides the best solution in terms of compliance. In the current work,
only full level ground structures are considered in classic GSM.

Overlapping bars are undesirable in the GSM and can be addressed dur-
ing the generation process. Alternatively, the overlapping members can be
removed after the generation process is complete. Figure 1.5 shows a simple
example which highlights the importance of removing overlapping bars. The
solution of this problem is trivial: one straight horizontal member carries
all the load to the supports. When overlapping bars are not removed, the
member sizes are not equal, as can be seen in Figure 1.5(d) (solution is not

2
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Figure 1.2: Generation of ground structure for level 1 connectivity: (a) prob-
lem domain and boundary conditions; (b) initial ground structure; (c) opti-
mal topology.
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Figure 1.3: Generation of ground structure for level 2 connectivity: (a) initial
ground structure; (b) optimal topology.
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(a) (b)

Figure 1.4: Generation of ground structure for full level connectivity: (a)
initial ground structure; (b) optimal topology.

unique). However, when overlapping bars are removed, all member sizes are
equal, as shown in Figure 1.5(e). Thus, it is important to remove overlapping
members in order to obtain meaningful results in even the simplest examples.
In addition, this lowers the total number of bars in the model and decreases
the computational cost of the method. In the present work, overlapping bars
are removed during the bar generation process.

Michell [1] derived analytical solutions for many interesting optimization
problems. He showed that, for a structure to be optimal, all members should
be fully stressed. This leads to the requirement that all tensile and compres-
sive bar pairs should intersect each other orthogonally (for problems without
material or geometric non-linearities). Therefore, if we assume all bars to
have the same stress limits, the orthogonality in pairs of bars should appear
in the optimal solutions[9]. Figure 1.6(a) shows an optimization problem for
a simply supported beam with its discrete Michell’s solution shown in Fig-
ure 1.6(b). Michell’s solution is actually continuous solution (infinitely dense
members), when using the traditional GSM, the Michell’s solution can be
approximated by a very fine initial ground structure. However, this comes
with a high computational cost. In Chapter 3, the optimization problem in
Figure 1.6(a) is investigated with highly refined ground structures using both
the traditional GSM and the proposed approach.

1.3 Thesis Organization

The thesis is organized as follows: in Chapter 2, the ground structure opti-
mization formulation is reviewed for compliance minimization using only the

4
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Figure 1.5: Topology optimization with and without overlapping bars in
a box domain: (a) problem domain and boundary conditions; (b) opti-
mal topology with overlapping connections; (c) optimal topology with non-
overlapping connections; (d) bar areas distribution with overlapping bars; (e)
bar areas distribution with non-overlapping bars.
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(a)

(b)

Figure 1.6: Michell’s solution in a box domain: (a) domain with boundary
conditions; (b) known analytical solution [1].
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cross-sectional areas of the bars as the design variables. Then, discretization
methods and the proposed approach are introduced in Chapter 3, namely the
Macro-element Approach, which are used in the generation of initial ground
structures, and followed by a discussion of its attributes for optimization of
trusses using the Ground Structure Method. Several numerical examples are
presented in Chapter 4 to highlight the properties of the new approach. Fi-
nally, summary and conclusion are given with suggestions of the extension
of this work in the future.
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Chapter 2

Problem Formulation

2.1 Optimization Formulation

The formulation used in the present work considers equilibrium and compati-
bility conditions, which explicitly is known as elastic analysis [10]. The initial
ground structure is given with N nodes and M members. The equilibrium
state of the system can be described by:

Ku = f (2.1)

where, for the case of a two-dimensional problem, f ∈ R2N is the external
force vector, u ∈ R2N is the displacement vector and K ∈ R2N∗2N is the
stiffness matrix. For a full level ground structure in a convex domain, before
removing overlapping bars, the relation between M and N is M = N(N−1)

2 .
The stiffness matrix K may be expressed as [3]:

K(a) =
M∑

i=1
aiK

0
i , K0

i = Ei

`i

bib
T
i (2.2)

where K0
i is a constant matrix associated to each member in global coordi-

nates, Ei and `i are Young’s Modulus and length of member i, respectively.
Moreover, a ∈ RM is a vector of design variables (areas of bars) for the
optimization problem, and bi is a vector describing the direction in the ori-
entation of member i with the form:

bi =



...
−n(i)

...
n(i)

...


(2.3)
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where n(i) is a unit vector in the axial direction of the member i.
Here, the optimization problem is defined as one which finds the set of

design variables that minimizes compliance of the structure, subject to equi-
librium and volume constraints. Because the main purpose of this thesis is to
explore the connectivity generation in the ground structure, the simplest dis-
placement based formulation is adopted, with a small positive lower bound
imposed on the design variables ai. In that case, the stiffness K will be
positive definite for the whole feasible set of design variables. The convexity
of the problem can also be shown and the existence of solution is guaranteed
[11]. The problem statement with multiple load cases can be formulated as
[4]:

C(a) = mina
∑q

j=1 αj f
T
j uj(a)

s.t.


g(a) = aTL− Vmax ≤ 0

amin
i ≤ ai ≤ amax

i ∀ i = 1 : M

(2.4)

where uj is the solution of Equation (2.1), C(a) is the objective function, q is
the number of load cases, αj is the weighting factor of load case j, g(a) is the
constraint function, a and L are the vectors of area and length, respectively,
Vmax is the maximum material volume, and amax

i and amin
i are the upper and

lower bounds, respectively.
This formulation allows computing the element stiffness matrices only

once. The global stiffness matrix can then be assembled from the element
stiffness matrices and current design variables (member cross-sectional ar-
eas). This facilitates a more efficient implementation. To avoid a singular
tangent stiffness matrix in the solution of the structural linear equation (2.1),
we prevent zero element areas by using a small lower bound, amin

i . The upper
and lower bounds are defined by amax

i = 103a0 and amin
i = 10−2a0, respec-

tively; where a0 is the average area.

a0 = Vmax∑
iLi

(2.5)
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2.2 Implementation Aspects

The concepts in this thesis have been implemented in a complete truss lay-
out optimization solver in MATLAB R©. The implementation consists of two
components: ground structure generation and optimization. The ground
structure generation process includes base mesh generation and connectiv-
ity generation. Three alternatives for generating the base mesh for the do-
main geometry are employed: generating a Voronoi-based mesh using the
mesh generator for polygonal elements named PolyMesher [12], generating
a structured quadrilateral mesh using an intrinsic subroutine, or importing
an unstructured mesh from elsewhere. Here, the main idea of the ground
structure generation is to produce non-overlapping connectivity using the
base mesh. The testing for mutual overlapped connections is an additional
procedure for the connectivity generation for the traditional GSM. The opti-
mization process contains three components: solving the structural problem
for a set of given design variables, computing the sensitivities of the design
variables, and updating the design variables based on the Optimality Cri-
teria (OC). The details of the sensitivity calculations, Karush-Kuhn-Tucker
(KKT) conditions and OC are provided in the appendices.

10



Chapter 3

Ground Structure Generation

3.1 Base Mesh

In this work, two types of mesh are used to discretize the domain: structured
quadrilateral mesh and Voronoi-based mesh, as shown in Figure 3.1. The
need for different types of mesh is problem dependent.

A full level ground structure, using a structured quadrilateral mesh, pro-
vides pairs of orthogonal bars by construction, but they tend to be oriented
in a limited number of directions. In addition, when the domain is complex,
this meshing procedure is generally tedious and complicated. Because the
stiffness matrix is densely populated in the case of the full level GSM, the
associated computational cost is quite high [6].

Based on these issues, the use of the Voronoi-based mesh is proposed.
Voronoi-based meshes easily discretize non-convex domains and have been
shown to be advantageous in continuum topology optimization [13, 12]. The
seeds of Voronoi-based meshes are initially generated randomly, then iterated
to align uniformly using the Centroid Voronoi Tessellation (CVT) method.
After extracting node and element information, the optimization procedure
is the same as with structured quadrilateral meshes. Voronoi-based meshes,
as opposed to structured quadrilateral meshes, can generate bars with a
greater number of directions, because of its random node distribution, but
provides fewer orthogonal pairs of bars; which is not desirable according to
the Michell’s solution [1].

When the domain is concave or contains holes, the Voronoi-based grid is
the preferred discretization in this work. However, for these domains, gen-
erating a full level, non-overlapping initial ground structure, is complicated.
As the generated bars have to lie entirely within the domain, not all connec-
tions are feasible. Therefore, additional information on the outer and inner
boundaries of the domain is needed with respect to the traditional GSM.

11



(a) (b)

Figure 3.1: Discretization techniques for forming the base mesh: (a) struc-
tured quadrilateral mesh; (b) Voronoi-based mesh.

This issue is naturally solved by the member generation approach that is
proposed, which is further discussed in Section 3.2.2.

3.2 Member Generation Approach

In this section, a new approach for generating initial ground structures
using structured quadrilateral and Voronoi-based meshes in two or three-
dimensional domains is presented. A Macro-element approach is proposed
to overcome some of the difficulties in ground structure generation, as dis-
cussed above. The resulting generation of the ground structure, using this
technique, is almost fully automated and efficient.

3.2.1 Macro-element Approach

The basic idea behind this method is to insert equally spaced nodes on each
edge of each element, then connections are only generated within each el-
ement. An illustration of the Macro-element approach using a structured
quadrilateral mesh and a Voronoi-based mesh is shown in Figure 3.2, Figure
3.3, Figure 3.4 and Figure 3.5. Different scenarios were considered, to show
the flexibility of this method: four equally spaced nodes were inserted on
each edge for the structured quadrilateral mesh in Figure 3.2 and Figure 3.3;
three additional nodes were inserted per edge for the single Voronoi-based
mesh in Figure 3.4; and one node was inserted per edge for the quarter ring
domain example. This method can also be used in three dimensional (3D)

12



(a) (b) (c)

Figure 3.2: Macro-element approach using a structured quadrilateral element
with 4 nodes inserted per edge: (a) single structured quadrilateral element;
(b) single element with inserted additional nodes on each edge; (c) all possible
connections within the element.

domains, as shown in Figure 3.6.

3.2.2 Attributes and Properties

The properties of the Macro-element approach relate to the ground structure
generation process, optimization process and final topology aspect. In the
ground structure generation process, the proposed approach avoid invalid
connections outside the boundary (for concave domains) by construction, as
illustrated in Figure 3.7(a). This can also be used to prevent connections
across separated design domains, Ω1 and Ω2 as in Figure 3.7(b). Therefore,
the bars can be generated without the additional step of detecting boundaries
or checking for feasible connections. For the case of concave domains, the
initial ground structure can be generated efficiently as long as the domain is
discretized and the element connectivity matrix is known. This approach is
efficient in terms of the initial ground structure generation.

Another aspect of the approach is in the optimization process. The global
stiffness matrix using the two new approach will have a reduced matrix
bandwidth. This advantage becomes important when the problem size is
large. After nodes are inserted in the edge of each element, the Reverse
Cuthill–McKee (RCM) algorithm [14] is used to renumber the nodes. Since
bars are only generated in each element, the bandwidth for the global stiffness
matrix of the problem will be reduced accordingly.

In terms of final topology, the Macro-element approach offers more con-
trol in the bar distribution by providing a finer control of the connectivity.

13



(a)

(b)

(c)

Figure 3.3: Macro-element approach using a structured quadrilateral mesh
with 4 nodes inserted per edge: (a) box domain discretized into 8 elements
and boundary conditions; (b) box domain with 4 nodes inserted on each edge;
(c) all possible connections within each element.
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(a) (b) (c)

Figure 3.4: Macro-element approach using Voronoi-based element with 4
nodes inserted per edge: (a) single Voronoi-based element; (b) single element
with inserted additional nodes on each edge; (c) all possible connections
within the element.

Whether a long straight bar is desired or a curved bar is needed between two
nodes, the proposed approach can be used to obtain the desired connectivity,
as illustrated in Figure 3.8(b). The standard GSM, on the other hand, either
has limited connections or very dense ground structures.

Furthermore, the proposed method does not generate overlapping bars in
the domain. For the Macro-element approach, overlapping bars appear only
in the (refined) element boundary, and can be efficiently and systematically
removed. Therefore, the problem of finding and removing these bars becomes
a reduced local problem with an associated lower computational cost.

The proposed approach is general enough to be used with any type of
elements, including quadrilateral elements and Voronoi-based elements. This
technique can handle different types of domains, concave or convex and in two
or three-dimensions. Also, since the Macro-element approach is independent
from the optimization formulations, it is flexible and can be extended to
other applications with ease.

15



(a) (b)

(c)

Figure 3.5: Macro-element approach using Voronoi-based mesh with 4 nodes
inserted per edge: (a) half ring domain and boundary conditions; (b) half
ring domain with 1 node inserted on each edge; (c) all possible connections
within each element.
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(a) (b)

(c)

Figure 3.6: Macro-element approach using structured quadrilateral mesh in
3D tower domain: (a) tower domain and boundary conditions; (b) 2 nodes
inserted on front surface edges and 1 node inserted on side surface edges; (c)
all possible connections within each element surface.
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(a) (b)

Figure 3.7: Optimization problems using Macro-element approach to cor-
rectly generate initial ground structures with valid connections: (a) concave
domain; (b) convex domain with separated design domains.

(a)

(b) (c)

Figure 3.8: (a) Wrench domain with a boxed zoom-in region; (b) possible
connections using the classic GSM; (c) possible connections using the Macro-
element approach.
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Chapter 4

Examples and Verifications

In this section, three examples will be presented to demonstrate the various
features of the proposed approach. All examples are investigated using the
same volume constraint: Vmax = AΩ ∗ t, where AΩ is the area of the domain;
stopping criteria: tol = 10−8; move value: move = (amax

i − amin
i ) ∗ 100 and

damping factor for the OC update scheme: η = 0.7. The Young’s modulus
for all the bars is taken to be E0 = 2 × 108 and the initial guess of bar
areas is chosen as: ainitial = 0.7 ∗ a0. The three examples use the Macro-
element approach with Voronoi-based elements and quadrilateral elements,
and include a comparison with the traditional GSM.

4.1 Macro-Element Approach: Comparison with An-
alytical Solution

In this example, the main idea is to are both the traditional GSM and the
Macro-element approach to approximate the Michell’s solution shown in Fig-
ure 1.6. Both structured quadrilateral and Voronoi-based discretizations are
used in solving the box domain with the traditional GSM and the Macro-
element approach. Key features of the results are presented in Table 4.1.

The final topologies, using the full level traditional GSM with a dense
structured quadrilateral mesh and a Voronoi-based mesh are illustrated in
Figure 4.1(a) and Figure 4.1(b), respectively. The final topologies from these
dense meshes are similar to the analytical solution shown in Figure 1.6(b),
but contain multiple layers along the boundary lines. By using the proposed
Macro-element approach, the topologies are very close to the analytical solu-
tion, as shown in Figure 4.1(c) and Figure 4.1(d), for the structured quadri-
lateral and Voronoi-based meshes, respectively. Hence, using the proposed
method, we can get a good approximation to the analytical solution.
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Quad

(a)

Voronoi

(b)

Quad

(c)

Voronoi

(d)

Figure 4.1: Approximation of Michell’s solution in a box domain using both
structured quadrilateral meshes and Voronoi-based meshes: (a) topology ob-
tained from the traditional GSM with 2000 structured quadrilateral elements;
(b) topology obtained from the traditional GSM with 800 Voronoi-based el-
ements; (c) topology obtained from the Macro-element approach using 120
structured quadrilateral elements with 7 nodes inserted along each edge; (d)
topology obtained from the Macro-element approach using 240 Voronoi-based
elements with 7 nodes inserted along each edge.

Mesh GSM Number of Bars Compliance
Quadrilateral Mesh Traditional 77710 1.7205
(Figure 4.1(a), (c)) Macro-element 59520 1.6800
Voronoi-based Mesh Traditional 135280 1.7099
(Figure 4.1(b), (d)) Macro-element 192272 1.7065

Table 4.1: Numerical information for Example 4.1.
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GSM Number of Bars Compliance Value
Traditional GSM 92188 0.201
Macro-Element 215200 0.182

Table 4.2: Numerical information for wrench domain.

4.2 Macro-Element Approach: Applications to Com-
plex Domains

In the second and third examples, we apply the Macro-element approach to
both the Wrench and Serpentine domains introduced in Talischi et al. [12].
These are non-trivial domains and showcase the capabilities of this approach
for arbitrary domains. Again, the final topologies are compared with those
obtained using the traditional GSM.

4.2.1 Wrench Domain with Voronoi-based Mesh

The first problem considers the Wrench domain, with a Voronoi-based dis-
cretization, as shown in Figure 4.2. The idea is to compare the final topology
and the number of bars that both methods produce under similar computa-
tional cost. In the traditional GSM, 1000 Voronoi-based elements were used
to discretize the domain, as illustrated in Figure 4.2(b). A full level con-
nectivity was generated within the domain. Overlapping bars were removed
during the bar generating process. The final topology is shown in Figure
4.2(d). The boundary lines around the right hole in the final topology are
not smooth, and the bars in the middle of the domain are not detailed. The
base mesh used in the Macro-element approach is shown in Figure 4.2(c);
discretized by 260 Voronoi-based elements with 7 additional nodes inserted
along each edge. The bars were only connected within each element. The
time spent for mesh generation is similar to that for the full-level GSM,
and the final topology using the Macro-element approach is shown in Figure
4.2(e). Qualitatively, if we compare the results from the two methods, the
Macro-element approach results in a clear and crisp solution around the right
hole, and the bars inside the domain are smoother than those obtained using
traditional GSM. In addition, the solution obtained using the Macro-element
approach exhibits the close-to-orthogonal pairs of bars.
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(a)

(b) (c)

(d)

(e)

Figure 4.2: Wrench domain example with Voronoi-based mesh using classic
GSM and Macro-element approach: (a) wrench domain and boundary condi-
tions; (b) discretization using 1000 Voronoi-based elements; (c) discretization
using 260 Voronoi-based elements with 7 additional nodes inserted along each
edge; (d) final topology using the full level classic GSM; (e) final topology
using the Macro-element approach.
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GSM Normalized max. semi-bandwidth Normalized profile
Full Level 0.8496 0.7729

Macro-element 0.0556 0.0695

Table 4.3: Bandwidth and profile comparison of the stiffness matrix for
Wrench domain with different bar generation method.

A comparison of the number of bars in the initial ground structures and
the final compliance values between the traditional GSM and the Macro-
element approach is presented in Table 4.2. This showcases the ability of the
Macro-element approach to handle large problems with an associated low
computational cost in ground structure generation. For the case of concave
domains, the time spent in the bar generation process is greatly reduced in
the Macro-element approach, because there is no need to detect the boundary
or search for a large number of overlapping bars.

The source of the computational efficiency of the Macro-element approach
is apparent when we compare the bandwidth and profile of the stiffness ma-
trix for both methods. The normalized maximum semi-bandwidth and nor-
malized profile are computed as:

normalized maximum semibandwidth = max.semibandwidth
2N (4.1)

normalized profile = profile
N (2N + 2 ) + 1 (4.2)

where N is number of nodes.
Both the bandwidth and the profile of the global stiffness matrices are

significantly reduced by the using Macro-element approach, as shown in Table
4.3. A visual comparison of global stiffness matrix is shown in Figure 4.3.
The reduction in the bandwidth and profile of the global stiffness matrix
becomes increasingly significant, as size of the stiffness matrix increases.

4.2.2 Serpentine Domain with Structured Quadrilateral Mesh and
Voronoi-based Mesh

In this problem, the Serpentine domain is considered with different discretiza-
tions for the traditional GSM and the Macro-element approach. This is to
obtain a similar number of bars so that we may compare the final topolo-
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(a) (b)

Figure 4.3: Global stiffness matrix after RCM algorithm from Wrench exam-
ple using: (a) traditional full level GSM; (b) Macro-element approach.

gies from each method. To show the compatibility and flexibility of the
Macro-element approach with different types of discretization, two different
discretizations are used, i.e. structured quadrilateral meshes and Vonoroi-
based meshes. The geometry, load and support conditions of the serpentine
domain are illustrated in Figure 4.4(a). The structured quadrilateral mesh
was generated by ABAQUS, while the Voronoi-based mesh was generated
by PolyMesher. In order to maintain a similar number of bars, meshes
with different levels of refinement were used for the traditional GSM and
the Macro-element approach. For a structured quadrilateral discretization,
the traditional GSM used 2781 elements while the Macro-element approach
used 380 elements with 5 additional nodes inserted per edge. For a Voronoi-
based discretization, the traditional GSM used 550 Voronoi elements and the
Macro-element approach used 250 elements with 4 nodes inserted per edge.
The final topologies from the two approach are shown in Figure 4.5. The
number of bars, computational cost and compliance values are summarized
in Table 4.4.

Both the traditional GSM and the Macro-element approach result in sim-
ilar compliance values and optimized topologies. However, the traditional
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(a)

(b) (c)

Figure 4.4: Serpentine domain example with Quadrilateral mesh and
Voronoi-based mesh: (a) Serpentine domain and boundary conditions; (b)
quadrilateral discretization; (c) Voronoi-based discretization.

Number of Bars Compliance
Quadrilateral Mesh Traditional 72453 0.589
(Figure 4.5(a), (c)) Macro-element 77808 0.585
Voronoi-based Mesh Traditional 84062 0.600
(Figure 4.5(b), (d)) Macro-element 82530 0.590

Table 4.4: Numerical information for the serpentine problem.
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Quad

(a)

Voronoi

(b)

Quad

(c)

Voronoi

(d)

Figure 4.5: Final topologies for Serpentine domain example using classic
GSM and Macro-element approach: (a) full level ground structure method
using 2781 structured quadrilateral elements; (b) full level ground structure
method using 1250 Voronoi-based elements; (c) the Macro-element approach
using 380 structured quadrilateral elements with 5 additional nodes inserted
along each edge; (d) the Macro-element approach using 250 Voronoi-based
elements with 4 additional nodes inserted along each edge.
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GSM requires additional boundary information to generate a valid initial
ground structure and overlapping bars were involved. In the Macro-element
approach, since we only connect bars within each element, there is no need
to detect the boundary or search for a large number of overlapping bars be-
cause the overlapping bars were removed efficiently and systematically. This
showcases the capability of the proposed method to obtain similar topologies
as the traditional GSM, while offering simple and effective ground structure
generation. Further, if we compare the results from a structured quadri-
lateral mesh and a Voronoi-based mesh, they yield almost the same truss
layouts with similar topology and bar distributions. However, for complex
domains such as the Serpentine domain, Voronoi-based meshes can discretize
the domain with ease. Furthermore, for a coarse mesh discretization on a
non-trivial domain, a Voronoi-based mesh can provide more directions for
the bars to span and hence can result in a better solution when compared to
results obtained using a structured quadrilateral mesh.

4.3 Macro-Element Approach: Comparison with Con-
tinuum Structural Optimization Solution

In this example, the final topology of the Hook problem using the GSM with
the Macro-element approach is compared with a density based optimization
solution using PolyTop [15], as shown in Figure 4.6. Both solutions are
obtained using Voronoi-based discretizations. Qualitatively, both topologies
seem to converge to the same solution and have similar traits, such as a fan
feature in the center. This suggests that the GSM using the Macro-element
approach can offer accurate and promising designs.
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(a) (b)

(c)

Figure 4.6: Hook domain example for continuum structural optimization
and for truss optimization using GSM with the Macro-element approach:
(a) domain and boundary conditions; (b) final topology from continuum
optimization using PolyTop (R =2.0, v = 0.3); (c) final topology from truss
optimization using the GSM with the Macro-element approach (400 Voronoi-
based elements with 5 additional nodes inserted per edge).
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Chapter 5

Conclusions

In this thesis, the generation of initial ground structures for generic 2D and
3D domains has been discussed and explored. Two types of discretization are
used, structured quadrilateral discretizations and Voronoi-based discretiza-
tions. They offer alternative approaches for ground structure generation.
Further, a bar generation approach has been presented: the Macro-element
approach. This approach can efficiently generate an initial ground structure.
It avoids invalid connections outside the boundary of concave domains, re-
duces the bandwidth of the global stiffness matrix, provides more control
over the bar connectivity, and reduces the generation of overlapping bars.
From Example 4.1, the proposed Macro-element approach is shown to yield
similar numerical (discretized) results to the exact solution. In addition, the
Macro-element approach converges to a similar solution to that in the tra-
ditional full-level GSM, at a lower computational cost, and offers a simple
alternative way of generating initial ground structures. Example 4.2 high-
lights the features of the Macro-element approach for domains with complex
geometries. Furthermore, the topology from the Macro-element approach in
Example 4.3 shows excellent agreement with the topology obtained from con-
tinuum structural optimization. This work offers room for future extensions.
They include exploring the Macro-element for 3D Voronoi tessellations and
investigating the plastic formulation approach.
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Appendix A

Sensitivity Analysis

Using the Nested formulation [3], the sensitivity of the objective function can
be calculated by the adjoint method:

C = fTu(a)+λT [K(a)u(a)− f ] (A.1)

Taking the derivative of the objective function with respect to the design
variables yield the relation:

∂C

∂ai

= fT
∂u(a)
∂ai

+ λT

[
∂K(a)
∂ai

u(a)−K(a)∂u(a)
∂ai

]
(A.2)

If we assume that the equilibrium condition is satisfied implicitly, the vector
λ can have any value. By choosing λ = −K(a)−1f = −u, we can eliminate
the terms in Equation (A.2) containing ∂u(a)

(∂ai) . Finally, the sensitivity of the
objective function has the form:

∂C

∂ai

= −uT∂K(a)
∂ai

u (A.3)

The sensitivity of the volume constraint can be calculated as:

∂g

∂ai

= Li (A.4)
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Appendix B

Karush-Kuhn-Tucker (KKT) Conditions

Because the optimization problem in Equations (2.4) is convex, the KKT
conditions are both necessary and sufficient optimality conditions. To define
them, we start with the Lagrangian:

L(a, φ) = C(a)+φ(
n∑

i=1
aiLi−Vmax) (B.1)

Therefore

∂L

∂ai

(a∗, φ∗) ≤ 0, if a∗i = amax
i (B.2)

∂L

∂ai

(a∗, φ∗) = 0, if amin
i < a∗i < amax

i (B.3)

∂L

∂ai

(a∗, φ∗) ≥ 0, if a∗i = amin
i (B.4)

The derivative the Lagrangian is given as:

∂L

∂ai

(a, φ) = ∂C(a)
∂ai

+ φLi (B.5)

After substitution of Equation (A.3) into Equation (B.5) and, subsequently,
Equations (B.2) through (B.4), we obtain the following resulting KKT con-
ditions at the point (a∗, φ∗):

uT∂K(a)
∂ai

u ≥ φ∗, if a∗i = amax
i (B.6)

uT∂K(a)
∂ai

u = φ∗, if amin
i < a∗i < amax

i (B.7)
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uT∂K(a)
∂ai

u ≤ φ∗, if a∗i = amin
i (B.8)

Based on Equation (B.7), we obtain constant specific strain energy at the
optimum in the linear case, which corresponds to a fully stressed design with
Ψi = (σ2

i ) /Eo, where Ψi is the strain energy of member i.
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Appendix C

Optimality Criteria (OC) Method

The optimization in this work is solved by the OC algorithm.Thus the outline
of OC algorithm is presented in this Appendix. This algorithm can be derived
by replacing the objective and constraints functions with the approximations
on the current design point using an intermediate variable. In such way, a
sequence of separable and explicit sub-problems is generated to approximate
of the original problem. In this context, we linearized the objective function
using exponential intermediate variables as [16]:

yi =
(

ai − amin
i

amax
i − amin

i

)pi

(C.1)

C(a) ∼= Ĉ(a) = C
(
y(ak)

)
+
(
∂C

∂y

)T

a=ak

(
y(a)− y(ak)

)
(C.2)

Then, after substitution of
(

∂C
∂yi

)
a=ak

i

=
(

∂C
∂aj

∂aj

∂yi

)
a=ak

i

and substitution of the
Equation (C.1) in the Equation (C.2), the following equations are obtained:

Ĉ(a) = C
(
y(ak)

)
+

n∑
i=1

∂C

∂ai

|a=ak

1
pi

(
ak

i − amin
i

) [( ai − amin
i

ak
i − amin

i

)pi

− 1
]

(C.3)
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mina Ĉ(a)

s.t.


g(a) = aT L− Vmax = 0

amin ≤ ai ≤ amax ∀i = 1 : M
(C.4)

By means of the Lagrangian duality, this problem can be solved with:

L(a, γ) = Ĉ(a) + β g(a) (C.5)

where β is a Lagrangian multiplier and the optimality conditions are given
as:

∂L

∂ai

(a, β) = ∂Ĉ(a)
∂ai

+β∂g(a)
∂ai

= ∂C

∂ai

|a=ak

(
ai − amin

i

ak
i − amin

i

)pi−1

+β Li = 0 (C.6)

∂L

∂β
= aT L− Vmax = 0 (C.7)

Solving the Equation (C.6) for ai(β) to obtain:

ai(β) = a∗i = amin
i + (Bi(β))

1
1−pi

(
ak

i − amin
i

)
(C.8)

and substituting in Equation (C.7), the Lagrange multiplier β is obtained,
for example, via bi-section method where Bi is defined as:

Bi = −
∂C
∂ai
|a=ak

β Li

(C.9)

To calculate β and a∗i , the box constraints need to be satisfied, and thus
the next design point anew

i is defined as:

anew
i =


a+

i , a∗i ≥ a+
i

a−i , a∗i ≥ a−i

a∗i , otherwise

(C.10)
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where the a+
i and a−i are the bounds for the search region defined by:

a−i = max(amin
i , ak

i −move) (C.11)

a+
i = min(amax

i , ak
i +move) (C.12)

in which the variable move is the move limit usually specified as a frac-
tion of amax

i − amin
i . In the convex examples, presented in this work, a fast

convergence is obtained using values for move larger than amax
i − amin

i .
The quantity η = 1

1−pi
is usually called a numerical damping factor and

for pi = −1, a reciprocal approximation is obtained. The pi values can be
estimated using different approaches. In this work a two point approximation
approach is used based on the work of Fadel et al. [17] and presented by
Groenwold and Etman [16]. In this approach, the estimation of p(k)

i is:

p
(k)
i = 1 +

ln
(

∂C
∂ai
|a=ak−1/∂C

∂ai
|a=ak

)
ln
(
ak−1

i /ak
i

) (C.13)

where ln(.) is the natural logarithm. At the first step we use pi = −1 and
we restrict −15 ≤ pi ≤ −0.1 for the subsequent iterations. The convergence
criteria used is:

max
(
| ak

i − ak−1
i |

1 + ak−1
i

)
≤ tol (C.14)

where tol is the tolerance.
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