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Abstract

The fracture parameters characterizing the crack tip fields in functionally graded materials (FGMs)
include stress intensity factors (SIFs) and T-stress (non-singular stress). These fracture parameters
are important for determining the behavior of a crack under mixed-mode loading conditions in brit-
tle FGMs (e.g. ceramic/ ceramic such as TiC/SiC). The mixed-mode SIFs and T-stress in isotropic
and orthotropic FGMs are evaluated by means of the interaction integral method, in the form of an
equivalent domain integral, in combination with the finite element method, and are compared with
available reference solutions. Mixed-mode crack propagation in homogeneous and graded materials
is performed by means of a remeshing algorithm of the finite element method considering general
mixed-mode loadings. Each step of crack growth simulation consists of calculation of mixed-mode
SIFs, determination of crack growth based on fracture criteria, and local automatic remeshing along
the crack path. Crack trajectories obtained by the present numerical simulation are compared with
available experimental results. The history of thé load and SIFs versus crack extension are also

provided for better understanding of fracture behavior of FGMs.
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Chapter 1

Introduction

Functionaliy‘graded materials (FGMs) are a new class of composites in which the volume fractions of
constituent materials vary smoothly, giving a nonuniform microstructure with continuously graded
macroproperties [58, 113]. FGMs possess the distinguishing feature of nonhomogeneity with regard
to thermomechanical and strength related properties including yield strength, fracture toughness,
and fatigue and creep behavior. These multifunctional materials were introduced to take advantage
of ideal behavior of its constituents, e.’g. heat and corrosion resistance of ceramics together with
mechanical strength and toughness of metals. Although the initial emphasis for FGMs focused
on the synthesis of thermal barrier coatings for space-type applications [59}, subsequent investiga-
tions have addressed a wide variety of applications [88, 58, 134]. These include the potential use of
FGMs in nuclear fusion and fast breeder reactors as first-wall composite materials [67]; in electronic
and magnetic applications as piezoelectric and thermoelectric devices, and as high density mag-
netic recording media and position measuring devices (135, 60, 107, 142]; in optical applications,
e.g. graded refractive index materials in audio-video disks [87]; in thermionic applications, e.g.
thermionic converters [30]; in biomaterials, e.g. dental and other implants [143, 106]; and in other
applications, e.g. the development of fire retardant doors [44).

Knowledge of the behavior of cracks in FGMs is important for assessing and enhancing their
structural integrity. Thus this thesis focuses on the evaluation of fracture parameters (i.e. stress
intensity factors (SIFs) and T-stress) in FGMs within the framework of linear elasticity, and sim-
ulates crack growth in FGMs by means of a remeshing algorithm of the displacement-based finite
element method considering mechanical and mixed-mode loadings. Moreover, the FEM results for

such fracture parameters and crack trajectories obtained by the present work are compared with

1



available semi-analytical and experimental results.

1.1 ~ Crack-tip fields in functionally graded materials

Eischen [34] extended the eigenfunction expansion technique of Williams [147], and derived the gen-
eral form of the crack-tip stress and displacement fields in a nonhomogeneous material by assuming

that the material properties are continuous, differentiable and bounded (see Figure 1.1).

P(x) P(x)
e ' *
crack crack
.(a) admissible (b) inadmissible

Figure 1.1: Admissible and inadmissible material variations. The notation P(z) denotes a generic
material property and gy refers to the length over which the property varies.

Figure 1.2 shows a crack in a two dimensional FGM elastic body with prescribed tractions and

displacements on the boundary. The asymptotic crack-tip stresses are given by [34]

Kn

\/—fu( )+ \/— 10) + Toutys + O (L1)

and the corresponding near-tip displacements are [34]

= _-'_{_I_ 1oy 4+ Ku 1
w = uﬁp\/; 0+ 1 [3=st6) + 0t (12)

where K and Ky are the mode I and mode I stress intensity factors (SIFs), respectively, T is

the T-stress, d;; is the Kronecker delta, fi;(8) (4,5 = 1,2) is the standard angular function for the



stresses, and g;(f) (¢ = 1,2) is the standard angular function for the displacements, which can be
found in many references, e.g. [33]. Notice that the material property appears in Eq.(1.2), and the

shear modulus 4 = p(x) is sampled at the crack tip location, i.e. pyp.

Figure 1.2: Cartesian (z1,z2) and polar (r,0) coordinates originating from the crack tip in FGMs
under traction (t) and displacement boundary conditions.

As inferred by Eischen [34], the order of stress singularity, i.e. 7=1/2, of an FGM is the same as for
conventional homogeneous materials. Moreover, the standard angular functions f;;(6) and g;(6) of
an FGM are the same as those for a homogeneous material. However, the material nonhomogeneity
will influence the SIFs and the T-stress. Moreover, the angular functions for the terms O(r!/2)
and higher for the stresses, and for the terms 0(7'3/ 2) and higher for the displacements do change
due to material nonhomogeneity [34]. For instance, recently, Parameswaran and Shukla [111] have
derived the crack-tip fields up to the order of r? for stresses considering an exponentially-graded

material, which varies along the line of a crack in the form
E(z) = EgeP* (1.3)

and constant Poisson’s ratio. In Eq.(1.3), Ey denotes the modulus of elasticity at the crack tip,
and 1/ denotes the length-scale of material nonhomogeneity. The correspondence of the crack-tip

behavior between homogeneous and FGMs provides a basis for local ‘homogenization near the



crack tip [34] (see Figure 1.3).

E kﬁ\

K-T-field

- ;
ERA -~
- i

Figure 1.3: Description of local homogenization near the crack tip in an arbitrary FGM. The radius
€ is the geometric length-scale over which local homogenization is valid, and it is related to the
length-scale of material nonhomogeneity, e.g. 1/0 for exponentially graded materials. A locally
homogenized region (¢ — 0) is subjected to the K-T-field (K, K1, T) of the crack in FGMs.

‘This thesis assumes that material properties are continuous, differentiable and bounded,
and the graded material is locally homogeneous near the crack tip. Based on these assumptions,
this thesis establishes the relationship between asymptotically defined line M-integral and SIFs (or
T-stress), converts the line M-integral to a final form of equivalent domain integral (EDf) using
auxiliary fields adopted from those for a homogeneous material, and calculates SIFs and T-stress

using a finite domain.

1.1.1 Stress intensity factors

Extensive studies have been carried out on fracture mechanics under mechanical {28, 37, 108,
109] or thermal [104, 69, 38, 68, F7O] loading in FGMs. Mixed-mode fracture of FGMs under
fnechanical loadings has been investigated primarily by evaluating mixed-mode SIF's of a stationary
crack. Eischen [34] has investigated the Ji-integral in the form‘ of line ihtegral for mixed-mode
cracks in nonhofnogeneous materials using the finite element method (FEM) Kim and Paulino [76]
have also evaluated mixed-mode SIFs in FGMs by means of the path-independent Jj-integral

using the equivalent domain integral (EDI) and the FEM. Honein and Herrmann [61] have studied
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the path-independent J-integral based on conservation laws for elastic nonhomogeneous materials.
Gu et al. [50] have proposed a simplified method based on the standard J-integral [120] to evaluate
SIFs in FGMs using the EDI and the FEM. They considered material properties at the Gauss
integration points and selected very small domains to avoid the effect of the extra term in the
domain integral due to nonhomogeneity. ‘Anlas et al. [7] have evaluated SIFs in FGMs by the
FEM where the material property variation was discretized by assigning different homogeneous
elastic properties to each element. Chen et al. [23] have presented a modified J-integral for FGMs
using the element-free Galerkin method. Gu et al. [50], Anlas et al. [7], and Chen et al. [23] have
considered a pure Mode I crack where the crack is parallel to the material gradation. Marur and
Tippur [99] have considered a crack normal to the elastic gradient and have performed FEM analysis
along with experiments. Bao and Wang [9] have studied multiple cracking in functionally graded
ceramic/metal coatings using the FEM. Bao and Cai [8] have investigated delamination cracking
and buckling in a functionally graded ceramic/metal substrate under mechanical and thermal loads
using the FEM.

Yau et al. [151] proposed the interaction integral method for evaluating SIFs in homogeneous
isotropic solids. The method is based on conservation laws of elasticity and fracfure mechanics
concepts. It makes use of a conservation integral for two admissible states of an elastic solid:
actual and auxiliary (see also the paper by Haber and Koh [52]). Wang et al. [140] extended the
method to homogeneous orthotropic solids. Yau [150] also used the method for bimaterial interface
problems. Recént;ly, the interaction integral method has emerged as an accurate and robust scheme
for evaluating SIFs in FGMs (31, 117, 79]. For instance, Dolbow and Gosz [31] considered the plane
problem of an arbitrarily oriented crack and used thé extended finite element method (X-FEM), Rao
and Rahman [117] used the element-free Galerkin (EFG) method, and Kim and Paulino [79, 82] used
the FEM to investigate FGMs with multiple cracks and material properties determined by means
of either continuum functions (e.g. exponentially graded materials) or micromechanics models. All
of the above papers are concerned with isotropic FGMs.

In practice, the nature ‘of processing techniques of some FGMs may lead to loss of isotropy.
For example, graded materials processed by a plasma spray technique generally have a lamellar

 structure [124], where flattened splats and relatively weak splat boundaries create an oriented ma-



terial with higher stiffness and weak cleavage planes parallel to the boundary (see Figure 1.4(a)).
Furthermore, graded materials processed by the electron beam physical vapor deposition tech-
nique can have a columnar structure [74}], which leads to a higher stiffness in the thickness direction
and weak fracture planes perpendicular to the boundary (see Figure 1.4(b)). Thus, such materials
would be orthotropic with preferential material directions that are perpendicular to each other. Gu
and Asaro [49] studied orthotropic FGMs considering a four-point bending specimen with vary-
ing Young’s' modulus and varying Poisson’s ratio. Ozturk and Erdogan [108, 109] used integral
equations to investigate Mode I and mixed-mode crack problems in an infinite nonhomogeneous
orthotropic medium with a crack aligned with one of the principal material directions considering
constant Poisson’s ratio. Kim and Paulino (78, 81] evaluated mixed-mode SIFs for cracks arbi-
trarily oriented in orthotropic FGMs using the modified crack closure (MCC) method and the
path-independent J}-integral, respectively. Recently, Kim and Paulino (80, 84] extended the inter-
action integral method to orthotropic FGMs, and evaluated SIFs with high accuracy. Because of

the accuracy and robustness, the interaction integral method is used for this work.
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Figure 1.4: Cross-section microscopy of FGMs: (a) lamellar NiCrAlY-PSZ FGM processed by
plasma spray technique (Sampath et al. [124]); (b) columnar ZrO; — Y203 thermal barrier coat-
ing with graded porosity processed by electron beam physical vapor deposition (Kaysser and

Ilschner [74}).

1.1.2 T-stress

Although SIFs are well-known fracture parameters, T-stress is less understood, and thus its impli-

cations in fracture of FGMs need to be investigated further. For homogeneous materials, T-stress



has a significant influence on crack growth under mixed-mode loading [146, 138, 133] and crack path
stability in mode I loading considering a small imperfection {27]. T-stress has a significant influence
on crack-tip constraint and toughness (32, 105]. Because of the importance of T-stress in fracture,
investigations of T-stress have been extensively performed for homogeneous materials. Larsson and
Carlsson [92] investigated T-stress in mode I loading and found that it affects the size and shape
of the plastic zone. Leevers and Radon [94] used a variational formulation to evaluate T-stress.
Afterwards, Cardew et al. [16] and Kfouri [75] used the path-independent J-integral in conjunction
with the interaction integral to calculate T-stress in mode I crack problems. Sladek et al. [132]
used another type of path-independent integral, based on Betti-Rayleigh reciprocal theorem, for
evaluating T-stress in mixed-mode loading. Recently Chen et al. [22] investigated T-stress under
mode I loading by means of both the Betti-Rayleigh reciprocal theorem and Eshelby’s energy mo-
mentum tensor (i.e. path-independent J-integral) using the p-version finite element method, and
addressed the accuracy of numerical computations,

For brittle FGMs (e.g. MoSiz/SiC [18], TiC/SiC [70]), T-stress has a significant influence in
crack initiation angle [82] and crack stability. However, it is worth mentioning that the present
analysis is not analogous to the influence of T-stress in changing “constraint”, as discussed in
many references [32, 105, 92, 5]. Considerations of “constraint” are not applicable to the analysis
of ideal linearly elastic brittle materials (cf. [133]). Recent work in the field of FGMs include
that by Becker et al. [72] who have investigated T-stress and finite crack kinking by using a
hyperbolic-tangent material gradation with steep gradient of Young's modulus. They found that

_ T-stress in FGMs is affected by both the far-field loading and the far-field phase angle, and that the
magnitude of T-stress in FGMs is, on average, greater than that for homogeneous materials with
-identical geometry. They calculated T-stress using the stress difference along 6 = 0, i.e. 05z — 0.
On the other hand, Kim and Paulino [82], and Paulino and Kim [114] evaluated T-stress in FGMs
using the interaction integral in conjunction with the FEM, and obtained quite accurate results.
All of the papers given in this paragraph are concerned with isotropic FGMs.

For anisotropic linearly elastic homogeneous solids, Gao and Chiu [43} investigated slightly
curved or kinked cracks under mode I loading in orthotropic elastic solids by means of perturbation

analysis, which is based on complex variable representations in the Stroh formalism. They also



investigated the effects of mode-mixity, material orthotropy, and T-stress on the behavior of a nearly
symmetric crack. Yang and Yuan [148] evaluated the elastic T-stress and higher-order coefficients
in the crack tip fields in an anisotropic elastic solid by means of path-independent integrals (J-
integral and Betti-Rayleigh reciprocal theorem) and the Stroh formalism. Yang and Yuan [149] also
investigated a kinked crack in an anisotropic elastic solid, and evaluated T-stress, stress intensity
factors and energy release rates at the main and kinked crack tips by using the integral equation
method and the Stroh formalism. All of the above papers in this paragraph are concerned with
homogeneous materials. For orthotropic FGMs, Kim and Paulino [85, 84] extended the interaction
integral method to evaluating T-stress with reasonable accuracy, and used the Lekhnitskii and

Stroh formalisms.

1.2 On a boundary layer model for FGMs

A boundary layer model is presented for FGMs. Marur and Tippur [99] investigated crack-tip stress
fields of FGMs using the FEM, and compared numerically obtained angular stress distribution with
the asymptotic stress fields for homogeneous materials. This section investigates the behavior of
crack-tip fields of exponentially graded materials by means of a bouﬁdary layer model, and focuses
on the evaluation of auxiliary fields for FGMs.

Figure 1.5(a) illustrates the boundary layer model (e.g. see {5]) for FGMs. Figure 1.5(b) shows
the FEM mesh discretization which consists of total 1764 elements with 1728 Q8 elements and 36
T6 elements, e.g. 36 elements in the hoop direction and 49 elements in the radial direction. Young’s

modulus varies exponentially as given by (see Figure 1.5(a))

E(z1) = Epexp (6z1) = FEyexp (X1 +vXa), (1.4)

v = constant = 0.3, (1.5)

where Ey = 1, X = (Xj, X3) refers to a global coordinate system, z; is the direction of material

gradation (inclined by 6,, with respect to the X; coordinate), and the nonhomogeneity parameters



d, B, and « are related by

B =dcosbpy, v=0dsinb,y,. (1.6)

(b)

Figure 1.5: Boundary layer model for FGMs: (a) boundary layer model subjected to traction
(t; = oijn;) or displacement (u;) loading. Material properties vary along the z; direction inclined
by 0m; (b) the complete finite element mesh using quadratic (Q8 and T6) elements.

The loads can be applied along the outer boundary considering either tractions (t; = oy;n;)
corresponding to the asymptotic stresses for a homogeneous material given by [34, 147]
K1 o Kir .np
L= 1(0 10 1.
Ui] \/ﬁfzg( )+ \/2—7?;: z]( )1 ( 7)

or corresponding near-tip displacements given by [34, 147]

Ky [r K T
w= [ 2gl0)+ =L [ Tglle). (18)

Htip

The alternative expressions for the asymptotic stresses have been derived by Erdogan [35] for

exponentially graded materials with constant Poisson’s ratio, and the stress fields are given by [35]

- 0ij(r,0) = exp[r(Bcosf + vsin ) [—\/I%f,-’j(o) + % ,-’j’(O)] . (1.9)

A study of the region of dominance of stresses given by Egs.(1.6) and (1.8) was presented by Anlas
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et al. [6].

Figure 1.6 shows FEM results for stresses obtained considering Mode I displacement loading,
ie. Eq.(1.7) with K;; = 0, and material gradation in the X direction and 8 = 1.0. The range of
Young'’s modulus [E(X;=-1) E(X1=+1)] = [0.367 2.718]. As expected, due to material gradation,
the angular functions for stresses vary with the distance r, however, this behavior is not observed
for a homogeneous material. Notice that the shear stress 019, obtained numerically, is almost zero
at 8 = 0°. The normal stresses 011 and o9 for the angle —180° < 6 < 0° are symmetric along the
6 = 0° line, and the shear stress o1 are anti-symmetric along the 6 = 0° line.

Figure 1.7 shows FEM results for stresses obtained considering Mode II displacement loading,
l.e. Eq.(1.7) with K; = 0, and material gradation in the X; direction and 8 = 1.0. Again, due
to material gradation, the angular functions for stresses vary with the distance r. Notice that the
normal stress 032, obtained numerically, is almost zero at § = 0°. The shear stress oo for the
angle ~180° < 6 < 0° is symmetric along the @ = 0° line, and the normal stresses o1; and o9y are

anti-symmetric along the 8 = 0° line.

Displacement loading (B=1)

0 4'5 9I0 135 180
Angle (6)

Figure 1.6: FEM results for stresses obtained coﬁsidering Mode I displacement loading and

E(X1) = EpexpPX1 with 8 = 1.0. The range of Young’s modulus [E(X;=-1), E(X;=+1)] =
[0.367, 2.718).

The displacements, strains, and stresses obtained for an exponential material gradation parallel
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Displacement loading (B=1)
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Figure 1.7: FEM results for stresses obtained considering Mode II displacement loading and
E(X1) = Epexp®X! with 8 = 1.0. The range of Young's modulus [E(X;=-1), E(X1=+1)] =
[0.367, 2.718].

to the crack line satisfy three relations of mechanics, i.e. equilibrium, compatibility, and constitutive
relations, and they can be used as auxiliary fields for the interaction integral method in such a
specific case. However, the type of material gradation is not restricted to the above case, and the
fields for a general type of material gradation, e.g. micromechanics models, can be obtained in a
similar manner.

Figure 1.8 shows FEM results for stresses obtained considering Mode I displacement loading
and material gradation in the z; direction inclined by 6,,, = 45° and § = 1.0. Even under the mode
I loading, due to material gradation in the inclined direction, the angular functions for stresses are
not symmetric along the 8 = 0° line, and they vary with the distance r. Notice that the shear
stress oyp is non-zero at 6 = 0°, i.e. Kry # 0.

Figure 1.9 shows FEM results for stresses obtained considering Mode I displacement loading
and material gradation in the X, direction inclined by 8,, = 90° and v = 1.0. Again, the angular
functions for stresses are not symmetric along the § = 0° line, and they vary with the distance r.

Notice that, again, the shear stress o2 is non-zero at = 0°, i.e. K n#0.
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2 Displacement loading (5=1.0)

P -90 0 90 180
Angle (8)

Figure 1.8: FEM results for stresses obtained considering mode I displacement loading and material
gradation in the z; direction inclined by 6, = 45°, i.e. E(z;) = Ey exp‘s""'1 with = 1.0. The range
of Young's modulus [E(z;=-1), E(z=+1)] = [0.367, 2.718].

1.3 Crack growth in functionally graded materials

Stress intensity factors (SIFs) are important for determining the crack growth direction under
mixed-mode loading conditions in brittle FGMs (e.g. ceramic/ceramic such as TiC/SiC). The
mixed-mode SIFs in FGMs are functions of material gradients, external loading and geometfy. The
material gradients do not affect the order of singularity and the angular functions of the singular
crack tip fields, but do affect the SIFs. Thus, as explained in the introducﬁon the singular crack-tip
fields of FGMs take the same forms as those for homogeneous materials. Here we also consider the
local homogenization argument discussed by Gu and Asaro [48] (cf. Figure 1.3).

Assuming the local homogenization crack initiation angles can be predicted by using the same
fracture criteria as for a homogeneous material. For instance, these criteria include maximum hoop
stress [36], maximum energy release rate [66, 110], minimum strain energy density {130], K1; =
0 [27], and W-criterion [141, 46]. Recently, Bouchard et al. [13] investigated crack propagation

in homogeneous materials, and compared various criteria in terms of crack path prediction. In
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” Displacement loading (y=1.0)

90, 180

0
Angle (6)

Figure 1.9: FEM results for stresses obtained considering mode I displacement loading and material
gradation in the X, direction (6, = 90°), i.e. E(X3) = Epexp?? with v = 1.0. The range of
Young'’s modulus [E(X2=-1), E(X=+1)] = [0.367, 2.718].

this thesis, the maximum hoop stress [36] and maximum energy release rate [66] criteria are used
to determine crack initiation angles and to check crack growth stability. In addition to crack
initiation angle, crack increment is also important to determine crack trajectory. The present
approach uses a user-defined crack increment, which needs to be provided at the beginning of each
step. For homogeneous materials, Hori and Vaikuntan [62] proposed a formulation to determine
the curvature and length of a small crack extension. Thorough investigation on crack increment in
FGMs is needed, but it is out of the scope of the present work.

Gu and Asaro (48] investigated crack deflection in brittle FGMs by considering exponential
gradation perpendicular to the crack, and used Kj; = O criterion {27]. They investigated the
effect of material nonhomogeneity‘ on kink angles for three-point bending, double cantilever, four-
point bending, and center-cracked specimens. Becker et al. [72] investigated finite crack kinking
by considering a hyperbolic-tangent material gradation with steep gradient of Young’s modulus.
They used the maximum energy release rate [110] and K5 = 0 [27] criteria. On the other hand,

there are an increasing number of fracture experiments on crack growth in FGMs in the literature.
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Lin et al. [96] investigated mode I fracture of aluminium alloy 2124/SiC FGMs where a crack is
parallel to material gradation. Moon et al. [101] investigated crack growth resistance (R-curve)
behavior of multilayer graded alumina-zirconia FGMs considering a crack parallel to the material
gradation. Carpenter et al. [17] performed fracture testing and analysis of a layered functionally
graded Ti/TiB beam subjected to three-point bending. Rousseau and Tippur [123] performed
experimental and numerical investigations on crack kink angles and crack growth for a crack normal
to the material gradient in an FGM beam, made of solid A-glass spheres dispersed within a slow
curing epoxy matrix, subjected to four-point bending. Lambros et al. [91] and Abanto-Bueno and
Lambros (1] investigated mode I crack growth for an edge crack in FGMs subjected to fixed-grip
loading. The FGMs are fabricated using a polyethylene 1% carbon monoxide co-polymer (ECO)
which is subjected to controlled ultraviolet (UV) irradiation time throughout the specimen.

The main focuses of this thesis consist of the accurate evaluation of mixed-mode SIFs using
the interaction integral method, the use of selected fracture criteria for crack initiation angles, and
the simulation of mixed-mode crack propagation in homogeneous and nonhomogeneous materials.
The current approach is mainly concerned with brittle materials, which is characterized by stress

intensity factors in linear elastic crack-tip fields.
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Chapter 2

Graded finite elements for
nonhomogeneous materials

2.1 Introduction

Graded finite elements are presented to model and discretize nonhomogeneous materials. Such
elements possess a spatially varying material property field, e.g. Young’s modulus (E) and Poisson’s
ratio (v) for isotropic materials; and principal Young’s moduli (Ej;, Eas), in-plane shear modulus
(G12), and Poisson’s ratio (v12) for orthotropic materials. This chapter verifies the formulation
of graded finite element, and investigates the behavior of graded and conventional homogeneous
elements considering various loading conditions in both isotropic and orthotropic nonhomogeneous
materials with respect to available analytical solutions. Figure 2.1 compares the graded elements
with conventional homogeneous elements. The graded element incorporates the material property
gradient at the size scale of the element, while the homogeneous element produces a step-wise
constant approximation to a continuous material property field. The framework described here can
serve as the basis for further investigations such as thermal and dynamic problems in functionally

graded materials.

2.2 Basic finite element }formulation

Displacements for an isoparametric finite element can be written as

m
ut = ZNi uf, . (2.1)

i=1
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E(x)

(a) (b) (o)

Figure 2.1: Homogeneous versus graded finite elements. (a) Property variation along one coordinate
axis; (b) homogeneous elements; (c) graded elements. Notice that the property of the homogeneous
element corresponds to the property at the centroid of the graded element.

where N; are shape functions, u¢ is the nodal displacements corresponding to node i, and m is the

number of nodes in the element. For example, for a Q4 element, the standard shape functions are
Ni=(1+&)1+mm)/4, i=1,..,4 (2.2)

where (€,7) denote intrinsic coordinates in the interval [~1,1] and (&;, 7;) denote the local coordi-

nates of node i. Strains are obtained by differentiating displacements as

(]

€t = B® v, | (2.3)

where B® is the strain-displacement matrix of shape function derivatives. The strain-stress relations

are given by

0° = D) €, (2.4)

where D®(x) is the constitutive matrix, which is a function of spatial position, i.e. D%(z) =

D¢(z,y). For example, for plane stress,

1 wvz) O
De(w)—lf,(jf()m) ve) 1 0 (2.5)
0 0 1¥»
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and, for plane strain,

1-v(z) v(x) O

e _ E(a:)
D@ = i@ =@y | Y@ 1-v@) o . (2.6)
0 0 1-—2!2/!(13!

The principle of virtual work yields the following finite element stiffness equations [65]
K ut = o, ke = / B D°(z) B* d9, | @2.7)
Qe

where f€ is the load vector, k° is the element stiffness matrix, and Q, is the domain of element (e).

A system of algebraic equations is assembled such that

Ku=F, Kjg=) ki, Fi=> f. (2.8)

The linear system and the derivatives (e.g. strains and stresses) are recovered using standard

procedures.

2.2.1 Generalized isoparametric formulation

Material properties (e.g. at each Gaussian integration point) can be interpolated from the nodal
material properties of the element using isoparametric shape functions which are the same for

spatial coordinates (z,y):

m m
= Z N; z;, y= ZN,; Y (2.9)
and displacements (u,v): ‘
m m
U= ZN, Ui, V= ZN,; IR (2.10)
©i=1 i=1

Thus, by generalization of the isoparametric concept, the Young’s modulus E = E(z) and Poisson’s

ratio v = v(a) are interpolated as

m m
E= ZN,’ E;, V= ZN,' Vi, (2.11)
i=1

i=1
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respectively, as illustrated by Figure 2.2(a).

P(X)

(a) (b)

Figure 2.2: Graded finite elements: (a) Generalized isoparametric formulation (GIF); (b) Direct
Gaussian integration formulation. The above figure illustrates a graded Q8 element and P(x)
denotes a generic material property, e.g. Young's moduli, shear modulus, or the Poisson’s ratio.
The material properties at the Gauss points (Pgp) are either interpolated from nodal material
properties (P;) by Pgp = ), N;P; where N are element shape functions or directly sampled.

Similar expansions can also be made to two-dimensional orthotropic materials where the four
independent engineering elastic parameters are the principal Young's moduli, Ey; = Ej (), By =

Eg(), in-plane shear modulus G2 = G2(x); and Poisson’s ratio g = via(z), ie.

m m
Bu=)_N;(En), En=)Y N (En),

=1 i=1

. m m

Giz=)_ Ni(Gi2)iy wvi2=) Ni(vpa)s (2.12)
i=1 i=1

Unlike the isoparametric formulation, the polynomial order of interpolation functions can be
independently selected for displacements and material properties. The characteristics of such non-
isoparanietric formulations can be explored based on those for conventional subparametric and

superparametric elements in the FEM [10, 26].

~ 2.2.2 Direct Gaussian integration formulation

" The'integral of Eq.(2.7) is evaluated by Gaussian quadrature, and the matrix Df(x) can be directly

L specified employing the Young's modulus and the Poisson’s ratio at each Gaussian integration point

(see Figure 2.2(b)). Thus, for 2D problems, the resulting integral becomes

1

k= 35N B Dog) BEt g Wi W, (2.13)
j .
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where 7 and j indicates the corresponding Gauss sampling points in the element, £=(&,n), J is
the determinant of the Jacobian matrix, i.e J=det(J), and W; is the weight corresponding to each

Gauss point.

2.3 Mechanics models for nonhomogeneous materials

Mechanics models for FGMs include continuum models and micromechanics-based models. Contin-
uum models are expressed in the form of explicit functions for material properties (i.e. exponentially
graded materials). On the other hand, micromechanics-based models involve discrete material prop-
erties in terms of volume fractions. For instance, such material models may be given in terms of the
volume fraction (V') of a material phase, “p", e.g. the metal phase in a ceramic/metal FGM [71]. In

this case, the generalized isoparametric formulation approximates VP by the standard interpolation

VP = iN,- Ve, (2.14)
i=1
where VP (i = 1,2, ...,m) are the values of V? at the nodal points. This approach offers a convenient
framework to couple the FEM with micromechanics-based models, e.g. self-consistent method. The
details on several micromechanics models are given in Appendix A.1.
The above framework allows development of a fully isoparametric formulation in the sense that
the same shape functions are used to interpolate the unknown displacements, the geometry, and

the material properties. Thus, the actual variation of the material properties may be approximated

by the element interpolation functions (e.g. a certain degree of polynomial functions).

2.4 Exact solutions for nonhdmogeneous elasticity

’Exact solutions for both isotropic and o_rthotrdpic FGMs will be used as reference solutions for
the numerical examples that follow. Let’s consider‘ an orthotropic functionally graded plate of
infinite length and finite width subjected to various loading conditions such as remote fixed grip,
tension, and bending, as shown in Figure 2.3. Both exponential and linear material variations are

considered. First, analytical solutions for stresses and displacements are developed for orthotropic
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FGMs and, afterwards, they are particularized (e.g. in the limit) for isotropic FGMs. The analytical
solutions for exponentially graded isotropic FGMs coincide with those of Erdogan and Wu [39]. The

analytical solutions for linearly graded isotropic and orthotropic FGMs are derived in the paper by

Kim and Paulino [77].

2.4.1 Exponential material variation

Let’s consider a plate under plane stress conditions (see Figure 2.3) made of a nonhomogeneous
orthotropic material. Assume the Poisson’s ratio (v12) constant, and the Young's moduli and

in-plane shear modulus with variations given by the following expressions:

En(z) = E?l efir z
Exn(z) = E32 P2z
Glz(w) = Gll)z eﬁ12 :z:,

vi2(z) = constant, (2.15)

where Ef; = E1;(0), E, = E(0), and G, = G12(0) are the material properties at the x = 0
line (see Figure 2.3(a)), and the coefficients Bi; above are independent nonhomogeneity parameters

characterized by

_ 1. [Eu(W)]
ﬁll - Wlog | Eu(O) ] b
_ 1 [Ee(W)]
ﬁ22 - Wlog i E22(0) ] )
1 [Ge(W)]
1, [GrW) 2.1

where W is the width of the FGM plate as shown in Figure 2.3. Notice that in this case the Bij

parameters have units [Length)~1.

For a corresponding nonhomogeneous isotropic material (E=E);=FEj3, v12=v), the Poisson’s
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ratio is assumed constant and Young’s modulus varies exponentially, i.e.

E(z) = E%P*
v(z)

constant (2.17)

where E0 = E(0). The nonhomogeneity parameter £ is given by

1 E(W)] | 218

ﬂ=Wlog [E—(O-)—

which has units [Length]~!.
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Figure 2.3: A graded plate: (a) geometry — the shaded region indicates the symmetric region of
the plate used in the present FEM analyses; (b) fixed-grip loading; (c) tension; (d) bending. The
displacement boundary conditions shown in (a) remain the same for all the three loading conditions.
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Fixed-grip loading

For fixed grip loading (see Figure 2.3(b)) with e, (x, y) = &, the stress distribution becomes
ayy(z) = Ey €9 €72 7, (2.19)

Using strain-displacement relations and the boundary conditions

u(0,0) =0 , uy(z,0)=0, (2.20)
one obtains the displacements [77)
EJ 1
uz(Z,y) = —vi2 50"E—§'f' m [e(ﬂ”—ﬁ“)m — 1]
uy(e,y) = €oy. (2.21)

Notice that for isotropic materials (E=E;1=Ej, v12=v), the stress distribution Eq.(2.19) be-

comes [39]

oyy(@) = E° €9 ¢,  (2.22)

and the displacements are obtained in the limit of Eq.(2.21) as (B2 — B11) — 0. Thus

uz(2,y) = —~vepz

uy(z,y) = ey (2.23)

Tension and bending

For tension and bending loads (see Figures 2.3(c) and 2.3(d), respectively), the applied stresses are

defined by

o 2
N=o, W , M=""g’,

(2.24)

where N is a membrane resultant along the z = W/2 line (see Figure 2.3(a)), and M is the

bending moment. For these two loading cases, the compatibility condition 626yy/6x2 = 0 gives
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€yy = Az + B, and thus
oyy(x) = EY 2% (Az + B) (2.25)

where the constants A (with unit [Length]~!) and B (dimensionless) are determined from
w w
/ oy(zyde=N / oyy(z)z doe =M (2.26)
0 0
by considering

M = NW/2 for tension

N=0 for bending. (2.27)

Thus, for tension load, the stress distribution is given by Eq.(2.25) with [77)

A = BuN (Wﬁ%aef’zzw —~ 2Ba0eP2W + WSS, + 2ﬂ22) ’ (2.28)

2 Eg2 ef2W ’332W2 — e2B22W 4 9eB22W _ 1

g = BN (-W2Bhe# W + 3W nef2W — daWel2W + Wi +4
= 2E82 eﬂzzW‘g§2W2 — €2PnW | 9ePnW 1 .

For bending load, the stress distribution is also given by Eq.(2.25), however, the coefficients A and
B for this case are [77]

4 = M Ba2 (1 — ef=W)

- Eg2 ebaW ﬁ%2W2 — e2B22W | 9eB22W _ 1 ]
B - ’3%2 M BaaWeP22W _ ef22W 4

- Egz eﬁ22Wﬂ§2W2 — 2622V 4 9ef02W _ 1 )

(2.29)

respectively. For both tension and bending loads, using the strain-displacement relations and the

boundary conditions (2.20), one obtains the displacements [77]

.
, B}, B22 — B (B22 — B11)? 2
uy(z,y) = (Az+B)y. (2.30)
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The constants A and B refer to the appropriate loading case above, either tension (Eq.(2.28)) or
bending (Eq.(2.29)).

For the isotropic case (E=E)1=Fj3;, v12=v), the stress distribution is obtained by Eqs.(2.28)
and (2.29) (for tension and bending loads, respectively) with B2 replaced by 8, which agree with
Erdogan and Wu’s [39] solution. The displacements are obtained in the limit of Eq.(2.30) as
(Ba2 — B11) — 0. Thus

oy = (A2 Y_A 2
ug(z,y) = v (Zz -l-B(L) 2y
uy(z,y) = (Az+ B)y. (2.31)

2.4.2 Linear material variation

For a plate under plane stress conditions, as illustrated by Figure 2.3, let’s assume the Poisson’s
ratio (vi2) is constant, and the Young’s moduli and in-plane shear modulus with variations given

by the following expressions:

Eyy(z) EY + s,

Exn(z) = E + 7o,

Gz(z) GY% + Moz,

via(z) = constant, : (2.32)

where EY; = E1;(0), EY, = E(0), and GYy = G12(0) are the material properties at the z =
0 line (see Figure 2.3(a)) and the coefficients v;; are independent nonhomogeneity parameters

characterized by |

Eyn (W) — Ey(0)

" = W '
_ Exn(W) - Ex(0)
Y2 = W )
G12(W) - G12(0
T2 = 12( )W 12( )_ (2.33)

Notice that in this case the v;; parameters have units [Force]/[Length)3.
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For a corresponding nonhomogeneous isotropic material (E=FE);=Eq, vio=v), the Poisson’s

ratio is assumed constant and the Young’s modulus varies linearly, i.e.

E(@) = E°+na,

v(z) = constant, (2.34)

where E° = E(0). The nonhomogeneity parameter « is given by

= ﬂw_)‘%@ (2.35)

which has units [Force]/[Length]®.

Fixed-grip loading

 For fixed grip loading (see Figure 2.3(b)) with &y, (z,y) = €q, the stress distribution becomes
ayy(e) = €0 (B + Y222)- (2.36)

Using strain-displacement relations and the boundary conditions given by Eq.(2.20), one obtains

the displacements [77]

EY In(EY, + v E°. In(ED + -
u:c(fl?,y) = —Vi2 & {122%_}_ 22 ( 11 T 722 )_’)’22 11 (211 71 )
7 11 e
E2 99 20
- (—2—2 -1 22'_11) ln(E?I)}’
m i1 ‘
uy(a:,y) = &Y. | (237)

For isotropic materials (E = Ej; = Ej, v12 = v), the stress distribution (2.36) becomes

oyy(z) = €0 (B° + y2), (2.38)
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and the displacements are obtained from Eq.(2.37) as

u:c(w’y) = —veguo,

uy(z,y) = eoy. (2.39)

Tension and bending

For tension and bending loads (see Figures 2.3(c) and 2.3(d), respectively), the applied stresses are
defined by Eq.(2.24). For these two loading cases, the compatibility condition 8%y /02? = 0 gives
€yy = Az + B and thus

ayy(z) = (B3 + y22z) (Az + B), (2.40)

where the constants A (with unit [Length]~!) and B (dimensionless) are determined from Eq.(2.26).
Thus, for tension load, the stress distribution is given by Eq.(2.40) with [77]

6722W3 + V22 ERW? + (ES)?W 6722W3 + Y22 E. 2W2 + (ER)*W
For bending load, the stress distribution is also given by Eq.(2.40) with 77
3v22W2+3ESL W
—36M (2EL, + 12 W) M 2B, +12W) S o 2.4
= Y%,W5 + 6E 0122 WA+ 6(E%)2W3' © ~ Y2 W5 + 6F. 9720 W4 + 6(ES,)2W3’ '

For both tension and bending loads, using the strain-displacement relations and the boundary

conditions given by Eq.(2.20), one obtains the displacements as [77]

EY 1224 2B Eng)

Uz (T, = -y -~ - - T
=(@:3) . { ( 7 m m

+722-4 24+ (E”B E11722B il 2 -_i- (E5)° 722A) In(yiz + EY),)

2 T ¥ g5t B
_ ( E%B}) ~ By B — B} E{ A + (BD)?y204 In(E%) b — Ao
7 n oY
1

uy(z,y) = (Az+B)y. ' (2.43)

For the isotropic case (E = Eyy = Eg3, v12 = v), the stress distribution is obtained by Egs.(2.41)
and (2.42) ( for tension and bending loads, respectively) with v, and EY,, replaced by ~ and E?,
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respectively. The displacements are obtained from Eq.(2.43) as

u:c(may) = -V (i;'wz'*'Bm)"'fz—lyQa
w@y) = (Az+B)y. (2.44)

Notice that the form of the exact solutions for displacements in orthotropic FGMs differs sig-
nificantly from that for isotropic FGMs because the former case depend on two principal Young’s

moduli, while in the latter case the explicit moduli dependence is absent.

2.5 Numerical examples

Although the FEM offers a lot of flexibility in terms of modeling material property variation,
the actual choice of properties and boundary value problems in this section was dictated by the
analytical solutions derived in Section 2.4 for the plate configuration of Figure 2.3. Here the
analytical solutions are compared with the numerical ones.

To verify the present formulation, the boundary conditions of the FEM models are identical
to those for the exact solutions. The exact solutions are obtained considering an infinitely long
strip for the tension and bending loads, and finite length for the fixed-grip loading. Thus, for the
tension and bending cases, the boundary conditions are satisfied by applying the analytical stress
distributions (i.e. Eq.(2.25)) on the top edge of the finite plate.

The first example serves as verification, and it considers a finite plate subjected to the analytical
stress distributions corresponding to the far-field tension. The second example investigates the
performance of graded finite elements using finite length. The numerical results obtained for a
finite plate under tension or bending loads (not analytical stress distributions) may not reach the
exact solutions with a certain accuracy level because of the mismatch of the boundary conditions,

but can be approximation to the exact solutions.

2.5.1 Verification example

This example is presented for the verification of the formulation of graded finite elements in the

context of element stiffness matrix. Figure 2.4 shows geometry and BCs for a finite FGM plate

27



subjected to the analytical stress distributions corresponding to the far-field tension.

TN

_ El=1 E2=

1]

T| | Ex)=E,eP*
v =0.3

X X

20O O O O
I Ww=1 !

Figure 2.4: Verification example: a finite FGM plate subjected to the exact stress distributions
corresponding to far-field tension.

Young’s modulus varies exponentially as given by Eq.(2.17) with
Ey=E’=E(0)=1 and E;=E(W)=5, (2.45)

and Poisson’s ratio is constant, i.e. v =0.3.

The discretization error can be quantified by the error in the energy norm ||e|| defined as {153,

115]

1/2
lell = ( |- ere/"D@)e - ers) dn) By (2.46)

where € and epg are the exact and finite element strain fields, D(x) is the constitutive matrix of
FCMs, and § is the domain of the problem. Figure 2.5 shows the error in the energy norm |e||
calculated considering the whole plate, and also gives useful information on the convergence rate.
The notation h denotes the size of the square element. This figure ensures the correct evaluation
of the element stiffness matrix of graded finite elements. The 8-node (Q8) quadrilateral elements
with 3 x 3 and 2 x 2 Gauss quadrature provides higher accﬁracy and convergence rate than those

for 4-node (Q4) quadrilateral elements.
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Figure 2.5: Error in the energy norm ||e|| of the problem. The slopes indicate convergence rates.

2.5.2 Plate under far-field loadings

This example is divided into two groups:

1. Isotropic FGM plate

2. Orthotropic FGM plate

For each group, two material variations along the Cartesian direction = are examined:
1. Exponentially graded materials

2. Linearly graded materials

and also the following loading conditions are considered:

1. Fixed grip

2. Tension loading

3. Bending loading

For fixed grip loading (see Figure 2.3(b)), the stress oy, is considered. For tension applied
parallel to the material gradation, the stress o, is the quantity of interesﬁ, while for tension
and bending loads applied perpendicular to the material gradation (see Figures 2.3(c) and 2.3(d),
respectively), the stress oy, is the quantity of interest. Moreover, for a few of the examples, the

displacements computed numerically are also compared with the analytical solutions.
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The finite element meshes consist of square elements (Q4 or Q8) with edges of unit length. For
all the examples, 2x2 Gauss quadrature was employed. All the numerical stress values reported
here are nodal values extrapolated directly from the Gauss points and without any averaging. The

finite element program developed in this work was implemented in a simple code using MATLAB.

Isotropic FGM plate

Figure 2.6 illustrates an isotropic FGM plate with material variation in the Cartesian direction
x subjected to various loading conditions. Figure 2.6(a) shows the basic geometry, boundary
conditions and properties. The FEM mesh consists of 9x9 Q4 or Q8 elements (either graded or

homogeneous) as illustrated in Figures 2.6(b) to 2.6(d).

o=1
y w=9
T E (x) E (x)
- V = constant v=03
X
-+ L) () ()
LlEseahins ettt f R N R Fr Y
(@ (b)
2
=1-2xX
G (x)=1-2
T . E@,v=00
4
E (x) N
v=03 M o=1
Am R i;uiaf’:-r’mm-‘!ﬁ"‘é“:’ff-;)PII)S‘:,‘%: 7 é
©) | ()

Figure 2.6: Isotropic FGM plate with material variation in the z direction: (a) geometry, bound-
ary conditions and material properties; (b) tension load perpendicular to material gradation; (c)
bending load; (d) tension load parallel to material gradation. The finite element mesh (9 x 9 quads:
either Q4 or Q8) is illustrated in parts (b) through (d) with a representative Q4 element at the
upper left hand corner.
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The Young’s modulus varies from
Ey = E° = E(0) to E;=E(W) (2.47)

either exponentially as given by Eq.(2.17) or linearly as given by Eq.(2.34) with F,=1.0 and E»;=8.0.
The independent nonhomogeneity parameters are given by Eqgs.(2.18) and (2.35) for the exponential

and linear material variations, respectively, with

B =(In(8/1))/9 and ~=17/9. (2.48)
Consistent units are employed here. The Poisson’s ratio is constant and it is selected as follows:

vr=03 for tension and bending applied perpendicular to material gradation
(Figures 2.6(b) and 2.6(c), respectively)

v=00 for tension load parallel to material gradation (Figure 2.6(d)).

The behavior of the elements (homogeneous versus graded) is as follows. Figures 2.7 and 2.8
show the stress g, and displacements versus z for én exponentially graded isotropic plate subjected
to a uniform displacement in the y direction with ep = A/H. According to Eq.(2.22), the sfress
oyy is uniform in the y direction and thus the graph of Figure 2.7 is applicable to the entire range
of y coordinates, i.e. 0 <y < H (see Figure 2.6(a)). In this case, the solutions obtained with
graded Q4 elements matches the exact solution well. Figure 2.7 also shows that the stress obtained
with homogeneous Q4 elements is piecewise constant due to the fact that these elements have
a single value for each material property, which leads to a piecewise constant material property
approximation as illustrated by Figure 2.1. Therefore such homogeneous elements tend to predict
the actual stress values only at their centroids where the properties match the material gradation.
Moreover, the amplitude of the nodal stress jumps for homogeneous Q4 elements increases with
the coordinate z in a nearly exponential fashion, as illustrated by Figure 2.7. These observations
are consistent with those by Santare and Lambros [125]. Of course, the accuracy of the solutions

is improved with higher-order graded elements, e.g. Q8 (cf. Figure 2.5). The homogeneous Q8
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elements also lead to a piecewise constant nodal stress profile with the stress at the midnode location

along the z direction matching the exact stress value, which occurs because the material properties

at the mid-nodes match the actual material properties.

T T T T T T T T

10t Exact 1
-+- Q4 Graded
o Q4 Homog

Figure 2.7: Stress distribution (oyy) using Q4 elements for fized grip (e = A/H) load applied
perpendicular to the ezponential material gradation.

Figures 2.9 and 2.10 compare nodal stresses oy, interpolated from stresses at Gauss integration
points using graded and homogeneous Q4 and Q8 elements, respectively, which are subjected to
tension loading applied perpendicular to the material gradation. Figures 2.11 and 2.12 show such
comparison considering linear material variation. On the left side of the domain in Figures 2.9
to 2.12, the exact solution shows an increasing trénd of oy with z, while the homogeneous elements
(either Q4 or Q8) give oy as a decreasing function of z in each individual element. Notice that
this problem does not occur with the graded elements.

In this case, the exact solution for displacements is quadratic (see Eqs.(2.31) and (2.44) for
exponential and linear material variations, respectively), which coincides with the order of interpo-
lation for the Q8 element. Moreover, the material variation for the linear case is captured by the
element shape functions. The stress results for the Q8 element considefing exponential and linear

material variations are shown in Figures 2.10 and 2.12, respectively. As expected, the homogeneous
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Figure 2.8: Displacements (u, and u,) using Q4 elements for fized grip load applied perpendicular
to the ezponential material gradation in isotropic FGMs.

Q8 element shows piecewise variation while the graded Q8 element approaches the analytical so-
lution quite well. The relatively small differences observed between the analytical and graded Q8
solutions may be attributed to the finite plate length (length/width = 1 as shown in Figure 2.6)
utilized in the numerical calculation - thé analytical solution was derived for an infinitely long
plate of finite width.

A similar comparison is also made for a different loading case consisting of bending applied
perpendicular to the material gradation. Figures 2.13 and 2.14 show the behavior of the Q4
and Q8 elements, respeétively, for the exponential variation. Figures 2.15 and 2.16 show such
comparison for the bending case considering linear material variation. The stress results for the Q8
element considering exponential and linear material variations are shown in Figures 2.14 and 2.16,
respectively. Similar comments to those made comparing the Q8 (homogeneous versus graded) and
analytical solutions for the tension load case also hold for the present bending load case.

The above results lead to the following observations. The variation of stress with position

z is larger for linear than with exponential material variations (cf. Figures 2.9 and 2.11, 2.10
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Figure 2.9: Stress distribution (oy,) using Q4 elements for tension load applied perpendicular to
the ezponential material gradation.
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Figure 2.10: Stress distribution (o,,) using Q8 elements for tension load applied perpendicular to
the exponentiel material gradation.
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Figure 2.11: Stress distribution () using Q4 elements for tension loading applied perpendicular
to the linear material gradation.

1.6 - - . . . . ; .
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Figure 2.12: Stress distribution (oyy) using Q8 elements for tension load applied perpendicular to
the linear material gradation.
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Figure 2.13: Stress distribution (oy,) using Q4 elements for bending load applied perpendicular to
the exponential material gradation.
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Figure 2.14: Stress distribution (oy,) using Q8 elements for bending load applied perpendicular to
the ezponential material gradation. .

and 2.12, 2.13 and 2.15, and 2.14 and 2.16). In general, the amplitude of stress jumps between Q4

elements is larger than between Q8 elements, especially for conventional homogeneous elements (cf.
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Figure 2.15: Stress distribution (oy,) using Q4 elements for bending load applied perpendicular to
the linear material gradation.
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Figure 2.16: Stress distribution (oy,) using Q8 elements for bending load applied perpendicular to

the linear material gradation. .

Figures 2.9 and 2.10, 2.11 and 2.12, 2.13 and 2.14, and 2.15 and 2.16). As expected, the graded

elements show superior performance to homogeneous elements, i.e. the graded elements provide a
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better approximation to the exact solution in every element. Essentially, the graded elements show
good performance in terms of actual (i.e. no averaging) nodal stress (oyy) along the y = 0 line and
the homogeneous elements behave well in terms of the averaged nodal stresses.

Figures 2.17 and 2.18 compare nodal stresses of graded versus homogeneous Q4 and Q8 elements
(9 x 9 mesh), respectively, which are subjected to tension applied parallel to the material gradation
(see Figure 2.6(d)). The exact solution is o5z = 1.0. Different from the observation above, it is
interesting to observe in Figure 2.17 that the Q4 graded element shows poor performance when
compared to Q4 homogeneous elements for both material variations (i.e. exponential and linear).
Although‘mes.h refinement (for a fixed material gradient) increases the accuracy of the solution,
the same trend of Figure 2.17 is observed for a finer mesh, e.g. 18x18. Figure 2.17 shows that the
Q4 graded elements provide piecewise continuous solutions to the nodal stresses (o.z), while the
homogeneous Q4 elements do recover the exact solution. This is the reverse of the effect seen in the
previous load cases. However, a higher order element such as Q8 (either graded or homogeneous)

is able to capture the exact solution in this case, as shown in Figure 2.18.

1 '4 ¥ T L) L} 1 T L L}
— Exact
1.3} . -¢ - Q4 Exp Graded I
,': -#- Q4 Lin Graded
1.2¢ " ¥ —— Q 4 Exp/Lin Homog |
1 1 : ........... ;..l‘ .............. I’.: ............... ‘ ................ ;! ................ . ................ g..... ..........-’ ............... "'........---..n..!'
: ,ll ' I,': "' l I:’ ,” / ' ; l,
% A A 2 B B A
© 19—F— ‘! &—s 4 ,’ e ra %":, { e 74—
','I : g : l, : / ,’f : 'a 4:/ ',II ;;l
0.9 ! :' :’:l 1” b/ .(' ! ¥ s v .
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Figure 2.17: Stress distribution (o) using Q4 elements (9 x 9 mesh) for tension load applied
parallel to the ezponential or linear material gradation.

A few additional remarks, regarding the behavior of Q4 elements observed in Figure 2.17, are
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Figure 2.18: Stress distribution (o) using Q8 elements (9 x 9 mesh) for tension load applied
parallel to the material gradation.

in order. Both graded and homogeneous elements lead to the same displacements at all nodes and
the same constant strains for each element. Notice that along the y = 0 line, the nodal stress range
has constant arhplitude for the exponential material case, while it has decreasing amplitude for the
linear material case (see Figure 2.17). The reason for this behavior is illustrated by Figure 2.19
by investigating the strain distribution for two mesh discretizations (9 x 9 and 18 x 18 meshes).
For instance, for the exponential material case, the nodal strains decrease exponentially while the
Young’s modulus increase exponentially. Thus the multiplication of these two factors cancel each

other to give a constant stress amplitude at the nodal points, as shown in Figure 2.17.

Orthotropic FGM plate

Figure 2.20 shows ‘orthotropic FGM plates, with material varié,tion in the Cartesian direction
z, subjected to various loading conditions. Figure 2.20(a) shows the basic geometry, bouqdary
conditions and material property variation. The two principal Young’s moduli and in-plane shear
modulus vary proportionally either with an exponential function of z as given by Eq.(2.15) or

with a linear function of z as given by Eq.(2.32). The independent nonhomogeneity parameters
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Figure 2.19: Strain distribution (€x;) using Q4 elements (either 9 x 9 and 18 x 18) for tension load
applied parallel to the material gradation (either exponential or linear).

(Bi; and +y;;) are given by Eqs.(2.16) and (2.33) for the exponential and linear material variations,
respectively. The Poisson’s ratio is assumed constant.

For the examples in Figure 2.20, the FEM mesh consists of either Q4 or Q8 (graded or homoge-
neous) elements under plane stress. The FEM mesh for the geometry of Figures 2.20(b) and 2.20(c)
consists of 9x18 elements. For the sake of completeness, all the properties used in the numerical
analyses are given as follows. For the fixed grip, for tension and bending perpendicular to the

material gradation, the following data are used for the finite element analysis:
E) =1, E»L=01 G%=05 1v13=03 (2.49)

in which consistent units are employed. For tension parallel to the material gradation, the following v

data are used for the finite element analysis:

Ef =1, E=01 G%=05 uv3=00. (2.50)
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Figure 2.20: Orthotropic FGM plate with material variation in the = direction: (a) geometry,
boundary conditions and material properties; (b) tension load perpendicular to material gradation;
(c) bending load; (d) tension load parallel to the material gradation. The finite element mesh (Q4

or Q8 elements) is illustrated in parts (b) through (d) with a representative Q4 element at the
upper left hand corner.

For the single case of fixed grip loading, only exponential material variation was considered. In

this case, the §;; parameters are

Bo=(n8)/9=F, Bu=p/2, Pu=p3 (2.51)
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so that the range of properties is the following
By =[1,2.828], Ez» =1[0.1,08], Gi2=[0.5,1.0]. (2.52)

For all other loading cases (i.e. tension and bending perpendicular to the material gradation, and
tension parallel to the material gradation), the §;; parameters, characteristic of exponential material

variation, are chosen so that the variations of Ey;, Egp, and Gio are proportional (108, 109}, i.e.

P11 = P22 = Bi2 = (In8)/9 = 3, (2.53)

and the v;; parameters, characteristic of linear material variation, are given by

Mm=79=7v, y=07/9, mz=35/9 (2.54)

so that the range of properties is the following
Ey; =[1.0,8.0], FE»=[0.1,08], G2 =][0.5,4.0 (2.55)

Regarding the element behavior (homogeneous versus graded), several of the observations made
. for isotropic materials in the previous section also hold for orthotropic materials. Thus rather
than repeating those common observations, this section focuses on new observations and msxghts
Moreover, the analytxcal solutions of Sectlon 2.4 show that, for exponential material gradation
(Section 2.4.1), the relevant stress quantity only depends on the nonhomogeneous parameter o2,
and the displacements depend on both f;; and Bg. For linear material gradation (Section 2.4.2),
the relevant stress depends on 72, and the displacements depend on both 7;; and 722. This
information will be helpful to understand the examples reported below.

Figufe 2.21 shows the stress oy, versus z for a nonhomogeneous orthotropic plate, subjected to
a uniform dlsplacement in the y du‘ectlon, with the material propertles given by Eqs.(2.49), (2.51),
and (2.52). Accordmg to Eq.(2.19), the stress oy, is uniform in the y direction and thus this graph
is applicable to the entire range of y coordinates, i.e. 0 < y < H (see Figure 2.20(a)). In this

case, the solution obtained with graded Q4 elements agrees with the exact solution within plotting
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accuracy. Figure 2.21 also shows that the solution with homogeneous Q4 elements is piecewise
constant, which occurs because these conventional elements have a single value for each material
property, which leads to a piecewise constant material property approximation as illustrated by
Figure 2.1. Therefore such elements predict the actual stress values only at their centroids where

the properties match the material gradient functions.

T T T T T T T T

1t Exact ]
-+- Q4 Graded
Ha o Q4 Homog

o 1 I 1 1 1 1 1 Il

0 1 2 3 4 5 6 7 8 9

X
Figure 2.21: Stress distribution (o) using Q4 elements for fized grip loading applied perpendicular
to the ezponential material gradation in orthotropic FGMs (E?, = 1, EY, = 0.1, GJ, = 0.5,
Vig = 0.3).

Figure 2.22 shows a comparison of the displacements u; and u, obtained numerically with
those calculated by means of Eq.(2.21). Notice that the nonlinear behavior of u; is captured quite
well by the FEM solution. Obviously, the accuracy of the solutions is also improved with higher-
order graded elements, e.g,. Q8. Moreover, the homogeneous Q8 elements also lead to a piécewise
constant nodal stress profile with the stress at the midnode location along the z direction matching
the actual stress values which occurs because the material properties at the mid-nodes match the
actual properties,

The example above (Figures 2.21 and 2.22) addressed the orthotropic FGM plate consider-
ing nonproportional material properties (see Eq.(2.51)). For proportional variation of material

properties (sée Eq.(2.53)), the change of u; with z is linear (rather than the nonlinear function
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Figure 2.22: Displacements (u; and u,) along y=1 using Q4 elements for fized grip load applied
perpendicular to the ezponential material gradation in orthotropic FGMs (E);, = 1, EJ, = 0.1,
GY5 = 0.5, v12 = 0.3).

of Eq.(2.21)), which is similar to the behavior of the isotropic plate under the same boundary

conditions, i.e. fixed grip (see Figure 2.8). This behavior can be seen by the following limit

lim ;= | lim {—-u & —123—2—; {e(ﬁ”‘ﬁ“)—l]}——-u € Eﬁm (2.56)
(B22—pF11)—0 N (B22—P11)—0 12 =0 E?1 Ba22 - P11 12 =0 E?l ' '

Figures 2.23 and 2.24 compare nodal stresses interpolated from stresses at Gauss points using
graded and homogeneous Q4 and Q8 eléments, respectively, which are subjected to tension load
applied perpendicular to the exponéntial material gradation. Figure 2.25 shows a comparison of the
displacements (u, and u,) computed numerically with those obtained by means of Eq.(2.30) for all
the element types investigated in the presént ioading case. The curves for u, indicate that the best
elemenfs in terms of matching‘the analytical solution (Eq.(2.30)) are Q8 graded, Q8 homogeneous,
Q4 graded and Q4 homogeneous, which is somehow expected. Figures 2.26 and 2.27 show the nodal
stress plots considering linear material variation. Qualitatively, the nodal stress plots considering

linear material variation are somewhat similar to those of Figures 2.23 and 2.24.
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Figure 2.23: Stress distribution (o) using Q4 elements for tension loading applied perpendicular
to the ezponential material gradation in orthotropic FGMs (EY, = 1, E, = 0.1, G, = 0.5,
Vig = 0.3).
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Figure 2.24: Stress distribution (o) using Q8 elements for tension loading applied perpendicular
to the ezponential material gradation in orthotropic FGMs (Ef, = 1, EJ, = 0.1, G}, = 0.5,
Vi2 = 0.3).
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Figure 2.25: Displacements (u; and u,) along y=1 using Q4 and Q8 elements for tension load
applied perpendicular to the ezponential material gradation in orthotropic FGMs (B9, =1,E)% =
0.1, GY, = 0.5, v12 = 0.3).

A similar ‘comparison is also made for a different loading case consisting of bending applied
- perpendicular to the material gradation. Figures 2.28 and 2.29 present the behavior Q4 and Q8
elements, respectively, for the exponential material variation. Figure 2.30 shows a comparison of
the displacements (u; and uy) computed numerically with those obtained by Eq.(2.30) for all the
element types investigated in the present loading case. As expected, the Q8 elements capture the
analytical solution (Eq.(2.30)) for u, better than the Q4 elements. Figures 2.31 and 2.32 show the

nodal stress plots for the bending case considering linear material variation.

46



1-6 ' T T T ¥ T T T

Exact
-+- Q4 Graded
1.4 o Q4 Homog | 1

Figure 2.26: Stress distribution (oy,) using Q4 elements for tension loading applied perpendicular
~ to the linear material gradation in orthotropic FGMs (E); = 1, EJ, = 0.1, G9, = 0.5, v12 = 0.3).
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Figure 2.27: Stress distribution (oy,) using Q8 elements for tension load applied perpendicular to
the linear material gradation in orthotropic FGMs (EY, = 1, EJ, = 0.1, G, = 0.5, 13 = 0.3).
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Figure 2.28: Stress distribution (oy,) using Q4 elements for bending load applied perpendicular
to the ezponential material gradation in orthotropic FGMs (E{, = 1, EY, = 0.1, G%, = 0.5,
Vi = 0.3).
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Figure 2.29: Stress distribution (oy,) using Q8 elements for bending load applied perpendicular
to the ezponential material gradation in orthotropic FGMs (E%, = 1, EQ, = 0.1, G}, = 0.5,
Vig = 0.3).
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Figure 2.30: Displacements (u; and u,) along y=1 using Q4 and Q8 elements for bending load
applied perpendicular to the ezponential material gradation in orthotropic FGMs (EY, = 1, EJ, =
0.1, G?2 = 0.5, v12 = 0.3).
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Figure 2.31: Stress distribution (oy,) using Q4 elements for bending load applied perpendicular to
the linear material gradation in orthotropic FGMs (EY, = 1, E}, = 0.1, G}, = 0.5, vz = 0.3).
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Figure 2.32: Stress distribution (oy,) using Q8 elements for bending load applied perpendicular to
the linear material gradation in orthotropic FGMs (E}; = 1, EQ, = 0.1, G{, = 0.5, v12 = 0.3).

Finally, a few comments regarding the case of tension loading applied parallel to the material
gradation in orthotropic FGMs (Figure 2.20(d)) are in order. Qualitatively, the counter-intuitive
behavior of homogeneous versus graded Q4 elements is similar to the case involving isotropic non-
homogeneous materials illustrated by Figures 2.17 and 2.18. Thus, for orthotropic case, the Q4
graded element also shows poor performance when compared to the Q4 homogeneous elements for
both material variations (i.e. exponential or linear). The reasons for such behavior are given in the
last two paragraphs of the previous section and are not repeated here. This is the reverse of the
effect séen in the previous load cases for graded orthotropic materials where the graded elements
show superior behavior to the corresponding homogeneous elements. Similarly to the isotropic case,
a higher-order element such as Q8 (either graded or homogeneous) with 2 x 2 Gauss quadrature is

able to capture the exact solution for this loading case.

2.5.3 Discussion

This study leads to the following remarks. The formulation of graded finite elements are verified

against analytical solutions.
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The isotropic FGM plate (see Figure 2.6) has length to width ratio equal to 1 and the orthotropic
FGM plate (see Figure 2.20) has ratio 2 (for tension and bending loading cases). Because the
analytical solution (Section 2.4) was derived for an infinitely long plate, the higher the aspect ratio
(within limits) the better the numerical solution (with respect to the analytical one). For some
load cases, e.g. tension and bending perpendicular to the material gradation, the homogeneous
elements give oy, as a decreasing function of z in each individual element on the left side of the
domain, while the exact solution shows an increasing trend of oyy with z for this portion of the
domain. However, the graded elements show the same trend as the exact solution in each element
(see, for example, Figures 2.11 and 2.12). The stress plots show that the graded Q8 element gives
a smoother stress profile than the graded Q4 element (cf. Figures 2.9, 2.10, 2.31, and 2.32). For
each loading case, the nuﬁerical values of the stress components other than the relevant normal
stress quantity should approach zero. Thus the remainder of this paragraph focus on the maximum
magnitude of these stress values (obtained numerically) which are theoretically zero. In general,
these stress magnitudes are lower with Q8 than with Q4 elements.

For tension parallel to the material gradation, the numerical values of the stress ozy and oy,
are exactly zero for all cases investigated. For the fixed grip case, the largest ‘magnitude of oy
is O(10~2) and occurs for the orthotropic plate with Q4 elements. The largest magnitude of oz,
and oy is O(1073) or less for all other analyses for this loading case. For tension and bending
perpendicular to the exponential material gradation, the Q4 element leads to spurious shear stresses
of O(10°) for the orthotropic pléte and of O(10~!) for the isotropic plate. Smaller magnitudes for
the maximum shear stresses are obtained considering linear material gradation. The stress o4y is

of O(1072) or less for all the analyses involving these two loading cases.

2.6 Concluding remarks

Graded finite elements, which incorporate the material property gradient at the size scale of
the’elementb, are presented using a generalized isoparametric formﬁlation, and have been verified
against analytical solutions. Both linear (Q4) and quadratic (Q8) quadrilateral elements are in-
vestigated in detail. To address the influence of material property variation, both exponential and

linear gradation have been considered and compared. Several plates with continuously nonhomo-

51



geneous isotropic and orthotropic materials were considered under fixed grip, tension and bending
conditions. The performance of graded elements was compared to that of conventional elements
with respect to analytical solutions.

Higher-order graded elements (e.g. quadratic and higher) are superior to conventional homo-
geneous elements based on the same shape functions. One should be careful when using graded
elements with linear shape functions (e.g. Q4) as it may lose accuracy in certain situations such
as uniform traction parallel to the material gradient direction. When using this element, it is
recommended to average the nodal properties of the element, which would convert it to a regular
homogeneous element. Thus the value of material properties at the integration points used to
compute stresses depend on whether first-order or higher-order elements are used. This simple pro-
cedure leads to a more robust element. A similar procedure is used in the FEM code ABAQUS [55]
for heat transfer analysis and also in the WARP3D code [51].
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Chapter 3

The interaction integral method for
fracture of FGMs

3.1 Introduction

The interaction integral method provides a unified framework for evaluating fracture parameters
(e.g. stress intensity factors and T-stress) in functionally graded materials (FGMs). The method is

based on a conservation integral involving auxiliary fields, which have the following three relations

of solid mechanics problems:

o equilibrium
o compatibility

e constitutive

To determine fracture parameters, e.g. stress intensity factors (SIFs) and T-stress, by means of the
interaction integral (M-integrall) method, auziliary fields such as displacements (u%%®), strains
(e24*), and stresses (o""” ) are needéd. In fracture of FGMs, the use of the auxiliary fields developed
for homogeneous materials results in non-satisfaction of one of the three relations above, which leads
to three independent formulations (see Figure 3.1): non-equilibrium, incompatibility, and constant-
constitutive-tensor formulations. Each formulation leads to a different final form of the resulting

M-integral, and for consistency, extra terms are added to account for the difference in response

'Here, the so-called M-integral should not be confused with the M-integral of Knowles and Sternberg (86), Budi-
ansky and Rice [15), and Chang and Chien {20]. Also, see the book by Kanninen and Popelar [73] for a review of
conservation integrals in fracture mechanics.
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between homogeneous and nonhomogeneous materials. The extra terms arise from the complete
derivative expressions, and should not be dropped. Table 3.1 illustrates the auxiliary fields corre-
sponding to each formulation. Notice that the non-equilibrium formulation satisfies compatibility
(e¥*=(symV)u®*) and the constitutive relations (6*** = C(x)e%*), but violates equilibrium
(V- e # 0 with no body forces). The incompatibility formulation satisfies equilibrium and the
constitutive relations, but violates compatibility conditions (€**® # (symV)u®“*). The constant-
constitutive-tensor formulation satisfies equilibrium and compatibility conditions, but violates the
constitutive relations (00%“® = Cy;;e*“® with C # C(x)). Conservation integrals based on these

three consistent formulations are the focus of this chapter;

Figure 3.1: Motivation for develbpment of alternative consistent formulations. Notice that C(x)
# Chip for & # 0. The area A denotes a representative region around the crack tip.

Table 3.1: Comparison of alternative formulations.

Non-equilibrium Incompatibility Constant-constitutive-tensor
formulation formulation formulation
uﬂu: unuz uauz
cauz aauz cnu::
aauz — c(m)sau: cau: — S(m)cau: ' a,ﬂu:l: = thp!mm
V.a®™* £0 e £ (symV)u® [ C(z) # Cuip

3.2 Auxiliary fields

The interaction integral makes use of auxiliary fields, such as displacements (u®%*), strains (€%%%),

and stresses (o%*"). These auxiliary fields have to be suitably defined in order to evaluate mixed-

54



mode SIFs and T-stress. There are various choices for the auxiliary fields. The fields developed
for FGMs, which satisfy all three relations of mechanics can be used as auxiliary fields. For in-
stance, the numerical approximate solutions can be independently obtained for a specific material
gradation. In this case, the extra terms will vanish in the final M-integral. Here we adopt fields
originally developed for homogeneous materials. For each formulation (non-equilibrium, incompat-
ibility, constant-constitutive-tensor), the selection of auxiliary fields is done according to Table 3.1.

The auxiliary fields adopted are described below.

3.2.1 Fields for SIF's

For evaluating mixed-mode SIFs, the auxiliary displacement, strain, and stress fields are selected
from the crack-tip asymptotic fields (i.e. O(r'/2) for the displacements and O(r~1/2) for the strains
and stresses) with the material properties sampled at the crack-tip location (e.g. [34]); Figure 3.2
shows a crack in an FGM under two-dimensional fields in local Cartesian and polar coordinates

originating at the crack tip. The auxiliary displacement, strain, and stress fields are chosen as [147,

131]:

ww = Kpegl2,,0%) + K3 £, 0,a%), (31)
€T = (symV)uts, (3.2)
ot — K;m:cgl(r—lﬂ’ 6, atlp) + K}‘}"‘g”(r—l/z, 6, aup)’ (33)

where K7“® and K{}® are the auxiliary mode I and mode II SIFs, respectively, and a*® denotes
contracted notation of the compliance tensor S evaluated at the crack tip, which is explained
in Appendix A.2. The representative functions f(r!/2,6,a"?) and g(r~1/2,6,a"") are given in

Appendix A.3 and can also be found in other references, e.g. (131, 33].

3.2.2 Fields for T-stress

For evaluating T-stress, the auxiliary displacement, strain, and stress fields are chosen from those
due to a point force in the z; direction, applied to the tip. of a semi-infinite crack in an infinite

homogeneous body as shown in Figure 3.3. The auxiliary displacements, strains, and stresses are
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Figure 3.2: Cartesian (z;,22) and polar (r,6) coordinates originating from the crack tip in a
nonhomogeneous material subjected to traction (t) and displacement boundary conditions.

chosen as {137, 95, 136):

u™® = t%(In r,0, F,a""), (3.4)
e = (symV)u®?®, (3.5)
o™ = t°(r71,0,F, a"), (3.6)

where F' is the point force applied to the crack tip, and a*® denote contracted notation of the
compliance tensor a evaluated at the crack tip, which is defined in Appendix A.2. The representative
functions t*(In r,0, F,a*") and t*(r~1,0, F,a"?) are given in Appendix A.4 and can be found in
other references, e.g. [137, 136]. For orthotropic materials, the auxiliary fields may be determined
by either the Lekhnitskii or Stroh formalism [85]. There is no difficulty in determining the auxiliary

fields in the case of isotropic mateiials (82].

3.3 M-integral formulations

The standard J-integral [120] is given by

J = lim (Wéy; — oij ui,1) ny dl, (3.7)

2—0 T
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Figure 3.3: A point force applied at the crack tip in the direction parallel to the crack surface in a
homogeneous body.

where W is the strain energy density expressed by

1 1
W= Eaijeij =3 17kIEKIE s (38)

and n; is the outward normal vector to the contour I'y, as shown in Figure 3.4.

T,

Figure 3.4: Conversion of the contour integral into an equivalent domain integral (EDI) where
=T+t ~Ty+T", mj =n; onT, and m; = —n; on ;. The notation of I with applied
displacements is denoted I'y,, and the notation of I" with applied traction is denoted I';. Moreover
F=0r,+70;.
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To convert the contour integral into an EDI, the following contour integral is defined:
H= fi.‘ (Wéy; — 0ij ui,1) mjq dI° (3.9)

where I'=I', 4+ 't — ', + I'", m; is a unit vector outward normal to the corresponding contour

(i.e. mj=n; on [, and mj=-n; on T;), and q is a weight function defined as a smoothly varying

function from ¢ =1 on I'; to ¢ = 0 on T, (see Figure 3.5). Taking the limit I'y — 0 leads to
Byt = i, OV ot ) mgar

= lim W6éii — i 4 q dI’ 3.10
Pym0 Jp, 4T+ 40D, ( 17 — Oij Ut,l) m;q ( )

= lim [/ (W¢51j — 0i5 ui,1) m;q dI’ +/ (W(Slj — 055 ui,l) miq dP]
Ls=0 | Jro+1r++0- - :

s

= lim [/ (Wéy; — oij ui1) miq dI’ --/ (Wby; — 0ij us1) njq dF] .
Ts=0 LJro+r++41- T, '

q(x,.x,)

Figure 3.5: Plateau weight function (q function).

Because ¢ = 0 on I, and the crack faces are assumed to be traction-free, Eq.(3.10) becomes
J=-~lim H=- lim f (Wé1; — 04 ui; ) myq dll. (3.11)
I's—0 r.—0 Jp ,
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Applying the divergence theorem to Eq.(3.11) and using the weight function g, the equivalent

domain integral (EDI) is obtained as:

J = /A (i wi,n — Why;) g5 dA+/‘4 (04 wig — Wéy;),; q dA. (3.12)

The J-integral of the superimposed fields (actual and auxiliary fields) is obtained as:

. 1
7= [ {s ot ot - fowk ot)en + et g a4

1
+ /‘; {(oij + ag;“'”) (ui1 + u‘,’f{’” - §(O'ik + o) (e + e;-‘,;")dlj)} g dA, (3.13)
: WJ

which is conveniently decomposed into

J¥ = J + JO 4 M, (3.14)

where J*¥F is given by

1
Jous  — A (a.%ym u;l‘tf:c _ Waumalj) q; dA+A {a’%"z u‘il,'f“’ - 50'?[;‘“’6?[:;‘361_7'} ) q dA,
3]

and the resulting interaction integral (M) is given by

1
M = /A {Uiju?.llw +0f Ui = S (owel” + 0?:3‘”‘Eik)51j} g,;dA

1 ‘
+/ {a,-ju?f{” + O'g;wui'l - E(aike?%w + ag‘,;‘”sik)dlj} g dA. (3.15)
A V)

3.3.1 Non-equilibrium formulation

Kim and Paulino [84] developed the non-equilibrium formulation for the interaction integral
method. A summary for the derivation is given below. The name of the formulation is based on

bthe fact that the auxiliary stress field

0" = Cyju(x) eff” (3.16)
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does not satisfy equilibrium because it differs from
0" = (Cijm)tip €RI™ (3.17)

where Cj;xi() is the constitutive tensor of the actual FGM and (Cijki)tip is the constitutive tensor

at the crack tip (see Figure 3.1).

The derivatives of the auxiliary stress field are

aur __ g o i
04 = C,ka(a:) €z}‘ +C1.]kl(m) Ezrj

= (Cijm)tip €kl + Cijut,j(®) €81 + (Cijnt(®) — (Cijut)sip) €X' (3.18)

where the underlined term in Eq.(3.18) vanishes. Thus this argument confirms that the auxiliary
stress field selected in this formulation (Eq.(3.16)) does not satisfy equilibrium, i.e. ot #0
(no body forces or inertia). This choice of the auxiliary fields has been discussed by Dolbow and
Gosz [31], but a non-equilibrium formulation was not provided in their paper. The non-equilibrium
in the stress field has to be taken into account in the interaction integral formulation, which is

discussed in detail below.

Using the following equality

aur aur

0ijef)” = Cijii (w)ekleij = 0}l €kl = 0 "€ij, (3.19)

one rewrites Eq.(3.15) as

M = /A {oiuy® + 08"u;y — oipedi®hy;} q,dA
+/A {ai.'iu:'l.ifz + U?]yzui,l - O'ik&‘?/:m&j}'j g dA

= M ‘+ M, ‘ (3'20)
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The last term of the second integral (M) in Eq.(3.20) is expressed as

(OikEg,;‘m(s]j),j = (O'iksgéw),l = (o'ijgg;‘ )‘ (kaleklsaum)’

= Ciju,1Ene;" +0i €ij1 + oijedy. (3.21)
Substitution of Eq.(3.21) into Eq.(3.20) leads to
M, = /A (aU,Ju,I + oiufi; + 0:7"_;‘1141 + au Tu;,15) g dA
/ (C‘mkl lekleaum + o.au Eij1 + Ut]Et] 1) g dA. (3'22)

Using compatibility (actual and auxiliary) and equilibrium (actual) (i.e. 0i;; = 0 with no body

force), one simplifies Eq.(3.22) as

/ {o'z].] kal lsklszj }q dA, (3.23)
Therefore the resulting interaction integral (M) becomes

= [ ot + 0w - oueti®a} agdd

/ { 935 it ~ Cijt, 1€kt€i‘}‘”}qu, (3.24)

where the underlined term is a non-equilibrium term, which appears due to non-equilibrium of the

auxiliary stress fields.

The existence of the integral involving the non-equilibrium term as 7 goes to zero is proved
below. The stiffness tensor involving material properties E(r,8) and v(r,0) must be continuous

and differentiable function, and thus it can be written as [34]
Cig(r,) = (Cialip + TOGU(0) + E.CLUO) + 01 + . (3.25)

where CI(J"k), (6) (n = 1,2,...) are angular functions. In Eq.(3.18) for of{*f, the first term vanishes
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because of the equilibrium, and here we focus on the third term.

For the auxiliary fields for SIFs (uf“*(,/7,6), epe(r =1/2/9)), the integral, as the limit 7 goes to

zero, becomes

: auz .. — aux
“1‘1_% A o u1 gdA = ll_l}(l) // 05 Wi grdrdf

= lim / / Cijri(r,0) — (Cijit)ip) €51 ui1 g T dr db

r—0

= hm//Or)O =32y O(r~12) q r dr df

= lim O(r) = | (3.26)

r—0

For the auxiliary fields for T-stress (uf**(Inr, @), ‘"‘”"(7“l 0)), the integral, as the limit r goes

to zero, becomes

lim oM dA = lim oM u;1qrdrdf
A0 4 13 ] 1,1 q r—0 o ” 1,_7] 1, 1 q

= lim / / (Cijnt(r,0) — (Cijia)eip) €RLF uiny g 7 dr df

r—0

= hm/ / O(r) O(r=%) O(r~Y/2) q r dr do
= lim O('Y/?) = (3.27)

r—0

3.3.2 Incompatibility formulation

The incompatibility formulation satisfies equilibrium (0f3¥ = 0 with no body forces) and

the constitutive relationship (¢{}'* = S;ji(x)af*), but violates compatibility conditions (ef*

(uf§®+ug$)/2). The expressions in Eqgs.(3.19), (3.21), and (3.22) are also valid for this formulation.
Thus

My = [ (ousudte + ouutts +ofiuss + 0§ uisg) g 44

- /A (Cijriemel™ + offeij1 + 0ielT) q dA. (3.28)
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Using equilibrium (actual and auxiliary) and compatibility (actual), one simplifies M, as .

/A {0 (uflf — e8T) — Cijmenel™} q dA,

Therefore the resulting interaction integral (M) becomes

/ {auu‘zulw + 0ijui,1 — oiked 01 } q;dA

+ [ {oututts - ) - Cymaenely=} g da, (3.20)

where the underlined term is an incompatible term, which appears due to incompatibility of the

auxiliary strain fields.

The existence of the integral involving the incompatible term as  goes to zero is proved below.

The term 0;5¢f}7 in Eq.(3.29) can be written as

Ul]eg;:lz = 0i{Sijma(®) ofi” + Siju() 0'“ i1}

= 04j(Sijkt)up ORI + 035 Sijki,1 (T) R} + 035 (Sijrr (®) — (Sijkt)ep) ORT

0ijuin; + 0iSijria (@) of)' + 04i(Sijrr(e) — (Sijut)up) OFLT- (3.30)

Thus

aur au:E)

oij(uiyi — €t) = —0iSijri,1 (@) okl — 04i(Sijri(®) — (Sijkt)up) TRET (8.31)

where we focus_ on the underlined term.

The compliance tensor involving material properties E(r,6) and v(r, 8) must be continuous and

differentiable function, and thus it can be written as [34]

Sijha(r,0) = (Sijkt)eip + TSN (6) + 5,2,2,(0>+0(r3>+... (3.32)

where Sl(Jk),(()) (n=1,2,...) are angular functions.

For the auxiliary fields for SIFs (uf**(y/7,0), 0f*®(r~1/2,0)), the integral, as the limit r goes
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to zero, becomes

r—0

~tim [ [ o (Syu(rn) = (Sumen) 0T a7 dr a0

= —lim / / O(r~2) O(r) O(r=%/2) q r dr db
T

=0 Jg

hm / oij(uil; —€T) gdA = lim / / oi(uft; — ) g v dr db

= —lm O(r) =0. (3.33)

For the auxiliary fields for T-stress (u{**(Inr,6), of**(r =1,0)), the integral, as the limit r goes

to zero, becomes

im [ osur-enn ada = i [ [ oyusts - e dr as

= - 11m / / oij (Sijkt(r,0) — (Sijet)tip) ak“ qgrdrdf

= —lin / / O(r~Y2) O(r) O(r=2) q r dr d6
= —lim O(r 172y = 0. (3.34)

3.3.3 Constant-constitutive-tensor formulation

The constant-constitutive-tensor formulation satisfies equilibrium (0fi¥ = 0 with no body

forces) and compatibility condntlons (ef® = (ud¥® + uf¥®)/2), but violates the constitutive rela-

tionship (a““’” (Cijrt)tipely™ with (Cijri)tip # Cijk[(a:)). Notice that 0;ef}'® # o#*“e;; due to the

violated constitutive relationship. Thus Eq.(3.15) becomes

1
M= [ ot +ofu - Jouet +oftmentd asin
+ [ o+ ogatly + offuas + oy

(a,,,ls,] + a,_-,ef;‘f + 031 €ij + 0§ "€ij1 )} q dA. (3.35)
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Using equilibrium and compatibility conditions for both actual and auxiliary fields, one obtains M

as

M = /A {a,Ju‘"{“+0?}‘”u, (a,ke,k +a““’”e,k)61j}q,jd,4

1
+ [ 5 {oviety — et + ey — offfeis} g dA (3.36)

Notice that the resulting M involves derivatives of the actual strain and stress fields, which arises
due to the material mismatch, and may cause loss of accuracy from a numerical point of view.
The existence of the second integral of Eq.(3.36) as r goes to zero is proved below. The each

term in the second integral becomes

oijed = Cijn(x) en i,
—oijieg” = —[Cijma(x) en eff” + Cijra(e) er1 €],
off%eia = (Cigkt)uo €l €131,
U —_ .. aur ..
—0ii6 = —(Ciji)un €RLT €35 (3.37)
Combination of the above terms leads to
oijeT ~ 0ijiel” +o auweu, O Eij =

(Cijni(®) = (Cijtt)un) €t €T — (Cigua(@) — (Cijit)up) €kt €HT — Cijra1 () ey €5, (3.38)

where we focus on the first term.
For the auxiliary fields for SIFs (uf**(/7,0), e2#®(r=1/2,6), o2#=(r~1/2,0)), the integral, as the

limit r goes to zero, becomes

A—0
= lim / / z]lcl 'l]kl)tlp) €kl E‘Zuf: qr dT de

. x7}
lim / {a,,e,]l oij1€5 " + a‘"‘”"e,j,l - Ugj’leij} qdA

r—0

= lim/ / O(r) O(r='?) O(r=%?) q r dr d

r—0

= lm(l) Oo(r (3.39)
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For the auxiliary fields for T-stress (uf“*(lnr,9), e?}‘”(r‘l,G), a{‘}‘m('r‘l,O)). The integral, as

the limit r goes to zero, becomes

i LEOUT _ g QU | pauT.. . caup..
lim /A {cr,]ts,-j'l 0ij1€5" + 0f%eij1 — ofiei;} qdA

A—0
= 1l‘1_r’r(1) /(; / (C’,-jkl(:n) - (Cijkl)up) Ekl E%’fi"‘ qgrdrdf
r
= lim / / O(r) O(=Y2) O(+™2) q r dr df
09 Jr
= lim o(r'/?) = . (3.40)
T

3.4 Extraction of stress intensity factors

For mixed-mode crack problems on orthotropic materials, the energy release rates G; and Grr

are related to mixed-mode SIFs as follows [131):

K1 vp o | Ki(ui® + pi®) + Kis
gr = —7‘12‘2‘) Im P (3.41)
Kir o . . N
G = =yraif In[Kpr(ui® + u?) + Ki(uPusP)), (3.42)
where Im denotes the imaginary part of the complex function. Thus
Jiocal = G = Gr1+ Grr = e K} + c1oK1 Ky + cn K3y, (3.43)
where
tip tip tip
a -+
Ky Ko
tip tip
= %2 1 & tip ,tip
Ci2 = 2 Im (#tiip”;lp) t Im (“1 Ha ) )
- a’gilp tip tip 3.44
c2 = —2—-Im(y1 + 19", (3.44)

For two admissible fields, which are the actual (u,€,0) and auxiliary (u®“?, €94%, g9%) fields,
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one obtains [140]

1

Toea = (K1 + KP4 cip(Kp + KP)(Kip + K8%) + (K + Ko=)

Socal + Jfgcal T Miocal (3.45)

where Jjgq) is given by Eq.(3.43), J8¥2 is given by

local
ooal = c11(K7**) + coKP*KE® + cop(K§4™)? (3.46)
and Myca) is given by
Migea) = 2c1K1K[* + cio(KIK{F® + K K1p) + 2c0 K1 K®. (3.47)

The mode I and mode II SIFs are evaluated by solving the following linear algebraic equations:

Ml(olga. =2c11K1 + 12K,  (K§f*° = 1.0, K§{® = 0.0), (3.48)
Ml(.?c)al = c12K1 + 2c2Kq1,  (K7*° = 0.0, K}* = 1.0), (3.49)

where the superscript in M,(m):a, (¢ =1,2) is used just to indicate that the values are distinct in each

case. For isotropic materials, the off-diagonal terms of c;; drop, and Egs.(3.48) and (3.49) become

M, = Eﬁ =K1, (KP==10,KH" =00), (3.50)
My = E‘ = K (K[ =00, K[ = 1.0), ~ (3.51)

respectively, where .E{ip = Eyjp for plane stress and By}, = Eip/(1— ufip) for plane strain. The rela-
tionships of Eqs.(3.48) and (3.49), and Eqgs.(3.50) and (3.51) are the same as those for homogeneous
orthotropic [140] and isotropic [151] materials, respectively, except that, for FGMs, the material
properties are evaluated at the crack-tip location. Notice that, for the orthotropic case, there is no
need for Newton’s iteration, which is needed with other approaches such as the path-independent

Ji-integral [81] and the modified crack closure (MCC) integral [78]. Here the SIFs for mode I and
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mode II are decoupled (cf. Egs.(3.48) and (3.49)).

3.5 Extraction of T-stress

The T-stress can be extracted from the interaction integral by nullifying the contributions of
both higher-order (i.e. O(r'/2) and higher) and singular (i.e. O(r~1/2)) terms. The contribution of
the higher-order terms is canceled by taking the limit » — 0 with respect to the domain A shown
in Figure 3.4. By doing so, the non-equilibrium term of Eq.(3.24) vanishes as explained earlier.
Moreover, the explicit derivative of the strain energy density in Eq.(3.24) vanishes for the following
reason. Derivatives of the elastic moduli are assumed to be bounded at the crack tip, i.e. Ai(x)
and p1(x) are O(r®) with @ > 0. Therefore Cijkt,1, €k, and efy'® are O(r?), O(r~1/2), and O(r™1),

respectively, and the domain integral involving material derivatives in Eq.(3.23) vanishes as r — 0:

™ T
/A Cijuienef]™ g dA = / /0 Cijuienei;” q v dr df
-

x /” /Or Or*)O(rY0(rY q r dr df

—r .
x O(r*t1/2), (3.52)
Therefore,
1
M = / {(aijuf,’{”‘ + a‘g;wu,-,l) - E(Uiksglgw + ag‘,é‘me,-k)élj} q,j dA. (3.53)
A

which has the same expression for homogeneous materials. Equation (3.53) can be rewritten as

. 1
Moca = [ {0t + ogouen) - Jouetit + oienrts} o aa s
¥

because its expansion leads to

1 .
Mca = [ {0t +ofmu) - Jlouetts + oft%eilis | 0 da

‘ | )
+ -/A {(Uiju?’ll‘m + a%-“""ui,l) - Q(Uike;-‘,;“ + 03 Teik) 015 q dA, (3.55)

J
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and the second domain integral of Eq.(3.55) vanishes. Now in order to convert the EDI of Eq.(3.54)

into a line integral, applying divergence theorem yields

. 1
Mioeat = lim 4 {(ffiju?,'fm + o i) - S (owel™ + o xeik)‘slj} mjq dI'.  (3.56)

Because mj=-n; and ¢ = 1 on I';, mj=n; and ¢ = 0 on I',, and the crack faces are assumed to be

traction-free, Eq.(3.56) becomes

) 1
Miga) = lim A [§(Gik€?ll‘ ? + ol eik)d1; — (03Ul + off i) ] n; dl'.  (3.57)

Using the equality in Eq.(3.19), one reduces Eq.(3.57) to
Migcal = Flsi_mm 5 [owel™61; — (oijuft™ + 0F®uiy) | nj dT. (3.58)
The actual stress fields are givén by
oij = Ki(2mr) V2 fL(0) + Kpi(2mr) "2 fE1(8) + T61i615 + O(rY/?), (3.59)

where the angular functions fi’j(O) and fi’jl (6) (¢,5 = 1,2) are given, for example, in reference [33].
As the contour I'y (see Figure 3.4) shrinks to the crack tip region, the higher-order terms cancel
out as mentioned above, and the only term that contributes to M is the term involving T'. In other
words, there is no contribution from the singular terms beéause the integration from 6 = —7 to
+ of sinusoidal functions, which are the coefficients of the singular term O(r‘l/ 2), becomes zero

regardless of the resulting singularity of order O(r~1/2). Thus from Eq.(3.59)
oij = Tb1:dyj, ‘ (3.60)

which refers to the stress parallel to the crack direction. Substituting Eq.(3.60) into Eq.(3.58), one

obtains

Migeal = _r‘l,it—l}o . oinju;y dI' = Taj} [‘ljg}o /1‘ ofi®n; dI'. (3.61)

69



Because the force F is in equilibrium (see Figure 3.3)

F=- [‘l,ir—r»lo g ofn; dr, (3.62)

and thus the following relationship is obtained

(3.63)

where a}} is a material parameter at the crack tip location for plane stress, and is replaced by b7

for plane strain (cf. Eq.(A.93)). For isotropic materials, Eq.(3.63) becomes

Ey,
T= F Mlocalv (3°64)

where Ejj, = Eiip for plane stress and Eyj, = Bup/(1 — v,) for plane strain.

3.6 Comparison and critical assessment

The three' formulations presented above are consistent in the sense that extra terms are added
to account for the difference in response between homogeneous and nonhomogeneous materials.
However, each formulation has an independent final form (see Eqgs.(3.24), (3.29), and (3.36)) due
to the different characteristics of the auxiliary fields. The final form of the M-integral for each of
these formulations is compared and assessed from a theoretical point of view below.

The non-equilibrium formulatioh results in the simplest final M-integral thus requiring the least
computation and implementation effort among the three formulations. This is observed by compar-
ing Eqs.(3.24), (3.29), and (3.36). Mbreover, the non-equilibrium formulation is equivalent to the
incompatibility formulation, because both formulations involve the same constitutive relations and
corresponding material derivatives. This equivalence is observed in the numerical examples that
follow. However, the constant-constitutive-tensor formulation [117] requires the derivatives of the
acttial stress field, which may introduce accuracy problems with standard C° elements commonly
used in the displacement-based FEM.

In order to further compare the three consistent formulations, let’s consider an exponentially
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graded material in which Poisson’s ratio is constant and Young’s modulus varies in any direction

(see Figure 3.6)

E(z1) = Epexp (0z1) = Epexp (61X1 + 52X2), (3.65)

T
I

constant,

where X = (X1, X) refers to a global coordinate system, z; is the direction of material gradation

(inclined by 6., with respect to the X coordinate), and the nonhomogeneity parameters 4, 81, and

B2 are related by

B1 = d6cosby,, O =dsinb,,. (3.66)

Figure 3.6: Crack geometry in a nonhomogeneous material.

This selection of material property leads to simplification of the resulting M-integrals and allows
one to better assess and compare the characteristics of the formulations. Moreover, exponentially
graded materials have been extensivély investigated in the technical literature, e.g. [31, 7, 76, 81, 35,
28, 39, 19, 29, 49, 126, 127, 61, 108, 109, 77, 125, 89, 112]. The resulting M-integrals corresponding
to the three formulations are derived below in the global coordinate system, which is used in the

numerical implementation.
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3.6.1 Non-equilibrium formulation

For exponentially graded materials defined by Eq.(3.65), the auxiliary stress fields chosen in this

formulation are identical to the asymptotic stresses derived by Erdogan [35], which are given by

04(r,8) = explr(By cos + B 5in )] [\/’T(_:r;g{j(o) + f%g{,’(o) (3.67)

The derivatives of interest, with respect to the global coordinate system, are (m=1,2)

aur

063 = Ciktj(X) el + Ciju(X) ekf] = BiCijm(X) el + Cijra(X) €S
= BiCiji(X) ef” + ap(Cijrt)up €87 = Biof™, (3.68)

Cijkim =  BmCiju(X), (3.69)

where ap, = exp(81X1 + (2X32) is a factor that arises due to the proportionality of Cjjy for the

material gradation considered. The global interaction integral (Mm)global (m = 1,2) is given by

(M global / {a,,uf',‘,f + aauzut,m - Uiksgtmalj} q,jdA

/ {0 wim — Cijumenelf™} g dA, (3.70)

Substitution of Egs. (3.68) and (3.69) into Eq.(3.70) yields (m = 1, 2)

Mg = [ {013 + 05 ~ ouelitng} 5oL da
+ / {BioH " uim — moiiel*} q dA (3.71)
Notice that, for this particular case, a simpler expression than that for the general case is obtained

(cf. Eq.(3.24)). The derivatives of material properties are representéd by material nonhomogeneity

B in Eq.(3.71). Moreover, the contribution of the non-equilibrium term to the M-integral is related

to the value of 3.
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3.6.2 Incompatibility formulation

The derivatives of interest, with respect to the global coordinate system, are (m=1,2)

auz

dm = Siktm(X) il + Siin(X) o

= —BmSijki(X) of'® + Siju(X) off'm,

= Bl + Sy (X) oz, (3.72)
together with Eq.(3.69). The global interaction integral (Mm)globat (m = 1,2) is given by

(Mm)global = / {oijufm + oH " uim — OikERT0m; } g dA

+/ {U'J (ua::,f] 5?]?1?1) Gukl,mekleaum} q dA. (3.73)

Substitution of Egs.(3.72) and (3.69) into Eq.(3.73) yields (m = 1,2)

(Mm)global = /A {Uzguaum + Uauzutm - GikE?é‘ mj} v

-/A {UlJugzr‘rfg Zu:zsw} g dA. (3.74)

Notice that, for this particular case, the final M-integral does not involve any derivatives of material

properties (cf. Eq.(3.29)). In this formulation, the first integral of Eq.(3.74) is the same as that for

the non-equilibrium formulation, because both formulation use the same constitutive tensor C (X).
3.6.3 Constant-constitutive-tensor formulation

The derivatives of interest, with respect to the global coordinate system (Xj), are (m = 1,2)

oijm = Cijtim(X) ent + Cijr(X) erm
= BmCiju(X) ert + Cijri(X) ertym
= PBmoij + Ciji(X) erm

aur

m = (Cijkt)upERiim: (3.75)
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The global interaction integral (M )giobal (m = 1,2) is given by

1
M = / {Uiju?.‘r‘rf + o uim — Sloued” + Ué‘é‘”sik)fsmj} g;dA

A
1
+ . 3 {aije;-‘},‘,",’, - Gij,meg';w + O‘%ymeij,m - 0'373,‘:151']'} q dA. (3.76)

Substitution of Eq.(3.75) into Eq.(3.76) yields (m = 1,2)

1
M = A {Gijual,‘,f + a%yxui,m - 5(0‘5]95%“: + a{-‘,;‘weik)ﬁm-} q;dA (3.77)

1
+A § {Uijeg;,‘:; - ,Bmo'ijeg;‘m - CijlclEkl,mEgJyz + 0%y$€ij,m - (Cijkz)t,pEz;"anij} q dA,

where Cijn = Cyji(X). Notice that, for this case, the final M-integral requires the derivatives of
the actual strain field, which may have numerical accuracy problems. The derivatives of material
properties are represented by material nonhomogeneity 3. Moreover, the first integral of Eq.(3.77)

is different from those for the other two formulations.

3.7 Some numerical aspects

For numerical computation by means of the FEM, the M-integral is evaluated first in global
coordinates ((Mm)global) and then transformed to local coordinates (Mjeea1). Thus one obtains

Miocal 85

Miocat = (M1)1ocal = (M1)global €086 + (M2)glgbat siné. (3.78)

The M-integrals (My)global for the three consistent formulations have derivatives of material prop-
erties in common. In this thesis, closed-form expressions for derivatives of material properties are
not used because these expressions would be specific to each specific functioﬁ or micromechanics
model. Thus, for the sake of generality, such derivatives are determined by using shape function

derivatives of finite elements [76, 77).
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The derivatives involving material derivatives for each formulation are

o Non-equilibrium: o7 = Cyjk1,; €™ + Cijut €jl5 (3.79)
o Incompatibility: &j}7, = Sijrm of'® + Sijut ohim (3.80)
o Constant-constitutive-tensor: oyj,m = Cijkim €xt + Cijkt Ekiym (3.81)

A simple and general approach to evaluate such derivatives consists of using shape function deriva-
tives [82]. Thus the derivatives of a generic quantity P (e.g. Cijki, Sijai, O €;) are obtained

as

oP * ON;

X 2 mpi, (m=1,2), (3.82)

where n is the number of element nodes and N; = N;(§,7n) are the element shape functions which

can be found in many references, e.g. [26]. The derivatives ON;/8X,, are obtained as

ON; /90X, ON;/0¢
=J! . (3.83)
ON;/0X, ON;/on

where J~! is the inverse of the standard Jacobian matrix relating (X, X2) with (¢,7) [26].

3.8 Numerical examples

All the examples consist of SIFs and/or T-stress results for both isotropic and orthotropib FGMs,
and those results are obtained by means of the non-equilibrium and incompatibility formulations
of the interaction integral in conjunction with the FEM. In order to validate SIFs and T-stress so-
lutions, the FEM results for the first exatﬁple (an inclined center crack in an exponentially graded
plate subjected to fixed-grip loading) are compared with available semi-analytical and numerical
solutions, The second example involves four-point bending specimen with delaminated cracks.
The third example investigates a curved crack subjected to far-field tractions. The fourth exam-

ple involves an edge crack in an FGM strip under fixed-grip loading. The fifth example provides
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benchmark solutions for biaxiality ratios for laboratory specimens, and the sixth examples inves-
tigates scaling of FGM specimens. The seventh example investigates the effects of Poisson’s ratio
and boundary conditions considering two kinds of crack orientation with respect to material grada-
tions. The last example investigates a crack in a multi-layered region including two homogeneous

materials and an FGM region between those regions.

3.8.1 Plate with an inclined center crack

Figure 3.7(a) shows an inclined center crack of length 2a located with a georhetric angle 6 (counter-
clockwise) in a plate subjected to fixed-grip loading; Figure 3.7(b) shows the complete mesh con-
figuration; Figure 3.7(c) shows five contours used for EDI computation of the M-integral; and
Figure 3.7(d) shows the mesh detail using 12 sectors (S12) and 4 rings (R4) of elements around the
crack tips. |

The displacement boundary condition is prescribed such that us = 0 along the lower edge, and
uy = 0 for the node at the lower left-hand-side. The mesh discretization consists of 1641 Q8, 94
T6, and 24 T6qp elements, with a total of 1759 elements and 5336 nodes.

The fixed-grip loading results in a uniform strain eg (X1, X) =& ih a corresponding uncracked
structure, which corresponds to 032(X1,10) = £E%X1 for isotropic FGMs and 092(X1,10) =
EE%ePX1 for orthotropic FGMs (see Figure 3.7(a)). Young’s moduli and shear modulus are expo-
nential functions of X, while Poisson’s ratio is constant. The following data were used in the FEM

analyses:

plane stress, 2 x 2 Gauss quadrature,
a/W =0.1, L/W = 1.0, 8 =0° to 90°, fa = 0.5, = 1,
Isotropic case :
E(X)) = E%PX1, y(X))=v, E°=1.0, v=0.3
AOrthotropic case ;
En(Xy) = EYePXt, Ep(X1) = BRePX, Gra(X1) = GhefX1, vip(X1) = v,

E}, =104, E), =103, G}, = 1216, v}, = 0.3.
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Figure 3.7: Example 1: FGM plate with an inclined crack with geometric angle 8: (a) geometry and
BCs under fixed-grip loading; (b) typical finite element mesh; (c) contours for EDI computation of
M-integral; (d) mesh detail using 12 sectors (S12) and 4 rings (R4) around the crack tips (6 = 18°
counter-clockwise).
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Table 3.2 compares the present FEM results for normalized SIFs obtained by the non-equilibrium
formulation of the M-integral with semi-analytical solutions provided by Konda and Erdogan (89
for various geometric angles of a crack in isotropic FGMs. Notice that the present results for
normalized SIFs are in remarkable agreement with those by Konda and Erdogan [89] (maximum
difference 1.3%, average difference 0.6%).

Table 3.2: Example 1: comparison of normalized mixed-mode SIFs in isotropic FGMs for Sa=0.5
(Ko = EE®\/ma) (see Figure 3.7).

Method 0 | K;/Ko | Kj1/Ko | K; /Ko | K;;/Ko
0° | 1.424 | 0.000 | 0.674 | 0.000
18° | 1.285 | 0344 | 0617 | 0213
Konda & | 36° | 0925 | 0.548 | 0460 | 0.365
Erdogan [89) | 54° | 0490 | 0532 | 0247 | o307
72° | 0146 | 0314 | 0059 | 0.269
90° | 0.000 | 0.000 | 0.000 | 0.000
0° | 1.4231 | 0.0000 | 0.6657 | 0.0000
18° | 1.2835 | 0.3454 | 0.6104 | 0.2112
Non-equilibrium | 36° | 09224 | 0.5502 | 0.4559 | 0.3625
54° | 0.4880 | 0.5338 | 0.2451 | 0.3943
72° | 0.1451 | 0.3147 | 0.0587 | 0.2670
90° | 0.0000 | 0.0000 | 0.0000 | 0.0000

Figure 3.8 shows J = (K? + K?#;)/Eyip value calculated by the interaction integral for the right
crack tip of an inclined crack with # = 18° using five contours for EDI computations as shown
in Figure 3.7(c). The non-equilibrium formulation is used both considering and neglecting the
non-equilibrium term (see Eq.(3.24)), and the incompatibility formulation is used both consider-
ing and neglecting the incompatible term (see Eq.(3.29)). The solutions obtained by considering
the non-equilibrium term for the non-equilibrium formulation, and the incompatible term for the
incompatibility formulation are not distinguishable in a graphical form. Notice that the converged
solution is obtained when including either the non-equilibrium or the incompatibility term, however,
such behavior is not observed when neglecting either term.

Table 3.3 compares the present FEM results for normalized SIFs obtained by the non-equilibrium
- formulation of the M—integral with those obtained by the incompatibility formulation for various
geometric angles of a crack in orthotropic FGMs. Notice that the two formulations provide similar
FEM results for SIFs for each geometric angle. Comparison of Tables 3.2 and 3.3 indicates that the
material orthotropy shows significant effect on SIFs, and the SIFs K ;’ (right crack tip) and K7

(left crack tip) for the orthotropic case are greater than or equal to those for the isotropic case,
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Figure 3.8: Example 1: comparison of J = (K? + K?%,)/Eyy, for the right crack tip of an inclined
crack with 6 = 18° using the M-integral. The non-equilibrium formulation is used both considering
and neglecting the non-equilibrium term (see Eq.(3.24)). The incompatibility formulation is used
both considering and neglecting the incompatible term (see Eq.(3.29)).

however, the SIFs K }*‘1 and K; for the orthotropic case are smaller than or equal to those that for

the isotropic case.

Table 3.3: Exafnple 1: comparison of normalized mixed-mode SIFs in orthotropic FGMs for
Ba=0.5 (Ko = £E%,\/7a) (see Figure 3.7).

Formulation 0 | Kf/Ko | Ki;/Ko | K; /Ko | Ki;/Ko
0° 1.4279 0.0000 0.6663 0.0000
18° | 1.3224 0.2176 0.5997 0.2436
Non-equilibrium | 36° | 1.0177 0.4097 0.4150 0.4160
54° | 0.6008 0.4477 0.1814 0.4379
72° | 0.2154 0.2906 0.0056 0.2822
90° | 0.0000 0.0000 0.0000 0.0000
0° 1.4285 0.0000 0.6663 0.0000
18° | 1.3224 0.2194 0.5997 0.2427
Incompatibility | 36° | 1.0177 0.4111 0.4149 0.4156
54° | 0.6008 0.4480 0.1809 0.4373
72° | 0.2158 0.2906 0.0052 0.2823
90° | 0.0000 0.0000 0.0000 0.0000

. Table 3.4 compares the present FEM results for normalized T-stress in isotropic FGMs obtained

by the non-equilibrium formulation of the M-integral with those reported by Paulino and Dong {112]
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who used the singular integral equation method. Table 3.5 compares the present FEM results
for normalized T-stress obtained by the non-equilibrium formulation of the M-integral with those
obtained by the incompatibility formulation for orthotropic FGMs. Notice that the two formulations
provide similar FEM results for T-stress for each geometric angle. For the isotropic case, T-stress
at both right and left crack tips changes signv in the range of angle 6 = 30° to 45° (see Table 3.4),
while, for the orthotropic case, it changes sign in the range of angle § = 15° to 30° (see Table 3.5).
Comparison of Tables 3.4 with 3.5 indicates that the material orthotropy shows significant effect

on T-stress in terms of its sign and magnitude.

Table 3.4: Example 1: comparison of normalized T-stress in isotropic FGMs for Sa=0.5 (o0 =
£E%)(see Figure 3.7).

[} Non-equilibrium Paulino and Dong [112

T(+a)/ao0 | T(=a)/oo | T(+a}/oo | T(~a)/o0o
0% -0.896 -0.858 -0.867 -0.876
15° -0.773 -0.747 -0.748 -0.763
30° -0.434 -0.436 -0.420 -0.444
45° 0.036 0.011 0.039 0.010
60° 0.513 0.484 0.513 0.490
75° 0.868 0.850 0.870 0.858
90° 0.994 0.994 1.000 1.000

Table 3.5: Example 1: comparison of normalized T-stress in orthotropic FGMs for fa=0.5 (og =
£ED,)(see Figure 3.7).

0 Non-equilibrium Incompatibility
T(+a)/oo | T(—a)/oo | T(+a)/o0 | T(=a)/ae
0° -2.822 -2,725 -2,832 -2.712
15° -1.407 -1.402 -1.384 -1.407
30° 0.156 0.079 0.168 0.074
45° 0.785 0.700 0.785 0.702
60° 0.971 0.909 0.970 0.910
75° 1.003 0973 1.002 0.973
90° 0.996 0.996 .0.997 0.997

3.8.2 Four-point bending specimen

Gu and Asaro [49] investigated the effect of material orthotropy on mixed-mode SIFs in FGMs
considering a four-point bending specimen with exponentially varying Young’s moduli, shear mod-
ulus, and Poisson’s ratio. This example investigates SIFs and T-stress by means of the interaction

integral method.
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T

(d)
| Figure 3.9: Example 2: Four-point bending specimen: (a) geometry and BCs; (b) complete finite

element mesh; (c) mesh detail using 12 sectors (S12) and 4 rings (R4) around crack tips; (d)
enlarged view of the right crack tip. ’
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Figure 3.9(a) shows the four-point bending specimen geometry and BCs, Figure 3.9(b) shows
the complete FEM mesh configuration, Figure 3.9(c) shows a mesh detail around the crack, and
Figure 3.9(d) shows a zoom of the right crack tip. The point loads of magnitude P are applied at
the nodes (X1, X3) = (+11,1.0). The displacement boundary conditions are prescribed such that
(u1,u2) = (0,0) for the node at (X1, X2) = (—~10,-1.0) and up = 0 for the node at (X1, X2) =
(10, -1.0).

For the evaluation of SIFs, Young’s moduli, shear modulus, and Poisson’s ratios are assumed

as exponential functions of X, given by

E1(X2) = E)ePX2, Ep(Xp) = EQefXe,
vi2(X2) = l/?z(l + 6X2)eﬂxz, vo1(X2) = Vg](l + 6X2)6ﬂx2;

Gr2(X2) = Exn(X2)/[2(VX + va1(X2))l; A = Ega(X2)/Ey1(Xa), (3.84)

respectively.

For the evaluation of T-stress, Young's moduli and shear modulus are assumed as exponential

functions of Xg, while Poisson’s ratio is constant. The material properties are given by

Ej1(X2) = E?leﬂxz, Ep(Xs) = Eg2eﬁx2,G12(X2) = G?zeﬂxz

vi2(X2) = v, A = Exn(X2)/En(Xz). (3.85)

Moreover, the numerical values of properties adopted are given in Table 3.6.

Table 3.6: Example 2: numerical values of material properties.

A Ey | B, 12 Via
0.1 1 0.1 0.5 0.3
1 1 1 0.3846 | 0.3
10 1 10 0.5 0.03

The mesh discretization consists of 625 Q8, 203 T6, and 24 T6qp elements, with a total of 852
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elements and 2319 nodes. The following data were used for the FEM analysis:

plane stress, 2 x 2 Gauss quadrature,

a=30, hy/hy =10, €= 0.9, P = 1.0. (3.86)

Figures 3.10 and 3.11 show comparison of the SIF |K |h"15/ 2/ Pl with |K | = m , and the
phase angle ¢ = tan~!(K};/KJ), respectively, obtained by the interaction integral method with
those reported by Gu and Asaro [49]. There is quite good agreement between the two solutions,
although Gu and Asaro [49] did not provide geometry information. Notice that as Sh; increases,
both the SIF and the phase angle ¢ increase, and the material orthotropy (measured by A =
Eg;/Eqy) shows significant influence on the results. Moreover, for a fixed Bhi, as A increases the

SIF increases, however, the phase angle decreases.
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Figure 3.10: Exaxhple 2: The normalized norm of mixed-mode SIFs |K |h"13/ 2/Pl for a four-point
bending specimen. The parameter A = Ej/Ey;.
Figure 3.12 shows the FEM results for the T-stress obtained by the interaction integral method
in conjunction with the Lekhnitskii formalism. Notice that T-stresses are all positive for the range
of the material ofthotropy A = Eg/FE); and material nonhomogeneity parameter Sh;. The T-stress

for the right crack tip is the same that for the left crack tip due to the symmetry, and this feature
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Figure 3.11: Example 2: The phase angle ¢ = tan~1(K;/Kj;) for a four-point bending specimen.
The parameter A = Eg/E;.
is captured by the present FEM implementation. There is a significant influence of the material
orthotropy A and material nonhomogeneity Shi on the T-stress. As either Bh; or X increases, the

T-stress increases. With increasing material nonhomogeneity Bh;, the effect of material orthotropy

A on T-stress becomes pronounced.

3.8.3 Plate with a curved crack

Muskhelishvili [103] used conformal mapping and provided the exact solutions for SIFs of a curved
crack in a homogeneous medium under far-field traction, according to the scheme shown in Fig-

ure 3.13.

The exact solutions for SIFs are given by

K = a___.7r12%smO [F(B)cosg+sin2wsinag-+cos<2w—%q)]‘,
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Figure 3.12: Example 2: T-stress for four-point bending specimen. The parameter A = Es/E); is
the orthotropy ratio. Notice that the parameters A and Bh; influence T-stress.

Figure 3.13: Example 3: A curved crack (circular) under far-field traction.

85



K = g__.ﬂ'};sme F(0) sing — sin 2wsin? g cosg —sin (2w - 3—20)] ) (3.87)

where

1 — cos 2w sin?(8/2) cos?(0/2)

ko) = 1+ sin2(6/2)

in which w indicates the angle of the direction of applied traction o with respect to the horizontal
line, and K and K|y are the SIFs at the top crack tip (Tip A). The mode I SIF at the bottom
crack tip (Tip B) is the same as K in Eq.(3.87), however, the mode II SIF changes sign. Our
numerical solution (M-integral) will be tested against these theorétical (reference) solutions.

Figures 3.14(a) and 3.14(b) show a circular-shaped crack located in a finite two-dimensional
plate under remote uniform tension loading for two different boundary conditions. These boundary
conditions are prescribed such that, for the first set of BCs (Figure 3.14(a)), u; = ug = 0 for the
node in the middle of the left edge, and uz = 0 for the node in the middle of the right edge; while
for the second set of BCs (Figure 3.14(b)), u1 = 0 for all the nodes along the left edge and us = 0
for the bottom-corner node. Figure 3.14(c) shows the complete finite element mesh configuration,
and Figure 3.14(d) shows a mesh detail using 12 sectors (S12) and 5 rings (R5) around the crack
tips. The applied load corresponds to 022(X1,+L) = +o0 = £1.0 for the BC in Figure 3.14(a) and
011(xW, X2) = 0 = +1.0 for the BC in Figure 3.14(b).

The mesh discretization consists of 1691 Q8, 184 T6, and 24 T6qp elements, with a total of
1875 elements and 5608 nodes. The following data are used in the FEM analyses:

plane stress, 2 x 2 Gauss quadratufe, R=10, L/W = 1.0,
Isotropic case (Homogeneous): E =10, v =0.3
| Orthotropic case :
En(X1) = B efXt, Ey(X1) = ELePX1, Gip(X1) = GlebX1,
Eu(Xz) = E{ePX2, Bpp(Xy) = EePX3, Gra(Xo) = GpefXe,
E{; =10, E), =0.5, G}, = 0.25, v12 = 0.3, SR = (0.0 to0 0.5)
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() (d)

Figure 3.14: Example 3: plate with a single curved crack: (a) geometry and BCs (first set of BCs);
(b) geometry and BCs (second set of BCs); (c) complete finite element mesh; (d) mesh detail with

12 sectors (S12) and 5 rings (R5) around the crack tip (S12,R5) - the thick line indicates the crack
faces. : a

Table 3.7 shows FEM results for SIFs for both the top and bottom crack tips obtained by means

of the incompatibility formulation of the interaction integral method for a semi-circular crack con-
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sidering the two sets of boundary conditions and the two choices of gradation directions, i.e. X
and X,. It also compares the present results with the available reference solutions of Muskhel-
ishvili [103] for the homogeneous isotropic case. In this latter case, the numerical solutions are
obtained as a particular case of the general formulation for nonhomogeneous orthotropic materi-
als. The calculated SIFs agree well with the reference solutions. For material gradation along the
direction X1, the mode II SIF at the bottom crack tip changes sign because of symmetry, however,

for material gradation along the X, direction, both mode I and mode II SIFs change in magnitude

and sign.

Table 3.7: Example 3: FEM results for SIFs for a semi-circular crack. Case 1: first set of BCs -

Figure 3.14(a); Case 2: second set of BCs - Figure 3.14(b). The exact solution for homogeneous
isotropic materials was reported by Muskhelishvili (1953).

Crack | Case | Material | SR | Gradation M-integral MCC Exact
Tip Direction K, K1 K Ky K Kn

Iso 0.0 - 0.6872 | -0.4314 | 0.6765 | -0.4303 | 0.6785 | -0.4330

1 0.0 - 0.6868 | -0.4362 | 0.6853 | -0.4321 - -

Ortho | 0.1 X1 0.8240 | -0.3718 | 0.8218 | -0.3678 - -

Xo 0.6602 | -0.4498 | 0.6596 | -0.4451 - -
Top Iso 0.0 - 0.4690 | 1.0890 | 0.4692 | 1.0890 [ 0.4643 | 1.0928

2 0.0 - | 05059 | 1.0470 | 0.5053 | 1.0412 - -

Ortho | 0.1 X1 0.5131 | 1.0489 | 0.5125 | 1.0425 - -

X2 0.6160 [ 1.0771 | 0.6159 | 1.0734 - -

Bottom 1 Ortho | 0.1 X2 0.6739 | 0.4351 | 0.6700 | 0.4306 - -

2 Ortho | 0.1 X2 0.6341 | -1.0692 | 0.5338 | -1.0628 - -

Figures 3.15(a) and 3.15(b) show curved crack surface displacement profile considering the
isotropic homogeneous case and the orthotropic FGM case with gradation along the X direction,
respectively, for the first set of BCs (see Figure 3.14(a)). Notice that the curved crack geometry
naturally creates mode-mixity which is observed around crack-tip elements. Moreover, the sym-
metry of crack opening profiles exists with respect to the Cartesian direction X for this case, i.e.
the homogeneous case and FGM case with gradation of X;. The crack faces interpenetrate for the
isotropic homogeneous case, while this behavior does not occur for the orthotropic FGM case. Fig-
ures 3.16(a) and 3.16(b) show curved crack surface displacement proﬁie considering the orthotropic
FGM case with gradation of X3 for the first and second set of BCs, respectively. We observe that
the interpenetration of the crack faces is also observed for the orthotropic FGM case with gradation

of X7 using the first set of BCs. As expeécted, the symmetry of crack opening proﬁleé is naturally
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lost for the FGM with gradation along X5 direction.

1 | 1

1 1 1 1

(a) (b)

Figure 3.15: Example 3: Curved crack surface displacement profile (deformed shape) éonsidering

the first set of BCs: (a) isotropic homogeneous case; (b) orthotropic FGM with gradation along
the X direction.

] 1 ' ] ]

(a) , (b)

Figure 3.16: Example 3: Curved crack surface displacement profile (deformed shape) considering
gradation along the X direction in orthotropic FGMs: (a) first set of BCs; (b) second set of BCs.

Tables 3.8 and 3.9 show FEM results for T-stress obtained by means of the interaction integral
in conjunction with the Lekhnitskii formalism for a single curved crack considering the two sets
of boundary conditions illustrated by Figures 3.14(a) and 3.14(b) and gradation along the X;
direction. There is a significant influence of material orthotropy and material nonhomogeneity

(parameter SR) on the T-stress. Because of the symmetry, the T-stress on the top and bottom
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crack tips are identical. The T-stress for orthotropic homogeneous material differs significantly from
that for isotropic homogeneous material. For orthotropic materials, the nonhomogeneity parameter
BR increases the T-stress for the first set of BCs (Case 1: Figure 3.14(a), Table 3.8) and decreases
the T-stress for the second set of BCs (Case 2: Figure 3.14(b), Table 3.9). Moreover, for Case 1,
the T-stress remains negative for the range of SR investigated (0 < AR < 0.5), however, for Case 2,
it changes sign at SR = 0.47. The change in the sign of T-stress indicates that the nonhomogeneity
parameter SR influences crack path stability.

Table 3.8: Example 3: T-stress for a single curved crack. Case 1: first set of BCs — see Fig-
ure 3.14(a).

Case | Material | BR | T-stress
‘ Iso 0.0 | -0.3684
1 0.0 | -0.2748
0.1 ]| -0.2724

Ortho 0.2 | -0.2520

0.3 | -0.2099

0.4 | -0.1513

0.5 | -0.0981

Table 3.9: Example 3: T-stress for a single curved crack. Case 2: second set of BCs — see
Figure 3.14(b).

Case | Material | BR | T-stress
Iso 0.0 [ 0.6076

2 0.0 | 0.4057
0.1 | 0.3230

Ortho | 0.2 | 0.2389

0.3 | 0.1516

0.4 | 0.0655

0.5 | -0.0185

3.8.4 Strip with an edge crack

Figure 3.17(a) shows an edge crack of length “a” in a plate, and Figure 3.17(b) shows the complete
mesh discretization using 12 sectors (S12) and 4 rings (R4) of elements around the crack tip.
Figures 3.17(c), 3.17(d), and 3.17(e) illustrate the three considered types of hyperbolic-tangent
material gradation with respect to the crack ’tip: reference configuration, translation to the left,
and translation to the right, respectively. The fixed-grip displacement loading results in a uniform

strain €92(X1, X2) = € in a corresponding uncracked structure.
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The displacement boundary condition is prescribed such that uz = 0 along the lower edge and

u; = 0 for the node at the left-hand-side.

: 1A =1

L=4

(a) (b)

crack crack crack

(c) (d) (e)

Figure 3.17: Example 4: Strip with an edge crack in hyperbolic-tangent materials: (a) geometry
and BCs; (b) complete finite element mesh with 12 sectors (S12) and 4 rings (R4) around the
crack tip; (c) reference configuration (d = 0.0); (d) translation of material gradation to the left
(d = +0.5); (e) translation of material gradation to the right (d = —0.5).

The mesh discretization consists of 208 Q8, 37 T6, and 12 T6qp elements, with a total of 257

elements and 1001 nodes.
Young's moduli-and shear modulus are hyperbolic-tangent functions with respect to the global

(X1, X2) Cartesian coordinates, while Poisson’s ratio is constant. The following data were used for
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3.5 : : :

Material Properties

Figure 3.18: Example 4: Variation of material properties: Ej;, Fj2, and Gu for the orthotropic
case, and FE for the isotropic case.

the FEM analysis (see Figure 3.18):

plane strain, 2 x 2 Gauss quadrature,
a/W =0.5,L/W = 2.0, = 0.25, d = (~0.5to 0.5)
Isotropic case :

E(X)) = (E~ + E*)/2 + tanh [8(X; + d)](E~ — E*)/2,
Ba=150, v =03, (E-, E*+) = (100, 3.00)
Orthotropic case :

Eui(X1) = (Bfj + B})/2 + tanh [a(X, + d)] (Bf; — E)/2,

Exn(X)) = (Bxp + E22)/2 + tanh [3(X1 +d)] (B3, — E%)/2,

Gra(X1) = (Gi +Gh)/2 + tanh (X + d)] (G, — GHy)/2,
aa = ffa = vya = 15.0, vj3 = 0.3,

(Eq, Ef) = (1.00,3.00), (E22,Egg) (1.25,2.75), (G1p,GYa) = (1.50,2.50).
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Table 3.10 compares the present FEM results for mode I SIF (K;) obtained by the non-
equilibrium formulation with those obtained by the incompatibility formulation for various transla-

tion factors “d" of hyperbolic-tangent material variation considering both isotropic and orthotropic

FGMs.

Table 3.10: Example 4: comparison of mode I SIF (K;) for an edge crack considering translation
(d) of hyperbolic-tangent material variation (see Figure 3.17).

d Non-equilibrium Incompatibility
Iso Ortho Iso | Ortho [85]
-0.5 || 1.212 1.164 1.186 1.158
-04 || 1.211 1.167 1.201 1.163
-0.3 || L.211 1.175 1.190 1,173
-0.2 || 1.218 1.189 1.209 1.189
-0.1 || 1.231 1.212 1.212 1.217
0 1.030 1.047 1.026 1.049
0.1 || 0.595 0.701 0.588 0.697
0.2 | 0.486 0.615 0.487 0.614
0.3 || 0.451 0.585 0.451 0.585
04 |l 0.430 0.567 0.430 0.567
0.5 || 0.419 0.554 0.419 0.554

For the orthotropic case, the FEM results obtained by the non-equilibrium formulation are
compared with those obtained by the incompatibility formulation reported by Kim and Paulino [85).
Notice that the two equivalent formulations provide similar FEM results for mode I SIF for each
translation factor “d". For the isotropic FGMs, the mode I SIF decreases With the translation
factor “d” for the range between -0.1 and 0.5. For the orthotropic FGMs, the mode I SIF increases
with the translation factor “d” for the range between -0.5 and -0.1, however, it decreases as “d”
increases further. Table 3.10 also indicates that mode I SIFs for the orthotropic case are smaller
than those for the isotropic case for each translation factor “d” from —0.5 to — 0.1, however, the
SIFs for the orthotropic case are greater than those for the isotropic‘case ford=0t00.5.

Table 3.11 compares the present FEM fesults for T-stress obtained by the non-equilibrium for-
mulation with those obtained by‘the incompatibility formulation for various translation factors “d”
of hyperbolic-tangent material variation considering both isotropic and orthotropic FGMs. Notice
that the two formulations provide similar FEM results, and the T-stresses are negative for all the
translation factors “d" considered. For both isotropic and orthotropic FGMs, the T-stress decreases
with the translation factor “d” for the range between -0.5 and 0.0, however, it increases as “d” in-

creases further. Table 3.11 also indicates that T-stress for the orthotropic case is greater than or
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equal to that for the isotropic case for each translation factor.

Table 3.11: Example 4: comparison of T-stress for an edge crack considering translation (d) of
hyperbolic-tangent material variation (see Figure 3.17).

d Non-equilibrium | Incompatibility
Iso Ortho Iso Ortho
-0.5 || -0.463 | -0.393 | -0.452 | -0.394
-04 || -0.478 | -0.407 | -0.470 | -0.406
-0.3 || -0.507 | -0.434 | -0.493 | -0.439
-0.2 || -0.580 | -0.499 | -0.571 | -0.501
-0.1 || -0.797 | -0.686 | -0.797 | -0.702

0 -1.123 | -0.923 | -1.181 | -0.962
0.1 || -0.444 | -0.364 | -0.431 | -0.362
0.2 || -0.218 | -0.205 { -0.217 | -0.205
03 || -0.175 | -0.171 | -0.175 | -0.171
0.4 | -0.157 | -0.157 | -0:157 | -0.157
0.5 || -0.152 | -0.151 | -0.152 | -0.152

3.8.5 Benchmark examples: laboratory specimens
This example investigates the following benchmark laboratory specimens:
e Single edge notched tension (SENT)
e Single edge notched bending (SENB)
e Center cracked tension (CCT)
e Double edge notched tension (DENT)
e Compact tension (CT)

A similar study for homogeneous materials was conducted by Sherry et al. [129]. They inves-
tigated T-stress for two and three dimensional cracked geometries, ’and provided T-stress and the
bi.axiality ratio for the above specimen types, but the dimensions are different from those considered
in this paper. Figures 3.19(a) to 3.19(e) show SENT, SENB, CCT, DENT, and CT specimens, re-
spectively. Figures 3.20(a) to 3.20(d) show the complete finite element meshes for SENT or SENB,
CCT, DENT, and CT specimens, respectively, and Figure 3.20(e) shows the mesh detail of the
CCT specimen using 12 sectors (S12) and 4 rings (R4) around the crack tips.
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The applied loads are as follows:

022(X1,£L) = 1 for SENT,
P(W,0)=-1  for SENB,
 o22(X1,£L) = %1 for CCT and DENT,
P(0,+0.275) = +1 for CT,

where 092 is equidistributed traction on the boundary of FGM specimens.

The displacement boundary condition is prescribed as follows: _

(u1,u2)(W,0) = (0,0), u(a,0) =0 for SENT and CT,
(ulauZ)(O) L) = (01 O)a ul(oa _L) =0 for SENB,
(u1,u2)(0,0) = (0,0), u2(2W,0) =0 for CCT,

(u1,u2)(a,0) = (0,0), ua(2W —a,0) =0 for DENT.
Young’s modulus is an exponential function given by
E(X)) = B, (3.88)

where E1=F(0) and E;=E(W) for SENT, SENB, and CT specimens and E1=E(0) and E;=E(2W)
for CCT and DENT specimens. The Poisson’s ratio is taken as constant for all the specimens. The

following data are used for the FEM analyses:

plane strain, 2 x 2Gauss quadrature,
a/W =(0.1t00.8), L=6.0, W = 1.0,

E»/E; = (0.1,0.2,1.0,5,10), E; = 1.0, v = 0.3. (3.89)

- Figure 3.21 shows biaxiality ratio (8 = T'y/ma/K]|) versus the ratio of crack length to width
a/W for various specimens considering homogeneous materials (Ep = E1) The mode I SIF K is

calculated by the non-equilibrium formulation of the interaction integral method involving auxiliary
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Figure 3.19: Example 5: laboratory specimens of thickness t: (a) single edge notched tension
(SENT); (b) single edge notched bending (SENB); (c) center cracked tension (CCT); (d) double
edge notched tension (DENT); (e) compact tension (CT). The load P is the point force for the
SENB and CT specimens or the resultant for the equidistributed tractions (o) on the boundary of
the SENT, CCT, and DENT specimens.

fields given in the paper by Kim and Paulino [84]. Notice that the sign of biaxiality ratio changes
from negative to positive as the ratio of crack length to width (a/W) is about 0.22 for CT, 0.35 for
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SENB, and 0.60 for SENT specimen, however, it remains negative for DENT and CCT specimens.

Figure 3.22 shows biaxiality ratio (8 = T'y/ma/K) versus a/W for various specimens considering
exponentially graded materials with E3/E; = 10. For the CCT and DENT specimens, which have
two crack tips, the biaxiality ratio is calculated for the right crack tip. By comparing Figures 3.21
and 3.22, it is observed that the transition point of the sign of biaxiality ratio shifts to the left due
to the material gradation in the CT, SENB, and SENT specimens. Moreover, the behavior of the
biaxiality ratio for CCT and DENT is significantly different from that for a homogeneous material.

The T-stress and biaxiality ratio are evaluated for all the specimens considering various ratios of
E»/E,. Figure 3.23 shows the biaxiality ratio (8 = T'v/7a/K) versus a/W for the SENT specimen.
The transition point of the sign of biaxiality ratio shifts to the left as Ey/E) increases. For a fixed
value of a/W considered here, the biaxiality ratio (8 = T/ma/K) increases with increasing E, /Eh.

Figure 3.24 shows the biaxiality ratio versus a/W for the SENB specimen. The transition
point of the sign of biaxiality ratio shifts to the left as E5/F) increases. For a fixed value of a/W
considered here, the biaxiality ratio increases with increasing Ey/E;.

Figure 3.25 shows biaxiality ratio (8 = T'y/ma/Ky) versus a/W for the CCT specimen. For the
range of a/W considered, the T-stress and biaxiality ratio are negative. For a fixed value of a/W,
the biaxiality ratio (@ = T'v/ma/K[) increases with increasing Eo/E).

Figure 3.26 shows the biaxiality ratio (8 = T'v/ma/K]) versus a/W for the DENT specimen.
For the range of a/W between 0.1 and 0.7, the T-stress and biaxiality ratio are negative. For
E3/E) = 0.1, as the ratio a/W increases from 0.75 to 0.8, the biaxiality ratio becomes positive.

Figure 3.27 shows biaxiality ratio (3 = T'v/ma/K|) versus a/W for the CT specimen. The
transition point of the sign of biaxiality ratio shifts to the left as Fy/E) increases. For a fixed value
of a/W, bthe biaxiality ratio increases with increasing Ey/FE;. Based on the above investigations,
it is observed that the material gradation (represented by the ratio Ep/E)) significantly influences
the T-stress and biaxiality ratio for all the specimens considered.

For graded laboratory specimens, the mode I SIF (K) is associated with material nonhomo-

geneity, and it can be given by

Ky = Wf(wﬂ), (3.90)



where ¢ is the thickness of the specimen, and P is either the point force for the SENB and CT
specimens or the resultant for the equidistributed tractions (¢) on the boundary of the SENT,

CCT, DENT specimens (see Figure 3.19). For homogeneous specimens, there is no effect of v [5].
Using @ = T'y/ma/ K|, one obtains

BP a
T=—Ffi—ef(— 3.091
Notice that T-stress is also a function of the material nonhomogeneity parameter +.
To investigate the effect of material orthotropy on the biaxiality ratio, the compact tension
specimen is considered. Let’s assume that Young’s moduli and shear modulus are exponential

functions of X, while the Poisson’s ratio is constant. The material properties are given by
Eu = E?le7xl, E22 = Eg2e7xl, G12 = G[1)267x1, Vig = 1/92 (3.92)

with
B} =1, E}, =2,G}; =05, vf, = 0.15. (3.93)

Figure 3.28 shows biaxiality ratios § = T'y/ma/K| versus a/W ratio obtained for isotropic and
orthotropic FGMs. The mode I SIF K 1 is also evaluated by means of the interaction integral
method. For both isotropic and orthotropic cases, as the ratio Er = exp(yW) increases, the
biaxiality ratio increases and the transition points for sign-change of the biaxiality ratio shift to

the left. Both material orthotropy and nonhomogeneity show a significant influence on the T-stress

and biaxiality ratio.
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Figure 3.20: Example 5: Finite element meshes: (a) single edge notched tension (SENT) and single
edge notched bending (SENB); (b) center cracked tension (CCT); (c) double edge notched tension
(DENT); (d) compact tension (CT); (e) mesh detail of the CCT specimen using 12 sectors (S12)
and 4 rings (R4) around the crack tips.
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Figure 3.22: Example 5: Biaxiality ratio (8 = T'y/ma/K) for an FGM considering E;/E; = 10. For
center cracked tension (CCT) and double edge notched tension (DENT) specimens, the biaxiality
ratio is evaluated at the right crack tip.

100



Biaxiality ratio (B)

Figure 3.23: Example 5: Biaxiality ratio (8 = Tv/ma/K|) for the smgle edge notched tension
(SENT) specimen (see Figure 3.19(a)).

Biaxiality ratio (f)

E/E-01
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Figure 3.24: Example 5: Biaxiality ratio (8 = Ty/ma/K|) for the single edge notched bending
(SENB) specimen (see Figure 3.19(b)).
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Figure 3.25: Example 5: Biaxiality ratio (8 = T'y/wa/K|) evaluated at the right crack tip for the
center cracked tension (CCT) specimen.
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Figure 3.26: Example 5: Biaxiality ratio (8 = T'v/ra/K|) evaluated at the right crack tip for the
double edge notched tension (DENT) specimen.
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Figure 3.27: Example 5: Biaxiality ratio (8 = T/ma/K) for the compact tension (CT) specimen.
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: . —=— Orthotropic
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Figure 3.28: Example 5: Comparison of biaxiality ratio (8 = T'v/ma/K;) for a compact ten-
sion (CT) specimen considering isotropic and orthotropic FGMs. Here Er = Ey(W)/E1;(0) =
Ey(W)/E2(0) = G12(W)/G12(0) = exp (BW).
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3.8.6 On scaling of FGM specimens

This example investigates the effect of scaling of FGM specimens on the T-stress and biaxiality
ratio. Here the compact tension (CT) specimen is considered for a fixed a/W ratio and two
geometries, where one is twice as large as the other. The loads are applied considering a given
value of J (or Ky). Figures 3.29(a) and 3.29(b) show the geometry and BCs for the two specimens
A and B, respectively. Figure 3.20(d) shows the complete finite element mesh adopted for these
two CT specimens. For the large specimen (B) to have the same K as that for the small specimen

(A), the applied load to specimen B should be v/2P (see Eq.(3.90)).

Figure 3.29: Example 6: Two graded compact tension (CT) specimens with a/W = 0.5: (a)
Specimen A; (b) Specimen B, which is two times as large as specimen A. For both specimens, J is
the same, and the Young’s modulus varies along the X; direction from E; on the left to E; on the
right-hand-side.

‘The Young’s modulus is taken as an exponential function given by -
E(X;) = B, - (3.94)

where E)=F(0), however, the present argument is indepehdent of the specific material variation
considered. Notice that as v = log|E(W)/E(0)]/W, the nonhomogeneity parameter «p for speci-
men B is half of 4 for specimen A. Thus, for both specimens E, = E(W) = E1e"™". The Poisson’s

ratio is taken as constant for the two specimens.
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For these specific relations of nonhomogeneity parameters, i.e. y4 = 2vp, the biaxiality ratio

remains unchanged. Using

K

one observes that T-stress is proportional to 1/\/a. Thus
Ts = V2T, ‘ (3.96)

where T4 and T denote the T-stress for specimens A (small) and B (large), respectively.

This theoretical argument is also observed in the numerical calculation. The following data are

used for the FEM analyses:

plane strain, 2 x 2 Gauss quadrature,

a/W =05, W=10,20,E/E =10, E; =10, v=03, P=1. (3.97)

For specimen A, the mode I SIF (K7), T-stress, bi#xiglity ratio are obtained as (cf. Figure 3.27)
(K1)a = 7.130, T4 = 5.607, 34 = 0.985. (3.98)

For specimen B, the mode I SIF (K7j), T-stress, biaxialiﬁy ratio are obtained as (cf. Figure 3.27)
(K1)p =7.130, Tp = 3.964, 5 = 0.985. (3.99)

Notice that, numerically, T4 /Tp = 1.4144, which is very close to v/2. Therefore the biaxiality ratio

plays an important role as a non-dimensional parameter not only for homogeneous materials and

but also for FGMs.
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3.8.7 Crack orientation versus material gradation

The following two examples employ the following averaged material parameters: the effective
Young’s modulus E, the effective Poisson’s ratio v, the stiffness ratio §4 and the shear parameter
ko. They replace the independent engineering constants Ej;, Gi; and vi; ((vi5/Ei) = (vji/ Ej;))

(i,§ =1,2), i.e. [90]

E
E=\EnEp, v= g, === ﬂ, Ko = £__ v, (3.100)
Ey vy 2G12

for plane stress. The bounds on Poisson’s ratios 12 and vg; for plane orthotropy are given by [24]:
12l < (Bu/En)'?, |va| < (By/En)"?, (3.101)

respectively. Therefore the bound on the effective Poisson’s ratio? is v < 1.0. The first two examples
also consider proportional material nonhomogeneity, i.e.

o[ E1]- de [£20] [ 5]

= ol Bn(-1)) = 28 | B(-1)) = 28 |G- H) (3.102)

T 2H

where H is the length of material gradation considered, e.g. H = W for the first example and

H = L for the second example. The nonhomogeneity parameter 3 has units [length]!.

Plate with a crack parallel to material gradation

This example investigates a plate with a crack parallel to material gradation. Figures 3.30(a)
and 3.30(b) show a center crack of length 2a located in a finite two-dimensional plate under fixed
grip loading or constant t’raction, respectively. Figures 3.30(c) and 3.30(d) show the complete finite
element mesh, a mesh detail with 16 sectors (S16) and 4 rings (R4) around crack tips, and a zoom
of the ri‘ght crack tip region, respectively.

For fixed-grip loading, the applied load resulfs in uniform strain e22(X;, X2) = € for a corre-
sponding uncracked plate; and fqr constant traction, the applied load a92(X1, L) = +1.0 along the

top and bottom edges. The displacement boundary conditions are prescribed such that u; = us =0

%Notice that the effective Poisson's ratio v (see Eq.(A.36)) can be bigger than 0.5 for orthotropic materials.
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Figure 3.30: Example 7: plate with a center crack parallel to the material gradation: (a) geometry
and BCs considering either fixed-grip loading (A) or far-field traction (o) on the (far-field) hori-
zontal edges; (b) complete finite element mesh; (c) mesh detail using 16 sectors (S16) and 4 rings

(b)

(d)

(R4) around crack tips; (d) zoom of the right crack tip.
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for the center node on the left edge, and us = 0 for the center node on the right edge.

The variations of Ej1, Fa, and Gjz are assumed to be an exponential function of X; and
proportional to one another, while the Poisson’s ratio v;5 is constant. The mesh has 1666 Q8,
303 T6, and 32 T6qp crack-tip singular elements with a total of 2001 elements and 5851 nodes (see
Figure 3.30(b)). The following data are used for the FEM analysis:

ae/W=01, L/W =10, g =1.0, fa=0.5,
By (X)) = B} PX, Ea(X1) = ERePX1, Gra(X1) = G3,ePX1, (3.103)
ko = 0.5, v = (0.1,0.2,0.3,0.4,0.5,0.7,0.9),

plane stress, 2 X 2 Gauss quadrature.

Table 3.12 shows the effect of material nonhomogeneity on normalized mode I SIF for the non-
homogeneous orthotropic plate of Figure 3.30 under fixed grip loading considering v = 0.3 and
ko = 0.5. The FEM results obtained by means of the incompatibility formulation of the interac-
tion integral method agree very well with those obtained by the MCC [78]. As the dimensionless
nonhomogeneity parameter Ba increases, the mode I SIF at the right crack tip increases, but the
mode I SIF at the left crack ‘tip decreases. This is expected due to the nature of the exponential

material gradation with the origin of the Cartesian coordinate system at the center of the plate.

Table 3.12: Example 7: The effect of material nonhomogeneity on normalized mode I SIF in a
nonhomogeneous orthotropic plate under fixed grip loading (v = 0.3, kKo = 0.5, Ky = EO-E_O\/‘IT(I;

E° = E°/6% E° = \/ED,E},) - see Figure 3.30.

Ba M-integral [80] MCC
Ki(+a)/Ko | Ki{=a)/Ko || Ki(+a)/Ko | Ki(=a)/Ka
0.00 0.9969 0.9969 0.9986 0.9986
0.10 1.0750 0.9247 1.0791 0.9251
0.2 1.2043 0.8245 1.2101 0.8233
0.50 1.4371 0.6708 1.4484 0.6680
0.75 1.7055 0.5404 1.72565 0.5358
1.00 2.0318 0.4335 2.0639 0.4285

Table 3.13 shows the effect of the Poisson’s ratio » on mode I SIF for the nonhomogeneous
orthotropic plate of Figure 3.30 under fixed grip loading considering fa = 0.5 and kg = 0.5. The
FEM results obtained by means of the M-integral agree with the SIFs obtained by Ozturk and
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Erdogan [108] to within 1%.

Table 3.13: Exaniple 7: Normalized mode I SIF in a nonhomogeneous orthotropic plate under fixed
grip loading for various effective Poisson’s ratios v = /13051 (Ba = 0.5, kg = 0.5, Ky = eoEO\/na;

E° = E°/6% E° = \/EY, EY,) - see Figure 3.30.

v M-integral (80} Ozturk & Erdogan {108}
Ki(+a)/Ko | Ki(=a)/Ko || Ki(+a)/Ko | Ki(—=a)/Ko
0.1 1.4300 0.6668 1.4183 0.6647
0.2 1.4334 0.6685 1.4233 0.6676
0.3 1.4371 0.6706 1.4280 0.6704
0.4 1.4406 0.6731 1.4325 0.6730
0.5 1.4438 0.6751 1.4368 0.6755
0.7 1.4505 0.6785" 1.4449 0.6802
0.9 1.4563 0.6827 1.4524 0.6846

The effective Poisson’s ratio v = /viat21 has a negligible effect on the SIFs for a mode I
crack problem. With respect to the M-integral, notice that the results of Table 3.12 considering
Ba=0.5 coincide with those of Table 3.13 for v = 0.3. These results are presented in bold at these
Tables. In order to assess the accuracy of the present interaction integral method (M-integral),
- Table 3.14 shows normalized SIFs computed by other methods, such as J}-integral, the MCC, and
the DCT. By comparing Tables 3.13 and 3.14, and adopting Ozturk and Erdogan’s [108] semi-

analytical solution as reference, the interaction integral provides the best accuracy with respect to

the aforementioned schemes.

Table 3.14: Example 7: Comparison of normalized mode I SIF in a nonhomogeneous orthotropic
plate under fixed grip loading for various effective Poisson’s ratios (Ba = 0.5, ko = 0.5, Ko =
eoE v/7a; E° = E%/62; E° = VED ED,) ~ see Figure 3.30 [80]. The J}—integral results were
reported by Kim and Paulino [81]. Cf. Tables 3.13 and 3.14.

v Ji-integral MCC DCT
Ki(+a)/Ko | Ki(-a)/Ko || Ki(+a)/Ko | Ki(—a)/Ko || Ki(+a)/Ko | Ki(—a)/Ko
0.1 1.4451 0.6776 1.4406 0.6630 14363 - 0.6764
0.2 1.4488 0.6802 1.4442 0.6655 1.4405 0.6789
0.3 1.4522 0.6822 1.4480 0.6676 1.4446 0.6814
0.4 1.4559 0.6843 1.4517 0.6697 1.4484 0.6839
0.5 1.4593 0.6864 1.4551 0.6718 14517 0.6864
0.7 1.4655 0.6902 1.4618 0.6760 1.4576 0.6902
0.9 14718 0.6939 1.4684 0.6802 1.4588 0.6923

The crack opening displacements are evaluated for both homogeneous and nonhomogeneous
medium considering either fixed-grip lbading or far-field constant traction, as shown in Figure 3.30(a).

Figure 3.31 shows the crack opening displacement (COD) in a nonhomogeneous medium (Ga = 0.5)
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under far-field constant traction with B = E(X;) = E%X1/28 (E0 = /ED EJ,) and also in ho-
mogeneous materials with F(—a) = E0e~05 FE(0) = E° and E(a) = E%%5. The COD for the
right crack tip (X) = a) in the nonhomogeneous medium is greater than that in the correspond-
ing homogeneous medium with E(a) = E%%5. Thus the mode I SIF K7 in the nonhomogeneous
medium is greater than that in the homogeneous medium. Similarly, the mode I SIF (K;) at the
left crack tip (X1 = —a) in the nonhomogeneous medium is lower than that in the corresponding
homogeneous medium with E(~a) = E%~05, The COD for E = E° serves as a reference curve
between those curves for E = E%%5 and E = EVe~05,

Figure 3.32 shows the COD in a nonhomogeneous medium under fixed-grip loading with E =
E(X;) = E%*1/2¢ and also in homogeneous materials with E(—a) = E%~%5, E(0) = E°, and

E(a) = E%05.

25

N
o

4
u,(X,+0) x 10
o

-
(=)

Figure 3.31: Example 7: COD uyx10* in orthotropic FGMs under far-field constant traction
considering kg = 0.5, v = 0.3, and Ba = 0.5. The COD for the crack in the FGM is indicated by a
thicker line.

Notice that, for the fixed-grip loading, the crack opening displacement doesn’t depend on mate-

rial properties in the homogeneous medium. The mode SIF K for a homogeneous medium under
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Figure 3.32: Example 7: COD wuz in orthotropic FGMs under fixed-grip loading considering kg =
0.5, v = 0.3, and Ba = 0.5. The COD for the crack in the FGM is indicated by a thicker line.

pure mode I loading is given by (6 = 180°):

K= uz\/—g / [Re{ ™ i 2 (mae - qul)}] (3.104)

where g, = a2pik + aze/pk — age (k = 1,2). The material properties for the three homogeneous

materials considered are proportional to one another. In this case, the roots pj (k = 1,2) of the
characteristic equation (A.95) are identical. Moreover, for the case where the Cartesian coordinate

system coincide with the principal directions of material orthotropy,

V12
—, a1 =0.

1
an = E_u-’ a2 = En

Thus, with the same crack surface displacement us and Poisson’s ratio v2, the mode I SIF K7 is
proportional to Fyj, as illustrated by Table 3.15.

By comparison of the solution of a nohhomogeneous medium with that of a homogeneous
medium having the material properties at the right crack tip (X; = a), the crack opening dis-

placement in the nonhomogeneous medium is smaller than that in the corresponding homogeneous
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Table 3.15: Example 7: Homogeneous orthotropic material with properties sampled at the crack
tips (X1 = £1.0) and at the mid-point of the crack (X; = 0) in the corresponding FGM - see
Eq.(4.9). For all the cases, kg = 0.5, Ko = oF "v/7a; E° = E°/62; E° = VEL ED,. Also, notice
that E = E%BX1, The superscript in K} indicates case 1.

Parameter Case
1 2 3
En E}e? E}) E}e?
K1/ Ko K}/Ko | K} /Ko | K}e? /Ko
K;/Ko (numerical) || 0.6046 0.9969 1.6436

medium with E(a) = E%"%, and thus the SIF (K;) in the nonhomogeneous medium is lower
than that for the corresponding homogeneous medium. Similarly, the mode I SIF (K;) at the left

crack tip (X1 = —a) in the nonhomogeneous medium is greater than that in the corresponding

homogeneous medium with E(—a) = E%~095,

Plate with a crack perpendicular to material gradation

This example investigates a plate with a crack parallel to material gradation. Figures 3.33(a)
and 3.33(b) show a crack of length 2a located in a finite two-dimensional plate under remote
uniform tension loading for two different boundary conditions. These boundary conditions are
prescribed such thaf., for Figure 3.33(a), u3 =0 aiong the left and right edges, and us = 0 for the
node in the middle of left edge; while for Figure 3.33(b), u; = 0 for the left corner node of the
bottom edge and up = 0 along the bottom edge. The finite element mesh configurations are the
same as in the previous example (see Figures 3.30(b) and 3.30(c)). The applied load corresponds
to 092(X1, +L) = &0 = £1.0 for the BC in Figure 3.33(a) and 022(X1,L) = o = 1.0 for the BC in
Figure 3.33(b).

The variations of Fyy, Eg0, and Gya are exponential functions of X, and are proportional to

one another, while the Poisson’s ratio v2 is constant. The following data were used for the FEM
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analysis:

a/W =01, L/W = 1.0, fa = (0.0 to 0.5)
En(X3) = Ef PX2, Epo(Xo) = ERePX2, Gia(Xa) = GlyePX,
6% = Ey1/Ess = (0.25,0.5, 1.0, 3.0, 10.0),
Ko = (—0.25,0.0,0.5,1.0,2.0,5.0), v = 0.30,

plane stress, 2 x 2 Gauss quadrature.

Figures 3.34(&) and 3.34(b) show seven contours used for evaluating the J-integral considering
8% =10, kg = 5.0, v = 0.3, and fBa = 0.5. Figures 3.35 and 3.36 show the effect of the incompatible
term (see Eq.(3.23)) on the convergence of the J-integral obtained from Eq.(3.43) considering the
two sets of BCs, respectively. Notice that J is obtained after evaluation of SIFs (see Eq.(3.43)).
As the contours become larger, the solution converges when the incompatible term is considered,
however, it diverges if such term is neglected. Figure 3.37 shows strain energy release rates G/Gg in
a nonhomogeneous orthotropic plate under uniform tension for two differént boundary conditions
for a fixed stiffness ratio 6% = 10 and constant Poisson’s ratio »=0.3 with varying material nonho-
mogeneity Ba and ko. This figure clearly indicates that the boundary conditions have a significant
influence in strain energy release rates (and SIFs). For the first set of BCs (see Figure 3.33(a)),
the FEM results agree with the strain energy release rates (G/Go) obtained by Ozturk and Erdo-
gan [109]. The strain energy release rates G/Gy monotonically increase with «g and Ba. However,
for the second set of BCs (see Figure 3.33(b)), the present results agree with the strain energy
release rates (G/Go) obtained by the MCC, and the FEM results are significantly different from
those for the previous BCs. Notice that the two bullets along the line fa = 0.5 indicate energy
 release rates which are the converged solutions for J as shown in Figures 3.35 and 3.36. The FEM
results for various §* and kg obtained by the interaction integral compare well to those obtained
by the path-independent J;-integral [81], which are not presented in this thesis. Further numerical
results investigating the effect of boundary conditions, Poisson’s ratio, and plate size on the strain
energy release rates considering the two BCs of Figure 3.33 can be found in the papers by Kim and

Paulino (78, 83).

113



) €
S B (K) = eB%  Egy (%, Egeﬂ :
/] G, (x)=Go eP G ()=Gh P
¢ l ¢ i & & /\ O () O () ()
st Ay A A

(a) (b)

Figure 3.33: Example 7: plate with a center crack perpendicular to the material gradation: (a)
first set of BCs; (b) second set of BCs.
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Figure 3.34: Example 7: Contours used to evaluate the J-integral: (a) Contours 1, 2, 3, and 4; (b)
Contours 5, 6, and 7. ’
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Figure 3.35: Example 7: Effect of the “incompatible term” on the path-independence of the J-
integral considering the first set of BCs. The region associated with each contour is illustrated by
Figure 3.34.
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Figure 3.36: Example 7: Effect of the “incompatible term” on the path-independence of the J-
integral considering the second set of BCs. The region associated with each contour is illustrated
by Figure 3.34.
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Figure 3.37: Example 7: Normalized strain energy release rate versus the nonhomogeneity parame-
ter Ja and the shear parameter g considering uniformly applied tension (o22(X1,2L) = %o for the
first set of BCs, and 022(X1, L) = o for the second set of BCs) and §* = 10.0,v = 0.3,Gp = no2a/E°,
The dashed lines indicate the results reported by Ozturk and Erdogan [109], and the dash-dotted
lines indicate the results obtained by means of the MCC method. The solid lines indicate the re-
sults by means of the present M-integral considering the two BCs, and the two bullets at fa = 0.5
indicate the converged solutions for J considering ko = 5.0 as shown in Figures 3.35 and 3.36,
respectively.

3.8.8 Crack in a multi-layered region

This example investigates a crack in a multi-layered region which includes two homogeneous
materials and an FGM region in between those two regions. This example is similar to those
investigated by Ambrico et al. [4], who investigated thin multi-layers comprised of repeating
patterns of different material sections, such as interconnectk-dielectric structures in microelectron-
ics. The material gradation for the FGM region has various ratios of Young’s modulus. Fig-
ures 3.38(a) and 3.38(b) show edge and interior cracks in a multi-layered region, respectively. Fig-
ures 3.38(c), 3.38(d), and 3.38(e) show the complete mesh configuration, the mesh detail around
the top edge, and the mesh detail around the crack tip using 12 sectors (S12) and 4 rings (R4),

respectively.
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Figure 3.38: Example 8: crack in a multi-layered region: (a) geometry and BCs with an edge crack;
(b) geometry and BCs with an interior crack; (c) complete finite element mesh; (d) mesh detail
around the top edge; (e) mesh detail around the crack tips with 12 sectors (S12) and 4 rings.

The fixed-grip displacement loading is applied on the right edge, i.e. A(10,X3) = 10. The
displacement boundary condition is prescribed such that (u1, u2) = (0, 0) for the left-bottom corner .

- node and u; = 0 for the nodes on the left edge. The mesh discretization consists of 1938 Q8, 96 T6,
and 12 T6qp elements, with a total of 2046 elements and 5705 nodes. Young’s modulus is constant

for the top and bottom (substrate) homogeneous materials, and it is a linear function of X5 in the
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FGM region, while Poisson’s ratio is constant. The following data were used for the FEM analysis:

a=10, L=20,H =100, £ =A/L =0.5, v =0.30
Ey/E; = (0.1,0.5,0.75,1.0, 2.0, 10.0),

plane strain, 2 X 2 Gauss quadrature.

Table 3.16 shows the FEM results for SIFs and T-stresses for edge and interior cracks in a
multi-region plate. For an edge crack, the ratio E5/E; has a significant effect on the T-stress as
well as the mode I SIF. Notice that the T-stress changes sign from positive to negative as the ratio
E/E) increases, and the sign changes between E»/E; = 0.1 and Ey/E;, = 0.5. For an interior
crack, the T-stress remains negative for all the ratios of E3/E; considered. For both cases, the

mode I SIF increases and the T-stress decreases with an increasing ratio of E; /Ey.

Table 3.16: Example 8: the FEM results for SIFs and T-stresses for edge and interior cracks in a

multi-layered region. The (+) and () denotes the upper crack tip of an interior crack, respectively.
(see Figure 3.38).

Edge crack Interior crack
E>/E, K T K?' Ky T T~
0.1 0.069 | 0.027 || 0.116 | 0.684 | -0.156 | -0.351
0.5 0.465 | -0.115 |} 0.383 | 0.674 | -0.346 | -0.461
0.75 0.748 | -0.242 || 0.544 | 0.685 | -0.458 | -0.506
1 1.047 | -0.382 {} 0.706 | 0.700 | -0.568 | -0.546
2 2.333 | -0.998 || 1.372 | 0.767 | -0.988 | -0.692
10 14.26 | -6.538 || 7.346 | 1.274 | -3.999 | -1.768

3.9 Concluding remarks

This chapter makes a critical assessment and comparison of three consistent formulations: non-
equilibrium, incompatibility, and constant-constitutive-tensor formulations. Each formulation leads
to a consistent form of the interaction integral in the sense that extra terms are added to compensate
for the difference in response between homogeneous and nonhorhogeneous materials.  These extra
terms play a key role in ensuring path-independence of the interaction integral for FGMs. In terms
of numerical computations, the non-equilibrium formulation leads to the simplest final form of the

M-integral among the three formulations.
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In terms of numerical accuracy, the non-equilibrium formulation is equivalent to the incom-
patibility formulation, which is verified in numerical examples involving various types of material
gradation. The constant-constitutive-tensor formulation requires the derivatives of the actual stress
and strain field, and may have numerical accuracy problems with standard C° elements commonly
used in the displacement-based FEM.

From numerical investigations, it is observed that both material gradation and orthotropy have a
significant influence on SIFs and T-stress (i.e. both sign and magnitude), and the crack tip location
also shows a significant influence on the fracture parameters in hyperbolic-tangent materials. It is

also observed that the extra terms (e.g. non-equilibrium or incompatible terms) ensure convergence

to target solutions (SIFs or T-stress).
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Chapter 4

T-stress effect on crack initiation
angles in functionally graded
materials

4.1 Introduction

The fracture parameters describing the crack tip fields in functionally graded materials (FGMs)
include not only stress intensity factors (SIFs) but also T-stress (non-singular stress). These two
fracture parameters are important for determining the crack initiation angle under mixed-mode
loading conditions in brittle FGMs (e.g. ceramic/ceramic such as TiC/SiC).

Among several fracture criteria (36, 66, 130] developed to predict crack initiation angle, Erdo-
gan and Sih [36] proposed the maximum hoop stress criterion, which has been successfully used
for homogeneous brittle materials. Williams and Ewing [146], and Ueda et al. [138] performed ex-
periments using polymethyl-methacrylate (PMMA) with a slanted internal crack, and found that
there was a difference in crack initiation angles obtained by .the maximum hoop stress criterion
and by their experiments. They observed that the elastic T-stress, which is the non-singular term
in Williams [147) series expansion of stresses, has a significant influence on crack initiation an-
gle. Thus to account for the difference, they modified the maximum hoop stress criterion into a
generalized maximum hoop stress criterion, which incorporates the T-stress effect. For linearly
elastic b‘rittle materials, this criterion involves the mixed-mode SIF's, the T-stress, and the fracture
process zone size 1¢, which is assumed to be very small relative to the crack size and specimen

dimensions. For instance, Chao and Zhang [21] adopted a set of experimental data obtained
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by Richardson and Goree [121], who experimented half-dogbone tension (HDT), compact tension
(CT), single edge-notched tension (SENT), and delta tension (DT) specimens fabricated by us-
ing PMMA (Young’s modulus E=2.76 GPa, Yield stress oy = 55.2 MPa, Toughness K =1.02
MPa+/m, Poisson’s ratio v = 0.33). Based on curve fitting of PMMA tests, Chao and Zhang [21]
found that r., =~ 0.5mm for stress-controlled fracture and 7, ~ 0.03mm for strain-controlled fracture
(the choice of the model depends on the fracture mechanisms of the material). Notice that both
values are bigger than the plastic zone size estimated for brittle materials under plane strain, i.e.
mp = (K/oy)?/8m =~ 0.0187mm, which somehow justifies the application of linear elastic crack
tip fields. Moreover, based on experiments using thin plates of PMMA with an internal crack of
length 2a, Williams and Ewing [146] have suggested the critical parameter ¢ = \/21'7 =2 0.1. This
parameter was also advocated by Ueda et al. [138], although the actual physical reason for this
parameter has not been clarified yet.

In this chapter, the generalized maximum hoop stress criterion is extended to the FGM case.
A methodology is presented to evaluate mixed-mode SIFs and T-stress for FGMs, and these ba-
sic parameters are used to predict crack initiation angle. Thus the Williams’s [147] asymptotic

expansion of the stress field around the crack tip shown in Figure 3.2 takes the form

K
Vvanr

K
\/% FEH) + T61:61; + O(Y/?), (4.1)

Oij £ +
where o;; denotes the stress tensor, K; and K are the mode I and mode II SIFs, respectively, T' is
the nonsingular elastic T-stress, and the angular functions f;;(8) can be found in several references,
e.g. (33].

Although SIFs are well-known fracture parameters, T-stress is less understood, and thus its
implications in fracture of FGMs need to be investigated further. For homogeneous materials,
T-stress has a significant influence on crack growth under mixed-mode loading [146, 138, 133] and
crack path stability in mode I loading considering a small imperfection [27]. T-stress has been also
shown to have a significant influence on cra.ck-tip constraint and toughness [32, 105]. Because of
the importance of T-stress in fracture, investigations of T-stress have been extensively performed
for homogeneous materials. Larsson and Carlsson [92] investigated T-stress in mode I loading

and found that it affects the size and shape of the plastic zone. Leevers and Radon [94] used a
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variational formulation to evaluate T-stress. Afterwards, Cardew et al. [16] and Kfouri [75] used
the path-independent J-integral in conjunction with the interaction integral to calculate T-stress in
mode I crack problems. Sladek et al. [132] used another type of path-independent integral, based
on Betti-Rayleigh reciprocal theorem, for evaluating T-stress in mixed-mode loading. Recently
Chen et al. [22] investigated T-stress under mode I loading by means of both the Betti-Rayleigh
reciprocal theorem and Eshelby’s energy momentum tensor (i.e. path-independent J-integral) using
the p-version finite element method, and addressed the accuracy of numerical computations.

For brittle FGMs (e.g. MoSiz/SiC [18], TiC/SiC [70]), T-stress is also considered to have a
significant influence in crack initiation angle [82] and crack stability. However, it is worth mentioning
that the present analysis is not analogous to the influence of T-stress in changing “constraint”, as
discussed in many references [32, 105, 92, 5]. Considerations of “constraint” are not applicable to
the analysis of ideal linearly elasﬁic brittle materials (cf. [133]). Recent work in the field of FGMs
include that by Becker et al. [72] who have investigated T-stress and finite crack kinking by using
a hyperbolic-tangent material gradation with steep gradient of Young’s modulus. They found that
T-stress in FGMs is affected by both the far-field loading and the far-field phase angle, and that the
magnitude of T-stress in FGMs is, on average, greater than that for homogeneous materials with
identical geometry. They calculated T-stress using the stress difference along 8 = 0, i.e. o4y — Oyy-
On the other hand, Kim and Paulino [82], and Paulino and Kim [114] evaluated T-stress in FGMs ;

using the interaction integral in conjunction with the FEM, and obtained quite accurate results.

4.2 A fracture criterion incorporating T-stress

Fracture criteria can be revisited to incorporate T-stress. For instance, the generalized max-
imum hoop stress criterion [146, 138, 133] was introduced to incorporate T-stress effect into the
conventional maximum hoop stress criterion for homogeneous materials. Due to the local nature of

the criterion, the basic formulation for FGMs is the same as that for homogeneous materials. The
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asymptotic stresses for linear elastic isotropic FGMs are given in polar coordinates as:

_ 1 0 . 20 3 . 0 9
Opp = MCOSZ [KI <1+sm 2) + §Ku <sm0-—2tan-2-)] + T cos“ 6,

1 6 6 3 . .
ogg = \/—2—70085 [K{ cos? 3~ §K11 sm0] + T'sin®6,

Org = 2\/—12—77_‘ cosg [Krsin@ + K;(3cos — 1)] — T'sin 6 cos, 4.2)

where K, Kyr and T denote the mixed-mode SIFs and T-stress, respectively. The conventional
maximum hoop stress criterion was proposed for brittle materials by Erdogan and Sih [36]). They
postulated that the crack will grow in the direction along which the maximum hoop stress oy

occurs and the shear stress o9 is zero. Therefore the crack initiation angle 6y is obtained from
00gs/00 =0 = 0 = 6. (4.3)

Substitution of ogg from Eq.(4.2) into Eq.(4.3) leads to [133]
6o . 16 . B
cos 0} K;sinfy + Kir(3cosfp — 1) — E—T\/27rrc sin ~ oS Gl =0, (4.4)

where 7. is an additional length scale representing the fracture process zone size. The crack initiation
angle is evaluated by means of Eq.(4.4). For instance, for an inclined center crack in a homogeneous
plate subjected to far-field constant traction as shown in Figure 4.1, the closed-form solutions for

SIFs and T-stress are given by [133]

K| = o/ma(Acos? a + sin® a), Krr =oy/ma(l — N)sinacosa,

T = o(1 -\ cos2a. ' (4.5)

Figure 4.2 plots the crack initiation angles versus crack angles for various critical distances
7c by using Eq.(4.4). Notice that the positive T-stress increases the crack initiation angle for
0° £ 0 <€ 45°, while the negative T-stress decreases the crack initiation angle for 45° < 6 < 90°.

Once the crack initiation angle is determined, the crack initiation condition is obtained by
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o)

Figure 4.1: An inclined center crack in a biaxially loaded homogeneous plate with crack angle o
and crack initiation angle 6;.

considering the critical hoop stress (ogp)c at the distance r.. Then [133]

V2rre(oeg)e = cosg—z0 [Kl cos?® 02—0 — 'Z-Kn sinfp| + v/27re T sin? 6;. (4.6)

For pure mode I when Ky, 6, and T are all equal to zero, K; can be replaced by the mode I

fracture toughness Kj.. Therefore

V2rre(oes)e = Kie. ‘ (4.7)
Substitution ogg of Eq.(4.7) into Eq.(4.6) yields the crack initiation condition [133):

cos%g [KI cos? %9 - gKII sin 00] +V2rr.Tsin’8y = Kie. (4.8)

The fracture locus can be obtained by using Eq.(4.4) and Eq.(4.8). For the inclined center crack
in a homogeneous plate subjected to far-field constant traction, Figure 4.3 shows the fracture loci

K11/K|c versus K1/K|, for various critical distances ..
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Figure 4.2: Crack initiation angle predicted by generalized maximum hoop stress criterion
(M(060)max) for an inclined center crack in a homogeneous plate under far-field axial loading.
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Figure 4.3: Fracture loci predicted by generalized maximum hoop stress criterion (M(cgg)max) for
an inclined center crack in a homogeneous plate under far-field axial loading,
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4.3 Numerical examples

The first example is presented as a means to validate the implementation, and it consists of two
parts. The first part has analytical closed-form solutions for SIFs, T-stress, and crack initiation
angle, and it is investigated for an inclined center crack in a hbmogeneous finite plate (a/W = 0.1),
which approximates an infinite domain. The second part of the first example is investigated both
for an FGM plate with exponentially graded material properties, and for materials determined by
the self-consistent model. The FEM results for T-stresses for an FGM plate with exponentially
graded materials are compared with reference solutions obtained by means of the singular integral
equation method by Paulino and Dong [112]. Thus the first example provides reference solutions for
crack initiation angles in FGMs. The second example makes use of hyperbolic-tangent materials,
which can model various material properties such as homogeneous, “bi-material”, and smoothly
varying FGM. The third example investigates an inclined center crack in a circular disk with
exponentié.lly radially-graded materials. Finally, the last example deals with the effect of material

nonhomogeneity on the crack initiation angle for an edge-crack emanating from a semi-circular

hole.

4.3.1 Plate with an inclined center crack

Figure 4.4(a) shows an inclined center-crack of length 2a located with angle a (clockwise) in a
homogeneous plate under constant traction, and Figure 4.4(b) shows an inclined center-crack of
length 2a located with angle a (clockwise) in an FGM plate under fixed-grip loading. Figure 4.4(c)
shows the complete mesh configuration used for both cases, and Figure 4.4(d) shows the mesh
detail using 12 sectors (S12) and 4 rings (R4) of elements around the crack tips. The displacement
boundary condition is prescribed such that u; = 0 along the lower edge and u; = 0 for the node
at the left hand side. The mesh discretization consists of 1641 Q8, 94 T6, and 24 T6qp elements,
with a total of 1759 elements and 5336 nodes. The following data are used for the FEM analysis:
a/W=0.1; L/W = 1.0; a = (0° ﬁo 90°); plane stress; and 2 x 2 Gauss quadrature. Such data are

common to both problems (i.e. Part 1 and Part 2 in Figure 4.4) which are presented next.
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Figure 4.4: Example 1: plate with an inclined crack of angle a. (a) Part 1: geometry and BCs
with constant traction; (b) Part 2: geometry and BCs with fixed-grip loading; (c) complete finite
element mesh; (d) mesh detail with 12 sectors (S12) and 4 rings around the crack tips (@ = 30°

clockwise).
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Homogeneous plate under constant traction

This example has analytical solutions and consists of an inclined center crack in a homogeneous

plate subjected to far-field constant traction. Young's modulus and Poisson’s ratio are E = 1.0 and

v = 0.3, respectively. The applied loads correspond to 23(X1,10) = o = 1.0 (see Figure 4.4(a)).

For this case, the closed-form solutions for SIFs and T-stress are given by (133]

K = ov/masin

a,

T

K = oy/masinacos o,

= 0cos2a.

(4.9)

Figure 4.5 shows comparison of the present FEM results for crack initiation angles with those

obtained by closed-form solutions, i.e. Eq.(4.9), predicted by the generalized maximum hoop stress

criterion (M(egg)max) for rc/a =0 and r./a = 0.01.
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Figure 4.5: Example 1, Part 1: comparison of FEM results (denoted by +) for crack initiation
angles with those obtained by closed-form solutions (solid lines), which are predicted by generalized
maximum hoop stress criterion (M(0gg)max) for an inclined center crack in a homogeneous plate

under constant traction.

Notice that the FEM results for crack initiation angles agree well with those obtained by the

closed-form solutions. Table 4.1 shows the quantitative comparison between FEM results and
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closed-form solutions for SIFs and T-stresses for an inclined center crack under constant traction,

and indicates good agreement between the two types of solutions.

Table 4.1: Example 1, Part 1: comparison of FEM results for SIFs and T-stresses with closed-form

solutions for an inclined center crack in a homogeneous plate under far-field constant traction (see
Figure 4.4(a)).

a FEM [82] Exact
K; K T K; K T
0° | 0.000 | 0.000 | 0.995 | 0.000 | 0.000 | 1.000
10° | 0.054 | 0.305 | 0.934 | 0.053 | 0.303 | 0.939
20° | 0.210 | 0.574 | 0.759 | 0.207 | 0.569 | 0.766
30° | 0.448 | 0.773 | 0.493 | 0.443 | 0.767 | 0.500
40° | 0.741 | 0.878 | 0.167 | 0.732 | 0.872 | 0.173
50° | 1.052 | 0.878 | -0.179 | 1.040 | 0.872 | -0.173
60° | 1.343 | 0.771 | -0.508 | 1.329 | 0.767 | -0.500
70° | 1.581 | 0.571 | -0.773 | 1.565 | 0.569 | -0.766
80° | 1.735 | 0.304 | -0.947 | 1.719 | 0.303 | -0.939
90° | 1.788 | 0.000 | -1.007 | 1.772 | 0.000 | -1.000

FGM plate under fixed-grip loading

This example makes use of either exponential gradation or material gradation determined by
means of the self-consistent model. While the first material gradation consists of a closed-form
expression fork the material properties, the second one provides discrete values of the material
properties. The finite element analyses for SIFs, T-stresses, and crack initiation angles for both
types of material gradation are performed for every 5° of crack angle from 5° to 90°. Since the
solutions for 0° are not plausible, the crack angle 1° is chosen.

For exponentially graded materials, Paulino and Dong [112] evaluated T-stress by using a special
integral equation method. In their analysis, Young’s modulus is an exponential function of X7, while

Poisson’s ratio is constant. Figure 4.6 shows the variation of Young's modulus given by
E(X) = EefX1, (4.10)

The following data were used: v = 0.3, E = 1.0, Ba = (0.0,0.25, 0.5,1.0). The applied load
corresponds to g22(X7,10) = £Eef*X! with & = 1.0 (see Figure 4.4(b)). This loading results in a
uniform strain ego(X;,X2) =¢ina corfesponding uncracked structure.

Figure 4.7 shows the FEM results for crack initiation angles versus geometric crack angles for
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Normalized Young’s modulus

10

Figure 4.6: Example 1, Part 2: variation of normalized Young’s modulus (E(X;)/E) with position.

the right crack tip for both homogeneous and FGM cases. Notice that positive T-stress increases
crack initiation angle for the crack angle less than about 45°, and negative T-stress decreases crack
initiation angle for the crack angle more than about 45° for both homogeneous and FGM cases.

Figure 4.8 shows the FEM results for crack initiation angles versus geometric crack angles for
the right crack tip for the FGM case with fixed Sa = 0.5. Notice that T-stress, in conjunction with
the ratio 7¢/a, has a significant influence on the crack initiation angle, and that, as before, positive
T-stress increases the crack initiation angle, while negative T-stress decreases the crack initiation
angle. Notice also that when r./a = 0.0, there is no effect of T-stress.

Figure 4.9 shows the FEM results for crack initiation angles versus crack angles for the right
crack tip for various fGa with a fixed r./a = 0.01. Notice that there is not much effect of material
nonhomogeneity for a nearly horizontal (@ ~ 90°) or a nearly vertical (o =~ 0°) crack, however,
such effect is more pronounced in the mid-range of the plot (e.g. 10° < a < 70°).

Table 4.2 shows the FEM results for SIFs, T-stresses, and crack initiation angles for an inclined
center crack under fixed-grip loading for the homogeneous material case, i.e. .Ga = 0.0 (see Fig-

ure 4.7). A comparison between Tables 4.1 and 4.2 reveals the influence of the loading boundary
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Figure 4.7: Example 1, Part 2: the FEM results for crack initiation angles predicted by generalized
maximum hoop stress criterion (M(ogg)max) for an inclined center crack in an FGM plate under
fixed-grip loading for Sa = 0.0 and fa = 0.5.

conditions (applied force versus applied displacement) on the SIFs and T-stress. Table 4.3 compares
the FEM results for T-stress with the reference solutions obtained by Paulino and Dong [112] for
both homogeneous (Ba = 0.0) and nonhoxhogeneous (Ba # 0.0) materials. Notice that the material
nonhomogeneity is represented by the parameter Ba, which is dimensionless. There is a reasonably
good agreement between the present FEM results and the semi-analytical results of reference {112].
For both crack tips (+a, —a), these results show that the T-stress changes sign for the crack angle
a =~ 45° for fa = 0.00 and Ba = 0.25, however, the angle increases as fa increases, e.g. fa = 0.50
(cf. last two columns of Table 4.3). Table 4.4 shows the FEM results for SIFs, T-stresses, and crack
initiation angles for an inclined center crack under fixed-grip loading for Ba = 0.5 (see Figure 4.7).
For FGMSs, the numerical results for SIFs, T-stresses, and crack initiation angles are different at
the right and left crack tips because material gradation breaks down the symmetry achieved with

homogeneous materials.
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Figure 4.8: Example 1, Part 2: the FEM results for crack initiation angle predicted by generalized

maximum hoop stress criterion (M(0gg)max) for an inclined center crack in an FGM plate under
fixed-grip loading for various r./a values with Ba = 0.5.
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Figure 4.9: Example 1, Part 2: the FEM results for crack initiation angles predicted by generalized
maximum hoop stress criterion (M(0gg)max) for an inclined center crack in an FGM plate under
fixed-grip loading for various fa with fixed r./a = 0.01.
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Table 4.2: Example 1, Part 2: SIFs, T-stresses, and crack initiation angles for an inclined cen-

ter crack under fixed-grip loading for fa = 0.0, which refers to a homogeneous material. (see
Figure 4.4(b)).

a K; K T to
refa =000 | 7./a = 0.01

0° | 0.000 | 0.000 T 0.995 - -
10° | 0.054 | 0.305 | 0.933 68.8° 85.2°
20° | 0.209 | 0.570 | 0.758 67.1° 81.2°
30° | 0.446 | 0.768 | 0.491 65.4° 77.5°
40° | 0.735 | 0.869 | 0.165 63.6° 73.9°
50° | 1.039 | 0.865 | -0.177 61.8° 70.2°
60° | 1.323 | 0.758 | -0.497 59.9° 66.4°
70° | 1.552 | 0.560 | -0.756 57.8° 62.2°
80° | 1.700 | 0.298 | -0.924 55.5° 57.7°
90° | 1.752 | 0.000 | -0.982 0.0° 0.0°

Table 4.3: Example 1, Part 2: comparison of FEM results for T-stresses with reference solu-
tions [112] (see Figure 4.4(b)).

Method « Ba = 0.00 fa = 0.25 Ba = 0.50
T(+a) | T(=a) | T(¥a) | T(=a) | T(*a) | T(=a)
0° | 0.9950 | 0.9950 | 0.9949 | 0.9948 | 0.9946 | 0.9944
15° | 0.8592 | 0.8592 | 0.8625 | 0.8569 | 0.8684 | 0.8505
30° | 0.4912 | 0.4912 | 0.4992 | 0.4905 | 0.5146 | 0.4841
Present | 45° | -0.0055 | -0.0055 | -0.0077 | -0.0019 | 0.0391 | 0.0109
60° | -0.4974 | -0.4974 | -0.4790 | -0.4763 | -0.4288 | -0.4371
75° | -0.8534 | -0.8534 | -0.8310 | -0.8191 | -0.7655 | -0.7494
90° | -0.9828 | -0.9828 | -0.9589 | -0.9430 | -0.8878 | -0.8606
0° | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
15° | 0.8660 | 0.8660 | 0.8665 | 0.8643 | 0.8701 | 0.8585
30° | 0.4999 | 0.5000 | 0.5024 | 0.4981 | 0.5132 | 0.4905
Paulino | 45° [ 0.0002 | 0.0000 | 0.0106 | 0.0048 | 0.0393 | 0.0109
& Dong [112] | 60° | -0.5001 | -0.5001 | -0.4871 | -0.4727 | -0.4200 | -0.4444
75° | -0.8660 | -0.8660 | -0.8266 | -0.8316 | -0.7483 | -0.7631
90° | -0.9999 | -0.9999 | -0.9543 | -0.9590 | -0.8670 | -0.8766

For materials determined by the self-consistent model, the shear (u) and bulk (k) moduli are
first evaluated by solving both Eqs.(A.56) and (A.57) for a range of volume fractions, i.e. 0 < V; < 1
(i =1 or 2), and then Young’s modulus and Poisson’s ratio are evaluated by

Yur 3k —2u

= e— = e— -11
p+3s’ U 2(u+3R) (411)

For the self-consistent model, the material properties of an engineering Ti/TiB FGM specimen are
employed, which has been tested experimentally by Carpenter et al. [17)], and investigated using

cohesive fracture analysis by Jin et al. [71]. Material properties of Ti/TiB FGM, and the volume
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Table 4.4: Example 1, Part 2: the FEM results for SIFs, T-stresses, and crack initiation angles for
an inclined center crack under fixed-grip loading for Sa = 0.5 (see Figure 4.4(b)).

a | Kf | KL, | K T Kp Vi T 07 [/
re/a=0.00 [ r./a=0.01 | r./a =0.00 | r./a = 0.01

0° | 0.000 | 0.000 | 0.000 | 0.000 | 0.994 | 0.994 - - - -
10° | 0.094 | 0.316 | 0.019 | 0.286 | 0.939 | 0.926 66.7° 84.6° 69.2° 82.3°
20° | 0.309 | 0.614 | 0.133 | 0.512 | 0.771 | 0.748 64.9° 80.1° 65.6° 75.8°
30° | 0.632 | 0.850 | 0.310 | 0.655 | 0.514 | 0.484 63.1° 75.9° 61.8° 68.8°
40° | 1.032 | 0.989 | 0.520 | 0.708 | 0.202 | 0.171 61.2° 71.8° 57.3° 60.1°
50° | 1.465 | 1.006 | 0.729 | 0.676 | -0.125 | -0.147 59.3° 67.8° 51.9° 49.2°
60° | 1.878 | 0.895 | 0.915 | 0.571 | -0.428 | -0.437 57.2° 63.6° 44.7° 36.5°
70° | 2.220 | 0.670 | 1.059 | 0.410 | -0.673 | -0.665 54.9° 59.3° 34.6° 23.5°
80° | 2.444 | 0.358 | 1.149 | 0.214 | -0.832 | -0.810 52.4° 54.8° 19.5° 11.2°
90° | 2.522 | 0.000 | 1.179 | 0.000 | -0.887 | -0.860 0.0° 0.0° 0.0° 0.0°

fraction of Ti are used as follows:

Ep;p = 375GPa, vrip = 0.14,
Ep; = 107GPa, vy = 0.34,

Vri(X1) = (X1 +10)/2W)]%¥ (10 < X; < 10),

respectively, where 2W is the gradation length, i.e. the width of the FGM plate (see Figure 4.4(b)).
The power p = 0.84 was obtained by Jin et al. [71] using a least square of the actual material
distribution. However, the geometrical configuration adopted here differs significantly from those
used by Carpenter et al. [17] and Jin et al. [71]. Young’s modulus and Poisson’s ratio determined
by micromechanics models are shown in Figures 4.10 and 4.11, respectively. The applied load is a
uniform strain e99(X7, Xa) = £ =10.0005 in a corresponding uncracked structure.

Figure 4.12 shows the present FEM results for crack initiation angles versus crack angles for
the right crack tip. As expected, the positive T-stress increases the crack initiation angle, while
the negative T-stress decreases the crack initiation angle.

Table 4.5 shows FEM results for SIFs, T-stresses, and crack initiation angles for an inclined
center crack under fixed-grip loading (see Figure 4.12). Notice that SIFs, T-stresses, and crack
initiation angle are very similar at both crack tips, while such similarity was not observed for
exponentially‘ graded material. This is due to the fact that, for the specific choice of material in

this example, the material variation, between the crack tips, obtained by the self-consistent model
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Figure 4.10: Example 1, Part 2: variation of Young’s modulus versus volume fraction of Ti according
to micromechanics models for composites.
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Figure 4.11: Example 1, Part 2; variation of Poisson's ratio versus volume fraction of Ti according
to micromechanics models for composites.
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Figure 4.12: Example 1, Part 2: the FEM results for crack initiation angles predicted by generalized

maximum hoop stress criterion (M(ogg)max) for an inclined center crack in a plate with FGMs
determined by the self-consistent model.

is smoother than that for the exponentially graded material. Moreover, Young’s modulus is a
descending function of position for the micromechanics model case and it is an ascending function

of position for the exponentially graded case.
Table 4.5: Example 1, Part 2: the FEM results for SIFs, T-stresses, and crack initiation angles for

an inclined center crack under fixed-grip loading for FGMs determined by the self-consistent model
(see Figure 4.4(b)).

o | Kf | K7 | K | K7 | TT T (7§ 0y
refa=0.00 | rc/a=0.01 [ r:/a=0.00 | r./a = 0.01

0° | 0.000 | 0.000 | 0.000 | 0.000 | 92.41 | 9241 |- - - - -
10° | 4.567 | 28.15 | 5.491 | 28.48 | 86.68 | 86.76 67.4° 81.3° 66.8° 81.0°
20° | 18.42 | 52.51 | 20.56 | 53.66 | 70.36 | 70.49 63.9° 74.2° 63.4° 73.6°
30° | 39.58 | 70.14 | 43.41 | 72.39 | 45.59 | 45.74 60.2° 66.7° 59.6° 66.0°
40° | 65.31 | 79.07 | 71.32 | 82.35 | 15.40 | 15.50 55.8° 58.1° 55,2° 57.4°
50° | 92.34 | 78.41 | 100.9 | 82.30 | -16.37 | -16.36 50.4° 47.9° 49.8° 47.4°
60° | 1174 | 68.44 | 128.5 | 72.28 | -45.97 | -46.10 43.4° 36.3° 42.6° 36.0°
70° | 137.7 | 50.50 | 150.9 | 53.58 | -69.88 | -70.15 33.4° 24.1° 32.7° ©24.0°
80° | 150.7 | 26.80 | 165.5 | 28.52 | -85.44 | -85.78 19.0° 11.9° 18.5° 11.9°
90° | 155.2 | 0.000 | 170.6 | 0.000 | -90.82 | -91.20 0.0° 0.0° 0.0° 0.0°
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4.3.2 Edge crack in a plate' with hyperbolic-tangent materials

This example investigates the influence of material gradation rotation and translation on SIFs,
T-stresses, and crack initiation angles. Figure 4.13(a) shows an edge crack of length a in a graded
plate, and Figure 4.13(b) shows the complete mesh discretization using 12 sectors (S12) and 4 rings
(R4) of elements around the crack tip. Figures 4.13(c), 4.13(d), and 4.13(e) illustrate the three
considered types of hyperbolic-tangent material gradation with respect to the crack tip: rotation,
translation to the left, and translation to the right, respectively. The fixed-grip displacement
loading is applied corresponding to o32(X1,2) = £E(X1) = EE(X1)/(1 — v?), which results in a
uniform strain €92(X1, X2) = & in a corresponding uncracked structure. The displacement boundary
condition is prescribed such that ua = 0 along the lower edge and u; = 0 for the node at the left
hand side.

Young’s modulus is a hyperbolic-tangent function which can be expressed with respect to the

local (z1,z2) or global (X1, X2) Cartesian coordinates. For the rotation of material gradation,

By = 252+ AP (), (®12)

or, using global coordinates,

E(X, X)) = ! -;- By + E, ; Ep tanh(3(X; cos 6 + X2 sin6)). (4.13)

For the translation of material gradation,

B = 2t B 22 tanh(B(X, + ), | (4.14)

where d is a constant for translation. In this example, Poisson’s ratio is taken as constant. The

following data were used for the FEM analysis:

a/W =05, L/W =20, fa =150, &= 0.25,

(B, Ez) = (1.0,3.0), v=0.30, d = (0,—0.5,0.5)
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Figure 4.13: Example 2: edge crack in a plate with hyperbolic-tangent materials: (a) geometry and
BCs; (b) complete finite element mesh with 12 sectors (S12) and 4 rings (R4) around the crack tip;

(c) rotation of material gradation with the angle 6; (d) translation of material gradation to the left
(d = 0.5); (e) translation of material gradation to the right (d = —0.5).
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plane strain, 2 x 2 Gauss quadrature.

The mesh discretization consists of 208 Q8, 37 T6, and 12 T6qp‘ elements, with a total of 257

elements and 1001 nodes.
Figure 4.14 shows FEM results for crack initiation angle predicted by the generalized maximum

hoop stress criterion for various rotations of material gradation 6, i.e. 0° to 80°.

20

157

. /a=0.005
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Crack initiation angle (90) (deg.)

0 10 20 30 40 50 60 70 80
Rotation angle of material (6) (deg.)

Figure 4.14: Example 2: the FEM results for crack initiation angles predicted by generalized
maximum hoop stress criterion (M(ogg)max) for an edge crack in a plate with various rotations of
hyperbolic-tangent materials under fixed-grip loading (see Figure 4.13(c)).

Notice that T-stress (negative) decreases the crack initiation angle and it also decreases with
the increasing rc/a ratio. The gap between the curve for r¢/a = 0 (no T-stress effect) and the
various curves for rc/a # 0 (especially r./a = 0.005) indicate the significant influence of T-stress
in the FGM case. If the material were homogeneous, then the crack initiation angle 6 = 0°. A
comparison of the interaction integrai with another method such as the modified crack closure [76]
indicates that it loses accuracy in predicting the crack initiation angle for rotation angle of material
in the range of 80° to 90°, which is not shown in Figure 4.14. Table 4.6 shows the FEM results for

SIFs, T-stresses, and crack initiation angles in an edge crack for the fotation of hyperbolic-tangent
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material variation (6 = 0° to 80°) (see Figure 4.13(c)). Table 4.7 shows FEM results for SIFs and
T-stresses for the translation of hyperbolic-tangent material variation by considering d € [-0.5,0.5].
Notice that T-stresses are all negative and the crack initiation angle is zero because of symmetry,
i.e. 8 =0° and K7 =0, in the particular cases illustrated by Table 4.7.

Table 4.6: Example 2: the FEM results for SIFs, T-stresses, and crack initiation angles for an edge
crack with various rotations of hyperbolic-tangent material variation (see Figure 4.13(c)).

Y] K; K T Go(rc/a = 0.00) | o(rc/a = 0.01)
0° | 1.0190 | 0.0000 | -1.176 0.00° 0.00°

10° | 0.9949 | -0.0535 | -1.128 6.12° 2.62°

20° | 0.9560 | -0.0953 | -1.015 11.16° 5.04°

30° | 0.8932 | -0.1141 | -0.859 14.11° 6.80°

40° | 0.8363 | -0.1174 | -0.696 15.40° 8.03°

50° | 0.7879 | -0.1064 | -0.545 14.86° 8.42°

60° | 0.7498 | -0.0941 | -0.418 13.88° 8.57°

70° | 0.7209 | -0.0809 | -0.318 12.60° 8.36°

80° | 0.6981 | -0.0706 | -0.236 11.31° 8.19°

Table 4.7: Example 2: the FEM results for SIFs and T-stress for an edge crack with translation (d)
of hyperbolic-tangent material variation: (see Figures 4.13(d) and 4.13(e)). Notice that Kj; = 0.

translation Ky T
d .
-0.5 1.163 | -0.554
-0.3 1.167 | -0.589
-0.1 1.190 | -0.861
0.0 1.019 | -1.176
0.1 0.582 | -0.431
0.3 0.440 | -0.211
0.5 0.410 | -0.188

4.3.3 Inclined center crack in a circular disk

Figures 4.15(a), 4.15(b) and 4.15(6) show a circular disk wii:h a center crack inclined by 6 = 30°
(with respect to the Cartesian X axis), the compiete mésh configuration, and the mesh detail
around the crack tip using 12 sectors (S12) and 4 rings (R4), respectively. A point load is applied
to the top and bottom nodes, i.e. P(X1,£10) = £100. The displacement boundary condition is
prescribed such that (u;,u2) = (0,0) for the node at (X, Xg) = (-10,0) and up =0 for the node
at (X1, X2) = (10,0).
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Figure 4.15: Example 3: circular disk; (a) geometry and BCs for an inclined center crack; (b) the

complete mesh configuration; (c) mesh detail with 12 sectors (S12) and 4 rings (R4) around the
crack tip (S12,R4).

Young’s modulus is an exponential function of the radius r given by

E(r)=Eef", r=\/X?+X3. (4.15)

The following data are used for the FEM analysis:

a=10, R=10, fa=(-5.0t05.0), E=1.0, v=0.3,

plane stress, 2 x 2 Gauss quadrature.

The mesh discretization consists of 453 Q8, 228 T6, and 24 T6qp elements, with a total of 999
elements and 2712 nodes. |

Figure 4.16 shows the FEM results for crack initiation angles predicted by the generalized
maximum hoop stress criterion for various values of the dimensionless material nonhomogeneity
parameter Sa. Due to symmetry of the radial material gradation, the values of SIFs and T-stress
are the same at both crack tips (see Figure 4.15(a)). Notice that the negative T-stress decreases
the crack initiation angle (compare the curve for r./a = 0 with the other curves) and also the crack
initiation angle decreases with the increasing r./a ratio. Table 4.8 shows the FEM results for SIFs,

T-stresses, and crack initiation angles for various material nonhomogeneity Sa. Notice that as Sa
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increases, the mixed-mode SIFs decrease and the T-stress increases substantially. The sign of the

T-stress is always negative for the range of material variation investigated.
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Figure 4.16: Example 3: the FEM results for crack initiation angles predicted by generalized

maximum hoop stress criterion (M(ogs)max) for an inclined center crack in a disk subjected to a
point load.

Table 4.8: Example 3: the FEM results for SIFs, T-stresses, and crack initiation angles for an
inclined center crack in a circular disk (see Figure 4.15).

B8 K; K T Oo(rc/a = 0.00) | Go(re/a = 0.01)
-0.50 | 22.91 | 15.19 | -13.08 45.9° 36.4°
-0.25 | 17.53 | 13.21 | -9.93 48.3° 39.5°

0.00 | 1147 | 9.74 | -6.53 50.4° 42.3°
0.25 | 5.86 | 565 | -3.49 52.5° 44.8°
050 | 220 | 242 | -1.44 54.5° 46.8°

4.3.4 Edge-crack emanating from a semi-circular hole

- This example investigates the effect of material nonhomogeneity on SIFs, T-stress, and crack
initiation angle for an edge-crack emanating from a semi-circle hole. Figures 4.17(a), 4.17(b)
and 4.17(c) show an edge crack emanating from a semi-circle hole, the complete mesh configuration,
and the mesh detail around the crack tip using 12 sectors (S12) and 4 rings (R4), respectively. The
fixed-grip displacement loading is applied on the top edge, i.e. A(X1,5) = 10.
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Figure 4.17: Example 4: edge crack emanating from a semi-circle hole; (a) geometry and BCs; (b)

the complete mesh configuration; (c) mesh detail with 12 sectors (S12) and 4 rings (R4) around
the crack tip (S12,R4).

The displacement boundary condition is prescribed such that (u;,u2) = (0,0) for the left-

bottom corner node and u2 = 0 for the nodes on the bottom edge. The mesh discretization consists
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of 1142 Q8, 134 T6, and 12 T6qp elements, with a total of 1288 elements and 3903 nodes. Young's

modulus is an exponential function of X3, while Poisson’s ratio is constant. The following data are

used for the FEM

ea=10, L=10, W=7, fa=(0.0to1.0), E=10, v=0.3,

plane stress, 2 x 2 Gauss quadrature.

Figure 4.18 shows the present FEM results for crack initiation angles predicted by the general-
ized maximum hoop stress criterion for various values of the material nonhomogeneity parameter
Ba. Notice that T-stress reduces the crack initiation angle and the crack initiation angle decreases
with the increasing r/a ratio. It is expected that the crack initiation angle increases with the in-
creasing material nonhomogeneity fa, while for homogeneous materials, the crack initiation angle
is zero due to symmetry. Table 4.9 shows the FEM results for SIFs, T-stresses, and crack initiation
angles for an edge crack emanating from a semi-circle hole. As Ba deviates from zero and increases,‘
mode I condition breaks down with the loss of symmetry and thus mode II behavior becomes more

significant. Notice that the sign change for the T-stress occurs at Sa ~0.7.

Table 4.9: Example 4: the FEM results for SIFs, mode mixity (K;/Kj), T-stresses, and crack
initiation angles for an edge crack emanating from a semi-circular hole (see Figure 4.17).

Ba | K | Kiu | Ri/Ri| T | Oo(refa = 06.00) | Go(refa = 0.00)
0.00 | 2.208 | 0.000 | 0.000 | -0.427 0.0° 0.0°
025 | 1.917 | 0.169 | 0.088 | -0.311 9.9° 8.4°
050 | 1.310 | 0.232 | 0177 | -0.112 18.9° 17.4°
070 | 0.849 | 0.206 | 0242 | -0.0007 24.8° 24,7°
075 | 0.750 | 0.194 | 0.258 | 0.008 26.0° 26.2°
1.00 | 0.3776 | 0.1241 | 0.328 | 0.042 31.0° 33.7°

4.4 Concluding remarks

This chapter investigates T-stress effect on crack initiation angles in two-dimensional FGMs.
Given SIFs and T-stress, a fracture criterion incorporating the T-stress effect can predict the crack
initiation angle. From the numerical examples investigated, it is observed that positive T-stress

increases the crack initiation angle, and negative T-stress decreases the crack initiation angle.
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Figure 4.18: Example 4: the FEM results for crack initiation angles predicted by generalized
maximum hoop stress criterion (M(ogg)max) for an edge crack emanating from a semi-circular hole.

Moreover, the material gradation, which may be represented by the material nonhomogeneity
parameter (a, has a significant influence on the magnitude and the sign of the T-stress. The
direction of material gradation also shows a significant influence on SIFs, T-stress, and the crack
initiation angles. The fracture criterion adopted here involves a physical length scale 7., which is
representative of the fracture process zone size. The lehgth scale parameter may have a significant
effect on the crack initiation angle, even with the same values of T-stress and SIFs. Therefore
the parameter 7. must be carefully assessed by comparing numerical solutions with experimental

results.
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Chapter 5

Simulation of crack propagation in
functionally graded materials

5.1 Introduction

The behavior of cracks in solids and structures is important for assessing and enhancing structural
integrity. In this chapter, crack growth in homogeneous and functionally graded materials (FGMs)
is investigated and simulated by means of a remeshing algorithm of the finite element method
considering mixed-mode and non-proportional loading. Crack initiation angle and crack increment
are key factors to characterize crack growth.

The fracture parameters describing the crack tip fields in linear elastic FGMs include stress
int’ensity factors (SIFs), which are important for determining the crack growth direction under
mixed-mode loading conditions in brittle FGMs (e.g. ceramic/ceramic such as TiC/SiC). The

singular terms of the stress field around the crack tip in FGMs take the form [34] (see Figure 5.1)

y = Ko Kir_ er '
0'1_7(7',0) - \/ﬁﬁfu(a)-i-\/ﬁfu (0)’ (5’1)

where g;; denotes Vthe stress tensor, Ky and K are the mode I and mode II SIFS, respectively,
and the angular fur;ctions fi;(6) can be found in several references, e.g. [33]. |

The mixed-mode SIFs in FGMs are functions of rhaterial gradients, external loading and geom-
etry. The material gradients do not affect the order of singularity and the angular functions of the
singular crack tip fields, but do affect the SIFs. Thus the singular crack-tip fields of FGMs take the

same forms as those for homogeneous materials. As explained in the introduction, based on local
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Figure 5.1: Cartesian (x1,z2) and polar (r,0) coordinates originating from the crack tip in an
arbitrary FGM under traction (t) and displacement boundary conditions. The crack initiation
angle is 6y, and Aa denotes the crack extension.

homogenization, crack initiation angles can be predicted by using the same fracture criteria as for
homogeneous materials. In this chapter, the maximum energy release rate [66] and maximum hoop
stress [36] criteria are used to determine crack initiation angles and to check crack growth stability.

In addition to crack initiation angle, crack ‘increment is also important to determine crack tra-
jectory. The present approach uses a user-defined crack increment, which needs to be provided at
the beginning of each step. For homogeneous materials, Hori and Vaikuntan [62] proposed a for-
mulation to determine the curvature and length of a small crack extension. Thorough investigation

on crack increment in FGMs is needed, but it is out of the scope of the present work.

5.2 Strategy for automatic crack propagation

Automatic crack propagation in FGMs is performed by means of the I-FRANC2D (Illinois-

FRANC?2D) code, an interactive graphics program for simulating 2D fracture analysis. The code is
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based on the FRANC2D (FRacture ANalysis Code 2D) (144, 145], which was originally developed
at Cornell University. The extended capabilities of I-FRANC2D consist of special graded elements
to discretize nonhomogeneous materials (see Figure 5.2), and fracture parameters such as SIFs for

predicting crack initiation angle and determining stability of crack growth. The code uses quarter-

E(X,) V(X))

Figure 5.2: Crack-tip discretization for a crack in a nonhomogeneous material.

point six-node triangular (T6qp) elements to capture the stress singularity of O(r=1/2), and it can
perform mesh refinement around the crack tip in both radial (rings) and hoop (sectors) directions
for each step of crack propagation (see Figure 5.2).

Finite element simulation of automatic crack propagation in the -FRANC2D code involves a
series of steps. Each step involves an automatic crack propagation cycle as illustrated in Figure 5.3.
The I-FRANC2D code utilizes a direct stiffness FEM approach within the framework of linear
élasticity. After the linear analysis involving a crack, the code computes mixed-mode SIFs using
the interaction integral methovd. The computed SIFs are used to predict crack growth direction ;
based on fracture criteria (e.g. ‘maximum hoop stress, maximum energy release rate, or minimum
strain energy density criteria). The SIFs are also used to determine 'kthe stability of crack growth
by comparing with fracture toughness. When the new crack tip location is determined according
to the user-defined crack increment, the code deletes elements along the incremental crack path,

updates crack geometry, and performs automatic local remeshing.'
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5.3 Finite element mesh generation

The discrete crack analysis requires modification of the mesh at each step of crack propagation.
The geometry update of crack propagation is modeled based on winged-edge data structure [12],
which uses the FEM mesh topology such as vertices, edges and faces. Figure 5.4 illustrates the

procedure for local remeshing [12]. The remeshing sequence is as follows [12}:
e Crack geometry is identified in the initial geometry by the user (see Figure 5.4(a)).

¢ A remeshing region is created by deleting elements near the crack in the polygon pattern,

and the crack geometry is updated (see Figure 5.4(b)).

¢ Quarter-point six-node triangular (T6qp) elements are created around the crack tip (see

Figure 5.4(c)).
e Triangular elements are generated by a triangulation algorithm (see Figure 5.4(d)).

o The local mesh refinement is done around the crack tip by increasing the number of elements

in the radial and hoop directions (see Figure 5.4(e)).

start

Automatic crack propagation cycle

Local ' update Delete elements
remeshing crack geometry @ along crack path

Figure 5.3: Autofnatic crack propagation procedure used in the LZFRANC2D code.
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(d) (e)

Figure 5.4: Sequential procedure for local remeshing [12]: (a) initial geometry; (b) deletion of
nearby elements and construction of crack geometry; (c) meshing of singular crack-tip elements;
(d) meshing of transition elements; (e) local refinement of crack-tip elements.

5.4 Remeshing algorithm

An algorithm for perforxhing automatic crack propagation should satisfy two conditions [12].
First, the algorithm should keép compatibility between the new mesh and the existing mesh. Sec-
ond, the algorithm should generate well-shaped elements with good aspect ratios especially transi-
tion zone between the crack-tip and the far-field regions.

The present remeshing algorithm used in -FRANC2D -is the recursive spatial decomposition
(RSD) algorithm, which was originated in the code FRANC2D (144, 145]. The algorithm takes a
region and subdivide it into smaller regions. The quadtree has been widely used for rectangular

regions. - The current algorithm uses the quadtree procedure and boundary-contraction scheme.
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Figure 5.5: Procedure for RSD remeshing [12]: (a) input of boundary nodes and edges; (b) initial
quadtree subdivision: (c) minimum subdivision of interior cells: (d) graded subdivision; (e) internal
nodes generated at the center of the cells; (f) elements generated before smoothing; (g) elements
generated after smoothing.
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The procedure for the overall remeshing algorithm is as follows (see Figure 5.5) [12]:
e The geometry data on the boundary, i.e. nodes and edges, are given (see Figure 5.5(a)).

e Quadtree structure is generated. The given boundary data is used to determine a local

subdivision level (see Figure 5.5(b)).

e The quadtree is refined to make interior cells smaller than the largest cell around the boundary

(see Figure 5.5(c)).

e The quadtree is additionally refined to minimize the size difference between adjacent cells

(see Figure 5.5(d)).
e Internal nodes are generated at the center of the quadtree cells (see Figure 5.5(e)).
¢ A boundary-contraction procedure is used to produce a trial mesh. (see Figure 5.5(f)).

o The size and shape of neighboring elements is regularized by moving internal nodes to the

centroid of the adjacent nodes (see Figure 5.5(g)).

The above techniques have been also used by Paulino et al. {115] and extended to self-adaptive

finite element analysis using the h-version of the FEM.

5.5 Fracture criteria

Local homogenization allows the use of fracture criteria, which have been widely used for homo-
geneous materials. Figure 5.6 shows a fracture locus involving mode I and II SIFs and fracture
toughness K. If crack driving force is enough for the crack-tip fields to reach the fracture curve,
then the crack does grow. The fracture locus can be obtained by experiments or theoretical fracture
criteria. This chapter uses the maximum hoop stress [36] and maximum energy release rates [66]
criteria. The maximum hoop stress criterion [36) is explained in the previous chapter, and maximum

energy release rates criterion [66] is briefly reviewed.
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Figure 5.6: Fracture locus involving mode I and II SIFs and fracture toughness Kj..

Maximum energy release rate

Hussain et al. [66] proposed the maximum strain energy release rate criterion for homogeneous
materials. They postulated that the crack subjected to combined loads will grow in the direction
along which strain energy release is maximum and the crack will start to grow when the maximum
strain energy release rate reaches a critical value. As mentioned in the introduction, here we
consider a local (homogenized) version of the criterion by Hussain et al. [66], which is appropriate
“for FGMs. The concept of local homogenization was discussed by Gu and Asaro [48]. The energy
release rate for combined mode I and mode II loading in FGMs is given by

G= M’ | (5.2)

tip

where E}j, = Eyp, for plane stress and Eyp/(1—13,) for plane strain. Equation (5.2) is obtained by

assuming that a crack under mixed-mode loading moves along its own plane. However, in general,
the crack grows in a direction which is not parallel to its initial plane. Hussain et al. [66] obtained
an elasticity solution for a straight main crack and a branch crack extended at an arbitrary angle,

and computed the energy release rate in the limit as the propagation branch vanishes. The energy
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release rate is given by [66]

4 1 21~ O/m
g(o) = E* (3 2 ) ( Tr/o)
tip \3 4 cos? 14+7/6

X [(1+ 3cos® 0)K? + 8sinfcos 0K K + (9 — 5 cos? 0)K?,]. (5.3)

Then the crack initiation angle 6 is obtained from
0G(0)/06 =0 = 0=4,. (5.4)
Once the crack initiation angle is determined, the crack initiation condition is given by

G(6o) = Gor, (5.5)

where G is critical energy release rate given by

2
ch

ol
Etip

Gor =

(5.6)

5.6 Numerical examples

Fracture analysis and crack propagation are conducted using the FEM code -IFRANC2D. The ge-
ometry is discretized with isoparametric graded elements [76]. The specific elements used consist of
singular quarter-point six-node triangles (T6qp) for crack-tip discretization, eight-node serendipity
elements (Q8) for a circular region around crack-tip elements, and regular six-node triangles (T6)
(see Appendix A.5) in a transition zone to Q8 elements. For the calculation of SIFs by means of
the interaction integral, the domain involving 12 sectors (S12) and 4 rings (R4) is used at each

step of crack propagation. Quasi-static automatic crack propagation in FGMs are performed in the

following examples:

(1) A crack in a beam subjected to four-point bending

(2) A crack in a beam subjected to three-point bending

(3) A crack in a beam with holes subjected to three-point bending

(4) A crack in a double cantilever beam under non-proportional loading
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(8) Two cracks emanating from holes in a plate under tension

(6) Forked cracks in a plate under tension

In order to validate the numerical results against available experimental results, the experimen-
tal data reported by Rousseau and Tippur [123] are adopted. The first example involves mixed-mode
crack propagation in a graded glass/epoxy beam under four-point loading. The second example is
based on the experimental and numerical investigation on a homogeneous polymethyl-methacrylate
(PMMA) three-point bending beam performed by Galvez et al. [42], and it is extended to a graded
beam. The third example investigates a crack in a beam with three holes under three-point bend-
ing. The fourth example is based on polymethyl-methacrylate (PMMA) double cantilever beam
subjepted to non-proportional loading performed by Galvez et al. [42], and it is also extended to
a graded specimen. The fifth examples investigates the interaétion between two cracks in homoge-
neous and graded plates, and the last example investigates forked crack extending from the existing
crack. For the last three examples, material variations for the FGM specimen are adopted from the
experiments by Rousseau and Tippur [123]. The first example uses the maximum hoop stress [36]
and maximum energy release rates [66] criteria, and compares results for crack trajectories obtained

by the two criteria, and the rest of examples use the maximum energy release rates criterion [66].

5.6.1 A crack in a graded glass/epoxy beam subjected to four-point bending

Rousseau and Tippur [123] investigated crack growth behavior of a crack normal to the ma-
terial gradient in a graded glass/epoxy subjected to four-point bending, and applied displacement
controlled loading at a cross-head speed of 0.25 mm/min using Instron Universal Testing Machine.
The FGM beam was made of solid A-glass spheres of mean diameter 42um dispersed within a slow ‘
Curing epoxy matrix, and was fab;‘icated by using gravity assisted casting technique with two-part
slow curing epoxy and uncoated solid glass sphere fillers.

Figure 5.7(a) shows specimen geometry and BCs éonsidering three independent cracks A, B,
and C, which are located at £=0.17, 0.58, and 1.00, respectively, Figure 5.7(b) shows the complete
mesh configurations for the three cracks, and Figure 5.7(c) shows mesh detail using 12 sectors (S12)

and 4 rings (R4) around the crack tip.
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The typical mesh discretization consists of 1067 Q8, 155 T6, and 12 T6qp elements, with a total
of 1234 elements and 3725 nodes. The following data are used for the FEM analyses:

plane stress, 2 X 2 Gauss quadrature,

a/W=0.25, t=6 mm, P=F,.(a + nla, X), (5.7)

where n refers to the number of crack propagation increments, and X = (X1, X2).

Figures 5.8 and 5.9 illustrate variations of Young’s modulus E and Poisson’s ratio v, and
fracture toughness Kj. in the graded material region, respectively. The numerical values of material
properties at interior points in the graded region are illustrated in Table 5.1.

Table 5.1: Example 1: Material properties (Young’s modulus E, Poisson’s ratio v, and fracture
toughness Kj.) at interior points in the graded region.

€ | E(MPa) | v | Ki. (MPa vm)
0.00 | 3000 |0.35 1.2
017 | 3300 |0.34 2.1
033 | 5300 |o0.33 2.7
058 | 7300 |o0.31 2.7
083 | 8300 | o0.30 2.6
1.00 | 8600 | 0.29 2.6

Due to the lack of information on the critical load P, and load history in the paper by Rousseau
and Tippur [123], here the critical load is calculated at each step based on a fracture criterion,
i.e. maximum hoop stress criterion, and applied the calculated critical load to the corresponding
step. Notice that there is no effect of the load magnitude on the crack trajectory within the
framework of linear elastic analysis. Table 5.2 shows critical load P, SIFs, and the phase angle
(¢ = tan~'(Ky;/KJ)) at the initial step considering the three crack locations £=0.17, 0.58, and

1.00. As ¢ increases, the mode-mixity (Kj;/Kr) decreases.

Table 5.2: Example 1: Numerical results for the critical load P, SIFs, and phase angle (¢ =
tan~!(K;/K1)) at the initial step considering the three crack locations: £=0.17, 0.58, and 1.00
((oee)max criterion. :

€ | Pr (N) | Ki (MPa /m) | K;1 (MPa m) | ¢ =tan™' (K11/K)

0.17 | 249.3 2.088 -0.127 -3.480
0.58 | 298.0 - 2.695 -0.094 -1.997
1.00 | 289.9 2.598 -0.013 -0.286
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Figures 5.10(a), 5.10(b), and 5.10(c) show experimental results reported by Rousseau and Tip-
pur [123] for crack trajectories and crack initiation angles (6p) of the crack located at £=0.17,
£=0.58, and £=1.00, respectively. Figures 5.11(a), 5.11(b), and 5.11(c) show present numerical
results for crack trajectories and crack initiation angles (6g) of the crack located at £=0.17, £=0.58,
and £=1.00, respectively. The numerical results are obtainéd by considering maximum hoop stress
criterion and crack increment Aa = 1lmm. There is reasonable agreement in crack initiation angles
and crack trajectories between numerical and experimental results.

Figure 5.12 shows finite element discretization and remeshing for intermediate steps of crack
propagation considering the crack located at £ = 0.17 and Aa = Imm. One can observe that local
mesh refinement is done around the crack tip at each step.

In order to investigate the effect of crack location on crack trajectory, cracks located at var-
ious locations in a graded beam are investigated. Figure 5.13 shows numerical results for crack
trajectories and crack initiation angles (6p) considering various crack locations (0 < ¢ < 1) and
Aa = lmm. Notice that, as the crack location changes from ¢ = 0.0 to £ = 1.0, the crack initiation
angle fp increases up to about 6.98° at £ = 0.17, and then decreases. For horhogeneous beam with
the crack £ = 0.5, the crack initiation angle is zero because of symmetry, but, for a graded beam
investigated here, it is nonzero.

In order to compare the two fracture criteria, i.e. (gg)max and (G)max criteria, Figure 5.14
shows comparison of crack trajectories obtained by using between maximum hoop stress [36] and
maximum energy release rates [66] criteria. There is not much difference in crack trajectories.
Moreover, the crack initiation angles at the initial step obtained by maximum hoop stress [36] and

maximum enérgy release rates [66] criteria are 6y = 6.98° and 0y = 7.64°, respectively.

157



Glass-rich

() .

Figure 5.7: Example 1: A crack in a graded glass/epoxy beam subjected to four-point bending:
(a) geometry, boundary conditions, and three independent cracks A (£€=0.17), B (£=0.58) and C

(¢=1.00) (Units:N, mm); (b) the complete mesh configurations for cracks A, B, and C; (c) mesh
detail using 12 sectors (S12) and 4 rings (R4) around the crack tip.

158



10000 : : g — 0.36
8000 10.34
_ v
[}
o
S 6000 0.32
Wi
4000 0.30
0.28
2000, /

‘Figure 5.8: Example 1: Variations of Young s modulus E (MPa) and Poisson’s ratio v along the
graded region (0 < €< 1)
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Figure 5.9: Example 1: Variation of fracture toughness Kj (MPa\/— ) along the graded region
(0<e<).
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(a) £=0.17 (g = 7°) (b) £€=0.58 (6 = 4°) | (c) £=1.00 (6 = 0.5°)

Figure 5.10: Example 1: Experimental results for crack trajectories and crack initiation angles (6o)
of the crack in an FGM beam reported by Rousseau and Tippur [123]: (a) £=0.17; (b) £=0.58; (c)
£=1.00.

(8) £=0.17 (60 = 6.98°) (b) £=0.58 (6o = 4.01°) (c) €=1.00 (6o = 0.59°)

- Figure 5.11: Example 1: Numerical results for crack trajectories and crack initiation angles (6g) of
the crack in an FGM beam ((ggg)max criterion): (a) £=0.17; (b) £=0.58; (c) £=1.00.
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(a) Initial step (b) Step 3

(c) Step 6 (d) Step 9

(e) Step 12 ' (f) Step 16

Figure 5.12: Example 1: finite element discretization and remeshing on each step of crack propa-
gation considering £ = 0.17 and Aa = 1lmm ((g¢g)max criterion): (a) Initial step; (b) Step 3; (c)
Step 6; (d) Step 9; (e) Step 12; (f) Step 16.
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(a) £=0.00 (6 = 0.22°) (b) £€=0.10 (6, = 4.45°) (c) £=0.17 (6 = 6.98°)

(d) £=0.40 (6 = 6.76°) (e) £=0.50 (6 = 5.33°) () €=0.58 (6o = 4.01°)

(g) €=0.80 (6p = 1.68°) ~ (h) £=1.00 (60 = 0.59°)

Figure 5.13: Example 1: Numerical results for crack trajectories and crack initiation angles (6o)
of the crack in an FGM beam considering Aa = 1mm for all the steps ((0gg)max criterion): (a)
£=0.00; (b) £=0.10; (c) £=0.17; (d) £=0.40; (e) £=0.50; (f) £=0.58; (g) £=0.80; (h) £=1.00.
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Figure 5.14: Example 1: comparison of crack trajectories obtained by using between maximum
hoop stress [36] and maximum energy release rates [66] criteria. The crack initiation angles at
the initial step obtained by maximum hoop stress [36] ((0gg)max criterion) and maximum energy
release rates [66] ((G)max criterion) criteria are 6y = 6.98° and 6y = 7.64°, respectively.

5.6.2 A crack in a beam subjected to three-point bending

Galvez et al. [42] investigated crack growth behavior of a crack in a homogeneous PMMA
beam subjected to three-point bending considering three different loading controls such as crack
tip opening displacement (CMOD), displacement, and load (P). The material properties of the
PMMA beam used are as follows:

E = 2890 MPa, v = 04, Kf. = 1.09 MPaym. (5.8)

In this example, both homogeneous and graded (along the X» direction) beams are considered.
Figures 5;15(8.) and 5.15(b) show specimen the geometry and BCs for two different boundary
conditions: Cases 1 and 2, reépectively, Figure 5.15(c) shows the complete mesh configuration, and
Figure 5.15(d) shows mesh detail using 12 sectors (S12) and 4 rings (R4) around the crack tip.
Notice that the mesh of Figure 5.15(c) is valid for both cases, but the boundary conditions change.
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Figure 5.15: Example 2: A crack in a beam subjected to three-point bending: (a) Case 1: geometry
and boundary conditions (Units:N, mm); (b) Case 2: geometry and boundary conditions (Units:N,

mm); (c) the complete mesh configuration; (d) mesh detail using 12 sectors (S12) and 4 rings (R4)
around the crack tip.
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The mesh discretization consists of 741 Q8, 239 T6, and 12 T6qp elements, with a total of 992
elements and 2875 nodes. The following data are used for the FEM analyses:

plane stress, 2 x 2 Gauss quadrature,

a/W=0.4, t=18 mm, P=P,.(a + nAa, X). (5.9)

For the homogeneous beam, the material properties of PMMA given by expressions (5.8) are
used. For the graded beam, linear variations of Young’s modulus, Poisson’s ratio, and fracture

toughness, and these properties at the end points are used and given in Table 5.3.

Table 5.3: Example 2: Material properties (Young’s modulus E, Poisson’s ratio v, and fracture
toughness K ) at the end points in the graded region. The material gradation varies linearly in
between the end points. The material properties at the middle point (X, = 30mm) are the same
as those for the homogeneous PMMA beam.

Xo(mm) { E(MPa) | v | Ki. (MPa m)
0 1780 0.41 0.99
60 4000 0.39 ) 1.19

All the numerical results are obtained using the maximum energy release rates criterion [66].
Figure 5.16 shows comparison of crack trajectories for a homogeneous PMMA beam obtained by the
present numerical simulation with experimental (averaging) results reported by Galvez et al. [42]
for Case 2. The numerical results are obtained by considering Aa = 1.5mm (constant) and
twenty-two steps including the initial step. There is reasonably good agreement between numerical
and experimental results. Figure 5.17 shows comparison of crack trajectories for a homogeneous
PMMA beam with those for a graded beam obtained by the present numerical simulation for Case
2 considering Aa = 1.5mm and twenty-two steps including the initial step. thice that, in this
case, the material gradation has almost no effect in the crack trajectory.

Figure 5.18 shows comparison of load versus CMOD curve for a homogeneous beam with that
for a graded beam obtained by the present numerical simulation for Case 1 (mode I cracking)
considering Aa = 1.5mtﬁ. As expected, the linear relationship between load and CMOD fs observed
up to the initial step. Notice that the critical load (P.) and corresponding CMOD at the initial
step for the FGM are greater than those for the homogeneous beam. This indicates that the crack

initiation is delayed due to material gradation.
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Figure 5.16: Example 2, Case 2: comparison of crack trajectories for homogeneous PMMA beam
obtained by the present numerical simulation with experimental (averaging) results reported by
Galvez et al. [42]. The numerical results are obtained considering Aa = 1.5mm (constant).

Figure 5.19 shows comparison of load versus CMOD curve for a homogeneous beam with that
for a graded beam obtained by the present numerical simulation for Case 2 (mixed-mode cracking),
which also considers Aa = 1.5mm. Notice that the critical load (P) and corresponding CMOD for
the FGM at the initial step are also greater than those for the homogeneous beam. By comparing
Figures 5.18 and 5.19, one can observe that, for both homogeneous and graded beams, the critical
load (P.;) for Case 2 is over twice as much as that for Case 1.

Figure 5.20(a) shows finite element discretization and remeshing for the final step of crack prop-
agation considering Aa = 1.5mm for both homogeneous and graded beams of Case 1. Notice that
the crack grows vertically because of symmetry. Figure 5.20(b) shows finite element discretization.
and remeshing for the final step of crack propagation considering Aa = 1.5mm for the homogeneous

beam of Case 2. The final mesh for the FGM beam is almost identical to the Figure 5.20(b).
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Figure 5.17: Example 2, Case 2: comparison of crack trajectories for a homogeneous beam with
those for a graded beam obtained by the present numerical simulation. The numerical results are
obtained considering Aa = 1.5mm (constant).
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Figure 5.18: Example 2, Case 1: comparison of P-CMOD curve for a homogeneous beam with
that for a graded beam obtained by the present numerical simulation. The numerical results are
obtained considering Aa = 1.5mm (constant). ‘ :
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Figure 5.19: Example 2, Case 2: comparison of P-CMOD curve for a homogeneous beam with
that for a graded beam obtained by the present numerical simulation. The numerical results are
obtained considering Aa = 1.5mm (constant).

(a) | (b)

Figure 5.20: Example 2: finite element discretization and remeshing considering Aa = 1.5mm: (a)
Case 1: Homogeneous and FGM beams; (b) Case 2: Homogeneous beam; the final mesh for the
FGM beam is almost identical to this one (cf. Figure 5.17).
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5.6.3 A crack in a beam with holes subjected to three-point bending

Bittencourt et al. [12] performed experimental and numerical investigation of a crack in a homo-
geneous PMMA beam with three holes subjected to three-point bending. The material properties

of the homogeneous PMMA beam is as follows:
E=1, v=03, K. = 10. (5.10)

In this example, both homogeneous and graded beams are considered. Figures 5.21(a) and 5.21(b)
show specimen geometry and BCs, and the complete mesh configuration, respectively, and Fig-
ure 5.21(c) shows mesh detail using 12 sectors (S12) and.4 rings (R4) around the crack tip.

The mesh discretization consists of 680 Q8, 145 T6, and 12 T6qp elements, with a total of 837
elements and 2490 nodes. The following data are used for the FEM analyses:

plane stress, 2 x 2 Gauss quadrature,

a/W=0.1875, t=1, P=1. | (5.11)

For the homogeneous beam, the materia_l properties of PMMA given by the expressions in (5.10)
are used. For the middle region of the graded beam, linear variations of Young’s modulus, Poisson’s
ratio, and fracture toughness are used and shown in Figures 5.22 and 5.23, respectively.

All the numerical results are obtained using the maximum energy release rates criterion [66).
Figure 5.24(a) shows comparison of crack trajectories obtained by the present numerical results
for the homogeneous beam with experimental results reported by Bittencourt et al. [12). The
numerical results are obtained by considering Aa=0.3 and 12 steps. There is excellent agreement
between numerical and experimental results. Figure 5.24(b) shows comparison of crack trajectories
obtained by the present numerical results fof the gfaded beam with those for the homogeneous
beam. The numerical results are obtained by considering Aa=0.3 and 11 steps. As one would
expect, there is significant difference in crack trajectories. Note that, for the FGM beam, Young’s
modulus on the left-hand side is less than that on the right-hand side. Thus the crack growth
direction is néturally inclined to the left.

Figures 5.25(a) and 5.25(b) show finite element discretization and remeshing for the final step
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Figure 5.21: Example 3: A crack in a beam with three holes subjected to three-point bending:
(a) geometry, boundary conditions; (b) the complete mesh configuration; (c) mesh detail using 12
sectors (S12) and 4 rings (R4) around the crack tip. '
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Figure 5.22: Example 3: Variations of Young’s modulus F and Poisson’s ratio v in the three regions.
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‘Figure 5.23: Example 3: Variations of fracture toughness K. in the three regions.

of crack propagation considering Aa = 0.3 for both homogeneous and graded beams, respectively.

Figures 5.25(c) and 5.25(d) show the contour plots for the maximum principal stress for the homo-

geneous and graded beams.

Figure 5.26 shows SIFs history for both homogeneous and graded beams with respect to crack
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Figure 5.24: Example 3: Comparison of crack trajectories: (a) the present numerical results (dotted
line) for the homogeneous beam versus experimental results (solid line) reported by Bittencourt
et al. [12]. (b) the present numerical results for the graded beam (solid line) versus those for the
homogeneous beam. The numerical results are obtained by considering Aa=0.3.

extension (Aa=0.3). There is a monotonic increasing behavior of mode I SIF (K7) for the FGM
beam, however, this behavior is not observed for the homogeneous beam, which shows decreasing
SIFs from steps 5 and 6. For the homogeneous beam, this behavior is due to the hole adjacent to

the crack. For both homogeneous and graded beams, the mode II SIF K oscillates around zero

thus changing the sign of the crack initiation angles.

172



\

o
T
N

5.000
4.250
3.500
2,750
2.000
1.250
.5000
-.2500
-1.000

(c) 1 (d)

Figure 5.25: Example 3: finite element remeshing cdnsidering Aa = 0.3, and the contour plots of
the maximum principal stress: (a) homogeneous beam; (b) graded beam.
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Figure 5.26: Example 3: SIFs history with respect to crack extension (Aa = 0.3). The twelve and
eleven steps are performed for the homogeneous and graded beams, respectively.

5.6.4 A crack in a double cantilever beam under non-proportional loading

This example investigates crack propagation considering non-proportional loading. Let’s con-
sider a fracture envelope based on (G)max criﬁerion for a crack subjected to two independent
loadings: varying load P; and constant load P, as shown in Figure 5.27.

The mixed-mode SIFs are denoted by K} and K, for the corresponding load P, (i = 1,2).
Superposition of the two fields P = P; + P; leads to SIFs located at the point A inside a fracture
envelope. To achieve crmcal SIFs at the point B for crack growth, one needs to increase Pl, for
_instance Py to Fer = P+AP;, which results in the increase of the SIFs by (K},/K}) x AP,. This
scheme is used to search for the critical load P.. and its corresponding SIFs for non-proportional
loading at each step of crack propagation.

Galvez et al. [42] performed experimental and numerical investigations on crack growth behavior
of a créck in a double cantilever PMMA beam subjected to non-proportional loading. The material

properties of the PMMA beam used are the same as those for the second example, and are given
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Figure 5.27: Procedure for crack initiation considering non-proportional loading.

in Eq.(5.8). In this example, we consider both homogeneous ‘and graded beams. Figure 5.28(a)
shows specimen geometry and BCs, Figure 5.28(b) shows the complete mesh configuration, and
Figure 5.28(c) shows mesh detail using 12 sectors (S12) and 4 rings (R4) around the crack tip.

The mesh discretization consists of 2101 Q8, 286 T6, and 12 T6qp elements, with a total of
2399 elements and 6970 nodes. The following data are used for the FEM analyses:

plane stress, 2 x 2 Gauss quadrature,

a=30mm, t=18 mm, P=P,.(a + nla, X), Q=79.4 N. (5.12)

For the homogeneous beam, the material properties of PMMA given by Eq.(5.8) are used. For
the graded beam, variation of material properties from the first example considering the graded
region —15mm < X < 15mm corresponds to the graded region 0 < ¢ < 0.81 in the first example
(cf. Figures 5.8 and 5.9). Here two cases (Cases 1 and 2) of material variation are used as shown
in Figure 5.36 (cf. Figure 5.7(a)).

All the numerical results are obtained using the maximum energy release rates criterion [66].
Figure 5.30 shows comparison of crack trajectories for homogeneous PMMA double cantilever
beam obtained by the present numerical simulation with those for both CMOD-controlled and

displacement-controlled experiments performed by Galvez et al. [42]. For the present simulation
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Figure 5.28: Example 4: A crack in a double cantilever beam: (a) geometry and boundary condi-
tions; (b) the complete mesh configuration; (c) mesh detail using 12 sectors (S12) and 4 rings (R4)
around the crack tip. ‘
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Figure 5.29: Example 4: two cases of FGM double cantilever beams: (a) Case 1; (b) Case 2.
The variations of material properties are adopted from the first example considering the material
gradation in the X direction along the region —15mm < X, < 15mm (cf. Figures 5.8 and 5.9).

and the displacement-controlled experiment [42], the load @=79.4 N is used, however, the load
Q=79.9 N is used for CMOD-controlled loading [42]. The present simulation result is similar to
the CMOD-controlled experiment result.

30 . - .
Preéent e CMOI.)—icontrolled:
: . Displacement-controlled
—20 . : . . .
-30
0 20 40 60 80 100 115
X1(mm)

Figure 5.30: Example 4: comparison of crack trajectories for homogeneous PMMA double can-
tilever beam obtained by the present numerical simulation with those for CMOD-controlled and
displacement-controlled experiments performed by Galvez et al. [42]. For the present simula-
tion and the displacement-controlled experiment, the load @=79.4 N is used, however, the load
Q=79.9 N is used for CMOD-controlled loading. The numerical results are obtained by considering
Aa = 2.0mm.

Figure 5.31 shows comparison of crack trajectories for homogeneous PMMA double cantilever

beam obtained by the present numerical simulation with those for the FGM beams (Cases 1 and
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2). The variation of Young's modulus shows much influence on crack trajectories. For Case 1, the
crack grows to the compliant part of the material, and for Case 2, the crack deflects towards the

left side of the crack trajectory for the homogeneous case due to the material variation.

30
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10
Xa(mm) 0 Graded

.FGM (Case 1) | region
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-20

0 20 40 60 80 100 115
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Figure 5.31: Example 4: comparison of crack trajectories for homogeneous PMMA double cantilever
beam obtained by the present numerical simulation with those for the FGM beams (Cases 1 and
2). The numerical results are obtained by considering Aa = 2.0mm.

Figure 5.32 compares load versus CMOD curve for a homogeneous double cantilever beam ob-
tained by the present numerical simulation with that for the FGM cases (Cases 1 and 2) considering
Aa = 2.0mm. As expected, the linear relationship between load and CMOD is observed up to the
initial step. Notice that, for the homogeneous case, as the crack grows by Aa, the load P, decreases
and its corresponding CMOD generally shows an increasing behaVior; however, for the FGM case,
this behavior of CMOD is not observed for steps 9 to 13 in the FGM Case 1 and for steps 8 to 11
in the FGM Case 2 (see Figure 5.32). This is due to the steep gradient of fracture toughness in
the graded region 7(see Figures 5.9 and 5.31). Due to higher fracture toughness in the FGM beams,
the critical load P, at the initial step for the FGM beams is ihcreased, and thus crack initiation
is delayed. Figures 5.33, 5.34, and 5.35 show finite element discretization and remeshing for the
intermediate and final steps of crack propagation considering Aa = 2mm for the homogeneous and

graded (Casés 1 and 2) beams, respectively.
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Figure 5.32: Example 4: comparison of load versus CMOD curve for a homogeneous double can-
tilever beam obtained by the present numerical simulation with those for the FGM beams (Cases
1 and 2). The numerical results are obtained by considering Aaz = 2.0mm and Q=79.4 N.

(a) | (b)

Figure 5.33: Example 4: Representative numerical results for crack trajectories considering the
homogeneous beam: (a) step 11; (b) step 19 (final step).
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Figure 5.34: Example 4: Representative numerical results for crack trajectories considering the
FGM beam (Case 1): (a) step 10; (b) step 20 (final step).
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Figure 5.35:' Example 4: Representative numerical results for crack trajectories considering the
FGM beam (Case 2): (a) step 7; (b) step 14 (final step).
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5.6.5 Two cracks emanating from holes in a plate under tension

This example investigates the interaction of two cracks emanating from holes in a plate. Fig-
ure 5.36(a) shows specimen geometry and BCs, Figure 5.36(b) shows the complete mesh configu-
ration, Figure 5.36(c) shows mesh detail of two cracks, and Figure 5.36(c) shows zoom of the left
crack tip region showing mesh of 12 sectors (S12) and 4 rings (R4) elements.

The typical mesh discretization consists of 1964 Q8, 302 T6, and 24 T6qp elements, with a total
of 2290 elements and 6827 nodes. The following data are used for the FEM analyses:

plane stress, 2 x 2 Gauss quadrature,

a=2 mm, t=1 mm, o = o.-(a +nAa;X) (MPa). (5.13)

Here material properties are adopted from the first example. For the homogeneous beam, the
material properties of epoxy are used (see Table 5.1). For the graded beam, material gradation in
the X, direction is considered, and the graded region —18.5mm < X3 < 18.5mm corresponds to
the graded region 0 < § <1 in the first example (cf. Figures 5.8 and 5.9).

All the numerical results are obtained using the maximum energy release rates criterion [66].
Figure 5.37 shows comparison of crack trajectories obtained for the homogeneous plate with those
for the graded plate. For the homogeneous plafe, crack trajectories for the left and right crack tips
are symmétric. For the graded plate, the upper-limit load (o¢F7¢"), which is required for both cracks
to propagate, is considered for each step of crack propagation (Aa = 0.5 mm). Due to material
gradation, two cracks propagate toward the compliant part of graded plate, and the symmetry
breaks down.

Figure 5.38 shows crack‘ trajectories obtained for the graded plate considering the lower-limit
load (ofP°") at each step, which is required for the crack with higher crack driving force to prop-
agate. As observed in Figure 5.38, only the left crack propagates and the right crack is shielded.
This indicates that the crack driving force of the left crack is higher than that for the right crack
for the entire step of crack propagation.

Figure 5.39 shows history of critical load (o) versus crack extension for homogeneous and

graded plates (Aa = 0.5 mm). Due to higher fracture toughness in FGMs, the critical load at
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Figure 5.36: Example 5;: FGM plate with two cracks emanating from holes: (a) geometry and BCs;
(b) complete finite element mesh; (c) mesh details of two crack tips; (d) zoom of the left crack tip
showing mesh of 12 sectors (S12) and 4 rings (R4) elements.

the initial step for the graded plate is higher than that for the homogeneous case. The critical
load considering lower-limit case of the graded plate decreases with the increasing steps. However,

the critical load considering upper-limit case of the graded plate decreases up to step 10 (crack
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Figure 5.37: Example 5: comparison of crack trajectories for between homogeneous and graded
plates. For a graded plate, the upper-limit load, which is required for both cracks to propagate, is
considered for each step of crack propagation (Aa = 0.5 mm).

extension 5mm) due to the interaction between two cracks and increases thereafter, which is also
observed in the homogeneous case.

Figure 5.40 shows history of SIFs (K; and K|;) versus crack extension for the homogeneous
plate (Aa = 0.5 mm). The SIFs for both crack tips are identical because of symmetry. Figures 5.41
and 5.42 show history of SIFs (K and Kj) versus crack extension for the graded plates considering
the upper-limit and lower-limit loads, respectively. For both upper and lower limit load cases, due
to higher fracture toughness and subsequent increased critical loads, one observes increased mode
I SIF for both crack tips. Moreover, for the lower-limit load case, as observed in Figure 5.38, the
right crack tip does not propagate, and mode II SIF for the right crack tip is positive.

Figure 5.43 shows finite element discretization in the final step of crack propagation considering

'Aa = 0.5mm for the homogeneous case and the lower-limit load of FGM case, respectively. The
final discretization of upper-limit load case is similar to that for the homogeneous case, and thus is

not shown here.
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Figure 5.38: Example 5: crack trajectory for cracks in the graded plate. The lower-limit load,
which is required for the crack with higher crack driving force to propagate, is considered for each
step of crack propagation (Aa = 0.5 mm).
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Figure 5.39: Example 5: critical load (oc-) versus crack extension history for homogeneous and
graded plates (Aa = 0.5 mm).
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Figure 5.40: Example 5: SIFs (K; and Kj) versus crack extension history for the homogeneous
plate (Aa = 0.5 mm).
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Figure 5.41: Example 5: SIFs (K and Kj) versus crack extension history for the graded plate
considering the upper-limit load (Aa = 0.5 mm).
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Figure 5.42: Example 5: SIFs (K; and Kp) versus crack extension history for the graded plate
considering the lower-limit load (Aa = 0.5 mm)

(a) | (b)

Figure 5.43: Example 5: finite element discretization in the final step of crack propagation con-
sidering Aa = 0.5mm ((G)max criterion): (a) Homogeneous case; (b) the lower-limit load of FGM
case. The final discretization of upper-limit load case is similar to that for the homogeneous case,

and thus is not shown here.
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5.6.6 Forked cracks in a plate under tension

This example investigates forked cracks extending from the existing crack tip. Figure 5.44(a)
shows specimen geometry and BCs, Figure 5.44(b) shows the complete mesh configuration, Fig-
ure 5.44(c) shows mesh detail of forked cracks using 12 sectors (S12) and 4 rings (R4) elements.

The typical mesh discretization consists of 1644 Q8, 212 T6, and 24 T6qp elements, with a total
of 1880 elements and 5605 nodes. The following data are used for the FEM analyses:

plane stress, 2 x 2 Gauss quadrature,

a=3 mm, b=1.5 mm, t=1 mm, o = g¢(a + nlAa, X) (MPa). (5.14)

Here again material properties are adopted from the first example, and the material gradation
is identical to the fifth example. For the homogeneous beam, the material properties of epoxy are
used (see Table 5.1). For the graded beam, material gradation in the X» direction is considered,
and the graded region —18.5mm < X, < 18.5mm corresponds to the graded region 0 < £ < 1 in
the first example (cf. Figures 5.8 and 5.9).

All the numerical results are obtained using the maximum energy release rates criterion [66].
Figure 5.45 shows comparison of crack trajectories obtained for the homogeneous plate with those
for the graded plate (Aa = 1.5 mm). As observed for the upper-limit load in the previous example,
due to material gradation, two cracks propagate toward the compliant part of graded plate, and
the symmetry breaks down. As observed for the lower-limit load case in Figure 5.45, only the lower
crack propagates and the upper crack is shielded. This indicates that the crack driving force of the
lower crack is higher than that for the upper crack for the entire step of crack propagation.

Figure 5.46 shows history of critical load (o) vefsus crack extension for homogeneous and
graded plates (Aa = 1.5 mm). Due to 'higher fracture toughness in FGMs, the critical load for
the graded plate at each step is higher than that for the homogeneous case. One observes that the
critical loads for all cases decrease with each step of propagation.

Figure 5.47 shows history of SIFs (K; and Kjj) versué crack extension for the homogeneous
plate (Aa = 1.5 mm). The SIFs for both crack tips are identical because of symmetry. Figures 5.48

and 5.49 show history of SIFs (K and K|y) versus crack extension for the graded plates considering
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Figure 5.44: Example 6: FGM plate with forked cracks: (a) geometry and BCs; (b) complete finite
element mesh; (c) mesh details using 12 sectors (S12) and 4 rings (R4) elements.

the upper-limit and lower-limit loads, respectively. For both upper and lower limit load cases, due
to higher fracture toughness and subsequent increased critical loads, one observes increased mode I

SIF for both crack tips. Moreover, for the upper-limit load case, as observed in Figure 5.48, mode I
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Figure 5.45: Example 6: comparison of crack trajectories between homogeneous and graded plates
(Aa = 1.5 mm).
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Figure 5.46: Example 6: critical load (o.r) versus crack extension history for homogeneous and
graded plates (Aa = 1.5 mm).
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SIF for the lower crack tip increases rapidly at the final step because it is near to the boundary. For
the lower-limit load case, as observed in Figure 5.49, the upper crack tip does not propagate, and
both mode I and II SIFs for the upper crack tip rapidly decreases at the early steps. Figure 5.50
shows finite element discretization in the final step of crack propagation considering Aa = 1.5mm

for the homogeneous case, the upper-limit and the lower-limit loads of FGM case, respectively.

1.5

Homogeneous

SIFs (MPa m'/?)

"0 10 20 30 40
Crack extension (mm)

Figure 5.47: Example 6: SIFs (K and Kj) versus crack extension history for the homogeneous
plate (Aa = 1.5 mm).
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Figure 5.48: Example 6: SIFs (K; and Kj;) versus crack extension history for the graded plate
considering the upper-limit load (Aa = 1.5 mm).
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Figure 5.49: Example 6: SIFs (K and Kjj) versus crack extension history for the graded plate
considering the lower-limit load (Aa = 1.5 mm). :
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Figure 5.50: Example 6: finite element discretization in the final step of crack propagation consid-
ering Aa = 0.5mm for forked cracks ((G)max criterion): (a) Homogeneous case; (b) the upper-limit
load of FGM case; (c) the lower-limit load of FGM case.
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5.7 Concluding remarks

This chapter investigates fracture behavior of FGMs by performing automatic simulation of
crack propagation by means of a remeshing scheme of the finite element method. The crack prop-
agation is performed under mixed-mode and non-proportional loading. Based on local homoge-
nization, the maximum energy release rates [66] and maximum hoop stress criteria [36] are used,
and both predict crack initiation angles well in comparison with experimental results. Crack tra-
jectories obtained by both fracture criteria are similar to each other, and agree well with available
experimental results for homogeneous and FGMs.

For two interacting cracks under symmetry boundary conditions, there exists symmetry in terms
of fracture parameters characterizing crack-tip fields and crack growth behavior, and thus there is
no competition between two cracks for homogeneous materials. However, for graded materials, the
symmetry breaks down due to material gradation, and thus the crack-tip fields in one crack tip is
different from those for the other. This may allow propagation of one crack and shield of the other
crack under certain critical loads, which range between the critical loads for the two crack tips.

The present approach requires user-defined crack increment at the beginning of simulation. The
crack increment is related to material microstructure, and need be thoroughly investigated with

experiments.
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Chapter 6

Conclusions and extensions

This thesis investigates fracture of FGMs through the accurate evaluation of mixed-mode SIFs and
T-stress using the interaction integral method, and uses fracture criteria for crack initiation angles,
and simulates mixed-mode crack propagation in homogeneous and nonhomogeneous materials under
general mixed-mode and non-proportional loading. Crack growth in FGMs has been simulated by
means of a remeshing algorithm of the displacement-based finite element method.

Graded finite elements, which incorporate the material property gradient at the size scale of the
element, have been presented using a generalized isoparametric formulation, and have been verified
against analytical solutions by means of mesh refinement. As a basic framework for fracture analysis
by means of the interaction integral method, critical assessment and comparison have been made for
three consistent formulations: non-equilibrium, incompatibility, ahd constant-constitutive-tensor
formulations. Each formulation leads to a consistent form of the interaction integral in the sense
that extra terms are added to compensate for the difference in response between homogeneous and
nonhbmogeneous materials. These extra terms play a key role in ensuring path-independence of the
interaction integral for FGMs. From numerical investigations, the FEM results for such fracture
parameters obtained by the method agree well with available semi—anaiytical or numerical solutions.
It is observed that both material gradation and orthotropy have a significant influence on SIFs and
T-stress (i.e. both sign and magnitude).

Based on local homogenization, this thesis uses fracture criteria such as the maximum energy
release rates [66] and maximum hoop stress [36]. Crack trajectories obtained by both fracture
criteria are similar to each other, and agree well with available experimental results for homoge-

neous and FGMs. The present approach requires user-defined crack increment at the beginning of
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simulation. The crack increment Aa is related to material microstructure, and need be thoroughly
investigated with experiments. The computational scheme developed here serves as a guideline for
fracture experiments on homogeneous and FGM specimens (e.g. initiation toughness and R-curve).

An open issue consists on developing an analytical explanation regarding the excellent behavior
of the interaction integral method for FGMs. Moreover, potential extension of the present work
consists of developing a boundary layer model for general FGMs, assessing various fracture criteria
and investigating the effect of T-stress (non-singular stress) on crack initiation angles in brittle
FGMs. From the numerical investigation, positive T-stress increases the crack initiation angle, and
negative T-stress decreases the crack initiation angle. A fracture criterion incorporating T-stress
effect involves a physical length scale 7., which is representative of the fracture process zone size.
The length scale parameter may have a significant effect on the crack initiation angle, even with
the same values of T-stress and SIFs. Therefore the parameter v, must be carefully assessed by
comparing numerical solutions with experimental results. Moreover, a natural extension involves
developing nonlinear material models for FGMs, evaluating fracture parameter (J-integral), and

simulating crack propagation in elastic-plastic FGMs (e.g. metal/ceramic).
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Appendix A

A.1 Micromechanics models extended to FGMs

One of the basic problems in composite material theory is the prediction of the effective or average
macroscopic properties in terms of the properties and relative amounts (i.e. volume fractions) of
the individual phases. Many theoretical micro-mechanical models have been developed and applied
to predict the effective elastic properties of composite materials. Models include the differential
method, the self-consistent méthod, the three phase model, and the Mori-Tanaka method.

The differential method (DM) is due to Bruggeman, and it has been effectively developed and
used by Roscoe [122]. The basic concept of the model is to view the overall composite as a sequence
of dilute suspensions. A general bounds approach applicable to any macroscopically isotropic
composite material has been derived by Hashin and Shtrikman [53], and revisited and generalized
by Walpole (139]. The self-consistent method (SCM) was proposed by Hershey [54] and Kréner as
a means to model the behavior of polycryétalline materials and was extended to multiphase media
by Budiansky [14] and Hill [56, 57]. The three phase model (TPM) was formulated by Christensen
and Lo [25]. Finally, the Mori-Tanaka method (MTM) was introduced by Mori and Tanaka [102]
and revisited by Benveniste [11]. Moreover, Huang et al. [64] investigated several micromechanics
models including the SCM, the TPM, the MTM, the DM, and Hashin and Shtrikman bounds, and
Huang and Hwang [63] extended those to microcracked solids. -

Now the main concern is on graded composite materials, consisting of one or more dispersed
phases of spatially variable volume fractions embedded in a matrix of another phase that are sub-
divided by internal percolation thresholds between the different matrix phases. It is well known

that the response of macroscopically homogeneous systems can be described in terms of certain
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thermoelastic moduli that are evaluated for a selected representative volume element (RVE) sub-
jected to uniform overall thermomechanical fields. However, such representative volumes are not
easily defined for systems with variable phase volume fractions subjected to nonuniform overall
fields. Regardless of such concerns, many methods developed to describe the behavior of macro-
scopic homogeneous composites have been applied to thermoelastic analyses of FGM composites.
At the elementary level, rule-of-mixture approaches have been used by Fukui et al. [41], vLee and
Erdogan (93], and Markworth and Saunders [98] in elastic systems. Giannakopoulos et al. [45]
and Finot and Suresh [40] used this approach in elastic-plastic systems. Miller and Lannutti [100]
estimated elastic moduli and averages of the Hashin-Shtrikman bounds for statistically homoge-
neous systems. There are various aspects of micromechanical modeling [47, 97, 128]. In applying
micromechanical approaches to FGMs, higher order methods has been investigated using a gener-
alized method of cells approach (116, 3, 2] and a generalized Mori-Tanaka approach [155, 156]. In
addition, Zuiker [154] investigated and compared standard micromechanical methods. Reiter and
Dvorak [118, 119] investigated validity of micromechanical averaging methods in applications to
graded elastic composite materials with particulate and skeletal microstructures under mechanical
and thermal loadings. Recently, Yin et al. [152] developed a new micromechanics models, which is

applicable to FGMs, considering multiscaling modelling and particle interactions.

A.1.1 Dilute approximation

Premise

The dilute suspension problem involving a single inclusion in an infinite medium has the physical
meaning that the inclusions are so small and so far apart that all interaction between inclusions can

be neglected, no matter what the size of the representative volume element may be (see Figure A.1).

Bulk modulus

Let’s consider a spherical inclusion of radius ¢ embedded in an infinite medium subjected to a

hydrostatic pressure egk at infinity. Due to the spherical symmetry, the equilibrium conditions are

=+ ;(Urr - agg) =0, (A.1)
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Figure A.1: No interaction between inclusions. e indicates an inclusion.

where oy = ogg.

In terms of displacements, Eq.(A.1) is rewritten as

9? 29 2
W“r + ;E"Ur b ';Eur - 0, (A‘2)

where 7 is the radial coordinate originating from the center of the sphere and u, is the radial

displacement. The solutions are given by [24]

B
up = Ar + 2 Chk= 3A. (A.3)

The stress o,p is

0
0'—,-7- = )\Ekk + 2“ ‘a";“ur, (A.4)

where A and u are the Lamé constants. The following expressions are applicable for the matrix m

and inclusion %, respectively,

B .
Uy = Ar + ol uy. = Cr, (A.5)
where the constants A, B, and C can be determined from the continuity conditions

uy =, , opy =0y, at T=a. (A.6)

Thus ‘
f_}g& = 3_Q — 3(Am + 2pm)
e 34 3N +2ui+dpm’

(A7)
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Using the following equation

Climen = Cluel + c(Cliy — Cl)eky, (A.8)
where c is the volume fraction of the inclusion. the effective bulk modulus can be determined as [24]

c(ki — Km)

o o = )i — o) (om & 70

(A.9)

Shear modulus

Let’s consider a homogeneous medium under shear deformation. The displacements in the Cartesian

coordinates are [24]

Up = ST, Uy=-Sy, u;=0, (A.10)

where s is the maximum shear strain. Converting to the spherical coordinates (r, 6, ¢) yields
ur = srsinfcos2¢p, ug = srsindcosdcos 2¢, uy = —srsinfsin2¢. (A.11)

In the heterogeneous system of matrvix-inclusion, the general solutions can be assumed as
Uy = U.(r)sin?@cos2p, ug= Upg(r) sin @ cos 8 cos 2¢,‘ u, = Uy(r)sinfsin2¢, (A.12)

where U, Ug and Uy are unknown functions to be determined from the equilibrium equations in

spherical coordinates. Then

333 5—4v,, By m_ 2B3 2By
V=Bt S - Ty e BTt T
; 6y; i 7 -4y
U; = A]'I‘» ( )Az’l‘ , U Air — (1 — )A27‘ , Ug+ U¢ = 0. (A.13)
Vi v

Imposing the interfacial continuity conditions for displacements and tractions at r = a, one
obtains ‘
ela 15(1 — vp)
5(1)2 (7 = Sum)m + 2(4 — 5vm )

(A.14)
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Using Eq.(A.8), one obtains the effective shear modulus as [24]

w151 )1 - A

tm (7T—5vm)+2(4 - 51/,,,);“% '

(A.15)

A.1.2 Hashin-Shtrikman bounds

Hashin and Shtrikman [53] derived the upper and lower bounds for the effective elastic moduli
of multiphase materials of arbitrary phase geometry, consisting of isotropic phases, using the vari-
ational principles in linear elasticity and considering prescribed surface diéplacements; A summary
of the del'ivation follows the derivation by Hashin and Shtrikman [53].

Let 0; and €f; be known stress and strain tensor fields in a deformed elastic body of volume V

and surface S. For the case of no body forces, Hooke’s law is given by [53)
035 = Moefdij + 2p0ef; = Lo(ey;), (A.16)

where Ap and pp are the Lamé constant and the shear modulus, which for simplicity are taken to

be constant throughout the body, and §;; are the Kronecker delta. The strains are given by

1
E% = E(u;’a -+ ’Ug’i). (A.17)
Let part or whole of the body be changed to material of different moduli A and p which may vary
in space, and the surface displacements u?(S) be held fixed. The unknown stress and strain fields

in the changed body are denoted by oi; and &;;. The stress polarization tensor p;; is now defined

by [53]

oij = Lo(&i;) + pij. | (A.18)
Let’s also define
| uf = u; —uf (A.19)
and
€l = €15 — €3 (A.20)

The ¢;; and o035 can be found from Eqs.(A.18) and (A.20) once e}; and p;; are known. Based on
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variational principles involving-¢{; and p;;, the volume integral reads (53]

1
Up=Up— 3 / [pi; H (piz) — pisel; — 2pie%] dV, (A.21)

where

1
Uo=1 / 0%, dV, (A.22)

which is subjected to the equilibrium condition

Lo(ei;),i + pijg = 0, (A.23)
and the boundary condition
ui(S) = 0. (A.24)
The volume integral is stationary for
pij = L(eij) — Lo(ey), (A.25)
where
L(eij) = Aegi0ij + 2uei;. (A.26)

The operator H in Eq.(A.21) is given by

H = (L - Ly)™%. (A.27)
Therefore, in Eq.(A.21),
A - Ao 2 1
L H (D) = — + ) A28
i H (py) 6(k — o)k — ko) *¢ T 2(u— o)’ IPY (A.28)

where

K=\t gu (A.29)
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is the bulk modulus. Equation (A.23) is written as
(Mo + po)uj ;5 + pouj j; + pij,j = 0. (A.30)

The stationary value of Up, the strain energy U stored in the changed body, is an absolute maximum

for

A>Xo, #> o (A.31)

and an absolute minimum for

A<, i< po. (A.32)

Following the above procedure, Hashin and Shtrikman [53] derived the upper and lower bounds for
effective properties for multiphase materials. For two-phase materials, the bounds on the effective

shear and bulk moduli are given by [53] (4,7 = 1,2):

1 6(mi+2m)Vi
w o= m+Vj/{”, Lei 1 ”l)’}
J

— i Spi(3ns + 4us)

1 3V; o
Kj — ki + (3k; + 4;;,-)} y (E#7) (A.33)

K = fﬂi+Vj/{

where the superscript e refers to the effective quantity, V; is the volume fraction of phase i, y; is the

shear modulus of phase 4, and &; is the bulk modulus of phase . Moreover, k5 > x§ and u§ > uf.

A.1.3 Self-consistent method

Premise

The method was derived as a means to model the behavior of polycrystalline materials which are
just one phase media, but because of the random or partially random orientation of the crystals,
discontinuities in'properties exist across crystal interfaces. In the application to polycrystalline
aggregates, a single anisotropic crystal is viewed as a spherical or ellipsoidal inclusion embedded
~ in an infinite medium of the unknown isotropic properties of the aggregate. Then the system is
subjected to uniform stress or strain conditions at large distances from the inclusion. Next the
orientation average of the stress or strain in the inclusion is set equal to the corresponding applied

value of the stress or strain. Thus the name Self-Consistent Method comes from this procedure.
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A summary of the derivation follows the derivation by Hill [57]. A single inclusion, arbitrary

ellipsoidal in shape, is considered to be embedded in a homogeneous mass of different materials as

O |38t | B

Figure A.2: Schematic of Self-Consistent Method

shown in Figure A.2.

The tensors of elastic moduli are denoted by L and L;, respectively, and their inverse compli-
ances by M and M,;. The displacement at infinity is prescribed to correspond to a uniform overall
strain & Both the displacement and traction are required to be continuous across the phase inter-
face. The principal feature is that the inclusion is strained uniformly. An overall constraint tensor
L*is introduced for the L phase, with the inverse M™, as loading over the interface compatible
with a uniform field of stress &*. If £* is the corresponding uniform strain of the ellipsoid, one
obtains [57]

o*=-L"" , ¢=-M"'c". (A.34)

The solution of the auxiliary problem is obtained by superimposing & and &, and identifying o*

with 01 — & and €* with €1 — & where o1 and &) are the actual fields in the inclusion. Then [57]
o1—-d=L"E~¢€1) , e1-E=M"(6~-01). (A.35)

An ellipsoid region would undergo a transformation strain e if free, but attains only the strain Se
in situ. The coniponents of dimensionless tensor S are functions of the moduli ratios and of the
aspect' ratios of the ellipsoid and its orientation in the frame of reference.

To connect L* and M?*, one obtains, by imagining the transformation problem, as [57]

e*=8e, 0" =L(c" —e). (A.36)
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Combination of Eq.(A.36) and Eq.(A.34) yields [57)
L'S=L(I-S), (I- S)M* = SM, (A.37)

where I is the unit tensor. Another dimensionless tensor T, the dual of S, could be admitted as

follows:

M*T=SM=P,TL=L'S=Q (A.38)

so that

M*T=M({I-T), (I-T)L* =TL

T=L"(L*+ L)'= M+ M)"'M (A.39)

Now the stress o* in the transformed region can be written as T's, where s is the stress required

to remove the strain e. The symbols P and Q can be introduced as [57]

PL+MQ = I
P=MI-T) , Q=L{I-S)

Pl=L*+L , Q'=M*+M. (A.40)

Let two phase properties be denoted by subscripts 1 and 2 and let c¢; and cp be the volume
fraction of each phase. The relations between the phase and overall averages of stress and strain

are [57]
ci(F1 —7) + (62— 7) =0, c1(&1 —§) + c2(82-8)=0 (A41)
The self-consistency gives [57)

o1-6=L"E-5), O:-7=L"(E-5) (A.42)
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Equation (A.42) is rearranged as

(L* + L1)8) = (L* + L3)g2 = (L* + L)E (A.43)

or

(M* + M1)o, = (M* + M), = (M* + M)z, (A.44)

Combining Eqgs.(A.43) and (A.44) with Eq.(A.41) yields a pair of equivalent formulae for the overall

stiffness and compliance tensors L and M

a(L*+ L) el + L)' = (L*+ L)' =P

cl(M* + M1)™ + co(M* + Mp)™! = (M* + M) = Q. (A.45)
Substitution of Eq.(A.40) to Eq.(A.45) yields [57]

c(L — Ly) '+ co(L - Ly)™! = P,

(M~ M3)™! + c2(M - M) =Q. (A.46)

Finally, one obtains the phase concentration factor tensors, A; and A; for strain, B; and B,

for stress defined by
A's = A'8, =% , Bi'?1=B;'o, =7 (A.47)

where

AT'=P(L*+L)=I1+P(L1-L), A;'=P(L*+L)=I+P(L;~L), (A48)

Bi'=Q(M*+ M) =I+Q(M,-M), Bj'=Q(M*+M,)=1I+Q(M;- M)

Then
c1A1 +cAs=1I=¢; By + c3Bs. (A.49)

Let’s assume that the inclusions are spheres distributed in the way such that the composite is
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statistically isotropic overall. The isotropic 4th-order L tensor is written as

2
Lijky = k63501 + 1t (5ij5kz + 0udjk — §5ij5kz> )

(A.50)
or simply in terms of the hydrostatic and deviatoric components
L = (3k,2u) (A.51)
or with its inverse
1 1
- (ﬁa '2'12) (A52)
Equation (A.46) then reduces to one for the effective bulk and shear moduli, k£ and p [57]
C1 + C2 - _(:Y_’
K—Ky K—Ki K
C1 + () — é
p—p2 p—p p

, (A.53)

where

—g_5g=—F g 8kt+2)
a=3 5ﬁ-n+%u,ﬂ—5(3n+4ﬂ). | (A.54)

The dimensionless quantities & and 3 appear in the specific form of S tensor for a sphere

1 o
Sijkt = §(a ~ )80k + -2-,3(5ik5j1 + 8udjk).

(A.55)
The bulk modulus & can be solved from Eqs.(A.53) and (A.54) as [57]
LN W (A.56)
K+ ki+Eu K+ 3 :
Using Egs.(A.53) and (A.56), one obtains the final expression for shear modulus p [57]
am_ R +5( Cif2 | il ) +2=0. (A.57)
K1+3i  K2t+3gp B—p2 Py
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A.1.4 Three phase model

Premise
Three Phase Model is referred to as the Generalized Self-Consistent Method, and it is based on
the original Self-Consistent Method which involves directly embedding the inclusion phase in the
infinite medium of unknown effective properties.

A summary of the derivation follows the derivation by Christensen [24]. Let’s consider that
an infinite region is subjected to homogeneous deformation conditions at large distances from the

origin. The outer layer material, being the equivalent homogeneous phase, has its unknown effective

properties (see Figure A.3).

SN

1. Spherical inclusion
2. Matrix phase

3. Equivalent homogeneous medium

Figure A.3: Three phase model

Solutions in the form of Eq.(A.12) are assumed for the condition of imposed simple shear

deformation at large distance from the origin. The functions Ur(r), Up(r) and Ug(r) are given
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by [24]

GllmBz’I‘s 333 (5 - 4l/m) B4

m —_— — S— e — —
Ui=Bir - gt Y i) 2
(7 ol 4Vm)BzT3 233 B4
m . —_ — —_
bo"= B (1-2vp) a tin
: 6V'A21‘3
i Ay — DML
Ur=Ar = 0235
; (T-4v) , 3
| - -_—
U= Arr — (r=goy Aor
3D;  (5—4v)D,
e ..
Ur =D + T (1-2v)r2
2D D
U§ = Dyr — T43 + 2—73‘-
Up+Uy=0

(A.58)
(A.59)
(A.60)
(A.61)
(A.62)

(A.63)
(A.64)

where m, 4, and e refer to the matrix, inclusion, and the effective medium, respectively. By imposing

the interfacial conditions of perfect bonding at » = a and r = b, the solution for shear modulus u

is given by [25, 24]

where

2
A (i) +2B (—“—) +C=0 (A.65)
Hm Hm
8 (ﬂ - ) (4 = Sum)mV;* ~ 2 [63(—lii— —Lm + 27’]17]3] v/
Em Hm
+252(:—‘ ~ Vi - 50(:—‘ = 1)(7 = 12vm + 802 12V + 4(7 — 10um) 023,
m m . .
-2 (ﬁ - ) (1 = 5vm)mV; % + 2 [63(ﬁ ~ L + 21;17;3] 7
Um Hm
252 Hi 1) y5/3 i 3
- — — 1)M2Vy +75(— - 1)(8 - Vm)772Vme + 5 (15um, —~ 7)n2m3,
Hm Hm 2
4 (—"—" - 1) (5vm — T V% - 2 [63(—"i — e + 2171773] 7
Hm | Hm
2520 — )V} 4+ 252~ 1) = TymaVy = (7 + Sum)mams (A.66)
m m

208



with

m = (49 — 50viv) (ﬁ - 1> +35EL (1 — 20 + 35(20; — 1)
Bm Hm

M = 5u; (ﬁ"--8>+7(ﬂ+4>
Hm Hm

s = p-“i(s ~ 100p) + (7 — 5um), (A.67)
m

where Vy is the volume fraction of inclusions and the subscripts i and m refer to the isotropic .

inclusion and matrix phases, respectively. The solution for the effective bulk modulus for the 3

phase medium of Figure A.3 is given by [25, 24]

Vi(ki — km)

o T = V)t — o) (o ).

(A.68)

A.1.5 Mori-Tanaka method

Premise

The key to the method is essentially mathematical rather than physical involving average strain,

average stress, concentration tensors for dilute and non-dilute conditions.

The Mori-Tanaka method involves complex manipulations of the field variables and concepts
of eigenstrain and backstress [102]. Benveniste [11] provided more simplified derivation of the Mori-
Tanaka method. Let’s consider a two-phase composite system with far field conditions providing a

uniform strain €. For a two phase system, the average strain is given by [102]
E = ¢1E1 + CoEa. (A.69)
Let’s define the eﬁ'ective stiffness tensor by C as
& =CEt. (A.70)

Then
CE = C€ + [F2 — C1&2), (A.71)
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where

02 = ChEs (A.72)

with C1 and C being the stiffness tensors of the two phases. Let the phase 2 be the inclusion

phase. Then under dilute conditions, one writes

€y = TE, (A.73)

where T is the strain concentration tensor. It follows directly from the field variable solution of

the dilute suspension problem. Combining Eq.(A.71) and Eq.(A.73) gives
C=C)+c(C:-C1)T. (A.74)

Now the Mori-Tanaka method can be given for generalizing the dilute solution form (Eq.(A.74))

to non-dilute conditions. Let’s define a tensor A through

gy = AE. (A.75)
Using Eq.(A.71) yields
C=C1+c(C:-C1)A (A.76)
In order to determine A, let’s introduce a new tensor G such that
€2 = G&y, (A.77)

where G is dependent upon the concentration of the inclusion phase. With some manipulation of

Eqgs.(A.76) and (A.77), one obtains [102]
A=[al+cG)™'G. (A.78)

The Mori-Tanaka method when applied to the spherical inclusion problem under non-dilute condi-
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tion gives [102]

1
= + C y o— ) A.79
H pon - €t = pm) 14 (1 = co)(ps — tm)/ [ + pn(96m + 8uum ) /6(Kim + 2tm))] ( )
1
kK = KEm+ CZ(K'i - Klm) 1 (A.SO)

+ (1 —c2) (ki — Km)/(km + %.U'm).

These Mori-Tanaka results correspond to the lower bound of the Hashin-Shtrikman bounds.

A.1.6 Differential method

Premise

The model views the overall composite as a sequence of dilute suspensions as shown in Figure A 4.

remove A.V
, add
- . A3
i i+l

Figure A.4: Schematic of Differential Method

The original work was done by Bruggeman, but not in the mechanics context. Later Roscoe [122]
developed and applied the method to model the behavior of fluid suspension. The starting point
is the well known dilute suspension result for the effective shear and bulk moduli of the a macro-

scopically isotropic composite containing non-interacting spherical inclusions given by

(ki = Km) -
14 (ki — km)/(km + %#m)’
c(u; — pm)
1+ (pi = pm)/{ttm + (96m + 8 ttm / (6m + 120m)}’

K = Knp+

(A.81)

o= pm+ (A.82)

where c is the volume fraction of the inclusion. One can add an infinitesimal volume AV in a
unit volume of the homogenized material. The new mixture is a two-phase composite, with matrix

moduli x and y, and inclusion’s volume fraction AV/(1+AV). From the classical inclusion problems
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for spheres, the effective moduli increase by [122]

AV Ki— K
k+ds = K+ -
1+ AV 1+ (8 — k)/(k + 3p)’
AV Hi = p
+dp = p+ - . A.83
W S M T AV T Ga - i Grt sme/Gr ) A
Since the increase in the volume fraction of the inclusion phase is given by
c+ AV AV
WETvav T = Travt T (A.84)

one obtains the following coupled differential equations for the effective moduli of the compos-

ite [122]

d_n _ 1 Ki— K
de l—c 1+ (ki—k)/(k+5n)’
a1 pi B (A.85)
de 1—c 1+ (pi—p)/{p+ 96+ 8u)p/(6x + 12u)}’ '
where
£(0) =km , p(0) =pm , 0<c< L (A.86)
The solution must satisfy the condition
w(1) = ki, p(l) = . (A.87)
A.1.7 Rule of mixtures
The simplest is the classical linear rule of mixtures for two phase materials given by
P=cP+c Py, (A.88)

where P is a typical material property, and ¢; and ¢ are the volume fraction of the two constituents.

Another well-known mixture rule is the harmonic mean given by

PP,

=—, A.89
aP 4Py ( )
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A.1.8 Comparison of selected models

The comparisons of several micromechanics models are given in order. Let’s consider the silicon
carbide (SiC)-carbon (C) FGM system with material properties
Egic = 320GPa

vsic = 0.25,

Ec =28GPa , vo=03.

Figures A.5 and A.6 show the effective bulk and shear moduli for a spherical inclusion in a con-
tinuous matrix as a function of SiC volume fraction using the standard micromechanical models

discussed above.

250 ' . . —

200t
. Dilute (C particles)
5
‘g’ 150 HS-upper ]
=
°
S 100} :

SCM
§ DM
50_ HS-lower .
-------- MTM & TPM
Dilute (SiC particles) .

%

0.2

04

0.6

0.8

SiC Volume Fraction

Figure A.5: Bulk modulus of the SiC/C FGM system estimated by using several micromechanics
models.

Zuiker [154] investigated and compared the several standard micromechanical models on the
basis of requirements of any micromechanical method applied to FGMs. The first requirement is
that the effective elastic property estimates must reside within the Hashin-Shtrikman bounds. The

second is that at the very low and high volume fractions the effective properties should match the
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Figure A.6: Shear modulus of the SiC/C FGM system estimated by using several micromechanics
models.

estimates of the dilute approximation when it is assumed that the lower volume fraction phase is
the particulate phase. The Self-Consistent Method provides estimates which satisfy the Hashin-

Shtrikman bounds and follow the dilute estimates in the limit at both extremes of volume fraction.

A.1.9 Matlab® Code

The several micromechanics models are written in the MATLAB code as follows.

Hashin-Shtrikman bounds

% matérial properties of each phase
el=28;

€2=320;

vli=0.3;

v2=0.25;

mul=el/(2*(1+4v1));
mu2=e2/(2*(1+v2));
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kappal=el/(3*(1-2*v1));

kappa2=e2/(3*(1-2*v2));

% thickness of the graded region

h=1,

expon=1;

for j=1:expon

x=[0:0.01:1];

VF1 = 1-(x.Aj/hAj);

VF2 = (x.Aj/hAj);

kappa_low = kappa2-+VF1./(1/(kappal-kappa2)+(3*VF2./(3*kappa2+4*mu2)));

kappa_up = kappal+VF2./(1/(kappa2-kappal)-+(3*VF1./(3*kappal+4*mul)));

mu_low = mu2+VF1./(1/(mu1-mu2)+(6*VF2.*(kappa2+2*mu2)/(5*mu2*(3*kappa2+4*mu2))));
mu_up = mu1+VF2](1/(mu2-mu1)+(6*VF1’5‘(kappa1+2*mu1)/(5*mu1*(3*kappa1+4*mu1))));
E_low=9*(kappa_low*mu_ low)/(3*kappa_low+mu_ low);
E_up=9*(kappa_up*mu_up)/(3*kappa_up+mu_up);

v_up=E_up/(2*mu_up)-1;

v_low=E_low/(2*mu_low)-1;

end

Self-Consistent Method

% material properties of each phase
el=28,

€2=320;

v1=0.3;

v2=0.25;

mul=el/(2%(1+v1));
mu2=e2/(2*(1+v2));
kl=el/(3*(1-2*v1));
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k2=e2/(3*(1-2*v2));

% thickness of the graded region

h=1;

m=0,

expon=1;

for i=0:0.01:1

cl = 1-(i/h)Aexpon;

€2 = l-cl;

nwhile=0;

aal=32/9;

bbl= 8/3*k1+8/3*k2—32/9*mu1-32/9*mu2+4/3*c1*k1+4/3*c2*k2+80/9*c1*mu2+80/9*c2*mu1;
ccl=-8/3*k2*mul+32/9*mu2*mul+20/3*c1*mu2*k2-80/9*c1*mu2*mul+20/3*c2*mul*k1-80/9*...
c2*mu1*mu2+2*k1*k2—8/3*k1*mu2-8/3*k2*mu2-8/3*k1*mu1+c1*k1*k2-4/3*c1*kl*mu1+...
16/3*c1*k1*mu2-+c2*k2*k1+16/3*c2*k2*mul-4/3*c2*k2*mu2;
dd1#-2*k1*k2*mu1-2*k1*k2*mu2+8/3*k1*mu2*mu1-20/3*c1*mu2*k2*mu1-20/3*c2*mu1*k1*mu2...
-c1*k1*k2*mul-+4*c1*k1*k2*mu2-16/3*c1*k1*mu2*mul+4*c2*k2*k1*mul-c2*k2*k1*mu2...
-16/3%c2*k2*mu2*mul+8/3*k2*mu2*mul;
eel=2*k1*k2*mu2*mul-4*c1*k1*k2*mu2*mul+4*c2*k2*k1*mul-4*c2*¥k2*k1*mu2*mul;
m=1/2*%(1/(c1/mul+1/mu2-cl/mu2)+(c1*mul+mu2-c1*mu2));

g=1

tol=1e-06; |

while (abs(g) > tol)

g=aa1*mA4+bb1*mA3+cc1*m/\2+dd1*m+ee1;
m=m-g/(4*aal*mA3+3*bb1*mA2+2*ccl*m-+ddl);

nwhile=nwhile+1; |

if(nwhile > 20)

tol=1e-05;

end

end
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mu = m;
kappa=-4/3*mu--(k2+4/3*mu)*(k1+4/3*mu)/((1-c1)*(k1+4/3*mu)+c1*(k2-+4/3*mu));
E= 9*(kappa*mu)/(3*kappa+mu);

v = E/(2*mu)-1;

end

Three Phase Model

% material propeties of each phase
el=28;

€2=320;

v1=0.3;

v2=0.25;

mul=el/(2*(1+v1));
mu2=e2/(2*(1+v2));
kappal=el/(3*(1-2*v1));
kappa2=e2/(3*(1-2*v2));

% thickness of the graded region
h=1;

expon=1;

% relevant constants
etal=(49-50*v1*v2)*(mu2/mul-1)+35*(mu2/mul)*(v2-2*v1)+35%(2*v2-v1);
eta2=5*v2*(mu2/mu1-8)+7*(mu2/mu1+4);
etad=mu2/mul*(8-10*v1)+(7-5*v1);
for j=1:éxpon

for i=0:0.01:1

% volume fraction

VF1 = 1-(i/h)Aj;

VF2 = 1-VFL;

%
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A = 8*(mu2/mul-1)*(4-5*v1)*etal*VF2A(10/3)-2*(63*(mu2/mul-1)*eta2...
+2%etal*eta3)*VF2A(7/3)+-252*(mu2/mul-1)*eta2*VF2A(5/3)-50%...

( mu2/mul-1)*(7-12*v14-8*v1A2)*eta2*VF2-+4*(7-10*v1)*eta2*eta3;

%

B = -2*(mu2/mul-1)*(1-5*v1)*etal*VF2A(10/3)+2*(63*(mu2/mul-1)*eta2...
+2%etal*eta3)*VF2A(7/3)-252%(mu2/mul-1)*eta2*VF2A(5/3)+75*...
(mu2/mul-1)*(3-vl)*vl*eta2*VF24-3/2*(15%v1-7)*eta2*eta3;

%

C = 4*(mu2/mul-1)*(5*v1-7)*etal*VF2A(10/3)-2*(63*(mu2/mul-1)*eta2+...
2*etal*eta3)*VF2A(7/3)+252*%(mu2/mul-1)*eta2*VF2A(5/3)+25*...
(mu2/mul-1)*(v1A2-7)*eta2*VF2-(7-+5*v1)*eta2¥eta3;
D=(B)A2-A*C;

mu = (-B4+DA(0.5))/(A)*mul; ,

kappa = kappal+VF2*(kappa2-kappal)/(1+VF1*(kappa2-kappal)/...
(kappal+4/3*mul));

E=9*(kappa*mu)/(3*kappa+mu);

v=E/(2*mu)-1;

end

end

Mori-Tanaka Method

% material properties of each phase
el=28;

€2=320;

v1=0.3;

v2=0.25;

mul=el/(2%(1+v1));
mu2=e2/(2*(1+v2));
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kappal=el/(3*(1-2*v1));
kappa2=e2/(3*(1-2*v2));

% thickness of the graded region
h=1;

expon=1;

for j=1:expon

for i=0:0.01:1
VF1 = 1-(i/h)A;j;
VF2 = 1-VF1;

mu = mu2+VF1*(mul-mu2)*1/(14+(1-VF1)*(mul-mu2)/(mu2+(mu2*...
(9*kappa2-+8*mu2)/(6*(kappa2-+2*mu2)))))

kappa = kapbaZ+VF1*(kappa1-kappa2)/(1+VF2*(kappal-kappa2)...
/(kappa2+4/3*mu2));

E= 9*(kappa*mu)/(3*kappa+rhu);

v = E/(2*mu)-1;

end

end

Differential Method

% material properties of each phase
el=28;

€2=320;

v1=0.3;

v2=0.25;

ml=el/(2*(1+v1));
m2=e2/(2*(1+v2));
kl=el/(3*(1-2*v1));
k2=e2/(3*(1—2;"v2));
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tlow = 0;

tup = 0.9999;

ylow = [m1, k1];

tspan=[tlow tup);
options=odeset('RelTol’,1e-8,' AbsTol',[1e-8,1e-8]);
[t,y] = oded5('odequation’, tspan ,ylow); -
Esize = size(y);

E = zeros(Esize,1);

v = zeros(Esize,1);

for i = 1: Esize

E(i.1)= 9*y(i.1)*y(i.2)/(3*y(i,2)+y(i.1));
v(i,1)=(3*y(i,2)-2*y(i.1))/(2*(3*y(i.2)+y(i.1))):

end

% function called

function yp = odequation(t,y);
expon=1;

% thickness of the graded region
h=1,

yp = zeros(2,1);

e2=320;

v2=0.25;

m2=e2/(2*(1+v2));
k2=e2/(3*(1-2*v2));
yp(1)=1/(1-(t/h)Aexpon)*(m2-y(1))/ (1-+(m2-y(1))/(y(1)-+(9*y(2)+8*y(1))*y(1)...
/(6*y(2)+12*y(1))))*expon*tA(expon-1)/hAexpon;

yp(2) = -(y(2)-k2)/(1-(t/h)Aexpon)/ (1+(k2->'(2))/ (v(2)+4/3*y(1)))...

*expon*f/\(expon- )/hAexpon;
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A.2 Anisotropic elasticity

The generalized Hooke’s law for stress-strain relationship is given by [95)
&€ = G405, Qij = Qg (7',.7 =1,2, "°a6) (A.QO)
where the compliance coefficients, a;;, are contracted notations of the compliance tensor Sijk and

€1 = €11, €2 =€y, €3 = £33, €4 = 2623, €5 = 2613, €6 = 2€12

g1 =011, 03 =022, 03 = 033, 04 = 093, 05 =013, O = O12. (A.91)
For plane stress, the a;; components of interest are
aij (7',.7 = 11 2a 6) (A92)

and for plane strain, the dij components are exchanged with b;; as follows:

ai3a;3

bij = ai; — (1,5 =1,2,6). (A.93)

Two dimensional anisotropic elasticity problems can be formulated in terms of the analytic

functions, ¢y (2x), of the complex variable, z, = zx + iyx (k=1,2), i = /=1, where
sp=z+ay, Y=Ly (k=1,2) (A.94)

The parameters ay and (i are the real and imaginary parts of yy = oy + ifk, which can be

determined from the following characteristic equation [95]
au;L4 - 2a16ﬂ3 + (2a12 + 066)u2 — 2ap + agp =0, " (A.95)

where the roots y;, are always complex or purely imaginary in conjugate pairs as py, f1; po, 2.
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A.3 Representative functions for SIFs

For orthotropic FGMs, the representative functions f(r/2,6,a"") in Eq. (3.1) are given by [131]:

fI = Vor/r Re | /o+— 1 - 4 1i"p2y/cos @ + py” sin 6 — pbPpyy/cosd + uiPsin@
1 o M 2 2
I [ 1 tip tip
i = +/2r/mRe ———“p \/cosﬂ-i-u sm()—pl\/c080+u sinf 3|,

Ly’l

fi = 2r/rRe —r 1Pqa\/cos @ + phP sin @ — ubPq cosf + piPsin |,
2 i Heind =48
144 \/2_— [ 1 tip o4 tip
30 = r/m Re W \/0050+u sm0-—q1\/cost9+u sinf ¢ |,
LB — o

where Re denotes the real part of the complex function, % and y4? denote crack-tip material

parameters, which are obtained from Eq.(A.95) and taken for §;, > 0 (k = 1,2), and pi and gy are

given by
9 tlp
pe = AT ()" + aif — @ gk = aiiu” “%;,?, azg, (A.96)
respectively.

The functions g(r—1/2,0, a"?) in Eq. (3.3) are given by [131]:

1 tlp tlp tlp tip
gfl = Re tl
V2mr ﬂz" V/cos@ + ;L"" sinf \/ cosf + ,u“" siné
dl = Wy
Venr y" \/cosﬂ-i-uI sind \/c050+/t' sind
1 tlp
952 = Re tlp o o
V2nrr \/c080+u P sin 6 \/coso-i-pl"smo
g = —=Re
V2nr 13" | \/cosd + ;4“" sinf \/ cos§ + u‘“’ sinf
! 1 tip tip
= Re
912 V2nr "" Vcosd + p"" sind  \/cos \/cosf + phPsind u‘ P sin 6
1 “tlp , /J,tlp .
3 = Re 1 2 A97
912 Pz T e /LE"’ { \/cos0 + [P sin®  \/cos0 + yy" sin6 ] (A-97)

Notice that, in the above expressions, the graded material parameters are sampled at the crack tip.
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For isotropic FGMs, the representative functions f(r!/2, 4, a'*) for displacements in Eq. (3.1),
and g(r~!/2,0,a") for stresses in Eq. (3.3) are given in many references (e.g. [33]). The graded

material parameters are sampled at the crack tip.

A.4 Representative functions for T-stress

The presentation follows the Stroh formalism [137]. For orthotropic FGMs, the representative

functions t*(In r, 6, f,a"?) in Eq. (3.4) are given by [137]:

h h
Y= —-—1 Inr—-= (Suh1 + Si2h3), ty = ——2- Inr—= (Sz1h1 + Saohg) . (A.98)

The parameters S;; and h; in Eq.(A.98) are the components in the 2 x 2 matrix S(6), and the 2x 1

vector h as follows:

S11 S
S®) = 2Relac) BT=|"" |,
T S91 S22
h1
h = L7lf= ) (A.99)
ha
where
,\filpptilp Atlpptip _/\tllputllp ___/\tzlputzln
A':' ] B = ?
)‘tllpq;ip ,\tlp tip Ailp Atéip
Insy (0 0
o= | "® , 5k(6) = cos + " sin),
0 In s2(6)
L' =ReiAB™Y, f=[f,0]7, ~ (A100)

in which pi* and ¢;" (k = 1,2) are given by Eq.(A.96), and A\}” (k = 1,2) is the normalization

factor given by the expression
(/\“")2(4“"/ w = ) = 1. (A.101)
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The representative functions t*(r=1,0, f,a"?) in Eq. (3.6) are given by [137]):

t]) = 0% cos?,  t3, = 0c™%sin’0, t§, = 0% sinfcos,

where the auxiliary stresses are given by [137] (k = 1,2):

1
op® = 5—nT (O)Ns(Oh, off® =off® =0,

in which

n = [cosb,sin 6], N3(0) =2 Re [B P(6) BT),

)R] P cos — sin @
P(o) = ) [ik(o) = Mﬁp s 0 0'
0 pa(0) Y, sing + cos

(A.102)

(A.103)

(A.104)

For isotropic FGMs, the representative functions t*(Inr, 6, f, @*®) in Eq. (3.4) for displacements,

and t°(r~1, 6, f,a"") for stresses in Eq. (3.6) are given in many references (e.g. [136]) The graded

material parameters are sampled at the crack tip.

A.5 Shape functions for four Gauss points of six-node triangular

element

The shape functions for four Gauss points of a T6 element have a bilinear form given by

N(&n) = a1+ a€+ asn + aqén,

where £ and 7 are triangular natural coordinates as shown in Figure A.7.
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€m)=(0,0)

Figure A.7: Four-point Gaussian quadrature for a T6 element.

The locations of four Gauss points are given by

Gi(&,m) — €=%,n=-:1;,
Galéom) —~ E=3m=7,
Ga(&s,m3) — €=%,n=g,
Ga(€aym) — €=:};ﬂ7=%-

In order to determine four unknowns in Eq.(A.105), one substitutes natural coordinates (£;,7;)

corresponding to each Gauss point into Eq.(A.105) as follows:
N i) = a1+ a2;+asn; +asjn; (3,5 =1,...,4), (A.106)
where

N;=1.0 fori=j

N;=00 fori#j ‘ (A.107)

For each Gauss point, we have four system of equations as follows:

n=Ta ~ ’ (A.108)
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where

no= (b1 65 8 845",
[ 1 & m &m -
T - 1 & m Eome ,
1 & m3 &m3
[ 1 &4 ma Eamy |
a = [a1 a2 a3 aq)”. (A.109)

Thus the unknown vector a is determined for each Gauss points as:

a=T"n, (A.110)
Now the shape functions are given by

9 - 45 45 225
N = g-F¢-—7gn+—&n

5 25 15 75
Ny = —g'*‘gﬁ'l‘;%ﬂ*%&?,
v e
Ny = Z+z§+z'f]—z—§7’1.k (A.lll)
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