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ABSTRACT 

 

The ground structure method is used to find an optimal solution for the layout 

optimization problem. The problem domain is discretized with a union of highly 

connected members, which is called a ground structure. The objective typically is to 

minimize the total volume of material while satisfying nodal equilibrium constraint 

and predefined stress limits (plastic formulation). However, such approach may lead 

to very slender members and unstable nodes that might cause instability issues. This 

thesis presents the implementation of the ground structure method involving 

instability consideration. The plastic formulation is implemented considering 

buckling constraint and nodal instability constraint either in isolation or in 

combination. The Euler buckling criteria is taken as the buckling constraint in the 

implementation with local instability consideration. The nominal lateral force 

method is used in the implementation involving nodal instability consideration. 

Moreover, the efficiency of the nonlinear programming is addressed. Several 

numerical examples are presented to illustrate the features of the implementation. 
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Nomenclature 

𝑩𝑻   Nodal equilibrium matrix 

𝑎𝑖   Cross-sectional area of 𝑖th member 

 𝑙𝑖   Length of 𝑖th member 

 𝒏   A vector with the member internal forces 

 𝒇   Nodal forces excluding the components with supports 

𝑉   Optimal volume of the structure 

𝜎𝐶   Stress limit in compression 

𝜎𝑇   Stress limit in tension 

𝑠+    Positive slack variables in tension 

𝑠−   Positive slack variables in compression 

𝑛𝑐𝑟   Critical Euler buckling load 

𝐸   Elastic modulus of the member 

𝐼   Moment of inertia of the member 

𝒂   A vector cross-sectional area 

𝒍   A vector of length of members 

𝑘   Constant depending on the shape of the cross-section area 

𝝈+   Tension stress in members 

𝝈−   Compression stress in members 

𝜵𝒛𝒇   The gradient of the objective function 
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𝒈   Nonlinear constraint 

𝑳(𝒛, 𝝀)  Lagrangian function

𝜵𝒛𝒈  Gradient of the nonlinear constraint 

𝜵𝒛𝒛𝑳(𝒛, 𝝀) Derivative of the Lagrangian function 

𝑛𝑒𝑙𝑠𝑡𝑖𝑐  Elastic member force 

𝑎𝑜𝑝𝑡  Optimal cross-section area 

𝑃   Applied point loads 

𝑉𝑜𝑝𝑡  Optimal volume of the structure 

𝑓𝑗
𝑥   Magnitude of the nominal force in the positive x direction at a given node 𝑗 

𝑓𝑗
𝑧   Magnitude of the nominal force in the positive z direction at a given node 𝑗 

𝑚𝑗   Number of bars connected to node 𝑗 

𝑠𝑖
−   Compressive component of the force in member 𝑖 

𝑑𝑖
𝑥 Direction cosine of bar 𝑖 relative to the 𝑦𝑧 plane which is perpendicular to the 

direction of 𝑓𝑗
𝑥  

𝑟   A constant factor which is typically taken as 2% 

𝑑𝑖
𝑧 Direction cosine of bar 𝑖 relative to the 𝑥𝑦 plane which is perpendicular to the 

direction of 𝑓𝑗
𝑧 

𝒇𝑥   A vector of magnitudes of the nominal lateral forces in the 𝑥 direction 

𝒇𝑦   A vector of magnitudes of the nominal lateral forces in the 𝑦 direction 

𝒇𝑧   A vector of magnitudes of the nominal lateral forces in the 𝑧 direction 

𝒅𝒙   A vector of direction cosines related to 𝑦𝑧 plane 
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𝒅𝑦   A vector of direction cosines related to 𝑥𝑧 plane 

𝒅𝑧   A vector of direction cosines related to 𝑥𝑦 plane

𝐿𝒙   Dimension of the domain along x axis 

𝐿𝒚   Dimension of the domain along y axis 

𝐿𝒛   Dimension of the domain along z axis
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Chapter 1 Introduction 

The ground structure (GS) method gives an approximation to a truss layout optimization problem 

for finding a cost-effective structural framework. It consists of a design domain which is divided 

into a grid of nodal points interconnected by tentative bars. The union of all or a subset of potential 

bars is called a ground structure. The objective typically is to minimize the total volume of material 

while satisfying nodal equilibrium constraint and ensuring that member stresses are within 

predefined limits. The ground structure method determines the optimal cross-sectional areas for 

all the bars in the initial ground structure while keeping the nodal locations fixed. As many of the 

optimal areas will be zero, the optimal framework consists of bars with non-zero cross-sectional 

areas.  

Such typical ground structure method results often contain very slender members and instable 

nodes, therefore making the structure sensitive to instabilities (Descamps et al., 2014). Figure 1 

and Figure 2 show sample problems with instability issues. Slender bars in the compression zone 

in Figure 1.1(c) may cause a safety issue in practical design (Zegard and Paulino, 2014). In addition, 

the unstable nodes in Figure 1.2(c) are undesirable. 

The consideration of stability issues is meaningful for practical structural design (Pedersen and 

Nielsen, 2003). Different researchers may use different definition of stability. Tyas et al. (2006) 

proposed a classification of instability for pin-jointed frameworks.  
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(a) Local instability occurs when the compressive force in a member exceeds its critical 

buckling load (Figure 1.3(a)). Euler’s formula is considered for general cases. 

(b) Nodal instability occurs when a node lying along a compression member lacks lateral 

bracing (Figure 1.3(b)). The overall or a small section of the structure will fail due to 

nodal instability.  

(c) Global instability occurs when a braced structure buckles as a whole due to insufficient 

elastic stiffness of the bracing system (Figure 1.3(c)). 

This thesis is focusing on the development of the implementation of the ground structure method 

considering local instability and nodal instability. The global instability might be satisfied for the 

obtained optimal solution robustly, although this is not considered in the formulation presented 

here. 
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Figure 1.1: A sample cantilever beam problem with local instability issue. (a) Domain, loading and 

boundary conditions. (b) The initial ground structure with 19632 bars. (c) Solution obtained using 

typical ground structure method without instability consideration. 

(a) 

(b) 

(c) 
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Figure 1.2: A sample column problem with nodal instability issue. (a) Domain, loading and 

boundary conditions. (b) The initial ground structure with 49 bars. (c) Solution obtained using 

typical ground structure method without instability consideration. 

                

 

Figure 1.3: Three types of instabilities for pin-jointed frameworks (Descamps et al., 2014). (a) 

Local instability. (b) Nodal instability. (c) Global instability. 

(a) (b) (c) 

(a) (b) (c) 
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1.1 Literature review addressing stability of optimal structure 

Instability issues have drawn lots of attention in the field of layout optimization. Zhou (1996) 

concluded that topology optimization of trusses with local buckling constraints only may lead to 

unstable solution with unbraced nodes along compression members. An iterative approach was to 

eliminate un-braced nodes at the end of the optimization process. However, as Zhou (1996) noted, 

unstable nodes cancellation may lead to a non-optimal structure because the modified member 

lengths result in much lower buckling stresses and hence the original design constraints are 

changed significantly. To solve this problem, Achtziger (1999a,b) developed an unstable nodes 

cancelation procedure where modified members were considered with consequently lower 

buckling strength in the optimization process.  

An alternative approach is to add system buckling constraints to the formulation to avoid unstable 

solution (Rozvany,1996). Guo (2005) incorporated the system stability constraint to the stress-

constrained minimum volume problem with overlapping bars. A similar method was introduced to 

the compliance formulation by Ben-Tal et al.(2000) and Kocvara (2002).  

The nominal lateral force method is another approach to solve the problem of nodal instability. 

The method considers small occasional perturbation loadings to closely resemble realistic 

engineering design problem. Tyas et al. (2006) incorporated nominal lateral force load cases in a 

linear programming problem formulation to stabilize compression chains. Descamps et al. (2014) 

adapted the nominal force method to the truss layout optimization comprising the search for 

optimal nodal locations. 
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This thesis implements the ground structure method involving stability consideration in three 

different cases. Case 1 only considers local instability in the implementation of the ground 

structure method. Euler’s buckling formula is formulated in this implementation. Case 2 only 

considers nodal instability using nominal force method is considered in. Finally, case 3 considers 

the implementation of ground structure method involving both local instability and nodal 

instability.  

1.2 Thesis outline and organization 

The reminder of the thesis is organized as follows. In Chapter 2, the typical ground structure 

method using plastic formulation is review for minimum volume optimization problem. An 

effective approach to generate the ground structure for an unstructured domain is also reviewed 

here. Chapter 3 describes the implementation of the ground structure method considering only 

buckling constraint. Chapter 4 presents the linear formulation for the implementation of the ground 

structure method considering nodal instability. Both local and nodal instability are implemented to 

the ground structure method in Chapter 5. In Chapter 6, several numerical examples for both the 

two- and three-dimensional domains are presented to highlight the properties of the 

implementation in Chapters 3, 4 and 5. Finally, the conclusion and summary are given in Chapter 

7. 
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Chapter 2 Plastic formulation 

Dorn et al. (1964) developed the ground structure method using plastic formulation for layout 

optimization problem almost four decades ago. Hemp (1973) proposed a compressive work on 

plastic formulation extended to multiple load cases. Sokol (2011) optimized the implementation 

of the ground structure method for orthogonal structured domains. Zegard and Paulino (2014) 

extended the ground structure method, resulting in an educational and easy-to-use implementation 

of the truss topology optimization in general non-orthogonal unstructured domains.  

To minimize the volume of material such that the stress limits in tension and compression are 

satisfied, the optimization formulation is given by: 

 

 

 

where 𝑩𝑻 is the nodal equilibrium matrix,  𝑎𝑖 and 𝑙𝑖 are the cross-sectional area and length of 

the 𝑖th member, respectively, 𝒏 is a vector with the member internal forces, 𝒇 are nodal forces 

excluding the components with supports, 𝜎𝐶 is stress limit in compression and 𝜎𝑇 is stress limit 

in tension.  

2.1 Reformulation into a Linear Programming (LP) problem 

By introducing positive slack variables 𝑠+ and 𝑠− in the stress constraints, we convert the above 

inequalities into equalities: 

min
𝒂,𝒏

    𝑽 = 𝒍𝑻𝒂 

s.t.     𝑩𝑻𝒏 = 𝒇 

−𝜎𝐶𝑎𝑖 ≤ 𝑛𝑖 ≤ 𝜎𝑇𝑎𝑖 

𝑎𝑖 ≥ 0 

(2.1) 
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  𝑛𝑖 + 2
𝜎0

𝜎𝐶
𝑠𝑖

− = 𝜎𝑇𝑎𝑖

−𝑛𝑖 + 2
𝜎0

𝜎𝑇
𝑠𝑖

+ = 𝜎𝐶𝑎𝑖

 

Thus the member cross-sectional area and axial force can be expressed as:  

𝑎𝑖 =
𝑠𝑖

+

𝜎𝑇
+

𝑠𝑖
−

𝜎𝐶

𝑛𝑖 = 𝑠𝑖
+ − 𝑠𝑖

−

 

Therefore, the optimization problem can be rewritten as:  

min
𝒔+,𝒔−

    𝑽 = 𝒍𝑻(
𝒔+

𝝈𝑻
+

𝒔−

𝝈𝑪
) 

  s.t.     𝑩𝑻(𝒔+ − 𝒔−) = 𝒇 

      𝒔+, 𝒔− ≥ 𝟎 

Because the design variables 𝑠+ and 𝑠− are all positive, the optimization problem becomes a LP  

problem which can be solved very efficiently using the interior point method (Wright, 2004; 

Karmarkar, 1984),  

2.2 Generation of ground structure  

Among other authors, Zegard and Paulino (2014) proposed an efficient way to generate the ground 

structure without overlapping bars. The level of inter-connectedness of the initial ground structure 

can be defined as connectivity level. Level 1 connectivity will generate bars between all 

neighboring nodes in the base mesh (Figure 2.1(a)). Level 2 connectivity will generate bars up to 

the neighbors of the neighbors (Figure 2.1(b)). The bar generation is reaching the full level 

connectivity (Figure 2.1(c)) when all the nodes were connected with bars. 

 

(2.2) 

(2.3) 

(2.4) 
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Figure 2.1: Ground structures with different connectivity levels. (a) Level 1 connectivity. (b) Level 

2 connectivity. (c) Full level connectivity. 

(a) 

(b) 

(c) 
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Chapter 3 On the ground structure method with 

buckling constraint 

The interest in the buckling constraint is reasonable because results of topology optimization using 

ground structure method often contain very slender members. The effect of local buckling caused 

by long and slender elements in compression considerably impacts structural safety. The idea is to 

extend the ground structure method by adding the Euler buckling load constraint in the standard 

plastic formulation to obtain an optimal structure without any long and slender members.  

The critical Euler buckling load of the member can be expressed as 

𝑛𝑐𝑟 =
𝜋2𝐸𝐼

𝑙2
 

where 𝑛𝑐𝑟 is the critical Euler buckling load of the member, 𝑙 is the effective buckling length of 

the member, 𝐸 is the elastic modulus of the member, and 𝐼 is the moment of inertia of the 

member. Because 𝐼 depends on the shape and size of the cross-section area 𝑎 of the member, it 

can be written as 𝐼 = 𝛽𝑎2 with a constant factor 𝑘 depending on the shape of the cross area 

(Achtziger, 1999a). By letting 

𝑘 = 𝜋2𝐸𝛽 

the critical buckling load can be rewritten as 

𝑛𝑐𝑟 = 𝑘
𝑎2

𝑙2
 

For instance, 𝑘 = 𝜋𝐸/4 when the cross-section of the member is a circle, and 𝑘 = 𝜋2𝐸/12 

when the cross-section of the member is a square. 

An intuitive way to consider bucking instability in the ground structure method is to add the critical 

(3.1) 

(3.2) 

(3.3) 
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Euler buckling load as a constraint in the plastic formulation. Then the formulation (2.4) can be 

reformulated as 

𝑚𝑖𝑛
𝒔+, 𝒔−, 𝒂

𝑽 = 𝒍𝑻𝒂

𝑠. 𝑡. 𝑩𝑻(𝒔+ − 𝒔−) = 𝒇 

𝒔− ≤ 𝒏𝒄𝒓 = 𝑘
𝒂2

𝑙2

𝒂 ≥
𝒔+

𝝈𝑻
+

𝒔−

𝝈𝑪

𝒂 ≥ 𝟎
𝒔+, 𝒔− ≥ 𝟎

 

The objective is to minimize the volume of the material. The design variables are member forces 

in compression 𝒔− , member forces in tension 𝒔+ , and cross-section area 𝒂 . Note that the 

formulation becomes non-linear because of the non-linear buckling constraint. This constraint is 

related to the number of bars in the ground structure method. The efficiency of the implementation 

of this non-linear formulation might be low because of the usually high number of bars presented 

in the ground structure. Thus, it is better to linearize the buckling constraint term to improve the 

efficiency of the implementation. Instead of using member force, let’s introduce stress in the 

members as the design variables  

𝝈+ =
𝒔+

𝝈𝑻
 

𝝈− =
𝒔−

𝝈𝑪
 

Then the formulation (3.4) can be reformulated with a linearized buckling constraint term, shown 

as follows:  

(3.5) 

(3.4) 
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𝑚𝑖𝑛
𝝈+, 𝝈−, 𝑎

𝑽 = 𝒍𝑻𝒂

𝑠. 𝑡. 𝑩𝑻(𝝈+ − 𝝈−)𝒂 = 𝒇 

𝝈− ≤ 𝝈𝒄𝒓 = 𝑘
𝒂

𝑙2

𝟎 ≤ 𝝈+ ≤ 𝝈𝑻

𝟎 ≤ 𝝈− ≤ 𝝈𝑪

𝒂 ≥ 𝟎 

 

Equation (3.6) is the proposed formulation for the implementation of the ground structure method 

considering buckling constraint. This, from now on, the formulation (3.4) is not considered 

anymore. 

3.1 Implementation 

The nonlinear formulation (3.6) was implemented in MATLAB using its pre-defined function 

which is called “fmincon”. Although many algorithms can be used to solve a nonlinear 

programming, strong algorithmic differences exist (Descamps et al., 2014). Our numerical 

examples have shown that the interior-point method exhibits good performance because of its 

efficiency on handling large, sparse problems. To increase the accuracy and save the computational 

time, gradient and Hessian information are supplied. The gradient of the objective function is given 

by 

𝜵𝒛𝒇 = [𝜵𝒂𝒇  𝜵𝝈+𝒇  𝜵𝝈−𝒇]
𝑻
 

where the vector collecting the optimization variables is 𝒛 = [𝒂  𝝈+  𝝈−]
𝑻
. The gradient of the 

nonlinear constraint is shown as 

𝜵𝒛𝒈 = [𝜵𝒂𝒈  𝜵𝝈+𝒈  𝜵𝝈−𝒈]
𝑻
 

In addition, the hessian matrix is given by the second derivative of the Lagrangian function as 

(3.6) 

(3.7) 

(3.8) 
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follows 

𝜵𝒛𝒛
𝟐𝑳(𝒛, 𝝀) = 𝜵𝟐𝒇(𝒛) + ∑ 𝝀𝒊𝜵

𝟐𝒈𝒊(𝒛) 

All the gradient and Hessian matrixes in the implementation code were tested by Finite Difference 

Method (Haftka and Gurdal, 1992). 

3.2 Verification 

By studying two simple illustrative examples in details, the accuracy of the implementation is 

verified and an intuitive idea about how buckling constraint will affect the optimum solution is 

gained. In either of the two examples, the structure has the elastic modulus 𝐸 = 1, stress limits in 

tension and compression 𝜎𝑇 = 0.2 and 𝜎𝐶 = 0.2, respectively, applied force 𝑃 = 1 (consistent 

units are employed) and circular cross section with 𝑘 = 𝜋𝐸/4. 

3.2.1 Single bar column 

A single bar column example with a point load 𝑃 is shown in Figure 3.1 with indication of 

boundary conditions and dimension of the structure. The objective is to minimize volume of the 

structure while considering local stress limit and buckling constraint. The analytical solution of 

the problem can be obtained. The critical buckling load in the column is given by 

𝑛𝑐𝑟 =
𝜋2𝐸𝐼

𝑙2
= 𝑘

𝑎2

𝑙2
 

The elastic member force can be expressed as 

𝑛𝑒𝑙𝑠𝑡𝑖𝑐 = 𝜎𝐶𝑎 

Then the optimal cross section area is 

(3.9) 

(3.10) 

(3.11) 



14 
 

𝑎𝑜𝑝𝑡 = max {√
𝑃𝐿2

𝑘
,  

𝑃

𝜎𝐶
} 

Finally the optimal volume of the structure is obtained by 

𝑉𝑜𝑝𝑡 = 𝑎𝑜𝑝𝑡𝑙 

Given different magnitudes of the applied load, the analytical optimal volume is compared with 

that obtained from the implementation in this section (Figure 3.2). The comparison shows that the 

accuracy of the implementation is very good. 

 

Figure 3.1: A verification example with a single bar column. 

 

 

(3.12) 

(3.13) 
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Figure 3.2: Comparison of the optimal volume between analytical solution and GS 

implementation.  

3.2.2 Six bar truss 

In order to gain some intuitive insight into the optimal topology of truss design under buckling 

constraints, a six bar truss volume minimization problem is investigated. The six bar truss with a 

point load 𝑃 = 1 is shown in Figure 3.3(a) with indication of boundary condition and dimension 

of the structure. If buckling instability is not considered, the optimal topology is a long and slender 

bar in compression, as shown in Figure 3.3(b). However, the optimal structure (Figure 3.3(c)) is 

composed of five shorter members if stability consideration is implemented. In this figure, bars in 

red denote compression members, and bars in blue denote tension members. With buckling 

instability consideration, the topology changes according to the angle. There is a critical angle for 

the change of topology. When the angle of 𝛼  is more than 69 degrees, the topology is a 

combination of five shorter bars. The topology becomes a single bar when the angle of 𝛼 is less 

than 69 degrees.  
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Figure 3.3: A six bar truss verification example. (a) Domain with loads, boundary conditions and 

dimensions (a) Optimum solution without stability consideration. (b) Optimum solution with 

stability consideration. Notation: blue denotes tension and red denotes compreesion.  
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𝜶 
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Chapter 4 On the ground structure method with 

nodal instability constraint 

The nominal lateral force method was studied by Winter (1958) for design of bracing systems. 

Tyas et al. (2006) adapted the method to layout optimization using the ground structure method. 

Lateral force perturbations were applied to non-stabilized nodes in compression members so that 

additional structural braces are used to ensure stability of the internal node. The direction of the 

lateral forces is in the plane perpendicular to that in which the member force is in compression 

(Figure 4.1(a)). The magnitude of the lateral force is typically 2% of the compressive force that is 

being resisted (Tyas et al., 2006). For instance, at a given node 𝑗, the magnitude of the nominal 

force in the positive x direction, 𝑓𝑗
𝑥 (Figure 4.1(b)) , can be expressed as 

𝑓𝑗
𝑥 = 𝑟 ∑ 𝑠𝑖

−𝑑𝑖
𝑥

𝑚𝑗

𝑖=1

 

where 𝑚𝑗 is the number of bars connected to node 𝑗, 𝑠𝑖
− is the compressive component of the 

force in member 𝑖 , 𝑑𝑖
𝑥  is the direction cosine of bar 𝑖  relative to the 𝑦𝑧  plane which is 

perpendicular to the direction of 𝑓𝑗
𝑥 and 𝑟 is a constant factor which is typically taken as 2%. 

The nominal force in the positive z direction, 𝑓𝑗
𝑧(Figure 4.1(c)), can be calculated in the similar 

way 

𝑓𝑗
𝑧 = 𝑟 ∑ 𝑠𝑖

−𝑑𝑖
𝑧

𝑚𝑗

𝑖=1

 

The only difference is that 𝑑𝑖
𝑧 is the direction cosine of bar 𝑖 relative to the 𝑥𝑦 plane which is 

perpendicular to the direction of 𝑓𝑗
𝑧. In a similar manner, the nominal force in the y direction can 

(4.1) 

(4.2) 
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be calculated using the direction cosine related to the 𝑥𝑧 plane.  

 

    

 

 

Figure 4.1: The nominal lateral force method (Tyas et al., 2006). (a) Directions of the nominal 

forces. (b) The nominal force in positive x direction. (c) The nominal force in positive z direction. 

 

Recall the linear programming plastic formulation for minimum volume optimization problem in 

ground structure method:  

(a) 

(b) (c) 
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𝑚𝑖𝑛
𝒔+, 𝒔−

𝑽 = 𝒍𝑻𝒂

𝑠. 𝑡. 𝑩𝑻(𝒔+ − 𝒔−) = 𝒇 

𝒂 =
𝒔+

𝝈𝑻
+

𝒔−

𝝈𝑪

𝒔+, 𝒔− ≥ 𝟎

 

To take the nodal instability into consideration, six new equilibrium constraints related to nominal 

lateral load cases are required. Thus these constraints are included with additional constraints 

defining the magnitudes of the nominal forces into the program. The formulation can be written as 

𝐦𝐢𝐧
𝒔+, 𝒔−, 𝒂

𝑽 = 𝒍𝑻𝒂

𝒔. 𝒕. 𝑩𝑻(𝒔0+ − 𝒔0−) = 𝒇 

𝑩𝑻(𝒔𝜶+ − 𝒔𝛼−) = 𝒇𝒏
𝜶

𝒇𝒏
𝛼 ≥ 𝒓𝒔0𝒅𝒏

𝛼

𝒂 ≥
𝒔+

𝝈𝑇
+

𝒔−

𝝈𝐶

𝒔+, 𝒔− ≥ 𝟎
𝒂 ≥ 𝟎

𝜶 = 𝟏, … 𝟔

 

where 𝒇𝒏
𝜶 = {𝒇𝒙, −𝒇𝒙, 𝒇𝒚, −𝒇𝒚, 𝒇𝒛, −𝒇𝒛}𝑇 , 𝒅𝒏

𝜶 = {𝒅𝒙, 𝒅𝒚, 𝒅𝒛}𝑇 , 𝒔𝜶+ =

{𝒔𝟏+, 𝒔𝟐+, 𝒔𝟑+, 𝒔𝟒+, 𝒔𝟓+, 𝒔𝟔+}𝑻 , 𝒔𝜶− = {𝒔𝟏−, 𝒔𝟐−, 𝒔𝟑−, 𝒔𝟒−, 𝒔𝟓−, 𝒔𝟔−}𝑻 , 𝒔+ = {𝒔𝟎+, 𝒔𝜶+}𝑇  and 

𝒔− = {𝒔𝟎−, 𝒔𝜶−}𝑇. 𝒇𝒙, 𝒇𝒚, 𝒇𝒛 are magnitudes of the nominal lateral forces in the 𝑥, 𝑦 and 𝑧 

directions; and 𝒅𝒙 , 𝒅𝒚  and 𝒅𝒛  are direction cosine related to 𝑦𝑧, 𝑥𝑧  and 𝑥𝑦  planes, 

respectively. Note that Eq. (4.4) involving nodal instability constraints is a linear programming 

formulation. 

 

(4.3) 

(4.4) 
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Chapter 5 On the ground structure method 

involving both buckling and nodal instability 

constraints 

In the previous chapters 3 and 4, buckling constraint and nodal instability constraint are 

implemented separately into the ground structure method. Both of those two instability constraints 

are considered simultaneously in the implementation of the ground structure method in this chapter. 

Recall the linear programming formulation considering nodal instability only 

𝐦𝐢𝐧
𝒔+, 𝒔−, 𝒂

𝑽 = 𝒍𝑻𝒂

𝒔. 𝒕. 𝑩𝑻(𝒔𝟎+ − 𝒔𝟎−) = 𝒇 

𝑩𝑻(𝒔𝜶+ − 𝒔𝜶−) = 𝒇𝒏
𝜶

𝒇𝒏
𝜶 ≥ 𝒓𝒔𝟎𝒅𝒏

𝜶

𝒂 ≥
𝒔+

𝝈𝑻
+

𝒔−

𝝈𝑪

𝒔+, 𝒔− ≥ 𝟎
𝒂 ≥ 𝟎

𝜶 = 𝟏, … 𝟔

 

The Euler’s critical buckling load can be written as 

𝑛𝑐𝑟 = 𝑘
𝑎2

𝑙2
 

An intuitive idea to consider both nodal and buckling simultaneously is to add Euler’s critical load 

constraint into the above formulation directly. Then (5.1) can be reformulated as 

(5.1) 

(5.2) 
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𝐦𝐢𝐧
𝒔+, 𝒔−, 𝒂

𝑽 = 𝒍𝑻𝒂

𝒔. 𝒕. 𝒔− ≤ 𝒏𝒄𝒓 = 𝒌
𝒂𝟐

𝒍𝟐

𝑩𝑻(𝒔𝟎+ − 𝒔𝟎−) = 𝒇 

𝑩𝑻(𝒔𝜶+ − 𝒔𝜶−) = 𝒇𝒏
𝜶

𝒇𝒏
𝜶 ≥ 𝒓𝒔𝟎𝒅𝒏

𝜶

𝒂 ≥
𝒔+

𝝈𝑻
+

𝒔−

𝝈𝑪

𝒔+, 𝒔− ≥ 𝟎
𝒂 ≥ 𝟎

𝜶 = 𝟏, … 𝟔

 

Note that the formulation becomes non-linear because of the non-linear buckling constraint. This 

constraint is related to the number of bars in the ground structure method. The efficiency of the 

implementation of this non-linear formulation might be very low because of the large number of 

bars generated in the ground structure. Thus, it is better to linearize the buckling constraint term 

to improve the efficiency of the implementation. Let’s introduce member stress 𝝈+and 𝝈−as 

another new design variables. Then the buckling constraint can be rewritten as 

𝑩𝑻(𝝈+ − 𝝈−)𝒂 = 𝒇

𝝈− ≤ 𝝈𝒄𝒓 = 𝒌
𝒂

𝑙2

𝟎 ≤ 𝝈+ ≤ 𝝈𝑻

𝟎 ≤ 𝝈− ≤ 𝝈𝑪

 

Using the reformulated buckling constraint, we obtain the formulation including both local and 

nodal instability constraints 

(5.3) 

(5.4) 
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𝐦𝐢𝐧
𝝈+, 𝝈−, 𝒔+, 𝒔−, 𝒂

𝑽 = 𝒍𝑻𝒂

𝒔. 𝒕. 𝑩𝑻(𝝈+ − 𝝈−)𝒂 = 𝒇

𝝈− ≤ 𝝈𝒄𝒓 = 𝒌
𝒂

𝒍𝟐

𝟎 ≤ 𝝈+ ≤ 𝝈𝑻

𝟎 ≤ 𝝈− ≤ 𝝈𝑪

𝑩𝑻(𝒔𝟎+ − 𝒔𝟎−) = 𝒇

𝑩𝑻(𝒔𝜶+ − 𝒔𝜶−) = 𝒇𝒏
𝜶

𝒇𝒏
𝜶 ≥ 𝒓𝒔𝟎𝒅𝒏

𝜶

𝒂 ≥
𝒔+

𝝈𝑻
+

𝒔−

𝝈𝑪

𝒔+, 𝒔− ≥ 𝟎
𝒂 ≥ 𝟎

𝜶 = 𝟏, … 𝟔

 

This is the main and most complete formulation adopted in the present work. 

 

 

 

 

 

 

 

 

 

 

 

 

(5.5) 
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Chapter 6 Numerical examples 

In this chapter, several numerical examples clarify the effects of buckling, nodal and combined 

instability considerations. In every example, the tension limit and compression limit are taken as 

0.2. The cross-section of the member is circular with 𝑘 = 𝜋𝐸/4. Consider elastic modulus as unit. 

In section 6.1, a cantilever beam problem is considered to investigate the effect of buckling 

instability consideration in the implementation of the ground structure method. Both two- and 

three-dimensional ground structures are generated. In section, 6.2, a column problem is proposed 

to illustrate nodal instability. Section 6.3 is concerned with the implementation of the ground 

structure involving both buckling and nodal instability.   

6.1 Examples with buckling only consideration 

6.1.1 Two-dimensional cantilever beam 

The cantilever beam is fixed at one end, and loaded at the center of the other end (Figure 6.1). The 

domain has dimensions with 𝐿𝑥 = 3 and 𝐿𝑦 = 1. The magnitude of the load is 1. The domain is 

discretized with 6 × 2, 12 × 4, 18 × 6, 24 × 8 and 30 × 10 mesh separately. Figure 6.2 and 

Figure 6.3 show the different optimum topologies for the problem with different mesh. All the data 

are collected in Table 6.1 in terms of number of element in base mesh 𝑁𝑒, number of node in base 

mesh 𝑁𝑛, level connectivity 𝐿𝑣𝑙, number of bars 𝑁𝑏 and optimal volume 𝑉.  

The convergence behavior of the implementation considering buckling constraint is shown in 

Figure 6.4 with red line. As a comparison, the behavior of the ground structure method without 
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instability consideration for the same problem is plotted as blue line.  

 

Figure 6.1: A cantilever beam problem. Domain with loads, boundary conditions and dimensions. 

 

 

Figure 6.2: Final topologies for the cantilever beam problem. (a) 6 × 2  mesh with level 4 

connectivity → 124 bars. (b) 12 × 4 mesh with level 4 connectivity → 752 bars. 

(a) 

(b) 
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Figure 6.3: Final topologies for the cantilever beam problem. (a) 18 × 6  mesh with level 4 

connectivity → 1976 bars. (b) 24 × 8 mesh with level 4 connectivity → 3776 bars. (c) 30 ×

10 mesh with level 4 connectivity → 6152 bars.  

(a) 

(c) 

(c) 
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Figure 6.4: Comparison of the convergence rate for the cantilever beam problem 

 

Table 6.1: Summary of results for the implementation with buckling constraint 

 

Figure 6.5 shows the comparison of optimal topologies between the implementation considering 

buckling and that not considering instability issue. Same mesh and connectivity level of the ground 

structure (Figure 6.5(a)) is used in the comparison. The optimal topology without instability 
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consideration is shown in Figure 6.5(b). Moreover, Figure 6.5(c) shows the final result with 

buckling consideration.  

 

 

 

 

 

 

 

Figure 6.5: Comparison of final topologies for the cantilever beam problem using two-dimensional 

domain. (a) Ground structure with 24 × 8 mesh and level 3 connectivity, 2728 bars. (b) The 

optimal topology without instability consideration. (c) The final result with buckling consideration. 

(a) 

(b) 

(c) 
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6.1.2 Three-dimensional cantilever beam 

The cantilever beam problem is extended to three-dimensional domain. Boundary and load 

conditions are shown in Figure 6.6(a). The domain has dimensions with 𝐿𝑥 = 3 and 𝐿𝑦 = 𝐿𝑧 =

1. The magnitude of the load is 1. The domain is discretized with 6 × 2 × 2 mesh and level 4 

connectivity (Figure 6.6(b)). There are 1418 bars in the ground structure. Figure 6.7 shows the 

comparison of optimal topologies between the implementation considering buckling and that not 

considering instability issue. The optimal topology without instability consideration is shown in 

Figure 6.7(a). Moreover, Figure 6.7(b) shows the final result with buckling consideration in the 

implementation. There is no long and slender bars in the final optimal topology with buckling 

consideration. 

 

 

Figure 6.6: A cantilever beam problem in three-dimensional domain. (a) Dimensions, boundary 

and load conditions. (b) Ground structure with 6 × 2 × 2 mesh, level 4 connectivity, 1418 bars. 

(a) 

(b) 
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Figure 6.7: Comparison of the final topologies for the cantilever beam problem using three-

dimensional domain. (a) The optimal topology without instability consideration. (c) The final 

result with buckling consideration in the implementation. 

 

 

 

(a) 

(b) 
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6.2 Examples with nodal instability only consideration 

6.2.1 Two-dimensional column 

The column is fixed at bottom, and loaded at the center of the top (Figure 6.8). The domain has 

dimensions with 𝐿𝑥 = 1 and 𝐿𝑦 = 3. The magnitude of the load is 1. The domain is discretized 

with 2 × 3 mesh and level 3 connectivity is used to generate the ground structure (Figure 6.9(a)). 

Figure 6.9(b) shows the optimum topology without instability consideration. There are several 

unstable nodes along the long bar. Figure 6.9(c) show the final topology obtained from the 

implementation considering nodal instability constraint. All the nodes in the structure are braced.  

 

Figure 6.8: A column problem in two-dimensional domain 
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Figure 6.9: Comparison of final topologies for the column problem in two-dimensional domain. 

(a) Ground structure with 3 × 2 mesh and level 3 connectivity, 49 bars. (b) The optimal topology 

without instability consideration (c) The final result with nodal consideration in the 

implementation. 

 

6.2.2 Three-dimensional column 

The column problem is extended to a three-dimensional domain. The simple 3D tower problem by 

Tyas et al. (2006) is shown here. The domain has dimensions with 𝐿𝑥 = 𝐿𝑦 = 2 and 𝐿𝑧 = 10. 

The magnitude of the load is 1. The domain is discretized with 2 × 2 × 10 mesh and level 1 

connectivity (Figure 6.10(b)). There are 710 bars in the ground structure. Figure 6.10(c) shows 

optimal topology obtained from the implementation considering nodal instability. There is no 

unstable nodes in the optimal structure. 

 

(a) (b) (c) 
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Figure 6.10: Tyas’ simple column problem in three-dimensional domain. (a) Dimensions, boundary 

and load conditions. (b) Ground structure with 2 × 2 × 10 mesh, level 1 connectivity, 710 bars. 

(a) 

(b) (c) 
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6.3 An example with both buckling and nodal instability  

A column example in three-dimensional domain is tested considering both buckling and nodal 

instability constraints. Figure 6.10 (a) shows the boundary and load conditions of the problem. The 

domain has dimensions with 𝐿𝑥 = 𝐿𝑦 = 2 and 𝐿𝑧 = 4. The magnitude of the load is 1. The 

domain is discretized with 2 × 2 × 4 mesh and level 4 connectivity (Figure 6.11(a)). There are 

832 bars in the ground structure. Figure 6.11(b) shows the optimum topology with only buckling 

consideration. Figure 6.11(c) shows the optimum topology with only nodal instability 

consideration. Figure 6.11(d) shows the optimal topology obtained from the implementation 

considering both buckling and nodal instability constraints. This topology resembles some 

components of the previous two topologies. 
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Figure 6.11: A three-dimensional column problem with instability consideration. (a) Ground 

structure with 2 × 2 × 4 mesh and level 1 connectivity, 832 bars. (b) The optimal topology with 

buckling consideration. (c) The final result with nodal instability consideration. (d) The optimal 

topology with both buckling and nodal instability considerations. 

 

(a) 

(b) (c) (d) 
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Chapter 7 Conclusion  

 

This thesis presents the development of the ground structure method involving both buckling and 

nodal instability considerations. The typical ground structure method using plastic formulation is 

reviewed. Then the ground structure method is implemented considering buckling constraint and 

nodal instability constraint either separately or in combination. This leads to three different 

implementation cases which is reasonable because real engineering problems might have different 

requirements. Thus the three implementations with different instability considerations give 

engineers options to solve relevant applied engineering problems. The Euler buckling criteria is 

taken as the buckling constraint in the implementation with local instability consideration. 

Nominal lateral force method (Tyas et al., 2006) is used in the implementation involving nodal 

instability consideration. The formulation with buckling consideration and the one with both local 

and nodal instability considerations are non-linear. Steps have been taken to improve the efficiency 

of the programing.  

Numerical examples show the behavior and application of the implementations involving 

instability constraints. The problem domain can be both two-dimensional and three-dimensional. 

In the examples with buckling consideration only, a verification study was conducted. In addition, 

the optimum topology with buckling constraint was compared with that without instability 

consideration. There is no long and slender members in the optimal structure with buckling 

consideration. Moreover, every node in the optimal topologies with nodal instability consideration 
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are braced. No unstable nodes appear in those structures. In the example with both buckling and 

nodal instability consideration, the optimal structure shows features that can help the structural 

designer to avoid buckling and nodal instability issues. Next, a couple of suggestions for future 

work are highlighted. 

7.1 Consideration of general domains 

The present GS method could be extended to general three-dimensional restriction zones (Zegard 

and Paulino, 2014). This feature would allow consideration of more realistic structures (Beghini 

et al., 2014). 

7.2 Extraction of structures out of the plastic ground structures 

The final structure in the optimization process is obtained by setting a threshhold value on the 

areas. In order to connect this work with actual design and other fields of investigation, procedures 

need to be developed to ensure the local and global equilibrium satisfied for those structures. 
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