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Abstract

Recent advances in material processing technology have enabled the design and manufac-
ture of new functionally graded material systems that can withstand very high temperature
and large thermal gradient. Galerkin boundary element method is a powerful numerical
method with good efficiency and accuracy which uses C° elements for hypersingular inte-
grals which are essential for solving fracture problem. In the boundary element formulation,
treatment of the singular and hypersingular integrals is one of the main challenges. A direct
treatment of the hypersingular integral using a hybrid analytical /numerical approach is pre-
sented. Symmetric Galerkin formulation for exponentially graded material using the Green’s
function approach is developed. In the Green’s function approach, each material variation
requires different fundamental solution to be derived and consequently, new computer codes
to be developed. In order to alleviate this constraint a “simple” Galerkin boundary element
method is proposed where the nonhomogeneous problems can be transformed to known ho-
mogeneous problems for a class of variations (quadratic, exponential and trigonometric) of
thermal conductivity. The material property can have a functional variation in one, two and
three dimensions. Recycling existing codes for homogeneous media, the problems in nonho-
mogeneous media can be solved maintaining a pure boundary only formulation. This method
can be used for any problem governed by potential theory. Within this scope, novel Galerkin
boundary element method formulations for steady state and transient heat conduction, and
fracture problems involving multiple interacting cracks in three-dimensional graded material
systems are developed. The transient heat conduction is carried out using a Laplace trans-
form Galerkin formulation whereas the crack problem is formulated using the dual boundary
element method approach. The implementations of all the techniques involved in this work
are discussed and several numerical examples are presented to demonstrate the accuracy
and efficiency of the methods. Finally, new techniques of scientific visualization, which is
an integral part of computational science research, are explored in the context of boundary
element method. This investigation includes developing new modules for viewing the bound-
ary and the domain data using modern visualization tools, developing virtual reality based

visualization and concluding with web based interactive visualization.
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Chapter 1

Introduction

Boundary element method (BEM) has been used mostly for problems in homogeneous media.
For problems in three dimensions (3D) especially moving boundary problems BEM is highly
efficient and suitable. Recently, graded material systems have been an important topic of
research because of its superior properties. In this work, the main focus is to solve steady
state as well as transient heat conduction and crack problems in 3D graded material systems
using Galerkin (symmetric and non-symmetric) BEM. This chapter gives an introduction to
the boundary element method and the graded material system. Several approaches that can
be used to solve problems of potential in nonhomogeneous media are discussed. Finally the
organization of the thesis is given.

1.1 Boundary Element Method (BEM)

The BEM has emerged as a powerful numerical method in computational mechanics in recent
years. In this technique, the boundary of the domain is discretized, thereby reducing the
dimension of the problem by one. For example, in three dimensions the discretization is
performed on the bounding surface only; and in two dimensions, the discretization is on
the boundary contour only. This leads to smaller linear systems, less computer memory
requirements, and more efficient computation. For problems with unbounded domain this
effect is more pronounced. In domain based methods, unbounded domains are truncated and
approximated. BEM can automatically model the behaviour at infinity without setting up a
mesh to approximate it. For moving boundary problems like crack propagation, remeshing
an evolving geometry is much simpler with boundary element analysis than with a domain-
based analysis such as the finite element method (FEM), especially if multiple interacting
cracks are involved. In large scale numerical modeling using finite element methods, the

mesh preparation is the most labour intensive and costly portion. Without the need of
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dealing with the interior mesh, the BEM is more cost effective in mesh preparation. With
these advantages, the BEM is indeed an essential part in todays computational techniques.
Examples can be drawn from the fields of elasticity, geomechanics, structural mechanics,

electromagnetism, acoustics, hydraulics, hydrodynamics and biomechanics among many.

1.1.1 Collocation

In collocation, the boundary integral equations (BIE) are enforced at specified points. In
its simplest form, these collocation points are chosen to be the nodes used to discretize the
boundary. Collocation BEM leads to non-symmetric matrices. Coupling with finite element

method is not straight-forward. A typical collocation BIE can be defined as

5P =0(P)+ [ (556(P.0)) e@de - [GPQZE@iQ ()

where ¢ is the potential, G(P, Q) is the Green’s function, and P and @) are the source point
and the field point, respectively. For an exact solution B(P) = 0.

Gradation along
z-direction

=

y
Figure 1.1: Illustration of a generic body with boundary ¥ and domain §2. The source point
is P (normal N) and the field point is @ (normal n).

1.1.2 Galerkin

In contrast to collocation, the Galerkin approach does not require that the BIEs be satisfied

at any point. Instead the equations are enforced in a weighted sense. Thus

/ W (P)B(P)AP = 0 (1.2)
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In mathematical terminology, the ‘strong’ requirement of satisfying the BIEs at any given
point is exchanged by a ‘weak’ solution in which the equations hold in integrated sense.
This requirement has excellent geometric interpretation, the approximate Galerkin solution

is the exact solution projected onto the subspace consisting of all functions which are a

linear combination of the shape functions. The Galerkin solution therefore is the linear

combination which is the ‘closest’ to the exact solution. In standard Galerkin procedure,
the weight functions are composed of the shape functions that are non-zero at a node, as a

result it gives the local support as illustrated in Figure 1.2.

Shape function N, (P)

NI
iﬁf A 7

ALK 4

——
NN

%

Figure 1.2: Local support for the Galerkin BEM.

In addition to this, in Galerkin BEM handling the hypersingular integrals are simpler
than collocation. The Galerkin approximation allows standard continuous C° elements to
be used for evaluation of hypersingular integrals. Galerkin BEM is in general more accurate

and provides more elegant schemes for dealing with boundary corners and edges.

1.1.3 Symmetric Galerkin (SG)

The symmetric Galerkin boundary element method (SGBEM) possesses the attractive fea-
ture of producing a symmetric coefficient matrix [85, 88, 161]. The SGBEM is suitable for

coupling with the popular finite element method (FEM) [13].
The hypersingular boundary integral equation (HBIE) for the derivative d¢/0n = V¢ *n,
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is usually written in the form

F(P)= P)+/¢(Q aNa Q)dQ — / (PQ (Q)dQ—O (1.3)

Eq. (1.3) is formally obtained by differentiating the standard BIE for potential, and then
interchanging the derivative with the integral. Following the Galerkin approximation, the
HBIE, Eq. (1.3), takes the form

/2 Uu(P)F(P)dP = 0, (1.4)

If the kernels of the BIE and HBIE holds the symmetry properties, a SG formulation can be
obtained. Symmetry of the coefficient matrix for a general mixed boundary value problem is
achieved by the following simple arrangement. The BIE is employed on the Dirichlet surface,

and the HBIE equation is used on the Neumann surface.

1.1.4 Boundary-based meshfree methods

Meshfree (or meshless) method has attracted a lot of attention from researchers in recent
years, and it is regarded as a potential new generation of numerical methods in computational
mechanics. A meshfree method does not require a mesh to discretize the problem domain or
boundary, and the approximate solution is constructed entirely based on a set of scattered
nodes.

Mukherjee and his research collaborators, have proposed one of the earliest boundary-
based meshfree method called the Boundary Node Method (BNM) [126, 102, 26, 28, 27, 29,
30]. Other examples of boundary-based meshfree methods are the local Boundary Integral
Equation (LBIE) approach [193, 165], the Boundary Cloud Method (BCM) [111], Hp cloud
method {103, 104] and the Boundary Point Interpolation Method (BPIM) [114]. The LBIE,
however, is not strictly a boundary method since it requires evaluation of integrals over
certain surfaces that can be regarded as closure surfaces of boundary elements. Li and
Aluru [111] have recently proposed a boundary only method called the BCM. This method
is very similar to the BNM in that scattered boundary points are used for constructing
approximating functions and these approximations are used with the appropriate BIEs for
the problem. However, a key attractive feature of this work is that, unlike the BNM where
boundary curvilinear co-ordinates must be employed, the usual Cartesian co-ordinates can
be used in the BCM.
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1.2 Functionally Graded Materials (FGMs)

Functionally graded materials or FGMs are a new generation of composites where the volume
fraction of the FGM constituents vary gradually, giving a non-uniform microstructure with
continuously graded macroproperties such as heat conductivity, specific heat, density, etc.
Typically, in an FGM, one face of a structural component is an engineering ceramic that
can resist severe thermal loading and the other face is a metal which has excellent structural
strength. FGMs consisting of heat-resisting ceramic and fracture-resisting metal can improve
the properties of thermal barrier systems because cracking and delamination, which are
often observed in conventional layered systems, are reduced by proper smooth transition
of material properties. Ceramic based FGMs have also been used for thermal protection
— see Carrillo-Heian et al.[23]. FGMs are being developed as thermal barrier materials for
combustion chambers, gas vanes, air vanes, nose cones, fuel valve sheets and piston crowns
which undergo high-temperature gradient and high-thermal cycles in addition to wear. A
comprehensive treatment of the science and technology of FGMs can be found, for example,
in the books by Miyamoto et al.[122], Suresh and Mortensen [171], and the review article by
Paulino et al.[138].

1.3 Approaches for solving problems in

nonhomogeneous media using BEM

Approaches to treat problems of potential theory in nonhomogeneous media include the

following:
o Green’s function [34, 35]
e Domain integral evaluation [125, 2, 135, 133, 142]
o Variable transformation. [172, 173]

In the Green’s function approach, the Green’s function has to be derived and a boundary-
only formulation can be obtained [34, 35]. A drawback of this approach is that each different
material variation requires a different fundamental solution, and thus the kernels for the BEM
implementation are different from the standard kernels usually employed for homogeneous
problems. As a result, each time a new computer code has to be developed. Moreover,
if the treatment of singularity involves analytical integration, then the process becomes

much involved [176]. Several approaches have been developed to evaluate domain integrals
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associated with boundary element formulations including approximate particular solution
methods [125, 2], dual reciprocity methods [135], and multiple reciprocity methods [133, 142].

The particular solution methods and dual reciprocity methods can be considered more
or less to be equivalent in nature [92]. These methods have been widely used on the ax-
iom that the domain integral in the boundary integral formulation is eliminated. In these
methods the inhomogeneous term of the governing differential equation is approximated by
a simple function such as (1+r) [127] or radial basis functions (RBFs) [67, 178]. The math-
ematical properties and the convergence rates of the RBF approximations have been studied
extensively [67, 66]. In these techniques, the boundary-only nature of the BEM is lost.

In this thesis a transformation approach, called the “simple BEM,” for potential the-
ory problems in nonhomogeneous media is proposed, where nonhomogeneous problems are
transformed into known problems in homogeneous media. The method leads to a pure
boundary-only formulation.

1.4 Thesis Organization

In Chapter 2, the evaluation of the hypersingular (and singular) integrals in GBEM is ex-
plained. A hybrid analytical /numerical approach based on ‘limit to the boundary approach’
is adopted. Hypersingular integrals that arise in the SGBEM formulation for heat conduction
in an exponentially graded material is evaluated.

In Chapter 3, the numerical implementation of the SGBEM for heat conduction in ex-
ponential graded material is described.

Transient heat conduction in exponentially graded materials using a Laplace transform
BEM is presented in Chapter 4. The Green’s function is derived first. The problem is
formulated in the Laplace space and numerical inversion of the Laplace transform was carried
out to get back to the time domain.

A novel simple boundary element technique to address problems of potential flow for
nonhomogeneous media is presented in Chapter 5. By using a transformation approach this
method can handle material variation that are quadratic, exponential, and trigonometric in
nature, and also the functional variation can be in one, two or three dimensions. By simple
modification of the boundary conditions, standard codes for homogeneous material problems
are used.

Chapter 6 develops the ‘simple’ BEM for transient heat conduction problems. By simple
variable transformation, transient heat conduction problems in functionally graded materials

for three different classes of material variation (quadratic, exponential, trigonometric) can
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be transformed into the homogeneous diffusion problem. FGM transient heat conduction
problem with constant diffusivity are solved. A Laplace transform Galerkin BEM formulation
has been presented here in order to implement the methodology.

Chapter 7 describes the ‘simple BEM’ for solving multiple cracks in problems governed by
potential theory. Steady state heat conduction problems with functionally graded thermal
conductivity are investigated.

Chapter 8 investigates the scientific visualization including virtual reality and web based
visualization. State of art visualization techniques and how they can be used for visualizing
BEM results has been studied and explored.

Finally, the thesis ends with some closing remarks and comments on future research in
Chapter 9.
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Chapter 2

Evaluation of Singular and
hypersingular integrals in GBEM for
FGMs

This chapter discusses the evaluation of hypersingular integrals that arises in the Galerkin
boundary element method (GBEM) (e.g. symmetric and non-symmetric) formulation for
FGMs. The procedure for treating the hypersingular integral are applicable to other less
singular integrals. The methods are first described in the simplest possible continuous ap-
proximation, a linear element. The two key features of the singular integration are first, the
definition of the integrals as limits from the exterior of the domain, and second, the com-
bination of analytical and numerical evaluation procedures. The boundary limit provides
a consistent scheme for defining all singular integrals, weakly singular, strongly singular,
and hypersingular, resulting in direct evaluation algorithms. The key task for the direct
evaluation will be to isolate the divergent terms and to show that they cancel. Symbolic
computation is exploited to simplify the work involved in carrying out the limit process and
analytic integration, and example Maple codes are provided.

This chapter is organized as follows. Section 2.1 gives an introduction to the singular
integrals in GBEM and techniques that are found in the literature to evaluate them. The
singular and hypersingular integrals that arise in the BEM formulation for heat conduction
in exponentially graded materials are presented in Section 2.2. In Section 2.3 the details of
the treatment of hypersingular integrals are presented. Finally the chapter ends with some
concluding remarks in Section 2.4
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2.1 Introduction

One of the challenges in a Galerkin (and symmetric Galerkin) BEM formulation is the eval-
uation of singular double surface integrals (four dimensional integrals in parametric space).
In a Galerkin approximation, the integration is carried out with respect to both the field
point and the source point. For a numerical implementation, this means that the integrals
are evaluated for every pair of elements. Singular integrals occur as the Green’s function
and its derivatives diverge when the field point approaches the source point. An integral is
therefore singular if the elements are coincident, or are adjacent, sharing either an edge or
a vertex. The required double integrations of hypersingular kernel functions have in a way
limited the implementations of the SGBEM.

In a broad sense, the strategies proposed to address such class of problems can be classified
as regularization, finite part, and direct approach. The regularization techniques employ
many procedures such as use of simple solutions, and application of Stokes theorem [112,
57, 59]. The finite part approach is based on extracting the principal value of the singular
integral, and direct evaluation based on multiple analytic integration [81, 3, 22, 146]. A
direct approach [74, 73], using neither Stokes theorem nor finite-part integral, is revisited
and adopted herein. As previous works [74, 73] only considered the simple Laplace equation,
one of the goals of this work is to demonstrate that the direct “limit to the boundary”
approach works very well for evaluating the singular and hypersingular integrals for the
special FGM Green’s function. This approach is also helpful to treat other complicated
Green’s functions.

A direct treatment of the hypersingular double integrals using a hybrid analytical /numerical
approach applied to the hypersingular integrals that arise in the SGBEM formulation for
heat conduction in an exponentially graded material is presented in this chapter. The de-
tails of the SGBEM formulation and the numerical implementation are presented in the next
chapter. The implementation is a pure boundary-only formulation without any domain inte-
gral. It relies on the Green’s function (GF) for the partial differential equation incorporating
the material gradation. In order to handle the complexity of the FGM Green’s function,
the direct limit approach of reference [73] needs to be modified. This direct limit approach
is shown to be suitable for dealing with complicated Green’s functions, which appear in
applications such as those involving FGMs.
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2.2 Singular and hypersingular boundary integrals

Let the FGM be defined by the thermal conductivity that varies exponentially in one Carte-
sian coordinate, i.e.
k($7 Y, Z) = k(Z) = k062ﬂz y ‘ (21)

where § denotes the material nonhomogeneity parameter. Steady state isotropic heat con-

duction in a solid is governed by the equation
V o (k(z,y,2)V¢) =0 . (2.2)

where * denotes the inner product, ¢ = ¢(z, vy, z) is the temperature function, k(z, y, 2) is the
thermal conductivity which can be a function of the Cartesian coordinates. The fundamental

solution or the Green’s function is derived [75, 110] as

eﬁ(_r"'Rz)

G(P,Q) = (2.3)

4mr

where
R,=z20—2p and r=|R|=]Q-P]|, (2.4)

P and @ are the source point and the field point, respectively.

Gradation along
z-direction

=

y
Figure 2.1: Illustration of a generic body with boundary ¥ and domain 2. The present
SGBEM relies on a boundary-only formulation for FGMs. The source point is P (normal
N) and the field point is @ (normal n).

The singular boundary integral equation (BIE) for surface temperature ¢(FP) on the

boundary ¥ (see Figure 2.1) is

6(P) + / F(P,Q)$(Q)dQ = / Gs(P.Q)F(Q)dQ , (2.5)

10
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and the kernel functions are

_ GPQ) 1 flrzazp)
Gs(PQ) = — k(zg)  4kom r
0
eBl-rths) R n*R N,
T T 4 ( 73 +6 r2 +67> ’

where the surface flux,

F(Q) = ~Kz0)o-9(Q).

(2.7)

The hypersingular boundary integral equation (HBIE) for surface temperature F(P) on

the boundary ¥ is defined by,

F(P)+ /E W(P,Q)é(Q) dQ = /E S(P.Q)F(Q)dQ .

The kernel functions are computed as

S(P.Q) = ~K(zp)5Gs(P.Q)
ef-r—Rz) /N «R N-R N,
- A7 ( r3 +6 r2 —/67>
and
W(P.Q) = —k(z)axF(P,Q)

4

A7 T

_ _1{_()_65(—7‘+2Q+2P) (3 (n .R>(5N .R) +38 (n .R)(N 'R)
T

+ 52(11 .R)(N .R) — B(Nzn— nzN) ‘R—n-*N

r3

B(N.n—n,N)*R+n-+N _62N2n2> '
r

- f

72

(2.8)

(2.9)

(2.10)

In this work, the direct limit procedure is employed to define and evaluate the singular

integrals. If the limit is taken with the source point P approaching the boundary from
outside the domain, then the “free terms” ¢(P) in the BIE (Eq. (2.5)) and F(P) in the

11
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HBIE (Eq. (2.8)) are not present. Thus, the exterior limit BIE and HBIE take the form

Ps(P)E/ F(P,Q)$(Q) dQ /Gs PQ)F(Q)dQ =0,
fﬂsLWW@M@NQ—-L&R@f@NQ=m (2.11)

where P, denotes the equation for the surface temperature (potential) and F; denotes the
equation for the surface flux. The free terms are automatically incorporated in the “exterior
limit” evaluation of the F(P,Q) and S(P, Q) integrals. Thus, a separate computation of
these free terms is avoided, and they are obtained as a natural outcome of the direct limit
procedure [116].

The surface temperature and surface flux are approximated in terms of values at element

nodes @; and shape functions ¢,;(Q), i.e.,
=2 _¢Qis(Q) F(Q) =D F(@Q:)¥5(Q) (212)

In a Galerkin approximation, Eq. (2.11) is enforced in an average sense, with the shape
functions employed as the weighting functions. Therefore, the Galerkin boundary integral

equations take the form

/ Yr(P)Ps(P)dP =0 (2.13)
/ Yr(P)F,(P)dP =0. (2.14)

In this chapter, the analysis for a linear element will be considered in detail, as this forms
the basis for handling higher order interpolations. An equilateral triangle parameter space

{n, &}, where
~1<7<1, 0<€E<V3(1—]n) (2.15)

will be employed (see Figure 2.2). This choice of parameter space is convenient for executing
the coincident integration, as will be explained in the next section. The three linear shape
functions are

V3(1—n)—¢ V3(1+n) —¢

%(7775) = 2—\/57 ¢2( €) 2\/— ’ 1/}3(7715) = (216)

e

12
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60 60
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Ll

Figure 2.2: Isoparametric equilateral triangular linear element in {7, £} space, where —1 <
n<1,0<€E<V3(L—n)).

2.3 Evaluation of singular double integrals

For three dimensional problems, there are four typical configurations for the two elements
containing source point P and field point @ (see Figure 2.3). Thus the following four distinct
situations regarding the singularity must be considered:

e Non-singular case, when the source point P and the field point () lie on distinct ele-

ments, that do not share a common vertex or edge.
e Coincident case, when the source point P and the field point @) lie in the same element;
o FEdge adjacent case, when two elements share a common edge; and
o Vertex adjacent case, when a vertex is the only common node between the two elements.

The non-singular integrals can be evaluated using standard Gaussian quadrature formu-
las. In the direct limit approach for evaluating the singular integrals, the integrals for the
coincident and the edge-adjacent cases are forced to be finite by moving the source P off the
boundary in the direction N at a distance of . The next step is to employ polar coordinate
transformations and then integrate analytically with a fized distance from the singularity.
After the exact integration, the limit ¢ — 0 is considered. It will be demonstrated that the
coincident and the edge-adjacent hypersingular integrals are separately divergent, producing
terms of the form log(e). However, the divergent terms from the coincident case can be
shown to cancel out with the divergent terms from the edge-adjacent case, and therefore
the divergent terms are removed exactly in this approach. Taking the limit ¢ — 0 back
to the boundary results in finite expressions, thus giving a well behaved integral. Once the

divergent terms have been identified and removed, the remaining terms of the integral can be

13
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Non-singular

Coincident

Edge Adjacent
Vertex Adjacent

Figure 2.3: Four different cases considered for integration: (a) non-singular; (b) coincident;
(c) edge adjacent; and (d) vertex adjacent.

evaluated using standard numerical quadrature. The discussion here about log(¢) singularity,
etc. applies only to the hypersingular equation. The direct approach has been designed to
handle this worst case, but apply equally to the less-singular integrals.

Compared to the simple Laplace equation treated in [73], the challenge here is to work
with the complicated hypersingular kernel function W(P, @), Eq. (2.10). In particular, the
exponential in this function precludes a complete analytic integration as in [73], and thus

additional procedures are required.

2.3.1 Coincident Integration

The details of the procedure to evaluate the hypersingular integrals involving the kernel
W (P, Q) are described in this section. However, the integration of the kernels Gg, S(P, Q)
or F(P,Q) can be handled in exactly the same manner, with the added simplification that
no divergent terms appear in the limit ¢ — 0. When the source point P and the field point
@ lie within the same element E (see Figure 2.3), Ep = Eg = E, and the coincident integral
to be evaluated is

[E $(P) /E HQW(P,Q)dQdP = Y $(Q)) /E u(P) [E 4(QW(P,Q)dQdP , (2.17)

14
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where E is defined by nodes P, 1 < k < 3. Let the parametric variables for the outer P
integration be denoted by (7, £), and that for Q by (n*, £*). Transfering the integral to the
parametric space ( dQ) — Jod&*dn* and dP — Jpd{dn) introduces the Jacobians Jg and Jp.
For coincident integration considering linear elements, the Jg and Jp are equal and constant.

The Jacobians can be conveniently incorporated into the hypersingular kernels, i.e.

. 2 . 2
JW(P,Q) = i_‘%em—wwp) (3(JPN7~5 R) + 316((11:1\;4 R)
*(JPN *R)* — J} T a(JpN,)?
v L 3 St ﬂﬁ—ﬁ‘*%) . (218)

e First Polar Coordinate transformation {n*,&*} — {p,8}: For the inner Q integration,
the first step is to define a polar coordinate system centered at P = (n,£),

n*—n=pcos(d), & —¢&=psin(f) (2.19)

as shown in Figure 2.4. Polar coordinate transformations centered at the singularity
are particularly effective, as the Jacobian of the transformation, p dp, reduces the order

of the singularity. This aspect will be used in all the singular integrations.

-1 > T 1

Figure 2.4: First polar coordinate transformation, {n*,&*} — {p,0}, for the coincident
integration. The variable ¢ eventually replaces 6. Note that P = P(n, ).

The upper limit of p (0 < p < pr(6)) is different for the three edges of the triangle
and consequently, the (p, ) integration is split into three sub-triangles (see Figure
2.4). Tt suffices to consider the calculation for the lower sub-triangle (shaded portion

of the triangle in Figure 2.4). By exploiting the symmetry of the equilateral parametric

15
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space, the remaining sub-triangles are handled by rotating the element and employing

the formulas for the lower sub-triangle associated with the edge £* = 0.

For the lower sub-triangle, the integration limits are
0 S £ S PL and @1 S 7 S @2 (220)

where

___g _ 7 afl+n _ T 1 f1l=n
pL = Sin(0)’ 0, = 5 tan (f)’ 6, = 2+tan ——5 . {(2.21)

In the limit to the boundary approach as P is moved off the boundary in the direction
of the source normal N at distance of ¢, P is replaced by P + ¢N for the exterior
boundary limit (see Figure 2.5), therefore, the distance r = ||Q — P|| takes the simple

form

r*(p,0) = € +a*(0)p* (2.22)

where
a*(0) = ac. cos®(6) + aes cos(0) sin(6) + as sin®() (2.23)

The three coeflicients acc, aes, ass, depend solely upon the coordinates of the element

nodes (a? is a positive quantity), i.e.

1/4[(z2 — 2)* + (32 — 1) + (2 — 2)7],

1/(2V3) (22 — @) (:1 + 22 — 233) + (32 — 1) (31 + 32 — 243)

+ (m—2) (=21 + 2 — 22)],

1/12[(gn + g0 — 2us)° + (21 + 22 — 233)° + (21 + 22 — 223)7]. (2.24)

Il

a‘CC

aCS

a’SS

Here Py=(xk, yx, 2x), (k = 1,2,3) are the (z,y, 2) coordinates of the element nodes.

The term JpIN *R in the kernel (see expression (2.18)) becomes —cJp as P is moved
to P + ¢N. The shape function of P, ¢;(P) is a function of n and £&. With the polar
coordinate transformation centered on P (Eq. (2.19)), the shape function ;(Q) is a

16
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Figure 2.5: The source P is moved off the surface boundary in the direction of N at a
distance of e.

linear function of p, i.e.

1
Q) = o &)+ &0)p=> cimp™ (2.25)

m=0

¥i(P) = cjo(n,§). (2.26)

As a result of the polar transformation, (zg — zp) can be written as ap where a is a

function of 8 and 2 coordinates of the element vertices, i.e.,

a = = cos(f) +

5 ——=(225 — z; — 2) sin(6) (2.27)

2f

Since e?##F is independent of p, it is taken outside of the p integral, and the exponential
term in Eq. (2.18) can be written as

ePl-rtzo+zp) o B(-r+zq—2p+22p)

= 2P2p B(=y/E+atpP+ap) (2.28)

Employing the boundary limit procedure and expressing the kernel function in polar
coordinates, one obtains Eq. (2.17) as

Z/ dn/\/_(l 1) e(m.E) df/ez C]mdg/pL

S/ Erprap) (__3ETp L, _30JJp°
(€% + a2p?)5/? (62 + a2p 372 7 (2 + a2p?)?
ﬁ262JP2 ﬁJPz ,62(]}232 59
2 1 0202)3/2 24 4202 /2. 2.0 d (2.29)
(€% + a?p?) €+ ap €2 +a?p
17
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Here J} denotes JpN,, which is the Jacobian Jp multiplied by the z component of the

normal at P, i.e. N,.

o First Taylor expansion of the exponential function: Due to the exponential term in the
kernel, it is not possible to integrate the entire expression analytically. Our goal for
analytic integration is to explicitly identify the divergent terms in the integral. This
can be done by employing a Taylor expansion of the exponential term. Expanding up

to the first two terms is sufficient to identify the divergent terms, i.e.
&’ (-veratorrar) _ g +8 (—\/62 + a?p? + ap) +O(p?). (2.30)

As the remainder of the expansion is of order p?, this expansion leads to a sufficiently
well behaved expression for the remainder of the integral so that numerical quadrature

can be safely used.

o First analytical integration (on p): Incorporating the Taylor expansion, the integral to

be evaluated analytically is

L ofer 3e2Jp?
m+1 S 2,2 2 dr
,;)/0 p (1+6( Ve +a?p +ap)) ((e2+a2p2)5/2

Jp? R A N 0 ) :
) dp.

(€2 + a2p2)3/2 €2 ¥+ a2p2)2 & + a2p?)3/2 _62+a2p2 2 1 g2
14 P P

(2.31)
For m = 0 (see Eq. (2.25)), the exact analytical integration results in
_ B e ay o B o 2 2\2
Fo= 5 (1= 0) b+ [(1-5) 727 = G e
J 2
28.0p> 22 r_ .
+28Jp o + 6Jp o og(e) + = (2.32)

All terms are well behaved at € = 0 except for the last two. However the expression

aBJp?log(¢)
a3

(2.33)

is not the divergent term that is being sought. It is easily seen that this term cancels
out in the subsequent integration over #. As the term does not contain py,, a complete

integration over 0 < @ < 27 can be considered. Note that « is a linear function of cos()

18
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and sin(#), and thus satisfies a(m +0) = —a(0). From Eq. (2.23), a(x + 8) = a(6), and
from Eq. (2.25), ¢;m, is independent of § for m = 0. Hence, the subsequent integration

of the log(¢) term on expression (2.33) results in zero, i.e.

27
— log(E)Cj,o(’l], f)JpQ /0 C\fﬂ dé=0. (234)

For m = 1, the analytical integration becomes,

R=Swr(1-2) a2 (1-5) -]

Jp’

Jp? 1
22—+ —log( ) — Jp? ogiapL)

(2.35)
A divergent term similar to expression (2.33) also appears in this case. This term is
also seen to cancel out in the subsequent integration over §. The coefficient ¢;1(n, €, 0)
is linear in cos(f) and sin(#), and therefore satisfies ¢;1(n, &, 7+ 6) = —c;1(n, €, 9).
Thus

—log (¢)Jp? / CJ—(—Z;—@- d9=0. (2.36)

0

This first analytic integration is not sufficient to display the divergent term, and the
subsequent integration on € will not pose any problem. It is the next integration on
€, (cf. Eq. (2.29)) which has to be dealt with analytically. The analytic integration
over p produces results that behave as 1/p;, (see the last term in Eq. (2.32)) and, from
Eq. (2.21), p, = —&/sin(6). This term is capable of producing a log(¢) contribution
upon ¢ integration with the lower limit of £ = 0. Therefore it is necessary to interchange
the order of the integration on 6 and £ in order to identify the divergent term through
analytical integration.

o Variable Tranformation {8} — {t}: As the limits of the 6 integration (i.e. ©; and O,)
depend on £ and 7, the integration on the variable § and £ is not interchangeable. To

circumvent this problem, a new variable ¢ (—1 < ¢ < 1) is introduced via

O ) B
f=—5 +tan (€ ) i ET = (2.37)

which also results in pg, = (€2 + (t — )?)"/*. As depicted in Figure 2.4, ¢ is the ‘end-
point’ (¢,0) of p on the £*-axis.

Interchanging the order of integration and tranforming the variable from 6 — ¢, the

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



integral (cf. Eq. (2.31)) for m = 0 can be written as,

R S ()
[ af Ur(1,€) 0 Folpr) d€ . (2.38)
T J -1- Jo

e Second Polar Coordinate transformation {t,£} — {A,¥}: From Eq. (2.37), the sin-
gularity is now at t = 5, £ = 0, and another polar coordinate transformation {A, ¥},

replacing {¢, £}, is employed (see Figure 6),
t=Acos(¥)+n, €&=Asin(¥). (2.39)

The goal is to integrate A analytically. With the two changes of variables, § — {
and {t,£} — {A, ¥}, cos(f) becomes cos(¥) and sin(f) becomes —sin(¥). Thus,
a(8), Eq. (2.23), becomes simply a(¥) and is a constant as far as the A integration is
concerned. As shown in Figure 2.6, the {¢,£} domain is a rectangle, and integrating

over {A, ¥} will necessitate a decomposition into three subdomains
0<T<U, U <T<7—U,, and 7— Wy <V < 7, (2.40)
where

wlztmr1<3§§ilmﬁ>, w2=tmr1<3§921ﬁ9> (2.41)

-7 1+n

V31D

kS nq{ /T\;A

-1 1

Y

Figure 2.6: Geometry of the second polar coordinate transformation, {t,£} — {A, U}, for
the coincident integration.

e Second Taylor expansion of the exponential function: With this final coordinate trans-
formation, the P shape functions are linear in A, as are the coefficients c;,, from the
@ shape functions. Part of the exponential term, ¢***7, which was previously kept
outside of the p integral (cf. Eq. (2.28)), is a linear function of A, and this term has
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to be included in the integration on A. In order to integrate analytically, a Taylor ex-
pansion of the exponential term is once again necessary. Note that zp has a constant

part which is independent of A,
zp = 2% + Azp. (2.42)

Thus the term e2%* can be kept out of the A integration. The rest can be expanded

up to three terms in order to obtain the necessary divergent term,
ePMb = 1 4 28Az5 + 202A%(25)? + O(A%). (2.43)

Theoretically, two terms in the above expansion are sufficient, however, an additional
term was considered for convergence of numerical results. A discussion on additional
terms in the Taylor expansion employed in HBIEs has been presented by Gray and
Paulino [78].

e Second analytical integration (on A): The product of the shape functions of P and @
produces terms of A up to order 2. The integrals (cf. Eq. (2.38)) to be evaluated are
therefore of the form

_‘i_ff /_ 11 dy / sin(¥) d¥ /0 A® F(A)dA (2.49)

for s = 0,1,2 where f(A) is a function of A. The missing limits of the A and ¥
integrals depend upon the particular sub-triangle in Figure 2.6 being considered. The
A integrations for s = 1 and s = 2 are straightforward. For s = 0, a finite contribution
plus a divergent term of the form

J2 [t s T sin( W
=00 32 [ dpigan [ aw, (2.45)
™ J_1 0 a

is found. Here, 1[}10 are the shape functions evaluated at A = p =0, as

o 1- U
H==" g=—=7

5 ¥i=0. (2.46)

Note that as a = a(¥) is independent of 7, Eq. (2.45) simplifies to

J3 1+ 0k /7T sin(¥)
0

— U 2.4
A7 3 a3 v, (2.47)

% = log(e)
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where §; is the usual Kronecker delta function and 1 < k, 5 < 2. For m = 1, following

the same procedure as above does not produce any divergent terms.

The divergent term Lg; is precisely the same as that obtained from the hypersingular
homogeneous Laplace equation [73]. This comes as no surprise because the new feature
in the FGM kernels is the exponential term. In the Taylor expansion,
2 3
r r
(Br) (1)

LAV (2.48)

Br —1
e + (0r) + 5 7

the leading constant is the most singular, the subsequent terms actually help to kill off
the singularity. Thus the divergence comes from the first term of the expansion, which
is exactly the same term for the Laplace equation. The important consequence of this
observation is that it will not be necessary to prove that Eq. (2.47) cancels with the
corresponding divergence from the adjacent edge integration (obtained below). The
proof in reference 73] suffices to demonstrate this point, which is presented later in
this chapter.

2.3.2 Edge Adjacent Integration

In this case an edge is shared between the two elements as shown in Figure 2.3. Orient
the elements so that the shared edge is defined by £ = 0in Ep, and £* = 0 for Eg, and

*

the singularity occurs when n = —n*.

e First Polar Coordinate transformation {n*,&*} — {p,0}: The first step is to employ
polar coordinates for the @ integration [73],

n"=pcos(d) —n, & = psin(0) (2.49)

As shown in Figure 2.7(a), the 6 integration must be split into two pieces (for sim-

plicity the integrands are omitted, but it will be useful to retain the Jacobians of the

transformations)
1 V3(1-In) ©1(n) L1(9) g La(6)
/ dn/ d¢ / dO/ pdp+/ d9/ pdp| , (2.50)
-1 0 0 40 ©1(n) 0
where /3 3
3(1+ 3(1 —
L) =P gy LI
sin(9) + v/3 cos(f) sin(#) — v/3 cos()
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The break-point in 6,
6:1(n) = 2 tan <\/§> (2.52)

is only a function of . The integrations can therefore be rearranged as follows,

1 01(n) V3(1-{nl) L1(6)
/ dn/ d9/ d{/ pdp
-1 Jo 0 0

1 n V3(1-Inl) La(6)
+/ dn/ d0/ df/ pdp . (2.53)
-1 01(n) 0 0

g

g

‘ .
Q v/ 3(1-ImD

. B PN
_‘n \]_{ A
Y -

P 0 L(6) -°
§

(a) (b)

Figure 2.7: (a) Polar coordinate transformation employed in the Q element, {n*,&*} —
{p,0}; (b) Second polar coordinate transformation {p,&} — {A, U} for the edge-adjacent
integration.

e Second Polar Coordinate transformation {p, £} — {A, ¥}: As the singularity occurs at

p =& =0, a second polar coordinate transformation is introduced
p=Acos(¥), &= Asin(¥). (2.54)

The ¥ integration must also be taken in two parts (Figure 2.7(b)), resulting in the

four integrals

1 @1(77) V2 A1l 71'/2 A2
/ dn/ dé / d\I// cos(¥)A? dA+/ d\If/ cos(W)A%dA
-1 0 0 0 vy 0
1 T Uy A21 7T/2 A22
/ dn/ do / d\I// cos(\Il)Asz+/ d\I// cos(U)A2dA | (2.55)
-1 e1(n) 0 0 @, 0
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The formulas for the A limits are simply
Ant = Ln(0)/ cos(¥),  Anz = Ln(0)/ sin(¥), (2.56)
for n = 1,2. The distance function takes the form
2 = + ea1 A + asA? (2.57)

but this quadratic expression (in the denominators) can be integrated exactly. The
A? factor from the two polar transformations sufficiently reduces the order of the

singularity such that one analytic integration (over A) will produce the log(e) term.

o Taylor Ezxpansion of the exponential function: The A integral can not be evaluated
analytically unless a Taylor expansion is once again utilized for the exponential term.
To extract the divergent terms from this integral, a one term expansion will be enough
(same arguments as for the coincident integration). Similarly to Eq. (2.28) and Eq. (2.43),

the exponential term for this case can be written as,

eﬂ(—r+zQ+zP) — eﬁ(—r-{-ZQ—zP-I-QzP)
_ 6ﬁ(—\/e§+a§A7+aA+2(z?,+Az},))

— eQ,@zgeﬁ(—\/e2+a2A2+aA+2Az}13). (258)

The term e*** is taken outside of the A integration since it is independent of A. A
one term Taylor expansion is employed in the remaining exponential term, i.e.

6ﬁ(-*\/z52+a2A2+czA+2Az}p) =14 O(A) (2.59)

The rest of the expansion is of the order of A. This expansion along with the A? from

the Jacobian of the polar transformation will be sufficient to provide a smooth function

for numerical integration. This follows from the observation that A = 0 encapsulates

all three conditions for r = 0, namely £ = £* = 0, and n = —n*. Thus, as in the

coincident algorithm, the exact integration is with respect “to the distance from the

singularity” .

o Analytical Integration on A: The A integration results in a finite quantity plus a
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divergent contribution, which is given by

3Jpnde «JpN
Lg; = log(e) / by wo dn/ d9/ cos(¥ ( P1:/2Q“ - JQna/iP ) dv ,
Qg ag
(2.60)
where J§, and Jpy are the coefficients of A in Jon +R and JpN R respectively,

JpN R = JpnA — Jpe,  Jgn R = J4,A— Jon-N. (2.61)

As in Eq. (2.46), 92 and zﬂ? denote the shape functions evaluated at A = 0. This
expression, Eq. (2.60), and the expression for Lg;, Eq. (2.47), cancel one another. As
noted above (Section 2.3.1), the proof of such cancellation [73] is precisely the same as

that for Laplace equation, which is given next for completeness.

Proof of Cancellation

Recapitulating the above results, the coincident and edge adjacent integrations give
rise to divergent log(e) terms of the form

2 T ol
¢ = ir 1—|—35k3/ sm(\I/) 4 (2.62)
e 1 1+ 6 3J113Njén JQII «JpN
o= J/ d9/ cos(¥ ( TR T dv ,
2 2

where k,7 = 1,2 refer to the two nodes P, and P, along the common edge. It is

therefore necessary to establish that

T oo T w/2 3]1 Jl e JoN
2 / Sn(¥) gg - / de / cos(w) [ ZNan R IPR gy (.69
0o @ 0 0 (18

Qy

and this will be accomplished by brute force, evaluating the integrals. This is most

easily carried out using a symbolic computation program.

To simplify matters, it is convenient (and permissible) to shift and rotate the elements
so that P, = (0,0,0), P = (25,0,0) and P3 = (z3,93,0), and thus N = (0,0,1) and
Jp = xay3/ 2v/3. Note that for the edge adjacent Q-element, the convention is that
Q1 = P, and Q3 = P,. Setting Q3 = (23,43, 23), Jon = (0, 25za, —yiz2).

From Eq. (2.22) and the comment below Eq. (2.38), the coincident integral takes the
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form

sin(7)

,%/ 573 AT, (2.64)
0 (@eecos(¥)? — acs cos(V) sin(¥) + ag sin(V)?)
and for the shifted geometry
1
Ape — Z ’TI%
Ges = V3y (223 —25)/6 (2.65)
ass = (z5+4z5+4y5 —4dx32y) /12 (2.66)
After substituting g = cotan(¥), Eq. (2.64) becomes
2 7 1
—J / dg , (2.67)
P —oe (a/ccq2 — Qesq + Agg )3/2

and carrying out the integration we find that the coincident divergent term becomes
simply
T gin(W¥
J2 / w AV =z, . (2.68)
Jo

a

Thus, as expected, the divergent term does not depend upon Fs.

As a consequence of the double integration, the evaluation of the edge integral is
considerably more involved. Although symbolic computation will eventually execute
all of the required calculus and algebra, manipulation is required to modify the forms of
the expressions, and care is required to keep the size of the expressions from exceeding
the available memory. The discussion below will therefore only outline the procedure.
As a function of ¥, the coefficient ay defined in Eq. (2.56) takes the form

ay = ¢ c08° (V) + ¢1 cos(¥) sin(V) + ¢ sin?(T) (2.69)

where the c; are functions of cos(f) and sin(¢). Thus, as with Lf,, substituting ¢ =

cotan(¥) is convenient, resulting in an integral of the form

[es) 2
q q

o + o dg . 2.70
/0 {1(c2q2+clq+co)5/2 H(e2? + g+ o) 210

The function of # that results from this integration once again benefits from the sub-
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stitution p = cotan(f), and the § integral becomes

/ (o) de+/ : 2lr) Sdp, (2.71)
—oo (82D + 819+ S0) —oo \/(tap® + t1p + o) (82P® + s1p + 50 )

where hi(p) and ho(p) are quadratic and cubic polynomials, respectively. The coeffi-
cients {s;} and {t;} are now just functions of the nodal coordinates. The first integral

is found to be 0, while the second is, as desired, —xs.

2.3.3 Vertex Adjacent Integration

In this case the singularity is limited to a single point in the four dimensional integration
(see Figure 2.3). Orient the P and @ elements so that the singular point is n = —1
and n° = —1.

e Two Polar Coordinate transformations ({n*,&*} — {pg, 0.}, {n. &} — {pp.bp}): Two

separate polar coordinates are first introduced in each element (see Figure 2.8(a)),

n" = pgcos(fy) —1, & = pgsin(by)

2.72
n = pycos(f,) — 1, & = ppsin(fy). (2.72)

This results in an integral of the form

/3 Lp(0p) /3 Lq(6q)
/ do, / Pp dpp / dé, / Pq dpg; (2.73)
0 0 0 0

where

L,(6,) = 2v/3/ [sin(ep) + ﬁcos(e,,)] . Ly(8,) = 2V3/ [sin(eq) + \/§cos(9q)] .
(2.74)
As the vertex adjacent integration will not produce a divergent term, we omit the
kernel function and just keep track of the Jacobians in the subsequent expressions.

Now interchanging the order of the integration between p, and §,, one obtains

/3 /3 Lp(05) Ly(84)
/ db, / df, / Py dpp / Pq dpy.
0 0 0 Jo

o Third Polar Coordinate transformations {pp, p;} — {A, ¥}: The only singularity is at

the common vertex p, = p; = 0, and thus a third polar coordinate transformation is
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performed
pp = Acos(¥), p, = Asin(¥).

As illustrated in Figure 2.8(b), the {p,,p,} domain is a rectangle, and thus the ¥
integration must be taken in two pieces. The combined Jacobian in this case is
cos(¥) sin(¥)A3, and thus Eq. (2.73) becomes

/ﬂ/?) dé, /ﬂ/?) dé, [/‘1'1 cos(¥) sin(¥) d¥ /L1(\I') A*dA + (2.75)
/2 L (7)
/ cos() sin(T) d\I!/ A3 dA} :
2 0
where
L1(V) = Lp(6,)/ cos(¥) and Lo(V) = Lg(f,)/ sin(¥). (2.76)

(@) (b)

Figure 2.8: (a) Initial polar coordinate transformation employed in both P and @ elements;
(b) Final polar coordinate transformation {p,, p,} — {A, ¥} for the vertex adjacent integra-
tion.

With the A3 factor mulitplying the kernel function, it is possible to immediately set
¢ = 0, and the distance function is then 72 = a2A? (the coefficient being a function
of all three angles and nodal coordinates). It is then immediately apparent that this
integral is finite. Although numerical evaluation with Gaussian quadrature could be
employed for the entire integration we prefer to execute the A integral semi-analytically
in order to achieve better accuracy.
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2.4 Concluding Remarks

The direct “limit to the boundary” approach for evaluation of the singular integrals, can
be successfully applied to FGMs. Procedures for directly evaluating Galerkin hypersingular
and singular integrals have been presented. For the coincident and edge adjacent cases the
key is to explicitly identify the divergent terms that appear in the limit to the boundary. To
this end, multiple polar coordinate transformations and analytic integration were employed.
This results in an efficient scheme as the remaining are of reduced dimension of smooth

functions which can be evaluated using numerical integration.
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Chapter 3

Green’s function approach for heat
conduction in graded materials

A symmetric Galerkin formulation and implementation for heat conduction in a three di-
mensional functionally graded material is presented in this chapter. The Green’s function
of the actual problem is used to develop a boundary-only formulation without any domain
discretization, in which the thermal conductivity varies exponentially in one coordinate. Sev-
eral test examples are provided to verify the numerical implementation. The results of test
calculations are in good agreement with exact solutions and corresponding finite element

method simulations.

3.1 Introduction

The symmetric Galerkin boundary element method (SGBEM) formulation possesses the
attractive feature of producing a symmetric coefficient matrix [85, 88, 161] and, in addition,
the Galerkin approximation allows standard continuous C° elements to be used for evaluation
of hypersingular integrals. These properties make the SGBEM suitable for coupling with
the popular finite element method (FEM) [13]. The Galerkin technique has the important
property of “local support” that is especially suitable for treating corners, including the
Dirichlet corners [137].

Although the development of the SGBEM started in the last decade, most of the computa-
tional implementations have concentrated in two dimensional (2D) problems [21, 61, 89, 147],
however, recently a number of three dimensional (3D) implementations have also been re-
ported {112, 62, 60, 118], mostly limited to homogeneous media. A review of various appli-
cations of the SGBEM can be found in the paper by Bonnet et al. [13], among others. The

present work emphasizes nonhomogeneous media as described below.
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The Galerkin (non-symmetric) formulation for FGMs using the singular boundary in-
tegral equation has been examined by Gray et al. [75] for steady state problems, and by
Sutradhar et al. [174, 175] for transient problems. A dual reciprocity boundary element
method applied to heat conduction for FGMs has been reported by Tanaka et al. [178].
Chen [34, 35] has developed a collocation-based BEM for Darcy’s flow with spatial variation
of permeability and has presented closed-form Green’s functions for various permeability
functions.

In this chapter, a SGBEM for heat conduction for FGMs is formulated. The imple-
mentation is a pure boundary-only formulation without any domain integral. It relies on
the Green’s function (GF) for the partial differential equation incorporating the material
gradation. In this chapter, first the Green’s function and the governing equation for the
FGM problem are presented. Second, the symmetric Galerkin formulation is shown. Next,
numerical examples are provided that verify the formulation. Finally, the chapter concludes
with a few remarks.

3.2 On the FGM Green’s function

Steady state isotropic heat conduction in a solid is governed by the equation
V «(k(z,y,2)V¢) =0 . (3.1)

where + denotes the inner product, ¢ = ¢(z,y, 2) is the temperature function, k(z, y, z) is the
thermal conductivity which can be a function of the Cartesian coordinates. Let the FGM be
defined by the thermal conductivity that varies exponentially in one Cartesian coordinate,
ie.

k(z,y, 2) = k(z) = koe??* | (3.2)

where 3 denotes the material nonhomogeneity parameter. Substituting this material expres-
sion into Eq. (3.1), one obtains

V3¢ +26¢, =0, (3.3)

where ¢, is the derivative of ¢ with respect to z, i.e.

The Green’s function is the solution to the adjoint equation with a delta function force,

namely
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V2G(P,Q) — 26G.(P,Q) = —6(Q — P) , (3.5)

where 0 denotes the Dirac delta function, P and () denote the source point and the field
point, respectively, and G, is the derivative of G with respect to z. The solution of this
equation is derived [75, 110] as

eB(=T+Rz:)
G(P,Q) = B (3.6)
where
R,=z29—2p and r=|R||=]Q-P]|. (3.7)

The Green’s function for the nonhomogeneous problem is essential for developing a
boundary-only integral equation formulation. Note that the Green’s function for an FGM

can be rewritten as [140]
1 eﬂ(—’l"f'Rz) — 1
+ . (3.8)

- d7r 4rr

G(P,Q)

The first term of Eq. (3.8) is the Green’s function for the Laplace equation in homogeneous
media. The second term is bounded in the limit as » — 0 and is a consequence of the
grading; when (3 tends to zero (material is homogeneous), this graded term vanishes. This
form shows that the singularity for the FGM Green’s function is precisely the same as for the
homogeneous. It will therefore not be surprising that the divergent terms in the hypersingular

integral are the same as for the Laplace equation [73].

3.3 Symmetric Galerkin Formulation

The governing boundary integral equation corresponding to Eq. (3.3) is

or) + [ 0@ (560 - 20.6(0) @@= [ GRS, (39)

which differs in form from the usual integral statements by the presence of the additional
term multiplying ¢(Q), i.e. [-26n,G(P, Q)], due to the material gradation.

In the SGBEM, the symmetry comes from the symmetry properties of the kernel functions
[13, 12]. For the homogeneous Laplace equation, the fundamental solution is symmetric, but
the FGM Green’s function, Eq. (3.6), is not. In order to get symmetric kernels, the FGM
boundary integral equations are re-formulated in terms of physical variables (flux instead of

normal derivative), as described below. Thus, to obtain a symmetric matrix, the equations
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are written in terms of the surface flux,

0

F(Q) = ~k(:0)-4(Q)

(3.10)

The boundary integral equation (BIE) for surface temperature ¢(P) on the boundary ¥ (see

Figure 3.1) is therefore

o(P) + /E F(P,Q)$(Q)dQ = /E Cs(P.Q)F(Q)dQ |

and the kernel functions are

GP,Q) 1 Pl
Gs(PQ) " k(zg)  dkem T
0
FPQ) = 5 G(AQ)-20n.G(PQ)
PErtR) /neR n*R n,
T T 4r (7'3 +ﬁr2 +67)'

Gradation along
z-direction

P

y

(3.11)

(3.12)

Figure 3.1: Illustration of a generic body with boundary ¥ and domain 2. The present
SGBEM relies on a boundary-only formulation for FGMs. The source point is P (normal

N) and the field point is @ (normal n).

Notice that Gg(P,Q), unlike G(P,Q), is symmetric with respect to P and . This is
one of the conditions needed for symmetry. The hypersingular boundary integral equation

(HBIE) is obtained by differentiating Eq. (3.11) with respect to the source P in the direction

N, which is normal to the boundary at P. In this case, however, it needs to be multiplied

by —k(zp) to obtain the corresponding equation for surface flux, i.e.

F(P) + / W(P,Q)$(Q)dQ = / S(P,Q)F(Q)dQ .
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The kernel functions are computed as

S(P,Q) = _k(ZP)B?VGS(P Q)

ePor—R) /NeR  N+R N,
- ST (R )
™ T T

r3
and

W(PQ) = —k(zp)oacF(P,Q)

(n-R)(N -R)

. ﬁeﬁ(—r-I—ZQ%—zP) 3 (n .R)(N .R) + 3,8
47 73 r

N 62(1’1 -R)(N -R) — ﬂ(Nzn — nzN) ‘R—n+*N
3
B(N.n —n.N) -R —:n ‘N _ﬂzNznz>

- 0

72 T

The three symmetry requirements for the kernel functions are now fulfilled, i.e.

GS(P’Q)ZGS(Q7P)7 W(PaQ):W(Q/P)’ S(PaQ):F(Q7P)

(3.14)

(3.15)

(3.16)

Interchanging @ and P implies replacing N(P) with n(Q) and changing the sign of R, and

thus all the conditions necessary for symmetry are seen to hold.

In this work, the direct limit procedure is employed to define and evaluate the singular

integrals. If the limit is taken with the source point P approaching the boundary from
outside the domain, then the “free terms” ¢(P) in the BIE (Eq. (3.11)) and F(P) in the
HBIE (Eq. (3.13)) are not present. Thus, the exterior limit BIE and HBIE take the form

PﬂﬂE/FWQM@NQ——/GAR®f@NQ=m
Fi(P) = /WPQ 16(Q)d /SPQf@mQ—o

(3.17)

where P, denotes the equation for the surface temperature (potential) and F, denotes the

equation for the surface flux. The free terms are automatically incorporated in the “exterior

limit’ evaluation of the F(P,Q) and S(P, Q) integrals. Thus, a separate computation of

these free terms is avoided, and they are obtained as a natural outcome of the direct limit

procedure [116].

The surface temperature and surface flux are approximated in terms of values at element

nodes ); and shape functions 1,;(Q), i.e.,
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Q)= _¢(@)¥(Q), F@Q) = F(Q)v;(Q). (3.18)

J J
In a Galerkin approximation, Eq. (3.17) is enforced in an average sense, with the shape
functions employed as the weighting functions. Therefore, the Galerkin boundary integral
equations take the form

/ Yr(P)Ps(P)dP =0 (3.19)

/ Un(P)Fo(P)dP =0 | (3.20)

After discretization, the set of equations can be written in block-matrix form as [H]{¢} =
[G] {F}, and in block-matrix these equations become

Hll H12 ¢bv _ ]:u (321)
Hy Ho Pu Fow | '

Symmetry of the coefficient matrix for a general mixed boundary value problem is achieved

Gll Gl2
G21 G22

by the following simple arrangement. The BIE is employed on the Dirichlet surface, and the
HBIE equation is used on the Neumann surface. The first row represents the BIE written
on the Dirichlet surface, and the second row represents the HBIE written on the Neumann
surface. Similarly, the first and the second columns arise from integrating over Dirichlet
and Neumann surfaces, respectively. The subscripts in the matrix therefore denote known
boundary values (bv) and unknown (u) quantities. Rearranging Eq. (3.21) into the form
[A]{z} = {b}, one obtains

-G Hy, Fu _ —Hy104, + GraF (3.22)
G21 “H22 ¢u H21¢bv - G22fbv

The symmetry of the coefficient matrix, G1; = G¥,, Hy, = HL,, and Hy; = Go1, now follows

from the properties of the kernel functions (see Eq. (3.16)).

3.4 Numerical Implementation

In this section, results for four test cases are reported, demonstrating the implementation
of the above techniques. The evaluation of the singular integrals was carried out using the

hybrid analytical/numerical integration integration explained in chapter 2. To verify the
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numerical implementation, the following FGM examples are presented:

(1) Cube with material gradation in z-direction,

(2) Cube with material gradation in 45° with the z-axis,
(3) Sphere (interior Neumann),

(4) Compressor blade.

This set of examples comprise a rigorous test of the SGBEM code. The first example has
analytical solution and is suitable for a mesh convergence study. The second example differs
from the previous one by considering a different direction of material gradation, which is not
aligned with any of the reference Cartesian axes. The third example consists of a Neumann
problem and it is used to test the hypersingular BIE in the SGBEM implementation. Finally,
the last example is a complicated engineering problem. All the above FGM problems can
be verified for the homogeneous material case (constant conductivity) when the material

nonhomogeneity parameter vanishes (3 = 0).

3.4.1 FGM Cube with material gradation in z-direction

A simple FGM cube with constant temperature on two planes is considered first. As the
analytical solution of this problem can be obtained, this problem is suitable for a convergence
study. The problem of interest is shown in Figure 3.2. The top surface of the cube at [z = 1]
is maintained at a temperature of 7' = 100 while the bottom face at [z = 0] is zero. The

remaining four faces are insulated (zero normal flux). The thermal conductivity is
k(z,y,z) = koe??? = 5257, (3.23)

and various values of 8 will be considered. The analytical solution for the temperature is

1 — e 262
¢(z,y,2) = Tl—e——m’ (3.24)

where L is the dimension of the cube (in the z-direction), and the analytical solution for the
flux (onz=1) is

2(3Te=28% 26T

[ oL — ko

e (3.25)

Q(III, Y, Z) = —k(.'lf, Y, Z)

The cube is discretized with 432 boundary elements and 294 nodes as shown in Figure 3.3(d).

The computed temperature variation in the z direction is plotted with different values of §
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(material nonhomogeneity parameter) and compared with the analytical solution in Figure
3.4. For this problem the flux on each face of the unit cube is constant. Figure 3.5 shows
the variation of the flux on the face z = 0 with respect to the change of the material
nonhomogeneity parameter 3, and compares the results with the analytical flux solution.

For the face z = 1, the flux has the same variation as on the face z = 0, but with opposite
sign (cf. Eq. (3.25)).

Flux = 0 (back) (1,1,1)
Temp =100 (top)

Flux | = O (right)

Flux = 0|(left) /

Temp =0 (bottom)

(0.0.0

Figure 3.2: Geometry and boundary conditions of the FGM unit cube problem with constant
temperature on two planes. The faces with prescribed temperature are shaded.

The error in the temperature solution and the flux is computed considering various mesh

discretizations (Figure 3.3) and employing a global error measure,

1 | NF
_ (e) _, (cha
E= NP IEZI[UI uy’] (3.26)

|u<e) |maz

where £ is the error in the solution, the superscripts (e) and (c) denote, respectively, the
exact and the computed solutions, and NP is the total number of nodes. The four meshes
illustrated in the Figure 3.3 were considered for this study. The computed global error
with increasing number of elements is given in Table 3.1, which shows that the global error
reduces with mesh refinement (cf. Table 3.1 and Figure 3.3). The convergence of the solution
is plotted in Figure 3.6. The rate of convergence for the temperature is 1.135 while for the
flux is 1.132. It is interesting to notice that both the temperature and flux exhibit similar

rates of convergence.
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(a) Mesh1 (b) Mesh2

294 Nodes
432 Elements

150 Nodes
192 Elements -

/é\ (c) Mesh3 (d) Mesh4

X Y

Figure 3.3: The four meshes used for the convergence study of the FGM cube problem.

120 T
o SGBEM
— Analytical
100 ' ’
B=15
B=1.25
o 80r 8 =1.00
g B=0.75
g 60r
g B =050 g
2 p=00 A
40+ i
. ¥
20k * i
0 » » 7 ’ / ,,,,,,,,,,,
: . .
o ; ; : ‘
o] 0.2 0.4 0.6 0.8 1

z coordinate

Figure 3.4: Temperature profile in z direction for the FGM cube discretized with 432 elements
and 294 nodes.

3.4.2 FGM Cube with material gradation in 45° with the z-axis

The geometry and the boundary conditions for this example are the same as those in the
previous example, except for the direction of the variation of the thermal conductivity. Here

the variation of the thermal conductivity is in a direction 45° off the z-axis, as shown in Figure

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1: Global error (£) estimates on the boundary for FGM cube (8 = 1.0).

Mesh | No. of | No. of Global Error £
nodes | elements | Potential | Flux

1 54 48 0.0155 | 0.0303
2 96 108 0.0091 | 0.0165
3 150 192 0.0063 | 0.0123
4 294 432 0.0041 | 0.0101

3.7. With this change, the problem becomes more interesting than the previous example

because the heat flux is no longer constant on the two faces. The thermal conductivity is
k(z,y,2) = koe® = 5el% (3.27)

where 2’ is an axis 45° off the z-axis (see Figure 3.7). The SGBEM solution is compared
with an FEM solution obtained from a commercial package ABAQUS [1] using 20 node
quadratic brick elements. In the FEM simulation, 10 homogeneous layers (see Figure 3.8)
were used to approximate the continuous grading and the conductivity of each layer was
computed using Eq. (3.27), where 2’ was taken as the z'-coordinate of the layer centroid.
It should be mentioned that FEM is not restricted to using the discontinuous piece-wise
constant approximation available in existing commercial packages. It is possible to incorpo-

rate continuous grading within individual elements, and codes with this capability have been

1600 T
o SGBEM
— Analytical
1400+ . -

1200+

1000+

Flux

800+

600

400

Figure 3.5: Variation of flux on the face z = 0 for different values of the material nonhomo-
geneity parameter (3.
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—— Temperature
—— Flux

10

10°

Number of Nodes

Figure 3.6: The convergence of the temperature and the flux

developed [138, 99], including a 3D public domain code WARP3D [180, 80]. The FEM mesh
for the problem, shown in Figure 3.7, consists of 4961 nodes and 1000 elements. The tem-
perature distribution along AA’ in the Y = 0 plane (see Figure 3.7) with different values of
0 is plotted against the corresponding FEM solution in Figure 3.9. Also the flux distribution
at the edge of the top face (along BB’) is plotted with different values of 8 and compared
with the FEM solution in Figure 3.10. Both of the SGBEM solutions agree with the FEM

results within plotting accuracy.

Z
Flux = 0 (back) 1,1,
i Temp =100 (top)
A B ! B’

Flux: = 0 (front)
: Y
7> Flux = 0[(left)

'
i
i
i
[

Flux |= 0 (right)

N

45
Material Gradation R

,/’/I‘emp =( (bottom)
AL X
(0.0.00

Figure 3.7: Geometry and boundary conditions of the FGM cube problem with material
gradation in 45° with the z-axis. The faces with prescribed temperature are shaded.
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Figure 3.8: Continuous (used in BEM) and discrete (used in the FEM) representation of the
conductivity k£ considering G = 0.75.
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Figure 3.9: Temperature profile along edge AA’ (in z direction) for the FGM cube problem.

3.4.3 Interior Neumann FGM-sphere problem

This example is an interior Neumann problem with prescribed boundary flux on the surface
of the unit FGM sphere illustrated by Figure 3.11. The thermal conductivity is defined as

k(x,y,2) = koe??* = 5207 (3.28)
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Figure 3.10: Flux distribution along BB’ (in x direction) for the FGM cube problem.

426 Nodes
848 Eiements

AVAVAY
NINININEN

UVAVAVAY.
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A

Figure 3.11: The mesh of the FGM unit sphere graded along the z-direction.
and the prescribed flux is
g(z,y, 2) = —2kee®?(B(x? +9?) — 2). (3.29)
The exact solution for the surface temperature is

oz, y, 2) = B(2? +9?) — 22. (3.30)

As this is an interior Neumann problem, the solution is not unique, and an arbitrary

constant can be added to the temperature. To enforce a unique solution, the temperature at
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Figure 3.12: Temperature variation with 6 (degrees) in X = 0 plane.

(x,y, z)=(0, 0, 1) was specified to be the value given by the analytical solution. The sphere
is discretized using 426 nodes and 848 elements (see Figure 3.11). The accuracy of the results
obtained serve to verify the hypersingular BIE formulation as this equation is employed for
the Neumann problem. It is also a good check if the limit to the boundary is correctly
picking up on the surface orientation. The surface temperature is plotted against 6 along
the boundary where the X = 0 plane intersects the sphere and compared with analytical
solution in Figure 3.12 for different values of 8. The symmetry of the solution is captured by
the SGBEM (cf. temperature variation from 0° to 180° and from 180° to 360°). Moreover,

the numerical results agree with the analytical ones within plotting accuracy.

3.4.4 FGM compressor blade

A 3D analysis is performed on a one stage compressor where blades are attached to the main
rotating components as shown in Figure 3.13. The transient response of a rotor made of
homogeneous material with similar geometry has been investigated by Benz and Rencis (8]
by coupling two-dimensional and axisymmetric boundary zones. The compressor consists
of a cylinder with 24 equally spaced blades attached to it. A 15° segment is used for the
three-dimensional analysis due to symmetry. The grading direction is the z axis and the
thermal conductivity varies according to

k(z) = 20e%462. (3.31)
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Cylinder

Figure 3.13: Top view of the compressor.

The geometry, boundary condition and the BEM mesh are shown in Figure 3.14 and Figure
3.15.

The BEM mesh consists of 5180 linear elements and 3501 nodes. The BEM solution is
compared with an FEM solution obtained from the commercial package ABAQUS [1] using
20 node quadratic brick elements. In the FEM simulation 10 homogeneous layers were used
to approximate the continuous grading, the conductivity of each layer was computed using
Eq. (3.31), where z was taken as the z-coordinate of the layers centroid (see previous section
for comments about FEM modeling of FGMs). The FEM mesh employed 903 nodes and
130 elements. The temperature distribution along the corner edge (which includes Point A)
is plotted in Figure 3.16. The flux distribution along edge GF is plotted in Figure 3.17 and
compared with the corresponding FEM solution. The minimal discrepancy can be attributed
to the relatively coarse mesh of the FEM solution. Finally a contour plot of the temperature

distribution is shown in Figure 3.18.

3.5 Concluding Remarks

Symmetric Galerkin boundary element analysis can be successfully applied to FGMs. For
exponentially graded (nonhomogeneous) materials, the FGM Green’s function is determined
and a boundary-only formulation is obtained. The numerical results presented in this chap-
ter indicate that it is feasible to implement the complicated FGM Green’s function (and
its derivatives) in a standard boundary integral (symmetric Galerkin) approximation, and
accurate results are obtained. In particular, the present SGBEM for FGMs can also handle

crack geometries [13] as the hypersingular equation has been successfully implemented.
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Figure 3.14: The geometry and the boundary conditions of the analysis region.

3501 Nodes
5180 Elements

Figure 3.15: The boundary element mesh for the analysis region of the compressor.
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Figure 3.16: Temperature distribution in z-direction at edge of the blade.
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Figure 3.17: Flux distribution along segment GF of the blade.
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Figure 3.18: BEM contour plot of the temperature of the blade.
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Chapter 4

Green’s function approach for
transient heat conduction in graded
materials

In this chapter, the Green’s function for three-dimensional transient heat conduction (dif-
fusion equation) for functionally graded materials (FGMs) is derived. The thermal conduc-
tivity and heat capacitance both vary exponentially in one coordinate. In the process of
solving this diffusion problem numerically, a Laplace transform approach is used to elim-
inate the dependence on time. The fundamental solution in Laplace space is derived and
the boundary integral equation formulation for the Laplace Transform Boundary Element
Method (LTBEM) is obtained. The numerical implementation is performed using a Galerkin
approximation, and the time-dependence is restored by numerical inversion of the Laplace
transform. Two numerical inversion techniques have been investigated: a Fourier series
method and Stehfest’s algorithm, the latter being preferred. A number of test problems
have been examined and the results are compared with available analytical solutions.

This chapter is organized as follows. Section 4.1 gives an introduction to the problem at
hand and does an extensive literature review. The basic equations of the diffusion problem
are described in Section 4.2. The Green’s function for the FGM diffusion equation is derived
in Section 4.3. In Section 4.4 the Laplace Transform BEM formulation is presented. Section
4.5 discusses several aspects of the numerical implementation of the boundary integral analy-
sis and Section 4.6 does the same for the numerical inversion of the Laplace transform. Some
numerical examples are presented in Section 4.7. Finally concluding remarks are discussed
in Section 4.8.
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4.1 Introduction

Transient heat conduction problems can be efficiently solved with the boundary element
method (BEM). The various procedures reported in the literature can essentially be classi-
fied into two broad categories: (1) the time domain approach and (2) the transform space
approach.

In the time domain approach, a time marching scheme associated with the BEM solution
at each time step is used, and solutions are found directly in the time domain. The time
dependent fundamental solution is used to transform the differential system into a boundary
integral equation. The numerical solution of the boundary integral requires both space and
time discretization. Early works using the time-domain approach include those by Chang
et al. [25], Shaw [153], Curran et al. [44], Wrobel and Brebbia [185], and many others.
Recent works involve that of Lesnic et al. [109], Coda and Venturini [38, 37|, Pasquetti and
Caruso [143], Wrobel et al. [136], Divo and Kassab [49], etc.

By employing a time-dependent fundamental solution together with recent developments
in techniques for converting volume integrals into a (series of ) boundary integrals, the diffu-
sion problem can be solved by means of finite-differencing in time and BEM discretization
for the spatial variables. The volume integral can be converted through either a set of local
interpolation functions — known as the dual reciprocity method, as presented by Brebbia and
Wrobel [186] — or a hierarchy of higher order fundamental solutions — known as the multiple
reciprocity method, as presented by Nowak [132].

A drawback of time-marching schemes is that they can be numerically ineflicient. An
alternative is to employ a transform space approach, wherein the time dependent derivative is
eliminated in favor of an (algebraic) transform variable. However, once the differential system
is solved in transform space, reconstituting the solution in the time domain requires an inverse
transform. Although this approach is simple and attractive, the accuracy depends upon an
efficient and accurate numerical inverse transform. For diffusion problems, Laplace transform
(LT) seems to be the best choice. The first such formulation utilizing the Laplace transform
approach was proposed by Rizzo and Shippy [145] for solution of heat conduction problems
in solids. Later Liggett and Liu [113] extended the method to unsteady flows in confined
aquifers. Early Laplace inversion methods were not efficient, as they employed a type of curve
fitting process for which the behavior of the solution had to be known a priori. However,
with the advancement of techniques for inverse LT, this approach has received renewed
attention. Moridis and Reddell [124] successfully used their Laplace transform boundary
element method (LTBEM) for diffusion type problems. Cheng et al. [33] also used the BEM
to solve axisymmetric diffusion problems in the LT space. Zhu et al. [192], Zhu and Satravaha
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[191], and Zhu [190] extended the work to the Laplace transform dual reciprocity method

(LTDRM) for solving nonlinear diffusion equations with a source term and temperature-
dependent diffusivity. Goldberg and Chen [67] used the Method of fundamental solutions
(MFS) in Laplace space for both diffusion and Helmholtz equations. Maillet et al. [119]
recently used this approach to solve heat transfer problems by the quadrupole method.

Some details of both approaches (i.e. time domain and transformed space) in transient

problems can be found in Reference [190]. Similar problems for different applications have

been presented by Cheng [34] for ground water flow in heterogeneous media, and by Wu and

Lee [189] and Lacerda et al. [105] for acoustic propagation with a mean flow.

As is usual in boundary element applications, all of the above work assumes a homoge-

neous medium. The present work is concerned with transient heat transfer in functionally
graded materials (FGMs); the steady state FGM problem has been examined in [75]. The
composition and the volume fraction of FGM constituents vary gradually, giving a non-

uniform microstructure with continuously graded macroproperties (e.g. specific heat, con-

ductivity, density). For instance, one face of a structural component (plate or cylinder) may

be an engineering ceramic that can resist severe thermal loading, and the other face may be a

metal to maintain structural rigidity and toughness. Example applications include pressure

vessels and pipes in nuclear reactors or chemical plants, and other examples can be found

in the review papers by Tanigawa [179] and Noda [129]. A comprehensive treatment of the

science and technology of FGMs can be found in the book by Suresh and Mortensen [171]

or the book by Miyamoto et al. [122].

In this work, the Green’s function for the three-dimensional (3D) FGM transient diffusion

equation is derived using an exponential variation transform; the boundary integral equation

based upon this Green’s function is then solved numerically using a Galerkin (as opposed to

collocation) approximation [12]. The exponential transform technique has been previously

used by Carslaw and Jaeger [24] to obtain analytical solutions for various problems. More-

over, Li and Evans [110], Onishi and Ikeuchi [90], Ramachandran {144] and, more recently,

Singh and Tanaka [117] have used this transform to solve advection-diffusion problems.

4.2 Basic Equations

The transient diffusion equation is given by

0
V- (kV6) = o5
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where ¢ = ¢(x,y, 2;t) is the temperature function, c is the specific heat, p is the density, and
k is the thermal conductivity. We assume that the thermal conductivity varies exponentially

in one cartesian coordinate, i.e.
k(x,y,z) = koe??? (4.2)

in which (3 is the nonhomogeneity parameter. The specific heat is also graded with the same

functional variation as the conductivity,
c(z,y, 2) = cpe®? (4.3)

Substituting these material expressions into Eq. (4.1), one obtains

100

2 —_
Vg +20¢. =——

(4.4)

where o = ko /(cop) and ¢, denotes the derivative of ¢ with respect to z (i.e. ¢, = d¢/0z).
Two types of boundary conditions are prescribed. The Dirichlet condition for the un-
known potential ¢ is

o(z,y,2:t) = ¢(z,y, 2 1) (4.5)
on boundary ¥; and the Neumann condition for its flux is
0¢(x,y, 2;t) _

on boundary ¥,, where n is the unit outward normal to ¥;. Here a bar over the quantity
of interest means that it assumes a prescribed value. For a well-posed problem ¥; U¥, =%
with X being the entire boundary. As the problem is time dependent, in addition to these
boundary conditions, an initial condition at a specific time t; must also be prescribed. A
zero initial temperature distribution has been considered in all the examples in this chapter,
ie.

QS(.T,y, 23 tO) = ¢0(1', Y, Z) =0 (47)

A nonzero initial temperature distribution may be solved with the dual reciprocity method
[135].

o1
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4.3 Green’s Function

The Green’s function for Eq. (4.4) can be derived by employing the substitution

¢ = e PPty

Thus, the derivatives in Eq. (4.4) can be expressed in terms of u, as follows:

a(b -8 _52 & -8B —,[32 ¢ au
e at te z at Y%
0z b 0z

2 2
% = ﬂ26_ﬁz_ﬁ2atu — Qﬁe_ﬁz_ﬁ%‘t % + e—ﬂz—ﬁQat o%u
072 9z 922

1 8¢ _ ]. 2 —ﬁZ—ﬂZOtt e_ﬁz-—ﬁ2at 8“
adt a( prac Jut o ot
Substituting Eqgs. (4.9), (4.10) and (4.11) into Eq. (4.4), one obtains

_lﬁu

2 —
Vu_a@t

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

which is the standard diffusion equation for a homogeneous material problem. The time

dependent fundamental solution for this equation is known [18], and is given by

1 2
*:——e_ﬁc_‘r—'

(4mar)?

(4.13)

where 7 = tp — t. Note that the function u* represents the temperature field at time tg

produced by an instantaneous source of heat at point P(zp,y,,2,) and time ¢. The 3D

fundamental solution to the FGM diffusion equation can be written by backsubstitution

(using Eq. (4.8)) as

¢* _ 1 6—6(z—zp)—ﬁ2ar—i;—2‘r

h (4mar)t

(4.14)

4.4 Laplace Transform BEM (LTBEM) Formulation

Let the Laplace transform (LT) of ¢ be denoted by

Q. s) = /R H(Q. t)edt
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Thus, in LT space, the differential equation (4) becomes
27 r S+
Vg 286, ~ 2= 0

where ¢g = 0 (at t = 0) is considered (see Eq. (4.7)).

(4.16)

Following the usual practice, the corresponding boundary integral statement can be ob-

tained by ‘orthogonalizing’ this equation against an arbitrary (for now) function f(z,y, 2)

= f(Q), i.e., integrating over a bounded volume V

/ J(Q) (V2 + 286, — 2&) dVg = 0
v (0%

(4.17)

According to Green’s second identity, if the two functions ¢ and A\ have continuous first and

second derivatives in V, then

/(¢V2/\ AV2$)dV = /<¢——Ag¢> 4s

(4.18)

Using this relation and denoting the boundary of V' by ¥, the first term of Eq. (4.17) becomes,

| r@vsive = [ 6@ @uave + [ (1@56Q - #Q)511(@) ) dso. @19)

Integrating by parts the second term of Eq. (4.17) we obtain,

- - of -
LAV = » dSq — — d
/‘/Qﬂf(Q)qﬁ Vo /EQﬁf(Q)n #(Q)dSq AZﬁaz¢(Q) Vo

and using Eq. (4.19) and Eq. (4.20) in Eq. (4.17), we get after simplification,

-/ (f(@)(%&(@) - Q) - 1(@) + 2. QHQS@) dS

+ [ 6@ (V@) - 261.Q) - 25(@) ¥

where f, = 0f/0z, and n(Q) = (nz,ny, n,) is the unit outward normal on .

(4.20)

(4.21)

If we select f(Q) = G(P, Q) as a Green’s function, then the Green’s function equation is

(cf. Eq. (4.4)) )
V'G(P,Q) - 20G.(@) - ZG(P,Q) = 5@ - P),
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where § is the Dirac Delta function. Thus the source point volume integral in Eq. (4.21)
becomes —¢(P). By means of Eq. (4.22), Eq. (4.21) can be rewritten as

6r)+ [ (30(PQ) - 26n.6(P.Q)) 6@sa = [ G(P.Q)5-oQ)dSe. (429

In order to obtain the Green’s function in Laplace space, Eq. (4.22) is modified by using the

substitution
G = . (4.24)

In this case, the differential equation for the LT space is
V2 — (52 + g)v = 0. (4.25)

This equation is the modified Helmholtz equation, whose Green’s function is known. Thus

the Green’s function in 3D LT space is

e VT (4.26)

4rr

By back substitution (see Eq. (4.24)), we obtain
1 5
G(P,Q,s) = 4—eﬂze—\/52+a s (4.27)
r

The boundary conditions, Eq. (4.5) and Eq. (4.6), must also be transformed into Laplace
space, i.e.

3@, s) = /R F@ e, §(Qs) = /R 2(Q, te~dt (4.28)

respectively. For constant boundary conditions the above equations reduce to (See Brebbia,
Telles and Wrobel [18], p. 143)

= & 1 ~ q(Q, 1t
3@9=29Y g5 =128 (4.29)
respectively.
The modified kernel functions, in terms of the Laplace variable s, are
G(P,Q.5) = efeamsrV/FTEr (430)
7

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and

15}
~G(P.Q.s) ~ 20m.G(P.Q;5)
BR:—\/B2+5 v
_ e 1n-R /32 sn- R_'_lﬂnz_Qﬂnz (4.31)
4 r2 r r r T
BR:~\/B2+2 1 . )
_ e nR_l_ /ﬁ2+in R+ﬂnz (4.32)
47 3 o T2 r

where n is the unit outward normal at a field point Q, n, is the z component of n, R = Q—-P,
R, = zg — zp, and r is the norm of R, i.e. r = |R|| = ||Q — P}|

4.5 Numerical Implementation of the 3D Galerkin
BEM

The numerical methods employed in this work use standard Galerkin implementation tech-
niques [12] in conjunction with the LT method. A few aspects of the numerical methods are

briefly reviewed in this section.

Division of the boundary into elements. The surface of the solution domain is divided
into a number of connected elements. Over each element, the variation of the geometry and
the variables (potential and flux) is approximated by simple functions. In this study, six
noded isoparametric quadratic triangular elements are used (see Figure 4.1).

The geometry of an element can be defined by the coordinates of its six nodes using

appropriate quadratic shape functions as follows

zi(&m) = ZN (& ) (@), (4.33)

In an isoparametric approximation, the same shape functions are used for the solution vari-

ables, as follows:

6
$i(&m) =D N;(&,m) (1),

=1

a@ i N, (¢ (a@) . (4.34)

Jj=1
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The shape functions can be explicitly written in terms of intrinsic coordinates ¢ and 7 as

follows (see Figure 4.1):

Ni(én) = 1—-&—n)(1~-2-2n) Ny(€,m) =46(1 - € —n)
No(€,m) = £(26-1) Ns(€,m) = 4€n
N3(€,m) = n(2n—1) Ne(&,m)=4dn(l—&—n)  (4.35)

The intrinsic coordinate space is the right triangle with € >0, n >0 and £ +7n < 1.

Figure 4.1: Isoparametric quadratic triangular element of 6 nodes. The intrinsic coordinate
space is the right triangle in (£,7) space with £ > 0,7 >0 and £ + 7 < 1.

Galerkin Boundary Integral Equation. Define

B(P) = o(P) + [ (5n6(.Q) - 20n.6(P.Q)) Q) - [ G(P.Q)SE Qs

n

and thus for an exact solution B(P) = 0.
In a Galerkin approximation, the error in the approximate solution is orthogonalized against
the shape functions, i.e., the shape functions are the weighting functions and B(P) = 0 is

enforced in the ‘weak sense’
/ N (P)B(P)dP =0 (4.36)
b

After replacing the boundary and the boundary functions by their interpolated approxi-

mations, a set of linear algebraic equations emerges,

o9
H =[Gy = ¢ 4.
et =161 { 52} (4.37)
In computing the matrix elements, the singular integrals must of course be evaluated differ-
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ently. The treatment of the singularity are analogous to the procedure described in Chapter
2.

4.6 Numerical Inversion of the Laplace Transform

In the LTBEM approach, the numerical inversion of the LT is a key issue. The LT tech-
nique has been efficiently applied in conjunction with different numerical methods such as
finite difference and finite element methods for the solution of ground water flow and solute
transport problems (Sudicky [170], Moridis and Reddell [124]), and heat conduction prob-
lems (Chen and Chen [31], Chen and Lin [32]). In these papers different Laplace inversion
algorithms such as those of Talbot [177], Dubner and Abate [53], Durbin [56], Crump [43],
and Stehfest [167, 168] were used. The advantages and deficiencies of some algorithm were
pointed out in Maillet et al. [119]. Davies and Martin [47] made a critical study of the various
algorithms. Later Duffy [54] examined three popular methods for numerical inversion of the
Laplace transform, i.e. direct integration [54], Week’s [182] method and Talbot’s method
[177].

As LT inversion is an ill-posed problem, small truncation errors can be greatly magnified
in the inversion process, leading to poor numerical results. In recent times, Moridis and
Reddell [124] showed that Stehfest’s algorithm poses no such problems and high accuracy may
be achieved. Subsequently Zhu et al. [192], and Satravaha and Zhu [191] had similar success
using numerical inversion of LT in BEM problems. Recently Maillet et al. [119] critically
reviewed the Stehfest’s algorithm and pointed out its advantages and disadvantages. For the
present study, a computer code has been written following Stehfest’s algorithm [167, 168].

The Stehfest’s algorithm originates from Gaver [64]. If P(s) is the Laplace Transform of

F(t) then an approximate value F, of the inverse F(t) for a specific time ¢ = T is given by

In2 ~ (1n?2
F, == P2 .
u T;% (TL) (4.38)
where N/
M EN/2(2k)!
Vi = (—1)N/?H! , : 4.39
(-1) I;; (N/2 = kYKl (k — DG — k)1(2k — 4)! (4.39)

Equations (4.38) and (4.39) correspond to the final form used in our numerical implementa-

tion.
When inverting an function from its Laplace transform, one should compare the results

for different N, to verify whether the function is smooth enough, to observe the accuracy,

o7
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and to determine an optimum value of N. Originally Stehfest suggested to use N = 10 for
single precision arithmetic, however, Moridis and Reddell [124], and Zhu et al. [192] found
no significant change in their results for 6 < N < 10. In the present calculations, N = 10
was adopted.

Most of the methods for the numerical inversion of the LT require the use of complex
values of the LT parameter, and as a result the use of complex arithmetic leads to additional
storage and an increase in computation time. The disadvantage of using complex arithmetic
has been overcome in Stehfest’s method. It uses only real arithmetic and thus produces
significant reduction in storage together with an increased efficiency in computation time.

The second LT technique that has been explored is the method recently developed by
Murli et al. [46]. This is a Fourier series method, based on the discretization of the Riemann

inversion formula using trapezoidal rule with step size h = 7 /T

at

Fn(t) = %= (F(U +ZF + L]”T- ekT> (4.40)

Compared to Stehfest’s algorithm, this method was found to require more iterations to
achieve convergence, and moreover requires complex arithmetic. Thus, the results reported

below employ the Stehfest’s algorithm.

4.7 Numerical Examples

As noted above, the integral equation is numerically approximated via the non-symmetric
Galerkin BEM Method. Standard 6-node isoparametric quadratic triangular elements are
used to interpolate the boundary geometry and boundary functions for the physical variables.
For all the examples, N = 10 is used for the Laplace inversion algorithm using the Stehfest’s
Method (see Section 4.6).

Five examples are considered :

1. Transient two-dimensional (2D) heat conduction in a homogeneous cube

Cylinder with constant surface temperature

Constant temperature on two planes of an FGM cube

Linear heat flux on a face of an FGM cube

GU W

Time-dependent boundary condition
The first two problems deal with homogeneous materials. These problems validate the
Galerkin BEM code and ensure that the FGM implementation recovers the homogeneous

case when the non-homogeneity parameter § vanishes, i.e. § = 0. The last three problems
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



deal with transient heat conduction in FGMs, i.e. G # 0. Notice that the prescribed

boundary data for the first four problems is time-independent, while for the last problem it

is time-dependent.

4.7.1 Transient two-dimensional heat conduction in a

homogeneous cube

The original version of this problem has been proposed by Bruch and Zyvoloski [19], con-

sisting of a homogeneous two dimensional heat conduction in a square domain subjected to

the following boundary and initial conditions (see Figure 4.2(a)):

(L, y,t) = ¢(x, Ly, t) = 1.0

0(0,y,t) _ 99(2,0,1)

oz Ay =00

&(z,y,0) = 0.0

(4.41)

(4.42)

(4.43)

where L, and L, are the lengths of the solution domain in the x and y directions, respectively.

k., and k, are the thermal conductivities in # and y directions respectively with the specific

heat ¢ = 1.0. The analytical solution of the 2D problem for temperature [19] is,

o oo .
2n—Vmrzx (2§ — 1)my
p(z,y,t) = 1.0+ n§=1 ]221 Ch; cos T o, X

- {_ (kz(Zn 177 k(2 1)27r2> t}

412 412
and the analytical solution for the flux in the y direction is,

9¢

q(x7y7 t) = _kya_y

_ _kyzz (ZJQZyI)Wan cos (2n — D7z sin (2j — D)my y

v 2L, 2L,

o {_ (I%(Qn -1 | k(2 — 1)27r2> t}

ALZ ALz
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where

16.0(=1.0)(=1)"+ (=1)i*1
Oy = m2(2n — 1)(2j — 1)

The 2D problem of Figure 4.2(a) is solved using an equivalent 3D problem as shown in
Figure 4.2(b). The 3D BEM discretization consists of 200 elements on each face of the cube
leading to a total of 1200 elements. The flux in the z direction is taken as zero to simulate
the 2D problem. The cube is analyzed for 0 <z < 1.0, 0 <y < 1.0 with k; = ky, = 1.0. The

geometry and boundary conditions of the problem are shown in Figure 4.2(b). Figure 4.3

shows the variation of temperature at the edge of the top face (shown with a dark solid line in
Figure 4.2(b)) at t = 0.75 considering the present BEM solution, the FEM solution [19], and
the analytical solution (Eq. (4.44)). Note that the BEM solution coincides with the analytical
solution within plotting accuracy. Figure 4.4 illustrates the variation of temperature at the

edge of the top face (shown with a dark solid line in Figure 4.2(b)) at different time levels.

Again the BEM solution agrees with the analytical solution within plotting accuracy. Figure

4.5 shows the flux distribution along z direction at the y = 1 face. The BEM solution and

the analytical solution agree quite well.

4.7.2 Cylinder of homogeneous material with constant surface

temperature

The second homogeneous test problem involves a cylindrical region, and therefore checks that

curved surfaces are being handled correctly. The cylinder has zero initial temperature, the

top and the bottom surfaces are insulated, and the wall temperature is kept constant. The

geometry and BEM mesh for the cylinder is shown in Figure 4.6. The boundary conditions

and the initial conditions are as follows,
o(r,t) = 100, r =1, r = radial coordinate

0¢(z.y,2,t) _ 09(2.9,0:) _
Oz B Oz S

$(x,y,2;0) = 0.0
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Temp = 1.0 1,1

Flux =0.0 Ly Temp = 1.0

Lx
©,0 Flux = 0.0

(a)

Temp = 1.0 (back) (1,1,1)

; Flux = 0 (top)

Fluxi= 0 (front) Temp = 1.0 (right)
: y

Flux = 0 (left)

,,"'Flux =0 (bottom)

0,0,0)
(b

Figure 4.2: Geometry and BCs for the cube problem. (a) Original 2D problem. (b) Equiva-
lent 3D problem. The faces with prescribed temperature (Temp=1.0) are shaded (Example

1).

The analytical solution to this problem [24] is

_ 2 & ka2 Jo(ray,)
¢_T<1—5;e tm> (4.49)

where T = surface temperature, a =radius of cylinder, k¥ = kg/co and +a,, n =1, 2, .... are
the roots of

Jo(aa) = 0. (4.50)

The BEM mesh consists of 600 elements, distributed with 100 elements each for the top
and bottom faces, and 400 elements for the cylindrical wall. The variation of the temperature
along the radius is plotted on Figure 4.7 for various times (t = 0.005, 0.01, 0.03, 0.05 and
0.1). Notice that the Galerkin BEM and the analytical results agree within plotting accuracy
for all time levels.
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Figure 4.3: Temperature variation at edge (y=0, z=1) (shown with a dark solid line in Figure
4.2(b)) considering time t = 0.75 for the cube problem with homogeneous material (Example

1).

1.00 \
—— Analytical
o BEM (t=0.01)
0.75 - = BEM (t = 0.05) J
- BEM (t = 0.1)
p
3
[
2 0.50 1
£
Q
'_
0.25 | 1
0.00 &
0.0 0.5 1.0

X coordinate

Figure 4.4: Temperature variation with distance (x coordinate) (shown with a dark solid line
in Figure 4.2(b)) at different time levels for the cube problem with homogeneous material
(Example 1).
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Figure 4.5: Flux distribution along x direction at y=1 face for the cube problem with
homogeneous material (Example 1).
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Figure 4.6: Geometry and mesh of the cylinder problem (Example 2).

4.7.3 Constant temperature on two planes of an FGM cube

The problem of interest is shown in Figure 4.8. The cube initial temperature is zero (see

Eq. (4.7)). Then the top surface of the cube at [z = 1] is maintained at a temperature of
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Figure 4.7: Variation of temperature along the radial coordinate (r) for the cylinder problem
(Example 2).

T = 100 while the bottom face at [z = 0] is zero. The remaining four faces are insulated

(zero normal flux). The boundary conditions and the initial conditions are

#(z,y,0;t) = 0
(z,y, L;t) = 100
(2, y,20) = 0 (4.51)

The thermal conductivity and the specific heat are taken to be

k(z,y, z) = koe?* = 5e37 (4.52)
oz, y, 2) = cpe®?? = 13 (4.53)

The analytical solution for temperature is (see Appendix),

¢(x7y,z§t) = ¢s(xay7 Z)+¢t(x7yvzat)
1 — 262 00 _nrz g, "2"2+ﬁ2 o
= T————1 T3 +Zanm ¢ Bze (2z5+#") (4.54)
n=1

where L is the dimension of the cube (in the z-direction) and the analytical solution for flux
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Figure 4.8: Geometry and boundary conditions of the FGM cube problem with constant
temperature on two planes. The faces with prescribed temperature are shaded (Example 3).

is (see Appendix),

99
it) = —k —
Q(xayaz? ) (x’y’Z)aZ
_ 28Te 28z 2 _pz _(ﬁfg+ﬁ2)at nm nwz . Nz
= —k(l’,y, Z) I:T———_E-:EEZ +n=1 B,e %e L (T cos 7 — (sin T)
(4.55)
where oT P ) 281
e X e~
B, = Bt {BL ST T—— 5y — 1T Cos mr] (4.56)

The Galerkin BEM mesh has 1200 elements with 200 elements on each face. Numerical
solutions for the temperature profile at different times are shown in Figurc 4.9. Notice that
the temperature variation matches the analytical solution. Figure 4.10 shows the change of
flux with time. At the top face the flux rapidly approaches the steady state flux, while on the
bottom face where the temperature is zero, the flux gently approaches to the steady state flux.
It is worth observing that the flux from the Galerkin BEM matches the analytical solution
of Eq. (4.55) within plotting accuracy. Finally a color contour plot of temperatures at t=0.5
is shown in Figure 4.11. This plot confirms that the temperature field is one-dimensional

and is captured by the Galerkin BEM solution.
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Figure 4.9: Temperature profile in z direction at different time levels for the FGM cube
problem with constant temperature on two planes (Example 3).

4.7.4 Linear heat flux on a face of an FGM cube

Figure 4.12 illustrates a cube that is insulated on the faces [y = 0] and [y = 1], while
uniform heat fluxes of 5000 units are added and removed respectively at the [z = 1] and
[z = 0] faces. In addition the [z = 0] face is specified to have an z-dependent temperature
distribution ¢ = 1000z and at [z = 1] a normal heat flux of ¢ = 15000z is removed. The
initial temperature is zero (see Eq. (4.7)). The material properties are given by Eqgs. (4.52)
and (4.53). The boundary and the initial conditions for this problem are

é(z,y,0;t) = 1000z
dp(x, 0, z; t) 0d(x, 1, z; 1)

O e TRl
k(z)w — 5000
k(z)%%i/cﬂ — 45000
/rc(z)—ai’s(iéyz—ﬂ = 15000z
&(z,y,2,0) = 0 (4.57)
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Figure 4.10: Change of flux with time for the FGM cube with constant temperature on two
planes (Example 3).

Figure 4.11: Color Contour plot of temperature at time t = 0.5 for the FGM cube with
constant temperature on two planes (Example 3).
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The results of the numerical simulations for the flux distributions along the edge [y =
0,z = 1] for different times are shown in Figure 4.13. The exact steady state solution for

flux is,

k(2)22E 808 5000,

0z
As the time increases the flux converges to the steady state condition, which is expected.
The temperature distribution along edge [z = 1,y = 1] with various times is plotted in
Figure 4.14. Notice that as the time increases, the numerical solution approaches the steady
state solution, as expected. Finally a color contour plot for temperature is shown in Figure
4.15 for the steady state condition. This plot allows one to verify the 3D surface temperature
distribution obtained with the present Galerkin BEM code.

Z
q = 15000x (top)

‘_ (LL,1)

q = 0 (back)

Y <« q=5000 (right)

q=-5000 (left) 71— /
A

(0,0,0) \ P g

® = 1000x (bottom)

Figure 4.12: Geometry and boundary conditions of the FGM cube problem with linear heat
flux. The face with prescribed temperature (¢ = 1000z) is shaded (Example 4).

4.7.5 Time-dependent boundary condition

This problem has prescribed time-dependent boundary condition in one face while all the
other faces are insulated. The top surface of the cube at [z = 1] is prescribed with a

time-dependent boundary condition ¢ = 10t. The material properties are given by expres-
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sions (4.53) and (4.54). The boundary and initial conditions are

¢(z,y,1;t) = 10t
06(0,y,z;t) _ 9¢(Ly,25t) _ 0¢(,0,2:t) _ 9¢(x,1,2t) _ 94(z,y,0;)

ox ox oy Ay 0z
¢(z,y,20) = 0 (4.58)

=0

The geometry and boundary conditions are presented in Figure 4.16. For the BEM analysis
the same mesh, as in the previous example, has been used. The temperature profile in the
z direction is plotted at £ = 1 in Figure 4.17. In order to compare the results, the problem
has been modeled using a commercially available FEM software. The corresponding two-
dimensional finite element mesh has 100 linear quadrilateral elements and 121 nodes, the
analysis was performed with a time step At = 0.01. From Figure 4.17 it is seen that the
BEM and FEM results agree well.

4.8 Concludin Remarks

In this work it was shown that Galerkin BEM can be successfully applied to analyze transient

heat conduction in functionally graded materials modeled with exponential gradation. In this

50000 ‘ : y T

o——o BEM (t=0.001)

=——= BEM (t=0.005)

40000 | +—— BEM (t=0.01)
(

(

> BEM (t=0.02)
+——v BEM (t=0.05)
— BEM (t=0.1)
30000 - Steady state

FIux

20000

10000

0.2 0.4 0.6 0.8 1.0
X coordinate

Figure 4.13: Flux distribution along edge [y=0, z=1] considering various times for the FGM
cube problem with linear heat flux in one face (Example 4).
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Figure 4.14: Temperature distribution along edge [x=1, y=1] considering various times for
the FGM cube with linear heat flux in one face (Example 4).

case the Green’s function can be easily derived using a simple exponential transformation.
The presented numerical results based upon this formulation, implemented in a Galerkin

BEM framework, agree extremely well with available analytical solutions. The principal

Figure 4.15: Color Contour plot of temperature at steady state for the FGM cube with linear
heat flux in one face (Example 4).
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Figure 4.16: Geometry and boundary conditions of the FGM cube problem with time-
dependent boundary conditions. The face with prescribed time-dependent boundary condi-
tion is shaded (Example 5).
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Figure 4.17: Temperature profile in z direction at t = 1 for the FGM cube problem with
time-dependent boundary condition (Example 5).

computational difficulty with the LTBEM is the numerical inversion of the transform, which

was handled accurately and efficiently by Stehfest’s algorithm.
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Chapter 5

Simple BEM for nonhomogeneous
media: Problems of potential

This chapter presents a simple boundary element method for solving potential problems
in nonhomogeneous media. A physical parameter (e.g. heat conductivity, permeability,
permittivity, resistivity, magnetic permeability) has a spatial distribution that varies with
one or more coordinates. For certain classes of material variations the nonhomogeneous
problem can be transformed to known homogeneous problems such as those governed by
the Laplace, Helmholtz and modified Helmholtz equations. A three dimensional Galerkin
boundary element method implementation is presented for these cases. However, the present
development is not restricted to Galerkin schemes and can be readily extended to other
boundary integral methods such as standard collocation. A few test examples are given to
verify the proposed formulation. The results from the finite element simulations are used for
comparison with the present boundary element solutions. In order to obtain results from the
finite element solution using ABAQUS, an user subroutine is developed which incorporates
the functional variation of the material at element level.

This chapter is organized as follows. Section 5.1 gives an introduction to the nonhomoge-
neous problem. Related works in the literature are discussed in Section 5.2. In Section 5.3,
the governing equations considering the variable conductivity is presented. A comparison
between the Green’s function approach and the proposed approach is described in Section
5.4. Some aspects of the numerical implementation is given in Section 5.5. The ABAQUS
user subroutine is described in Section 5.6. Finally, a number of numerical examples are

presented in Section 5.7 followed by concluding remarks in Section 5.8.
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5.1 Introduction

The governing differential equation for a potential function ¢ defined on a region 2 bounded

by a surface ¥, with an outward normal n, can be written as
V e (k(z,y,2)V¢) =0 (5.1)

where k(z,vy, z) is a position dependent material function. The general problem under con-
sideration is presented in Figure 5.1. Equation 5.1 is the field equation for a wide range
of problems in physics and engineering such as heat transfer, fluid flow motion, flow in
porous media, electrostatics and magnetostatics. Table 5.1 presents a list of k(z,y, z) used
in different applications [134].

The boundary conditions of the problem can be of the following types:

¢=¢ onX, (Dirichlet type) (5.2)

q=—k(z,y,2) g—z =7 on Xy (Neumann type) (5.3)

with ¥ = Xy + Xy for a well-posed problem. The boundary value problem is a Neumann
problem if the flux is known on the whole boundary, and the problem is a Dirichlet problem if
the potential is known on the whole boundary. Mixed boundary conditions are also frequently
encountered: flux is prescribed over some portion of the boundary and potential is prescribed

over the complementary portion of the boundary.

Table 5.1: Problems governed by Eq. (5.1)

Boundary Condition
Problems Scalar function ¢ | k(z,y, 2) Dirichlet | Neumann
Heat transfer | Temperature T Thermal T=T Heat flow
Conductivity (k) qg= -k ‘gT—n
Ground water | Hydraulic Permeability (k) | H =H | Velocity flow
flow Head H qg=—k %—Z
Electrostatic | Field Potential V' | Permittivity (¢) |V =V Electric flow
qg=—c%
Electric Electropotential E | Resistivity (k) E=F Electric Current
conduction qg=—k g—f
Magnetostatic | Magnetic Magnetic M =M | Magnetic Flux
Potential M permeability (u) Density B = —p %—AT;[

For nonhomogeneous media, k(z,y,z) can assume any function of z, y and z. With

recent development and research of functionally graded materials (FGMs), problems in non-
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Gradation along
z-direction

=

y

Figure 5.1: Definition of the boundary value problem with boundary » and domain 2. The
source point is P (normal N) and the field point is @ (normal n).

homogeneous media have generated new interest. In FGMs, the composition and the volume
fraction of the FGM constituents vary gradually, giving a nonuniform microstructure with
continuously graded macroproperties such as thermal conductivity, elasticity, hardness etc.
In most engineering applications the spatial variation of k(z,y, z) is in one coordinate.

There is a class of material variations, which can transform the problem equation to a
Laplace or standard/modified Helmholtz equation. The present work demonstrates that by
using change of variables which in turn leads to simple changes in the treatment of the bound-
ary conditions of existing homogeneous Laplace and standard/modified Helmholtz codes, the
solutions for nonhomogeneous media with quadratic, exponential and trigonometric material
variations can be obtained. Numerical implementation for specific cases using these vari-
ations of k(z,y, z) in one or more coordinates are presented. Heat transfer problems have
been chosen for the numerical examples, although the numerical implementation can be used
for any potential problem (See Table 5.1).

Another contribution of this work is the development of a user-subroutine to implement
graded finite elements in the finite element method (FEM) software ABAQUS. It is used for

comparison purposes with the present BEM solutions.

5.2 Related Work

In the context of BEM, problems in nonhomogeneous media has been previously studied
by Cheng [34, 35], Ang et al.[5], Shaw [154] and recently by Gray [75] et al.and Dumont
et al.[55]. The majority of these works have emphasized on obtaining the Green’s function.
Cheng [34] presented a direct Green’s function approach for Darcy’s flow with spatially vari-
able permeability. The formulation required that the Green’s function be found for each

given permeability variation. He also presented the Green’s function for a class of perme-
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ability variations whose square root of hydraulic conductivity satisfies the Laplace and the
Helmholtz equations in one to three dimensions. Shaw [155] presented a two dimensional
fundamental solution involving axisymmetric material variation and also showed the inter-
relationship between the fundamental solutions for different heterogeneous potential, wave
and advective-diffusion problems. Lafe and Cheng [106] used a pertubation boundary el-
ement for steady state ground water flow for heterogeneous aquifers where the governing
equation is decomposed into a Laplace equation and a sequence of Poisson’s equations with
known right-hand sides. Harrouni et al.[83, 84] used a global interpolation based dual reci-
procity boundary element method (DRBEM) for Darcy’s flow in heterogenous media where
the governing equation is transformed into a Poisson-type equation with modified boundary
conditions. In this technique the domain integral that arises from the nonhomogeneous part
of the governing equation is interpolated by a set of complete basis functions and converted
to a series of boundary integrals. Kassab and Divo [50, 48] introduced a technique for heat
conduction in heterogeneous media based on a fundamental solution that is a locally radially
symmetric response to a non-symmetric forcing function. Multiple techniques have been used
to deal with the numerical implementation, namely the iterative scheme involving domain
integrals and iterations, the domain scheme and the direct Green’s function scheme [34].
The domain technique requires use of domain integrals or radial basis functions [83, 178].
The iterative and the domain scheme decrease the inherent efficiency of the BEM as the
boundary-only nature of the method is lost. Another simple technique is the multi-zone
approach [107], where the conductivity is assummed to be constant over several zones. This
approach is inefficient because in order to capture the continuous variation of the material
property a large number of sub-regions or zones are necessary.

Cheng [34] presented some forms of k(z,y, z) for permeability in the context of Darcy’s
flow, for which closed form expressions of the Green’s function were obtained by using a
variable transformation following Georghitza [65], which allows Eq. (5.1) to be rewritten as
Laplace or Helmholtz equation. In his BEM implementations, the kernels are based on the
Green’s function G of the heterogenous media, where G is the free-space Green’s function
defined as

V «(k(z,y,2)VG) = —6(Q — P) (5.4)

where P is the source point, (2 is the field point, and the gradient V is taken with respect
to the field point Q (V = V).
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5.3 Governing Equations considering variable

conductivity

By defining a variable
v(z,y,2) = VEk(z,y,2) ¢(z,y, 2), (5.5)

Eq. (5.1) can be rewritten as

VkVk V%
V2v+( TR 2k>v=0 (5.6)
or,
Vi 4K (2, y,2)v=0 (5.7)
where VEeVk V%%
K=—fpr " (5.8)

From Eq. (5.7), three different cases can be generated. If k'(z,y,2) = 0, then Eq. (5.7)

becomes the standard Laplace equation, i.e.
Vv = 0. (5.9)
If K'(x,y,2) = —52, then Eq. (5.7) converts to the modified Helmholtz equation, i.e.
Viv — 3% =0, (5.10)
while if £'(z,y, z) = 3%, then Eq. (5.7) transforms to the standard Helmholtz equation, i.e.
Vv + f2v = 0. (5.11)

From the three cases of &'(x,y, z) we can generate a family of variations of k(z,y, z). Here
we focus on variations which depend only on one cartesian coordinate, namely z. From an
engineering point of view (for applications such as FGMs), material variation in one coordi-
nate is of practical importance as described in [138, 101].
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5.3.1 Reduction to the Laplace equation

In this case k¥'(z,y, z) = 0 and, according to Eq. (5.6), k(z,y, z) can be determined by

VkVk V%
2 2%k

=0 (5.12)
If k varies only with z, then Eq. (5.12) becomes

(Lk(2))" &k(2)
L) e =0. (5.13)

Solving Eq. (5.13), one obtains
k(z) = (c1 + c2)*. (5.14)

where ¢; and ¢, are arbitrary constants. In a more general form Eq. (5.14) can be written as
k(2) = ko(cy + co2)?, (5.15)

where kg is a reference value for k. From Eq. (5.13) and Eq. (5.14), we can infer that for

quadratic variation of k(z), Eq. (5.1) can be transformed to a Laplace equation. This varia-

tion can be extended to more dimensions.

5.3.2 Reduction to the modified Helmholtz equation

In this case k'(x,y,2z) = —3% and, according to Eq. (5.6), k(z,v, z) can be determined by

Vk+Vk V3 2
TERR T -5 (5.16)

For k varying only with z, Eq. (5.16) becomes

dp 2 L

(dz (Z))z _ d2? (Z) _ _52' (517)

1hE)E T 2()
Solving Eq. (5.17), one obtains

k(z) = ko(a1e” + age™)? (5.18)

7
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where a; and ay are arbitrary constants. Equation 5.18 can be rewritten in terms of only
hyperbolic functions as
k(z) = ko(b; cosh Bz + by sinh 8z)? (5.19)

where b; and by are arbitrary constants. Alternatively Eq. (5.18) can be expressed in terms

of a combination of exponential and hyperbolic functions such as
k(z) = ko(b1€"* + by sinh §z)? (5.20)
or
k(z) = ko(by cosh Bz + bye™P7)2. (5.21)

From Eq. (5.18) to Eq. (5.21) it is apparent that for a family of variations involving hyper-
bolic and exponential functions, Eq. (5.1) can be transformed into the modified Helmholtz
equation Eq. (5.10).

5.3.3 Reduction to the standard Helmholtz equation

In this case k'(z,v, 2) = #? and, according to Eq. (5.6), k(z,y, z) can be determined by

VkVk V%

e T 2. (5.22)

Again, for k£ varying only with z, we set up the following differential equation

(Lk(2))" Lk(x)
AE Q) ) - G2 (5.23)

Solving Eq. (5.23), one obtains
k(z) = ko(a; cos Bz + agsin Bz)%. (5.24)
where a; and as are arbitrary constants. For a family of variations involving trigonomet-

ric sine and cosine functions, Eq. (5.1) can be transformed into the Helmholtz equation
Eq. (5.11).
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5.3.4 Remarks

The appeal of the transform is its generality and the fact that for all of variations of k(z, y, 2),
the Green’s function can be obtained. Table 5.2 presents a list of variations of k(z, y, z) with
corresponding differential equations and the closed form Green’s function.

It may be mentioned that, in the present paper, we do not use these Green’s functions for
the boundary element method implementation. We rather use the simpler Green’s function

of the modified problem (Laplace equation or standard/modified Helmholtz equation).

5.3.5 Boundary Conditions

In order to solve the boundary value problem based on the modified variable v, the bound-
ary conditions of the original problem have to be incorporated in the modified boundary
value problem. Thus for the modified problem, the Dirichlet and the Neumann boundary

conditions given by Eq. (5.2) and Eq. (5.3) respectively, change as follows:

v=vk¢ onZ, (5.25)

% = %%v - % on %, (5.26)

Notice that the Dirichlet boundary condition of the original problem is affected by the

factor vk. Moreover, the Neumann boundary condition of the original problem changes to

a mixed boundary condition or Robin boundary condition. This later modification is the
only major change on the boundary value problem.

Another common boundary condition of the original problem is a prescribed relationship

between the potential and the flux (e.g. convective heat transfer problems). The boundary

condition of this type is

q = M16 + Ao (Robin type) (5.27)

The corresponding boundary condition for the modified problem would be also a Robin

boundary condition similar to Eq. (5.26), i.e.

ov _ 1 0k /\2
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5.4 Green’s function versus reduction to parent

equation: A comparison of approaches

The Green’s function approach is not attractive because each different material variation
requires a different fundamental solution, and thus the kernels for the BEM implementation
are different from the standard kernels usually employed for homogeneous problems. As a
result each time a new computer code has to be developed. Moreover, if the treatment of
singularity involves analytical integration, then the treatment becomes more involved [176].
The differential equation for the nonhomogeneous medium is not self-adjoint. Consequently
the Green’s function for such cases are not symmetric also. On the contrary, the Green'’s func-
tions for the modified problem ( both Laplace equation and standard/modified Helmholtz
equation) are symmetric. The symmetric property is of utmost importance if one wants to
develop the symmetric Galerkin formulation of the problem.

To demonstrate the difference between the two approaches, the case of the exponential
variation is considered and explained below.

We emphasize that with the modified problem, the class of functions of k(z,y, z) can be
addressed with the same code.

Let the exponential variation k(z,y, z) be defined as
k(x,y,2) = k(z) = koe??* (5.29)

Below we investigate the "Green’s function" approach and the "reduction to the parent

equation” approach to solve the problems with the material gradation given by Eq. (5.29).

5.4.1 Green’s function approach for three dimensional (3D)

problems

The Green’s function for the exponential case is

cPo)= 5.30
(P.Q) = —— (5.30)
where

R,=2p—2p and r=|R|=]Q-P| (5.31)

The boundary integral equation (BIE) for surface temperature ¢(P) on the boundary 3
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(see Figure 1) is therefore

+ ¢(@>( G(P,Q) — 26n.G (PQ) 10 = [ 6(P.Q)5-0Q)dQ (5:32)

that differs in form from the usual integral statements by the presence of the additional term
multiplying ¢(Q), i.e. [=208n,G(P,Q)], which are due to the material gradation.
The kernel functions for the exponential case are

1 efB(-r+zq-zp)

G(PaQ) = 1_7; r
F(P.Q) = ~-G(P.Q)~20n.G(P,Q) (5.39)
eP=r+R2) ' «R n*R N,
T T 4 ( 73 +5 72 +ﬂ7) ’

5.4.2 Reduction to the modified Helmholtz equation

For the modified problem, the Green’s function for the exponential case is

_57"

G(P,Q) =

5.34
A7y ( )

The expression of G(P,Q) is simpler than that of the Green’s function approach (cf.
Eq. (5.30)). Moreover, Eq. (5.34) is symmetric with respect to both P and @). A discussion
on symmetric properties is presented in the next section.

The governing boundary integral equation corresponding to Eq.(5.10) is

Py + [ o@ ( Q)) 1= [ CPQTH@Q,  (53)

The kernel functions for the exponential case in the reduction to parent equation tech-

nique are given by Eq. (5.34) and

0

e <n ‘R n °R)
T 4r r3 +8 r2 '

The kernels in Eq. (5.33) have one more term than the kernels in Eq. (5.36). But the
significant difference is the exponential term in front of the kernels. In the Green’s function

approach, in order to take care of the singularity using the direct limit approach [74, 73],
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the power of the exponential plays an important role. The complexity of handling such
exponential terms magnifies even more when applied to the hypersingular boundary integral
equation. A direct treatment of singularity of the hypersingular double integrals using a
hybrid analytic/numerical approach has been presented by Sutradhar et al.[176] for expo-
nential variation of the thermal conductivity. The treatment is based on the direct approach
[73]. The direct limit approach is shown to be suitable for dealing with complicated Green’s

functions, which appear in applications such as those involving FGMs.

5.5 Numerical Implementation

The numerical methods employed in the current work use standard Galerkin techniques. A
discussion of these techniques in the context of the BEM is presented below.

5.5.1 Galerkin Boundary Integral Equation.

Define the collocation BIE as
0 0
5P =o(P)+ [ (5600 s@ae- [ GrQFE@d 63

and thus for an exact solution B(P) = 0.
In a Galerkin approximation, the error in the approximate solution is orthogonalized
against the shape functions, i.e., the shape functions are the weighting functions and B(P) =

0 is enforced in the ‘weak sense’, i.e.
/ Ne(P)B(P)dP =0 (5.38)
)

As a result the Galerkin technique possesses the important property of the local support as
illustrated by Figure 5.2. This technique is especially suitable to treat corners [137]. After
replacing the boundary and the boundary functions by their interpolated approximations, a

set of linear algebraic equations emerges,

ot - 191 { 52 }. (5.39)

The matrix G is symmetric because its coefficients only depend on the distance (r) between
the source points (P) and the fields points (@), but matrix H is not because it depends on
the normal vector of the field point point (@). For Dirichlet problems, the Galerkin method

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



gives rise to symmetric system of equations. In the context of nonhomogeneous media a
symmetric Galerkin boundary element method (SGBEM) has been recently presented by
Sutradhar et al.[176]. Details of the symmetry property and numerical implementation can
be found in references [85, 88, 13].

P Shape function N, (P)

Figure 5.2: The local support of the Galerkin formulation at point P.

5.5.2 Simple Kernel functions

o Generalized Quadratic variation of k

For the quadratic variation of k, the problem is solved by the standard Laplace equa-

tion. The kernels corresponding to Eq. (5.37) for the Laplace equation are

G(P,Q) = ﬁ, (5.40)
0 ne
F(P,Q) = 5-G(P.Q) =~ (5.41)

e (Generalized Exponential variation of k

For this variation the transformed problem is the modified Helmholtz equation. The

kernel functions are

e P
G(PQ) = —, (5.42)
9
_/BT L] L]
- _““’M (“T3R+gnr2R) . (5.43)

e Trigonometric variation of k

For the trigonometric variation the problem is transformed into standard Helmholtz
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equation. The kernel functions are

G(P,Q) = Cer”f - (5.44)
F(P,Q) = %G(P, Q) = —% (cos(ﬁr) nr'BR + Bsin(Br) n;2R> . (5.45)

5.5.3 Treatment of boundary conditions

As explained in Section 5.3.5, in order to solve the nonhomogeneous problem using codes for
homogeneous materials (Laplace, Helmholtz and modified Helmholtz), the main modification
in the implementation is to incorporate the boundary conditions for the modified problem.
In this section, the necessary modifications are described.

Let us assume three nodes, of which node 1 and node 3 have prescribed Neumann bound-

ary condition and node 2 has prescribed Dirichlet boundary condition, i.e.,

q1, @, 7z known quantities

¢1, @2, ¢3 unknown quantities

In the modified boundary value problem the variables are v and dv/On. The system of

algebraic equations emerges as,

o
Hyy Hyy Hig U1 Gu Gi Gi3 =

— d
Hy1 Hyy Hos Cp) = | Ga1 G2 Gas 722

; 3
H31 Hzy Has U3 G Gz Gag S

By rearranging the equations so that the unknowns are passed to the left-hand side, we can
rewrite the linear system

G,

Hy, -Gy His U1 Gu —Hy Gis %
8 —

Hy —Goy Hys yﬁf =| Gu —Hyp G U

8

Hs3 —Gsy Hi U3 G31 —Hzy Gss *3%3

Using Eq. (5.25) and Eq. (5.26) we obtain, the final form of the set of equations,

(Hn - GQ—};%) ~Gh2 (H13 - Gg—}f%) 0 Gu —Hi Gis %

(Ha — S2128)  —Gyy  (Has — 2 5F) %2 3= | Gy —Hyp Gas poVk

(H31 - %3—2) —G (H33 - %3,;—3'3—2) Us Ga1 —Hs Ga3 %
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We solve these equations for vy, Ouvs/On, and wvs; and finally, by using Eq. (5.25) and
Eq. (5.26), we obtain

¢1 - ’Ul/\/Ev

_ 81}2 1 0k
w = VE{GE - g
¢ = vg/VEk.

The extension of the current algorithm to handle multizone problems is doable but war-
rants careful housekeeping of the variables. A useful discussion on multizone and interface
problems can be found in the paper by Gray and Paulino [77].

5.5.4 Boundary Elements

The surface of the solution domain is divided into a number of connected elements. Over each
element, the variation of the geometry and the variables (potential and flux) is approximated
by simple functions. Six noded isoparametric quadratic triangular elements are used.The
geometry of an element can be defined by the coordinates of its six nodes using appropriate

quadratic shape functions as follows
6
zi(€,m) = Y N;(&m) (@) (5.46)
j=1

In an isoparametric approximation, the same shape functions are used for the solution vari-

ables (both potential and flux), as follows:
6
¢i(&,m) = ZNj(f, (i)
j=1

The shape functions can be explicitly written in terms of intrinsic coordinates £ and 7

as:

Ni(m,€) = (E+ V30— VBYE+V3n)/6  Na(n,€) = (€ + V31— V3)(€ —V3n—V3)/3
Na(n,€) = (£ — V30— V3)(€ —V3n)/6  Ns(n, &) = —2¢(¢ —V3n—V3)/3
N3(n,€) = £(2¢ —V3)/3 No(n,€) = —2£(¢ +V3n — V/3)/3 (5.48)
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The intrinsic coordinate space is the equilateral triangle with —1 <7 < 1,0 < ¢ < /3(1 —

In1)-

5.5.5 Corners

The treatment of corners in Galerkin BEM is simple and elegant due to the flexibility in
choosing the weight function for the Galerkin approximation. Corners are represented by
double nodes, and on each side two different weight functions are used. These weight func-
tions are half of the usual weight. For a Neumann corner (flux specified on both sides of
the corner, potential is the unknown), the weight functions are added into one. In all other

cases (Dirichlet corner and mixed corner) the weight function remains separate.

___~Weight function Ny
Neumann Corner Dirichlet Corner Mixed Corner
(Unknown is (Unknowns are (Unknown is
potential at corner, fluxes on each flux on left side,
flux is known on side, potential is potential is
both sides) known) known)

Figure 5.3: Corner treatment in the Galerkin BEM

5.6 ABAQUS User Subroutine

In general, conventional FEM software (including ABAQUS [1]) use homogeneous elements
with constant material properties at the element level. In the present work, in order to incor-
porate the functional variation of the material at the finite element level, a user subroutine
UMATHT was developed for ABAQUS [1]. By means of this subroutine, any functional
variation can be included within an element by sampling the material property at each
Gauss point. In general, graded elements approximate the material gradient better than
conventional homogeneous elements and provide a smoother transition at element bound-
aries. Further investigations on graded elements can be found in the papers by Santare and
Lambros [148] and Kim and Paulino [99] for 2D problems, and in the paper by Walters
et al.[180] for 3D problems. The user subroutine UMATHT is included in the Appendix.
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5.7 Numerical Examples

In this section, several test cases are reported, demonstrating the implementation of the
above techniques. To validate the numerical implementation, the following four examples

are presented:

(1) Cube with material gradation along the z-axis,
(2) Cube with a 3D material gradation,

(3) Inclined cylindrical cavity in a parallelepiped,
(4) Rotor problem.

The first example is a cube with constant temperatures in two sides and insulated in
all the other sides. The material property varies only in the z direction. This problem has
analytical solution. For this problem all the three kinds of material variation i.e. quadratic,
exponential and trigonometric, are prescribed. This problem is used to verify the present
formulation [100]. Also a convergence study is performed with this problem. The second
example has a complicated 3D quadratic spatial material variation inside a cube with mixed
boundary conditions. The third problem has a complicated geometry, an inclined cylindrical
cavity in a parallelepiped. This problem is solved as a Dirichlet problem with known pre-
scribed field. The last example is a rotor problem, which is of engineering significance in the
field of functionally graded materials.

5.7.1 Cube with material gradation with z-axis

A unit cube (L = 1) with prescribed constant temperature on two sides is considered. The
problem of interest and corresponding BEM mesh is shown in Figure 5.4. The top surface of
the cube at [z = 1] is maintained at a temperature of 7" = 100 while the bottom at [z = 0]
is zero. The remaining four faces are insulated (zero normal flux). Three different classes of
variations are considered. The profiles of the thermal conductivity k(z) of the three cases

are illustrated in Figure 5.4.

o Quadratic Variation of k

The quadratic variation of the thermal conductivity k(z,y, z) is defined as
k(z,y,2) = k(2) = ko(a1 + B2)? = 5(1 4 22)? (5.49)
in which (8 is the nonhomogeneity parameter and a; is a constant. The analytical
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Figure 5.4: Thermal conductivity variation along the z direction. The quadratic variation
is k(2) = 5(1 + 2z)2, the trigonometric is k(z) = 5(cos(z) + 2sin(z))?, and the exponential
variation is k(z) = 5¢?*. The insert shows the geometry, mesh and the boundary conditions of
the unit cube. The BEM mesh consists of 294 nodes and 108 quadratic triangular elements.

solution for temperature is

(a1 +BL)z 300z

#lz) =100 (a1 + B82)L  1+22

(5.50)

e Ezponential Variation of k Let the exponential variation k(z,y, z) be defined as
k(z,y,2) = k(z) = koe®* = 5e?* (5.51)

The analytical solution for temperature for this type of material variation is

1— 6—2[32

(5.52)

o Trigonomeltric Variation of k Let the trigonometric variation of the thermal conduc-
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tivity k(z,y, z) be defined as
k(z) = ko(ay cos Bz + ag sin Bz)? = 5(cos(z) + 2sin(z))? (5.53)

The analytical solution for temperature is

(a1 cot(BL) + as)sin(Bz)

¢(z) = 100 (@ cos(Bz) + agsin(fBz))

(5.54)

o Results

The temperature profile along the z axis is plotted for the three variations and com-
pared with the analytical solutions in Figure 5.5(a). The variation of flux at the z =1
surface with different values of the nonhomogeneity parameter 3 (keeping a; and as as
constants) is plotted and compared with the analytical solution in Figure 5.5(b). The

numerical and analytical results are in excellent agreement.

e Convergence

A convergence study is carried out using this example since the exact solution of
this problem is known. For the exponential variation of k, the convergence for the
temperature and the flux are compared with the Green’s function approach and the
‘simple’ BEM approach (modified Helmholtz). The other ‘simple’ BEM techniques
i.e., the reduction to Laplace and Helmholtz problem for temperature solutions are
also examined. The errors in the temperature and the flux are computed considering

various mesh discretizations and employing a global error measure,

1 1 NP
£ = el P > Tl —ui)2 (5.55)
I=1

max

where & is the error in the solution, the superscripts (e) and (¢) denote, respectively, the
exact and the computed solutions, and NP is the total number of nodes. The mesh
properties and the errors in the temperature for different approaches are tabulated
in Table 5.3. The convergence of the temperature and flux of the Green’s function
approach and the ‘simple’ BEM approach are compared in Figure 5.6 and Figure 5.7,
respectively. The rates of convergence for temperature are provided in Table 5.4. The
rate of convergence for the flux solution for the Green’s function approach and the
simple BEM (modified Helmholtz) are 1.84 and 1.0, respectively.
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Figure 5.5: (a) Temperature profile in the z direction for different material variations, (b)
Variation of flux at z = 1 surface with different values of nonhomogeneity parameter (.

e Comparison of CPU times

The CPU times required for the complete simulation for all the GBEM methods are

provided in Table 5.5. The simulations were carried out in a Pentium IV, 800 MHz
CPU with 512Mb of memory.

e Remarks
From Table 5.3 it is apparent that, the simple BEM technique (Modified Helmholtz) for
the exponential variation has much less error than the corresponding Green’s function
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Table 5.3: Global error (£) for FGM cube (8 = 1.0).

Mesh | No. of | No. of Global Error £ for Temperature
nodes | elements GF Simple BEM | Simple BEM | Simple BEM
Approach | Mod. Helm. Laplace Helm.
1 54 12 0.00714 0.003060 0.000078 0.00230
2 150 48 0.00153 0.000486 0.000065 0.00038
3 294 108 0.00044 0.000142 0.000054 0.00012
4 726 300 0.00008 0.000027 0.000043 0.00002

Table 5.4: Rate of Convergence of temperature solution for the Green’s function and the
simple BEM methods.

Methods Rate of Convergence
Green’s function Approach 1.85
Simple BEM (Mod. Helmholtz) 1.83
Simple BEM (Laplace) 0.27
Simple BEM (Helmholtz) 1.71

Table 5.5: CPU times for the BEM simulations

Mesh | No. of | No. of CPU times in sec
nodes | elements GF Simple BEM | Simple BEM | Simple BEM
Approach | Mod. Helm. Laplace Helm.
1 54 12 5.33 1.53 0.70 2.36
2 150 48 27.52 9.08 3.83 13.29
3 294 108 69.64 27.46 11.03 37.28
4 726 300 256.10 129.00 50.80 163.00

approach, although both methods exhibit similar convergence rate. It is important to
note that, the CPU time for the simple BEM (Modified Helmholtz) is almost half or
less than the Green’s function approach (See Table 5.5). Also, the CPU time for simple
BEM for quadratic material variation (modified to Laplace equation) is much less than

the simpe BEM approaches for exponential and trigonometric material variations.
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Figure 5.6: Convergence plots of temperature for the Green’s function approach and the
simple BEM approaches.
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Figure 5.7: Convergence plots of flux for the Green’s function approach and the simple BEM
approach (Modified Helmholtz).

5.7.2 Cube with a 3D material gradation

The three dimensional thermal conductivity variation is

k(z,y,2) = (5+ 0.2z + 0.4y + 0.6z + 0.1zy + 0.2yz + 0.3zz + 0.7zyz)>, (5.56)
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Figure 5.8 illustrates the iso-surfaces of the 3D variation of the thermal conductivity. It can

Figure 5.8: Representation of iso-surfaces for the three dimensional variation of thermal
conductivity k(z,y, z).

be shown that Eq. (5.56), in which 1/k(z, y, z) is a linear combination of 1, z, y, z, zy, yz, 2z, Yz
(i.e. the most general linear function of z, y or z alone) satisfies Eq. (5.12) and thereby allows
Eq. (5.1) to be reduced to a Laplace equation governing v(z,y, z), by change of variables

using Eq. (5.5). The following function is an admissable solution for this variation,

Yz
p = 5.57
.y, 2) (5+0.22 + 0.4y + 0.6z + 0.1zy + 0.2yz + 0.32z + 0.7zyz)’ (5.57)
The mixed boundary conditions at the six faces of the cube are prescribed as,
¢(0,y,2) = 0
7(1,y,2) = —k(1,y, Z)w = —0.2z2y(25 + 2y + 3z + zy)
¢(z,0,2) = 0
lw,1,2) = —k(z, 1, z)éﬂ%’z) = —0.122(50 + 2z + 62 + 322) (5.58)
0
g(z,y,1) = —k(z,y, 1)—¢£3%’Z) = —0.1zy(50 + 2z + 4y + zy)

The cube is discretized with 294 nodes and 108 quadratic triangular elements. The results
for the temperature and the flux are recovered exactly up to three decimals. Contour plots

of the temperature and the flux are shown in Figure 5.9.
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Figure 5.9: (a) Contour plot of temperature for the cube with 3D material variation. (b)
Contour plot of flux for the cube with 3D material variation.

5.7.3 Cylindrical cavity in a parallelepiped

Figure 5.10 shows the geometry of the parallelepiped with a cylindrical cavity. The in-
spiration for this problem comes from a paper by Ingber and Martinez [93], however the

boundary conditions here are different from their paper. The thermal conductivity varies as
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a trigonometrical function in one coordinate (see Figure 5.11(a)) according to
k(z) = 0.5(5 cos(2z) + 7.78704sin(2z))” (5.59)

This problem is set as a Dirichlet problem where the temperature in the surface of the body

is specified as

4xysin(2z)
5.60
u(,y,2) (a1 cos(2z) + agsin(22)) (5.60)
4rysin(2z)
= 5.61
(5cos(22) + 7.78704 sin(2z)) (561)
The analytical solution for flux is therefore
q(z,y,z) = —4ko(aycos(2z) + agsin(2z))ysin(2z)ny
—dkg(a; cos(2z) + ag sin(2z))z sin(2z)ny — 8kozryaing (5.62)

The parallelepiped including the cavity is discretized using 942 T6 elements and 2121 nodes.
Flux along z in y = 0 plane at the intersection of x = 1 and y = 0 planes is compared
with the analytical results as shown in Figure 5.11(b), which shows that the numerical and
analytical solutions are in excellent agreement. The contour plot in Figure 5.12 illustrates

the complex nature of the flux distribution of the problem.

5.7.4 FGM Rotor problem

The last numerical example is an FGM rotor with eight mounting holes having a eight-fold
symmetry. Due to the symmetry, only one-eighth of the rotor is analysed. The top view of
the rotor, the analysis region, and the geometry of the region are illustrated in Figure 5.13.
The grading direction for the rotor is parallel to its line of symmetry, which is taken as the

z-axis. The thermal conductivity for the rotor varies according to the following expression,
Quadratic: k(z) = 20(1+420.72) (5.63)

The profile of the thermal conductivity k(z) of the variation is illustrated in Figure 5.14.
The temperature is specified along the inner radius as Tipper = 20 + 1.25 % 106(z — 0.01)2
and outer radius as T,uter = 150 + 1.25 x 10%(2 — 0.01)2. A uniform heat flux of 5 x 10°
is added on the bottom surface where z = 0, and all other surfaces are insulated. The
BEM mesh employs 1584 elements and 3492 nodes. A schematic for the thermal boundary
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XY view YZ view

Figure 5.10: The mesh and the geometry of the parallelepiped. For the sake of clarity meshes
in four faces of the parallelepiped have been omitted in the figure in the top. The XY and
Y Z views are provided which shows the mesh in those faces.

conditions and the BEM mesh employed is shown in Figure 5.15. This problem has been
solved previously using the “Green’s function” approach by means of a Galerkin BEM (non-
symmetric) by Gray et al.[75], who considered exponential conductivity variation. Here the
solution of the problem is verified using the commercially available software ABAQUS using
the user-defined subroutine UMATHT(see Appendix). The FEM mesh consists of 7600 20-
noded brick elements(quadratic) and 35,514 nodes. The FEM mesh is shown in Figure 5.16,
which is intended simply to provide a reference solution against which the BEM results
can be compared to. The temperature along the radial direction at the edge is plotted
and compared with the FEM results in Figure 5.17. Figure 5.18 shows the comparison of
the BEM and FEM results for the temperature around the hole. A contour plot of the
temperature distribution is shown in Figure 5.19. The radial heat flux at the right interior
corner is plotted along the interior corner in Figure 5.20. All the results of the BEM and
FEM solution are in very good agreement.
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Figure 5.11: (a) Thermal conductivity for the parallelepiped with cylindrical cavity. (b)
Flux along z in y = 0 plane at edge [z = 1, y = 0] of the parallelepiped.
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Figure 5.12: Contour plot of flux for cylindrical cavity in parallelepiped.
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Figure 5.13: Geometry of the functionally graded rotor with 8-fold symmetry.
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5.8 Concluding Remarks

A novel simple boundary element technique to address problems of potential flow for non-
homogeneous media is presented. It is shown that for quadratic material variation, the

nonhomogeneous problem can be transformed to a Laplace problem; for exponential vari-
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Figure 5.14: Profile of thermal conductivity in z direction. The quadratic variation of the
conductivity is k(z) = 20(1 + 420.72)2.
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Figure 5.15: Thermal boundary conditions and the BEM mesh with 1584 elements and 3492
nodes.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



z Y
(X

Figure 5.16: The FEM mesh with 7600 elements and 35514 nodes.
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Figure 5.17: Temperature distribution along the right top edge (indicated by the arrow).

ation, the problem can be transformed to a modified Helmholtz equation; and for trigono-
metric variation, the problem can be transformed to a standard Helmholtz equation. By
simple modification of the boundary conditions, standard codes for homogeneous material

problems are used. A number of examples are presented to validate the methodology. This
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Figure 5.18: Temperature distribution along the circular contour on the top face.
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Figure 5.19: BEM contour plot of the temperature of the rotor.

implementation is carried out using the Galerkin BEM (non-symmetric), but the idea and de-
velopment are applicable to collocation or other boundary element methods such as meshless

or symmetric Galerkin BEM.
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Figure 5.20: Radial heat flux along the interior edge (indicated by the arrow).
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Chapter 6

Simple BEM for Transient heat
conduction in FGMs

This chapter presents a “simple” boundary element method for transient heat conduction in
functionally graded materials. For a broad range of functional material variation (quadratic,
exponential and trigonometric) of thermal conductivity and specific heat, the nonhomoge-
neous problem can be transformed into the standard homogeneous diffusion problem. A three
dimensional boundary element implementation, using the Laplace transform approach and
the Galerkin approximation, is presented. The time dependence is restored by numerically
inverting the Laplace transform by means of the Stehfest algorithm. A number of numerical
examples demonstrate the efficiency of the method. The results of the test examples are in
excellent agreement with analytical solutions and finite element simulation results.

This chapter is organized as follows. Section 6.1 gives an introduction to the problem and
discusses about the variation of the thermal properties. The basic equations of the diffusion
problem are described in Section 6.2. The Green’s function for the FGM diffusion equation is
derived in Section 6.3. In Section 6.4, the Laplace Transform BEM formulation is presented.
Section 6.5 discusses several aspects of the numerical implementation of the boundary inte-
gral analysis including the numerical inversion of the Laplace transform. Afterwards, some
numerical examples are presented and verified in Section 6.6. Finally concluding remarks

are provided in Section 6.7.

6.1 Introduction

FGMs consisting of heat-resisting ceramic and fracture-resisting metal can improve the prop-
erties of thermal barrier systems because cracking and delamination, which are often observed

in conventional layered systems, are reduced by proper smooth transition of material prop-
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erties. Ceramic based FGMs have also been used for thermal protection — see Carrillo-Heian
et al.[23]. FGMs are being developed as thermal barrier materials for combustion cham-
bers, gas vanes, air vanes, nose cones, fuel valve sheets and piston crowns which undergo
high-temperature gradient and high-thermal cycles in addition to wear.

Steady state heat conduction in nonhomogeneous media has been addressed by a few
BEM researchers. Bialecki and Kuhn [11] presented a multizone approach where the material
property was modeled as constant in certain zones in the layered media. Divo and Kassab
[50] introduced a technique for heat conduction problems in heterogeneous media based on a
fundamental solution that is a locally radially symmetric response to non-symmetric forcing
functions. Shaw and Manolis [157] employed a conformal mapping technique to solve heat
conduction problems in graded materials. Tanaka et al.[178] derived a dual reciprocity BEM
formulation for FGMs. Gray et al.[75] developed a Galerkin BEM formulation by deriving the
Green’s function for steady state heat conduction problem in exponentially graded materials.

Transient heat conduction problems are usually solved using either the time domain
approach or the Laplace transform domain approach. In the time domain approach, a time
marching scheme associated with the BEM solution at each time step is used, and solutions
are found directly in the time domain. An alternative is to employ a transform space approach
wherein the time dependent derivative is eliminated in favour of an algebraic transform
variable. However, once the differential system is solved in transform space, inverse transform
is required to reconstitute the solution in the time domain. A review of these techniques can
be found in [188], [174] and the references therein.

Sutradhar et al.[174] extended the work of reference [75] to transient heat conduction for
exponentially graded materials in three dimensions using the Laplace transform (LT) BEM.
The implementation in reference [174] is a pure boundary-only formulation without any
domain integral, however it relies on the actual Green’s function (GF) associated with the
function describing the material gradation. Recently, Sladek et al.[164, 163, 162] presented a
meshless local boundary integral equation (LBIE) formulation for transient heat conduction
considering exponential material variation. In the LBIE approach, the domain is divided into
small circular sub-domains and on the surface of the sub-domains the LBIEs are written,
resulting in a boundary-domain integral formulation. In each domain, the fundamental
solution is related to the corresponding material constants. A different approach to treat
transient heat conduction in nonhomogeneous materials can be found in the book by Divo
and Kassab [50].

Recently, Sutradhar and Paulino [172] proposed a simple three dimensional (3D) BEM
where nonhomogeneous problems can be transformed to known homogeneous problems for

a class of variations (quadratic, exponential and trigonometric) of thermal conductivity.
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The material property can have a functional variation in one, two or three dimensions. The
present work extends the simple BEM concept of reference [172] to transient problems. In the
present work, the material density (p) is considered constant, and the thermal conductivity
and the specific heat have been chosen to have the same functional variation so that the

thermal diffusivity ! is constant, i.e.,

= constant. (6.1)

This approach has been followed by Sladek et al.[164, 163, 162] in developing BEM formu-
lation for transient thermal problems in FGMs. Carslaw and Jaeger [24] have also assumed
the same material variation for both k(x) and ¢(x) by considering functions of the power
type

k=kox", c=coz™, (6.2)

and linear type
k=ko(l+az), c=co(l+ax), (6.3)

in which kg, ¢y and « are constants. An example of thermal properties for an actual FGM can
be found in the experimental work by Khor and Gu [98], who investigated functionally graded
yttria-stabilized Zr0Os/NiCoCrAlY coatings. For this specific material system, the thermal
diffusivity is not a constant. However, the assumption of constant thermal diffusivity in
FGMs leads to a class of solvable problems, which allow development of a boundary-only
integral equation formulation without any domain discretization. Moreover, this method can
provide benchmark solutions to other numerical methods (e.g. FEM, meshless, partition of
unity) and can provide valuable insight into the thermal behavior of FGMs.

By using variable transformations, the transient heat equation for FGMs can be converted
to the known standard diffusion equation for three different classes of material variations
(quadratic, exponential and trigonometric). The variable transformation approach has been
previously studied for potential problems by Cheng [34, 35], Shaw [154], Shaw and Gipson
[155], Harrouni et al.[83, 84], and Li and Evan [110]. Based on these references, an alternative
approach for the BEM formulation is the Green’s function approach [174], where each differ-
ent material variation requires a different fundamental solution. Thus, the kernels necessary
for the BEM implementation for each case are different. As a result, separate computer
codes are required to deal with individual functional variations. Moreover, if the treatment

of singularity involves analytical integration, then the solution becomes more involved [176].

1The symbols k and & should not be confused. Note that k denoted thermal conductivity and x denotes
thermal diffusivity.
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By means of the variable transformation approach, which consists of simple changes in the
boundary conditions of existing homogeneous transient heat conduction computer codes, the
solutions for nonhomogeneous media with quadratic, exponential and trigonometric material
variations can be obtained.

Notice that our previous work [174] was based on the GF approach which could only
handle exponentially graded materials with unidimensional material variation; while the
present work is based on the wvariable transform approach, which can handle three classes of
material gradation (quadratic, exponential and trigonometric) with multi-dimensional ma-
terial variation. Moreover, since the diffusion equation for nonhomogeneous materials can
be transformed to the diffusion equation for homogeneous materials by means of the simple
BEM concept, standard available BEM codes can be used with elementary modifications.
This nice feature was not possible with the former approach of reference [174]. The present
chapter describes how to do the modifications, which lead to a straightforward numerical

implementation.

6.2 Basic equations and the simple BEM concept

The governing differential equation for the transient heat conduction is given by

V- (K(r,9,2)V8) = pelz,9,2) 50 (6.4)

where ¢ = ¢(z,y, z;t) is the temperature function, k is the thermal conductivity, ¢ is the
specific heat, and p is the density which is assumed to be constant. Two types of boundary

conditions are prescribed. The Dirichlet condition for the unknown temperature ¢ is

$(z,y, z;t) = p(z,y, 23 1) (6.5)
on boundary ¥; and the Neumann condition for its flux is

op(z,y,z;8)
Q(xa Yy, z; f) = —k(.’lf,y, Z)_?i(-—a—!:’l—) = CI(CI»', Y,z t) (66)

on boundary ¥,, where n is the unit outward normal to ¥,. Here a bar over the quantity
of interest means that it assumes a prescribed value. For a well-posed problem ¥; UXy = X
with X being the entire boundary. As the problem is time dependent, in addition to these

boundary conditions, an initial condition at a specific time ¢, must also be prescribed. For
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simplicity, a zero initial temperature distribution has been considered, .e.

¢(‘ray) Z;to) = ¢0(.’L‘,’3/,Z) =0. (67)

A non-zero initial condition will introduce a domain integral in the formulation, which can
be handled by domain integral techniques such as dual reciprocity method [187] or particular
solution method [94].

By defining a variable

v(z,y,2) = VK9, 2) §(e,y, 2), (6.8)

Eq. (6.4) can be rewritten as

Vk($7y7z) 'Vk(x7y7z) V2k($,y,2) pC(.T,y, Z) ov
2 _ — Ui
Vet ( 4k?(z,y, 2) 2k(z,y, z) Y k(z,y,z) Ot (69)
or ( Y
5 , pe(x,y, z) Ov
= A

Vi + k' (z,y, 2)v Hz.0.2) 01 (6.10)

where Vh()VE() V%

4k2(-) 2k(:)

If the heat conductivity and the specific heat have the same functional variation, say e.g.,

k‘('r7y7z) = kOf(xayaz)a (612)
and
c(ac,y,z) = COf(nya Z), (613)

respectively then by substituting these material expressions into Eq. (6.10), one obtains

18
V20 + K (2, y, 2)v = 28—1’ (6.14)

where the constant thermal diffusivity is given by

k
K= — (6.15)
Cop
If k¥’ is either zero or a constant, then by introducing another variable substitution
v ="y, (6.16)
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one gets from Eq. (6.14)
2y = 22
K Ot

This is the standard diffusion equation for homogeneous materials. If a material variation

(6.17)

makes k'(z,y, z) in Eq. (6.10) zero or constant, then the FGM transient heat conduction,
Eq. (6.4), can be transformed into the standard homogeneous case given by, Eq. (6.17).

6.2.1 Material variations

o If k'(z,y,2) =0, then k(z,y, z) can be determined according to Eq. (6.11), i.e.

Vk+Vk V% _
4k2? 2%

0. (6.18)
In this case, if k(-) varies along the z direction only, then one gets
k(2) = ko(c1 + c22)? (Quadratic), (6.19)

where ¢; and ¢y are arbitrary constants and kg is a reference value for the function k.

o If K'(z,y,2) = —3?, then k(z,y, z) can be determined according to Eq. (6.11), i.e.

VkeVk V2%
FTERE T — B4 (6.20)
If k(-) varies only with z, then
k(2) = kola1e® + age™*)? (Ezponential), (6.21)

where a; and as are arbitrary constants.

o If K'(z,y,2) = 32, then k(x,vy, 2) can be determined from Eq. (6.11), i.e.

VkeVE V%
_VE_ 22
4k?2 2k b (6.22)
Again, for k() varying only with z,
k() = ko(a1 cos Bz + ag sin 32)? ( Trigonometric), (6.23)

where a; and as are arbitrary constants.
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Notice that for quadratic, exponential and trigonometric variations of both heat conductivity
and specific heat, the FGM transient problem can be transformed into a standard diffusion

equation.

6.2.2 Multi-dimensional material variation

Although in the above discussion, the material properties vary only in one coordinate, the
technique can be applied to materials varying in two or three coordinates as well. For
instance, the general expression for material property variation in three dimensions are given

below.
e Quadratic

k(l‘, Yy, Z) = ko(a1 -+ a2$)2(b1 + bgy)2(01 + CQZ)2 (624)
and  ko(dy + dyz + dsy + dyz + dszy + deyz + drzx + dgwyz)?. (6.25)

Here a1, az, by, by, c1, ca, and d;(i = 1..8) are arbitrary constants.

e Exponential
k(z,y,2) = ko(aleax)Q(ble’gyy(Clew)z (6.26)

Here ay, b1, c1, o, B and v are arbitrary constants.

e Trigonometric

k(z,y, z) = ko(ay cos ax4-as sin ax)?(by cos By-+by sin By)%(c1 cosyz+eysinyz)? (6.27)

Here aq, as, b1, ba, ¢1,¢2, 0, 8 and 7y are arbitrary constants. A numerical example with a 3D

quadratic material variation is included in Section 6.

6.3 Green’s function (GF)

The GF can be derived in closed form directly for the material property variations presented
above because, by variable transformation the nonhomogeneous problem can be transformed
into a homogeneous problem for which the Green’s function is known. The GF for the
nonhomogeneous problem is of great importance for a true boundary-only formulation.

The GF equation corresponding to Eq. (6.4) is
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V- (@9, 90V Gran) — (o, ) "M = 5@ - Pt~ ) (629)

where G,y is the GF, 6(Q — P) is the Dirac delta function located at the source point
P(zp,yp, zp), and Q(z, y, 2) is the field point. By defining the variable v = \/k(z, y, 2) Grcur
and substituting in Eq. (6.28) one obtains

pc(z,y,z) Ov

1/2 2 1 Z _ _#
k4 (z,y, 2)[Vv + k'v] W2,y 2) O 5Q — P)o(t —t). (6.29)
After simplifying, one gets
_ _
Vi 4+ kv — 1ov_ Q= P)ot—t) (6.30)

kOt  kYV2(zp,yp,zp)

where, due to the property of the Dirac delta function §(Q — P), the independent variable
of k'/2 was changed from Q to P. If k' is either zero or a constant, then by defining another
—k'kt

variable u = e™***v and using it in Eq. (6.30) we get

1w §(Q—P)(t—1)

kAt kV2(zp,yp,zp)eF Rt

Viu (6.31)

Again, by the property of the Dirac Delta function §(¢ — t'), a change in the independent

variable ¢ to ¢’ is permissible, so that

10u  6(Q— P)S(t—t)

u—— = — . 6.32
v Kk Ot kV2(zp,yp, zp)ek' st (6.32)

The solution of the GF of Eq. (6.32) can be readily obtained as
’U,(P, Q) = GtLom(P’ Q)k~1/2($Pa yp, ZP)e_k/Ktl7 (633)

where G7_,. (P, Q) is the GF of the standard diffusion equation for the homogeneous problem.
The GF corresponding to Eq. (6.30) is therefore,

v(P,Q) = e u(P,Q) = G, (P,Q)k™Y?(zp, yp, zp)e* =), (6.34)
Similarly, the GF corresponding to Eq. (6.28) is

Grem = k_l/Q(:):,y, 2)v(P,Q) = Gy, (P, Q)k“l/Q(x, Y, z)k_l/Q(xp, Yp, ZP)ekl”(t_t/). (6.35)
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The time dependent fundamental solution or the GF for the homogeneous problem is [24]

1 __r?
Gi (P,Q)= ————= ¢ 1, 6.36
hom( Q) [4’/TI£(t . tl)] ( )

(M4

The GF represents the temperature field at time ¢ produced by an instantaneous source of
heat at point P(zp,yp, zp) at the time t', r is the distance between the source point P and
the field point @. The GF for the nonhomogeneous material problem from Eq. (6.35) is

therefore

-2

e W=ty ek’n(t—t’)
B [nk(t — 1))z kY2 (z,y, 2)k*(zp, yp, 2P)

For the Laplace transform (LT) approach, the GF for the homogenous problem in the

G;‘GM(Pv Q)

(6.37)

Laplace space is

1 5
P o(PQ,s)=—e V&', 6.38
hom( Q 8) 47_”,_6 ( )

Following the above procedure by incorporating the variable transformations, the GF for the

nonhomogeneous material problem in the L'T' space is derived as

o T
Amr k'(’II, Y, 2)1/214?(1‘}3, yp, ZP)1/2 .

}GM(P7QJ S) (639)

Note that by setting k'(x,y, z) = 0, 8% and —32, a quadratic, trigonometric and exponential

material variation, respectively, can be obtained (See Table 6.1).

Table 6.1: Variable transformation approach

k' | Material variation | 1D Example

0 | Quadratic k(z) = ko{c1 + ca2)*

3% | Trigonometric k(z) = ko(a1 cos Bz + agsin 8z)?
—3? | Exponential k(z) = ko(a1€?? 4 age™P%)?

Although the GF for the FGM problem is given in this section, it is not used in the
numerical implementation. Rather that using the GF for nonhomogeneous materials, we
employ the simple boundary element method concept of reference [172] and extend the
concept to the transient case which allows us to use the standard GF, (Egs. (6.36) and
(6.38)), for homogeneous materials.
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6.4 Laplace transform BEM (LTBEM) formulation

In the present work, the transformed approach is chosen. As explained in the previous
sections, two variable transformations are used to reduce the nonhomogeneous problem to
the known standard diffusion problem. The first variable transformation involves only spatial
variables (z,y, z) (from ¢ to v —see Eq. (6.8)) and the second variable transformation involves
only the temporal variable ¢ (from v to u — sce Eq. (6.16)). Note that k' and x are constants.
The LTBEM formulation can be based on either variable u or variable v. In the following,
the LTBEM formulations based on u and v are presented and their relative advantages and

disadvantages are pointed out.

6.4.1 Approach 1: Formulation based on One-step

Transformation

Let the Laplace transform (LT) of u be denoted by

ﬁ(Q,s):/Ru(Q,t)e_Stdt. (6.40)

Here a tilde over a quantity of interest means LT of the quantity of interest. Thus, in LT
space, the differential equation (6.17) becomes

i=0, (6.41)

s
K
where zero initial temperature (up = 0 at ¢t = 0) is considered for simplicity.

Following usual practice, the corresponding boundary integral statement can be obtained

by ‘orthogonalizing’ this equation against an arbitrary (for now) function f(z,y, z) = f(Q),

and integrating over a bounded volume V

/V /@) (V2ﬁ - %u) dVg = 0. (6.42)

According to Green’s second identity, if the two functions ¥ and A have continuous first and
second derivatives in V, then

B oN O
/V (PYVAA = AV2)dV = /E (w% — A%-> ds. (6.43)

Using this relation and denoting the boundary of V by ¥, we obtain the first term of
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Eq. (6.42) as,

[ s@viaiv = [ s@vi@av+ [ (10752 - a2 ) aso. (o4

and using Eq. (6.43), we get,

0= [ (1@ 2 ~ @ L2 ase+ [ 5@ (V1@ - @) e (649

where n(Q) = (ng,ny,n,) is the unit outward normal on 2.
If we select f(Q) = G(P,Q,s) as a GF, then the GF equation is

V2G(P,Q, s) — %G(P, Q,s) = —86(Q — P), (6.46)

where ¢ is the Dirac Delta function. Thus the source point volume integral in Eq. (6.45)
becomes —(P). By means of Eq. (6.46), Eq. (6.45) can be rewritten as

a(P) + / (M) #Q)dSq = / ap,) 249 s, (6.47)
5 871 ) an
Accordingly, the GF for the homogenous diffusion equation is given by Eq. (6.38) as
_ 1 TR
G(P,Q,s) = e : (6.48)

Boundary conditions: One-step Transformation

In order to solve the boundary value problem based on the modified variable u, the bound-
ary conditions of the original problem should be incorporated in the modified boundary
value problem. Thus, for the modified problem, the Dirichlet and the Neumann boundary
conditions change to the following form, respectively:

T=e "7 =e ¥k $(Q,t) on I, (6.49)

ou_ 10k 2@ wm v (6.50)

n 2%kon" V&

The boundary conditions must also be transformed into the Laplace space, i.e.

ik / 3(Q, etrte=stdy (6.51)
R
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& 10k 1 B L
%_ﬂ%“_ﬁ/nq(@t)e e~*tdt.

6.4.2 Approach 2: Formulation Based on Two-step

Transformation

Let the Laplace transform (LT') of v be denoted by

'E(Q,s)=/Rv(Q,t)e_“dt.

(6.52)

(6.53)

If the formulation is based on the modified variable v instead of u, then the differential

equation for the formulation instead of (6.41) becomes

V20 + Ko — 25 =0,

=

(6.54)

Following the same steps as before, the final form of the boundary integral formulation

becomes

5(P) + /E (ac_g;_cg_)) 5(Q)dSo = /E G(P,Q)a%(g)ds@

Here, the GF in the 3D LT space is given by

1 7
G(P7 Qa 8) =_—e K s/x) "

d7r

(6.55)

(6.56)

Notice that the only difference between the formulations based on the variables v and
v is in the Green’s functions, Eq. (6.48) and Eq. (6.56), respectively. They differ in the
exponential terms, i.e. —+/—k’ + s/« for the formulation based on v, and —+/s/k for the
formulation based on u. This change is very simple to implement numerically in order

to extend the homogeneous code for FGM problems. The change in the treatment of the

boundary conditions for the formulation based on v is discussed below, and is employed in

the present work.

Boundary conditions: Two-step Transformation

The modified Dirichlet and Neumann boundary conditions for the modified variable v are

v = \/IEE(Q,t) on ¥
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and

v 10k Q1)

% = ﬁ%'l) - \/E on E?) (658)
respectively. In the LT space they are transformed as
5=VEd(Q,s) on Xy, (6.59)
and o 10k, qQ,s)
v . ql@Q,s
— = ——10— by .
on  2kon. M (6.60)
where )
@)= [F@oeta, Q)= [a@ne (6.61)
R R

Compared to Eqgs. (6.49)-(6.52), the changes herein do not involve an extra exponential
function of ¢ to deal with the Laplace transformation.
For constant values of ¢(Q,t) and (@, t), the expressions (6.59) and (6.60) becomes

b= \/E@ on % (6.62)

and
ov 1 ok . q(Q,s)

on T okan ek
Notice that the Dirichlet boundary condition of the original problem is affected by the

n ¥,. (6.63)

factor vk. Moreover, the Neumann boundary condition of the original problem changes to
a mixed boundary condition or Robin boundary condition. This later modification is the
only major change in the formulation.

Another common boundary condition of the original problem is a prescribed relationship
between the potential and the flux (e.g. convective heat transfer problems). The boundary
condition of this type is

q = M¢+ A2 (Robin type). (6.64)

The corresponding boundary condition for the modified problem is also a Robin boundary
condition similar to Eq. (6.60), i.e.

00 _ (10k N\ . N(Qs)
2 ( L /\1) ; | (6.65)
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6.4.3 Remarks

The formulation based on u uses the homogeneous GF, Eq. (6.48), but due to the exponential
term e~ the modified boundary conditions in the LT space, Eqs. (6.51)-(6.52), include an
exponential function of ¢ in the Laplace transformation. On the other hand, the formulation
based on v uses a slightly different Green’s function (the exponential term changes from
—+/8/k to —\/m }, but the treatment of the modified boundary condition does not
involve the extra exponential term. For these reasons, we adopt the LTBEM formulation

based on v for the numerical implementation. However, both formulations are equivalent.

6.5 Numerical implementation of the Galerkin
LTBEM

The numerical methods employed in the current work use standard Galerkin techniques. A
brief discussion of these techniques in the context of the BEM is presented below. It includes
the development of the Galerkin boundary conditions (which is the main consideration in the
simple BEM concept), selection of the boundary element type, treatment of singular integrals

and corners, and numerical inversion of the Laplace transform in the LTBEM framework.

6.5.1 Galerkin boundary integral equation.

Define the collocation BIE as

mmzam+/

=

(G2 e~ [awas®5Fa o

and thus for an exact solution B(P) = 0.

In a Galerkin approximation, the error in the approximate solution is orthogonalized
against the shape functions, i.e. the shape functions are the weighting functions and the
condition B(P) = 0 is enforced in the ‘weak sense’, i.e.

/ Ni(P)B(P)dP = 0. (6.67)
b
As a result the Galerkin technique possesses the important property of the local support

(see Figure 6.1). The Galerkin technique is especially suitable to treat corners [137]. After

replacing the boundary and the boundary functions by their interpolated approximations, a
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set of linear algebraic equations emerges,
ov
H|{v} = — . 6.68
) =01 { 5 ) (6.68)

The matrix G is symmetric because its coefficients depend only on the distance (r) between
the source point (P) and the fields point (@), but matrix H is not symmetric because it
depends on the normal vector of the field point point (Q). For Dirichlet problems, the
Galerkin method gives rise to a symmetric system of equations.

After the boundary conditions of the problems are incorporated to the system, Eq. (6.68),
the matrices can be reordered in the form

[Al{X} = [B], (6.69)

where all the unknown quantities have been collected into the vector X. This system of
equations can be solved by standard solution schemes for linear systems .

In the context of nonhomogeneous media a symmetric Galerkin boundary element method
(SGBEM) has been presented recently by Sutradhar et al[176]. Details of the symmetry
property and numerical implementation can be found in references [85, 88, 13]. However,
a non-symmetric Galerkin formulation, employing the singular Galerkin BIE, is adopted in

the present work.

6.5.2 Treatment of boundary conditions

With respect to standard BEM codes the main modification in the implementation of the
simple BEM is to incorporate the boundary conditions for the modified problem. In this
section, the necessary modifications are described.

For the sake of illustration, let us assume three nodes, of which node 1 and node 3 have
prescribed Neumann boundary condition, and node 2 has prescribed Dirichlet boundary

condition, i.e.,

a1, o9, 73 known quantities

b1, g2, 3 unknown quantities.

These quantities are transformed into the Laplace space using Eq. (6.61). In the modified

boundary value problem the variables are © and 99/9n. The system of algebraic equations
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Shape function N (P)

JAVAVAY

Figure 6.1: The local support of the Galerkin formulation at the source point P.

in the form of Eq. (6.68) emerges as,

Hy My His Uy Giu1 G2 Gis dvy/on
H21 H22 H23 'U~2 = GQ1 Ggg G23 862/5‘71 . (670)
Hs Hsy Hjs U3 Gs1 Gz Gss dvz/on

By rearranging the equations so that the unknowns are passed to the left-hand side, we can

rewrite the linear system as follows

Hyy =G Hi3 U Gu —Hie G 8171/877,
H21 _G22 H23 8172/8n = G21 _H22 G23 '52 . (671)
H3y —Gsp Hsg U3 Gs1 —Hsy Gass 8173/ on

Using Eq. (6.59) and Eq. (6.60), we obtain the final form of the set of equations,

(Hy— S8 _Gyy (Hp— %2y ( 4 Gu —Hp G | [ —@(s)/Vk

(Han — 53 5%) —Gaoo (Hzs— 525 0vp/On ¢ = | Ga1 —Ha Gag $2(s)Vk

(Hy — G088 Gy (Hys—S22) | | Ga —Hz Ga | | —5(s)/vVE
(6.72)

which is in the form of Eq. (6.69). We solve these equations for ¥y, 0U2/0n, and v3; and
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finally, by using Eq. (6.59) and Eq. (6.60), we obtain

$i(s) = 0/VE,

- _ 81.72 1 8k ~
G@As) = —\/E{a—n—%%w}7

¢3(s) = vs/Vk. (6.73)

These quantities are the solutions in the transform space. The final step is to invert this

quantities back to the time domain by using numerical inverse Laplace transform technique.

6.5.3 Boundary elements

The surface of the solution domain is divided into a number of connected elements. Over each
element, the variation of the geometry and the variables (potential and flux) is approximated

by simple functions. Six noded isoparametric quadratic triangular elements are used (see
Figure 6.2).

1 60 60 2
X ¢

Z
Figure 6.2: A triangle in the 3D space is mapped to an equilateral triangular quadratic
element in {n, £} space, where —1 <7 < 1,0 < ¢ < V3(1 - |n]).

The geometry of an element can be defined by the coordinates of its six nodes using

appropriate quadratic shape functions as follows
6

zi(n:€) = Y Ny(n,6)();- (6.74)

Jj=1

By means of an isoparametric approximation, the same shape functions are used for the
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solution variables (both potential and flux), as follows:

$i(n,€) =Y Ni(n,€)(¢0);,

g=1

= > Ni(n,)(@);- (6.75)

The shape functions can be explicitly written in terms of intrinsic coordinates £ and 7 as
(see Figure 6.2):

Ni(,6) = (€ +V3n—V3)(E+V3n)/6  Nu(n,&) = (£+V3n—V3)(€—V3n—V3)/3
No(n,€) = (€= V3n —V3)(€ —V3n)/6  Ns(n, &) = —2£(¢ — V3n — V/3)/3
Ns(n,€) = £(26 —V/3)/3 Ne(n,€) = —2£(& + V30 — V/3)/3 (6.76)

The intrinsic coordinate space is the equilateral triangle with —1 <7 < 1,0 < ¢ < V3(1 —

Inl)-

6.5.4 Singular integrals

For three dimensional problems, there are four typical configurations for the two elements
containing the source point P and the field point @ (see Figure 6.3), and thus four distinct
situations regarding the singularity must be considered:

e Non-singular case, when the source point P and the field point ) lie on distinct ele-

ments, that do not share a common vertex or edge.
e (Coincident case, when the source point P and the field point @ lie in the same element;
e FEdge adjacent case, when two elements share a common edge; and

o Vertex adjacent case, when a vertex is the only common node between the two elements.
A hybrid analytical /numerical approach using the “limit to the boundary” approach has
been adopted to treat the singular integrals. Details of this technique can be found in the
papers by Gray et al.[74, 73] and Sutradhar et al.[176].
6.5.5 Corners

The treatment of corners in the Galerkin BEM is simple and elegant due to the flexibility

in choosing the weight function for the Galerkin approximation. Corners are represented by
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Edge Adjacent

Vertex Adjacent

Non-singular

Coincident

Figure 6.3: Four different cases considered for integration: (a) non-singular; (b) coincident;
(c) edge adjacent; and (d) vertex adjacent.

multiple nodes, and on each side different weight functions are used (see Figure 6.4). For
a mixed corner (flux is unknown in one side of the corner, potential is known), a non zero
weight function is assigned only on the side where flux is unknown. For a Neumann corner
(flux specified on both sides of the corner, potential is the unknown), the weight functions
are combined together. On a Dirichlet corner (unknowns are flux on each sides, potential is

known) the usual weight functions are assigned on both sides of the corners.

6.5.6 Numerical inversion of the Laplace transform

In the LTBEM approach, the numerical inversion of the LT is an important issue. For
the present implementation the Stchfest’s algorithm [167, 168] has been employed for this
purpose. During the inversion process, the sign of the expression under the square root in
Eq. (6.56) i.e., —\/—k’ + s/k should not become negative. A few comments on this issue
are in order. For the parabolic material variation ¥’ = 0, and for the exponential material

variation k' = —(32. As a result for these two cases, the sign of the expression is always
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Weight function N,

M

Double node for edges Dirichlet Cormer

(Unknowns are fluxes on each side,
Potential is known)

Weight function Ny

A

Mixed Comer

Multiple nodes when
multiple planes meet

(Unknown is flux on right side,
Potential is known)

Neumann Corner

(Unknown is potential at corner,
flux is known on both sides)

Figure 6.4: Corner treatment in the Galerkin BEM.

positive. However, for the trigonometric material variation, if &' = (32 is greater than s/k,
then the sign can be negative, but it will depend on a few parameters. Since in the inversion

process the Laplace parameter
In2

T "

where T is the specific time for which the solution is sought, there exists a criterion when

s (6.77)

the sign can be negative. The critical criterion can be written as

In2

T>—
k32’

(6.78)

which occurs for ¢ = 1. The criterion depends on the relative magnitudes of the nonhomo-

geneity parameter 3, the specific time for solution T' and the diffusivity .

6.6 Examples

In this section, a number of test examples are reported, demonstrating the implementation
of the above techniques. To validate the numerical implementation, the following examples

are presented:
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(1) Cube problem
e material gradation along the z-axis,
e 3D material gradation,

(2) Rotor problem

The first example is a cube with constant temperatures in two sides and insulated in all

the other sides. Two different cases are studied for this example by changing the material

variation and changing the boundary conditions. For this problem, all the three kinds of

material variation, ¢.e. quadratic, exponential and trigonometric, are prescribed. This is

a verification problem, in which the numerical solutions are compared against analytical

solutions. The other example is a rotor problem, which is of engineering significance in the

field of functionally graded materials.

6.6.1 Cube problem

Material gradation along the z-axis.

A unit cube (L = 1) with prescribed constant temperature on two sides is considered. The

problem of interest and corresponding BEM mesh is shown in Figure 6.5. The top surface

of the cube at [z = 1] is maintained at the temperature T = 100, while the bottom at

[z = 0] has T = 0. The remaining four faces are insulated (zero normal flux). The initial

temperature is zero. Three different classes of variations are considered. Analytical solutions

for the three cases are derived by using the method of separation of variables.

Analytical solutions

e Quadratic material gradation

Let the quadratic variation of thermal conductivity k(z, y, z) and specific heat ¢(z, y, 2)

be defined as
k(z,y,z) = k(z) = ko(1 + B2)* = 5(1 + 22)?,

and
c(2,y,2) = c(z) = co(1 + B2)* = 1(1 + 22)?,
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Flux=0 (back at Y=1)

Temp=100 (top at Z=1)
(1,1,1)

Flux=0 (left at X=0)
z

| Flux=0 (right at X=1)

A
25
x  (0,0,0)

Flux=0 (front at Y=0)
Temp=0 (bottom at Z=0)

Figure 6.5: Geometry and boundary conditions of the FGM unit cube problem with con-
stant temperature on two planes. The BEM mesh consists of 294 nodes and 108 quadratic

triangular elements.

respectively, in which 3 is the nonhomogeneity parameter. The analytical solution for

temperature is

le 2T1 cosnm | nwz _(=2r%

where L is the dimension of the cube (in the z-direction) and

Ty = Vko(1 + BL)T

The analytical solution for flux is

q(r,y,z;t) = —k(mayaz)%
= —k(z,y,2) 7((111511 Z COSRT sin 1—7—7-1-36_
=1
X (cos (%) oo sin ( ) f >]

e Exponential material gradation
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Let the exponential variation of thermal conductivity k(z, y, z) and specific heat ¢(z, y, 2)

be defined as

k(z,y,2) = k(z)=koe? =5e%, (6.84)
and

oz, y,2) = c(z) = coe®* = 1%, (6.85)

respectively, where § is the nonhomogeneity parameter. The analytical solution for

temperature is

1 — 202 2TeBlnrcosnm . nwz _(n2x%_ g2
- _ E : : ~Bz ,—\ 8% )&
o2y, 5t) = L pp—ry; B2 tnen2 0L ¢ ° s >’(6'86)

where L is the dimension of the cube (in the z-direction). The analytical solution for

flux is
o¢
] -t = -k 1 -
q(z,y,z;t) (@y,2)5
—28z BL n2x
= —k(zy, ) 20Te 2. 2T ePln cosnw 8z _( +52)
Y 1— —2[3L — ﬁ2L2+n27r2
x (”—Z cos% si "”) (6.87)

o Trigonometric material gradation

Let the trigonometric variation of the thermal conductivity k(z,y, z) and specific heat
c(z,y, z) be defined as

k(z) = ko(ascos Bz + aysin Bz)* = 5(cos(0.2z) + 2sin(0.22))?, (6.88)
and
c(z) = colagcos Bz + agsin B2)* = 1(cos(0.22) + 2sin(0.22))?, (6.89)

respectively, where 3 is the nonhomogeneity parameter and a; and ap are constants.
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The analytical solution for temperature is

Ty sin Bz 2T1 nwCoSNT . NTZ _(nzwz _ g2),€t
it —_— Rz 6.90
¢(z,y, 2 1) /. ﬁL Z 2T L2 sin ——e (6.90)
where L is the dimension of the cube (in the z-direction) and
Ti = ko (cos L +2 sin L) T (6.91)

The analytical solution for flux is

)
q(z,y,z;t) = —k(z,y, Z)a—dj

= —k(z,y,2) [—

2T1 Z NI COSNT (n_igz_g2)m

(cot BL+2) TS
3 cos?Bz—4 cosPBzsinfz —4

+ n2n? — B2L2
nwz\ nw . (nuz\ B(—sin Bz + 2cos §z)
X (COS ( L ) 7 ( L ) (cos Bz + 2 sin fz)

Results

)]

The cube is discretized with 294 nodes and 108 quadratic triangular elements as illustrated

by Figure 6.5. The profiles of the thermal conductivity k(z) of the three cases are illustrated

in Figure 6.6. The temperature profile along the z axis is plotted at different times for

the quadratic, exponential and trigonometric material variations, and compared with the

analytical solutions in Figures 6.7, 6.8 and 6.9 respectively. The variation of flux at the

z = 0 surface with respect to time is plotted in Figure 6.10 for the three material variations.

The variation of flux at the z = 1 surface is plotted in Figure 6.11. The numerical and

analytical results are in excellent agreement.

Cube with three dimensional material gradation.

The three dimensional variation of the thermal conductivity and the specific heat are

k(z,y,z) = (5+02x 4+ 0.4y + 0.6z + 0.1zy + 0.2yz + 0.3z + 0.72yz2)?,

and

c(x,y,2) = 0.2(5 + 0.2z + 0.4y + 0.6z + 0.1zy + 0.2yz + 0.3zx + 0.Tzyz)?,
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respectively. Figure 6.12 illustrates the iso-surfaces of the three dimensional variation of the
thermal conductivity. The BEM mesh and the boundary conditions are shown in Figure
6.13.

The initial temperature of the cube is kept as zero. The mixed boundary conditions at

the six faces of the cube are prescribed as follows

#(0,y,2z) = 0

15}
201,3,2) = k(1,2 2EVEL 025 9y + 324 2)

¢(z,0,z) = 0

g(z,1,2) = —k(z,1, z)%ﬁ)’yg’ﬁ = —0.1z2(50 + 2z + 6z + 3z=2) (6.95)

#(z,y,0) = 0

8 Y 9
g(z,y,1) = —k(z,y, 1)% = —0.1zy(50 + 2z + 4y + zy).

The cube is discretized with 294 nodes and 108 quadratic triangular elements. For validation
purposes, the BEM result is compared with the finite element simulation performed by the
commercially available software ABAQUS. In the FEM simulation 4961 nodes and 1000
20-noded brick elements were used. The temperatures at (1,1,1) and (0.5,1,0.5) (center
of the Y = 1 plane) are plotted against time and compared in Figure 6.14. The results
show good agreement. Note that the point of interest at (1,1,1) is a corner node with
Neumann boundary condition in all three associated planes and only 3 elements are used
in each directions in the cube. Flux values at (0.5,0,0.5) (center of the X = 0 plane) are
plotted against time and compared with the corresponding FEM solution in Figure 6.15.
These results are also in very good agreement.

In general, conventional FEM software (including ABAQUS [1]) use homogeneous ele-
ments with constant material properties at the element level. In order to incorporate the
functional variation of the material at the finite element level, a user subroutine UMATHT
[172] was developed for ABAQUS [1]. By means of this subroutine, functional variations of
thermal conductivity and specific heat can be included within an element by sampling the
material property at each Gauss point. Graded elements approximate the material gradient
better than conventional homogeneous elements and provide a smoother transition at ele-
ment boundaries. Further investigations on graded elements can be found in the papers by
Santare and Lambros [148] and Kim and Paulino [99] for 2D problems, and in the paper by
Walters et al.[180] for 3D problems.
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6.6.2 Rotor problem

The last numerical example is an FGM rotor with eight mounting holes having an eight-fold
symmetry. Due to the symmetry, only one-eighth of the rotor is analysed. The top view
of the rotor, the analysis region, and the geometry of the region are illustrated in Figure
6.16. The grading direction for the rotor is parallel to its line of symmetry, which is taken as
the z2-axis. The thermal conductivity and the specific heat for the rotor vary quadratically
according to,

k(z) = 20(1 + 420.72), (6.96)

and
e(z) =5(1+ 420.7z)2, (6.97)

respectively.

The profile of the thermal conductivity k(z) and the specific heat c¢(z) of the variations
are illustrated in Figure 6.17. The temperature is specified along the inner radius as Tipper =
20+ 1.25 x 108(z — 0.01)? and outer radius as Tyyzer = 150+ 1.25 X 10°(z —0.01)2. A uniform
heat flux of 5 x 10° is added on the bottom surface where z = 0, and all the other surfaces
are insulated. The BEM mesh employs 1584 elements and 3492 nodes. A schematic for the
thermal boundary conditions and the BEM mesh employed is shown in Figure 6.18. Here
the solution of the problem is verified with the commercially available software ABAQUS
using the user-defined subroutine UMATHT of reference [172]. The FEM mesh consists
of 7600 20-noded brick elements (quadratic) and 35,514 nodes. The mesh discretization is

summarized in Table 6.2.

Table 6.2: Mesh discretization by means of BEM and FEM for the rotor problem.

Method || Nodes | Elements | Element type
BEM 3,492 1,684 T6
FEM 35,514 7,600 B20

The FEM mesh is shown in Figure 6.19, which is intended simply to provide a reference
solution against which the BEM results can be compared to. The temperature along the
radial direction at the straight edge located at z = 0.01 is plotted and compared with the
FEM results at different times in Figure 6.20. Figure 6.21 shows the comparison of the BEM
and FEM results for the temperature around the hole at different times. Contour plots of
the temperature distribution at different time levels are shown in Figure 6.22. The radial

heat flux at the right interior corner is plotted at various times in Figure 6.23. All the results
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obtained with BEM and the FEM are in good agreement.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45 . . ‘ ,

"
a0t Quadratic

35+

30r 1

201
Exponential

Thermal conductivity k(z)

151
Trigonometric
10+ \
/
5 n ! .
0 0.2 0.4 0.6 0.8 1
z—coordinate

Figure 6.6: Thermal conductivity variation along the z direction. The quadratic variation is
k(z) = 5(1 + 22)2, the exponential variation is k(z) = 5¢** and the trigonometric variation
is k(z) = 5[cos(0.2z) + 2sin(0.22)]%.
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Figure 6.7: Temperature profile in the z direction for different time levels for the FGM cube
problem with quadratic material variation.
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Figure 6.8: Temperature profile in the 2z direction for different time levels for the FGM cube
problem with exponential material variation.
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Figure 6.9: Temperature profile in the z direction for different time levels for the FGM cube
problem with trigonometric material variation.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2000 T .

1500

5
2 1000r

500¢ Exponential : k(z)=5¢2" 2

*  Parabolic : 5(1+2zf
Trigonometric: 5[cos(0.22)+23in(0.22)]2
— Analytical

0 0.05 0.1 0.15 0.2
time (t)

Figure 6.10: Variation of flux at z = 0 surface with time for the three variations.
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Figure 6.11: Variation of flux at z = 1 surface with time for three types of material gradation.
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Figure 6.12: Representation of iso-surfaces for the three dimensional variation of thermal
conductivity k = k(z,y, 2).

Flux=-0.1 4 t =1
ux=-0.1xy(50+2x+4y+xy) {top at Z=1) Flux=-0.1zx(50+2x+62+32x) (back at Y=1)

_(1,1,1)

Temp=0 (left at X=0) Flux=-0.2zy(25+2y+3z+zy) (right at X=1)

z (0,0,0)

v
Temp=0 (frontatyY

x Temp=0 (bottom at Z=0)

Figure 6.13: The geometry, boundary conditions and the BEM mesh of the FGM unit cube
problem with 3D material variation.
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Figure 6.14: Variation of temperature with time at (1,1,1) and (0.5, 1,0.5).
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Figure 6.15: Variation of flux with time at (0.5,0,0.5).
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Figure 6.18: Thermal boundary conditions and the BEM mesh on the rotor.
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Figure 6.19: The FEM mesh with 7600 20-noded brick elements and 35514 nodes.
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Figure 6.20: Temperature distribution along the right top edge (indicated by the arrow).
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Figure 6.21: Temperature distribution along the circular contour around the hole on the top

face.

6.7 Concluding Remarks

By means of a simple variable transformation, transient heat conduction problems in func-

tionally graded materials for three different classes of material variation (quadratic, exponen-
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Figure 6.22: BEM contour plot of the temperature of the rotor at different time levels.
tial, trigonometric) can be transformed into the homogeneous diffusion problem. Moreover,

the material variation can be in one, two or three dimensions. With easy changes in an

existing BEM code for homogeneous materials, the FGM transient heat conduction problem
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Figure 6.23: Radial heat flux along the interior edge (indicated by the arrow).

with constant diffusivity can be solved. A Laplace transform Galerkin BEM formulation has
been presented in order to implement the methodology, however, the idea is also applicable
to collocation BEM, symmetric Galerkin BEM or meshless BEM. The results of the present
BEM numerical simulations show excellent agreement with analytical solutions and FEM
simulations. The numerical inversion of the Laplace transform using Stehfest algorithm

yield accurate results.
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Chapter 7

Simple BEM for multiple cracks in
FGMs

The simple boundary element method consists of recycling existing codes for homogeneous
media to solve problems in nonhomogeneous media while maintaining a purely boundary-
only formulation. Within this scope, this chapter presents a “simple” Galerkin boundary
element method for multiple cracks in problems governed by potential theory in functionally
graded media. Steady state heat conduction is investigated for thermal conductivity varying
either parabolically, exponentially, or trigonometrically in one or more coordinates. A three
dimensional implementation which merges the dual boundary integral equation technique
with the Galerkin approach is presented. Special emphasis is given to the treatment of crack
surfaces and boundary conditions. The test examples simulated with the present method
are verified with finite element results using graded finite elements. The numerical examples
demonstrate the accuracy and efficiency of the present method especially when multiple
interacting cracks are involved.

The chapter is organized as follows. Section 7.1 gives a brief introduction on crack prob-
lems in BEM for nonhomogeneous media. The simple BEM concept is presented in Section
7.2. Section 7.3 describes the fracture algorithm for crack analysis. It is shown that the stan-
dard displacement discontinuity approach is not suitable to solve the fracture problem using
the “simple BEM”, and thus the dual BIE approach is used to circumvent this situation.
Section 7.4 briefly discusses various aspects of the numerical implementation including treat-
ment of boundary conditions, singularity, and corners. Section 7.5 demonstrates, by means
of numerical examples, that the methodology works and is efficient. Section 7.6 contains

some concluding remarks.
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7.1 Introduction

Fracture geometries arise in important technological applications in which the governing
relation is governed by potential theory. Modeling of subsurface flow often deal with frac-
tures in the rock [121, 152, 149] or soil systems having embedded thin layers of different
permeability [169]. Simulation of an electroplating process provides an important industrial
application [70, 72|. Moreover, moving boundary problems, such as crack propagation, is an
area in which the boundary element method (BEM) is best suited. Remeshing an evolving
geometry for crack propagation problems is much simpler with boundary element analysis
than with a domain-based analysis such as the finite element method (FEM), especially if
multiple interacting cracks are involved.

In this chapter, crack problems in functionally graded media are investigated. Such media
correspond to those in which the volume fraction of the constituents varies gradually leading
to a non-uniform microstructure with continuously graded macro properties, e.g. thermal
conductivity, density and specific heat. For instance, for problems governed by potential
theory, e.g. steady state heat transfer, the thermal conductivity is a function of position,
i.e. k = k(x). For further literature regarding functionally graded materials (FGMs), the
reader is referred to the books by Suresh and Mortensen [171] and Miyamoto et al.[122],
to the special issue of the Materials Science and Engineering journal which contains papers
from the German Priority Programme (FGMs) [91], and to the review chapter by Paulino
et al.[138].

This chapter describes a “simple BEM” for crack geometries which merges the dual
boundary integral equation approach with the Galerkin approximation. In the BEM litera-
ture, most implementations have been developed for non-crack problems in nonhomogeneous
media. In the context of BEM, problems of potential in nonhomogeneous media have been
previously studied by Cheng [34, 35], Ang et al.[5], Shaw and Makris [156], Shaw [154], Har-
rouni et al.[83, 84], Divo and Kassab [50, 48], Bansal and Pindera [6] and recently by Gray
et al.[75] and Dumont et al.[55]. The majority of these works have emphasized on obtaining
the Green’s function.

In recent years, the Galerkin boundary element method (GBEM) has emerged as a pow-
erful numerical method in computational mechanics [13]. To solve crack problems by the
collocation BEM, higher order interpolation using Hermite element or Overhauser element,
which possesses C' smoothness, is required [79]. For three dimensional implementations,
such higher order elements involve tremendous complexity. An alternative approach consists
of using non-conforming elements. Unlike collocation, the Galerkin formulation does not re-

quire C! interpolation. The Galerkin formulation involves an additional integration over the
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boundary, that balances out the extra derivative in the hypersingular equation, and thus a
C? interpolation suffices [71]. Moreover, this technique allows a natural treatment of corners
[137] as discussed later on this chapter.

Recently, Sutradhar and Paulino [172] presented a transformation approach, called the
“simple BEM,” for potential theory problems in nonhomogeneous media where nonhomoge-
neous problems are transformed into known problems in homogeneous media. The method
leads to a pure boundary-only formulation. This idea has been successfully implemented in
three dimensions for steady state [172] and also for transient heat conduction [173] problems
where the material property varies in one, two and three dimensions. However, no crack
problems were addressed in previous works. Thus, the present work extends the simple

BEM concept for multiple interacting crack problems governed by potential theory.

7.2 On the simple BEM concept

The idea of the “simple BEM” consists of transforming problems in nonhomogeneous me-
dia to known problems in homogeneous media such that existing codes for homogeneous
media can be recycled with simple modifications. By means of the variable transformation
approach, which consists of simple changes in the boundary conditions of existing homo-
geneous heat conduction computer codes, the solutions for nonhomogeneous media with

quadratic, exponential and trigonometric material variations can be readily obtained.

7.2.1 Governing Equation

For problems governed by potential theory, the governing differential equation for a potential
function ¢ defined on a region €2 bounded by a surface ', with an outward normal n (see
Figure 7.1), can be written as

Ve (k(z,y,2)Vé) =0 (7.1)

where k(z,y, z) is a position-dependent material function and the dot represents the inner
product. Equation (7.1) is the field equation for a wide range of problems in physics and
engineering such as heat transfer, fluid flow motion, flow in porous media, electrostatics and
magnetostatics [96]. The boundary conditions of the problem can be of the Dirichlet or

Neumann type:

$p=¢ onT, (7.2)
7

4= —kz,y,) S =7 onT, (7.3
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Graded Material:
Thermal conductivity k(x, y, z)

i

Y
Figure 7.1: Definition of the boundary value problem with boundary I'" (including crack
surfaces and outer boundary) and interior domain .

respectively, with I' = I'; 4+ I's for a well-posed problem. The boundary value problem is a
Dirichlet problem if the potential is known on the whole boundary, whereas it is a Neumann
problem if the flux is known on the whole boundary. Mixed boundary conditions are also
frequently encountered: flux is prescribed over some portion of the boundary and potential
is prescribed over the complementary portion of the boundary [172]. Handling of all those

boundary conditions in the context of the “simple BEM” is described in Section 7.2.3.

7.2.2 Variable Transformation Approach

By defining the variable [65]

v(z,y,2) = Vk(z,9,2) ¢(2, 9, 2), (7.4)

one rewrites Eq. (7.1) as

Vo + (Vzgk - sz) v=0 (7.5)
or, alternatively
Vv +K(z,y,2)v=0 (7.6)
where \
K = Vz;yk - V%k. (7.7)

By setting k'(z,y, 2) = 0,+0% and -32, three classical homogeneous equations namely, the
Laplace, standard Helmholtz and the modified Helmholtz can be obtained, respectively.
From these cases, a family of variations of k(x,y, z) can be generated, as shown in Table 7.1.
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Table 7.1: Family of material variations: transformation approach

k' | Equation Material variation | k(z,y, 2)
0 | Laplace: Vv =0 Quadratic ko(a1 + azx)?(by + boy)?(c1 + coz)?
(% | Helmholtz: Trigonometric ko(ay cos ax + ag sin ax)?(b; cos py + be sin py)?
V2u+ 320 =0 X (c1 cosyz + casinyz)?
—B3? | Modified Helmholtz: | Exponential ko(a1e™ + age %) (bret¥ 4 boe H¥)?
Vv - 20 =0 X (c1€7* + coe™7%)?

In this paper we focus on variations which depend only on one cartesian coordinate,
namely z. From an engineering point of view (for applications such as FGMs), material

variation in one coordinate is of practical importance as described in references [138, 101].

7.2.3 Boundary conditions

In order to solve the boundary value problem based on the modified variable v, the bound-
ary conditions of the original problem have to be incorporated in the modified boundary
value problem. Thus for the modified problem, the Dirichlet and the Neumann boundary
conditions given by Eq. (7.2) and Eq. (7.3) respectively, change as follows:

v=vk¢ onl, (7.8)

Qo _ 1ok 4
on  2kon’ Vk

Notice that the Dirichlet boundary condition of the original problem is affected by the

on I'y (7.9)

factor v/k. Moreover, the Neumann boundary condition of the original problem changes to a
mixed boundary condition (Robin boundary condition). This later modification is the only
major change on the boundary value problem.

Another common boundary condition of the original problem is a prescribed relationship

between the potential and the flux (e.g. convective heat transfer problems) i.e. Robin type:
g=M9o+ A (7.10)

The corresponding boundary condition for the modified problem is also a Robin boundary
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condition, which is given by
ov 1 ok )\2
== -2 11
on <2k on )‘1> YT (7.11)
7.3 Crack Analysis

Consider a body of arbitrary shape which contains a crack, as shown in Figure 7.2. The
boundary I' of the body B is composed of non-crack boundary I', and the crack surface T'..
The portion of the boundary I', with prescribed potential is denoted by Fb( b and the portion
with prescribed flux boundary is denoted by I'yq). The crack surface I'; consists of two
coincident surfaces I' and I',, representing the upper and lower crack surfaces respectively.
The outward normals to the crack surfaces, designated by n} and n; are oriented in opposite
directions and at any point on the crack surfaces, n; = —n? (see Figure 7.2). The dual
equation Galerkin approximation for a fracture geometry can be written in terms of a 3x3
block matrix. Specifically, the first block row will represent the outer, or non-crack, boundary
equations, and the equation for a particular node, as per the usual Galerkin procedure,
is chosen according to the prescribed boundary data. In accordance with the dual BEM
approach [141, 4], the second and third rows will denote, respectively, the hypersingular and
standard equations written on the crack surface. With these definitions, the equations take

the abbreviated form

hi1 hiz his 4 g1 G122 Gi3 O
hoi hag  hos Vo | =1\ 921 922 923 vy (7.12)
hs1 hsz has Vs g31 932 933 Vgn

The vector of unknowns on the non-crack boundary can be a mixture of potential and
flux, and is therefore denoted by €2;. The corresponding vector of prescribed boundary values
is indicated by ;. On the fracture, V represents the vector of unknown potential values,
V™ the specified flux, and the subscripts {2, 3} label the two sides of the crack. The matrix
‘H on the left therefore multiplies the vector of unknowns, and the right hand side consists

of known quantities.

7.3.1 Displacement discontinuity approach

The displacement discontinuity approach has been extensively used to solve fracture prob-
lems [41, 42]. Notice that, the only difference between the two coincident crack surfaces is

the orientation of the normals (n; = —nJ) and, as a result, h13 = —his and haz = —hago.
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HBIE (1)

BIE (1)

Figure 7.2: Fracture scheme using the dual BEM approach.

These relationships between the second and third columns are a consequence of the integra-
tion over the two sides of the fracture differing by a sign. The usual boundary condition is
the derivative quantity (e.g. flux, traction) and thus only the hypersingular equation should
be employed.

hi1 hia | —hia M g11 912 | 912 Q1
hotr hay | —hae Voo | =1 921 922 | 922 %% (7.13)
hs1  hse ‘ —h3y Vs gs1 gs2 ‘ gs2 vy

It is convenient to replace the potential V5 and V3 by a single jump in potential
AV =V, -V,
Similarly on the right-hand side the flux V;* and V5" is replaced by the flux summation
VR =V 4+ Ve

Thus the system of equations can be rewritten as

A

hit hi2 |0 Q g1 g12|0 0
hot hoy |0 AV | =1 g 92210 ryn (7.14)
hs1  hsa i 0 0 931 932 \ 0 0

It therefore suffices to solve the smaller 2 x 2 block system for the unknowns (€, AV).
In the simple BEM approach, as explained earlier, the boundary conditions of the origi-
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nal problem have to be incorporated in the modified boundary value problem. As shown in
Section 7.2.3, the Neumann boundary condition of the original problem changes to a Robin
boundary condition. Typically the crack surfaces are subjected to Neumann boundary con-

ditions. If the known flux on the two crack surfaces is denoted by gz and g3 then, according
to Eq. (7.9), ¥V™ in Eq. (7.14) changes to

1 0k Q2+ q3

BVt = oo (Vo V) - v (7.15)
Therefore Eq. (7.14) is rewritten as
hir hag |0 0 g1 G2 |0 0
hy ha |0 Va=Vs | = 921 9220 ok (Vy+Va) — EHE | (7.16)
hs1 hs2 ; 0 0 931 932 ‘ 0 0

Due to this change in the system of equations it is apparent from Eq. (7.16) that the unknown
variable can no longer be the jump in potential AV = V, — V5. As a result, the standard
displacement discontinuity approach is not directly suitable as a fracture algorithm for the

simple BEM technique.

7.3.2 The Dual BEM approach

The Dual BEM approach is the method of choice to solve fracture problems in this work. In
this technique, Eq. (7.13) is used after modifying the boundary conditions. This is suitable
for problems in potential because for these problems the variable of interest is the potential
distribution on the crack surfaces. In the Dual BEM approach, the potentials are calculated
directly during the solution process. On the contrary, in the displacement discontinuity
approach, the variable that is obtained from the system of equations is the jump in potential.
As a consequence, postprocessing and assembling the hs; and hss are required. The system

of equations (before incorporating the treatment of boundary conditions) is

hi1 hia —hio 0 911 g12 912 o
hai haa —hag Ve = 921 G22 g2 Vzn (7- 17)
har hsa —hsy Vs 931 932 932 %3

Note the relationship between the columns 2 and 3 of the matrix. As a result, only the
upper (or lower) crack surface needs to be discretized and corresponding kernels need to

be calculated. Finally, during the solution phase, the system of equations is assembled by
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including the kernels corresponding to the other crack surface.

Remark. Note that, for the non-crack boundary the BIE can be employed instead of
the HBIE. The reason behind choosing the HBIE over the BIE is that the present code
is written in such a way that while solving homogeneous problems the code works as a
symmetric Galerkin BEM [13] for which the HBIE is applied to the surface with Neumann

boundary conditions.

7.4 Numerical Implementation

Numerical implementation for specific cases using the variations of k(z, y, ) in one coordinate
are presented. In the present paper only parabolic k-variation has been considered although
exponential and trigonometric material variation can be dealt with in similar fashion [172].
The numerical methods employed in the current work use Galerkin techniques for the BIE
and HBIEs. A brief discussion of these techniques in the context of the BEM is presented
below. It also includes the development of the Galerkin boundary conditions, selection of

the boundary element type, treatment of singular integrals and corners.

7.4.1 Galerkin Boundary Integral Equation.
Define the collocation BIE as

8Py =up)+ [ (L)) v@io- [arP@de  (718)
= \On 5 on

and thus for an exact solution B(P) = 0.
In a Galerkin approximation, these shape functions are employed as weighting functions

for enforcing the integral equations, and Eq. (7.18) takes the form (see Figure 7.3)

/ Yr(P)B(P)dP =0 (7.19)

7.4.2 (Galerkin Hypersingular Boundary Integral Equation.

The hypersingular boundary integral equation for the Laplace equation V2v = 0 is an ex-

pression for the surface flux dv/dn = Vv *n, usually written in the form

v 0*G oG ol
P+ [ QP Q- [ ZPAZ@d=0.  (120)
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Figure 7.4: A triangle in the 3D space is mapped to an equilateral triangular quadratic
element in {7, £} space.

Here n = n(Q), N = N(P) denote the unit outward normal on the boundary surface ¥,
and P and @ are points on X (see Figure 7.1). The fundamental solution G(P, Q) is usually

taken as the point source potential (for homogeneous media):

G(P,Q) = % ) (7.21)

wr

where R = Q — P and r = ||R|| is the distance between points P and (). The hypersingular

kernel is therefore given by

(7.22)

2G 1 (n*N _(n-*R)(N*R)
8N8n(P’Q)_Z;( 3 -3 5 ) '
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It is important to note that Eq. (7.20) is formally obtained by differentiating the standard
BIE for surface potential, and then interchanging the derivative with the integral. As there
are no singularities, the interchange is permitted, and the limit as P returns to the boundary
can then be considered. This limit process will be employed below. A side benefit of the
direct limit procedure is that, if the limit is taken with the source point P approaching the
boundary from outside the domain, then the ‘free term’ dv(P)/ON from Eq. (7.20) is not
present. Define the hypersingular BIE (flux BIE) as

AP = [ vQ P~ [ FLPQZQQ. (7.23)

Thus Eq. (7.20) takes the form
F(P)=0, , (7.24)

with the free term automatically incorporated in the exterior limit evaluation of the second
integral in this Eq. (7.23).
Following the Galerkin approximation, the flux BIE, Eq. (7.20), takes the form

/ Yr(P)F(P)dP =0, (7.25)

As a result the Galerkin technique possesses the important property of the local support (see
Figure 7.3).

7.4.3 Interpolation of physical variables

Following standard practice, the boundary potential and flux are approximated in terms of

values at element nodes @; and shape functions ¥;(Q), i.e.,

v(Q) = Zv(@ﬁ%(@) (7.26)
ov ov
(@) = j 5 (Q3)¥;(Q) (7.27)

Notice that the same shape functions are used to define both potential and flux.

7.4.4 Boundary elements

The surface of the solution domain is divided into a number of connected elements. Over each

element, the variation of the geometry and the variables (potential and flux) is approximated
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by polynomial functions. Six noded isoparametric quadratic triangular elements are used in
the present work (see Figure 7.4).
The geometry of an element can be defined by the coordinates of its six nodes using

appropriate quadratic shape functions as follows
6
&) =Y N;(n,&)(x);. (7.28)
j=1

By means of an isoparametric approximation, the same shape functions are used for the

solution variables (both potential and flux), as follows:

6
i(0,6) =Y N;(n,€)(vi);, (7.29)
Jj=1
6
g”’ )= Ni(n avz (7.30)
j=1

The shape functions can be explicitly written in terms of intrinsic coordinates £ and 7 as

(see Figure 7.4):

Ni(n,€) = (€ + VB —V3)(E+V3n) /6 Na(n,€) = (€ + V30— V3)(€ — V3n—3)/3
Na(n, &) = (€ — V3n—V3)(§ = V3n) /6 Ns(n,&) = —2£(6 — V3n — V/3)/3
N3(n, &) = £€(26 —V/3)/3 Ng(n,€) = —26(6 +V3n — V3)/3 (7.31)

The intrinsic coordinate space is the equilateral triangle with —1 < n < 1, 0 € ¢ <
v3(1 — |n|). The range of coordinates has been chosen for the sake of ease of computa-

tional implementation when dealing with singular integration [176].

7.4.5 Treatment of boundary conditions

With respect to standard BEM codes the main modification in the implementation of the
simple BEM consists of incorporating the boundary conditions for the modified problem. In
this section, the necessary modifications are described.

For the sake of illustration, let us assume three nodes, of which node 1 and node 3 have

prescribed Neumann boundary condition, and node 2 has prescribed Dirichlet boundary
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condition, i.e.,

1, ¢2, Q3 known quantities

¢1, @2, ¢3 unknown quantities.

In the modified boundary value problem the variables are v and dv/dn (see Eq. (7.8) and

Eq. (7.9), respectively). The system of algebraic equations emerges as,

Hy Hyp His (%1 G G2 Gis avl/an
H2l H22 H23 (%] = G21 Ggg G23 81}2/811 . (732)
Hz Hzy Hisg U3 Gs1 Gz Gss Ovs/On

By rearranging the equations so that the unknowns are passed to the left-hand side, we

rewrite the linear system as follows

Hy —Gip Hys (%1 Gu —Hyg G 31}1/511
Hyy —Gao Hog 0v2/3n = | Gu —Hxp G (%) . (7~33)
Hs —Gsy Hss U3 Ga1 —Hsp Gss vz /on

Using Eq. (7.8) and Eq. (7.9), we obtain the final form of the system of equations,

(Hu — %%) —Gr (Hiz — %g—ﬁ) v G —Hiz Gis ~q/Vk

(Hy — S22 38) Gy (Hopy — S8 2E) Ova/on p = | Go —Hy G boVk

(Hy — G2k —Gyy (Has — G2 %) U3 Gz —Hsz Gs3 ~@/Vk
(7.34)

We solve these equations for vi, dve/On, and vs; and finally, by using Eq. (7.8) and Eq. (7.9),

we obtain

¢ = ’Ul/\/E»

8’1)2 1 6k
0= V{5 )

¢s = ws/VEk. (7.35)

7.4.6 Singular integrals

In a Galerkin approximation, the integration is carried out with respect to both the field point
Q@ and the source point P (see Figure 7.1). In the numerical implementation, the integrals

are evaluated for every pair of elements. Singular integrals take place as the Green’s function
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and its derivatives diverge when the field point approaches the source point. An integral is
therefore singular if the elements are coincident, or are adjacent, sharing either an edge or
a vertex. Thus, for three dimensional problems, there are four typical configurations for the
two elements containing the source point P and the field point @ (see Figure 7.5), and thus
four distinct situations regarding the singularity must be considered:

e Non-singular case, when the source point P and the field point @ lie on distinct ele-

ments, that do not share a common vertex or edge.
e (Coincident case, when the source point P and the field point ) lie in the same element;
o FEdge adjacent case, when two elements share a common edge; and

o Vertex adjacent case, when a vertex is the only common node between the two elements.

Non-singular

Coincident

Edge Adjacent

Vertex Adjacent

Figure 7.5: Four different cases considered for integration: (a) non-singular; (b) coincident;
(c) edge adjacent; and (d) vertex adjacent.

A hybrid analytical /numerical approach using the “limit to the boundary” approach is
adopted to treat the singular integrals. The non-singular integrals can be evaluated using
standard Gaussian quadrature formulas. In the “limit to the boundary” approach for eval-
uating the singular integrals, the integrals for the coincident and the edge-adjacent cases
are forced to be finite by moving the source P off the boundary in the direction N at a
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distance €. The next step is to employ polar coordinate transformations and then integrate
analytically with a fized distance from the singularity. After the exact integration, the limit
¢ — 0 is considered. The coincident and the edge-adjacent hypersingular integrals are sep-
arately divergent, producing terms of the form log(e). However, the divergent terms from
the coincident case cancels out with the divergent terms from the edge-adjacent case, and
therefore the divergent terms are removed exactly in this approach. Taking the limit ¢ — 0
back to the boundary results in finite expressions, thus giving a well behaved integral. Once
the divergent terms have been identified and removed, the remaining terms of the integral
can be evaluated using standard numerical quadrature. Details of this technique can be
found in the papers by Gray et al.[74, 73] and Sutradhar et al.[176).

7.4.7 Corners

The treatment of corners in the Galerkin BEM is simple and elegant due to the flexibility in
choosing the weight function for the Galerkin approximation [137]. Corners are represented
by multiple nodes [76], and on each side different weight functions are used (see Figure
7.6) [137]. Figure 7.6 shows an assembly of six planes with different orientation of the
normals where, each plane has been prescribed with either Dirichlet or Neumann boundary
conditions. Consequently at the intersection of two planes double nodes are applied. For
a mixed corner (flux is unknown in one side of the corner, potential is known), a non zero
weight function is assigned only on the side where flux is unknown. For a Neumann corner
(flux specified on both sides of the corner, potential is the unknown), the weight functions
are combined together. On a Dirichlet corner (unknowns are flux on each sides, potential is

known) the usual weight functions are assigned on both sides of the corners.

7.5 Numerical Examples

In this section, a number of numerical problems are reported to demonstrate the imple-
mentation of the techniques described above. To verify the numerical implementation, the
following three examples are presented

(1) A penny shaped crack inside a cylinder,

(2) Three parallel penny shaped crack inside a cylinder,

(3) Multiple random cracks inside a cube with 3D material variation.

The first problem is a penny shaped crack inside a cylinder with constant temperature

on two sides and insulated on the wall. The material property varies quadratically only in
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Weight function ¥

)

Dirichlet Comer

(Unknowns are fluxes on each side,
Potential is known)

Double node for edges

Neumann Comer

(Unknown is potential at corner,
flux is known on both sides) z

Mixed Comer

(Unknown is flux on the right side,
Potential is known)

Figure 7.6: Corner treatment in the Galerkin BEM. Notice that the 6 normal vectors in the
figure define the 6 planes that compose the semi-cylindrical geometry (with axis along the
y-direction).

the z direction. The second problem has three parallel penny shaped cracks inside a cylinder
with same outer boundary conditions and gradation. The last example is a complicated
3D problem with multiple random cracks inside a cube. This example demonstrates the
efficiency and robustness of the BEM formulation and the code. The conductivity varies
gradually along the z-direction. Other material property variations can be considered by
using the present methodology to handle cracks in the simple BEM (see sections 2 to 4) and

reference [172].

7.5.1 Penny shaped crack inside a cylinder

A cylinder with dimensions of (radius=1.476, height=3) is considered as shown in Figure 7.7.
The radius of the penny shaped crack is 0.5 unit. The top surface of the cylinder at [z = 1]
is maintained at a temperature of T = 100 while the bottom is maintained at T = 0. The
cylindrical wall is insulated. The quadratic variation of the thermal conductivity k(z,y, 2)
is defined as (see Table 7.1)

k(z,y,2) = k(2) = ko(a1 + 82)* = 5(1 + Bz)?, (7.36)
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in which § is the nonhomogeneity parameter and a; is a constant. Notice that 8 has units of
1/[Length], and this 1/4 represents the length scale of material nonhomogeneity. The BEM
results are compared with results from finite element simulations. The BEM mesh consisting
of 1,752 elements and 3,502 nodes is shown in Figure 7.8. The FEM mesh consisting of 6,680
brick and tetrahedral crack-tip elements, and 27,310 nodes is shown is Figure 7.9. In the
present work, in order to incorporate the functional variation of the material at the finite
element level, the user subroutine UMATHT developed for the FEM software ABAQUS
[1] is used [172]. By means of this subroutine, any functional variation can be included
within an element by sampling the material property at each Gauss point. The temperature
distribution along the radial distance from the center of the crack for both the upper and
the lower crack surfaces for different values of 3, for the BEM simulations are shown in
Figures 7.10 to 7.12. The BEM and FEM results match very well. A contour plot of the
temperature for the upper crack surface comparing the BEM and the FEM results in Figure
7.13. Finally, Figure 7.14 depicts a contour plot showing the temperature distribution on
the clipped cylindrical wall.

Thermal Conductivity
2

Wall Crack (g=0) kz)=5(1+ Bz)

(q=0)

4

y

Figure 7.7: Geometry and boundary condition for penny shaped crack inside a cylinder.

7.5.2 Three parallel penny shaped cracks inside a cylinder

The cylinder of the previous example is considered again, but now there are three parallel
cracks (radius of each crack = 0.5 unit) as shown in Figure 7.15. The outer boundary
conditions and the material gradation are the same as in the previous example. The crack
surfaces are insulated. The BEM mesh consisting of 5,180 elements and 7,752 nodes is
illustrated in Figure 7.16. Again, for this example, the BEM results are compared with results

from finite element simulations. The FEM mesh consisting of 16,080 brick and tetrahedral
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Figure 7.8: Illustration of the BEM mesh for penny shaped crack inside a cylinder (1752
elements and 3502 nodes). The cylinder is clipped for visualization purpose.
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Figure 7.9: Illustration of FEM mesh for penny shaped crack inside a cylinder (6,680 elements
and 27,310 nodes); (a) half mesh; (b) surface-only display.
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Figure 7.10: Temperature along radial distance from the center of the crack for 8 = 0.0
(homogeneous media).
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Figure 7.11: Temperature along radial distance from the center of the crack for 3 = 0.5
(graded medium).

crack-tip elements and 64,732 nodes is shown is Figure 7.17(a). Figure 7.17(b) shows the
overall FEM mesh which depicts the complexity of the meshing effort. A section thru the
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crack front is taken in Figure 7.17(c) in order to show the finer mesh distribution along the
crack front. The temperature distribution along the radial distance from the center of the
crack for both the upper and the lower crack surfaces, for different values of 3, are shown
in Figures 7.18 to 7.20. The BEM and FEM results match very well for this multiple crack
problem in a finite geometry. Contour plots of the temperature distribution on both the
upper and the lower crack surfaces for the top, middle and the bottom cracks considering
G = 1.0, are shown in Figure 7.21, which illustrates the spatial distribution of temperature.

7.5.3 Multiple random cracks inside a cube

In this example, eleven cracks of circular and elliptical shapes are randomly oriented inside

a cube. The thermal conductivity variation is
k(z,y,2) = 5(1 + 1.52)?, (7.37)

The boundary conditions prescribed for this problem is similar to the previous examples i.e.,
the top surface of the cube at [z = 1] is maintained at a temperature of 7' = 100 while
the bottom is maintained at 7" = 0, and the remaining four walls are insulated. The outer
cube geometry and the BEM mesh on the cracks are shown in Figure 7.22. The BEM mesh
consists of only 900 elements and 2,033 nodes. Contour plots showing usage of clippers for
visualizing the upper temperature of the crack surfaces are shown in Figure 7.23(a)-(c). The
flux distribution for the upper [z = 1] and the lower [z = 0] plane of the cube is shown in
Figure 7.24, which shows the presence of the multiple cracks influences the resulting flux
on these planes. A complicated problem such as this would be very tedious to mesh using
three-dimensional finite elements. This problem demonstrates the robustness of the present

simulation. The code can handle any number of cracks of different sizes and shapes.
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Figure 7.12: Temperature along radial distance from the center of the crack for § = 1.0
(graded medium).

FEM BEM

Figure 7.13: Comparison of contour plots of temperature for the FEM and BEM results for
the lower crack surface for 8 = 1.0.

7.6 Concluding Remarks

The “simple BEM” consists of transforming problems in nonhomogeneous media to known
problems in homogeneous media such that existing codes (for homogeneous media) can be
reused with straightforward modifications. A “simple BEM” for solving multiple cracks in

problems governed by potential theory is presented herein. Steady state heat conduction
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Figure 7.14: A contour plot showing the temperature distribution obtained from BEM on
the wall and on the crack surface for § = 0.5.
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Figure 7.15: Geometry and boundary condition of three penny shaped cracks inside a cylin-

der.

problems with functionally graded thermal conductivity are investigated. Numerical prob-

lems with single and interacting cracks are solved and verified by the means of the FEM.

A numerical example consisting of several random cracks of various sizes and shapes is pre-
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Figure 7.16: BEM mesh for three penny shaped crack inside a cylinder with 5,180 elements
and 7,752 nodes. The cylinder is clipped for visualization purpose.

sented to demonstrate the robustness of the present BEM formulation and implementation.
A quadratic variation of thermal conductivity was considered in the examples, however,
other gradations, such as trigonometric and exponential, can be readily solved by employing
the present “simple BEM” technique (for crack problems). From the formulation point of
view, a key observation is that if the jump in potential is used as the primary variable on
the crack surface, then the displacement discontinuity approach is not directly applicable.
The dual boundary element method, which employs the potential as the primary variable

on the crack surfaces, is shown to be more suitable to treat the fracture problem.
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Figure 7.18: Temperature distribution along radial distance from the center for 8 = 0.0 on
the three cracks inside a cylinder.
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Figure 7.19: Temperature distribution along radial distance from the center for § = 0.5 on
the three cracks inside a cylinder.
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Figure 7.20: Temperature distribution along radial distance from the center for 8 = 1.0 on
the three cracks inside a cylinder.
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B =1.0.
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Figure 7.22: Multiple cracks inside a cube. The complete BEM mesh consists of 900 elements
and 2,033 nodes.
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Figure 7.23: (a) Temperature distribution on the wall with a clip plane applied. (b) Clipped
cube. (c) Clipped cube showing the temperature distribution of the upper crack surfaces
and walls. is shown.
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Chapter 8

Scientific Visualization with BEM

Scientific visualization aids the scientists by representing the data in its entirety. Repre-
senting the data in visual form is much easier for human brains to interpret than raw data.
In this way scientists are able to capture the characteristics of the data and explain unrec-
ognized phenomena easily. Animations created from time varying data presents the events
naturally. Applying virtual reality techniques, data can be viewed as well as manipulated
in a true three dimensional immersive environment. This chapter is structured as follows.
An introduction to scientific visualization is given in section 8.1. Section 8.2 introduces
a few basics of the visualization process and reviews available visualization techniques. A
brief description of visualization softwares and frameworks is given in Section 8.3. Section
8.4 details the characteristics, algorithm, techniques of BEM visualization and presents our
work on the topic. A virtual reality based visualization tool named ‘MechVR’, developed
in our research group to visualize FEM and BEM data is presented in Section 8.5. Section
8.6 discusses web-based data visualization using the VRML. Finally, the chapter concludes
with a few remarks followed by a brief discussion on new ideas and promising directions for

future research.

8.1 Introduction

Scientific visualization is an integral part of computational mechanics research. The purpose
of scientific visualization is to facilitate scientists to observe, gain insight, and better under-
stand their experiments or numerical simulation data [120]. Advances in scientific computing
facilities have tremendously enhanced the ability to generate and collect large scale datasets
allowing the mathematical models and numerical simulations to be more complex. Often
direct inspection of the data is not easy to comprehend due to the size and complexity of the

data. Additionally, if the data is generated at several different times during the experiment
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or simulation, understanding how the data varies with time may be complicated.

Another excellent feature that scientific visualization has been able to offer is interaction
with the data during the computations. Often, researchers and scientists would want to
change certain representation or parameters during the simulations to dynamically verify its
impact in the simulation results. In order to convey and interact with information of huge
data sets, scientific visualization is an effective tool. Other potential usage of visualization is
in calibrating and debugging of large scale simulations. Inconsistencies present in large data
sets can be detected and identified very easily, which otherwise may be hard to determine
from data files alone. Missing data can be interpolated. Efficient and creative use of color,
texture, and opacity facilitate the study of true three dimensional characteristics of complex
physical phenomena.

Virtual Reality (VR) is a newly emerging tool for scientific visualization that makes
possible multisensory, three-dimensional modeling of scientific data [20, 158]. While the
emphasis is on visualization, the other senses are added to enhance what the scientist can
visualize. Also, sharing data and visualization with other scientists are integral part of the
growing collaboration and connection among researchers. Providing results using a new
type of visualization based on VRML gives the opportunity for researchers to navigate the
visualization in an interactive 3D virtual environment over the internet [97]. It is a new in-
terface paradigm that uses computers and human-computer interfaces to create the effect of
a three-dimensional world in which the user interacts directly with virtual objects [20]. The
three-dimensional display and interaction capabilities of VR allow for significantly enhanced
three-dimensional perception and interaction over three-dimensional computer graphics. In
order to understand complex phenomena from a time-dependent data set in a complicated
three-dimensional structure, VR allows rapid and intuitive exploration of the volume con-
taining the data, enabling the phenomena at various places in the volume to be explored,
as well as provide simple control to manipulate and interact through interfaces integrated
into the environment. In recent years, there has been much excitement about Virtual Real-
ity (VR) [10]. From its beginning in the field of scientific simulation [69], VR has gradually
grown into a new phase [68] and has become a distinct field in computing. It has already been
researched and used in such diverse areas as car design [151], robot design [166], medicine
[95], chemistry, biology and education, as well as in building design and construction [131].

Scientific visualization has been succesully used many areas such as, computational fluid
dynamics, electronic design automation, medical imaging, geospatial, propagation, meteo-
rology, hydrology, data fusion, ground water modeling, oil and gas exploration, and data
mining. Until recently the power of visualization has not been used much in computational

mechanics. A typical visualization algorithm works by computing sample positions, evaluat-
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ing the value of the field varible at those positions, and creating a geometric representation for
those values and positions. Since each computational method has its own characteristics in
data structure and dimension, it is necessary to design visualization technique best suited for
that method. Among the methods in computational mechanics, visualization for the finite
element method and finite difference method have been explored and researched tremen-
dously. In the BEM literature, there has been very limited publications on visualization,
mostly limited to two dimensions [130]. This work attempts to deal with the visualization
of 3D BEM data wholly starting from viewing boundary and domain results by means of
modern visualization techniques such as point based isosurfacing and volume rendering to
virtual reality based visualization and finally concluding with modern web based interactive

visualization.

8.2 Visualization process and techniques

The visualization process consists basically of transforming data into images that convey
information correctly and efficiently. In general, the visualization consists of four essential
steps [150, 183]. In the first step, the raw numerical data is filtered in order to select data
that we want to see or process. In the second step, the selected data is transformed into
forms that can be displayed by the graphics systems. In the third step the transformed data
is mapped to 3D geometric primitives. Finally in the fourth step the resulting geometry
is displayed. For example, if we have a set of scattered point, we would like to read the
data set (source), create a polygonal mesh (filtering), then use surfaces on it (mapping) and
finally display (rendering). This model is termed as the visualization pipeline or visualization
network. Figure 8.1 shows the four steps of the visualization process. This approach is typical
of many commercial visualization systems.

Some of the visualization techniques that are available based on the type of the attribute
data are:
Visualization of Scalar Fields: color mapping, isosurface, volume rendering, cutting
plane contour etc.
Visualization of Vector Fields: streamlines, vector glyphs, warping, displacement plot
ete.
Visualization of Tensor Fields: glyphs, hypersteamlines, tensor ellipsoids, tensor lines

etc.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o D

v
( | Filters >

( Renderer )

Figure 8.1: Visualization pipeline: Steps of the visualization process.

8.3 Visualization: Softwares and frameworks

With rapid advances in visualization research, a number of excellent visualization software
has been created. Visualization systems fall into two main categories, turnkey and modular
visualization environments (MVE) [184]. Turnkey systems, in general, have fixed function-
ality and present options to the user through a simple pull down menu type interface. The
advantage of a turnkey system is its ease of use for the novice user. MVEs offer much richer
functionality with the possibility of user extension. AVS, IBM’s Data explorer (renamed
as OpenDX), NAG explorer, Templated Graphic’s Amira and Visualization toolkit (VTK) are
examples of some of the visualization systems. In order to select a suitable visualization

software some of our key considerations were:
e free

e open-source

multi-platform (e.g. Windows, Unix, IRIX, SGI)

simple to use

extensibility
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e scalability
e modular architecture.

The VTK and it turnkey version ParaView turn out to be the most suitable for the present
purposes. The Visualization ToolKit (VTK) is an open source, freely available software system
for 3D computer graphics, image processing, and visualization {150]. It consists of a C+—+
class library, and several interpreted interface layers including Tcl/Tk, Java, and Python.
VTK supports a wide variety of visualization algorithms including scalar, vector, tensor,
texture, and volumetric methods; and advanced modeling techniques such as implicit mod-
elling, polygon reduction, mesh smoothing, cutting, contouring, and Delaunay triangulation.
ParaView is a turn-key visualization system build on top of VTK, and it makes VTK easier
to use with an interactive, point and click interface [87]. ParaView also supports supercom-
puting applications, including tiled display and distributed parallel processing. ParaView
has an excellent professional support provided by Kitware, Inc (http://www.kitware.com).
ParaView supports a huge array of data file formats i.e., vtk, EnSight, HDF5, VRML, Protein
data bank, XMol Molecule, Plot3D, Stereo Lithography, BYU, Gaussian cube, Raw binary
files, XDMF, AVS, Meta Image files, polygonal PLY files, Exodus files and SAF files. One
of the best features of ParaView is, by writing XML files new data readers, writers, sources
and filters can be written and incorporated into it. In this regards, we include the BEM
visualization into ParaView.

We also investigated the Rocketeer and Voyager (its parallel version) [58] developed at
University of Illinois Center for Simulation of Advanced rockets (CSAR). Rocketeer is a
powerful interactive 3D visualization but it only takes the NCSA HDF format as the input

file, while Voyager works only in Solarix and Linux only.

8.4 Visualization of BEM Data

8.4.1 Basic Data representation

In order to create useful visualization models and efficient visualization system, the charac-
teristics of the data needs to be analysed. A structure or object is often represented by a
mesh. A mesh is a collection of volumetric (in 3D) or surface (in 2D) elements called cells.
The cells are defined over a set of points often called vertices. Geometry and topology define
a mesh. The geometry describes the layout of vertices in space. The topology connects
vertices to form cells. For instance, a simpler element which is a triangle specifies it topol-

ogy and the endpoints coordinates specifiy it geometry. In the dataset, the cells specify the
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topology and the points specify the geometry.

The characteristics of data, in general, refer to the discrete nature of the data, i.e. if it is
regular or irregular, structured or unstructured and also the topological dimension. Regular
or structured data are those where there exists an inherent relationship between the points.
Typically if the dataset has equally spaced points then storing all the points coordinates is
unnecessary, rather only the beginning point, the interval and the total number of the points
are necessary [150]. For simulations in computational methods normally we have densely
populated points where there are sharp changes in results, and less dense where the change

is not much. Figure 8.2 depicts uniform, rectilinear, structured and unstructured mesh.

Uniform Mesh Rectilinear Mesh

Structured Mesh Unstructured Mesh

Figure 8.2: Different types of dataset

BEM data consists of mesh information of the boundary and field variable data (scalar,
vector, tensor) on the boundary. The data is discrete since we have information from a
finite number of points. In the BEM data, the boundary data has both the topology and
the geometry information, but the topology is unknown for the results inside the domain
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or interior. The boundary data are datasets with either regular or irregular topology, and
irregular geometry, so it can be classified as structured or unstructured grid dataset. For a
three-dimensional analysis surface mesh information of the boundary is available. The results
of the interior points are obtained by postprocessing using collocation type techniques.
Visualizing the boundary data is simple and straight-forward. Visualizing the interior
data from the BEM requires a few steps of filtering and processing before the mapping. Before
discussing about the details and issues of interior visualization, first we look at boundary

data visualization.

8.4.2 Visualizing the boundary results

Visualizing the boundary data is simpler than interior data because it has both the geometry
and topology defined. In this section we first include a new file extension .bem for BEM files

in ParaView and then we explore some of the visualization techniques that can be applied to

visualize the boundary data.

BEM data files with .bem extension

ParaView supports a wide range of file formats. Typically, the BEM format file is not
supported by ParaView. One approach is to convert the BEM data files to a format that
ParaView can read. The other approach is to write a new data file reader. We chose to write
our own reader and propose a BEM file format with (.bem) extension. The reader opcrates
within the standard VTK pipeline. ParaView uses VTK (which is written in C++), and the
user interface and the server manager are created by parsing XML files [87]. Figure 8.3 shows
the interface of the ParaView with a .bem file data. This problem is analysed in Chapter 5, a
parallelpiped with a cylindrical cavity. The exterior surfaces of the cube and the cylindrical
wall are the boundary where the results are known. The boundary is colormapped with the

flux results and the opacity is reduced in order to show the interior cylindrical cavity.
Visualization techniques: Scalars
Scalar data consists of single data associated with each location in the dataset.

e Color Mapping
This is a common scalar visualization technique that maps scalar data to colors and
displays the colors. The scalar mapping is implemented by indexing into a color lookup
table. Figure 8.3 is an example of color mapping.
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Figure 8.3: ParaView: Flux results of a parallelpiped with a cylindrical cavity (from Chapter
5)
e Contouring
Contours are surfaces/lines of constant scalar values. We can either set up contour for
specific value or specify a scalar range and the number of contours to be generated in
the range. Figure 8.4 shows contours of the temperature on the boundary.
e Glyphing

Glyphing is a visualization technique that represents data by using symbols, or glyphs.

The symbols may be a cone, a sphere or multivariated glyphs which can be scaled,
colored and oriented along a direction. The glyphs are copied at each point of the

input dataset. Figure 8.5 shows the temperatures represented as glyphs.

e Clipping
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Temperature

Figure 8.4: Contours: A scalar range and number of contours are specified for temperature
profile.

Clipping can be used to visualize the details of interior of a body. For example, the
contour plot of the flux on the surface of the cavity can be visualized clearly if it
is clipped using a plane. Figure 8.6(a) depicts the contours without the clipper and
Figure 8.6(b) demonstrates clipping the model with a plane. Also multiple clippers
can be used too. Figure 8.7(a) and 8.7(b) show the two clippers that were used to
generate Figure 8.8. By using the clippers, the interior results of temperature and also

the temperature on the crack surfaces can be conveniently visualized.

8.4.3 Visualizing BEM Interior Data

Visualizing the interior results of BEM is a challenge. The BEM results in the interior of the
domain are obtained by defining coordinates of points and collocating the boundary integral
equation at those point. So the dataset that we obtain is basically the coordinates of the set
of points and their attributed field value. This type of data have different names e.g., ‘point
cloud’, 'scattered data’ or 'unstructured points’. Unstructured points are irregularly located

in space [123]. Unlike structured grids or unstructured grids, unstructured point dataset
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Figure 8.5: Glyphs representing the flux for the parallelpiped with cavity.

have no topological component relating one point to another. Unstructured points are easy
to represent but difficult to visualize [150]. Most scientific visualization techniques require
data to include connectivity information, which is not provided by the data set. It is difficult
because there is no inherent structure to which the library of visualization techniques can be
applied. ‘Point-cloud’ or ‘scattered-data’ visualization is becoming increasingly important
in new emerging scientific applications [82]. One goal is to produce visualizations of the
monitored variables - but rendered as smoothly varying variables over the particular region of
interest. Advances in meshless methods are producing more and more data at random points
in space and time that must be processed to make possible meaningful three-dimensional
visualization, possibly changing with time depending on the specific phenomenon being
monitored. This problem is still an ongoing research topic among leading visualization
scientists.

There are couple of approaches available to build topological structures from a random
set of points. One of the main approaches available are sampling the points into a data set
often called field reconstruction method and visualize the data using standard volume or
surface based rendering techniques. The other approach is to performa 3D triangulation to

create the topological structure from the unstructured points.
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Figure 8.6: Flux results of: (a) Model without using the clipper. (b) Model after clipping
with a plane through the cavity.
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Figure 8.8: Visualizing the results on the crack surfaces using the two clippers.

Splatting Techniques

Techniques used to deal with unconnected data include the use of field reconstruction meth-
ods producing an analytical definition that is then resampled to a standard grid format
supported by standard visualization methods, such as volume rendering and isosurfacing

[82]. While these methods work well for offline analysis, they are less practical for real-
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time visualization and become even less effective as the data size increases. Highly eflicient
schemes, operating directly on raw scattered data, are necessary. Splatting is a volume ren-
dering method that distributes volume data values across a region on the rendered image
in terms of a distribution function [150]. Typically the distribution functions are Gaussian
functions.

Isosurface extraction is an important technique for visualizing three-dimensional scalar
fields. By exposing contours of constant value, isosurfaces provide a mechanism for under-
standing the structure of scalar data. Isosurface extraction poses a unique challenge in that
no geometry exists before the user provides an isovalue [115]. Furthermore, the user may
change the isovalue often, and any geometry extracted based on the previous isovalue should
be discarded.

Recently, a number of researchers have proposed and developed methods for the direct
rendering of scattered data, which involves using different building blocks to construct high-
quality data visualization. For instance, the construction of isosurfaces typically is done
by extracting isotriangles from some spatial grid structure [82]. Isosurfaces can also be
constructed directly by merely using point primitives, given in space with associated function
value but no connectivity information [36]. In this work, prototypes have been developed
for the rendering of scattered data sets using point primitives directly, without performing
any meshing steps. The method is called ‘iso-splatting’, and it is a powerful alternative to
traditional extraction-based iso surface visualization.

The vtkGaussian splatting filter available in VTK build topological structure by sampling
the points into the image dataset. The sampling is performed by creating some kind of
influence or splatting that distribute the data value of each unstructured points over the
surrounding region. vtkGaussian splatter can take the polydata as input. This class is
typically used to convert point-valued distributions into a volume representation. The volume

is then usually iso-surfaced or volume rendered to generate visualization [150].

Delaunay Triangulation Techniques

For unstructured mesh generation, Delaunay-based algorithms have become popular [52,
181, 63, 159]. For such algorithms, the input data are often given in a discrete formulation
of the domain boundary which, in the three dimensional space, may represent a surface
triangulation of the boundary. Delaunay-based methods usually first produce an initial
triangulation that forms the convex hull of the boundary points which may not match with
the prescribed boundary surface, that is, the triangulation may not satisfy the constraints

(edges and faces in 3D) imposed by the surface triangulation. This leads to the problem of
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recovering the boundary geometric constraints from the initially constructed triangulation,
or simply, the problem of boundary recovery. Such problems have been successfully resolved
in 2D spaces [14], while they are still under active investigation in 3D [51, 160].

Delaunay triangulation in 3D creates tetrahedrons from the unstructured points. It is
numerically sensitive but enough for the purpose of visualization. Some issues related to this
technique are uniqueness and degeneracy. Creating triangles with poor aspect ratio cause the
algorithm to break. By randomizing the point order, better triangles with aspect ratios can
be generated [150]. In this work, we use the Delaunay triangulation technique. We included
the vtkDelaunay3D filter in the ParaView writing XML codes [87] (see Figure 8.9). Three

parameters can be adjusted, namely, tolerance, alpha and the offset, as explained below.
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Figure 8.9: ParaView: Shrinked surfaces of the tetrahedrons created using Delaunay 3D.

A tolerance can be specified to control discarding of closely spaced points. This tolerance

is specified as a fraction of the diagonal length of the bounding box of the point. An alpha
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(or distance) value can be specified to control output of this filter. For a non-zero alpha
value, only edges, faces, or tetra contained within the circumsphere (of radius alpha) will be
output. Otherwise, only tetrahedra will be output. Finally an offset to specify a multiplier
to control the size of the initial, bounding Delaunay triangulation can be provided. Also
more points can be inserted in order to have a better mesh. With the advent of new and

effective Delaunay algorithms, this capability should be included in ParaView soon.

Alternative techniques

Surface reconstruction and tetrahedralizing unstructured points are a thriving research area
[160]. Besides the techniques described above, some other simple steps can be taken for the
purpose. One approach is to remesh the interior using freely available powerful 3D mesh
generators e.g. NETGEN, GMSH, which can take boundary mesh as an input. Although
this may seem to go against the basic flavour of BEM, the meshing effort is for the sake of
visualization only. This means that the quality of the mesh in not important, any automatic
3D mesh generator should serve the purpose. In this approach, when the analyst creates the
BEM mesh, a corresponding FEM-type mesh can also be created for visualization purpose
only.

Instead of meshing the structure, interior BEM results can be obtained on points of a
known probing plane. By calculating the results on the probing plane either a priori or in

real-time, the interior can be visualized.

Visualizing Scalars

Once the topology of the interior data is available, different visualization techniques can be

applied. Some techniques, which can be used to visualize interior results, are shown next.

e Cutting Planes and Clipping

By cutting (often called slicing) a dataset entails creating a cross-section. Normally a
plane is used to have a planar cut. The cutting surface interpolates the data as it cuts,
which can then be visualized. By making a series of slices and varying the opacity, a
pseudo-volume rendering can also be done. Figure 8.10 shows fives slices through the
cube (of Chapter 5) and in Figure 8.11, a clipper is used to show that interior results

can be visualized and clipped.

o Isosurfaces

Isosurfaces represent 3-D scalar fields by drawing surfaces representing constant func-

tion values. Isosurface generating software packages allow more than one isosurface
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Figure 8.10: Slices of the interior of the cube

to be generated and rendered with varying levels of opacity and color. A legend can
be drawn to show the range of values that each color represents. Figure 8.12 shows

isosurfaces of the temperature distribution on the rotor.

e Thresholding

A threshold filter can be used to filter out the the scalar values which lie below, above,
or between a threshold range. Figure 8.13 shows a temperature plot of the FGM rotor
problem where the range of the threshold for temperature is set between 100 and 160

units.

8.5 MechVR: A Virtual Reality-Based Scientific

Visualization Tool

8.5.1 CAVE: Cave Automatic Virtual Environment

The Cave Automatic Virtual Environment (CAVE) is an immersive virtual reality facility

designed for the exploration of and interaction with spatially engaging environments. A
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Figure 8.11: Clipper to show that interior results are obtained for the FGM rotor.

virtual environment constructed in the CAVE places the user inside the simulation and
thereby provides the level of understanding necessary to accurately assess the design of the
system being modeled [16]. The CAVE is a projection-based VR system that surrounds the
viewer with 4 screens. The screens are arranged in a cube made up of three rear-projection
screens for walls and a down-projection screen for the floor; that is, a projector overhead
points to a mirror, which reflects the images onto the floor (see Figure 8.14). A viewer wears
stereo shutter glasses and a six-degrees-of-freedom head-tracking device. As the viewer
moves inside the CAVE, the correct stereoscopic perspective projections are calculated for
each wall. A second sensor and buttons in a wand held by the viewer provide interaction
with the virtual environment. The current implementation of the CAVE at NCSA uses three
walls and the floor. The projected images are controlled by an SGI Onyx with two Infinite
Reality graphics pipelines, each split into two channels. For testing, one can run the CAVE
using any number of walls simultaneously. The number of CAVE walls used does not change
the program. Audio system components are provided using an Indy workstation, speakers,
a MIDI interface, and synthesizer. The Indy functions as a ‘sound server’ for the CAVE.
Commands are sent to the workstation over the network, and it then either generates sounds

internally, or controls the synthesizer.
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Figure 8.12: Isosurface generated for the temperature for the FGM rotor problem.

A diagram of the CAVE environment is shown in Figure 8.14.

8.5.2 The MechVR

MechVR (Mechanics Virtual Reality) is a preliminary VR application software, which
was developed in our research group. It can visualize FEM and BEM data in the CAVE.
It is preferable to visualize such data in a 3D interactive environment and allow the other
researchers to share information in an effective and easy way. In this application, data sets
obtained from mechanics computation, are taken as data source, and by using VTK the data
is processed and rendered in the CAVE.

Programming Steps

The CAVE programming is done in C++ using VTK and the CAVE library functions, and
the graphics is displayed using Performer. The VTK takes various types of data and produces
final images depending on which pipelines the data go through. The flowchart followed in
this application can be shown in a simple way in Figure 8.15. In this project, isosurface

and slice are used to visualize individual stress component, and hyperstreamline is used to
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Figure 8.13: Thresholding the temperature from 100 to 160 units for the FGM rotor problem.

visualize stress tensors.
Figure 8.16 (a)-(c) show the isosurfaces, slices and the hyperstreamline of a cube subjected
to point forces.

Application functionality and interaction

MechVR gives users the ability to create and modify a set of visualization tools for exploring
the stress field from a given dataset. They also have the ability to change their viewpoint in
the virtual environment, manipulate the dataset. Isosurfaces, slices, and hyperstreamlines
are generated to represent certain stress component and stress tensors. An user interface
is provided in the CAVE environment to allow new images being generated according to

user-defined parameters.

Creation and manipulation

At present, MechVR provides three visualization tools; isosurfaces, slices and hyperstream-
lines for stress components and tensors. Once the application is invoked, it reads the dataset
and generate isosurfaces. In order to interact and manipulate, a user interface is provided,

which is controlled by the wand with a pointer emanating from the wand in virtual reality.
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(b)

Figure 8.14: NCSA CAVE: (a)Schematic Illustration (b) A cartoon model showing the pro-
jectors and the overall assembly.

By simply moving the pointer and pushing the buttons and sliders, the user is able to in-
teract. Allowing the user to interact with data is essential in the VR application. In this
project, we provide a preliminary user interface that consists of 6 buttons and 4 sliders to let
the user adjust the viewing process. The design of the interface is illustrated in Figure 8.17.

The buttons work in the following way: At the same time, only one of the three ‘Isosurface’,
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Figure 8.15: The simplified flowchart of MechVR.

‘Slice’ and "Hyperstreamline’ buttons shall be active. The ‘xX’,‘y’ and ‘z’ buttons are attached
to the ‘Slice’ button, so they can only be activated when the ‘Slice’ button is active. When
the isosurface is activated then the sliders allow the user to specify the number of isosurfaces
to be generated, the value ranges of isosurfaces, as well as the opacity of the rendering.
The first two sliders named ‘value 1’ and ‘value 2’ give the value ranges when the isosurface
button is active. The 'n layers’ slider controls the number of isosurfaces to be generated.
When the slice is activated the first two sliders give location ranges of the slice planes. The

'n layers’ slider controls the number of slices to be generated.

Hyperstreamline

For the hyperstreamline feature, only the opacity can be controlled. Vector fields can be
visualized effectively using streamlines, which represent the trajectory path of a particle in
a flow field. Hyperstreamlines, an extension of the concept of streamlines to second-order
tensor fields, provide the user with a continuous representation of the tensor field along a
three dimensional path. Hyperstreamlines are defined by a trajectory path and a cross-
sectional geometry at each point in that path [86]. The trajectory path of a hyperstreamline
is essentially a streamline computed from one of the eigenvector fields. The cross-sectional
geometry of a hyperstreamline is determined by the two remaining eigenvector fields and can
either be an ellipse, a circle (if the eigenvectors are ‘degenerate’; or equal to each other), or
a cross. Connecting these cross-sectional geometries along the trajectory path results in a
hyperstreamline that either looks like a tube (elliptical/circular geometry) or a helix (cross
geometry).

Sound effect

Sound effects are attached to the user interface, so that the scene becomes more dynamic

and the user is notified about the undergoing process. Since the data is large, it takes a while
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Figure 8.16: MechVR on the CAVE: (a) Isosurface (b) Slices and (c) hyperstreamlines.
for the computer to initialize the scene. Therefore a welcome message and a piece of music

is provided. The sound effects are mainly bound with the button click, so that whenever a

button is pressed, a corresponding voice text will notify the user of the current image shown.
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Figure 8.17: Preliminary user interface of MechVR

Moreover, when the update sign is given (pressing both wand buttons 1 and 2), the user is
also notified about the process. Since the time taken to generate new images vary according
to the parameters given, it may be desirable to have music tracks of different lengths to
be sued accordingly. A text to speech reader software was used in order to generate the

voice-sounds.

User Evaluation and future works

Figure 8.18 shows the author using the MechVR inside the CAVE at NCSA. Users provide
constructive critism for improvement [15, 108]. From an interactive perspective, a majority
of users found the interface easy to use. The sliders and the manipulation seem effective. A

significant amount of work remains to be done in order to make the application robust.

8.6 Web Visualization using VRML

The web has tremendously increased our ability to share information quickly and efficiently.
Sharing data and visualization with other scientists are integral part of growing collabo-
ration and connection among researchers. Previously either static pictures or pre-recorded
visualization were available. This would not allow other researchers to interact with the
visualization. There was no way to look from a different angle or change the parameters
of the visualization. This problem has been circumvented by development of interactive 3D
virtual environment over the internet. A 3D environment allows the user to navigate a scene,

observe and manipulate an object.
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Figure 8.18: Demonstration of MechVR inside CAVE

8.6.1 Virtual Reality Modeling Language (VRML) visualization

Because of the need for interaction, a new type of visualization has appeared, which is
referred as Virtual Reality Modeling Language (VRML) [7]. It is a platform independent
modeling language use for creating three-dimensional virtual worlds and objects that can be
displayed on the Internet. Using VRML, visualizations can be created in three-dimensional
space. With the introduction of VRML 2.0, and later VRML 97 [39], it is now possible to
build dynamic, interactive worlds where objects can be animated [128]. In addition, users
can also interact with the objects. Using external authoring interface (EAI), users can also
interact with VRML objects in the scene externally via JavaScript or java applet.

For better integration with the next-generation web technologies, which is expected to
rely heavily on XML, the W3C is also working on X3D [40]. X3D is the new open standard
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for 3D content on the web and it is designed to be compatible with existing VRML browsers
and tools.

VRML is chosen for this project as it is a web standard and Plugins are readily available
for major web browsers. In addition, it does not require expensive hardware or software,
thus it can reach out to a wider audience. X3D is a new technology with great potential.
However, it is still a relatively new technology and a suitable Plugin are not widely avaialble
and thoroughly evaluated.

VRML world files have the file extension .wrl (or .wrz for gzip compressed files) and
require either a stand-alone application or web browser plug-in to be viewed. It is versatile,
compact, extensible and constantly evolving. VRML is generally viewed within a Web browser
like Netscape Navigator or Microsoft Internet Explorer. These browsers don’t support VRML
natively and thus a plug-in is required to view VRML content. VRML plug-ins are available
for most platforms, the two most popular being: Cosmo Player, (for Windows, Mac, IRIX),
Cortona (for Windows 9x/NT Mac, Windows CE).

8.6.2 Creating and viewing VRML models

In order to view VRML models in web browsers Cortona VRML Client may be used. Cortona
VRML Client is a fast and highly interactive Web3D viewer. It works as a VRML plug-in for
popular Internet browsers (Internet Explorer, Netscape Navigator, Mozilla, etc.) and office
applications (Microsoft PowerPoint, Microsoft Word, etc).

In order to create VRML models, VTK has a filter called vtkVRMLExporter which is
capable of exporting the scene to a VRML model. We modified the ParaView and included
an option in the ‘File’ menu to save the data as a VRML output.

Figure 8.19 show screen shots of the VRML option in ParaView that we have created.

Figure 8.20 show screen shots of the a VRML model that we have generated of the mesh
of the crack problem inside a cylinder (from chapter 7).

8.7 Remarks

In this chapter we have explored the techniques that can be used to visualize simulation
results from computational methods, especially the BEM. For large scale datasets visualiza-
tion is extremely important to process the results. We plan to introduce more visualization
tools, functionalities, voice activated commands in the MechVR application. Also the Virtual

Reality and the VRML visualization have also been investigated.
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Figure 8.19: Screen shots of the VRML option in ParaView

~L

Figure 8.20: VRML model showing the mesh of the three crack problem (Chapter 7)
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Chapter 9

Conclusions and Future Work

In this chapter a brief summary of the content and contribution of the study is presented
followed by a number of suggestions for future work.

9.1 Concluding Remarks

Boundary element analysis has, for the most part, been limited to homogeneous or piece-
wise homogeneous media. In this work it was shown that BEM can be successfully applied
to analyze heat transfer problems in functionally graded materials using a boundary-only
formulation. In the Green’s function approach, the Green’s function is required to derive.
But in this approach for each different variation different formulations are necessary. An
exponential thermal conductivity variation was explored in this regards using the elegant
symmetric Galerkin BEM. In Galerkin BEM evaluating the hypersingular integrals is one
of the challenges. A simple direct ‘limit to the boundary’ algorithm using a hybrid analyti-
cal/numerical approach is presented. The same approach is used for evaluating less singular
integrals as well. The proposed ‘simple’ boundary element method is an efficient technique
because it can handle different classes of material variation. Moreover, it uses the standard
homogeneous codes with simple changes. The presented numerical results based upon these
formulation, were implemented in a Galerkin BEM framework. All the implementations
presented are pure boundary-only formulations without any domain integral. The numerical
studies agreed extremely well with available analytical solutions and finite clement simula-
tions. The investigation included steady state heat conduction, transient heat conduction
and also crack problems. A Laplace transform Galerkin boundary element formulation was
implemented in the the transient heat conduction problem. The principal computational
difficulty with the LTBEM is the numerical inversion of the transform, which was handled
accurately and efficiently by Stehfest’s algorithm. BEM is best suited for crack problems
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specially is 3D. The modeling becomes more efficient than finite element methods when mul-
tiple cracks are present. A ‘simple’ BEM for solving cracks in problems governed by the
potential theory using the dual BEM technique is presented which can handle functional
variation of thermal conductivity and several random cracks of various sizes and shapes.
The implementation is carried out using the Galerkin BEM (non-symmetric), but the idea
and development are applicable to collocation or other boundary element methods such as
meshless or symmetric Galerkin BEM.

The contributions of this study are:

e A direct treatment of the hypersingular double integrals using a hybrid analytical /numerical
approach applied to the hypersingular integrals that arise in the SGBEM formulation
for heat conduction in an exponentially graded material is presented. The procedure
for treating the hypersingular integral are applicable to other less singular integrals.
The direct “limit to the boundary” approach for evaluation of the singular integrals
is suitable for handling complicated Green’s function such as those obtained in FGM

problems.

o A symmetric Galerkin boundary element analysis using the Green’s function approach

is carried out for heat conduction problem on exponentially graded FGMs.

e The Green’s function for three-dimensional transient heat conduction (diffusion equa-
tion) for functionally graded materials (FGMs) is derived. The thermal conductivity
and heat capacitance both vary exponentially in one coordinate. In the process of solv-
ing this diffusion problem numerically, a Laplace transform approach is used to elim-
inate the dependence on time. The fundamental solution in Laplace space is derived
and the boundary integral equation formulation for the Laplace Transform Boundary
Element Method (LTBEM) is obtained. The numerical implementation is performed
using a Galerkin approximation, and the time-dependence is restored by numerical

inversion of the Laplace transform.

e A novel simple boundary element technique to address problems of potential flow for
nonhomogeneous media is presented. It is shown that for quadratic material variation,
the nonhomogeneous problem can be transformed to a Laplace problem; for exponen-
tial variation, the problem can be transformed to a modified Helmholtz equation; and
for trigonometric variation, the problem can be transformed to a standard Helmholtz
equation. By simple modification of the boundary conditions, standard codes for ho-

mogeneous material problems are used.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e By simple variable transformation, transient heat conduction problems in functionally
graded materials for three different classes of material variation (quadratic, exponential,
trigonometric) can be transformed into the homogeneous diffusion problem. Moreover,
the material variation can be in one, two or three dimensions. With easy changes in
an existing BEM code for homogeneous materials, the FGM transient heat conduction
problem with constant diffusivity can be solved. A Laplace transform Galerkin BEM

formulation has been presented here in order to implement the methodology.

o A “simple BEM” for solving multiple cracks in problems governed by potential theory
is presented. Steady state heat conduction problems with functionally graded thermal
conductivity are investigated. Numerical problems with single and interacting cracks
are solved and verified by the means of the FEM. A numerical example consisting
of several random cracks of various sizes and shapes is presented to demonstrate the
robustness of the present BEM formulation and implementation. A quadratic variation
of thermal conductivity was considered in the examples, however, other gradations,
such as trigonometric and exponential, can be readily solved by employing the present
“simple BEM” technique (for crack problems). From the formulation point of view,
a key observation is that if the jump in potential is used as the primary variable
on the crack surface, then the displacement discontinuity approach is not directly
applicable. The dual boundary element method, which employs the potential as the
primary variable on the crack surfaces, is shown to be more suitable to treat the fracture

problem.

e Visualization is an integral part of computational research. State of art visualization
techniques and how they can be used for visualizing BEM results has been studied and
explored. A virtual reality toolkit (MechVR) has been developed to visualize simulation
results in CAVE. Some useful modules and extensions to the turnkey software ParaView

has been proposed.

9.2 Suggestions for Future Works

Having the boundary integral representation for thermal analysis opens the possibility of
developing efficient tools for optimization of FGM parameters (e.g., material constants and
geometry) and sensitivity analysis [139]. These topics are important for design and applica-
tion of these new materials.

The present “simple BEM” leads naturally to several extensions. Although only interior

problems were addressed, exterior problems can be treated on a similar fashion [17]. In
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addition, fracture problems involving transient heat conduction with constant diffusivity

can be easily solved by employing the Laplace transform technique of Sutradhar and Paulino
[173]. The present formulation also offers room for extension to graded orthotropic media

[9, 45).

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A

A.1 Maple codes for analytical integration

The following codes were implemented with Maple 7.0. Only a few basic Maple operations,
integration and substitution, are employed, and thus it is likely that, with relatively minor
changes, these scripts would work with other symbolic computation systems. The code shows
the analytical integration to extract the divergent terms for the coincident case and the edge
adjacent case. The naming of variables follows the notation in this paper fairly closely, and it
is therefore hoped that the codes are mostly self-explanatory. For convenience, references to
the equations in the paper corresponding to the code are provided. However a few comment

lines, which begin with the pound sign(#), are also included.

A.1.1 Analytical integration for coincident case

# This Maple file shows the analytical integation to extract divergent terms

# for the coincident case.

> restart;
> with(linalg):

v

with(codegen,fortran);

Initialize arrays
phi:=array(0..2,0..1);
Lterm:=array(0..3,0..1);
phi_h:=array(0..3,0..1);
jnp:=array(0..3);

vV V V Vv #H
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P -——> P+ eps N
Eq.(2.30)
rh:=(eps~2+a~2*rho~2) " (1/2);

jnr:.=-eps*jp;

v V # %

3+

Kernels

> ker:=3*jnr~2/rh"5-jp~2/rh~3+3*b00*jnr~2/rh~4+b00 " 2% jnr"2/rh"3
-b00*jp~2/rh"2-b00~2%jnp [3] “2/rh;

# Eq.(2.26)

Taylor expansion
expol:=b00* (-rh+alpha*rho) ;
expl:=1+expol;

Eq.(2.36)

¥ VvV Vv %

**

integrand

> ker:=ker*expl;

# Loop for m=0 and m=1

> for j from 0 to 1 do

# first analytical integration
> zz:=int(rho~ (j+1)*ker,rho=0..QR);
# Eq.(2.37)

# Simplification

> zz:=expand(zz);

> zz := subs((eps~2)~(5/2)=eps~5,1/(eps~2) "~ (5/2)=1/eps”5,
sqrt(a~2)=a,1/sqrt(a"2)=1/a,sqrt(eps~2)=eps,1/sqrt(eps~2)=1/eps,zz) ;

> zz:=expand(zz) ;

> zz:= subs(1ln(eps~2)=2xloge,zz);
loge term which are not the real divergent term
zz:= collect(zz,loge);

zz_log_koef :=coeff (zz,loge,1);

vV V V %

zz_log_koef :=simplify(zz_log_koef) ;
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> zz_

\%

zZ

ZZ

ZZ

ZZ

zzZ

VvV V V V V V V V V V %

F* v ¥ V Vv %

=+

v ®# V VvV

ZZ.

ZZ:

ZZ:

ZZ:

ZZ:

ZZ:

log_koef :=simplify(subs(eps=0,zz_log_koef));
=coeff (zz,loge,0);

second polar transformation

subs (QR=Lambda,zz) ;

ZZ*SDp;

expand (zz) ;

normal (zz) ;

:=expand (zz) ;

=simplify(zz);

=subs (1n(a*xLambda+sqrt(eps”2+a”2+Lambda”2))=1n(2%a*Lambda) ,zz) ;
=subs(arctan(a*xLambda/eps)=Pi/2,zz) ;
=subs(1n(eps”2+a~2*Lambda~2)=2*1n(a*Lambda) ,zz) ;

=expand (zz) ;

Second Taylor expansion
expo2:=b00* (2%zz2*Lambda) ;
exp2:=1+expo2+expo272/2;
Eq.
ZZ:

(2.51)

=zz*exp2;

Second analytical integration
Loop for s=0,1,2

for k from 0 to 2 do

philk,j]:= int(Lambda k*zz,Lambda=0..QL);

Eq.(2.52)

philk,j]:= subs((eps~2)~(5/2)=eps~5,1/(eps~2)~(5/2)=1/eps”5,

(eps~2)~(3/2)=eps~3,1/(eps~2)~(3/2)=1/eps~3,sqrt(a”2)=a,1/sqrt(a"2)=1/a,
sqrt(eps~2)=eps,1/sqrt(eps~2)=1/eps,philk,jl);

> phi [k, j] :=subs(sqrt(eps~2+a~2*QL"2)=a*QL, 1/sqrt (eps~2+a"2xQL"2)

vV V V V

=1/(a*QL) ,philk, j1);

phi [k, j] :=subs(arctan( a*QL/eps)=pi/2,philk,jl);
phi [k, j1:
philk,j]:
philk, jl:= expand(philk,jl);

subs(1n((eps~2+a~2xQL"2) /eps~2)=1n(eps~2+a~2*QL"2)-1n(eps~2) ,phi[k, j1);
subs (1n(eps~2)=2*loge,philk,jl);
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> Lterm[k,j] := coeff(philk,jl,loge);

> Lterm[k,j] := subs(eps=0,Lterm[k,jl);

# Eq. (2.55)

> phi[k,j] = coeff(philk,j],loge,0);

> philk,j] = collect(philk,j]l,eps);

# set eps ———> 0

> phi [k, j] = subs(eps=0,phi(k,jl);

> phi [k, j] = normal (expand(philk,jl));

> philk,j] :=subs(ln(a"2*QL"2)=2*%1n(a*QL) ,1/(a"2%QL"2) " (3/2)=1/(a"3%QL"3),

(a~2%QL"2)~(3/2)=(a~3*QL"3) ,phi [k, j1);
> phifk,jl  := expand(philk,jl);

check with Laplace equation for homogenous material
b00:=0;

phi_h[k,j]  := simplify(subs(b00=0,philk,jl));
Lterm(k,j] ;

od;

od;

vV V V V ® %

print results

m=0

for k from 0 to 2 do
phi [k,0];
phi_h([k,0];
Lterm(k,0];

od;

vV V V V V # %

m=1

for k from 0 to 2 do
phi[k,1];
phi_hlk,1];
Lterm(k,1];

od;

vV V V V V *H#

# Convert to Fortran

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



> fortran(phi);

> fortran(Lterm);

A.1.2 Analytical integration for edge adjacent case
# This Maple file shows the analytical integation to ektract divergent terms

# for the edge adjacent case.

> restart;
> with(linalg):

A\

with(codegen,fortran):

# Initialize arrays

> jnp:=array(1..3);

> jnq:=array(l..3);

> phi = array(0..2);

> sng = array(0..2);

# P -—-> P+ eps N

>rh := (eps”2 + eps*alxLambda + a2*Lambda~2)"(1/2);
# Eq.(2.65)

> ##

> ## kernel

> ## Note: cos(psi) factor from jacobian product omitted
> #it "

> jNR:=(jip*Lambda-jnpL*eps);

> jnR:=jlg*Lambda-jnql*eps;

> nz:=jnq[3];

> Nz:=jnp[3];

# Kernels

# Eq.(2.26)

> hyp:=3%jnR#*jNR/rh~5+3%b00%jnR*jNR/rh"~4+(b00~ 2% jnR*jNR-bOO* (Nz* jnR-nz*jNR)
-ndN) /rh~3-b00* ((b00* (Nz* jnR-nz*jNR) +ndN) /rh~2) -b00~ 2*Nz*nz/rh;
> hyp:=Lambda”2*hyp;
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# Taylor expansion
> exp_term:=1;
# Eq.(2.67)

# integrand

> exp_hyp:=exp_termxhyp;

Loop for s=0,1,2

## powers from shape function product
for 11 from O to 2 do

phi[11] := Lambda"ll*exp_hyp;

vV V V %=

;3

Analytical integration
> phi[11l] := int(phi[1l],Lambda=0..QL);
# Eq.(2.63)

# Simplification

> phi[l1l] := subs((eps~2)~(5/2)=eps~5,1n((eps*al+2*eps*sqrt(a2))/a2~(1/2))
=loge+ln(al/a2"(1/2)+2),

> sqrt(eps”2xal”2-4*a2+*eps”2)=eps*sqrt(al~2-4*a2),1ln(eps~2)=2xloge,

> arctanh(eps*al/(eps~2xal”2-4*a2xeps~2) " (1/2))=arctanh(al/(al~2-4*a2)"(1/2)),

> arctanh((2*a2*QL+eps*al)/(eps~2*al~2-4*a2%eps”2) " (1/2))=1/2%1n(2%a2*QL)
-1/2*%1n(-2%a2*QL),

> 1/(eps~2)"(5/2)=1/eps~5,1/sqrt(eps~2*al~2-4xa2*eps~2)=1/(eps*sqrt(al~2-4*a2))

,1n((eps*al+2*sqrt(eps~2) *sqrt(a2))/a27(1/2)) = loge+ln(al/a2"(1/2)+2),

(eps~2)~(3/2)=eps~3,1/(eps”2)"(3/2)=1/eps”3

> ,phill1]);

> phi[11] := expand(phi[11]);

# set eps ——> 0

> phi[1ll] := subs(eps=0,phi[11]);

> sng[11] := normal(coeff(phi[l11l],loge,1));
# Eq.(2.68)

> phi[11] := normal(coeff(phi[11],loge,0));
> phi[11] :=expand(phi[11]);
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> phi[11] :=simplify(phi[11]);
> end do;
# Convert to Fortran

> fortran(phi);

A.2 Analytical solution of the FGM cube problem
(Example 3 of Section 4.7)

The problem described in Section 4.7.3 is one dimensional in nature. The governing differ-

ential equation is,

d%u ou l@

72 "5 = (A1)

The thermal conductivity and the specific heat are taken to be

k(z) = koe2®®
c(x) = cpe?P”

and the boundary conditions and initial condition are

u(0,t) = 0
Lt) = T
0) =0 (A.2)

u(
u(z,

Since the boundary condition of this problem is inhomogeneous and the problem is transient,
it is better to express the temperature as the sum of two distributions. One will represent
the steady state distribution (independent of t) and the other will represent the transient

response. The transient response approaches zero as t increases indefinitely.

u(z,t) = ug(z) + vz, t) (A.3)
The steady state solution is
1 — e 26
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and the transient solution is,

1— e—ZBa:

’Ut(l',t) = u(m,t) — TI_—W

(A.5)

This solution will hold for homogeneous boundary conditions. So the modified problem is,

&%v Ov 10w
2 o T o
v(0,) = 0
o(L,t) = 0
1 — 282
’U(ZE, 0) = —Tl—_—m

To solve the problem we use the separation of variables, i.e.
v(z,t) = X(2)T(¢)
Substituting this assumed form and separating the variables we get,

82X X
oz2 + 2 Bz

X T

Thus setting each side of the above equation equal to —\? leads to,

92X . 0X

oy T 205t NX =0
10T
- T =
——o PXT=0

(A.6)

(A.8)

(A.9)

(A.10)

(A.11)

Now let X = e** be the solution, for which the associated characteristic equation is,

$24+28s+X2=0

with,
s=—f i\ /A2 -3

Substituting the value of s we get the general solution,

X = 6_’81‘ (Alei VA2—B2 + Age_i V >\2—,82:c)
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The term in parenthesis can be rewritten in terms of trigonometric functions, i.e.
X(z)=¢e"" (Bl cos /X2 — 2z + B sin \/mgc)
From Eq. (A.8), we get the general solution,
T(t) = Ce X
Hence, we obtain
v(z,t) = e P (A cos /A2 — B2z + Bsin \/Wx) e~V
To satisfy the boundary condition at x = 0,
v(0,t) = 0 = Ae™ N
and therefore A must be zero. To satisfy the boundary condition at z = L,
v(L,t) =0=e P Bsin (ML) g oMt
and since B # (0, we obtain the following equality
sin ML =0
This implies,
N =L = nr

or
2.2

L2

A= + 8

where n = 1,2, 3, ..., so these are the eigenvalues and the associated eigenfunction is

. nmnr _ n2x2 2
v, = B, sin —L—e_ﬁ””e ( 12+ )at
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(A.18)

(A.19)

(A.20)
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Now by the superposition principle the function v is
¢ nwT n2x2 | 52) o
v(z,t) = Z B, sin Te_ﬁxe_<7+’ )e (A.22)
n=1

and B, will be selected such that it satisfies the initial condition. At ¢ = 0, the above

expression becomes
1— 6—2[31‘

~T{ =55z = > Busin O e (A.23)

Recognizing this expression as a half-range expansion of a Fourier sine series we get

B, = —[,(1—_27€j—_2§L_) /OL (eﬁx — e‘ﬂ””) sin —nZ—mdx
= —B% [BL sin nw%ﬁ—i —nwcosnm| . (A.24)
Hence the analytical solution to this problem is
u(z,t) = us(z) + vz, t) (A.25)
= Ti:—::—jz—i + 2 B, sin %{e_me—(%gf-m?)at (A.26)
and thus the flux is
q(z,t) = —k(x)% (A.27)
= —k(z) %ﬂ_T::jZZ + g Bne_ﬁxe_(%gi“#)at (% cos n_za: — Bsin %ﬂﬁ):'
where 2TePL 1+ e 200
B, = NI [ﬁL sinnﬂ'l—_—m —nw cosmr} . (A.28)

A.3 ABAQUS user subroutine

The ABAQUS user subroutine UMATHT for graded elements with variable conductivity is
presented here. It is written in Fortran language.

c ABAQUS User subroutine umatht
¢ This user subroutine implements graded elements with variable

¢ conductivity in ABAQUS. It can incorporate any functional
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¢ variation of heat conductivity and specific heat.

subroutine umatht(u,dudt,dudg,flux,dfdt,dfdg,statev,temp,
$ dtemp,dtemdx,time,dtime,predef ,dpred, cmname,ntgrd,nstatv,

$ props,nprops, coords,pnewdt,noel,npt,layer,kspt,kstep,kinc)

include ’aba_param.inc’

character*80 cmname

dimension dudg(ntgrd),flux(ntgrd),dfdt(ntgrd),
$ dfdg(ntgrd,ntgrd) ,statev(nstatv) ,dtemdx(ntgrd),time(2),
$ predef (1) ,dpred (1) ,props(nprops) ,coords(3)

read in properties

exponential

beta = 1.5

cond=5.0*exp(2.0*beta*coords(3))

O o 0

trigonometric

cond=5. 0% (cos(coords(3))+4.68392*sin(coords (3)))**2.d0
quadratic

cond=20% (1+420.7*coords (3) ) **2.0

specht = 0.0

O o o 0

c input specific heat
dudt = specht
deltu = dudtxdtemp
u = u+deltu
c input flux = -[k]*{dtemdx}
do i=1, ntgrd
flux(i) = -cond*dtemdx(i)
end do
c input isotropic conductivity
do i=1, ntgrd
dfdg(i,i) = -cond
end do
return

end
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