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Abstract

The focus of this work is to solve crack problems in functionally graded materials
(FGMs) with strain-gradient effect. The method used and developed is called hy-
persingular integral equation method in which the mtegra.l is mterpreted as a finite
part integral, and it can be considered as a generalization of the well-known singular
integfal equation method. In developing the method, we have derived the exact for-
mulas for evaluating the hypersingular integrals and used Mellin transform to study
the crack-tip asymptotics; we have detailed the numerical approximation procedures;
also, we have generalized the definition of stress intensity factors (SIFs) under strain-

gradient theory and provided formulas for computing SIFs.

Different types of crack problems have been solved: Conventional classical linear elas-
tic fracture mechanics (LEFM) vs. strain-gradient theory; scalar problems (Mode III
fracture) vs. vector ones (Mode I fracture); homogeneous materials vs. FGMs; dif-
ferent geometric setting of crack location and material gradation. In particular, we
obtain a closed form solution for the crack profile in one simple case — Mode III crack
problems in homogeneous materials with the characteristic length ¢ responsible for

surface strain-gradient term being zero.



CHAPTER 1. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS 1

Chapter 1

Introduction

Displacement-equations of equilibrium in the absence of body force of conventional

linear elasticity [1, 33] are
pViu+ A+ p)VV-u=0, (1.1)

where A and p are the Lamé constants, u is the displacement vector, V, V-, and V2
are the gradient, divergence, and Laplacian operators, respectively. Clearly, as shown
in equation (1.1), the classical continuum theories possess no intrinsic length scale.
Sometimes conventional continuum theories are referred as local theories because of
the assumption that stress at a material point is a function of strain at the same point,
and typical dimensions of length are generally associated with the overall geometry
of the domain under consideration. Thus classical elasticity (and plasticity) are scale-
free continuum theories in which there is no microstructure associated with material
points [31], and it has been quite an adequate model when the length scale of a
deformation field is much larger than the microstructural length scale of the material.
However, if the two length scales are of comparable order, the adequacy of the local
assumption may no longer stands as the material behavior at a point will be also
under influence by the deformation of the neighboring points. In order to cope with

this physical reality, conventional continuum theories are generalized so that stress is
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not only a function of strain at one point, but also a function of the gradient of the

strain. This leads to the so called non-local, higher order strain-gradient theories.

1.1 Strain-Gradient Theories

As a generalization of the conventional classical continuum theories, strain-gradient
theories enricﬁ the classical continuum with additional material characteristic lengths
in order to describe the size (or scale) effects resulting from the underlining microstruc-
ture. For instance, the equilibrium displacement-equation without body force by using

an anisotropic gradient elasticity theory with surface energy are [34, 35]
(1 - 2v?) [uV2u+(,\+u)VV-u] =0. (1.2)

There is a length parameter ¢ appearing in (1.2), also the order of the governing

partial differential equation(s) is higher than (1.1).

Higher order continua belong to a general class of constitutive models which account
for the material microstructure. Starting from the earliest Cosserat couple stress
theory [18], various non-local or strain-gradient continuum theories have been pro-
posed. For instance, Toupin {90] and Mindlin [65, 66] proposed a theory that includes
micro-curvature and gradients of normal strain. Casal [8, 9, 10] established the con-
nection between surface tension effects and the anisotropic gradient elasticity theory.
Recent work on strain gradient theories to account for size (or scale) effects in ma-
terials can be found in the articles by Fleck and Hutchinson 1997 {37], Lakes 1983,
1986 [55, 56], Smyshlyaev and Fleck 1996 [83], Van Vliet and Van Mier [94], and Wu
1992 [99]. Recent applications of gradient elasticity to fracture mechanics include the
work by Aifantis 1992 [2], Exadaktylos et al.1996 [35], Fannjiang et al. 2001 [36],
Hutchinson & Evans 2000 [44], Hwang et al. 1998 [45], Paulino et al. 1998 (73], Var-
doulakis et al.1996 {92], and Zhang et al. 1998 [100]. Reference [37] is an excellent
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review article providing a summary of the experimental evidence.

1.2 Functionally Graded Materials

Another interest that we are looking for in this thesis is the so called functionally
graded materials (FGMs). In terms of mathematical description, the Lamé moduli A

and u in (1.1) are no longer constants, but functions that represent material gradation.

N — \ /- /- /e —
~

Ceramic Ceramic Transition Metallic Metallic
phase matrix region matrix phase
with with
y metallic ceramic
inclusions inclusions
x

Figure 1.1: An illustration of a functionally graded material.

Thus, in the absence of body force, the equilibrium equations become (see Chapter 3

for the discussion of the derivation)

p(x) Vi + [A(x) + p(x)]VV -u =0, (1.3)
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where we have used A(x) and pu(x) to denote that A and p are functions of position
x = (11, T2, T3) = (z,y, 2). It is worth to point out that equation (1.3) has the same
order as in (1.1), it is just a replacement of the Lamé constants A and p with functions

A(x) and p(x), respectively.

The emergence of FGMs is the outcome of the need to accommodate material exposure
to non-uniform service requirements. These multiphased materials feature gradual
transition in composition and/or microstructure for the specific purpose of control-
ling variations in thermal, structural or functional properties. The spatial variation of
microstructure is accomplished through nonuniform distribution of the reinforcement
phase with different properties, sizes and shapes, as well as by interchanging the roles
of reinforcement and matrix (base) materials in a continuous manner. This concept is
illustrated by Figure 1.1, which shows an FGM with a continuously graded microstruc-
ture. Typical examples of FGMs include ceramic/ceramic, e.g. MoSi,/SiC (7], and
metal/ceramic, e.g. Ti/TiB [6], systems. Comprehensive reviews on several aspects
of FGMs can be found in the articles by Erdogan 1995 [26], Hirai 1996 [41], Mark-
worth et al. 1995 [59], and the book by Suresh & Mortensen 1998 [88].

1.3 Functionally Graded Materials with Strain-Gradient Ef-
fect

In this thesis we investigate the fracture problems in FGMs with strain-gradient
effect. Thus, the problem is a combination of higher order strain-gradient theory
and FGMs. The governing equilibrium equations become much more complicated
than the corresponding equations (1.1) — (1.3) due to the interaction of the material
gradation and the strain-gradient effect. For instance, instead of just replacing the

Lamé moduli X and u to be some function reflecting material gradation in (1.2), the
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equilibrium equations become (see Chapter 3 for the detail of the derivation)

G(z,y)V(1 - #V¥u + [A(z,9) +G(z,y)]V(1 - #V?) V-u

+ [(1 - 2V?) (Vu+VuaT)] VG(z,y) + [(1 — #£V3)V-u] VA(z,y) (1.4)
d dG(z,y) a 0G(z,y)
- 82 {(V'a—z‘U) V——a—l‘— + (ng-ll) Va—y- - V[V/\(.’L‘, y) . VVu]}

- & {;—m[(VVu)VG(:z:,y)] + a%[(vvu)vc(z, y)] + (VV?u) VG(z, y)} =0,

if a two-dimensional plane problem is considered and the boldface u denotes the

displacement vector (u, v).

Equation (1.4) seems to be a bit out of hand, and how to solve it becomes a pure
mathematical task. It is the focus of this thesis to solve (1.4) both analytically and

numerically.

1.4 Mathematical Aspects

Essentially, there are two types of mathematical methods being used very often in
the field of fracture mechanics: integral transforms [88, 101] and complex function
theories [71, 72]. Depending on the geometry and the coordinate system of the crack,
the most often used integral transforms include Fourier, Mellin, and Hankel trans-
forms. The techniques in complex analysis include Weiner-Hopf method, conformal
mapping, Laurent series expansion, and boundary collocation method. Reference [27]

by Erdogan is a good review paper on this aspect.

1.4.1 Singular Integral Equation Method

The system of equations in (1.1) is a second order elliptic type partial differential
equations (PDEs), and it is often formulated as a mixed boundary value problems in

fracture mechanics. The method of singular integral equations has been well known
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and often used to solve such crack problems in the classical theory of elasticity [68,
69, 84, 86]. For example, a Mode III crack problem with crack surface sitting in
the middle of an infinite homogeneous medium is just a Laplace equation for the
displacement component w(z,y) with mixed boundary conditions (see the details in
Chapter 2):

Viw(z,y) =0, —o<zr<oo, y>0,

w(z,0) = 0, z ¢lcd], (1.5)

0y:(2,07) =plz), z€(cd).
By using integral transform, one can make (1.5) to be a Cauchy singular integral
equation (see [86, 85] or Chapter 2 for detail)

Jw(z,0)
dz

d +

Of course, there is a closed form solution [79] to (1.6).

When the material gradation is included in the problems, equation (1.3) is still a
second order elliptic type PDE. Crack problems in FGMs can be considered as a
regular perturbation to the ones in homogeneous materials. For example, if the shear
modulus G takes gradation function to be G = Gge”®, then the corresponding PDE
to (1.5) becomes (see Chapter 2 for detail)

ow(z,y) _

2
Viu(z,y) + B

0. (1.7)

As we know that Laplacian operator has rigid motion invariance, equation (1.7) says
that the material gradation brings in the perturbation and ruins this invariance, and
the consequence of it is that it will often ruin the solvability for closed form solution.
However, the method to solve crack problems for FGMs in the classical theory of
elasticity is very much the same as in the homogeneous materials in terms of deriving

the governing singular integral equation [17, 24, 25, 26, 30, 46]. For the case that
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closed form solution is not available, numerical solution procedures have been widely

used and well addressed [24, 28, 29].

1.4.2 Solution to the Crack Problems with Strain-Gradient Effect

So far, not very much work has been done to the crack problems with strain-gradient
effect, and most of them are pretty recent (34, 35, 36, 45, 73, 100]. Zhang et al. [100]
used Weiner-Hopf method to obtain a Mode III full-field solution in elastic materials
with strain-gradient effect; Shi et al. [82] used the same technique to solve both Mode
I and Mode II problems. Vardoulakis et al. [92] used integral transform method to
solve a Mode III crack problem for a gradient elasticity with a surface energy term,

and Exadaktylos [34] solved the corresponding one for Mode I crack problem.

All work mentioned above is for homogeneous materials . For nonhomogeneous ma-
terials, e.g. FGMs, Paulino et al. [72] have solved a Mode III crack problem in FGMs

with strain-gradient effect by using the hypersingular integral equation method.

1.4.3 Hypersingular Integral Equation Method

In this thesis we use the hypersingular integral equation method to solve main PDE
(1.4). Kaya and Erdogan [50| have used hypersingular (finite part) integral to formu-
late crack problems in classical linear elastic fracture mechanics (LEFM). However,
the finite part integral approach in LEFM is an alternative formulation; while in
gradient elasticity, hypersingularity arises naturally in the formulation of the integral
equation. For example, a simplest case, the governing PDE for a Mode III fracture

in homogeneous material with strain-energy is
(1-6EVvH)Viw =0,

and it gives rise to (see details in Chapter 9)
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202 [ #(t) 1—p%/4 [* o(t)
T e (t— x)3dt + T o t— z:dt

+ 2 [ Kate-alot - 580 = B 1el <a,

an integral equation with cubic singularity. Some concerns arise immediately. For

instance, the exact evaluation of the hypersingular integrals (see details in Chapter 7)

U T.(s)V1 =52 and f‘ Un(s)V1 — s2

1 (5= p (s—r)?

becomes an important issue in the numerical solution.

ds, |r|<1 ds, |rj<1

1.5 Outline of Contents

Several chapters in this thesis have been published in joint papers with my advisors
Professor A. C. Fannjiang and Professor G. H. Paulino. Essential part of Chapter 2
is reported in [14]; Chapter 3 is under preparation [13]; Chapter 4 has appeared in
both [72] and [73]; Chapter 7 consists of the major part of [11]; Chapter 9 is a part
of [36]; Chapter 10 has been presented in Third SIAM Conference on Mathematical
Aspects of Materials Science and submitted for publication [16]; a preliminary version
of Chapter 11 has been submitted to The 20th Int. Congress of the Int. Union of
Theoretical and Applied Mechanics (IUTAM) and collected as a proceeding paper [12];
a simplified version of Chapter 12 appeared in [15].

The remainder of the thesis is organized as follows.

In Chapters 2 and 4, we lay out how the hypersingular integral equations are formu-
lated. Chapter 2 focuses on the case of classical LEFM, and Chapter 4 is devoted to

the case of strain-gradient elasticity; both chapters are for the case of FGMs.

It is important to study the constitutive equations of the strain-gradient elasticity

for FGMs, for the governing PDE depend on them. Thus we treat the constitutive
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equations of the strain-gradient elasticity for FGMs in Chapter 3. Also, we use
Chapter 3 to serve a common ground on which we introduce the consistent notations,

strain energy function, PDEs.

Chapter 5 gives definitions of the finite part integrals and show how the hypersingular

integrals arise in the formulation.

Chapter 6 is devoted to the analysis of the crack-tip asymptotics by using Mellin

transform. Different order of singularity are examined under Mellin transform.

Chapter 7 provides the details of the derivation of the exact evaluation of the hyper-

singular integrals. Also, useful formulas needed for computing SIFs are addressed.

Chapter 8 details the numerical approximation procedures and provides the compu-
tation of SIFs. Also, at the end of Chapter 8 we demonstrate two sets of Chebyshev

polynomials expansion by giving a Mode I crack problem in classical LEFM.

In Chapter 9, we find a closed form solution for a case of homogeneous materials with
the surface energy term ¢ = 0 for a Mode III crack problem. A plot of numerical
solution vs. the closed form solution is provided. A discussion of a more general
strain energy density function is provided at the end of the chapter.

Chapter 10 can be considered as a continuation of Chapter 4, with a different geo-
metrical location of the crack to the material gradation. In Chapter 4, the crack is
perpendicular to the material gradation; while in Chapter 10, the crack is parallel to

the material gradation.

In Chapters 11 and 12, we deal with Mode I crack problems for homogeneous and
FGMs, respectively. They are of type of vector problems, thus systems of hypersin-

gular integral equations are derived.

Chapter 13 gives a brief remark and summary of the paper with some future work

listed.
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Chapter 2

Singular Integral Equations in
Classical Linear Elastic Fracture

Mechanics

In this chapter and Chapter 4, we develop a comprehensive presentation and lay
out the details about how the hypersingular integral equations arise in solving crack
problems. The formulation of hypersingular integral equations in the present chapter
deals with the problems in classical linear elastic fracture mechanics (LEFM); while
in Chapter 4, we address the crack problems in the higher order theory (elasticity
with strain-gradient effects). In both chapters, we assume that the material is non-
homogeneous, which in the field of functionally graded materials (FGMs) has gained

renewed importance.

2.1 Introduction

In general, the solution to the crack problems in the classical LEFM often leads to a
system of Cauchy type singular integral equations (28, 29, 46, 47, 51, 53, 68|



CHAPTER 2. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS 11

a [* ¢i(t)
= f _zdt+z:/ ks, £)bi(t) dt + bidi(z) = pi(z), c<z <d,
where a;, b; (i = 1,2,---,I) are real constants, and the kernels k;;(z,t) are bounded

in the closed domain (z,t) € [c, d] x [¢, d]. Each function p;(z) is known and given by
the boundary condition(s). Functions ¢;(z) are the unknowns of the problems, also
called by the density functions which often are the derivatives of the displacements.
However, if the unknown density function is chosen to be the displacement, say D;(z),
then the order of singularity increases. Thus, a formulation of (a system of) hyper-
singular integral equations is made. The choice of different unknown density function
in the formulation of the integral equation leads to different order of singularity (of
the integral equation) will be demonstrated in the following by means of a mode III

problem (see also Reference [14] by Chan et al.).

2.2 Governing Partial Differential Equations and Boundary

Conditions

Consider a mode III crack problem in a nonhomogeneous elastic medium with the
shear modulus variation illustrated in Figure 2.1. The nontrivial equilibrium condition
is
00.. 00y
oz dy
If the shear modulus G is a function of £ and takes the exponential form

=0. (2.1)

G(z) = Goe™* (2.2)

where Gy and 3 are material constants (see Figure 2.1), then the equilibrium condition
(2.1) can be rewritten as a partial differential equation (PDE) in terms of the z

component of the displacement vector, w(z,y), i.e.

ow(z,y)

2
Viu(z,y) + e

=0. (2.3)
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G(x) =GoeBx

c d P
l<— 2a —=

Figure 2.1: Antiplane shear problem for a nonhomogeneous material. Shear modulus G(z) = Go€°7;

»”

c and d represent the left and right crack tip, respectively; a is the half crack length.

Furthermore, the governing PDE (2.3) is solved under the following mixed boundary
conditions:

w(z,0) =0, z ¢ le.d],

Oy:(z,07) =p(z), <z€(cd),

(2.4)

where p(z) is the traction function along the crack surfaces (c,d). Due to symmetry,
one can only consider the upper half plane y > 0 for this problem. Thus the governing

differential equation and boundary conditions can be summarized by:

Vw(z,y) + B8w(z,y)/dz =0, —xo<zr<oo, y>0,
w(z,0) =0, z¢led, (2.5)

oy:(2,07) = p(z) , T € (c,d) .
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2.3 Fourier Transform

Let W(&,y) be the Fourier transform of w(z,y) defined by

e o]

FlwhE,y) = W(E,y) = \/% [ @y, (2.6)

so that w(z,y) is the inverse Fourier transform of the function W (£, y), i.e.

wiz,y) = % / W (€, y)e~=dE . (2.7)

With this approach, one transforms the PDE (2.3) for w(z,y) into an ordinary dif-
ferential equation (ODE) for W (&, y), t.e.

*W (&, y)
dy?

The corresponding characteristic equation to the ODE (2.8) above is

— (2 +iBEW =0. (2.8)

MO =€ +iB¢ . (2.9)

To satisfy the far field boundary condition, lim,_,o w(z,y) = 0, we choose the root

A(€) with non-positive real part:

-1 i
== 4 L 3262 L £2 _ 4 32e2 _ g2 9
NE) = 5 VE T FE + € ﬁsgn(ﬁs)\/ froE-,  (210)
where the signum function sgn(-) is defined as
1, n>0
sgn(n) = 0, n=0 (2.11)
-1, n<O0
Thus W (£, y) is found to be
W(E,y) = A(E)eMew (2.12)

and, by equation (2.7), w(z,y) can be expressed as

way) = = [ (@] et (2.13)
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where A(£) is to be determined by the boundary conditions (2.4).
As the limit of y — 07 is taken,

y—0+

+) = L (™ aiorer@n] amizege — L [ —izg
w(z,0%) = lim — T f_ . [A(€)eMe] e~*=4de o /_ coA(&)e d¢ , (2.14)

that is, w(z,0%) is the inverse Fourier transform of A(§). By inverting the Fourier

transform, one obtains

A(¢) = % /_ ~ w(z,07)e™dr = —— / w(t,0%)e dt (2.15)

where the first boundary condition in (2.4) and a change of dummy variable (z « t)
have been applied.

On the other hand, the stress o, is given by

duw(r,y) _ G(z) [* A -
-(z, G A(E)A(E)eMO] e dg . 2.16
aye(z,) = C@) T2 = T2 [ [AONE)N] et (2.16)
Replacing A(£) in equation (2.16) above by the expression in equation (2.15), one
gets
G xr i —iz
oy:(z,y) = \/(2_73 [ Vi / w(t, o+)e‘fdt] A(E)eMOve—i=tdg
= 9‘% / w(t,07F) / A(E)eMEvett—=R gedt | (2.17)
Defining

K(&,y) = M, (2.18)

and using the second boundary condition in (2.4), one reaches

Uyz(1'10+) = yl_i,%h Uy:(za y) , c<z<d,
d oo
= 1im 52 [Cue0n) [ Kig et Faeat
y—=ot+t 2w /. —oo

= @ /c ‘ w(t, 0" )kernel(z — t)dt

= p(z) ., (2.19)
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with
2 x kernel(z — t) = ﬁr&_ / K(&,y)e't—=¥dg | (2.20)
y=0+ J o

where equation (2.19) and the above kernel are interpreted in a limit sense.

2.4 Asymptotic Analysis and Kernel Decomposition

In order to make the kernel explicit (see (2.20)) and separate its singular and regular

parts; we need to investigate the asymptotic behavior, |§| — +o0, of

K(&) = K(&07) = X(¢) - (2.21)

A simple asymptotic analysis gives the following results:

R(A(E)) = %\/ VErrE+e g, (2.22)
i x T(AE)) = —isgn(pe)/ Ve + pe — g2 = _LL (2.23)
72 7€

where R(-) and Z(-) denote the real part and the imaginary part of the argument,

respectively. Thus we have the decomposition

K(§) = [K(§) — Kx(§)] + K(§) (2.24)
with closed form expressions given by

zB 1€l
2. ¢

which gives rise to the quadratic hypersingular and Cauchy singular kernels (see
Chapter 3.3).

K () = —&] — (2.25)

The other part, K(§) — K« (£), called by the regular kernel takes the following form:
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K(€) — Kao(€) = M€) - (_m _ ﬁ%)

= (1g-J5/VErme o) + 318 (s - vEsmnien/VETre - ¢)
- VEBE ilgl 26+ 5 -2/ + B¢
€1+ S5/ VE T BE + & T2, ) VE B €
_ —i5%¢° + (2.26)
(I€l+ﬁ \/Ww) (3 + LVE+ 72)
ilgl Ch
28 (ﬁ%—ﬁsgn(ﬁ)\/m—?) (2£2+62+2\/§“_-+-6T§2)'

After dividing the first fraction in the equality numbered as (2.26) by |£|\/|&|, one

obtains
32
K(€) - Knl®) = il -
2 (VI + &/ VEF B+ 6] (161 + VET )
i BYel/€ .

2 (B + V2 sgn(B) \/ V& + 5% - E”) (25’-’ + 582 +2y/8 + ﬂ2€’~’)

In general, the function K(£) may be complicated [51] and so is the corresponding
asymptotic analysis. In any case, the singular part, such as (2.25), can be separated
by using a symbolic calculation software such as MAPLE [96, 97| and the regular
kernel can be dealt with numerically.

Thus, equation (2.20) becomes
2 x kernel(z,t) = lim / K(&, y)et—=¢¥dg =
y—=0* J _

fir. /_ _K(6,y) = Keo(E )] + lim /_ _ Kalgy)e g, (228)

nonsingular part singular part
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where

Ko(6:y) = (—lﬂ - 529'—2—') e (2.29)

Therefore, the decomposition of the kernel(z,t) (see (2.20)) into nonsingular and

singular parts has been achieved.

2.5 Hypersingular Integral Equation

The singular part in equation (2.28) can be shown to converge in the sense of distri-

bution (see Chapter 5.3 and Reference [36}):

lim ” Ko(£,y)e™"%de = lim = (—|§| _ g'ﬂ) eilt-2)ge

¥y J_o y—=07 J_oo 2 §
2 + Jé]
(t—-z)2 t—z

The expression on the right side of equation (2.30) is a distribution (or general-

(2.30)

ized function) defined via Hadamard finite part integral (including Cauchy principal
value). The nonsingular part in equation (2.28) can be obtained by means of equation
(2.27), which leads to

Nt = g lim [ K(E ) - Kale )l g
= 3 1K@ - Kl
- 8V cos((t ~ 28] -
o (2vE+ VB VET T +¢) (6+ VETR)

d§ (2.31)

/w 8%/ VE + BP€ — 2sin[(t — 2)€]/2
(\/\/W%* + \/§|§|) (262 + 82 + 2/E+ 7707
where we have used the fact that the real part of [K(£§) — K (§)] is an even function
of £, and the imaginary part is an odd function of £. Also note that if 3 = 0, then

N(z,t) = 0. If 8 # 0, then the denominators in the two integrands of equation (2.31)

never vanish for £ € [0, 00).
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Throughout this chapter, the notation F is used for Hadamard’s finite part in-
tegral (see Chapter 3), and the notation f is used for the Cauchy principal value
(Kutt, 1975 [54]). Thus using equations (2.28) to (2.31) together with equation (2.19),

one obtains a hypersingular integral equation:

s (t—2z)® 2(t-—1z)

Goe fd [ . + i + N(:L‘,t)] w(t,07) dt = p(z)|, (2.32)

where ¢ < £ < d and the highest order singularity defines the notation adopted,
and N(z,t) is given in equation (2.31). In order to have a unique solution of
(2.32), we must impose the crack-tip conditions on w(t,0%) (Martin 1991 [60|; Fan-
njiang et al., 2001 [36]):

w(c,07) = w(d,07)=0. (2.33)

In case of homogeneous materials, 3 = 0, equation (2.32) becomes

GO ¢ ‘UJ(t, 0+)

T Je (t —:l:)2

dt = p(z), c<z<d. (2.34)

Therefore one may consider the hypersingular integral equation (2.32) as a perturba-
tion of equation (2.34). Also note that the expressions for o,.(z,0), equations (2.19)

and (2.32), are valid for ¢ < z < d as well as for z is outside of [c, d]. That is,

Goe?* [ 1 3 .
oy=(z,0) = o7r /c [(t — 2 + 30 — 1) + N(z,t)| w(t,07)dt, (2.35)

where z < c or £ > d. Note that the integrals in equation (2.35) above are ordinary

integrals, not evaluated as Hadamard finite part integral or the Cauchy principal
value integral.

2.6 Displacement versus Slope Formulations

Erdogan [25] has studied the mode III crack problem in order to investigate the

singular nature of the crack-tip stress field when the shear modulus is not smooth
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(continuous but not differentiable). Erdogan uses the slope function, i.e.
#(2) = 2u(z,0) (2.36)
I )

as the density function in formulating the governing integral equation. The resultant
Cauchy singular integral equation is then solved together with the single-valuedness
condition (see equations (15), (20), (21), and (22) in Erdogan [25])

/d o(z)dz =0. (2.37)

Instead of the slope formulation, the displacement formulation is employed in this
paper. Kaya [49] has pointed out three advantages for choosing displacement over

slope as the density function:
e More direct, without an extra step of integration to recover the displacement.

e The displacement function w(z, 0) is bounded everywhere, but in classical LEFM

the slope function is unbounded at the crack tips.

e Displacement would be a more natural candidate if a three-dimensional problem

is considered.

Here, we point out another advantage by choosing displacement as the density func-

tion:
e Alternative asymptotics.

This point is important especially for the method of integral equation because the
accuracy of the method relies on the exact cancellation of singularity (i.e. finite-part
integrals), and a key step for achieving such cancellation is the asymptotic analysis
of the kernel.

The demonstration of alternative, and in the present case, simpler asymptotics can

be seen if one recalls the derivation regarding the decomposition of the kernel K(§)
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described in equations (2.24), (2.25), and (2.27). In terms of the notation adopted in

this paper, we have:

k(e = lim Moo - 28

y_)0+ — 5 if slope formulation is used; (2.38)

K(§) = lim AE)eMEW = \(€) , if displacement formulation is taken.  (2.39)
y—r

The decomposition of K(£) in (2.38) is less straightforward. Because of the term
(—i€) in the denominator in (2.38), one needs to consider the asymptotics of { — 0
as well as £ — co. On the other hand, the decomposition of K(£) in (2.39) can be

achieved by considering only the asymptotics of £ — oo:

R(AE) \/\/£4+525 +e 22 g

 x T(NE) = Sasen(8)y/ VE + g - g Uz DK
V2 2 ¢

The resulting singular integral equations for the two formulations are as follows:

e Using slope (8/0z)w(z, 0) = ¢(z) as density function, one obtains

d
G(z) f [:1; +Zlogle — ol + Ve, t)] o(t) dt = p(z) (2.40)

s

for ¢ < £ < d, where ¢(z) satisfies condition (2.37), and N(z,t) is a regular
kernel and can be found as (Erdogan [25], p. 824, equations (24)-(27)):

S = [ —B*{cos{(t — z)¢] ~ 1} d
° % (ﬁ + V2sgn(8)y/ VF(E B) - §2> (262 + 62+ 2/F (€. B))
N /°° B*sin((t — z)¢] é. (2.41)
° (2£+\/§\K/7(€_,6_)+£2) (¢+vE+7)

with F(§,8) = & + 5262, Three comments are made here. First, the two
integrals in (2.41) are convergent. Second, the sine integral is exactly the same
as the sine integral given by Erdogan (1985, equations (26) on p. 824). Moreover,
although the cosine integral is different from Erdogan’s (1985, p. 824, equations
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(25)—(29)), they are equivalent due to condition (2.37). Third, the derivative
(with respect of z) of N(z,t) is the regular kennel in displacement formulation.
This last remark indicates the equivalence between the slope and displacement

formulations.

e Using displacement w(z, 0) as density function, one obtains

G

(z) 7[“ 1 8 .
N + =
T |Goar T T V@) w07 dt=p(z), e<z<d,
(2.42)
where N is given by (2.31) and w(t,0") satisfies crack-tip conditions (2.33).

Equations (2.40) and (2.42) are equivalent integral equation formulations of the same
boundary value problem. It is interesting to observe the similarities and difference
between the displacement N(z,t) and the slope N(z,t) kernels (cf. equations (2.31)

and (2.41), respectively).

2.7 Numerical Results

In this section we present some numerical results including stress intensity factors
(SIFs) and crack surface displacements. The numerical solution procedures will be
postponed until Chapter 8 in which we systematically address the numerical approx-
imation in depth.

2.7.1 Stress Intensity Factors (SIFs)

The SIF's at the right and left crack tips are defined by

Kin(d) = li1‘111+ v 2r(z — d) 0y:(z,0) (2.43)

and

Kpi(c) = lim /27(c — z) 0y:(2,0) , (2.44)



CHAPTER 2. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS 22

respectively (see Figure 2.1). It is worth pointing out that the limit is taken from
outside of the crack surfaces, thus the integrals that involve 1/(t — =) and 1/(t — z)
are not singular anymore. They will be just regular integrals. The derivation of SIFs

are provided below.
Ki(d) = zlirg Vv 2r(z — d) oy.(z,0)
z d
= li.m+ V2r(z — d) {gﬁ/ [(t _2 + ; fz + N(z, t)] D(t)dt}

z—d 27 z)?
. Goe?* [* D(t)
= V2r(z -
Ihrg_ 2n(z — d) = | G-z dt

= lim \/"r(
r—l+

- \/2(r—1 Goe? (55 )P4 L) s (2.45)

r—»l"' (3 - 7')

)(r—l) Goe?l(57°)r+ (5 11/l Dls)_ys

(s —r)?

The T, expansion leads to

N
Kii(d) = ‘/w(d;c)coeﬂ“?—‘)eﬂ(%-‘)zan
= 0

r(d_C)G eﬂdzN:a (2.46)
9 0 - n 3 ~-

and the U, expansion leads to

d— N
Kun(d) = 7:( QC)GOJ(%)J(%‘)Z(nH)a,
0

i

d _ N
T ( > C)Goeﬂd ;(n +1)b, . (2.47)

Similarly, one may show that with T,, expansion

N
Ku[(c) = T (d;c)Goe_B(é‘;—c)eﬂ(‘%E) Z(_l)"an
0

N
x (d 5 c) GoeP< ;(—1)"% , (2.48)
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and with U, expansion

d—' N
Kile) = ‘/n'( . C)Goe-a(‘%—“)eﬂ(%) S (-1)"(n +1)bs
0
d—' . N .
‘/w( - C)Goeﬂ Zo:(—l) (n +1)b, . (2.49)

1.3 T T T

Normalized SIF

0.5 * ' .

0 0.5 1 1.5 2
B (d-c)/2

Figure 2.2: Normalized stress intensity factors for an infinite nonhomogeneous plane subjected to

uniform crack surface traction oyz(z,0) = ~po. The shear modulus is G(z) = Goe™5=.

Figure 2.2 shows the normalized SIFs for a crack in an infinite plane with shear
modulus G = G(z) = G¢e’® subjected to uniform shear traction oy.(z,0) = —po.
The symbol “o” stands for Krr(c)/(po \/-Tl’(_d_-—T/?), and the symbol “A” stands for
Kir(d)/ (po\/7r(—dT)/§). The results obtained are consistent with those of Erdo-
gan [25] (1985, p.826, Fig. 2). Note that the SIFs at the tip z = c (stiffer side)
are higher than at the tip z = d (softer side). This result is surprising, how-

ever, it can be explained by considering the crack surface displacements (see Fig-
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ures 2.3 and 2.4). For an homogeneous plane, the SIF is independent of G, i.e.
Kr11(c) = Kr11(d) = poy/7(d — ¢)/2. Nevertheless, for a nonhomogeneous plane the

crack surface displacement is inversely proportional to the material parameter G [25].

2.7.2 Displacement Profiles

14 . : -
'y
y
12t B=-2\ A
10+ -1.8 ]
~— 8— «
Q? X -1.6
S
S 6
o =
5: -1.4
=
ak -1.2
-0.8
2 -0.4
0
0 L L L
0 0.5 1 1.5 2
x/a

Figure 2.3: Crack surface displacement in an infinite nonhomogeneous plane under uniform crack
surface shear loading o,.(z,0) = —po and shear modulus G(z) = Goe°*. Here a = (d —c)/2 denotes
the half crack length.

Figures 2.3 and 2.4 show numerical results for displacement profiles considering a
crack with uniformly applied shear traction oy.(z,0) = —po, (¢ < £ < d), and various
values of the material parameter 3. In Figure 2.3, the cracks are tilted to the right
because 8 < 0, and the case 8 = 0 corresponds to the crack surface displacement

in an infinite homogeneous plane. In Figure 2.4, the cracks are tilted to the left
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because 3 > 0. Figures 2.3 and 2.4 reveal the influence of the material parameter
B in the range [—2, 2] on the crack profile. It can be observed that as 8 — 0, the
displacement profiles converge to the classical LEFM result. This numerical evidence
shows that this antiplane shear problem can be considered as a perturbation of the

classical antiplane shear problem for homogeneous material.

1.6 - Y T

1.4

12

o
™

w(x,O)/(apo / Go )
o o
i (=]

0O 0.5 1 1.5 2

x/a

Figure 2.4: Crack surface displacement in an infinite nonhomogeneous plane under uniform crack
surface shear loading o,(z,0) = —po and shear modulus G(z) = Goe?*. Here a = (d — ¢)/2 denotes
the half crack length.

Table 2.1 presents stress intensity factors (SIFs) at both tips of the crack. Note that,
from a numerical point of view, essentially the same results are obtained either by the
U, or T, representations. In Table 2.1, 10 decimal digits are used for the SIFs just to
allow verification of this statement, otherwise, less digits should be used in reporting

these results.
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Table 2.1: Normalized stress intensity factors (SIFs) for mode III crack problem

HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS

U, Representation T, Representation
) Kirr(c) K1r1(d) Krrr(c) K111(d)

2 poy/(d-c)/2 | poy/m(d—c)/2 poy/m(d—c)/2 | poy/m(d—c)/2
-2.00 1.2177863137 | 0.5567159837 || 1.2177861733 | 0.5567159865
-1.50 1.1780106524 | 0.6300690840 {{ 1.1780106809 | 0.6300690822
-1.00 1.1430698167 | 0.7284534442 || 1.1430698277 | 0.7284534422
-0.50 1.0903639520 | 0.8567631803 || 1.0903639753 | 0.8567631880
-0.25 1.0518781405 | 0.9296196207 || 1.0518781461 | 0.9296196340
-0.10 1.0228896477 | 0.9731176917 || 1.0228896001 | 0.9731176549
0.00 1.0000000000 | 1.0000000000 || 1.0000000000 | 1.0000000000
0.10 0.9731176840 | 1.0228896371 || 0.9731176869 | 1.0228896411
0.25 0.9296196372 | 1.0518781831 || 0.9296196411 | 1.0518781724
0.50 0.8567631965 | 1.0903639632 || 0.8567631878 | 1.0903639710
1.00 0.7284534446 | 1.1430698429 || 0.7284534433 | 1.1430696546
1.50 0.6300690801 | 1.1780108066 || 0.6300690749 | 1.1780105468
2.00 0.5567159815 | 1.2177864998 || 0.5567159896 | 1.2177865939

26
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2.8 Concluding Remark

In this chapter, we have laid out the method of singular integral equation in classical
LEFM by choosing displacement to be the unknown density function. Comparing
this formulation with a slope-based formulation, one verifies that the former leads to
a simpler asymptotics while the latter is much more involved (Erdogan [25], 1985, p.
824, equations (24)-(29)). Further, the displacement formulation leads to a hyper-
singular kernel of the type 1/(t — z)?, while the slope formulation leads to a simpler
singular kernel of the Cauchy type, i.e. 1/(t — z) and a weakly singular kernel of the
logarithmic type, i.e. log|t — z|. Both approaches lead to the same solution of the

boundary value problem.

Another source for hypersingular integral equations to arise is attributed to the un-

derlying higher order continuum theory, and it will be addressed in Chapter 4.
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Chapter 3

Constitutive Equations of
Strain-Gradient Elasticity Theory
for Functionally Graded Materials

Before solving the crack problems in both homogeneous materials and FGMs with
strain-gradient effect, we use the present chapter as a common ground to lay out
some elementary ingredients which include notations, strain energy density function,
constitutive equations, and the governing PDEs. Surprisingly, the investigation of
the constitutive equations for strain-gradient elasticity leads us to find out that there
are extra terms in the constitutive equations for FGMs due to the interaction of the
gradation of the materials and the strain-gradient effect, while in the conventional
classical elasticity, the constitutive equations have the same form for both homoge-
neous and nonhomogeneous materials. Thus, in solving crack problems for FGMs
with strain-gradient effect, it is NOT correct to just change the material constants to
be some function at the level of constitutive equations. One should start off with a

more fundamental level — the strain-energy density function.
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3.1 Strain-Energy Density Function

3.1.1 Elasticity
In classical elasticity, the strain-energy density function has the well known form
1
W = 5/\(3{)6,’,‘ €j; + G(X) €ij €ji (31)

where A(x) and G(x) are the material parameters which are functions of position

x = (1, Z2,z3) = (z,¥, ), and € is the small deformation tensor
1
€; = 5(uij + uji) (3.2)

with u denoting the displacement vector. The Cauchy stresses are given by

Tij = g—le/v— = /\(X)ekk 6“1' + 2G(X) € » (33)
ij

where §;; is the Kronecker-delta. In the case of homogeneous materials, A and G are
constants (Lamé constants) and the Cauchy stresses, derived from (3.1), is

ow

Tis = ——
Y 36,-]-

= N€kk (5,']" +2G €j - (3.4)

Notice that equations (3.3) and (3.4) have the same form. Thus, in the conventional
classical elasticity, one can simply replace the Lamé constants by some function that

portrays the material gradation.

3.1.2 Gradient Elasticity

However, for gradient elasticity such is not the case. The three-dimensional gen-
eralization of Casal’s gradient dependent anisotropic elasticity with volumetric and
surface energy for nonhomogeneous materials leads to the following expression for the

strain-energy density function

1 1
w = %/\(x) i3 + G) €5 €5 + 3M00) {0k ) Be 55) + €0 WA €5)

+ G(x)€2(6k e.-j)(ak Gji) + e’Vk ak(G(X) €ij Gji) , >0 s (35)
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where ¢ is a material characteristic length associated with volumetric energy gradi-
ent term, ¢ is another material characteristic length associated with surfaces energy
gradient term, 8; = 8/9z; is a differential operator, and vk, Gkvr = 0, is a director
field. The terms associated with ¢ have the meaning of surface energy. It is easy to
see that, after integrating W over the material domain Q2 and applying the divergence

theorem, the terms associated with ¢’ become surface integrals, i.e.

/ [%f’l/k O (A (x)e; ij) + v 0L (G(x) €ij fji)] dV =
Q

¢ /an l:%/\(x)(fii fjj)(ank) + G(X)(Eij e,-j)(uknk)] ds , (36)

where n; is the outward unit normal to the boundary. By considering the particu-
lar case v = ni, which physically corresponds to surface-parallel micro-cracks, the

surface integral becomes

1
E'/ [EA(X)(Q,‘ ejj) + G(X)(éij eij)] ds . (3-7)
an
By definition, the Cauchy stresses 7;;, couple stresses p;;, and the total stresses oj,

are
= OW/de,
Beij =  OW/0O€ijk (3.8)
0ij = Tij — Okpiij -
Using equations (3.8) and (3.5), the constitutive equations for functionally graded
materials are
Ty = AMX)edi; + 2G(X)€i; + Cvi[endeA(x) + A(x)Okeu]di;
+ 200 [€;;0:G(x) + G(x)0ke€i5] (3.9)
beii = Cveh(x)euds; + CA(X)Okeudi; + 26 viG(X)ei; + 203G(x)Oke;; (3.10)
o5 = AX)(erk — CV2€)8ij + 2G(xX) (€5 — €V 7¢y;)
— CP[ORA(x)](Oren)di; — 2€%[0G(x)](Breij) (3.11)
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3.1.3 Some Observation

One may observe that the Lamé constants A and G in equation (3.5) can be placed
either before or after the differential operator 9, = 3/0zy, if it is the homogeneous
material that the strain-energy density is corresponding to. However, if the material
is nonhomogeneous, then different positions of A and G in equation (3.5) would lead to
different strain-energy density function. For instance, in functionally graded materials
(FGMs), X and G are functions of material point x = (z,y, z), i.e. A = A(x) and

G = G(x). Thus if one express the strain-energy density as
WA = %/\(X)Eﬁ €55 -+ G(X) €ij €ji + %Zzak[/\(x) éi,'](ak ij) -+ éﬁ'uk ak[/\(X) €ii Ejj]
+ €23k[G(x) ei,-](ak Gj,‘) + é’uk Bk[G’(x) €ij éjg] ’ (312)

then it is clear that by the product rule of derivative, W, and W are different. The

other two expressions for the strain-energy density can be
1 1 1,
WB = ‘-)-/\(x)eiiejj + G(X) €ij €ji + ;ZzA(x)(ak Egi)(ak ij) + ;)-Z uk,\(x) Ok (E,'i Ejj)
+ €2G(x) Ok E,'j(akéﬁ) —+ E'uk G(X)ak(é,'j Gji) y (313)
and
1 1, 1,
WC = -5/\()()6“6]’]" + G(X) €ij €ji -+ 5@ ak[/\(X)égi](ak ij) -+ —2—€ I/k/\(X) 6k (Ggi ij)
+ Zzak[G(x)eij](akej,-) + Z’uk G(x)ak(e.-j Gji) . (314)
In Wz, both A(x) and G(x) are placed before the differential operator 9. In We, A(x)

and G(x) are placed after d; for the volumetric (¢*-associated) terms, and located

before di for the surface (¢'-associated) terms.

However, not all of them are admissible. One condition for admissibility depends
on if the surface terms can be reduced to a surface integral by applying the diver-
gence theorem. Form W,, like W, can be evaluated as a surface integral by using
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the divergence theorem, but not for forms Wg and W¢. Thus in regarding to the
surface energy term to be reduced to a surface integral, only the strain-energy density
functions W and W,y are admissible. In this paper, we use expression W for deriving

the constitutive equations and the corresponding PDEs

3.2 Anti-Plane Shear

In this section we derive the governing PDE of gradient elasticity for an anti-plane

shear problem in functionally graded materials from the first principle.

3.2.1 Constitutive Equations

In three-dimensional space, the displacement components are defined as:

Up =U, Uy =V, U; S W. (3.15)
Like equation (3.2), strains are defined as:
1 Bu, Buj
€ij = 5 (5?1 + az‘) 1 (3'16)

where both the indices i and j run through z, y, and z. The strain-energy density

function (for Mode III) is
W= ‘;"\ €i€j; + Gejeji + e G (O €ij)(Ok €5i) + v O(Geijeji) - (3.17)

We define the Cauchy stresses 7;;, the couple stresses p; and the total stresses
0; according to equations in (3.8). Thus, the constitutive equations of gradient
elasticity in anti-plane problems for homogeneous materials can be directly derived

as (Vardoulakis et al. [92], Exadaktylos et al. [35]):
Tii = Mexxdij + 2Ge;; + 2GE v Oke;; (3.18)
prij = 2GCuei; + 2GC0ke;; (3.19)
0 = Xewdij +2G(&j — CV3¢;5). (3.20)
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For functionally graded materials the corresponding constitutive equations are:

Tij = /\(x)ekk&j + 2G(X)Eij + 2€'uk[e,-,-6kG(x) + G(x)ake,-,-] (3.21)

Hkij = 2£’UkG(X)€,‘j + 2€2G(x)3ke,-j (322)

Oij = /\(X)ékk&j + QG(X)(G,'J' - £2V2€g]‘) - 282[3kG(x)](8keij) . (323)

As it has been pointed out that in each of (3.21) and (3.23), there is an extra term
compared with (3.18) and (3.20), respectively. The extra terms will disappear if there

is no material gradation. Thus, for homogeneous materials, equations (3.21)-(3.23)

will become same as (3.18)-(3.20).

According to the relations in (3.18)-(3.20), each component of the stress fields for the
homogeneous materials can be written as (Vardoulakis et al. [92]):

=0, o054=0

Oz: = 2G(€z: — PV%;.) #0 (3.24)
0y: = 2G(€y: — V%) #0

Hzzz = 2ngazex:
Yoy = 2G 08 €,

b Y (3.25)
Byz: = 2G(0?0y€.. — U'ez)

Pyy: = 2G(20y€,: — ley:) .
For FGMs, from the relations in (3.21)-(3.23), each component of the stress fields is
found to be

Ozz = Oyy=0::=0, 0=
Te: = 2G(z, y)(z= — V7€::)

~ 26 {[0:G(z, Y)|(0z€z:) + [0,G(z, y)](Byec:)} # O (3.26)
oy = 2G(z, y)(ey: — #V7%,;)

— 26 {[0:G(z, y)](0z€y:) + [8,G(z, y)|(Fyey:)} # 0
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®

8

(H
I

2G(z, y)0?0,€,.
2G(z, y)020,€,: (3.27)

®
;]
<
t
il

e = 2G(z, y)(E0y€s: — Uez:)

Byy: = 2G(z, y)(PByey: — ley:) .
Again, comparing equations (3.24)-(3.25)and (3.26)-(3.27), one notices that there are
extra terms in the total stresses o;; of (3.26) due to the interaction of material grada-
tion and the nonlocal effect of strain gradient. Because of the equilibrium equation
only involves o;; (see equation (3.30)), the extra terms will ravel the governing PDE(s)
a bit more. The couple stresses u;; in (3.25) and (3.27) assume the same form, ex-

cept that G in (3.27) is not a constant, but a function reflecting the gradation of the

material.

3.2.2 Governing PDE

For an anti-plane problem, the following relations hold:
u=0, v=0, w=uw(zy) . (3.28)

The non-trivial strains are:

10w 10w
P = —— e = —— . .29
=== 3%z T 25y (3.29)
By imposing the equilibrium equation
0oz: 0oy
~+ —=—=0 3.30
oz + Oy ( )

with the expressions o,. and oy in (3.26), one obtains the the following PDE

VG(z,y) - (1 — #V?) Vw + G(z,y) (1 - #V?) V?w
8G(z,y) 0w 0G(z,y) 0w ]
— 2 ————— ——— ——————— ——— - 2’
4 [V e Vaz +V. 3 \Y% 3 + VG(z,y)- VV-w| , (3.31)
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where V is the gradient operator, V2 denotes the Lapalacian operator, the dot -
gives the scalar (or inner) product of two vectors. One can write (3.31) in a more

elaborative form
9 ow 0w 9 ow 0w
5 (S (5 - 29 ax)] + 55 100 (5 - 095

2 0G(z.y) BPw . 0G(z,y) Bw + 0G(z,y) Bw + 0G(z,y) w
or 0z3 9y oy or Ozoy? Oy 0z20y

8*G(z,y) 8*w 932G(x, y) %w + 8*G(z,y) 62w} —0

0r2 0z =~ 08zb8y 0zdy oy Oy? (3-32)

If the shear modulus G is a function of y only and takes the exponential form

G = G(y) = Gge", (3.33)
then PDE (3.32) becomes
0 ow ow
34y — 2 2 2 ~y—_— 2 — =0, .34
-Viw 7£ay(Vw+/ay)+Vw+‘yay 0 (3.34)
or
2 0 2¢72 2 9
l—~0——-¢V Vi+y—)w=0. (3.35)
3y dy

Paulino (2001) et al. [72] has studied the PDE (3.35) in detail. Similarly, in a more
general case, if G is an exponential function of both z and y

G = G(z, y) = Goe”™™, (3.36)

then the governing PDE is

(1—3@2%—722%—82V2) (V"’+B-(% +~yaa—y) w=0. (3.37)

In Table 1 we list the governing PDEs in antiplane shear problems that correspond to

the different combinations of parameter ¢ and various material gradation of the shear

modulus G.
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Table 3.1: Governing PDEs in antiplane shear problems.

Cases Governing PDE References
¢ =0, G is a constant. Laplace equation: Standard textbooks.
V2w =0 (84, 85, 86
€=0,G =G(y) =Gee" Perturbed Laplace equation: Erdogan and Ozturk [30].

(v +v&)w=0

=0, G =G(z) = Goe?* Perturbed Laplace equation: Erdogan (25].
(V2+B8Z)w=0 Chan et al. [14] and
Chapter 2 of

the present thesis.

€ #0, G is a constant. Helmholtz-Laplace equation: Fannjiang et al. [36].
(1-v)Viw=0 Vardoulakis et al. [92].
Zhang et al. [100].
€#0,G=G(y) = Gee" Equation (3.35): Paulino et al. [72] and

(1 - 7@2% - FVz) (Vz + 'Ya%) w = 0 | Chapter 2 of

the present thesis.

€#0,G=G(z) =G’ | (1-8CL -V?) (V2 +5£)w=0 | Chapter 10 of

the present thesis.

€ # 0, general G = G(z, y) Eqn. (3.32) or Eqn. (3.31) Not available.

3.3 General State of Stresses

In this section we derive the governing (system of) PDEs of gradient elasticity for a
plane problem in functionally graded materials from the strain-energy density func-
tion. The process is similar to the one for anti-plane shear case, however, the algebra

is more involved.
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3.3.1 Constitutive Equations

We repeat the strain-energy density function as described in equation (3.5) here:

_1

w
2

1 1
A€ €; + G € €ji + 5/\ £2(8k e,—i)(ak Ejj) + §£'Uk ak(Aég,- ij)

+ G€2(6k e,-j)(ak Gji) + é'uk 3k(G €ij fji)y 8, Z’ 2 0.

By the definition of 7, pij, and o;; in equation (3.8), we have already obtained the
(general plane) constitutive equations of gradient elasticity for FGMs in equations
(3.9)-(3.11). For homogeneous materials, the constitutive equations are (Exadakty-
los [34], Exadaktylos et. al. [35]):

Tij = /\ekké,»,- + 2G6,'j + e'Ukak(/\GuJij + 2G6ij) (338)
Hiij = /\Zzakeuéﬁ + 2G£’l/k€gj + /\E'ukeué,-j + 2G€26k€,'j (339)
gi; = /\ekk&j + QGE,'J- - £2V2()\ekk5,~j + QGE,'J') . (340)

Comparing equations (3.9)-(3.11) with (3.38)-(3.40), one notices that the couple
stresses uy;; in (3.10) and (3.39) take the same form. However, for the total stresses
0:;, there are more terms in (3.11) than in (3.40), and those extra terms will confound
the form of the governing (system of) PDEs.

For a 2-dimensional plane problem the components of the strain tensor are given by:

_ Ou dv 1 (au ov

zz = /0 = | =3s\a-T373-) zz = €yz = €z = U 3.41
€ 3p W 3y €y =3 By + 81:) € €y: =€ 0 (3.41)

3.3.2 Governing System of PDEs

By imposing the equilibrium equations

00z 00z -0 and 00y 4 00y,

oz dy oz 8y ’

(3.42)

and using equations (3.16) and (12.5), one can obtain the following system of PDEs

in a compact form:
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G(z,y) V(1 — V3u + [Mz,y) +G(z,y)]V(Q1 - £#VHV.u

+ [(1-£V?) (Vu+ Vu")] VG(z,y) + [(1 — #V?)V-u] VA(z,y) (3.43)
0 0G(z, y) o G(z,y)
- e { (Va—l_u) vy (v% ) v v(OA@.y) -VV—u]}

- P {%{(VVu)VG(x,y)] + gg[(vvmvc(z,y)l + (V) VG(z, y)} =0,

where the boldface u denotes the displacement vector (u, v), V- is the divergence

operator. If the moduli vary as a function of (z, y) and assume the exponential form
G=G(z,y) =G, A=Az, y) = ——G(:v y), (3.44)

then the system of PDEs is

_g2 0 _ .20 _por Fu o Ou d%v

(1 Jol4 5 274 3y ZV)[(K+1)ax2+(n 1)6y2+261‘6y+
B +1)3_u+ l)a—u -1 (—934-5(3— a—v] = 0, (3.45)
(K ax ‘Y('{- 6'y+7(n )az K)ay - 1 .

(1—5223— e-——e~V2) [~—1 (n-’rl)a 25—
7(3—-5)—-&13(&——1) +6(n—1)g—-+‘y( +1) ] (3.46)

where k& = 3 —4v if plane strain is considered; k = (3—v)/(1+v) if it is a plane stress
problem. If G and )\ are constants, then the homogeneous material case is recovered,

and the system of PDEs (3.43) is reduced to
(1-EVH[GVu+(A+G)VV-u =0, (3.47)

which has been studied by Exadaktylos [34].
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3.3.3 A Point View of Perturbation

In the conventional classical linear elasticity (i.e. ¢ — 0), the system of PDEs (3.43)

becomes

G(z,y)V*u + [Az,y) +G(z,y)][VV-u +
(Vu+VuT) VG(z,y) + (V-u)VA(z,y) =0. (3.48)

If G and ) take the form in (3.44), then (3.48) can be expressed as

d%u 0*u %
(K + I)EF + (K—I)B—y’ + 23a:—6y+

ou o ov

ou
6(n+1)b—x-+'y(n-1)ay +‘y(n—1)az+6(3—n)a—y =0 (3.49)
8% v o%u
(K. —_ 1)-6—;,: + (K,+ l)a—y; +2-al'—ay+
ou ou ov ov
’7(3—&)0—1‘.-*'5(/{—1)5!/--%;3(!\.—1)8—1;-{” /(h.-{'-l)é-l-l—o (3.50)

that has been studied by Konda and Erdogan {51]. For the homogeneous materials,
(3.49) and (3.50) can be further simplified to

GViu+(A+G)VV-u=0,

which is the familiar Navier’s equations for the elastic medium.

3.4 A Concluding Remark

In the conventional classical linear elasticity, one may derive the governing PDE(s) for
FGMs by directly replacing the Lamé constants with the material gradation functions
at the level of the constitutive equations. We have shown that this is not true in the
case of strain gradient elasticity because of some extra terms may arise in addition to

the original constitutive equations that establish the homogeneous materials. These
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extra terms come from that the material gradation interplays with the nonlocal ef-
fect of the strain gradient. Thus, the constitutive equations for FGMs are different
from the ones for homogeneous materials under the consideration of strain gradient
elasticity theory (Casal’s continuum). The correct and proper way for deriving the
governing PDE(s) for FGMs is by using the strain energy density function and the
corresponding definitions of the stress fields, which we have presented in this chapter.
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Chapter 4

Hypersingular Integral Equations

for Mode III Fracture in
Functionally Graded Materials
with Strain-Gradient Effect (Crack
Perpendicular to the Material

Gradation)

In Chapter 2 we have laid out the method of singular integral equation in classi-
cal LEFM, and we have seen that higher singularity may arise by choosing different
unknown density function. Another source for hypersingular integral equations to
appear is attributing to the underlying continuum theory. For instance, the higher
order continuum theory with the strain-gradient effect [35, 37, 92] leads to the formu-

lation of hypersingular integral equations naturally, and it will be exhibited in present
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present chapter (see also References [11, 36, 76]) by solving a mode III crack problem
in FGMs with strain-gradient effect. Here we choose the geometry that the crack is
perpendicular to the material gradation; in Chapter 10 we will deal with the geometry
that the crack is parallel to the material gradation.

4.1 Constitutive Equations of Gradient Elasticity

In Chapter 3 we have addressed the notations, strain energy density function, con-
stitutive equations, and the governing PDEs. For the sake of clarity, in this section
we list the constitutive equations of gradient elasticity for an anti-plane shear crack
in FGMs with the shear modulus G is a function of y, i.e. crack is perpendicular to

the material gradation. The constitutive equations of gradient elasticity are:

oij = My)edij +2G(y)(ei; — ?V3e,;) — 262[8:G(y)](Okei;) (4.1)
T = My)edij +2G(y)ej + 200 [€i;0:G(y) + G(y)Okei;) (4.2)
prij = 20vG(y)e;; + 220G (y)dkes; - (4.3)

More specifically, each component of the stress fields can be written as following:

Oz = Oyy=0:2=0, 0 =0

Oz: = 2G(y)(€r: - e2V2632) - 222[6yG(y)](3yez:) # 0

o = 26(y)(e: — EV%,:) — 20(0,G()|(8,6,0) # 0 (4.4)
pez: = 2G(y)€*0z€s:

heye = 26G(5)P0ce,e

fyz = 2G(y)(£Oy€z: — lez:)

Byy: = 2G(y)(fP0y€y: — leys) .

Notice that there is an extra term [13] in each of 0., and 0,. compared with the case

of homogeneous materials (see Vardoulakis et al. 1996 [95], page 4534).
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Figure 4.1: FGM with continuously graded microstructure.

4.2 Governing Partial Differential Equation

By imposing the only non-trivial equilibrium equation

or Sy

=0,

and assuming that shear modulus G is an exponential function of y

G= G(y) = Goe-yy ’

the following PDE is obtained:

822” ow
+‘72 — 22— —_—
w Y ¢ 2 +‘Ya

dw

-0V — 29£2V2
Y By

=0;

43

(4.5)

(4.6)

(4.7)
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or in a factorized form

2 0 22 2 9 —
(1 974 3y KV)(V +7ay w=0. (4.8)
In terms of the differential operator notation, (4.8) can be written in the form as
H,L,w=0; H =1—~ye23—-ezv2 L,=V?+~yi (4.9)
nd ? vy ay b ay * M

where H, is the perturbed Helmholtz operator, L, is the perturbed Laplacian operator,
and the two operators commute, i.e. H,L, = L,H,. Thus, PDE (4.8) can be con-
sidered as a double perturbation of the composition of the harmonic and Helmholtz’s
equations

(1-6V?) V2w =0, (4.10)

that is, one perturbation is to the Helmholtz operator (1 — ¢2 V?), the other pertur-
bation happens to the Laplacian operator V2. Both the Helmholtz and the Laplacian
operators are invariant under the rigid-body motions. FGMs bring in the perturba-
tion and destroy the invariance. By setting ¥ — 0 in (4.8), one gets (4.10), the PDE
for gradient elasticity.

Another viewpoint of the perturbation is focused on the role of the characteristic

length ¢. By taking ¢ — 0, we obtain a lower order of PDE

0
‘72+A_ e
( lay) w=0,

the perturbed harmonic equation. However, because the corresponding term to the
coefficient ¢* affects the highest differential in the governing PDE (4.7), a singular
perturbation is expected as the limit ¢ — 0 is considered. By taking both ¥ — 0 and
¢ — 0, we obtain the harmonic equation for classical elasticity. Various combination

of parameters ¢ and v with the corresponding governing PDE are listed in Table 3.1.
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4.3 Boundary Conditions

Figure 2.2 shows the geometry of the mode III crack problem in which an FGM, with
shear modulus G(y) = Gee, bonded to a half space is considered. Thus the problem
reduces to the upper half plane, and y = 0 is treated as the boundary. By the principle

of virtual work, the following mixed boundary conditions can be derived:

oy-(z,0) = p(z) , lz| < a
w(z,0) =0, lz| > a (4.11)
Pyy=(2,0) =0, —00<z<+00,

which are adopted in this paper. One may observe that the first two boundary
conditions (BCs) in (4.11) are from classical elasticity, e.g. linear elastic fracture
mechanics (LEFM). The last BC regarding the couple-stress p,,. is needed as the

higher order theory is considered.

4.4 Fourier Transform

After taking Fourier transform (see (2.6) and (2.7)) to equation (4.7), one obtains

w(z,y) O w(z,y)  Fw(z,y) )
P24 = ¢ 9
EViw ¢ ( ot | aztdy? By

e LW AW
= 2 [ (ewen-2wGr+ Fr) e w1

2 2aw —_ PR 63'lU(1‘,y) 83w(z,y))

-V = —l ( 9270y + By

A [ LOW(Ey)  PW\ .
- Fe [ (eTR e G )

(4.13)

d*w(z,y) + d*w(z,y)
912 Ay?

= \/% /_ : (—§2W(s, y)+ a;yvf) e™"dg (4.14)
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X
Figure 4.2: Geometry for the mode III crack problem
_,,{2@26212(;;, y) _ _7_2\/% _: 6%{;;5, y) e~ de (4.15)
aw‘(?:; ,Y) \/27 / 3W(5a -z e (4.16)

Equations (4.12) to (4.16) are added (according to equa.tion (4.7)), and after simpli-
fication, the governing ODE is obtained:

[£2d + 27 ez‘P

d
73 e (2e2§2+~,2e2+1)—-7(1+2e2§2) + (e3¢t +§)] W=0.

(4.17)
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The corresponding characteristic equation to the ODE (4.17) is
CAY + 290203 — (262€2 + PR +1) N —y (1 + 2382 A + (£ +6%) =0, (4.18)
which can be further factored as
[A2 + 42X - L+ EE)] (N +92-€%) =0. (4.19)

Clearly the four roots ); (i = 1,2, 3,4) of the polynomial (4.19) above can be obtained

as:

—_ 2 2 — 2 42
,\1=T’-———V72+45, ,\2=—21+——"7:£, (4.20)
/\s=—77—\/?+72/4+1/€2, A4=—77+\/€2+72/4+1/€2, (4.21)

where we let A\; < 0 and \; < 0. As v — 0, we recover the roots found by
Vardoulakis et al. [92] and Fannjiang et al. [36]. The roots A; and A, correspond to
the solution of the perturbated harmonic equation, and the roots A3 and Ay match
with the solution of the Helmholtz’s equation. Various choices of parameters ¢ and

with their corresponding mechanics theories and materials are listed in Table 4.1.

By taking account of the far-field boundary condition
w(z,y) =0 as 2+ y? = +o0, (4.22)
and with y > 0 (the upper half plane), one obtains that
W(E,y) = A(£)e™¥ + B(€)e™. (4.23)
Accordingly, the displacement w(z,y) takes the form
w(z,y) = % /_ : [A({)e’\‘y + B(£)e¥] e7=4dE . (4.24)

Both A(£) and B(£) are determined by the boundary conditions.
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Table 4.1: Roots \; together with corresponding mechanics theory and type of material.

Cases Number Roots Mechanics theory References
of roots and type of material

£=0,vy=0 2 +|¢| Classical LEFM, Standard textbooks.
homogeneous materials

€=0,v#0 2 —v/2x /¥2/4+ €3 Classical LEFM, Erdogan and Ozturk [30].
nonhomogeneous materials

L#£0,v=0 4 =l€l, =/E2T+ 1/ Gradient theories, Vardoulakis et al. [92].
homogeneous materials Fannjiang et al. [36].

L#0,v#0 4 —v/2 % J/y2/4 + €3, Gradient theories, Studied in this chapter.
nonhomogeneous materials

—v/2+ VX A+ 16

4.5 Hypersingular Integrodifferential Equation

By taking account of the symmetry along the z-axis, we may consider that w(z,y)

takes the following general solution form (for the upper half plane):

v == [

A(§)eM + B(g)eM¥] e dg,

_ 1 = —(‘7+ Y3+4€2 )y/2
e /_ - [A(s)e V)
+ B(g)e (V4 *”*“’")””] e Tde, y>0, (4.25)

y=20

where A(€) and B(£) need to be determined from the boundary conditions (4.11). As

equation (4.25) provides the form of the solution for w(z,y), it can be substituted in

equation (4.4) such that

ayz(xv Y)

2G(y) (ey: - ezvzey:) - 2ez[ayG(y)](ayey:)

%/: M7, E)AE) e (HVIHERE e 4> 0 (4.26)
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Notice that term associated with B(€) has been dropped out from o,.(z,y). Moreover,

Oe,.
pelz,9) = 260) (€52 — te,.) .y 20,

G = .
= _‘/(2_172 /_ _ {(X3 — €X;) A(€)eM¥ + (X — €23) B(£)e™¥} e "0 dE

B %(2%3 : {c.m,s)A(s)e‘(’*V”*“‘“)y“

+ cp(1,€)B(E)e” (THVaETTHE )”/2} e™tde,  (4.27)
where
cal,€) = N -Ox
= %(7€2+E')+%(~,22+e')\/?'ﬁ? + 0262, (4.28)

and

ce(1,8) = N —-¥)

= 2+ I8+ 1+ %mez FOWAE TP T AE.  (4.29)

In order to derive the Fredholm integral equation, we define the density as the slope
function

o(z) = w(z,07)/0z . (4.30)

The second boundary condition in (4.11), and equation (4.30), imply that
o(z) =0, |z|>a , (4.31)

and

) ¢(z)dz =0, (4.32)

—-a

which is the single-valuedness condition. The definition (4.30) together with equation
(4.25) lead to

o [ iola© + Bl s = o), o<z U3
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By inverting the Fourier transform and using (4.31), one obtains

(E)AE) + BE)] = \;—2% / " o(z) e dz, —o0 <z <00

-1 a ) i

The last boundary condition in (4.11), imposed on . (z,y), provides the following
pointwise relationship between A(§) and B()

£+ (18 + ) VTP A+E +108 + £)/2

B = — A = P\ A N
O = g s f s 020 T T i O =P 94
(4.35)
where the notation p(7, £) is introduced here, i.e.
R+ (Y + )/ /4+E2 +v(? + ')]2
p(1,8) =— X (4.36)
£e + 1+ (v +0)/2) (v + VA + 7+ 1/E)
Substituting (4.35) into (4.34), one obtains
-1 1 i€t
40 = oz [T Lo (437
where
1 e +1+[P+0)/2(r+ VI + 1 +4/6) (4.38)

L+o18) 14 (1 +0)/2 (VIE+ 7+ 48 - V1T +7) '
Replacing A(€) in equation (4.26) and using the (first) boundary condition for oy.
(that is, lim, o+ 0y:(z,y) = p(z), |z| < a ) in (4.11), one obtains the following
integral equation in limit form:

Gy [ _—M(r8) t VPR ) y/2=iz€ o
o ) [z§(1 +p(7, 5))] [/ #e)e dt] A &% = 2l=) IT’E <:)'
4.3

By rearranging the order of integration, we obtain

G(y) < =M(7:8) o~ (VT HE) v g2
i or _a¢() —oo(HE)L + p(1,8)] ( e*7%) dedt = p(z), |z| <a,

(4.40)
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which can be rewritten as

lim / 8(t) / K(6y)e2dt dt = p(z), || <a,  (441)

y—0+ 2T

with the kernel

-Ai(7,€) - 1+\/7-+4€-)y/” ;
RE&Y = v o0 "l (4.42)

Asymptotic analysis allows splitting of the kernel K'(§, y) into the singular [K(§,y) =
limj¢jo0 K(€,y)] and nonsingular parts:

K(§7 y) =!{co(§v ) [K(f, y) oc(Ey )] ’ (4'43)

singular nonsmgular

where (as y is set to zero)

-32 ¢ ¢ 2 9 ¢
Km<5,0)='f—§'{[°8" +—4‘1+1-(§Z)]+ TEE e+ e } (4.44)

and K(€,0) — K (&,0), denoted by N(&,0) = N(§), can be expressed as a fraction:

P)
Q©)’

N(§,0) = N(§) = (4.45)

in which

Q) = ~i€ (VE+ A+ /B + JE+F[A+7+E[E) . (446)
and P(§) is given by
P(§) = Pi(§) + P3(§) + Pa(§) + Pu(€) + Po(8) (4.47)

in which

P(E) = €€ x (VE+ P[4+ 1/8/E+ 74
+ @ - EVET AT B - VEFP[E),  (448)

PE) = 5(16 + )¢ (VET A+ /8 + VE+7]4) = (E +E)fEP . (4.49)
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P§) = 1+ +O)VE +42/4+1/2\/E + /4

O EE

r\ 2
[1 + g—y?ez - (%) —7@'] (\/52 +92/4+1/@ + /€ ++2/4 ) (4.50)

1 /4
P(§) = §',/(1 + 7202 + )2 + 24+ 1/ + [%(1 + v +40) + e—] X

e
2 1 ~2 7 ¢ 522 (€Y .1,
VE+71/4 -1+ 57 ) |1+g70 - 5) +77¢ €1 (4.51)
l‘yﬂ'

3 .
__24 3/
Po(§) = 167"+ 7 + 5 17 + S

Substitution of equation (4.44) into (4.41), in the sense of distribution theory [88],

(4.52)

leads to

/ Koo (§,y)e* ™= dg
y—»O'*'

—2¢2

o 542 /8 + 'v/4+1—[¢ ‘782
=(_t-_—x);’;_§(2e27+£)6(t_ ) 7/ 7t/—x [/( )]

and to the following hypersingular integral equation:
GO @ _282 m 2 ' ’
= f {(t— ) ——(22 v+ ) (t —z)
52272/8 +0y/4+1-[0/(20)]° Tk
t—z

(z, t)} o(t)dt = p(z), |z| < a,(4.53)

where the regular kernel is

@it = [ N(E)snle(e - =)l (4.54)

with N(€) described in equation (4.45). Figure 4.3 permits to graphically evalu-
ate the behavior of the integrand of equation (4.54). Clearly, such kernel is oscilla-
tory, but the magnitude of oscillation decreases and tend to zero as § increases, i.e.
limg_,0o N(€) sin[€(t — z)] = 0. Another point that we need to be cautious about in
equation (4.54) is at £ = 0, because of N(§) = P(£)/Q(§) and Q(§) has the factor §.
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Figure 4.3: Plot of the the integrand in equation (4.54) for £ = 0.05, ¢ =0.005, v =0.1, r = v3/7,
and s = v2/3. (a) £ € [0,5000]; (b) Zoom for the range £ € {0,500]. Moreover, As £ — 0, the limit
of N(£)sin[é(s — r)] is about 22.4 x 1073,

However, this would not affect the integrability of the integrand in equation (4.54)
because of the term sin[€(¢t — z)]. Thus lime_q V(&) sin[§(¢t — z)] exists and is finite,
which depends on the values of ¢, z, ¢, ¢, and ~.

As a result of distribution theory [85], the differentiation of a delta function, 4(t), has

the following property:
[ #e-ae0d =@ . (4.55)

Thus one may rewrite equation (4.53) as

Go ][ { —20 589 /8+0v/4+1- (/04 t)} #(t) dt

T J_. (t—2x)3 t—z

+ S0 +269)8(@) = 2@, lel<a, (456)
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which is an integrodifferential equation with both hypersingular and Cauchy singu-
lar kernels. In addition to the single-valuedness condition condition in (4.32), the
integrodifferential equation (4.56) is solved under the physical constraint (“smooth

closure condition”)
¢(a) = ¢(-a) =0, (4.57)

so that the solution can be found uniquely (see [36] and [60]). Thus it is different
from the conventional classical elasticity in which the displacement gradient ¢(x) has

the end-point asymptotics

1
va:z — 2
Also, an important observation is that once ¢(z) is solved from equation (4.56) the

coefficients A(£€) and B(£) can be obtained from (4.35) and (4.37), respectively, and,

¢(z) =0 ( ) , as z—a”, (—a)t. (4.58)

then, the full field solution w(z,y) is explicitly given by (4.25).

4.6 Numerical Results

Some numerical results are given here. Numerical procedures and the computation of
SIFs will be addressed in Chapter 8. The boundary value problem illustrated in Figure
4.1 is considered for all the examples in this paper. To validate the present formula-
tion, consider the case where ¢, ¢ — 0 in a certain special limit sense (see Fannjiang
et al. 2001 [36]), so that the classical elasticity solution is represented. The results for
classical SIFs (equations (7.68) and (7.69)) are given in Table 4.2. It is clearly seen
from Table 4.2 that the present results are in agreement with those of Erdogan and
Ozturk [30]. Note that the SIFs decrease monotonically as v increases. Moreover,
it is interesting to investigate the asymptotic behavior of the SIFs as v — *+oo. As
4 — oo the stiffness of the medium increases indefinitely and, under finite loading
(po), the crack opening displacement and the SIFs Kir(a) tend to zero. Similarly, as



CHAPTER 4. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS

35

Table 4.2: Variation of classical (normalized) SIFs with material gradation parameter ¥ = v/a.

Krrr(~a
Po/™a
¥ Present Study | Erdogan and Ozturk [30|
-2.0 1.476 1.481
-1.6 1.381 1.397
-1.2 1.293 1.308
-0.8 1.204 1.214
-0.4 1.117 1.113
-0.2 1.061 1.059
0.0 1.000 1.000
0.2 0.934 0.934
0.4 0.866 0.869
0.6 0.807 0.810
0.8 0.755 0.758
1.0 0.709 0.712
1.2 0.669 0.671
1.6 0.602 0.604
2.0 0.556 0.550
3.0 0.458 0.457
5.0 0.359 0.356
6.0 0.329 0.324
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4 = —oo the stiffness of the medium decreases indefinitely, and consequently K/sr(a)

tend to infinity. These physically expected trends can be observed in Table 4.2.

o o
E-N ()]

o
(M)

Normalized displacement, w(x,0)

-0.6

-1 0 1
Normalized crack length, x

Figure 4.4: Full crack displacement profile in an infinite medium of homogeneous material (¥ = 0)
under uniform crack surface shear loading ay:(z,0) = —po with choice of (normalized) {=0.2 and

¢=0.

Once the slope function is found numerically using the representation (8.3), the crack
displacement profile w(r,0) can be obtained as

T r N
w(r,0) = /_ 1<1>(s)ds = /_ 1 VI=32)_ AU(s)ds . (4.59)

n=0

Figure 4 shows the normalized crack displacement profile in an infinite medium of
homogeneous material (y = 0) under uniform crack surface loading for ¢ = 0.2 and
¢ = 0. Notice that the crack tips form a cusp with zero enclosed angle and zero
first derivative of the displacement at the crack tips (see (4.57)). This crack shape

is similar to the one obtained by Barenblatt [3] using “cohesive zone theory”, but
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without the assumption regarding existence of interatomic forces.
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Figure 4.5: Crack surface displacement under uniform crack surface shear loading oy:(z,0) = —po
and shear modulus G(y) = Gee?? with choice of (normalized) ¢ = 0.05, ¢ =0, and various 5. The

dashed line stands for the homogeneous material case (¥ = 0).

The solutions obtained in this study for a nonhomogeneous half-plane having shear
modulus G = G(y), y > 0, is also valid for the corresponding infinite medium in
which y = 0 is a plane of symmetry (see Figure 4.2), i.e.

G(-y) = G(y)-

Unless otherwise stated, uniform loading is considered on the crack face, i.e. oy:(z,0) =
—po, and the normalization py/Go has been employed.
Further normalized crack displacement profiles for various combinations of the gradi-

ent parameters (¢, #) and material gradation parameter () are presented in Figure 4.5
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Figure 4.6: Crack surface displacement under uniform crack surface shear loading oy:(z,0) = —po
and shear modulus G(y) = Go€? with choice of (normalized) ¢=0.2, ¢ = 0.04, and various . The

dashed line stands for the homogeneous material (¥ = 0) in a gradient elastic medium.



CHAPTER 4. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS 39

to Figure 4.8. Figures 4.5 and 4.6 show crack displacement profiles for selected values
of ¢, #, and various 7. Figure 4.5 considers ¢ =0.05, ¢ =0 and thus p = ¢/¢ = 0;
while Figure 4.6 considers £ = 0.20, # = 0.04 and thus p = ¢'/¢ = 0.2. In both graphs,
the broken lines stand for the homogeneous material (¢ = 0) in a gradient elastic
medium. A comparison between Figures 4.5 and 4.6 permits to assess the influence of
the gradient parameters (¢, ¢') on the displacement solution. Moreover, as v increases
the displacement magnitude decreases, which is consistent with similar results by

Erdogan and Ozturk [30] using classical elasticity to model mode III cracks in FGMs.

T T T T

1.2 -

1.0l LEFM ]
0.8 B .
go
Q osl |
o
8
S 04) ]
X
* 02| 0. !
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0 0.167
0 0 0.125
—0.2l .
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Figure 4.7: Crack surface displacement profiles under uniform crack surface shear loading oy-(z,0) =
—po and shear modulus G(y) = Go€"” with choice of (normalized) & =0.05, 3 = 0.1, and various .

The values of ¢ are listed in the same order as the solid-line curves.

Figure 4.7 shows crack displacement profiles for ¢ = 0.05, ¥ = 0.10 and various .
As 7 increases, the displacement diminishes monotonically, or alternatively the crack
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becomes stiffer, in comparison to the classical elasticity theory.

T T T T T T T T T

12} LEFM i}

w(x.0)/(ap,/G,)
o o
» o

et
(N

0

-0.2
-1 -08 -06 -04 -0.2 0O 02 04 06 08 10
x/a

Figure 4.8: Crack surface displacement profiles under uniform crack surface shear loading o,:(z,0) =
—po and shear modulus G(y) = Goe?? with choice of (normalized) ¢ = 0.05, 7 = 0.1, and various #.
The values of & (and p) are listed in the same order as the solid-line and dashed-line (p = 0) curves

representing the strain gradient results.

Figure 4.8 shows crack displacement profiles for ¢ = 0.05, % = 0.10 and various #. As
is apparent from this figure, by maintaining the values of the relative volume energy
parameter ¢ constant, the crack stiffening effect becomes more pronounced as the
relative surface energy parameter ¢ increases in the range [0, ¢). It is worth mentioning
that, from energy considerations, the parameter ¢ can take negative values [93]. Note
from Figure 4.8 that the effect of a negative ¢ leads to a more compliant crack. In

general, this is a desirable property of the mathematical model in regards to describing

experimental results and data.
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Figure 4.9: Crack surface displacement profiles under discontinuous loading p(z/ea) = -1 +
0.5sgn(z/a) and shear modulus G(y) = Goe™ with choice of (normalized) ¢ = 0.05 7 = 0.2,
and various p. The values of p are listed in the same order as the solid-line and dashed-line (p = 0)

curves representing the strain gradient results.
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Table 4.3: Convergence of (normalized) generalized SIFs for a mode III crack.

y=0, £=0.05 %=0.30, £=0.05

#=0;p=0 & =0.01; p=0.20 #=0;p=0 £ =0.01; p=0.20

K {—a) K (—a) K —-a) K —a
N —;{-{7:— Cond. Num. —u-h:-' Cond. Num. VT Cond. Num. —p‘-;-f};l Cond. Num.

11 0.97292 9.888 0.99640 17.018 0.89258 15.223 0.90773 15.142

21 0.97467 83.559 0.97375 1.669e-+02 0.88381 1.509e+02 0.88337 1.178e+02

31 0.97467 3.555e+02 0.97355 7.131e+02 0.88376 6.437e+02 0.88287 6.314e+02

41 0.97467 1.032e+03 0.972256 2.059e+03 0.88336 1.85%e+-03 0.88133 1.823e+03

51 0.97467 2.395e+03 0.97109 4.754e+03 0.88301 4.293e+03 0.87999 4.206e+03

61 0.97467 4.802e+-03 0.97113 9.501e+03 0.88301 8.577e+03 0.87996 8.406e+03

Figure 4.9 shows crack displacement profiles considering discontinuous loading
p(z) = —1 + 0.5 sgn(z)

and ¢ = 0.05, ¥ = 0.2, and various p = ¢ /{. Similar comments to those regarding
Figure 8 can be made with respect to Figure 4.9. Moreover, qualitatively the results
displayed in Figures 4.7 to 4.9 are in agreement with those of Vardoulakis et al. [92]
for homogeneous materials.

Table 4.3 shows a convergence study for (normalized) generalized SIF's (see equations
(8.18), (8.19) and (10.53), (10.54)) involving non-graded (7 = 0) and graded (¥ # 0)
gradient elastic materials considering both ¢ =0and & #0 (¢ > 0). Note that as
the number of collocation points (N) increases, the generalized SIF results converge
for both materials (i.e. non-graded and graded). However, the convergence is worse
for the case ¢ # 0 than for the case ¢ = 0. The condition number for all the examples
investigated is always satisfactory.

Table 4.4 lists the generalized SIFs (see equations (8.18), (8.19)) for gradient elastic
materials considering various values of the material parameter v and using N = 61

collocation points in the numerical solution. Notice that the SIF monotonically de-
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creases as v increases, which is in full agreement with the early results for classical
elasticity considering nonhomogeneous materials (see Table 4.2). Consider, for ex-
ample, the case ¥ = 0. In this case, the crack stiffening is due to the characteristic
material lengths ¢ and ¢ (¢ > 0) of the structured medium in responsible for lower
generalized SIFs (< 1.0) and, consequently, lower energy release rates during crack
propagation. Notice, from Table 4.4, that similar trends are also observed for ¥ # 0
(either ¥ < 0 or ¥ > 0). The results indicate that a higher external load, as compared
to that of the classical case, must be applied on the crack surfaces (or on the remote

boundaries) to propagate it in a material with microstructure.

Table 4.4: Normalized generalized SIFs for a mode III crack at various values of ¢, ¢, and 7.

£=005 &#=0|£=005 =001 | =02 & =0| =02, & =0.04

3 Kp‘nlfg::) Kml L E (”-:) l\’m[ L E (::) :’m L E ;”—:)
-2.00 1.42126 141617 1.28017 1.26783
-1.00 1.21749 1.21301 1.10392 1.08610
-0.50 1.10374 1.09965 1.00377 0.98768
-0.10 1.00271 0.99903 0.91696 0.90236
0.00 0.97467 0.97113 0.89338 0.87921
0.10 0.94423 0.94086 0.86819 0.85450
0.50 0.82566 0.82282 0.76878 0.75671
1.00 0.70597 0.70324 0.66261 0.65169
2.00 0.54916 0.54592 0.50894 0.49937

4.7 A Summary

As an end of this chapter we give an outline of the process that leads the boundary

value problem to a hypersingular integral equation .
e PDE(s) with mixed-valued boundary conditions (BCs).

e Fourier Transform ( PDE(s) — ODE(s) ).
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e Solving ODEs. — Solution is expressed in the Fourier domain.

e Inverting Fourier transform. — Integral equation is formed with unknown coef-

ficients determined by BCs.
e Selection of the density function which can be related to BCs.
e Asymptotic analysis determines the hypersingular kernel(s).

e Splitting out the singularity — Hypersingular integral equation(s) is (are) de-

rived.

Notice that final form of the derived hypersingular integral equation(s) has incorpo-
rated the BCs as part of the equation. Thus, solving the integral equation is indeed
solving the original PDE(s) with mixed-valued BCs.
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Chapter 5

Finite Part Integrals and

Hypersingular Kernels

In this chapter, we will explain how the hypersingular kernels arise. Essentially,

hypersingular kernels are derived by the following three basic ingredients:
e Finite part integrals,

e Identity

L 1 o 1
e [y—i(t—x)] © dzn [y-i(t—r)] '

o Plemelj formulas [22, 58, 68].

The key point of identity (5.1) is that it allows one to switch the differentiation from
d/dz to d/dy, and vice versg; it is very straightforward to verify, thus we shall address

the other two ingredients.

5.1 Finite Part integrals

Unless a proper meaning of integration is given , the first integral in equations (2.32)
and (4.56) is meaningless because of the infinity is involved. Jacques Hadamard [40] is
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the first mathematician who regularized the singular integral by taking “finite part”
of the integral. It can be considered as a generalization of the Cauchy principal value
integral [32, 60].

5.1.1 Cauchy Principal Value Integrals

Equations that involve integrals of the type!
1
t
o)

2
- Pd, lel<1 (5:2)
in not integrable in the ordinary (Riemann integral) sense because of the kernel 1/(t—
z) is not integrable over any interval that includes the point ¢t = z. Thus, a special

interpretation, called Cauchy principal value integral (50, 67, 79] is given.

Definition 5.1 (Cauchy principal value integral)
1 T—€ 1 ;
) gy .= lim{ / O 4 / t"f—tldt} D lzl<l. (53)

1 t—z 0| J, t—Z +e
Notice that the e-neighborhood about the singular point z = t must be symmetric,

and it is how the principal value integral works out for canceling off the singularity.

Some regularity is required for ¢(z) in (5.3) so that the Cauchy principal value integral

exists.

Definition 5.2 A function ¢ : (—1,1) = R is called Hélder continuous on (—1,1)
(of order a) if

l#(z) — o(¥)l < clz—yl|®

for some constant ¢, 0 < a < 1, and all z,y € (—1,1). We denote ¢(z) € Cc%(-1,1).

Proposition 5.1 If f(z) € C**(—1, 1), then the principal integral
1
ot)
-1 t—zr
exists for all valuesof z in the interval — 1<z < 1.

1 After a step of normalization (change of variables), the integral f: can be transformed to [ 11. For the sake of
convenience, we use fll all through this chapter.
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Proof By definition, we have

Loet) o(t) — ¢(z) dt
L ioo = {/|:—=|>e IR /u—zlze t- f}
_ ¢(t) ¢>(r o) = 9@) by + 4i) ][

-1

—. (5.4)

Note that for any ¢ € C%*,a > 0, the first integral on the right side of (5.4) is an
ordinary Riemann integral and the second integral is

L odt 1—-z
= log —— , <1
/ilt—:z 0g1+:z: 2]

This completes the proof.

Although Cauchy principal value integral is defined for an interior point in (—-1,1)

above, it can be evaluated separately on both sides of the end points:

][_1 ;Dit?rdt "1-»0{/_1—( () 4, O(z)lne} Cas1

1 L
¢(t)dt=hm{/ Mdt.{.-@(z)lne} , T<I.
x+et_z

s t—z e—0

and

5.1.2 The Definition of Finite Part Integrals

Cauchy principal value does not work for a higher singularity. For instance, consider

¢(t)=1land £ =0 in
/ (t‘b_(t]):)z a<z<b, (5.5)

that is,
b dt
a ¥

The integral is not convergent, neither does the principal value exist, since

dt 1 1 2
f “m(“‘+')
o\ B2 0\a b €

is not finite.
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Hadmard finite part integral is defined by disregarding the infinite part, 2/e, and

keeping the finite part, ¢.e.
b dt 1 1
f, £ a b (56)

Definition 5.3 ( Finite part integral ) Let € > 0, and denote

Fle. )= [ fit,o)dt, lal <1,
[=1, 1]\(z—¢, z+¢€)
where the singularity appears at the point z =t. If F(e, x) is decomposed into
F(e, ) = Fo(e, ) + Fi(e, ),
and
lin(1) Fole, z) < 00, Fi(e, 7)< o0,

then the finite part integral is defined by keeping the “finite part”, i.e.

1
f (¢, z)dt = lim Fy(e, z) .
-1 e—

Notice that finite part integral can be considered as a generalization of the principal
value in the sense that if the principal value integral exists, then they give the same
result [32].

Now, we shall define the finite part integral for integrals with quadratic singularity
as in (5.5). Denote by C™>(—1, 1) the space of functions whose m-th derivatives are

Hélder continuous on (—1,1) with index0 < a < 1.

Definition 5.4 If ¢(z) € C1*(—1,1), then
][ L) i [ / ) gy / LA g __2¢£x)] (5.7)

-1 (¢—2)? —0|J  (t—2z)? +e (E— )2
Like Proposition 5.1, the condition ¢(z) € C'**(—1,1) is required for the existence of
the defined integral [57, 61].
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Following observation may help to understand Definition 5.4. By a step of integration

by-parts, the first integral under the limit ¢ — 0 in (5.7) can be written as
[ gt e, [0,
(t—=z)?

-1 € a-=z -1 t—1z)

[ - terd b S0,

+e (t—2)? € b—z +et—I)
Thus, the term —2@(z)/e€ in (5.7) will kill the singularity [¢(z — €) + #(z + €)] /¢, and
under the assumption ¢(z) € C'*(—1, 1) Definition 5.4 indeed takes the finite part of

Similarly,

the integral according to Definition 5.3.

Another direction of viewing Definition 5.4 is by taking direct differentiation d/dz to
(5.3) with Leibnitz’s rule, i.e.

d ' o(t) _d [ [ o(t) bog(t)
E][_lt—zdt"ll—%ﬂ[/l t—xdt+/:+(t—zdt

= lim [ / L / RO é(x_e)“‘”q’““)] (5.8)

S G L E-op ¢

Comparing (5.8) with (5.7), we can conclude

Proposition 5.2 If ¢(z) € Ct*(—1,1), then
1 ; 1 ,
&(t) d ][ o(t)
=4[ 2y :
7[_1 -2 &), -z (59)

Alternatively, one can define finite part integrals by equation (5.9) and deduce Defini-

tion 5.4 as property. Thus, for general n, finite part integrals can be defined recursively
as follows. We denote L'* =, LP[-1,1].

Definition 5.5 ( Finite part integral ) For any ¢ € C™*(-1,1) N L'* and n =
1,2,3,..
1 1
][ o) g 14 [ ) 4 <, (5.10)

., =zt T ndz ], (t—2)
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with
1 1
—¢(t) dt := ——¢(t) dt.

a t—z a4 t—z
By means of (5.4) and the (recursive) definition of finite part integrals, one can
deduce [67]

Proposition 5.3
1
9(t)
dt
£1 (t —z)"

- )] —zy
_ /1 () — Tioe 89 () (¢ — z)7 /5! Z‘ﬁ(])(l’)/.?f - ¢ 511

1 (t - z)" z)n

For ¢ € C™*(~1,1) N L'+, the first integral on the right side of (5.11) is an ordinary
Riemann integral. Also, with (5.11) in hand, integration by-parts formula holds for
finite part integrals [67)].

Proposition 5.4 For ¢ € C™*(—1,1) N L!*

e L, [ o) o(1) -1
£1 (t—l‘)“dt - nf; (t—x)"+1dt+(1_z)n—("1) ma n>1

and for ¢ € C*(—1,1)N L}*
' bog(t) . ,
/ &' (t)loglt — z|dt = f -t—xdt+q>(1)log|1—:z:| —o(—1)log|l + z|
-1 -1 -

5.1.3 A Remark of Finite Part Integrals

The most commonly used integration in mathematical analysis is Lebesgue integra-
tion. Not all the properties for Lebesgue integral can be carried onto finite part
integral. For example, properties that involve inequality (e.g. monotone convergence
theorem, Fatou’s lemma, bounded convergence theorem) may not be true for finite

part integral anymore. A simple demonstration is (see equation (5.6) and Refer-

ence [43])
1
-1
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{ f(z)dz| < { |f(z)ldz

is NOT true for finite part integral! However, fortunately, the most relying formula,

clearly,

integration by-parts, is true for finite part integral.

5.2 Plemelj Formulas

In general, the Cauchy principal value type of integrals

b
d)—(t—)-dt, a<z<b
a t—Z

is evaluated indirectly by using complex function theory [64, 76]. Define

b
<1>(z)=/ %dt,

with z not on the integration contour. The principal value is then recovered by
sending z to the point = on the interval (a, b), and the resuit is different as = — =
from above and below. Say, define
®*(z) = limd(z +ilyl),  ®7(z) = im d(z —lyl),
y— y—

then the limits are

&t (z) = fb tif% dt + in¢(z), (5.12)
and
¢ (z) = ][b tgé% dt — ing(z) . (5.13)

Equations (5.12) and (5.13) are Plemelj formulas [58], sometimes called by the Sokhet-
ski formulas. It is (5.12) that we will be using in the derivation of hypersingular
kernels.

Notice that ¢(z) can be recovered from Plemelj formulas, i.e.

&+ (z) — ¢~ (x)

27

o(z) =
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5.3 Hypersingular kernels

For the derivation of hypersingular kernels, we use three basic ingredients:
e definition of finite part integrals;
e the identity (5.1)

d 1 o d 1 '
dy® [y—i(t-z)] ' & [y—i(t~x)] ’

e the Plemelj formula

1 , 1
: (t) _ ][ o(t) L+
P_r’% _1—(t—z)+iedt— i-z —dt + wig(x), o€ L.

Hypersingular kernels can be derived by observing that

balt—z.) = o= [ e lemtarie-sk gg
o)

= \/g(—i)"lm [f?(y —i(t— x))-l]
- (‘1)"\/%1’” [g,,(y—i(t—x))-l]
- (_1)n\/§ [adi(t—awzy) ‘].

Thus,

72

1
y_’0+/ ka(t — z,y)o(t) dt = ylg(x)l( -1) \/E/ Re [in(t —x+iy)_1] o(t) dt

1
- 2:;f <z>(t)z it

= nl(— 1)"\/- ][ (tf(t)m

by the Plemelj formula and the definition of finite part integrals.

-1y 2Re |7 Jim [ =2+ mtote) &
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Note that, when n is an odd integer,

L [T onenl€l i ge = [2pn | L -1
\/57?/;«:2 §"i§e d§ = 7rIm dx"(t z+iy) |-

Thus we have
/1 dto(t) lim _1_ /°° ingﬁ@e_my-'ri(!—:)f de
-1 y—0+ /21 oo i€

= /2 d . b -1

= — ;Im [E; ylix(r)x+/_l¢(t)(t—x+zy) dt]
ar

= —V 27!’3;;;45(1'),

where the Plemelj formula is used again.

Some examples are:

o0 (12 -0+ 12 =
/ (|€[Pe1€lv] eitt-=4dg y—0l T (5.14)
/w [iﬂfle'my] elt-2)dg y—0r 4 (5.15)
e (t—1z)3
/ (e8] t-dg =% _ang(t — ) (5.16)
oS . — + _2
/ [lEle™6] eit-oege =% T (5.17)
/ [ige™16V] et-2)égg 20 oxd(t - 1) (5.18)
L —iay| gie-mege w207 =2
ISt i(t-z) 4 .
‘/;ool:zge € E — P (5.19)
/ [Le716v] et-2gg 2% omh(t — z) (5.20)

We have used d(z) denotes the Dirac delta function.
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Chapter 6

Asymptotics of Crack-tip Behavior
by Mellin Transform

In this chapter we study the crack-tip behavior of the solution to the hypersingular
integral equations by using Mellin transform. Martin [63] has proposed using Mellin
transform to study the crack-tip (end-point) behaviour of solutions to quadratic hy-
persingular integral equations. Here we extend the method to investigate cubic and

more general hypersingular integral equations.

6.1 Mellin Transform

The idea of the Mellin transform and its inversion formula first occurs in a Riemann’s
memoir [80] on prime numbers in 1876. The explicit formulation was given by Cahen
1894 [5]. The transform bears Mellin’s name because Mellin was the first one to give
an accurate and elaborate discussion on it [66]. Mellin transform arises in solving the
boundary value problems associated with the geometry as an infinite wedge (20, 88],
and it also plays an important role in the asymptotic expansions of integrals [4].
Properties and applications of Mellin transform can be found in [20, 74, 88]. Extensive
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tables of Mellin transform are provided in [23, 71]. Its definition is given by
Definition 6.1
Mifi o) = fo) = [ @) e. (6.1)
M(f; 2], or f(z), the “(z — 1)th” moment of function f(z) is called the Mellin trans-
form of f. From now on, we use the notation
z=0+1IT (6.2)

to denote the real and imaginary parts of complex variable z. Using complex Fourier

transform, one can derive the inverse Mellin transform as
1 c+i00

flz) = 3 f(z)z™*dz, forsomece R. (6.3)

The following three examples motivate how the Mellin transform contributes in the

asymptotic analysis.

Example 6.1

, v, O0<zr<a - )
A(z) = =  ¢1(z) = —a™*, R(z) > -R(v)
0, T>a =tV

The integral [~ ¢1(x)z*~! dr exists and is equal to o1(z) = @™ /(z + v), as R(z) >
—R(v). However, ¢;(z) can be analytically continued to the whole complex plane,

still being a**/(z + v), with a simple pole at z = —v.

Example 6.2

0, 0 ) 1
¢2(z)={ SIS S G = e, RE)<-RW)

¥, zIT>a z+

The integral [;° ¢o(z)z"~! dr exists and is equal to B2(z) = —a***/(z +v) as R(z) <
—R(v). However, ¢2(z) can be analytically continued to the whole complex plane,

still being —a**¥/(z + v), with a simple pole at z = —v.
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Example 6.3
¥, 0<a<z<b ~ 1 st v
#3(z) = = $3(z) = — (" -a""), z#v
0, zeR\]a,b ztv
#3(z) is analytic except a simple pole at z = —v.

From the three examples above we can observe that by studying the pole(s) of the
Mellin transform one can gain the knowledge of the asymptotics of the original func-
tion. For instance, function ¢,(z) has asymptotics ¥ at z — 0%, then its Mellin
transform ¢;(z) is analytic on a right half-plane and has a simple pole at z = —v
after analytic continuation. Function ¢,(z) has asymptotics ¥ as £ — oo, then its
Mellin transform ¢,(z) is analytic on a left half-plane and has a simple pole at z = —v

after analytic continuation.

6.2 Three Prototypes of Asymptotics

The three examples in the last section only serve to the motivation of the role of
Mellin transform has played in the asymptotic analysis. Of course, there are a lot of
functions with various asymptotics. For the sake of completeness, we list the three
prototypes of asymptotics and their Mellin transforms that can be found in Bleistein
and Handelsman (4], page 109-110.

Example 6.4
Mle™*; z] =T(2).

The function f;(z) = e~* decays exponentially as £ — oo, and its Mellin transform
fi(z) = ['(2) is analytic in the right half-plane R(z) > 0.

Example 6.5
M[€=; z] = e™=/?T(z2).
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The function f,(z) = €© oscillates as £ — oo, then its Mellin transform fa(z) is ana-

lytic in the strip 0 < R(z) < 1 and can be analytically continued into a holomorphic
function in R(2) > 1.

Example 6.6

A/I[ L ;z]= ’11' .
l+z sinwz

The function f3(z) = 1/(1 + z) decays algebraically and monotonically as z — oo,
then its Mellin transform f3(z) is analytic in the strip 0 < R(z) < 1 and can be
analytically continued to a meromorphic function in R®(z) > 1. f3(z) has simple poles
at the positive integers in the region R(z) > 1.

The three examples illustrate the following:

1. If f(z) decays exponentially as z — oo, then f(z) is holomorphic in a right
half-plane R(z) > c, for some c € R.

2. If f(z) oscillates as £ — oo, then f(z) can be analytically continued into a right

half-plane holomorphic function.

3. If f(z) decays algebraically and monotonically as z — oo, then f(z) can be

analytically continued into a right half-plane meromorphic function.

Thus, by studying the Mellin transform f(z) and determining where f(z) is analytic,
where the isolated singularities (poles) of f(z) are, one can gain the knowledge of
the asymptotics of function f(z) as £ — 0o. For the purpose of our applications, we
are interested in determining the asymptotics of function f(z) as £ — z¢, for some
finite point £y € IR. Without loss of generality, we assume the interval (0, a) to be
the crack surface, and f(z) is only defined for 0 < £ < a. We extend f(z) by zero for

€ > a, so that f(z) exists and it is analytic in some right half-plane o > ¢ with

|f(c +iT)] =0, as |r| = oo. (6.4)
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6.3 Two Main Theorems

Martin [60] first proposed using Mellin transform to find the end-point behaviour

of solutions to the quadratic hypersingular integral equations. The two main useful

theorems are

Theorem 6.1 (Bleistein and Handelsman [4], Lemma 4.3.6)
Given that f(z) =0 for £ > a and

o N(m)

flz) ~ Z 2 Apnz® (Inz)* as z—-0", (6.5)

m=0 n=0
where R(ag) < R(a,) < --- < R(an), and 0 < N(m), a finite integer. Then f(z) is
analytic in the right half-plane R(z) > —R(ap) and can be analytically continued into
R(z) < —R(aq), with poles at z = —a,,. The principal part of the Laurent expansion

of f(z) about = = —ap, is
N(m)

/ (-1)*n!
Z Amnm . (6.6)

n=0

Also, (6.4) holds for all values of .

That is, the asymptotic expansion of f(z) for £ — 0" completely determines the
poles of f(z). In (6.5), the exponents a,, to the variable z determines where the poles
of f(z) are, and the powers n to function Inz give the order of the poles. For our
purpose, we need the other way of determination, i.e. given the knowledge of the
pole(s) of f(z), one can determine the corresponding asymptotic expansion of f(z)

as ¢ — 0%, and it is provided in the following theorem.

Theorem 6.2 (Oberhettinger [71], page 7)

Suppose that f(z) is analytic in a left hand half-plane, ¢ < c, apart from poles at
z2=—an, m=0,1,2,---; let the principal part of the Laurent ezpansion of f(2)
about z = —a, be given by (6.6). Assume that (6.4) holds for ¢ < o < c. Then, if
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can be chosen so that

—R(ap+1) < < —R(ap) for some M,

we have
oo N(m)
@) =33 Apnztm(lnz)* + Ru(s), (6.7)
m=0 n=0
where
1 ¢/ +ioco . z—-c' 0o _ , ) .
Ry(z) = =l f(z)z™*dz = E—/_m f(d +ir)z™"dr. (6.8)
The remainder Ry (z) is of order o (z®(3M)) if, for instance,
/ F(¢ +ir)|dr < o0, (6.9)

hence (6.7) is an asymptotic approrimation.

Thus, we will focus on how to determine the pole(s) of f(z), the Mellin transform of

the unknown density function f(z).

6.4 Crack-tip Asymptotics by the Mellin Transform

We demonstrate how the Mellin transform helps to determine the asymptotics of
crack-tip behavior by giving some examples. Throughout the demonstration the

following two equations turn out to be very useful.

][ tz-:c dr = rt°cot(nz) for —-1<o<0. (6.10)
) t—
f; (—t_l_';x)z-dx = —mwztlcot(mrz) for —1<o<1. (6.11)
f.m —xil—dz = Z’(z +1)t= tcot(nz) for —2<o<1 (6.12)
o (E—x)P3 " 27 ' )

Equation (6.10) can be found in many textbooks, for example, see Ref. [32]. Equations
(6.11) and (6.12) is a combined result of (6.10) and (5.10).
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6.4.1 Cauchy Singular Integral Equations

Recall that the crack problem for nonhomogeneous materials in classical LEFM if
one chooses using slope (8/9z)w(z, 0) = ¢(z) as the density function, then equation
(2.40) is obtained:

G(ib‘)f [t_ loglt—$| + N(z, t)] o(t)dt=p(z), c<zr<d.

In case of a homogeneous material is considered, equation above is reduced to a

Cauchy singular integral equation

gfc té_(_tl dt = p(z), c<z<d, with / o(z)dz =0 (6.13)

Without loss of generality we have replaced the crack surface (c, d) to (0, a) in (6.13),

and it has the exact solution

1 * p(t)y/2(a =)
Q(z)—n'G\/x—(a_——z)]{) el

Clearly, one may see that 1//z(a — z) is an admissible behavior of ¢(z) around the

crack tips. Here we use Mellin transform to see the same conclusion is drawn.

Proposition 6.1 If ¢ € C**(0,a), 0 < a < 1, and ¢(z) = 0, for z > a. Also ¢(z)

satisfies

¢ () dt = p{z), 0<z<a, /4’)(1:)d:r=0, (6.14)
TJo t—z 0

where p(z) is integrable and
lu‘\.;_ p(z) < 0o, lim p(z) < o0

Then, ¢(x) has the following admissible asymptotics:
o(z) ~ %, as z—0%.

Proof Taking Mellin transform on both side of the Cauchy singular integral equation

(6.14), one has
G/ ][ k0B dtz"lda: (z),
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= G/ <p(th = 1d:cdt 5(2),

g . z-1 —_ B>
= 7‘_/0 o(t)mt* " cot(wz)dt = p(z),

= G cot(wz) /a #(t) " tdt = p(z),
0

> Gé(z) = (z)/ cot(nz),
z 1 + . - >
= o(z) ~ 7 as r— 0", is admissible.

This completes the proof.

Proposition 6.2 If ¢(z) satisfies the conditions as in Proposition 6.1 ezcept the
Cauchy singular integral equation (6.14) is replaced by

G][ o) dt+/ k(z,t)o(t)dt = p(z), 0<z<a, / o(z)dz =0, (6.15)
0
Then, ¢(z) has the following admissible asymptotics:

1
#(z) ~ —=, as z—0%.

.
Proof Denote

(Ko)(@) = [ kG tiote) .
The regularity of the nonsingular k(z,t) makes

Col™@, as T —00, a>1
(K¢)(z) ~
cz?, as z—=0, B>-1/2
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Similar to the proof for Proposition 6.1, by taking Mellin transform on both side of
(6.15), one obtains

G cot(rz)d(z) + K¢(z) = p()/,
which leads to

G &(z) = [p(z) — K¢(z)]/ cot(rz),

1
= #(r) ~ —=, as z — 0", is admissible.

7

This completes the proof.

6.4.2 Quadratic Hypersingular Integral Equations

The study of crack-tip asymptotics of quadratic hypersingular integral equations by
using Mellin transform has been addressed by Martin [60], thus we shall be brief in
this subsection. Recall that equation (2.34)

Go d w(t,O*)
_7€ (t - z)?

3
in Chapter 2 is a quadratic hypersingular integral equation.

dt = p(r), c<z<d.

Proposition 6.3 If ¢ € C'*(0,a), 0 < a < 1, and ¢(0) = ¢(a) = 0. Also ¢(z)
satisfies

1/ (t
;fo (—t%g—:;):ﬁdt=p(x), 0<z<a, (6.16)

where p(z) is integrable and

lim p(z) < o0, lim p(z) < 0o.

z—0+ r—a~

Then, ¢(z) has the following admissible asymptotics:
#z) ~ VT, as z—>0%.

Proof When z > a, p(z) is defined by the left-hand-side of (6.16), thus p(z) ~ 1/z?
as £ — oo, and the Mellin transform ¢(z) of p(z) is analytic for 0 < Re(z) < 2. Tak-
ing the “zth moment” Mellin transform on both side of the quadratic hypersingular
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integral equation (6.16), one obtains

/ f (t_z)zatz‘dx=ﬁ(z+l),
/ <p()f g drdt = p(z+1),

%/ o(t)(—m)zt*"Lcot(mz)dt = p(z+1),
0

—ZCOt(ﬂ’Z)/ o(t)t="tdt = p(z+1),
0

= —zcot(mz)d(z) = p(z + 1),

If llm ,plz+1)= 1113013(3)#0, then ¢(z) ~ Vv,

z——-1

This completes the proof.

6.4.3 Cubic Hypersingular Integral Equations

as r—0".

In this subsection we study the crack-tip asymptotics of cubic hypersingular integral

equations by using Mellin transform.

Proposition 6.4 If € C*%(0,a), 0 < a < 1, and ¢(0) = ¢(a) = 0. Also ¢(z)

satisfies

T

(t-=zpP

where p(z) is integrable and

lim p(z) < oo, lim p(z) < oo

z—0+ r—a~

Then, ¢(z) has the following admissible asymptotics:

o) ~ vVz, as z—>0".

-l-f _e®) dt = p(z), 0<z<a,
0

(6.17)
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Proof When z > a, p(z) is defined by the left-hand-side of (6.17), thus p(z) ~ 1/z°
as £ — 00, and the Mellin transform ¢(z) of p(z) is analytic for 0 < Re(z) < 3. Taking
the “(z + 1)th moment” Mellin transform on both side of the cubic hypersingular

integral equation (6.17), one obtains

1 ° i ¢(t) =+ — B
;/o fo (———)sdta: Ydr = p(z +2),

t—zr
1 [° oo g+l
- - = 5 2),
= - /0 ¢(t)fo 27 dz dt p(z+2)
1 [ T .1 -
= — | o(t)=z(z+ 1)t cot(mz)dt = p(z+2),
T Jo 2
= %:(z+ 1)cot(1rz)/ d(t)t="ldt = p(z+2),
< 0
1 e -
= 52z + 1) cot(mz) o(z) = p(z +2),

Case I If
:llfr;/zp(z +2) = :l_lg;zp(z) #0,

then ¢(z) has a simple pole at = = —1/2. Thus
&z) ~ vz, as = —0".
Case I If
:—lgrll/zp(z +2) = :l_lg;zp(z) =0,
and
:_l,‘f?.,zp(z +2) = :gxgzp(z) #0,
then &(z) has a simple pole at z = —3/2. Thus

#z) ~ 3%, as T —0%.

This completes the proof.
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Chapter 7

Evaluation of Hypersingular

Integrals

The focus of this chapter is to exactly evaluate hypersingular integrals of the type

1 2 m——;-
oTomr) = £ T"(s)(gl_rs)a) ds, Irl<1 (7.1)
and
1 <2 m--,;-
Ia(U,,,m,r)=£ 1 U"(s)(gl_r;) ds. |r| <1 (7.2)

for general integers a (positive) and m (non-negative), where T, (s) and U,(s) are the
Chebyshev polynomials of the 1st and 2nd kinds, respectively. Exact formulas are

derived for the cases a =1,2,3,4and m=0,1,2,3.

7.1 Theoretical Aspects

From Chapter 2 and Chapter 4 we learn that the final form of hypersingular integral
equation can be written as

4 ¢ D(t)
c (t_x)a

dt + /dk(z,t)D(t) dt + f(z) = p(z), ec<z<d, (7.3)
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where = denotes an improper integral; c, is a constant associated to the singular
kernel 1/(t—z)%; k(z, t) is the nonsingular (regular) kernel; f(z) is a function standing
for some extra term; p(z) is generally for the force function. The parameter « is a
positive integer which determines the degree of the singularity. If a = 1, the integral
equation (7.3) is called a Cauchy singular integral equation, and the singular term
is evaluated as a Cauchy principal value (CPV) integral. If a > 2, it is called a
hypersingular integral equation and the singular term is evaluated as a Hadamard
finite part (HFP) integral [50, 54, 61, 67, 70, 80, 81]. Here the notation f and #
refer to CPV and HFP integrals, respectively.

7.1.1 Integration and Approximation

As far as the integration and numerical procedures are concerned, the integral equa-

tion (7.3) may be normalized through the following change of variables

2 c+d 2 c+d
s—d_c(t— > ) and r—d_c(a:— 5 ), (7.4)

which leads to the normalized version of the integral equation (7.3) written as'

7[1 —D(ﬁ‘ds-i-/l K(r,s)D(s)ds + F(r) = P(r), -l<r<l. (7.5)

1 (s—1)°

The density function D(s) is further assumed to have the representation
D(s) = R(s)W(s). (7.6)

The weight function W(s) determines the singular behavior of the solution D(s) and
has the form

W(s) = (L—s)™(1+s)™ . (7.7)

1The notations in this thesis have been chosen as following: z and t refer to the physical quantities and have

dimension of “Length”; r and s are normalized (dimensionless) variables, corresponding to z and ¢, respectively. This

choice of convention has been consistently used in the rest of the thesis.
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In general, m; # m,, and the corresponding integrals, which involve Jacobi polyno-
mials P{™"™?)(s), are of the type

][ L (1= )™ (1 + s)™2 PI™ ™) (s) ds
-1

S—r

, (7.8)

and can be expressed in terms of gamma and hypergeometric functions [42, 53]. In
this paper, only the case m; = m, is considered and m,, m, are set to be

1
m1=m2=m-—§. (79)

Thus W (s) can be expressed as

W) = (1-s)™F m=0,1,2,--- . (7.10)

The value of m is determined by the order of singularity a. As @ = 1, one may apply
Muskhelishvili’s procedure [68, 69] to the corresponding (Cauchy) singular integral
equation and find m = 0. Thus the solution D(s) to the Cauchy singular integral
equation (7.5) takes the form

D(s) = —L . (7.11)

In this case, which consists of the majority of the work involving applications of
integral equations to fracture mechanics (Wang and Karihaloo [95]; Erdogan [24];
Meguid and Wang [62]), R(s) is chosen to be

R(s) = 3 anTuls) (7.12)

and because of that, the CPV integral I;(T,,0, r) can be evaluated exactly [50, 42, 30|:

L(T,,0,r) = ][1 Tn(s) ds = { 0, n=0 (7.13)

s =
-1 (s—=r)V1-s? aUp—1(r), n2>1.

Another reason for choosing the expansion (7.12) is that with respect to the weight
function W(s) = 1/v1 — s2, the class of the Chebyshev polynomials of first kind
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T,(s) is an orthogonal family (Hochstrasser [42]):

. T m=n=0
T (8)Ta(s)
——————ds = =n: = . en 7.14
LTV /2 m=n; mn=1,23, ( )
0 m#n, mn=012-..
With this orthogonal property a Galerkin-type method (Krenk [52]) may be applied

to find the coefficients a, in equation (7.12).

If @ = 2, then m = 1, and the solution D(s) to the hypersingular integral equation

(7.5) is characterized by
D(s) = R(s)V1-s?. (7.15)

Correspondingly, R(s) is chosen to be

R(s) = 3 balils) | (7.16)

because of the same reasons for the case @ = 1, namely, analytical evaluation and
orthogonal property. With respect to the first reason, the HFP integral I»(Un,1,r)
can be evaluated analytically (Kaya and Erdogan [50}):

U Un(s)V1 —s?

BUnLr) = § o

ds=—-(n+1)7aU,(r), n2>0. (7.17)

According to the second reason, by orthogonality,
1 t/2 m=n; mn=012---
/ Un(8)Un(s)V1 — s2ds = / (7.18)
-1 0 m#n; mn=012-.-- ,

and one may apply Galerkin-type methods (Krenk [52]) to find the coefficients b, in
equation (7.16).

When a = 3, then m > 1. For instance, with m = 2, the weight function W(s) =

(1 — s2)%/2, neither T, (s) nor U,(s) is an orthogonal family. However, if collocation
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method is applied, one does not need the orthogonal property, as long as the ezpansion

function R(s) is chosen such that

][‘ R(s)(1=s)3

—1 (S - 7’)3
can be evaluated analytically. For example, if R(s) is expanded as a Chebyshev

polynomial of the 1st kind 7T,(s) or the 2nd kind Uy,(s), i.e.

R(s) = ianTn(s) or R(s) = iann(s), (7.19)

then the evaluation of

[

U Tu(s) (1 = 5™
I(T.,m,r =f z ds
( ) -1 (s —r)e
or )
L Un(s)(1 =822
Ia Um m,r)= f = ds
( ) -1 (s —r)
for general m = 0,1,2,--- and a = 1,2,3,--- is a necessary step for the numerical

approach to the integral equation (7.5). This is the one of main tasks in this paper
and is addressed in Sections 7.4 and 7.5 .

7.1.2 Selection of the Density Function

Usually the unknown function D(t) in equation (7.3) can be chosen as the displace-
ment profile (e.g. u(t) ~ a displacement function), the (first) derivative of the displace-
ment function (du(t)/dt, denoted by ¢(t) — the slope function), or a higher derivative
of u(t). The choice of the unknown function D(t) will affect the degree of singularity
in the formulation. For example, consider the standard mode III crack problem in a
free space (Gdoutos [39]) and a linear elastic fracture mechanics (LEFM) setting. If
D(t) is chosen to be the slope function ¢(t), then the governing integral equation is
the Cauchy singular integral equation

D(t) = ¢(t) , : %dt =p(z), c<z<d. (7.20)
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However, if D(t) is chosen to be the displacement function w(t), then the hypersin-
gular integral equation with a = 2 is obtained,

D(t) = w(t) 7[ ‘ (t“’(t) dt=p(z), c<z<d. (7.21)

=
The differences between the above two formulations are discussed next.

Note that the higher singularity in (7.21) does not constitute more difficulty in
solving the equation since hypersingular integrals in both (7.20) and (7.21) can be
evaluated exactly with the suitable basis functions. So the choice of the density
functions should be dictated by considerations other than the order of singularity in
the resulting equations. There are situations, however, in which the displacements
appear to be more natural than the slopes, e.g., in periodic (Schulze and Erdogan [78])
or three dimensional crack problems. Sometimes, a formulation with higher singular
kernels results in simpler nonsingular kernels in the decomposition (2.24) (see Section

7 for discussion of examples).

7.1.3 Properties of Chebyshev Polynomials

The evaluation of Cauchy singular and hypersingular integrals which involve the
Chebyshev polynomials T,(s) and U,(s) highly depends on the special properties
of these polynomials. They are listed here for the sake of completeness and because
they will be of much use later in the development of this work. Most of them (but
not all) can be found in Hochstrasser [42] and Kaya and Erdogan [50].

e Definition of Chebyshev polynomials of the first kind:
To(s) = cos[ncos™'(s)], n=0,1,2,--- (7.22)

e Definition of Chebyshev polynomials of the second kind:

sin[(n + 1) cos™1(s)]
sin[cos—1(s)]

Un(s) = , n=0,12,... (7.23)
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e Iterative (recursive) properties:

sTy(s) = —[T,H.l(s) +Toi(s)], n>1 (7.24)
sUn(s) = -[U,,H(s) +Upi(s)], n21 (7.25)
Ta(s) = 5[Un(s) = Un-as)] , 22 (7.26)
Un(s)(1 = 5°) = 8Tns1(s) = Tnva(s) ., n20 (7.27)

By means of equation (7.24), one may rewrite equation (7.27) above as

1

Un(s) = o)

[Tn(s) - Tn+2(s)] ’ n20 (728)

Thus an additional equality, which is useful in handling cubic hypersingular
integrals can be derived?®:

Un(5)(1 = 53} "2 2T (5) — Tura(s)] VI= &2
(7.26) _% [%Un.{.z(s) —Un(s) + ';'Un—2(3) \/l_——sz- , n>2

—i [Uns2(s) — 2Un(s) + Un—a(s) V1 — 82, n >2 (7.29)

e Derivatives:

dI;S(S) nUni(s). n21 (7.30)
dU;s(s) = jsz [n42—2Un_1(3) - gU,,H(s)] , n>1 (7.31)

2The equation number is stacked above the equal sign to show how the equations are being derived and connected.
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7.2 Cauchy Singular Integral Formulas (a = 1)

This section mainly evaluates I;(T,, m,r) and I,(U,, m,r), which are defined in equa-
tions (7.1) and (7.2). The new result here is that the singular integral formulas are
found for general m. In order to obtain this new result, two well known Cauchy
singular integral formulas are introduced (Hochstrasser [42]): one is already stated in

equation (7.13), and the other one is

Il(Uny 1, 1') = fl Un(S)\/l__?

-1 S—7T

ds = -71’Tn+1(7') y n Z 0 ’ (7'32)

which can be obtained as follows

1 V1 - §2
[l(Un, 1,1‘) =f Un(s) 1 S ds
-1 S—T

(7.28) l ! Tn(s) - Tn+2(s)ds

2/ V1—-83(s—r)
7.13) T
T SUans(r) = Una (7))
7.26
T2 —rTon(r) -

The integral formulas for m = 0,1,2,3,--- are derived below. The general formulas

have the restriction of minimum n. For instance, equations (7.26) and (7.29) are only
true for n > 2, and equations (7.30) and (7.31) are valid for n > 1. The lower n terms

can not be derived by general formulas, and are given in Appendix A.

7.21 L(T,,m,r), m=0,1,2,3

e I,(T,,0,r): This is equation (7.13).

o I1(T,,1,r):
fl Tn(s) v1-— szds (7i6) l fl [Un(s) — Un—?(s)] v1-— szds

-1 s—r 2/, s§s—rT
(732) ™

= E[Tn—l(r) ~Taa(r)l, n22. (7.33)
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° Il(Tn,2 "' :
To(s)(1 — s?) ds (729 fl %[U (s) = Un-2(s)I(1 — 5° ds
S—T -1 §—rT
(7-—:16) 8 {[Tn—l(T' = 2T41(r) + Tnsa(r)] = [Tnoa(r) — 2Tnoi(r) + Tora (7)]}
= —g[Tn_;;(r) — 3T 1(r) + 3Tn41(r) — Tnya(r)], n 24 (7.34)
[ ] Il(Tn, 3, 1’):
' Tu(s)(1 = 877, 2 ][‘ 3(Un(s) = Un—a(s)}(1 = s7)3
-1 s—r : -1 §—T
= 332- {[Tn-s(r) — 4T—3(r) + 6Tn_1(r) — 4Tns1(r) + Tnsa(r)] —
[Tn_s(f‘ 4Tn..1(1') + 6Tn+l(r) - 4Tn+3(r) + Tn+5(r)]} y N2 6
= %[Tn_s(r) —_ 5Tn_3(7') + IOTn—l(r)

—IOTn+1(7') + 5Tn+3(r) - Tn+5(r)] , n2 6 (7'35)

7.2.2 L(Up,m,r), m=1,2,3
e I,(U,,1,7): This is equation (7.32).

L J Il(Un,Q,T):
][‘ Un(S)(l-sz)%ds (7.28) 1][‘ [Ta(s) — Tava(s)]VL — 8%

1 s—r 2/, s—r

2 E{[ Tooy(r) = Tas1(r)] = [Tasi(r) = Tasa()]} . n>2
= Z[ a1 (r) = 2Tt (r) + Tuga(r)], n 22 (7.36)
o [(Un,3,1):
L Ua(s)(1—82)3 , qas 1 [ [Tuls) = Tura(s)](1 — s3)3
f_x s—r ds = 2 ][-1 §—r ds
2 1”—6{[ 1 (1) = 3Tns1(7) + 3Tnsa(r) — Tnas(r)] —

[Ta_3(r) = 3Tnoi(r) + 3Tnia(r) — 3Tnss(r)]} ., n2>4
T

= -1—6-[ —3(1) — 4T 1 (1) + 6T 1 (1) — 4T 13(r) + Tnys(r)] . (7.37)
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7.2.3 L(T,,m,r) and I,(U,,m,r)

At this point one may easily see the procedural steps above, which take advantage
of recursive properties (7.26) and (7.28) between the Chebyshev polynomials T, (s)
and U,(s). For instance, evaluation of I;(T,,4,r) = f_ll T.(s)(1 — s®)"/%/(s — r)ds
can be reduced to evaluation of I;(Uy,,4,r) = f_fl U,.(s)(1 — s%)"/2/(s — r)ds, which,
in turn, can be reduced to evaluation of I,(T,,3,r) = f_ll Ta(s)(1 — s2)%/2/(s — r)ds.
After a suitable number of steps, this reduction leads to either (7.13) or (7.32). This

procedure can be summarized as the following flow chart:

][‘ Ta(s)(1 = s?)™3

1 S—7T
4 (7.26)
1 — 2\ym+3
][ Ua(s)(1 — s*)™* ds
-1 s—r
4 (7.28)
1 _ 2ym-1
f Tn(s)(l S ) = ds
-1 S—T
|8 (7.26)
1 2 m—%
][ Un(s)(1 — s%) ds
1 s§—T
4 (7.28)
4

Equation (7.13) or (7.32)

This procedure reduces integrals with higher m to those with lower m. Another way
of evaluating I,(T,, m,r) and I;(U,, m,7) is by using the recursive property through
T, (s) only, which is discussed in Section 7.2.4.
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e [,(T,,m,r), where m > 1, and n > 2m

L T (s)(1 — %)™z PN (T
fl ( )(3 — ) ds = w(—1)m+lot-2m Z (-1) Tar1-2m+24(T)

j=0 J

(7.38)

o I)(Uy,m,r), where m > 2, and n > 2m — 2

L _ 2m.—— 2m-2 ) 2m-2
f = (o (7)ot

(7.39)

The usual notation

denotes the binomial coefficients.

7.2.4 Alternative Approach

Instead of using the recursive property between the Chebyshev polynomials T (s)
and U,(s), i.e. equations (7.26) and (7.28), another way of evaluating I,(T,,m,r)
and I;(U,, m,r) is by using the recursive property through T,(s) only. By equations
(7.26) and (7.28) one may obtain

Tu(s)(1 - ) = —2Tucs(s) + 5Ta(s) = 3Tavals) , n22.  (740)

Thus both the integrals I,(T,,m + 1,7) and I;(U,,m + 1,7) can be deduced from
knowing I,(T,, m,r). For example, an alternative way of deriving equation (7.33) is

f‘ To(s)V1— szds (7.40)

-1 §—T

1 ! —2(3) n(s) 1 ! Tn+2(s)
—Z£1 (s—r) l—s2 ][ (s—r)v1-s2 Z][_I (s —r)V1-—s2
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%[TI(T) _ T3(7‘)] ’ n=2

I[Un—a(r) + 2Un_1(r) = Upia(r)], n >3
T

= §[Tn—1(r) - Tn+1(r)] , n22.

This alternative derivation applies to all the other formulas derived in this paper,
such as equations (7.38), (7.39), (7.45), (7.49), (7.55), (7.59), (7.64), and (7.67).
7.3 Hypersingular Integral Formulas (a > 2)

Once a Cauchy singular integral formula has been reached, all other hypersingular
integral formulas may be obtained successively by taking differentiation with respect

to r through the recursive definition of the finite part integral (5.10).

7.3.1 L(T, m,r)

By means of

1 (S—r)2 _d—r 1 S—7T

b

one readily obtains

e I5(T,,0,r) (see also Kaya and Erdogan [50}):

! T.(s) d
ds =n7—Up,_
-1 V1—s2(s—r)? = T 1(r)
7.31) T n+1 n-—1
= - > &
1 r2 [ 9 Un—2(r) 9 Un(r)] sy 2 2 (7 41)

[ ] Ig(Tn, 1, 7'):

f‘ T,.(s)\/l—szds _rd
1 (s—r)2 T 2dr

"2 = DYaa(r) —(n+ V()] , n22 (7.42)

[Tn—l(r) - Tn+l (1‘)]
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o I)(T,,2,r):

1 — )3
-1 Tn(z(i r);s ) ds = —g;;[Tn_a(T) = 3Ta-1(r) + 3Tns1(r) — Tea(r)]
(7é0)

-% [ (1 = 3)Un—sa(r) = 3(n = DU,—a(r) + 3(n + DUL(r) —
(n + 3)Un+2(r) ] yn24 (7'43)

L ] Iz(Tn, 3, 7‘):

7[‘ Ta(s)(1 = )
-1 (3-7')

Tn. a(r 5Tn—-3(r)+10T —l(r)_IOTn-(—l(r)+5Tn+3(r)—Tn+5(r)]

32d [
= — [(n —5)U,-6(r) — 5(n — 3)Upn—4(r) + 10(n — 1)Up—2(7)

—10(n + VU (r) + 5(n + 3)Upsa(r) = (n +5)Unsa(r) | ,n =6 (7.44)

o [L,(T,,m,r), wherem > 1,and n > 2m + 1:

1 ][‘ Tu(s)(1 = s?)™"1/2

T, T o ==

2m-1

( l)m-rh)l-')m sz- __1)] ( ) (n +1—-2m + ?_])U —2m+2j(r) (7.45)

J
7.3.2 L({U,,m,r)

The following equality
][‘ Un(s)1 =5t _ d ][ Un(s)(1 =)™t
- -1

1 (s —r)2 T dr s—r

leads to:

o I,(U,,1,r) (see also Kaya and Erdogan [50]):

1 Jv1 — 2
B2 iy = —r 2 Tos() 2 (a4 UL n 20, (746)
-1

which is the same as (7.17).
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o I,(U,,2,7): Forn > 2,

P U A= T ) S 9T (r) + Tass(r)]

. (s—r)2 ~ 4dr
(7.20) % [ (n = 1)Upn-o(r) — 2(n + VUn(r) + (n + 3)Unsa(r)] (747
o I,(Up,,3,7):
L Un(s)(1 = s%)3
£1 (s —r)? as
= —%%[Tn_;,(r) — 4T, 1 (1) + 6Tnsr(r) — 4T s3(r) + Tars(r)]
(7.30) _11’6 [(n = 3)Un—s(r) — 4(n ~ 1)Un—2(r) + 6(n + 1)Un(r)

—4(n + 3)Uns2(r) + (n +5)Unra(r)] , n 2 4 (7.48)

e I,(U,,m,r), where m > 2,and n > 2m — 1:

1 ][1 Un(s)(L = 8)™72

m 1 (s—r)?

2m-2
(—1)m2-2m yAmoR (1) ( ) (0 +3 — 2m + 2§)Uns2-2mu2;(r) (749)

J
7.3.3 Ig(Tn, m, 7‘)

By means of

b T(s) 1 =833, 1d [P Ta(s)(l—s*)™ 3
A e S A

one obtains:

o I3(T,,0,7):

1 To(s) _ T
VI T w2 es()

—2(n? = 3)Un—1(r) + (n — 1)*Unia(r)], n 23 (7.50)




CHAPTER 7. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS

99
o I;(T,,1,r):
' Tn(s) V 1- 32 _ ™
7[_1 (s—r) ds = 8(1 — r?) [(n® = n)Uns(r)
— Q(n?' + 2)U —1(7’) + ('n.?' + n)Un+1(r)] , n> 3 (751)

o I3(T,,2,r): n>5

D T(s)(1-s)F, o«
£1 (s—r)3 ds = 32(1 - r2?) { = (n+3)(n + 2)Un4s(r)

+ [(n+3)(n+4) +3n(n+ DUnsr(r) — B(n+ 1)(» + 2) + 3(n — 1)(n — 2)]
xUn_1(r) + [3n(n — 1) + (n=3)(n—4)|Un_3(r) — (n—3)(n—2)Un_s(r)}

(7.52)
o I3(T,,3,r):
L T(s)(1—s%)7 , T \
7[.1 G—1P  “ = Tma-rm [(n® +9n + 20)Unss(r)

— 6(n?®+ 6n + 10)U,13(r) + 15(n? + 3n + 4)Un i1 (1)

20(n? + 2)U,_1(r) + 15(n* — 3n + 4)Un—3(r) — 6(n?* — 6n + 10)Un_5(r)

+ PP =9n+2QU._z(r)], n27 (7.53)

o I3(T,,m,r), where m > 1,and n > 2m + 2:

1—1r2 1 T.(s)(1—s2)m 2
=1

1 (s—r)

ds =

J

2m—-1
(—1)m+ig=2m=1 $3mol(_q)) ( ) (n+1—2m+2j)x  (7.54)
[(n +2 — 2m + 2§)Un-1-2m2i(r) — (n — 2m + 25)Uns1-2m+2j(7)]
7.34 L(U,,m,r)

By means of

fl Un(s)(1 - 32)m-§ds _1d fl Ua(s)(1 - @yt

—1 (s—r)3 T 2dr J_, (s —r)2

ds ,

one gets:
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e I3(U,,1,7): Forn>1,
f‘ Un(s)V1 — s?

1 (s —r)3
= "

4(1 — r2?) {~(n®+3n+2)Una(r) + (n® +n)Unir(r)}  (7.55)

ds

b 13(Um 2, 7')3
b Un(s)1—=sD)7 T
][—1 (s—r)? ds = 16(1 — r2) [ = (n® + 57 + 6)Unss(r)
+ (30% +9n + 12)Unsi(r) — (302 + 30 + 6)Un_y(7)

+ (n? =n)Una(r)], n>3

(7.56)
o I;(U,,3,r): Forn>35,

! Un ) 1-s° %
£ | ((ss(_ r): )2 4s = a(T"__;z_)[(n2+9n+20)Un+s(r)

— (572 + 31n + 54)Un3(r) + (1012 + 34n + 48)Un1(r) — (10n? + 6n + 20)

xUn_(r) + (5n% = 11n + 12)U,_3(r) — (n® = 51 + 6)Un—s()] (7.57)
e I[3(U,,m,r), where m > 2, and n > 2m:
1—r2 ][1 Un(s)(1 — s?)™2 s —
m -1 (s =r)
2m—2
(—1)m=2m FAm o2 (—1) (n+3—2m + 25) x (7.58)
J

[(n+ 4 — 2m + 2j)Uns1-2m+2i(T) — (n + 2 — 2m + 25)Un43-2m+25(T)]
7.3.5 L(T,,m,r)

By means of

U T(s)1—s)™ % 1d [* T.(s)(1—s>)™:
-7[—1 (s—r)t ds = 3dr |, (s —1)3 ds ,

one reaches the following results:
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o [4(T,,0,r):

b T Tt
-7[—1 (s—r)v1-— =% = B - [(n* + 6n® + 110 + 6)Un—s(r)
—(3n® + 6n* — 25n — 44)Up_o(r) + (3n® — 5n® — 19n + 37)Us(r)

—(n® =50 +Tn — 3)nsa(r)], n>4 (7.59)
[} I4(Tn, 1,7’):
! Tn(s)\/l—szd _ T (
7[_1 G—rr T a8(1-roe

(n® — n)Un—s(r) — (3n3 + 9n + 12)U,_o(r) + (3n> + 9n — 12)U,(7)
—(n® = n)Unsa(r)], n24 (7.60)

o I,(T,,2,r):

1 2 g
Tn(s)(l S ) ds — ™ . [
-1 (s —r)d 192(1 — r2)2
— (51 + 18n® + 43n + 30)U,.2(r) + (107 + 12n? + 134n — 36)U,(r)

(n3 +6n% + 11n + 6)U,,4(r)

— (10n® — 12n% + 134n + 36)U,_o(r) + (5n° — 18n? + 43n — 30)U,—4(7)

— (n® —6n® + 11n — 6)U,—s(7)], n>6 (7.61)
g 14(Tm 37 7'):

L T.(s)(1 — s)3 T 1, ., 47

n —_ Y ot x0 Un

£1 s — ) ds 384(1—1'2)2[ (2n + 6n° + 2n-+-30) +6(T)

7 2 7
+ (én:" + 30n? + }%Y-n +120)U,14(r) — (?ln3 + 54n® + %n + 180)Upn42(r)
+ (32—5113 + 30n2 + gn +90)U,(r) — (?n3 —30n% + 3—§§n — 90)U,_2(7)

'7 197
+ (321%3 —54n? + %n — 180)Up—g(r) — (;"3 —30n* + 5 "~ 1200Un-(r)

+ (—;-n3 —6n% + gn - 30)Un_g(1‘)] , n>8 (7.62)
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o I,(T,,m,r), where m > 1, and n > 2m + 3:

3(1 - r?)? 7[‘ Ta(s)(1— ™% _

L 1 (s—r)} -

j=0
J

2m-—1
(—1)m+ig-2m-2 5~2m-1(_ 1) ( ) (n+1—2m +2j) x

{[(n+2 - 2m + 25)(n + 3 — 2m + 25)]Un-2-2m+2i(r) (7.63)

—[2(n - 2m + 2j)? + 4(n — 2m + 25) — 6)Un—2ma424(r)

+[(n-2m+2j)(n-1—-2m + 2j)]Un+2—2m+2j(r)}

7.3.6 L (U, m,r):

By means of
L Un(s)(1 — s?)™3 1d [' Un(s)(l—s2)m2
7[_1 T Eﬁf_l TR
one obtains
° [4(Um 11 r):
L Un(s)(1 = s%)3 T
7[_1 -rf T = r2)2[
—(2n® + 9% + 11n + 6)Un_o(r) + (30 + 3n? — 2n — 6)U,(r)
—(n® = n)Unsa(r)] n>2 (7.64)
o [4(U,,2,r):
L Un(s)(1 = s?)% 3 2
£1 (3 — 1')4 ds = m[(n + 6n° + 11ln + 6)Un+4(1')
—(4n® + 18n? + 44n + 30)U, 12(r) + (6n® + 18n? + 54n + 42)Uy(r)
—(4n3 + 6n? + 20n + 18)U,_o(r) + (n® — n)U.—a(r)], n>4 (7.65)
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L4 I4(Un, 3, 7'):
t Un(S)(l - 32)% T 1 3 ) 47
£1 (s —1)8 ds = 1921 = 72 1'2)2[_ (§n + 6n® + Sn+ 320)Un+6(r)
3 2 15 3 2 285 -
+ (307 +27n° +93n + 1T Unsa(r) — (50" + 4507 + —-n + 165)Uns2(r)
15 105

+ (10n% + 30n% + 110n + 90)U,(r) — (—=n® + —2—n)U,,_2(r)

2
+ (3n® —9n? + 21n — 15)U,_4(7)

1 1
- (En3 +3n® + 17)-n - 3)Un_6(r)] , n>6 (7.66)

o [4(U,,m,r), where m > 2,and n > 2m + 1:

3(1 - r?)? ][l Ua(s)(1 — s%)™ 3

ds =
T 1 (s —r)4 S

2m-2
(=1)m—2m-1 Z?:()—?(_l)i ( ) (n+3—-2m+2j) x
J
{l((n+4=2m+25)(n+5—2m + 2j)|Un-2m+2;(r) (7.67)
—[2(n — 2m + 25)% + 10(n — 2m + 25) + 10|Un+2-2m+2;(T)

+{(n+2 = 2m +25)(n — 1 = 2m + 2))|Unss—2mea;(r) }

7.4 Evaluation of Stress Intensity Factors (SIF's)

An important task is to evaluate the stress intensity factors (SIF's) at both crack tips,
since the propagation of a crack starts around its tips. In mode III crack problems,

standard SIFs can be calculated from

Ki(d) = lim 2n(z —d)oy:(2,0) , (z>d) (7.68)
and
Ki(c) = lim 27(c—z)oy:(z,0) , (z<c). (7.69)

Note that the limit is taken from outside of the crack surfaces and towards both tips.

Usually the left hand side of integral equation (7.3) is the expression for o,.(z,0)
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which is valid for z is inside the crack surfaces (c,d) as well as outside of (c,d).
Thus to calculate SIFs, the key is to evaluate the following integrals (after proper

normalization and a change of variables described in equation (7.4)):

Sa(Twym,r) = /_ 11 T"(s)((ls‘_s: )):°(”2)ds, ré(-1,1) (7.70)
d
an 1 Un(S)(]. — sQ)m—(l/2)
SalUpmir) = [ P —ds rg (L. @7

Note that the above integrals are not singular as z # t for t € (c,d) and z ¢ (c,d).

The strategy to evaluate So(T,,m,r) and S,(Un, m,r) for general integers a (posi-
tive) and m (non-negative) is similar to the process for evaluating I,(T,, m,r) and
I, (Un,m,r). It consists of evaluating the integrals S\(T,, m,r) and S,(U,, m,r) by
means of the reduction procedure described in Subsection 7.2.3, and taking differen-
tiation (with respect to r) to obtain S,(T,,m,r) and Sa(U,,m,r) for a > 2. The
relevant derivations are provided below. The range of r is restricted to |r| > 1 for

each formula provided in the rest of present Section.

7.4.1 Sl(Tn,m,r) and SI(Um'mv r)

[ Sl(Tn, 0, 7‘):

This is a well known integral (Erdogan and Ozturk [30]):

S1(Ta,0,7) = /l Tn(s) g

—1(s—r)}V1-—-s2
(7.72)
_ _ oy i) >0. (7.73)

y N2
\/17—_1|r|/r
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® Sl(Un, 1,1‘):
/1 Ua.(s)V1 — s? ds
-1 S§—7T
728) 1 / : Tals) . 1 b Taals)
(s—r)v1—s? -1 (s—7)Vv1-—s2
. +1
T3 _ (r - U\/rz ) ., n>0. (7.74)
e 5\ (T, 1,r):
L T.(s)v1 =8 s
-1 S§—rT
(7.26) U, (s) 1—s2 / Un—a(s)V1 — s ds
2 -1 s—r s—r
7y _|rl Irl =
= 7r7\/r -1 r——7-:-\/r—1 , n>2. (7.75)
e 5,(Up,2,r):
/‘ Un(s)(1 = s%)3
~1 S§—r
(7.28) l/l Ta(s)V1 — 2 s- L Taia(s)V1 = 82 4
o2/ s— s—r
(7.75) , n-rl
= 7(rr-1) (r - —Vr:- ) , n22. (7.76)
[ ] SI(T0,2 T‘
/ DA =) 4 = ez - 1) (r - L'im) .am
$—rT r
L Sl(lezvr):
1 2y3
QI E PR Y -
/_1 P ds = 2(1‘ r . (7.78)

[ ] S)_(Tn, 2, 1‘):

1 — 3 rae) (1. "
Ta(s)(1 —s )2ds 26).(7.76) —ﬂ’—IT‘—'(r2 —1)i (r - m\/r2 - 1) ,n22.
-1 s—r r r
(7.79)
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Thus we obtain the following formulas for S;(T,, m,r) and S;(U,,m,r):

1 — o2 m—%
Sl(Tns m,r) =/ Tn(S)(l S ) ds
-1

s—r
= 71'(—1)"”’1@(1'2 — 1)'"‘% (r - I vre — 1) ,m>0and n>2m.(7.80)

r

1 2 m-1
S1(Un,m,r) =/ Un(s)(1 = s°) ® 1o
-1

s—r
= n(-1)™(r*-1)""! (r - I—:—:—I\/r2 - 1) ,m>1land n>2m—-2.(7.81)
7.4.2 S(T,,m,r) and S>(U,, m,T)

Differentiating (with respect to r) the formulas for S)(T,,m,r) and S,(U,, m.r), we
obtain the formulas for S>(T,, m,r) and Sa(U,, m, 7).

2 % n+1
LA gy - —x(n+ )T (r_ m\/r_'ZTl)
+1
+ 2nr (r - — r? — ) , n>0 (7.82)
and
"I =8 mrl e il
/.1 (s— 1) ds——-T-(r -1) ( r? ) , n>2. (7.83)

Formulas (7.82) and (7.83) are used in calculating SIFs in Chapters 10 and 12.

7.4.3 S3(Tn, m, 7') and 53(Uns m, ‘I‘)

The following formulas are obtained by differentiating twice (with respect to r) the

corresponding formulas obtained in Subsection 7.4.1.

L Un(s)(1 — s?)2
/—1 (2(_7'):) ds = EIt(17.2-i-2n-i-3) 3(n+1) _ITI ]
+1

(r—l—\/rz_) ,n>0. (7.84)




CHAPTER 7. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS 107

'T(s)1—-s%)E 3w (|| ? Ir]

» (s — 1‘)3 ds = ? (7‘ - —r‘\/TT—_l) (1 - —7‘2—_]?) . (785)
' To(s)(1—s%)3 ,  3r I I}

/-1 s =78 ds——2—(r—7\/r2—1) (1—_—7‘2—1) . (7.86)

P Ta(s)(1 = 5%)3
-1 (S —1')3

n+l
= 5{(r-m\/ﬁ> [(n2+2n+3)——3(n+1)——|rl ]

4 r 2 — 1

ds

- (r - @\/}"3) " [(n2—2n+3) - 3(n—1) \/;l:_l__l] } » n22.(7.87)

The above formulas are used in calculating the SIFs all through the thesis, like in
Chapters 4, 10, 11, and 12.

7.5 Integrals associated with lower order n

The general formula given in the text, e.g. equations (7.38), (7.39), (7.45), (7.49),
(7.55), (7.59), (7.64), and (7.67) are only valid above certain values of n. Thus the
goal of this section is to provide the expressions for integrals associated with lower

order n.

7.5.1 [(Ta,1,r), n=0, 1

1 V1 - s2
1 ][ BVI=s ) <1 (7.88)
T J_, s—r
1 V1 —s2
1 Li(sv1 sds:—rz-i-l, Irl <1 (7.89)
m™J_ s—r 2
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7.5.2 (T, 2,r),n=0---5, |r|<l1
1 ][* To(s)(1 - s%)%

™ 1 S§—7T

ds=r3 - gr (7.90)

1 [ Ti(s)1 - s%)3 4 32,3
;]{l e ds=r -3+ (7.91)
L Ty(s)(1 — s?)3
lf 2(s)(1 — s%) ds = 2r° — 43 + 97‘ (7.92)
7 J_, s—r 4
1 o\ 3
lf T3(S)(1 S )2 ds = 47.6 _ 91.4 + 67-2 —_ Z (7.93)
7J_, s—r 8
1 _ 2)\3 -
lj[ L)1 = $)2 s — 807 — 2005 + 1665 — 4r (7.94)
TJ_, s—r
1 _ 23
%][ TS(S)s( : rs k ds = 16r® — 44r% + 41r* — 14r* + 1 (7.95)
7 -1 -

7.5.3 LL(T,3,r), n=0---5, |r|<l1l

1 3
1 ][ To(s)1-sh2 15 55 s (7.96)
7 J_, s—r 8 2
1 ! Tys)(1 —s?)3 5 15, 5
1 ds= 2 _ B2, 54 s 7.97
wf_x s—r °= 16 8r+2r r (7.9
LM B, 5 B e g
S B e L U L (7.98)
1 _ 2\
_l_f Ta(s)(1 - 5%)2 ds = _ 23 + 5.2 _ 1504 41305 — 4r8 (7.99)
=, s—r 3278
1 23 -
1 ][ Ta(s)(1 = s)2 b 85, | 20/ — 36s5 + 2877 — 8¢9 (7.100)
™ -1 S—Tr 16



CHAPTER 7.

m

HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS

109

L Ty(s)(1 — s?)3
l][ 5= 572 5o 3L 1502 4 5504 — 850° + 6078 — 1670 (7.101)
—1 s—rT 32
754 6L(U,3,r), n=0---5, |r|<1
1 U. a2 g
lf 0(3)(1 S )2 ds — _Er + §r3 — _r5 (7.102)
T J_, s—r 8 2
1 _2\3
l][ Ui(s)(1—s%)2 0 5 182 cu_o (7.103)
TJ_1 s—r 8 4
1 o\ 3
l][ Ua(s)A = 8702 1025 1003 4 1005 — a7 (7.104)
T J_y s—r 8
1 1Y
_][ Uso)(1 = 802 o 15 10r2 — 250 4 245 — 87 (7.105)
-1 s—r 16
' Uy(s)(1 = $Y)? 5 4 507
1 ][ 4 ds = —5r + 30r° — 6115 + 52r7 — 16r° (7.106)
T J_1 s—~r
1 1%
%][ Us(s)s(l . )% s = 1—20r? + 8504 — 14605 + 112:5 — 32710 (7.107)
-1 -
7.5.5 [T, 3,r), n=0---6, |r|<1
1 o2\ 3
LOBOOSA, 88
rJ_, (s—r)? 2 8
1 2\
1 7[ Ty(s)(1 s ) 4s = —6r5 + 10r° — 55 (7.109)
o (s —1)2 4
1 [! Ta(s)(1 —s2)2 6 a_19 2 9
1 2 - _ A 7.110
ﬂ’£1 (s — 1) ds 14r° + 30r 1 -+-2 ( )
1 2
1 f T3(S)(1 L )2 ds —_ —321'7 + 787,5 _ 60,’.3 + %r (7.111)

],  (s-r)?
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1 — )3
1 ][ L)L = $T2 1o 7908 1 1065 — 180r + 607 — -2 (7.112)
], (s — r)2 16

T Jo (s —r)?

1 _ 2y
1 7[ Ts(s)(L = $7)2 5o 160r° + 4807 — 5107° + 2207 —30r  (7.113)

1 [' Te(s)(1—s%)3
™ -1 (s—r)?

ds = —352r'% + 1152r% — 1386r° + 730r* — 1507 +6 (7.114)

7.5.6 LU, 3,r),n=0---6, |ri<l

1 [b Ug(s)(1—s%)3 152 15
d ds = —5rt + —r* — — .
T f;l (s —r)? ’ T 2 ' 8 (712)
1 [P Us)(1=sdi, 5 . 5 15
z 7[-1 e ds =12 200" — (7.116)
1 _ 23 2
l][ Ua(o)1 = S )0 _98e% 1 5504 — 302 + = (7.117)
o (s—r)? 8
1 — 2\
1 ][ Us(6)1 = 872 40— _6arT + 144r° — 1007 + 207 (7.118)
TJ (s—f‘)2
1 _2\3
1 ][ Ua(s)(L = 8)2 )0 1447 + 364r° — 305r* + 90r% — 5 (7.119)
TJ_, (s —r)2

S

? ds = —320r° + 89617 — 876r° + 340r° — 40r  (7.120)

lfl Us(s)(1 — s%)

*J_y (s —r)?

5
2

“ds = —704r'9 + 2160r® — 24087° + 1155r* — 21072 + 7 (7.121)

1f1 Us(s)(1 —s?)

)., (s—r)2
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7.5.7 L(T.27), n=0---4, |rf<1

1 _ <2)\3
YOO L.
) (s—r)

1 _ 3
l TI(S)(]' S )1d3=67'2—'§

TJ_, (s—r)3 2

ds = 20r3 — 12r

1 j(‘ Ta(s)(1 — s)3

TJ_ (s —r)3

3

Zds = 60r — 54r% + 6

_1_‘{1 Ty(s)(1 — s%)

= S PP

3

3
ds = 168r° — 20073 + 48r

_1_‘%1 Ty(s)(1 - 5%)

T J_ (s—r)

7.5.8 L(T,,3,r), n=0---7T, |r|<1
1 ]p To(s)(1 — s)2

ds = —10r° + 1;5-r

™ J_y (s—r)3
1 — <2\:
17[ L) = S)% jo — set 41502 - 22
TJ_1 (s —r)3 8
1 [! Ta(s)(1—s?)3 - s 75
it = = —42r° - =
ﬂ_£1 (s 1) ds 42r° + 60r 41'
1 _ 2\3
l7[ T = $0)2 o 11965 + 19504 — 90r2 4+ 22
TJ_, (s—r)3 8

ds = —288r" + 588r° — 360r° + 60r

1 ](‘ Ty(s)(1 — )3

T 1 (s—r)3

5
ds = —720r® + 1680r% — 1275r* + 330r% — 15

lfl Ts(s)(1 — §°)

T 1 (s—r)

(7.122)

(7.123)

(7.124)

(7.125)

(7.126)

7.127)

(7.128)

(7.129)

(7.130)

(7.131)

(7.132)
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1 7[1 To(s)(1 = s7)2 |

= —1760r° + 4608r" — 4158r° + 1460r° — 150r  (7.133)
T J_) (s—r)3

f Tz(s) l—s)zds=

(s —r)3
—4224r'° + 12240r% — 127687 + 5655r* — 930r% + 27 (7.134)

7.5.9 LU,3,7r), n=0---6, |ri<1

1 [' Up(s)(L - s)3 3 15
=T s ds = —10r" + —r (7.135)
1! Uns)(1 =3 15
1 7[_1 s = =30r' +30r° - == (7.136)
1 I3
17[ Uals)(1 = $7)2 10— _gar® + 1100° — 30r (7.137)
T J_y (3 - 7')3
1 _ 2y
1 7[ Us($)1 = $7)2 ;o _ 2948 4+ 3607 — 150r + 10 (7.138)
7T J_y (s —r)3
1 — g2)3 -
1 j[ Ual)( = $)2 o — 57607 + 1092r° — 6107 + 90r (7.139)
TJ_1 (S - ,.)3

1 2
% 7[ U5(2(1 r): )? 4s = —1440r® + 3136r° — 2190 +510r* —20  (7.140)
-1 -

—35207° + 864077 — 7224r° + 2310r% — 210r  (7.141)

1 7[ Us(s)(1 =) -

], (s-r1)3
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7.5.10 I(T,3,r), n=0---8, |r|<1

1 [' Ty(s)(1 —s%)3 2, 5
Né_l s = 10+ (7.142)

1 — s2)3
ljé T =5)2 4~ 2073 + 107 (7.143)

T J_y (s—r)t

s
2

25

1 [ To(s)(1 = ¢%)3 1 2
L 7[_ g de=—Tort +60rt - 2 (7.144)
1 1 T 2 5
1 7[ 3L =572 5o _994r5 4+ 2600 — 60r (7.145)
T J_, (s—r)4
1t _ <2\
1 j[ L&) = 0)2 o 67205 + 98Gr* — 360r + 20 (7.146)
o (s —r)d
1 b Ty(s)(1 - s%)3 7
_j[ s(8)(L = 8% e _1920r" + 3360r° — 170073 + 220r (7.147)
T J-1 (S - T')4

1 M T o2\
1 ][ s(8)(L=$7)? 4o 5280r® + 107525 — 6930r* + 1460r% — 50  (7.148)

TJa (s—r)t

1 2 oo\ -
1 7[ Tr(s)(1 = s7)2 ) 11080r° + 3264017 — 25536r° + 7540r° — 620 (7.149)

T J_1 (s—r)t

ds = —36608r° + 95040r® — 87360r° + 33320r* — 4560r° + 104

1 ][‘ Ty(s)(1 — 5%)3

rJa (s—r)
(7.150)
7.5.11 L(U,,3,r), n=0---6, |r|<1
1 [' Uo(s)(1=she, .5 5
. £1 (s — )3 ds = —-10r° + > (7.151)
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1 —s2)3
lf Ur(s)(1 = s°)z ds = —40r3 + 20r (7.152)

TJ_1 (s —r)t

ds = —140r* + 11072 - 10 (7.153)

1 ][‘ Us(s)(1 — s%)3

T J_, (s—r)t

ds = —448r° + 480r% — 100r (7.154)

1 ][ Us(s)(1 — s%)3

T J_1 (s—r)4

17[1 Us(s)(1 — s%)%

d ds = —1344r% + 1820r* — 61072 + 30 (7.155)
T J_y (s—r)t

1 1Y . '
_11; U5(2(1 r)f ) 15 = —3840r7 + 627215 — 292073 + 340r (7.156)
-1 -

1 ](1 Us(s)(1 = %)}

ds = —10560r® + 20160r° — 120407* + 231072 — 70 (7.157)
7w J_, (s —r)4

7.5.12 Others

1 3 _ 1 3 _ 3
/_1(1 — )3Ty (t)dt = /_1(1 — t9)dt = Ir (7.158)
1 3 T
/ (1 —t3)2Ty(t)dt = —— (7.159)
-1 4
1 t2 3 T
/;1(1 - )3T4(t)dt = —16 (7160)

1
/ (1—1t*)2T,(t)dt =0 , foralln, and n #0,2,4. (7.161)
-1
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Chapter 8

Numerical Approximation

Procedures

One of the main merits for the formulation of hypersingular integral equations is that
once a hypersingular integral equation is formulated, then its numerical solution is
readily to find. In this chapter we give a detail accounts of the numerical approxima-
tion procedures which, in general, is called the collocation method (28, 29]. It can be

divided into the following steps:
e Normalization.
e Representation of the Density Function.
e Chebyshev Polynomial Expansion.
e Evaluation of the Derivative of the Density Function.
e Formation of the Linear System of Equations.
e Evaluation of Singular and Hypersingular Integrals.

e Evaluation of Non-singular Integral.
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Relevant details for each of the above items are given below by using equation (4.56)

Go [° —202 5342/8 + 'y/4+1—(€/0)%/4
_T_rgf. {(t—z)s_*_ 7/ 7t/—': ( /)/ +k(1‘,t)}¢(t)dt

—a

+ S+ 2@ = p@), lel<a

as an example. After the numerical approximation we show how to compute the
stress intensity factors (SIFs), then at the end of the chapter we demonstrate that
we can use either Chebyshev polynomials T}, or U, to be in the expansion by giving

another numerical example.

8.1 Normalization

By the following change of variables
s=[2/(d-o)J[t — (c+d)/2]
one may convert the integral f: g(t)dt into the form of f_ll f(s)ds. Because the crack
surface is located in the range (—a,a), a convenient change of variables becomes
tla=s and z/a=r,

which is the normalization of the variables ¢ and z, respectively. Thus equation (4.56)

can be written in the normalized fashion as:

L { ~2(¢/a)?  5(¢/a)’ (@1)*/8+(€/a) (a1) /4+1-[(€/a)/(¢/a)]" /4

r]_.) (s—r)3 s—r

+ IC(r,s)}‘I)(s)ds + [€/a+ 2(¢/a)® (ay)] ®'(r)/2 = P(r)/Go, Ir| <1, (8.1)
where
&(r) = ¢(ar) , P(r)=plar), K(r,s)=ak(aras).
As clearly seen in equation (8.1), the quantities ¢/a, €'/a, and a7 are dimensionless

parameters. Thus the following dimensionless parameters are defined

{=tla, =C[la, F=av, (8.2)
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which will be used in the numerical implementation and results.

8.2 Representation of the Density Function

The next step of the numerical approach to the (normalized) hypersingular integral
equation (8.1) is to establish the correct behavior of the unknown density function
®(s) around the two crack tips s = +1. For example, the governing integral equation
in classical LEFM has Cauchy singularity if the slope function, say ®(s).eru, is chosen

to be the unknown density function. A well-known representation is [28, 29]:
Q(S)LBFM = f(s)/V 1-—s2 ’ IS| <1,

where f(£1) # 0. For the cubic hypersingular integral, equation (8.1), the represen-
tation of ®(s) is found to be [36]:

(b(s)ce = ‘I’(S) = g(s) v1-s?, (8.3)

where g(+1) is finite, g(%1) # 0, and the subscript GE stands for gradient elasticity.

Thus by approximating g(s), one can find the numerical solution to ®(s).

8.3 Chebyshev Polynomial Expansion

The approximation of g(s) in equation (8.3) is accomplished by means of Chebyshev
polynomials expansion. Either Chebyshev polynomials of the first kind T,(s), or of
the second kind U,(s), may be employed in the approximation, i.e.

9(s) = anTa(s) or g(s)= 3" AdUL(s) - (8.4)

n=0 n=0
The coefficients a,’s or A,’s are determined numerically by the collocation method.

As shown by Chan et al. [14], the two expansions should lead to the same numerical
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results. In this paper, the expansion using U, (s) is adopted, i.e.

B(s)=vV1-—s2 i A UL(s) , (8.5)

n=0

where U,(s) is defined, as usual, by

sin{(n + 1) cos™!(s)]
sin[cos—1(s)]

Un(s) = ., n=0,1,2,... (8.6)

Satisfaction of the single-valuedness condition (4.32), or equivalently, f_ll ®(s) ds =0,

requires that the following relation holds

Ag=0. (8.7)

8.4 Evaluation of the Derivative of the Density Function

The term @'(r) in equation (8.1) is evaluated using the expansion (8.5) and the fact

that
2 [UnrvT=r] = —%Twl(r) , n20. (8.8)
Thus
. _ i — > o0 _ _1 0 '
¥(r) = — [\/1 r gAnUn(r)] = mg(nH)AﬂTn(r). (8.9)

8.5 Formation of the Linear System of Equations

The strategy to determine the coefficients A,’s consists of forming a set of linear

algebraic equations. Replacing ®(s) in (8.1) by the representation (8.5), and using
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(8.9) one obtains the governing integral equation in discretized form:

o v 2z2  jis A
—2522%7[ UnlslV1 =5, +[1+—522’ +e—1—(e—.)] X
n=1

(s—r)3 8 4 2/

Z ][ s_1r—szd + ZA"/ V1 = 52U, (s)K(r, s)ds

e+2e2
2\/1—-1'2

Notice that the running index n starts from 1 instead of 0 (see (8.7)).

ZA,.(nH Toatr) = b lrl < 1. (8.10)

8.6 Evaluation of Singular and Hypersingular Integrals

The governing integrodifferential equation (4.56), and its discretized version, equation
(8.10), contains both Cauchy singular and hypersingular integrals (cubic singularity),
which need to be evaluated. Erdogan et al. [28, 29] have presented formulas for
evaluating Cauchy singular integrals, and Chan et al. [11] have presented formulas
for evaluating a broad class of hypersingular integrals, which generalizes previous
derivations [28, 29, 50] in the literature. For easy reference, the ones being used in

the present numerical example are listed here: For |r| <1,

i][l Un(s)V1 —s?

T J_1 s—r

ds = =Tp(r), n=0, (8.11)

1 [ Un(s)V1—s?

. T =Dl n20 (8-12)
f‘U a(s)V1-— 52 -1, n=0,
mJo (s—r) (M2 +n)Un i1 (r) — (P +3n+2)Un 1 (F)] /[4(1-72)], n21.

(8.13)
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8.7 Evaluation of Non-singular Integral

Combining all the results obtained so far in the numerical approximation, one may

rewrite equation (8.10) in the following form

2(_1%2,4 [(n? + n)Upir(r) = (1 + 3n + 2)Una ()]

- |t1+5e?2+z—:z—< ) ]ZA Tt (r) +Z—/\/1—32U (s)K(r, s)ds

n=1
;1_2_22?2.4 (n+ D)Thpi(r) = 'Pc(;r) , Jrl<1. (8.14)

n=1
Thus the last step to apply the collocation method is to know the evaluation of the
(regular) integral in (8.14), which is actually a double integral, ¢.e.

/1 V1= s2U,(s)K(r,s)ds = /1 V1 — s2U,(s)ak(ar,as)ds
-1 -1
= /1 V1 - s2U,(s) /m aN(€)sin[aé(s — )] d§ ds .
-1 0

with N(£) described in equation (4.45). Figure 4.3 permits to graphically evalu-
ate the behavior of the integrand of equation (4.54). Clearly, such kernel is oscilla-
tory, but the magnitude of oscillation decreases and tend to zero as § increases, i.e.
limg_,o N(€)sin[€(t — z)] = 0. Another point that we need to be cautious about in
equation (4.54) is at £ = 0, because of N(§) = P(£)/Q(£) and Q(&) has the factor §.
However, this would not affect the integrability of the integrand in equation (4.54)
because of the term sin[€(¢ — z)]. Thus lime_,o N(£) sin[§(t — z)] exists and is finite,
which depends on the values of ¢, z, ¢, ¢, and . The integral along [0, ) is a Fourier
sine transform, and can be efficiently evaluated by applying fast Fourier transform
(FFT) (19, 38, 89]. The integral along [—1, 1] can be readily obtained by the Gaussian
quadrature method [87].
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8.8 Stress Intensity Factors

Since the propagation of a crack starts around its tips, it is very important to study
and determine the stress intensity factors (SIFs) at both crack tips. In classical LEFM
the stress o,.(z,0) has 1//Z — a singularity as z — a* (or 1/vz +a,as 2 = —a7),
and thus SIFs are defined and can be calculated by

Kri(a) = lim+ V2r(z —a)oy.(z,0), (z>a), (8.15)

and

Kii(—a) = lim /27(—a —z)oy.(z,0), (z<-—a). (8.16)

z——a~
However, the same definition may not hold for strain-gradient elasticity because

0y:(z,0) may have a stronger singularity [100]. Thus SIFs will be redefined in the

development below.

First, note that the limit in equations (8.15) and (8.16) is taken from outside of the
crack surfaces toward both tips, and the integral equation (4.56) is the expression for
oy:(z,0) which is valid for |z| > a as well as |z| < q, i.e.

G “{ —2¢2 + 53~%/8 + Cv/4+1— (£']€)%/4
(

s t—z)3 t—z

Oy:(z,0) =

—a

+ k(z, t)} o(t)dt
+ g(ﬁ' +20%v)¢'(z) , lz| > a. (8.17)

Second, after normalization and with the density function ®(t) expanded by Cheby-
shev polynomials of the second kind U,, some integral formulas, which are useful
for deriving SIFs, need to be developed for |r| > 1 (Chan et al. [11]), and are listed
in Appendix B (see equations (8.23) to (8.25)). Notice that the highest singularity
in the equations (8.23) to (8.25) appears in the last term in equation (8.25), and it
has singularity (r2 — 1)~%2 as r — 1¥ or r - —1~. Motivated by such asymptotic
behavior, we generalize the SIFs for strain gradient elasticity from those of classical
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LEFM. Thus
¢Krri(a) = lim+ 2y/2n(z — a)(z — a) oy:(z,0), (8.18)
€K(—a) = lim 24/2n(z + a)(z + a) 0y:(z,0). (8.19)

Therefore, the following formulas for the normalized mode III SIFs in the strain-

gradient elasticity theory may be derived:
¢ Kipr(a) = lim+ 2V/2n(z — a)(z — a) 0y(z,0), (z>a)
= lirg 2y/2n(ar — a)(ar — a)oy:(ar,0), (r>1)
_ 1
= 2ay7a Go lim v2(r=1)(r-1) Trif (s)

1 (s=71)

~ds, (r>1). (8.20)

After cancellation of the common terms, equation (8.20) can be continued by intro-

ducing formula (8.25), and using the representation (8.5), i.e.

Krri(a) = 2V2ma (::_Z) Go lil{1+(7‘ —1)3¥? x

N n—1 2 L]
—(n+1) (Il e _ Il r-fvri-1
g_;o > (r TV 1) [n(l r2—1) t = ]An
= /ma Go(¢/a) i(n +1)A,. (8.21)
n=0
Similarly, -
Kiri(—a) = vma Go(¢/a) Y _(—1)"(n+ 1)An. (8.22)

n=0

Formulas (8.21) and (8.22) are used to obtain numerical results for SIFs (see Tables
43 & 4.3).

The calculation of stress intensity factors (8.21) and (8.22) requires knowledge about
integrals like

2
ds, |r|>1 n=0.
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The derivation has been addressed in Chapter 7. For easy reference, we list the

following formulas here: For |r| > 1,

l/‘ Un(s)V1 — s? ds:_(r_@,f,.z_l)nﬂ, n>0 (8.23)

TJ_1 s—r

LU= __ i I =)’
w/_I G- ¥~ ("“’(1 ,.2_1)("‘r rz'l) ’nz(som

l/—l Un(s)\/_l_-?ds = —_1(n+1) (r—m\/,T_—I)"—l

), (s—r) 2 r

2 _L".I 2_1
X n(l— I )+r YT | n>0 (8.25)
r?—1 Vvr: -1

89 T, vs. U,

By giving a numerical example, we demonstrate that we can use either Chebyshev
polynomials T}, or U, to be in the expansion of the unknown density function. Con-
sider a crack in an infinite strip of homogeneous material, as illustrated in Figure 8.1.

The governing PDE and boundary conditions are:

Viu(z,y) + 2 (L5 + Gaed) =0, —o <z, y< oo,
Viu(z,y) + 25 (“””52‘;”’ + aza"z(;;y)) =0, —0< I, Yy< ™o,

0:2(0,y) = 024(0,y) = 0zz(h,y) = 0(h,y) =0, —oc0<y<oo, (8.26)
Ozy(2,0) =0, O<z<h,

oyy(z,0) = —p(z) , z € (¢, d) ,

v(z,0) =0, zél[ed,

where u and v are the z and y components of the displacement vector; o;; is the stress
tensor;  is an elastic constant (k = 3 — 4v for plane strain, k = (3 — v)/(1 + v) for

plane stress, and v is the Poisson’s ratio.) This problem has been studied by Kaya



CHAPTER 8. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS 124
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Figure 8.1: A mode I crack in an infinite strip.

and Erdogan [50] by means of a U, representation, and it has also been used as a
benchmark problem by Kabir et al. [47]. Here both U, and T, are employed and

compared.

The governing integral equation can be written in the form given by equation (7.3)

as in Kaya and Erdogan [50]

§ LY [ ke nsuean = —x (55 o), e<z<d, @20

where G = p is the shear modulus, the primary variable is the crack opening dis-

placement Av given by

Av(z) = v(z,0%) —v(z,07), c<z<d,
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and the kernel k(z, t) is given in Kaya and Erdogan [50], equations (51) — (54c), page
112. It is worth noting that as h — oo (see Figure 8.1), the integral equation for the

half plane is recovered and the kernel k(z,t) is reduced to a much simpler form*

-1 + 12z _ 12x2
(t+z)®2 (t+z)® (t+zx)*

After normalization, the corresponding integral equation can be written in a fashion

k(z,t) =

similar to equation (7.5), i.e.2

L
f D(s) ds +/ K(r,s)D(s)ds=P(r), -1<r<1, (8.28)
(s—r)?
where D(s) is the unknown displacement function, the regular kernel is
- 12 [s + (%= 12 [s + (9
K(rs) = ! L2l (E)] [()],

[(r+8)+2(29]°  [r+s)+2(2)]°  [(r+s)+2(&2))"

and the loading function is

P(s)=—1r(12zn)p((d;c)s-i—d;c) .

The case ¢ > 0 represents an internal crack, which is the case of interest in this work.

Based on the dominant behavior of the singular kernels of the integral equation (8.28),

the solution takes the form
D(s) = R(s)V1—s?.

Here the representation function R(s) is approximated in terms of Chebyshev poly-

nomials of 1st and 2nd kinds, i.e.

N N
R(s) = a.Un(s) and R(s)=)_baTu(s) -

n=0 n=0

The unknown coefficients a, and b, are determined by selecting an appropriate set

of collocation points

-1
rj = cos (—(22(LN+—17)") ,7=12,--- N +1; for U, representation .

1To be consistent with the notation adopted in this section, we have used symbols different from those used by

Kaya and Erdogan [50]. For instance, upper case K(¢,z) is used by Kaya and Erdogan [50], instead of k(t, z).
2 Again, the notation is different from the one adopted by Kaya and Erdogan [50].
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Figure 8.2: Displacement profiles for a mode [ crack in an infinite strip obtained by means of U,
and T, representations (N + 1 = 15). Here ¢ = 0.1, d = 20.1, 2a = 20, and (c+ d)/(d — ¢) = 1.01.
The crack is tilted to the left because of the “edge effect”.

rj = cos (Nn_?:?) ,j=112,--- N +1; for T, representation .

Once the solution is obtained, the SIFs can be calculated from 3

Ki(c) = lim /27(c—z)ow(z,0), (z<c)

T—c™

= (QG)um—&—-, (z >c)

l1+kK/ zoc+ m
2G d—c
= (1 +K) - R(-1) (8.29)

and

K((d) = lixg_ V2r(z — d)oy(z,0) , (z>d)

_( 2G\ .. D(z)
- (1+n)zl—151-,/27r(d—z)' (z<d)

- ( ffn) @R(H) (8.30)

3Kaya and Erdogan [50] do not consider the factor /7 in the definition of SIFs, equations (8.29) and (8.30). Note

that this does not affect the normalized SIFs (e.g. see Table 8.1).
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which are obtained from equation (8.27) by observing that its left-hand-side gives the

stress component o,(z,0) outside the crack interval (c, d).

Table 8.1: Normalized stress intensity factors (SIFs) for an internal crack in a half-plane. N +1

terms are used in approximating the primary variable.

U, Representation T,. Representation Kaya and Erdogan [50]
| Vo) B | SR | i | Ve | Jeiaan | e
1.01 15 3.6437 1.3292 3.8037 1.3313 3.6387 1.3298
1.05 10 2.1541 1.2535 2.1920 1.2543 2.1547 1.2536
1.1 10 1.7583 1.2108 1.7655 1.2111 1.7587 1.2108
1.2 6 1.4637 1.1625 1.4728 1.1632 1.4637 1.1626
1.3 6 1.3316 1.1331 1.3346 1.1335 1.3316 1.1331
1.4 6 1.2544 1.1123 1.2556 1.1125 1.2544 1.1123
1.5 4 1.2036 1.0966 1.2066 1.0969 1.2035 1.0967
2.0 4 1.0913 1.0539 1.0916 1.0540 1.0913 1.0539
3.0 4 1.0345 1.0246 1.0346 1.0246 1.0345 1.0246
4.0 4 1.0182 1.0141 1.0182 1.0141 1.0182 1.0141
5.0 4 1.0112 1.0092 1.0112 1.0092 1.0112 1.0092
10.0 4 1.0026 1.0024 1.0026 1.0024 1.0026 1.0024
20.0 4 1.0006 1.0006 1.0006 1.0006 1.0006 1.0006

Table 8.1 presents the SIFs at both tips of an internal crack in a half-plane (h — o)
under uniform load (p(z) = pg) obtained with both U, and T, representations. First,
it is worth noting that the present SIF results for the U, representation compare
well with those reported in Table 1 (page 114) of the paper by Kaya and Erdo-
gan [50] for the entire range of values describing the relative position of the crack,
ie. 1.01 < (d+c)/(d —c) < 20. Next, comparing the SIFs obtained with the Uy,
and T, representations in Table 8.1, we note that the results compare quite well, ex-
cept when (d + ¢)/(d — c) = 1.0, and the discrepancy is bigger at the left-hand-side
(LHS) than at the right-hand-side (RHS) crack tip. This occurs because of the “edge
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Figure 8.3: Displacement profiles for a mode I crack in an infinite strip obtained by means of Uy,
and T, representations (N +1 =8). Herec=1,d=3,2a =2, and (c+d)/(d—c) = 2.

effect” (Paulino et al. [74]). If 42 terms (i.e. N + 1 = 42) and T, representation
are considered for the case (d + ¢)/(d — ¢) = 1.01, then the normalized SIFs at the
LHS and RHS crack tips are 3.6437 and 1.3302, respectively. Thus, when there is
an “edge effect”, the results are sensitive to the discretization adopted. Moreover,
for the same number of collocation points, the level of accuracy attained with the U,
representation is slightly different from that with the T, representation.

Figure 8.2 and Figure 8.3 compare the crack profiles for U, and T, representations.
One may observe that the displacement profiles obtained from both representations
practically agree within plotting accuracy, especially in Figure 8.3. Note that the
displacement profile in Figure 8.2 is tilted to the left because of the “edge effect”.

Such effect is negligible in Figure 8.3.
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Chapter 9

Mode III Crack Problems with
Strain-Gradient Effect — A Case

with Closed Form Solution

In Chapter 4 we have derived:

Go ]l { —20 | 597/8+€y/4+1—(€/0%/4

T (t —z)3 t—z

+ k(z, t)} o(t) dt
+ S(e+209)¢(@) =), o] <a. (456)

If v =0, i.e. for the case of homogeneous materials, equation (4.56) becomes

Go [* [ =26 1-(¢/0°/4 |
]L_a {( + +Ko($,t)}<p(t)dt

T t—z)3 t—z

G ’
+ 2 5(@) = pl@), lal <a, 91)

where the regular kernel Ky(z,¢) will be addressed later in this chapter. Two main

goals are set in this chapter:

1. We show that there is a closed form solution to (9.1) if ¢ = 0.
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2. The crack-tips asymptotics for the unknown density function ¢(z) in (9.1) is
&(z) ~ Va2 —z22 as z — *a, (9.2)

instead of

&(z) ~ (a>—2%)%? as z — za.

Of course, once goal one is achieved, goal two should follow right away. However,
historically, we faced the problem without knowing the closed form solution first.
Also, at the end of the chapter we will discuss briefly the strain-gradient effect on

Mode III cracks for the more general strain energy density.

9.1 Hypersingular integrodifferential equations

The derivation of (9.1) has been done in Chapter 4, thus we will not repeat here.

However, because the regular kernel is different, we shall start off

lim 2 <o<t/ R(6,9)e€C-de dt = —p(z), |el<a  (9.3)

y—0+ 2

with the kernel

(€0 VP2 +1+ 26 +1 o-lély
i€ (0/0)/PE+1-0l6]+1

The limit y — 0% in (9.3) is singular since K (€,0) does not decay in §. So we write

K, y) =

K(€,0) = Ko (€) + Ko(8)

with the nondecaying part K (£,0) given by
IEI AN AT
Ree(,0) = [ 1(5) +5le+e (9.4

and the decaying part Ko(€) given by
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: jel (216172 + (£/207) (VEE T - le]) + (/0°/4

Ko(§) = i€ 0/ + /P + 1+ L€
€] (€|€1/2 + p/4) (\/szz +1-— elﬂ) + p*/4 =¢/e.  (9.5)
P p+VEE+1+ (g R

By (9.4) and the results of Chapter 5

/ Koo, y)e=0dg

converges, as y — 07, in the sense of distribution, to the hypersingular kernels of the
following equation (9.6) whereas Ky(€) gives rise to the regular kernel Ky. Thus, as

y — 07, equation (9.3) becomes

22 [ () 1—p3/4 [* é(t) 1 [° ,
- - z)Sdt -+ L i- :L'dt + p /;a Ko(t — z)o(t)dt
€ (z) = P&
- 36@ = B& ll<a, (09
where the regular kernel Kg can be written as
Ko(t—2)=2 [ Rolg)sinle(t - =)} (9.7)

in view of the anti-symmetry of Ko(£). Recall that since the dominant kernel in (9.6)
is cubically singular, we need to furnish, in addition to (4.32), the crack-tip condition
(4.57).

9.2 Solutions of the integral equations

It is convenient to nondimensionalize equation (9.6) by the half crack length a. In view
of the fact that both ¢(z) and p(z)/G are dimensionless, this amounts to normalizing

the variables by a in the equation and replacing ¢, ¢’ by { ={/a,l = ¢'/a, respectively.
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9.2.1 Case ¢ = 0: closed form solution

Note that the regular kernel Ky(t — z) in equation (9.6) has a factor ¢, so it drops
out from the equation when ¢ = 0. After normalizing by the half crack length a,

equation (9.6) becomes:

1
— fl (tqb—(t:z: %][ t_i—.r‘ﬁ(t)dt =p(z)/G, |z|<1. (9-8)

-1
Let H denote the finite Hilbert transform

1
Higl(a) = 1 f 1 20 4

Then, by the definition of Hadamard’s finite part integrals (see Chapter 5), equation
(9.8) is a second order differential equation for H[¢](z):

—H[g]"(z) + H[¢l(z) = p(z)/G
which has the general solution

H{@]((E) — _215 ez/t/ [e-‘zs/l/let/l E(G_t)_ dt] ds +Cle‘/‘ +Cze—z/l . (99)

-1

1 1 y (¢)
z/t 2s/t t/e P
flz) = - € /-1 [e /.le ——G dt] ds ,

1
- ][ ??12¢(t)dt = f(z) + C1e¥/t + Cre™/* = g(z) . (9.10)

TJa

Set

then we have

It is well known (Tricomi 1957 [91]) that the solution ¢(z) of equation (9.10) is unique
in LP(—1,1] for any p > 1, where LP[—1,1] is defined by

1 l/p
Lrl-1,1] = {f:[—l, =R | lIfllp= [ _llf(r)l"dz] < oo} ,

and ¢(z) can be written as
oo = VB[ a0 gz [0
L \/1—t2(:t:—-t ‘n’\/l—:z:2 1—t2
tg(t) 1 L
dt + t)dt
11’\/1—2:2 1V1-—1t2 Tv1 —z° _14’()

(9.11)
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provided that equation (9.11) is well-defined. For this, it suffices, for example, that
g(z) € LP[—1,1] for some p > 2, so g(t)/V1 —t? € L'*[-1,1].

Under condition (4.32) and a stronger integrability condition, ¢ € LP[—1, 1] for some

p > 2 (instead of condition (4.57)), we then have the conditions determining g(z)

' _glt) ' telt)
\/_1__dt 0, /-1 \/1—_t2dt_0

or equivalently

1 1 -t/t
f®) /
—dt+C ——dt+C dt = 0 9.12
SO [ A=+ O [ = (9.12)

/_ 11 \/tlfidt+01 / \/_ / e =0 (913)

which determine uniquely the constants C;, C,:
1 t/€ -1 . L et/t
ww%%fmwrwwm
1V1—t? 1-—1¢2 1-— - t2
1 ¢/t d SN | £(8) L get/t
C=—2/ ° dt) dt+(2/ )
2 ( aVI-B8 Wl-t

With the above proviso, equation (9.11) becomes

L V1= ! g(t)
#(z) = - . \/1_-t§(:z:—t)dt

While the form (9.14) makes explicit the crack-tip asymptotics O(v'1 — z2) for the

(9.14)

slope ¢(z), the following alternative form [75] is also useful for analyzing the limiting

behavior as ¢ — 0:

) 1
o= A e

X

z—t

2 v f T S v f 2]

since the limit has the singularity like (v/1 — £2)~! near the crack-tips. To be consis-
tent with the expression (9.14), the apparent singularity in (9.15) must be canceled.
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The unique solution satisfying (4.57) corresponds to the following choice of C},Cs.
First we note that, for f(z) € LP[-1,1],p > 2,

HVI = 2f](~1) = % / ,/i—‘-; F(H)dt < oo

H[\/l—t2f](1)=—1/ it ft)dt < oo

H{V1 = Ze~¢)(-1) / ,/ 1+ e~t/tdt = / ,/i‘“ et/tdt

— _HIVI=Be/Y|(1) < 0

L 1+t 1 [ [1-t¢
VTR = - [\ era=C [ i et

= H[V1 — t2e/4(-1) < 0
Thus, in the presence of the factor 1/y/1 — z2 in equation (9.15), the constants C,
and C, must satisfy
HIV1 — £2f](~1) + CH[VT — £2e/4](=1) + CoH[V1 — t2e™/¥|(—1) = 0 (9.16)
H{VT = £2£](1) + C1H[VT — £2"¢(1) + CoH[V1 — t2e™*|(1) = 0. (9.17)

The determinant of the above system is

HIVT = £2et/4)(~1)H[V1 — t2e™/%|(1) — H[VT — 2e~/{|(—1)H[V1 — £2e"/*|(1)
= {H[\/1—_t2e‘/‘](—1)}2 - {H[\/l——tze‘/‘](l)}z
# 0
so C, and C, are uniquely determined by (9.16)-(9.17). It can be shown directly that
with this choice of C;, C», equation (9.15) has the crack-tip asymptotics O(V1==z2).

The idea is that the expression

][ m‘f(t)dt C][ \/_?‘/‘ Cz][ \/—? ey

generally has the asymptotics O(1 — z2) near the crack tips z = £1. We will address
the asymptotics in Section 9.3.
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9.2.2 Case ¢ #0: A Regular Perturbation

Integrating eq. (9.6) once in z, we obtain

(t) 1-p%/4 [
__fl T dt + = /_lloglt-z|¢>(t)dt

+ ;/-1 Ko(t — z)¢(t) dt — %,¢(z) = /Ozp(t)/Gdt +Co, |z} <1,(9.18)

where Ko(t) is a primitive function of the regular kernel Kg: Ki(t) = Ko(t). The
constant C, is to be determined by the condition (4.32). With condition (4.57),
equation (9.18) is a type of quadratically singular integral equation, studied in Martin
1991 [60] in which the end-point asymptotics of ¢(zr) was proved to be O(V1 =1z2)

by using the Mellin transform.

The crack-tip asymptotics can also be derived in another way. Integrating equation

(9.6) twice in z, we obtain

2
~eHig|(r) + L 2L / / log ¢ — slds(6)dt — & / o(t) d

1
+ —1-/ / ds/ doKo(t —o)o(t)dt = —/ ds/ dop(c) + Ciz + Cq ,
TJo1J-1 -1 GJ. -1

which is a generalized Cauchy singular integral equation

—PH[¢)(z) + /_ 11 K(z,t)p(t)dt = /_ zl ds /_ ’1 dop(a)/G + Ciz + Co (9.19)

with a regular kernel

K(z,t) = ﬂ,—/—zﬂi/ log [t — s|ds + — /ds/ doKo(t — )—g-I[ 1, =(t) ,

where I;_;,  is the characteristic function of the interval [-1, z], V|z| < 1, ie.

1, if te[-1, 7],
I[—I, zl(t) = { i
0, if t¢[-1, z].

1 gl
/ / K?*(z,t)dtdz < oo ,
-1J-1

Since
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the integral operator
1
Kigl(e) = [ K@ tio(t)as

is a Hilbert-Schmidt operator on L?[—1,1]. Therefore the solution ¢ has the same

end-point asymptotics as that of the solutions 6 of the dominant equation
—PH[¢|(z) = f(z) + Ciz + Co (9-20)

subject to the same set of end-point conditions (Muskhelishvili 1953 [68]). The end-

point asymptotics of the solution of equation (9.20) can be analyzed as before.

9.3 Crack-Tips Asymptotics for the Unknown Density Func-
tion ¢(z)

Here we show the end-point asymptotics of the closed form solution (9.15) is O(V'1 — z°2),
instead of O((1 — z2)%?).

For the first question, with the developed numerical tool in hand, it is very easy to
show that the end-point asymptotics of the closed form solution (9.15) is O(v'1 — z2),
and it is demonstrated in Figure 9.1 which shows the numerical solution vs. closed

form solution (9.15).

The answer to the second part: If the closed form solution (9.15) has end-point
asymptotics O((1 — £2)%/2), then ¢(z) needs to satisfy the solution for the following
boundary value problem:

—82¢"(z) + ¢(z) = f(z), with #(£1)=0 and ¢'(£1)=0, (9.21)

where f(r) = z/(7 V1 — z2) if the loading is uniform, i.e. p(z)/G = 1. One problem
arises immediately: there are four BCs imposed to a 2nd order ODE (9.21)! Existence

of solution is jeopardized. A simple calculation gives the general solution to (9.21):
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Figure 9.1: Numerical solution vs. closed form solution (9.15)
-1 £ 1 ¥
o) = —e/t et f(s)ds + —e =t | e'f(s)ds
20 -1 2¢ -1

+ Cle‘/‘ + Cge"‘/‘ y

where C, and C, are some constants determined by the four BCs. It can be easily
shown that the problem does not have s solution. Otherwise, a contradiction, €*/¢ = 1,

will be reached. Thus, we conclude that

#(z) does not have end-point asymptotics O((1 — z%)%/?).
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9.4 More General Form of Strain Energy Density Function

The strain-energy density function for Mode III fracture is
1
W = 5/\ €ii €j; + Gé.’j €;5i + 22 G (Bk Eij)(ak fji) + Z'Vk 6k(G €ij eji) '

which appeared as equation (3.17) in Chapter 3. As anti-plane shear problems are
considered, in terms of the nonzero strains ¢,. and ¢,., density function (3.17) can be

written as
W =2[G(€, + €.) + GC(|Vez:|* + |Vey:l?) + Gludi(el. + €.)] (9.22)
which leads to
—PV'w+Vw=0 o (1-EV)Vw=0. (9.23)

The hypersingular integral equation (9.6) is derived from PDE (9.23).

A more general form of strain energy density function is by adding an extra Laplacian

term, LG8 (Aw)?, to (9.6), that is,
W o W+2GR (s +6,0y) = W %Gé’ (Aw)?

then the kernel K(£,y) (corresponding to (9.5)) becomes

il (e/VeE+ &) VE@E+B)E+ 1+ 06+ 1 o
S (e'/\/Z?_-i-_F) \/(22+82 )E2+1— €| +1

Asymptotics (as || — oo) is given by

Ky =

lel | 146 — (e0)? + 8(d)? + 44 —2(ée)® 17 (2 +22)

5 _ 202
Kx(§,0) = i€ |1 (e2+éz)2 Y HERAS
The decaying part Ko(€) is
Bo(6) = 14 p(§)

Ep) BT B+ \J@r)@+1+VETRE
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where

| eeg e? 2 [ " B -
p(€) = [2(£2+22) + S (1+—p+§2>j| \/(22+£2)§2+1 \/£2+£2|£|]

Y (S
i\ve+ e e+

Ko(€) can be written as

o [ 0+ )] [Vie - B v 1 - Vo Big +da )

P> =
&3 p+\/(£2+é2)£2+1+\/e2+£2|§|

where

1

-

4 . ¢
p= =, pP= =
vV + 2 2+

Thus, Ko(€) still has ¢ as a factor!

]
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Chapter 10

Hypersingular Integral Equations

for Mode III Fracture in
Functionally Graded Materials
with Strain-Gradient Effect (Crack
Parallel to the Material Gradation)

This chapter can be considered as a second part of Chapter 4. In Chapter 4, we
considered a plane elasticity problem in which the medium contains a finite crack on
the y = 0 plane and the material gradation is perpendicular to the crack. In this
chapter, the material gradation is parallel to the crack (see Figure 10.1). In Chapter
4, the shear modulus G (that rules the material gradation) is a function of y only,
G = G(y) = Goe™; while in this chapter it is a function of z, i.e. G = G(z) = G¢e?*.
An immediate consequence of the difference in geometry, which is indicated in Figure

10.1, is that the location of the crack in Chapter 4 is rather irrelevant to the problem
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c d X
Material gradation parallel to the crack.

Figure 10.1: A geometric comparison of the material gradation with respect the crack location.

and thus can be shifted so that the center is at the origin point (0, 0). On the other
hand, if the material gradation is parallel to the crack, then the location of the crack

is pertinent to the solution of the problem.

The method of solution is essentially the same in both Chapters 4 and 10, i.e. the
integral equation method. However, because of differences in the geometrical config-
urations, some changes are expected. For instance, in Chapters 4 the crack opening

displacement profile is symmetric with respect to the y axis, while in this chapter the



CHAPTER 10. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS 142

symmetry of the crack profiles no longer exits. Thus some interesting questions arise:

e How are the crack opening displacement profiles affected by the gradient elas-

ticity and the gradation of the material?
e How are the stresses influenced under the gradient elasticity?
e How are the stress intensity factors (SIFs) calculated?

e How do the results compare with the classical linear elastic fracture mechanics

(LEFM)?

We will address all the above questions.

10.1 Constitutive Equations of Gradient Elasticity

For the sake of completeness, the constitutive equations of gradient elasticity for an
anti-plane shear crack in FGMs are briefly given in this section and particularized
to the case of an exponentially graded material along the z-direction, and they are

(Chan et al. [13], Paulino et al. [72]):

oi; = Ma)edij + 2G(z)(ei; — V7€;;)
— C[O\(z)](Bren)0i; — 260k G ()] (Okeis) (10.1)
T = Mz)ewdij + 2G(z)€ij + 20 vi[e;;0:.G () + G(z)0kei;) (10.2)
i = 200G(z)ei; + 200G(z)Okeij (10.3)

For a mode-III problem, each component of the stress fields can be written specifically

as following:
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Oze =Oyy =0:: =0, 0454 =0

Oe: = 26(2)(€z: — PV¢,.) — 202[0,G(2)](Bz62:) # 0

0y = 2G(z)(€y: — €3V 3%€,.) — 20%(0,G(z)](Dz€y:) # 0

Hzz: = 2G(z)E0¢.: /O (10.4)

Bzy: = 2G(z)0 e, /O

fyz= = 2G(z)(P0e.. /0y — le.:)

hyye = 2G(z)(PBey2/ Oy — e,.)
It is worth to point out that each of the total stresses o, and g,. in (10.4) has an
extra term than the ones in homogeneous materials (see Vardoulakis et al. 1996 [92],

page 4534) due to the material gradation interplays with the strain gradient effect
(Chan et al. [13]).

10.2 Governing Partial Differential Equation and Boundary

Conditions
The following PDE is obtained by applying the balance of force:
g 22 OW 0 ow 20w
%[0 (5 -ev5)]+ 5 [ow (5 -5 )]

iy 0*G(z) 8*w +OG(a:)63w 0G(z) Fw
dz2 Oz oz O0z3 dr Ozdy®

= 0. (10.5)
If the shear modulus G is assumed as an exponential function of = (see Figure 10.2):
G = G(z) = Gee’*, (10.6)

then PDE (10.5) can be simplified as

—Viw — 2ﬂ£2V26—w

= ﬂ?@?a el ﬁ— =0, (10.7)
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or

_ 23_ 272 2 _a_ -
(1 e ev)(v +Baz)“"°’ (10.8)

which is the governing PDE solved in the present chapter.

y

A

G = GO eBx

/

c d

Figure 10.2: Geometry of the crack problem.

It may be seen, from a viewpoint of perturbation, that PDE (10.8) can be expressed

in an operator form, i.e.
7] g
=0 =1-—8022 _ py? = 2 )
Hglgw =0; Hg=1-p¢ p- °vVe, L=V +63x’ (10.9)

where Hg is the perturbed Helmholtz operator, Lg is the perturbed Laplacian operator,
and the two operators commute (Hglg = LgHg). By sending 5 — 0, we get the
PDE (36, 92]

(1-Vv)Viw =0, or HLw=0, (10.10)
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where the Helmholtz operator H = 1 — ¢2V? and the Laplacian operator L = V? are
invariant under any change of variables by rotations and translations. FGM creates
the perturbation and ruins the invariance. However, the perturbing term “—g¢ a%”
in Lg, which is not purely caused by the gradation of the material, involves both the
gradation parameter 8 and the characteristic length ¢ (the product of 8 and ). It
can be interpreted as a consequence of the interaction of the material gradation and

the strain gradient effect [13].

If we let £ — 0 alone, then the perturbed Helmholtz differential operator Lz will be
dropped, and one reduces PDE (10.8) to

<V2 + ﬁ;—x) w=0, (10.11)

the perturbed Laplace equation, which is the PDE that governs the mode III crack
problem for nonhomogeneous materials with shear modulus G(z) = Goe®* [14, 25].
The limit of sending ¢ — 0 will lower the fourth order PDE (10.7) to a second order
one, (10.11). Thus, based upon the general theory for linear elliptic PDEs - the
solution is mainly influenced by the highest order of the differential operator, one
expects a singular perturbation to occur. By taking both limits 3 — 0 and ¢ — 0,
one obtains the harmonic equation for classical elasticity. Various combination of

parameters ¢ and v with the corresponding governing PDE are listed in Table 3.1.

One may notice that in the governing PDE (10.8) there is no surface term parameter
¢ involved. However, ¢ does come into the picture of the solution when the boundary
conditions are considered. By the principle of virtual work the following boundary

conditions can be derived:
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oy:(z,0) = p(z) , lz] < a
w(z,0) =0, |z} > a (10.12)
Hyy=(2,0) =0, —00 << +00.

One may observe that the first two boundary conditions in (10.12) are from the
classical LEFM, and the last one, regarding the couple-stress p,,., is needed as the
higher order theory is considered.

10.3 Solutions of the ODE

As we have demonstrated in Chapter 4, the following ODE is obtained by a Fourier

transform technique:

d* o . d?
e2@W — (26%€% + 2iBE*€ + 1) a7 w
+ (P64 +21B02€% — B2 + 2 +iBE)W =0. (10.13)

The corresponding characteristic equation to the ODE (10.13) is
CAY — (20262 + 2iB€ + 1) N* + (63¢* + 21B036° — B¢ + €% +ip€) =0, (10.14)
which can be further factored as
[2X% — (1 +iBE + 26%)] (N - € —iBE) =0. (10.15)

Clearly the four roots A; (i = 1,2,3,4) of the polynomial (10.15) above can be ob-

tained as:
-1 [ i B €
A\ = 4 2¢2 2 - , 10.16
' \/5\/ Grpee \/5\//§4+ﬁ2§2+§2 ( )
/\2=71—2‘\/\/§4+ﬁ2§2+§2+—£— & (10.17)

V2 VErre e
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N = %N(sul/e?)umsusul/ﬁ
1 B§

)
- : (10.18)
V2, [ @ er + BE e + 1/
M= =\ VETIBETFE+E+1/0
4 73 -
b¢ (10.19)

i

e VVET BT BPE + € +1/¢ |
where we have let ®(\;) and R()\3), the real part of A\; and A3, be non-positive. If
B — 0, then the imaginary part of each root \; (i = 1,--- ,4) disappears. Thus we
have exactly the same roots found by Vardoulakis et. al. [92] and Fannjiang et al. (36].
The root ), corresponds to the solution of the perturbed harmonic equation, Vw +
B80w/8z = 0; the root A3 agrees with the solution of the perturbed Helmholtz equa-
tion, (1 — B€29/0z — ?V*)w = 0. Various choices of parameters ¢ and v with their

corresponding mechanics theories and materials are listed in Table 10.1.

One remark is made here: In comparison with the four roots (all reals) found in
Chapter 4, the four roots in here are all complex and admit a more complicated ex-
pression. It turns out that in the process of solving the problem, asymptotic analysis
of those roots is needed. The simpler the roots are, the easier the asymptotic analysis
is. Thus, in this sense, one may say that problems with material gradation perpen-
dicular to the crack are easier to solve than the ones with material gradation parallel

to the crack.

By taking account of the far-field boundary condition, one obtains

w(z,y) >0 as z2+y? — +oo, (10.20)
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Table 10.1: Roots \; together with corresponding mechanics theory and type of material.

Cases Number Roots Mechanics theory References
of roots and type of material

£=0,8=0 2 +|€| Classical LEFM, Standard textbooks.
homogeneous materials.

t=0,8#0 2 A1 and Az in equations Classical LEFM, Erdogan (25].

(10.16) and (10.17), respectively. | nonhomogeneous materials

L#0, 8=0 4 =&, £/ + 1/E Gradient theories, Vardoulakis et al. [92].
homogeneous materials. Fannjiang et al. [36].

¢#0, 80 4 The four roots Ay — Ayq Gradient theories, Studied in this chapter.
nonhomogeneous materials

in equations (10.16) - (10.19).

and with y > 0 (the upper half plane), the following expression results:

W(E,y) = A(€)eM + B(E)e™Y.

Accordingly, the displacement w(z,y) takes the form

w(@) = 7= [ [ + Bl)e] .

Both A(£) and B(€) are determined by the boundary conditions.

10.4 Hypersingular Integrodifferential Equation

(10.21)

(10.22)

By taking account of the symmetry along the z-axis, we may consider that w(z,y)

takes the following form (for the upper half plane):

1 [ )
—_ A(E)el &)/ VZ 88/ [VIal€)l]y
=/ {a@e

+ B(g)el-t@/v2 —fﬂe/[ﬁb(e)l]y} e df | (10.23)

w(z,y)
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where

o) = VETFE+€, b6 =\ @+ PP+ PE+E+1/6.

As equation (10.23) provides the form of the solution for w(z, y), it can be substituted
into oy. and p,,. of equations (10.4) so that the boundary conditions (10.12) can be

imposed. Thus, o,. can be expressed as

0y:(z,y) = 2G(z) (ey: — ?V3¢y.) — 20%(8:G(z)]0€y-

G(z) [* Ay) o-ick
\/2—71’ e [Al A(g)e y] € d§7 y Z 0 ' (10'24)

and p,,. can be written as

e (@2 3) = 26 (2) (e2% _ e’eyz)

Oy
G * 2 7 2 ’ —1iT
- % /_ LN - DA + (B2 - £X3) B} ™ dE(10.25)

By the boundary condition imposed on the couple-stress fi,y. (i.e. fyy:(z,0) =0 for
—00 < T < 00) and the expression obtained in equation (10.25), one may get the

following relationship between A(£) and B(§)

A — BN
B(E) = ma o,

N o, A8 = p(B,€)A(E) , (10.26)

where the notation p(3, §) is introduced such that

M =-BN  PE+iIBRE+E\/E +iBE
BN -0y 0\ 1iBE+1/C + (P2 +ifRE+])

p(B,§) = (10.27)

Let’s denote

6@) = Sul@07) = = [ (-iA©) + Bl s
= the inverse Fourier transform of {(—:§)[A(§) + B(§)]} . (10.28)

The second boundary condition in (10.12), and equation (10.28), imply that

¢(z) =0, zé&lcd], (10.29)
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and
d
/ ¢(z)dz =0, (10.30)
which is the single-valuedness condition. By inverting the Fourier transform and

using the boundary condition that is imposed on the displacement function w(z,y),
i.e. w(z,0) =0 for z & [c, d], one obtains

(~ig)[A(E) + B(E)] = ﬁ / " b(z) 6% dz

- \7157 / * o(t) e dt . (10.31)
Substituting (10.26) into (10.31) above, one gets
Ag) = = [ . 1 ] / ‘ o(t)etdt, (10.32)
Ver [(=ig)[1 +p(8, )] J.
where
1 (PE+iBRE+1)+O/E+iBE+1/E (10.33)

1+p(8,6) 1+ /E+iBE+1/C —0\/E +iBE
Replacing the A(§) in equation (10.24) by (10.32) and using the (first) boundary

condition for o,. (that is, lim,_¢+ 0,:(z,y) = p(z), |z| < a ) in (10.12), one obtains

the following integral equation in limit form:

. G [~ M(B,€) T et ]Al iz
otz = Jim G2 [ [l [ oweca] o

_ 4 G(2) A(B,§) Aly] i(t-z)€
= ”/ [ S T i R

= p(z), c<z<d. (10.34)
By denoting
(8, §) A

K(,y) = — W 10.35
&9 = St + (5,01 ° (1039

one can rewrite (10 34) as

G b :

yli% o ). ¢(t) /_ _ K(&,y)e*t—2dedt = p(z), c<zr<d. (10.36)
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Asymptotic analysis allows us to split K(&,y) into the singular

Kx(§,y) = !Elli_lg}” K(¢,y), (10.37)
and nonsingular part
N(& y) = K(§,y) — Ku(&,y) - (10.38)

As y is set to be 0, the kernel of equation (10.37) is given by
4 2‘2 J 7\ 2 2 .
Keol£,0) = ~ifPIElE — ZiE + el + o + [(”—) i 1} % (1039)

2 2 2¢ 8 13!
Note that the real and the imaginary parts of K (£,0), described in equation (10.39),

are even and odd functions of &, respectively. The following limit
lim Ko(€, y)et=)dg
y—0+
converges in the distribution sense, as y — 0%, to the hypersingular kernels. The

derivation of hypersingular kernels has been addressed in Chapter 5 (see (5.14)-

(5.20)). Here we repeat and list some we are using below:

g dag = ot (10.40)
[ g ee-iag = o= (10.41)
/ = [ige™16W] eit-) g y— oo w8 (t — ) (10.42)
/_ : [ilgﬂe—mly] eilt-2)ge 2% t——Qx (10.43)
/ ~ [1e~Kl¥] eit==)dg Y207 2md(t — x) (10.44)

We have used d(z) to denote the Dirac delta function.

By means of the limits that are evaluated from equations (10.40)—(10.44), one may

reach the following governing hypersingular integrodifferential equation:

1 4 —2¢2 35¢2 1 —38%¢3/8 — [¢'/(2¢0)]2 .
H{ {(t—:c)3—2(t-x)2+ t—c +k(x’t)}¢(t)dt

+§¢’(z;) + -—;—,qﬁ(z) = p(z)/G, c<z<d, (10.45)
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where we have applied the property about the differentiation of the delta function
d(t) in the distribution theory sense, i.e.

/ (¢ — £)D(t)dt = (-1)"5—“0(.2) .

The regular kernel is given by

k(z,t) = /0 = N(&)eit—=)dg (10.46)

with the function N(£) defined in equation (10.38) by setting y = 0 (i.e. N(§) =
N(&, 0)). Thus a second kind Fredholm integral equation has been formulated with
the cubic-hypersingular and Cauchy-singular kernels, a derivative term, and a free

term.

10.5 Numerical Solution and Results

Numerical procedures and the computation of SIFs have been addressed in Chapter 8.
Some numerical results including crack surface displacements, strains, stresses, and

SIF's are given in this section.

10.5.1 Numerical Solution

Numerical solution is obtained by discretizing (10.45) to be

—2?iélf1[](3)\/l.-s B ﬁ AN
™

(s—r)3 2 T J, (s—r1)2
2 ’ ‘/
+ [1 38 (e ) ] 2 ][ U (?_}_ 32d + ; %/-\/l—szUn(s)lC(r,s)ds
2\/__ Z(n + 1A Thsa(r) + —'2[2\/1 - r2ZA,,U,,(r) = ZE ; |7} < 1,(10.47)
n=1 n=1L
Where we have normalized ¢(z) to be ®(s) and used the representation
&(s) =v1—s2 i A Un(s). (10.48)

n=1
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Normalized displacement, w(x,0)

0
Normalized crack length, x

Figure 10.3: Full crack displacement profile for homogeneous material (3 = 0) under uniform crack
surface shear loading o, (z,0) = —po with choice of (normalized) £ = 0.2 and & =0 .

Notice that the running index n starts from 1 instead of 0 because of the condition

(10.30).

10.5.2 Crack Surface Displacements

The crack surface displacements are reported in Figures 10.3-10.7. The most promi-
nent feature is the cusping phenomena around the crack tips as shown in Figures 10.3,
10.6 and 10.7. Figure 10.3 shows a full normalized crack sliding displacement profile
for a homogeneous medium (3 = 0) under the strain-gradient effect.

The crack profile in Figure 10.3 is symmetric because the material is homogeneous.
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Figure 10.4: Classical LEFM, i.e. ¢ = & - 0. Crack surface displacement in an infinite nonho-
mogeneous plane under uniform crack surface shear loading oy:(z,0) = —po and shear modulus

G(z) = Goe’*. Here a = (d — c)/2 denotes the half crack length.

Figures 10.4 and 10.5 display the crack sliding profiles in classical LEFM. As 3 < 0,
the material has larger shear modulus at the left side of the crack than at the right
side, and thus the material is stiffer on the left and more compliant on the right as
shown in Figure 10.4 (and 10.6). Similarly, Figure 10.5 (and 10.7) illustrates the case
of 8 > 0, and confirm that the material is stiffer on the right and more compliant on
the left. Figures 10.6 and 10.7 demonstrate the crack surface displacement profiles in
FGMs under the strain-gradient effect. The variation of the shear modulus destroys

the symmetry of the displacement profiles. In Figure 10.6, 3 < 0, and the displacement
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profiles tilt to the right; while in Figure 10.7, 3 > 0, and the displacement profiles tilt
to the left.

1.6 T T —

1.4

1.2

et
o

w(x,O)/(ap0 / Go )
o
(o))

0.4
0.2
o0 0.5 1 1.5 2
x/a

Figure 10.5: Classical LEFM, i.e. £ = ¢ — 0. Crack surface displacement in an infinite nonho-
mogeneous plane under uniform crack surface shear loading gy:(z,0) = —po and shear modulus

G(z) = Goe?=. Here a = (d — c)/2 denotes the half crack length.

The difference between Figures 10.4 and 10.5 and Figures 10.6 and 10.7 is the cusp
at the crack tips. In Figures 10.4 and 10.5, one may observe that the profiles have a
tangent line with infinite slope at the crack tips, which is a common crack behavior
exhibited in the classical LEFM, although less physical. However, such is not the case

in gradient theory as evidenced by the numerical results shown.
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12

T
1

w(x,0/(ap,/ G, )

Figure 10.6: Crack surface displacement in an infinite nonhomogeneous plane under uniform crack
surface shear loading oy:(z,0) = —pp and shear modulus G(z) = Go€?* with choice of (normalized)
¢=0.10 and ¢ = 0.01. Here a = (d — c)/2 denotes the half crack length.

10.5.3 Strains

We have used the strain-like field, ¢(z) (the slope function), as the unknown density
function in our integral equation formulation. The plot of ¢(z) under various choices
of different values of ¢ is displayed in Figure 10.8. A completely different aspect
from the classical LEFM is observed here where ¢(z) is finite at the crack tips. The
finiteness of the strain is equivalent to the crack surface displacement profiles having
cusps at the crack tips because it can be obtained by integrating the slope function
#(z). Thus, if the normalized ¢(z), ¥(s), is found numerically by using the Chebyshev
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Figure 10.7: Crack surface displacement in an infinite nonhomogeneous plane under uniform crack
surface shear loading o4:(z,0) = —po and shear modulus G(z) = Go€e?* with choice of (normalized)
¢=0.10 and & = 0.01. Here a = (d — c)/2 denotes the half crack length.

expansion (10.48), then the crack displacement profile w(r,0) can be obtained by

0 r N
w(r,0) = /- : o(s)ds = /_ 1 V1= AnUq(s)ds. (10.49)

n=0

Notice in Figure 10.8 that the plot of the slope function ¢(z) is not symmetric due
to the gradation of the material. As ¢ decreases, the interior part (i.e. the region
apart from the two crack tips) of ¢(z) seems to converge to the slope function of the
classical LEFM case. However, the limit of £ — 0 leads to a singular perturbation

problem, and a boundary layer may arise.



CHAPTER 10. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS 158

8 T T T T T
N classical LEFM

6 )

4 _
)
x .
: 2 0.2

0.1

0

2L

4 1 1 ! L ! L ! 10.01 '

O 02 04 06 08 10 12 14 16 18 20

x/a

Figure 10.8: Strain ¢(z/a) along the crack surface (c, d) = (0, 2) for 3=0.5, & =0, and various £
in an infinite nonhomogeneous plane under uniform crack surface shear loading o,.(z,0) = —po and

shear modulus G(z) = Go€”*. Here a = (d — c)/2 denotes the half crack length.

10.5.4 Stresses

A very interesting and extraordinary phenomena appears as the stress field is investi-
gated. Similar to classical LEFM, the stress 0,.(z,0) is still not finite as  approaches
the crack tips from the ligament. However, the sign of the stress is changed. This in-
validity of physical meaning has also been reported by Zhang et al. [100] for mode III
crack problems and by Shi et al. [82] for both mode I and mode II crack problems.

Similar to the case of the strain, as ¢ decreases, the interior part (i.e. the region apart

from the two crack tips) of o,.(z,0) seems to converge to the solution of classical
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LEFM. Further exploration is needed along the line of singular perturbation and the

existence of boundary layer.

1 3 T 13 L 14 T T 1 v

40 =——classical LEFM , . _

20

10

o, (x/a,0)/G,

yz
o

_30 1 L L L 1
A1
2.00 2.02 204 . 206 2.08 2.10

Figure 10.9: Stress gy:(z/a, 0)/Go along the ligament for B =05, # =0, and various £. Crack
surface (c, d) = (0, 2) located in an infinite nonhomogeneous plane is assumed to be under uniform
crack surface shear loading 0:(z,0) = —po and shear modulus G(z) = Goe?=. Here a = (d — c)/2
denotes the half crack length.

10.5.5 Stress Intensity Factors (SIFs)

In Chapter 8 we have showed how to generalize the conventional definition of SIF's

and derive the numerical formulas for them. Here, we briefly list them.

K (d) = 1—i»1.111+ 2y 2n(z — d)(z — d)oy(z,0), (z>d) (10.50)
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EKqrr(c) = lim 24/27(c — z)(c — 7)oy:(z,0), (z<c). (10.51)

It leads to (forz > d,orr > 1)
tKi(d) = lim 22z — d)(z - d)o,(=.0),
d—c c+d d—c c+d
= rl-lgl*» \/271' [( 3 )r-i— 5 —-d](ar-—-a)cry: ( 5 r+ 5 ,O)
= 2aV2ma 111{1+ V(r=1)(r—-1) oy.((d-c)r/2+ (c+d)/2, 0)
= 2v37a lim \/m(r_l)coe«ﬂreﬂwﬂm( —2¢ ) <

a2
b ®(s)
/ TPSE ————ds. (10.52)
Thus
n—-1
K[[[(d) = 2V2m (QZ) Goeﬂd hm (’f' 1)3/2 Z n+l (T‘ - I—:l-\/ re — 1)
n=0
I 2 r- "' r2—1
x[n(l 1'2—1) + r2-13 ]An
= V7maGoe® (¢/a) i(n + 1A, . (10.53)
n=0
Similarly, -
Kiri(e) = VraGoe™ (£/a) 3 _(~1)"(n +1)A, . (10.54)
n=0

Recall that a = (d — ¢)/2 is half of the crack length and ¢/a = ¢ is the normalized ¢

which is dimensionless.

Table 10.2 contains the (normalized) SIFs for the special case of classical LEFM (i.e.
¢ = ¢ — 0) by using both T, and U, Chebyshev polynomials expansions [see Equs.
(8.3) and (8.4)]. By choosing displacement as the unknown density function, one may
found the following formulas (see Chan et al. [14]):
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Table 10.2: Normalized SIFs for mode III crack problem in an FGM. (¢ =¢' — 0)

Un Representation Tn Representation
849 #ﬁcm Po Kw(d-de)/z %o Kx(d-cc)/z %
-2.00 1.21779 0.55672 1.21779 0.55672
-1.50 1.17801 0.63007 1.17801 0.63007
-1.00 1.14307 0.72845 1.14307 0.72845
-0.50 1.09036 0.85676 1.09036 0.85676
-0.10 1.02289 0.97312 1.02289 0.97312
0.00 1.00000 - 1.00000 1.00000 1.00000
0.10 0.97312 1.02289 0.97312 1.02289
0.50 0.8567! 1.09036 0.85676 1.09036
1.00 0.72845 1.14307 0.72845 1.14307
1.50 0.63007 1.17801 0.63007 1.17801
2.00 0.55672 1.21779 0.55672 1.21779
e With T,, expansion:
Kuile) Z( 1)"a,, Rurd) _eﬂ“zan (10.55)

Goy/m(d—¢)/2

e With U, expansion:

Goy/7(d—c)/2

Kr1(c) Kiri(d) _ Ad
T Z( 1)*(n+1)A,, : =) (n+1)A,.

The SIFs in Table 3 have been obtained by using equations (10.55) and (10.56), and
they are consistent with the trend of the SIF results reported by Erdogan [25].
Table 10.3 contains the (normalized) generalized SIFs for the case of strain gradient
elasticity at £ = 0.1 and ¢ = 0.01. One can observe that the trend of decreasing
K1(c) and increasing Krr(d) as B increases is similar to the trend reported in Table
3. However, the support of experimental data is needed here to provide the physical
justification.
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Table 10.3: Normalized generalized SIFs for a mode III crack at ¢ = 0.1, # = 0.01, and various
values of 8

5 Krrr(e Krrp(d
poy/®(d—c)/2 poy/m(d=c)/2
-2.00 1.23969 0.49938
-1.00 1.12585 0.67600
-0.50 1.04849 0.80248
-0.10 0.96814 0.91658
0.00 0.94385 0.94385
0.10 0.91677 0.96828
0.50 0.80277 1.04854
1.00 0.67637 1.12584
2.00 0.49938 1.23969
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Chapter 11

Gradient Elasticity Theory for
Mode I Fracture in Homogeneous

Materials

Previous chapters dealt with anti-plane shear mode, a scalar-valued problem. In terms
of PDE, the problem is governed by one single partial differential equation. In the
present and next chapters we investigate the solutions to the mode I fracture problems
for homogeneous materials and FGMs, respectively. Thus, a vector-valued problem is
involved, and the governing PDE is a system of partial differential equations, which
gives rise to a system of hypersingular integral equations. Exadaktylos [34] has in-
vestigated the mode I problem by applying gradient elasticity with surface energy in
homogeneous materials. The homogeneous case is revisited by using the hypersingular

integral equation method, which is different from the approach by Exadaktylos [34].
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11.1 Formulation of the Crack Problem

For the sake of continuation and completeness, we list all ingredients that are related
to the formulation of the problem.
11.1.1 Constitutive Equations

For homogeneous materials, the constitutive equations of gradient elasticity are (Ex-

adaktylos [34], Exadaktylos et. al. [35])

Ty = /\ekk&j + 2G€ij + e'l/kak(/\éu&'j + 2G€ij) R (11.1)
Hkij = ,\Ezakeu&,-j + QGE'U;CG,'J' + /\é'ukeué,-j + 2G€28k€,'j R (11.2)
gi; = /\ekké.-]- + 2G€,‘j - EQVQ(,\ekkJ,-,- + 2G€ij) . (11.3)

which have been stated in (3.38), (3.39), and (3.40). Each component of the stress

fields for the homogeneous materials are [34]:

r Oz: =0y =0

Orz = (A + 2G)€zz + Aeyy — (A + 2G) V%6, — APV ey,

§ Oy = (A +2G)eyy + A(T)ezz — (A + 2G) 82V 3ey, — APV e, (11.4)

—. — _ 2
Ozy = Oyz = 2G€zy — 2G V3¢,

L Oz = Mezz + €yy) — MV (€22 + €4y)

[ feze = (A + 2G) P06, + AP0,ey,

tiyee = —(A + 2G) s — M2)legy + (A + 2G)PByeae + APOeyy

Pzyy = (A + 2G) 0,64y + ANPOz€rs

ﬁ (11.5)
Byyy = —(A + 2G)leyy — Mezz + (A + 2G)POyeyy + MNPOyers

Pzzy = Uzyz = 2G 0064y

| tiyge = tryey = —2GCery + 2680,y
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11.1.2 Governing System of PDEs and Boundary Conditions

By imposing the equilibrium equations

00:z 00z, 00zy 00y
3z "oy 0 @ Gty

and using equations (3.16) and (11.4), one can obtain the following system of PDEs:
52

=0, (11.6)

_eve Fu o Fu 0] _
(1—-¢°V?) [(n+ 1)6:1:2 + (K 1)3y2 +26x6y =0, (11.7)
v v &u
_ p2rR _ - _— | =0. .
(1-2¢°V7) [(n 1)3x2+(n+1)3y2+23z3y] 0 (11.8)
Boundary conditions are derived from the principle of virtual work:
Ozy(z,0%7) =0, -0 <zr<o00o
oy (z,0%) = p(z) , lz] <a (11.9)
v(z,07) =0, lz| > a
Pyyz(Z,07) =0, -0 <<
Hyy(2,0%) =0, Iz < a (11.10)
=u(z,07) =0, lz| > a,

where p(z) is the crack surface tractions. Also, u(z,y) and v(z,y) are assumed to

satisfy the far-field condition:

u(z,y) , v(c,y) >0 as r2+y? - o0. (11.11)

11.2 Derivation for the System of Integral Equations

By defining
1 e .
w(ay) = 7= /_ (€, y)e~=Cde (11.12)
and

v(z,y) = \/% [ " a6 y)ei=tde (11.13)
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through Fourier transform, the system PDEs (11.7) and (11.8) becomes a system of
ODEs:

4» -~

—%(k — 1)3— +[(k=-1)+ 22%52] d2 +[(r+ 1)+ E(k+ 1) @

3;.
(21325) — (2i€ + 2i0%¢%) é = 0, (1L.14)

-~ -~

d
—82(n+1) d’o [(K+1)+2£2Kf]d27— k—1)((BE+E + Y b

3;- ~
(2i£%)3—y’§-(2i5+2i/3253)% = 0. (1L15)

The corresponding characteristic polynomial' to the system of ODEs (11.14) and
(11.15)

[N — (2 +1/9)]° (N -¢€%)2 =0 (11.16)
has six eigenvalues contributing to the solution:

2¢2
MO = 2O = ~lel, MO =/ =,

—’\l(g) ’ _’\2(6) y and - A3(5) .

By the far-field condition (11.11), only negative roots A;, A2, and A3 are considered.

(11.17)

Notice that A; and )\, are repeated root. We can express 9(&,y) and a(§,y) as

(&, y) = a1(§)e™W + az(§)ye W + a5(€)e @)
(11.18)

a(€,y) = bi(§)e™8I + by(&)ye W + by(€)es @

Substitution of the general solutions ¢(&, y) and 4(&, y) into ODEs (11.14) and (11.15)

leads to the following relations:

é'cz(s) : (11.19)

At this point, we are left to solve the four unknown coefficients a,(£), a2(§), as(§).

bl(E)—zl |a1(§) ao(E) and  5y(§) =

and b3(£), which are determined by employing the boundary conditions.

LCase of the homogeneous material can be considered as a special case of FGM. Thus, the detail of forming the

corresponding characteristic equation and solving their eigenvalues will be included and addressed in Chapter 12.
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11.2.1 System of Fredholm Integral Equations

By the symmetry of this mode I problem, one may consider only the upper half plane
(y > 0) and express v(z,y) and u(z,y) as:

v(z,y) = '\/% /;: [a1(€)e™™ + ay(E)ye™ ¥ + a3(§)e™ Y] e70dE |, y 2(0 ) |
11.20
u(z,y) = \/% /—°° [b1(€)e™ + by(€)ye W + by(€)e™ @] e==4dg , y > 0. (11.21)

Recall that the four unknown coefficients are a,(§), a2(§), as(£), and b3(§).

By the first boundary condition in (11.9) one can establish

k+1
2¢|

Also, by the first boundary condition in (11.10), b3(§) can be expressed as

ar(€) = [ —‘wlﬂ] ax(€). (11.22)

T EE L+ N — (€ +200Eb() +

iE(C + 20%)E])a,(€) — i€®€aa(€) + i€ [¢ + As(8)] aa(§)}.  (11.23)

ba(&)

Thus there are only two unknowns, a3(£) and a3(§), left to be determined now.

Define

do(z) = %v(z,O) and p(z) = 5%' l:(,?—yv(r,ﬁ)] , (11.24)

then by the third conditions of (11.9) and (11.10), after a step of inverting the Fourier

transform, one may get

it & + 26l @) — ias§) = U, doltledt
(11.25)

(—i€) [13% + 20 aa(§) - iEM(E)as(§) = Fhz [l,volt)eat .
Solving (11.25) for az(€) and a3(€), then by the second conditions of (11.9) and
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(11.10), one obtains the following system of integral equations in the limit form:

limy—o 2= [, [0, [Ku1(€,y)do(t) + Ki2(&, y)%o(t)] e~ d€ dt = %Eoz , lzl<a

limyo 2= [2, [0 [K21(&, y)do(t) + K2a(€,y)%0(t)] €475 dE dt = lz| <a,
(11.26)

where the four kernels K;; (¢,j = 1,2) can be described by:

Ni;(€)

Kij(é) = }}_%Kt](£7y) = D(E) ’ i’ J

=1, 2 (11.27)
where

D(§) = [—z (" ': 1) é—‘ + 2ze2|§I£] A3(€) + (i€) (— + 92252) (11.28)

Nu(f) = —2/\3(5) ' .‘Vlg(g) = =2 ; (11.29)

’ 27 [i(1 —
Va® = G (325 [er g+ LLEEE] [0 o],
—k ¢ + 1] i€
* (’5)( 1) [_ez' I ] ]
'(n+1)_ 2 ]
g 2Kl

N :-(26)( l)zis (:+1)(e'+2ezlfl)]
(o -]

11—k
E ] (11.30)




CHAPTER 11. HYPERSINGULAR INTEGRAL EQUATIONS AND APPLICATIONS 169

_ : 27 (1 —

- (=) - =5
- Juo (B) WAL LLED | (=0) (o1 + )| [ U - 22
- [0 (=) 5 - () e o)

+ L &)(5_1) (i&)(é’/\: ) _ (:+1)A (e'—ma)]

[k +1 2
2] -2 |£l] (11.31)

Splitting the singularity from the four kernels K;; (i, = 1,2) by performing the

asymptotic analysis, one can reach the following system of hypersingular integral
equations:

1‘7[" [-161{2 1 2B3k+7) 1

p kT2 (-2  (R+2P t—

s ku(l'vt)] do(t) dt

—-a

82 | O
+——5v(@) + — | kelz,tih(t)dt = p(z)/Go, |z| <a  (11.32)

—-a

1 [ 2Wk(k—-3) 1
2 ][ [ . ++k21(z,t)] Go(t) dt+ ¢>o( z)

T)_e [(K+2)(k—-1)t—-

1][“ [24’-’(n2+n+4) 1

). [(k+2)(k-1) t-,_.*"’“zz(z,t)] wo(t) dt = 0, |z| <a, (11.33)

which is the final and main hypersingular integral equations that are solved together
with the single-valuedness condition

/a do(z) dz =0 , ‘ Yo(z) dz =0. (11.34)

—-a -a
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11.3 Numerical Results

By choosing the dimensionless variables
r=zfa, s=tla, €=¢/a, and @ ={]/a,

where a is the half crack length, the hypersingular integrodifferential equations (11.32)
and (11.33) can be treated only on the normalized interval (—1, 1). Denote the
normalized @¢(z) and ¥o(z) by Po(r) and ¥o(r), respectively. Based on the order
of singularity of the derived hypersingular integral equations , $; and ¥, can be
expanded by the Chebyshev polynomials of the second kind U,(s):

$o(s) = V1 —s? f: aUn(s), Uo(s) =vV1—s2 f: bUn(s) . (11.35)

n=0 n=0

Here a, and b, are the expansion coefficients, and condition (11.34) implies that
Qg = 0 and bo =0.
It is worth to point out that although y(z) is defined to be
g [o
() = 5z | 7o)

a second derivative of displacement v(z, y), the crack-tip asymptotics is still the same

as ¢g(z). It can be seen from following simple analysis. Assume v(z,y) takes form
v(z,y) = h(z,y) [1 - (% + )] 7*

where h(z,y) is some well-behavior function. Then

31!592 o 6th; L 1- @+ )] - 3yh(z,9) V2 + 2.

Clearly, after plugging y = 0, dv(z,0)/dy does not lose the “three-half” power of
[1 — (2 + y?)]- Thus, undertaken another differentiation with respect to z, ¥o(z) has

crack-tip behavior {/z2 + y2.
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1.2 -

v(x,O)/(apO/Go)

o
(X

-0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 08 1

Figure 11.1: Mode I normalized crack profiles for homogeneous materials at ¢=0.05,0.1, & = 0.0,
and v = 0.25.

Homogeneous materials can be treated as a particular case of the graded materials
by letting the gradation parameters get closer to zero. A more detail of the numerical
results will be given in next chapter, here we provide a Mode I crack opening dis-
placement (COD) profiles shown in Figure 11.1. The contrast between the classical

LEFM and the strain-gradient effect is clearly seen at the two ends of the crack!
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Chapter 12

Gradient Elasticity Theory for
Mode I Fracture in Functionally
Graded Materials

Chapter 11 dealt with homogeneous materials. In this chapter, we focus on FGMs
with strain-gradient effect for mode I crack problems. It is a vector-valued problem
involved with much more complicated algebra than the previous chapter. However, a
system of hypersingular integral equations is also derived; the difference is that there
are additional terms, corresponding to the material gradation, appear in the governing
integral equations. Konda and Erdogan [51] have solved the mixed mode problem
(including Mode I) for classical elasticity in FGMs. Exadaktylos [34] has investigated
the mode I problem in homogeneous materials by applying gradient elasticity with

surface energy. This chapter can be considered as a combination of both.
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12.1 Formulation of the Crack Problem

For the sake of continuation and clarity, again, we list all related ingredients for the

formulation of the mode I crack problem for FGMs.

12.1.1 Constitutive Equations
Constitutive equations for nonhomogeneous materials are
Tii = MX)erdi; + 2G(x)€j + CvieudeA(x) + A(x)Oken]d;;
+ 20 [e:j0G(x) + G(x)Okes5] (12.1)
brij = Cuh(X)endi; + CA(x)Okeudi; + 20 G (xX)€i; + 202G(X)dpeij, (12.2)
oij = AX)(exr — 32V26kk)5ij +2G(x)(e:;; — £2V2€i1)
— [OA(X)](Oken)di; — 260G (x)](Bkesj) (12.3)

which have been stated in (3.9), (3.10), and (3.11).

For nonhomogeneous materials, the couple stresses pi; have the same form as in
(11.5), except that the Lamé constants A and G are not constants anymore, and they

are functions of (z, y) according to the gradation of the materials:
4

pzzz = [ME, y) + 2G(z, Y)|€?0z€22 + (T, y) P02y

Hyzz = —[A(I, y) + 2G(.’L‘, y)]e,exz - A('757 y)elew
+ [Mz, y) +2G(z, y)|POyezz + Az, y)POyey,

pzyy = Mz, y) + 2G(z, y)]|C0:eyy + Mz, y)€?0z€ez

Byyy = —[A(x, ¥) +2G(z, y)|leyy — A2, y) ez
+ [Mz, y) +2G(z, y)]|P0yepy + A(z, y)POyezz

Parzy = Pryz = 2GPOz€y

| Hyye = byzy = —2Glery + 2G 0 €,y -
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The total stresses g;; have more terms than in (11.4), and they are:

.
Oz: = Oy =0

0ez = Mz, ¥) + 2G(z, ¥)|(1 — BV)er + A(z, y)(1 — £V3)ey,
— E{[0:\(z, ¥)|0:z(€zz + €4y) + [0yA(z, )]0y (€2 + €4)}
— 20 {[0:G(z, y)]0:€cz + [0,G(x, Y)]|Oy€rz}
0 = Mz, ¥) + 2G(z, ¥)](1 — BV)eyy + A(z, y)(1 — Ve,
‘ — E{[0: Mz, Y)|O:(€xz + €4y) + [OyA(T, ¥)]Oy(€cz + €4y)} (12.5)
— 202 {[8.G(z, y))0:€yy + [0,G (2, ¥)|Oyey }
Ory = Oyr = 2G(T, y)(€xy — V3%, —
262 {[0:G(z, y)]0:€zy + [0,G(z, y)|Oyeay}
Oz = Mz, Y)[(€22 + €4y) = V(€22 + €4)]

— C{[0:\(z, Y)|0z(€zz + €43) + [OyA(z, Y)]Oy(€2z + €yy)} -

e e T A

Figure 12.1: Geometry of the problem.
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12.1.2 Governing System of PDEs and Boundary Conditions

We assume that the shear modulus varies in the z-direction and it takes the expo-

nential form (see Figure 12.1):
G = G(z) = G, (12.6)
where Gy and 3 are material constants. Also,

A= XMz) =

(12.7)

is a function of z, where x = 3 — 4v as plane strain is considered in this paper. By
imposing the equilibrium equations (11.6)

002, 00,!,:0 and 60,!,+8a'w_0

or dy oz dy

and using equations (3.16) and (12.5), one can obtain the following system of PDEs:

(1 - ﬂﬁ% - €2V2>

&u d*u v
[(K-{”l)@%'(h‘. 1)—+-a 3y

+ B(k + l)a—u

ov
o + 8(3 - n)% ] =0, (12.8)

2&_ 2v72

(1-5e A ev)
2

[(5—1)3 2+(n+1)g:’ aa?; +3(n_1)f_’_+3(n-1)g”]

3 =0. (12.9)
Boundary conditions are same as (11.9) and (11.10); the far-field condition is (11.11).

12.2 Derivation for the System of Integral Equations

After a Fourier transform

uay) = \/% /_‘” W y)eT™dE,  v(z,y) = \/% /. (€, y)e = g,
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the system PDEs (12.8) and (12.9) becomes a system of ODEs:

-~

d'a : 2
—(k — l)d;: + (k — 1 + 20k€? + 2iBPkE) 23_/% —
3 -~
(r+1) (62 +iBE+£26* +2iB%€° ~ B202€%) 0 + [2i€°€ — BE*(3 — k)] Zyvi

— [2i€ + 2i6%€® — B(3 — k) — BE(5 — K)E* — iB* (3 — K)E] Z—Z =0, (12.10)

d*t d*v
2 ev 942 ,.£2 + 202 - -
¢ (rc-i-l)dy4 + (K + 1 + 262kE* + 2iBkE) 0
3 -~
(k —1) (1B + €% + 2iBE> + 2¢* — B*E?) & + [2i€%€ — B (s - 1)] %
— [2i€ — B(k — 1) + 2i€® — B (K + 1)&* — if* P (k — 1)§] g-;-j‘- =0.(12.11)
12.2.1 Finding Roots of System of ODEs
Define the new variables U and V' by
_ d Y / _ d Y 9
U—dyu—u, and V—dyv—v, (12.12)

then the system of ODEs (12.10) and (12.11) can be put into the following matrix

form x’ = Ax for an 8 x 8 linear system of first-order equations, that is,

[ U ] [ o 1. 0 0 O O O o 1T u ]
U’ 0o 0 1 0 0O O O0 O @
u” 0 01 0 1 0 O O O u"
u” _ agg 0 ag3 0 0 a6 0 ays ' (12.13)
v 0o 0 0 0 0 1 0 O v
v’ 0o 0 0 0 O 0 1 0 i
v O 0 0 O O O o0 1 il
I v ] I 0 agg O aggy ags O agr O 1L " |

where
(k + 1) (48E + €% + 2iBL2E% + 2% — B2%€?)
asn = — (5 —
(k—1)
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Kk — 1+ 202k€2% + 2i0°BKE
2(k-1)

as3 =

_ 26— B3 — k) + 2126 — BE(5 — K)E2 — BE(5 — K)E* — iB23(3 — K)E
48 = 2(k—1)

_ 20026 - BE(3 - k)
M T k-1

%€ — B(k — 1) + 200263 — B (k + 1)€2 — if2C(k — 1)€

agy = —

2(k+1)
2% — 2B(k — 1)
= T R+ 1)
ags = (k — 1) (i8€ + €2 + 2iB3E° + € — F226?)
= —

2(k+1)

K+ 142066 + 2iBCkE
- 2k +1)

The corresponding characteristic polynomial to the 8 x 8 matrix in (12.13) can be

asr

found to be:

[\ — (& +i6E+1/6)P
(A — [26(6 +iB) — B3 — K)/(k + 1)IN? + €3(€% + 2iB€ — §%)} = 0. (12.14)
Note:

If the shear modulus G takes form G = G(z,y) = G¢e*™, then it is a mixed mode
problem to be solved, and the corresponding characteristic polynomial (to an 8 x 8

matrix) is
A2+ A — (8 +iBE + /)] { X +29X° — [26(€ +if) —+* — B2(3 — ) /(k + 1)]N?
+£2[€2 + 2iBE - B> +v*(3 —K)/(k +1)]} =0. (12.15)
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By using MAPLE [96, 97], a computer algebra system, to solve characteristic poly-
nomial (12.14), one may find that there are six eigenvalues, A;(§) — Ag(£), to be

considered:

Mg = BVB- r;)/(n +1)  VBB-r)/(x ; D+H4E+iB) 194
i) = AT VB OGN FAELED

Y = ZVVE@FIPPFE g4 1E

i B
_ X (12.18)
V2, /@ T B+ e+ 1/

ae) = ~BVE— ;)/(n +1) VBB~ n)/(n; DH4E+iBE )
M) = VB f;)/(n +1)  VBB-k)/(x ; DH4E+IBE 54

N o= SV V@R FE e+ 1/
' CA (12.21)

i
V2 @ 1/eE+ e + e + 1/
12.2.2 Representation of the Solution

The mode I problem is simplified by considering the upper-half plane (y > 0). Thus

by taking into account the far-field conditions
u(z,y) , v(z,y) >0 as Vz2+y®> = oo,

the roots (A4, As, and Ag) with positive real parts are disregarded and only the roots

A1, A2, and A3 are considered herein. So the general solutions of #(£,y) and @(£,y)
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can be expressed as

H(€,y) = c1(€)e* @ 4 cy(£)e* O + c3(£)eMs v

(12.22)
4(€. y) = di(£)eM@ + dy(€)e* @ + dy(€)es @

The system of ODEs (12.10) and (12.11) imposes the following restriction:

(€, y) = m(€)er(€)e @ + na(€)ca(€)e™ @ + dy(€)e™ (12.23)
in which
(O + xa(§) - By |
M) = —5 e B 1) (12.24)
AL(E) + Ao() + Bry /25

n2(§) = 5 E—A(r=1) (12.25)

Thus, v(z,y) and u(z,y) can be expressed as
v(z,y) =

__}_ Cl(s et\l(f)y + cg(g)ye»\z(i)y + cs(g)els(f)y e—iz$ d& .Y 2 0 , (1226)
V2r J -

u(a:, y) =
[ IO + m(€)ealE)e O + (€)M e b y 20,1227

Again, like the homogeneous case, there are four unknown coefficients c;(§), c2(§),

c3(€), and d3(€) to be determined by means of the boundary conditions.

12.2.3 System of Fredholm Integral Equations

Imposing the first boundary condition in (11.9), one obtains

ex(€) = j‘ﬁg e(8), (12.28)
where
ai(€) = mA —if + A — Cqdd — i€ + iPEN} + iBEE(m AL — i)

= (mA —i€)(1 +iBEE + 626* — 2A}), (12.29)
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g2(6) = i€ — oAa — Mg + Prp A3 +i2€3 — i3 ENE + iBOPE(IE — o 2)
= (i€ — A2)(1 +iBEE + 26% — £)3). (12.30)

Also, by the first boundary condition in (11.10), d3(£) may be expressed as

d3(§) = qi(§)cr(€) + g2(8)c2(8) + g3(§)ea(§) (12.31)
where
O(i€ — mAL) + B(mA2 —i€A) (i€ —mM)(€ — EAy)
a(®) = U — BN = Tl -Fay (123
_ OGEE — ) + B(mA] — i€Xs) _ (36 — ) (¢ — B)2)
22(§) = Phg — N2 = TNl =8N (12.33)
q3(§) = f\% : (12.34)
Follow the same route as the homogeneous case, and define
0 [0
o(z) = —v(:c 0) and y(z)= s [%'0(1,0)] , (12.35)

one may translate the two mixed-valued boundary conditions into the following sys-

tem of integral equations in the limit form:

“m_/ / (&, 9)9(0) + Kual€, )b e dedt = BEL | 12 < a (12.36)

y—0 21 G(z )

/_ / [Car (€, 1)(t) + Kaa(€, ) 0(8)] € dedt = 0, |z] <a, (12.37)

y-—>0 2r

where the four kernels KC;; (¢, = 1,2) are described as follows:

Nii(§)

Kii(§) = im Ky(&,y) = DE =1, 2 (12.38)
where
D(€) = (—i€)[(g1 + g2)As — (Mg2 + degn)] , (12.39)

Mi(€) = As(magz + magi), N2(§) = —(m1g2 + mag1) , (12.40)
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MNot(€) = A3(nige + nagr) — nac(Aige + A2g1)

+ naa[Ma(q192 + q201) — ga(Arg2 + A2g1)] (12.41)

Noo(€) = =(n1g2 + n2g1) + nac(gr + g2) + naa(ga(g2 + 1) — (@192 + q291)]  (12.42)

and

my(€) = [(k + 1A — €3 — k)m[L + (€% + 166 — A})] (12.43)

ma(€) = [(k + 1)A2 — i€(3 — K)m][1 + €3(€* + i€ — A3)] (12.44)

_ = am)@ —6x) (- dam)(€ —Fh) i€

L W5 B s wi ey w R WS

ny = (A = O)(k + 1)A — i&(3 — &)m] (12.46)

ny = (Exy — O)[(k + 1Az — i&(3 — k)72 (12.47)

nge = (k + 1)A3(BA3 — ), nzq = i€(3 — K)(€ — X3) (12.48)

Splitting the singularity from the four kernels K;; (i,j = 1,2) by performing the

asymptotic analysis, one can reach the following system of hypersingular integral

equations:

1 [ _16¢ 1082k +3)  2Bk+T)—fi -

7 ?[_ [(n TS Rl P T R g T s Bt t’] o(t)dt
+ 2@+ Z;fzfggu)w(x) + 2 [ Rtz d = B) oj<a (1249

1 [ 2Wk(k—-3) 1 ~ 20k, _
H[_a [(n Fa-Di=z T Thal t)] 8(t) dt + ——¢'(z) + 26(z)

+1][° [282(::2+n+4) 1

P (k+2(k-1)t—=z + Kn(z, t)] Y(t) dt = 0, |z| <a, (12.50)
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with
_ BAR(K® + 26K% + 92K + 63)
fr= 2(k + 1)(k + 2)
and
fo = BE(k® + 8k% + 3k + 12)

2(k — 1)(k + 2)2
Equations (12.49) and (12.50) are the final and main hypersingular integral equations

that are solved together with the single-valuedness condition

/a o(z)dz =0 , /a w(z)dr=0. (12.51)

12.3 Numerical Results

By choosing the dimensionless variables
r=zj/a, s=tla, €=¢/a, and ¢ ={/a,

where a is the half crack length, the hypersingular integrodifferential equations (12.49)
and (12.50) can be treated only on the normalized interval (—1, 1). Denote the
normalized ¢(z) and y(z) by ®(r) and ¥(r), respectively.

Based on the crack-tip asymptotics, ® and ¥ can be expanded by the Chebyshev
polynomials of the second kind U,(s):

®(s) = VI—35 Y AlUn(s), ¥(s)=VI—8Y_ BulUals). (12.52)
n=0 n=0
Notice that condition (12.51) implies that
Ao =0 and BQ =0.

Numerical solution procedures have been addressed in Chapter 8; formulas involving

the Chebyshev polynomials 7, and U, are detailed in Chapter 7. For instance,

N , -1 N
¥(s) =~ V1 —s? g B.Un(s) = W(s)= Wiy ; Ba(n + 1)Tp11(s)
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is one of formulas needed in the numerical implementation. Numerical results that

include SIFs and Mode I crack opening displacement (COD) profiles are given here.

Table 12.1: Normalized SIFs for a mode I crack under uniform loading, p(z) = —po. (¢/a =
0.1, ¢/a=001, v=0.3)

g || SR | 208
0.01 0.3166214 1.0860864
0.10 0.3077957 1.1376156
0.25 0.2863779 1.2060054
0.50 0.2534668 1.3263192
0.75 0.2245852 1.4579430
1.00 0.1996328 1.6058326

12.3.1 Stress Intensity Factors

SIFs are defined by:

¢Ki(a) = \/27r(:c —a)(z — a) gyy(z,0) , (12.53)
(Ki(—a) = _2y/2r(—z —a)(—z —a) oy(z,0) . (12.54)

Therefore, the following formulas for the mode I SIFs in the strain-gradient elasticity

may be derived:

¢ Ki(a) = hm 2/ 2n(z — a)(z — a)oy:(z,0)

z—at

= lirfl+ 2y/2n(ar — a)(ar — a)oy:(ar,0)

_ 2aV2maGo o ser [T (r—1) (fl)z

K+ 2 r—rl

[l / ~162(s) +8\Il’(r)] (12.55)

)1 (s—1)
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After cancellation of the common terms, equation (12.55) becomes:

N
Ki(a) = -T2 32 g/a)e% 3 (n + 1)(Au — Ba)- (12:56)

n=0
Similarly,

K((—a) = 8vma G

N
o (l/a)e™ Y (=1)*(n +1)(An — Bn). (12.57)

n=0
Formulas (12.56) and (12.57) are used to obtain the numerical results for SIFs in

Table 12.1, in which N is the number of the collocation points.
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Figure 12.2: Normalized crack profiles at Sa > 0, §=0.10, # =0.01; v=0.3.
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12.3.2 Crack Opening Displacement Profiles

The Mode I crack opening displacement (COD) profiles are given in Figures 12.2 -
12.5.

v(x,0)/(ap,/G,)

-1 -0.8 -0.6 -04 -0.2 o 0.2 0.4 0.6 08 1

Figure 12.3: Normalized crack profiles at 8a < 0, §=0.10, # =0.01; v =0.3.

Figures 12.2 and 12.3 show the trend of the influence of the material nonhomogeneity
(determined by the parameter 3) on the crack opening displacements. If 3 > 0, then
the crack profiles tilt to the left; otherwise (8 < 0), the crack profiles tilt to the right.
This trend is consistent with the classical results of Delale and Erdogan [21]. Figures
12.4 and 12.5 show the effect of the gradient parameters ¢ and ¢ on the crack profiles,
respectively. Figure 12.4 shows that the crack profiles increases as ¢ decreases. An

analogous effect for the parameter ¢’ is shown in Figure 12.5. Notice that the negative
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Figure 12.4: Normalized crack profiles at 8a = 0.25, ¢ = 0.05, 0.1, 0.2, & = 0.01; v =0.3.

values of ¢ allow a more compliant fracture behavior than the positive ones. This is
an important feature of the present gradient elasticity theory based on the Casal’s

continuum.
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Chapter 13

Conclusions and Future Work

13.1 Hypersingular Integrodifferential Equation Method

This thesis incorporates strain-gradient elasticity and graded materials within the
framework of fracture mechanics. Thus, there are two elements that have raveled in

the mathematical manipulation for solution:
1. Higher order strain-gradient elasticity theory.
2. Material gradation.

The first element gives rise to a higher order governing PDE, thus it leads to a
higher order singularity of the derived integral equation. However, by using finite
part integral, in some simple case, we can still find the closed form solution (see

Chapter 9).

The second element, say materials with an exponential type of gradation, does not
raise the order of the governing PDE; however, it always spoils the solvability for
closed form solution (as we have seen in Chapters 2, 4, 10, 11, and 12). The remedy
to this difficulty is to develop a reliable and efficient numerical scheme. For instance,

the capability of exact evaluation of the hypersingular integrals (Chapter 7) offers a
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contribution to this aspect.

Hypersingular integrodifferential equation method is like using one stone to kill two
birds. The method combines the two merits together and resolves the complication. In
this thesis, we have laid out the theoretical framework for the method and developed

the corresponding computational implementation in detail.

13.2 Applicability of the Method

The applicability of the developed method has a wide spectrum. As we have demon-

strated in the thesis, the method can be used to solve crack problems in
e both classical LEFM and strain-gradient elasticity,
e both homogeneous and nonhomogeneous (FGMs) materials,

o different geometric setting of crack location vs. material gradation.

In this study, we also learn that there is a non-trivial interaction between the mate-
rial gradation and the strain-gradient effect (Chapter 3) . Again, the hypersingular
integrodifferential equation approach provides a numerically tractable solution of the

fracture problem and allows to find relevant fracture parameters:
e crack-tip asymptotics,
e crack displacement profiles,
e stress and strain fields, and
o (generalized) stress intensity factors (SIFs).

From the solution we know that material (with exponential) gradation will not affect
the crack-tip asymptotics, while the strain-gradient theory gives different asymp-
totics from the conventional classical LEFM. For instance, the strain singularity is
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eliminated from crack tips in strain-gradient elasticity. Here, we list the crack-tip
asymptotics for the strain-gradient theory:

Displacements ~ 132, Strains ~ /T, Stresses ~ r /%, (13.1)

13.3 Future Work

Some further work can be done in the future.

e Mixed mode problems.
We have solved both Mode I and Mode III crack problems in this thesis. As it
has been pointed out on page 177, in Mode I fracture for FGMs, if the shear
modulus G is a function of both z and y (e.g. G = G(z,y) = Gee’**"), then
it is a mixed mode problem to be solved. In terms of future work, this mixed

mode problem with exponential gradation is probably the most doable one.

e Non-exponential material gradation.
We have assumed that materials possess exponential gradation. However, it
would be more physically tenable if the crack problems can be solved for non-
exponential material gradation. Especially, in the process of producing FGMs,
the mediums are essentially made as two-phase particulate composites synthe-
sized in a variation that the volume fractions of the constituents vary linearly in

the thickness direction to a given predetermined composition profile.

e Three dimensional problems.
Sometimes, by the symmetry of the geometry, one can reduce the dimension
to a lower one; however, it would be desirable if one can solve a general three
dimensional crack problem. Most techniques in complex function theory may
not be applicable in three dimension. Finite element and boundary element are

two of major numerical methods in computational fracture mechanics.
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e Thermal effect and time dependent problems.
One of the most important technological area of FGMs is the high temperature
application. At high temperatures metals (and metal alloys) lose their strength
and toughness. A variety of ceramic/metal composites and ceramic thermal
barrier coating have become very effective in the high temperature designs. Also,
transient problems attracts a lots more interest than the steady state ones if

temperature is considered.

e Experimental corroboration.
Strain-gradient theory has been very controversial and generated a lot of debate
mainly due to its physical meaning. However, recent investigations do show that
size effects are widely observed in many experiments. Strain-gradient theory has
been used to interpret for the size effects. Further experimental corroboration is

needed; for instance, how to physically measure the characteristic lengths ¢ and
¢?

As one can see, further works lead into a more interdisciplinary area and require a

deeper and wider mathematical work.

At the end of this thesis, being an applied mathematician, I like to be always reminded
by

“It is in the nature of human endeavor that technology always looks forward and never
waits for science to provide the fundamental solutions. Whether or not they have the
necessary physically sound tools, the engineers have and will continue to design and
build.”,

said by Professor Erdogan at Lehigh University in his review paper [27] on fracture

mechanics.
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