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Abstract

Domain-Integral Methods for Computation of Fracture-Mechanics
Parameters in Three-Dimensional Functionally-Graded Solids

A natural or engineered multiphase composite with macro-scale spatial variation
of material properties may be referred to as a functionally graded material, or FGM.
FGMs can enhance structural performance by optimizing stiffness, improvingheat, cor-
rosion or impact resistance, or by reducing susceptibility to fracture. One promising ap-
plication of FGMs is to thermal barrier coatings, in which a ceramic coating with high
heat and corrosion resistance transitions smoothly to a tough metallic substrate. The
absence of a discrete interface between the two materials reduces the occurrence of de-
lamination and spallation caused by growth of interface and surface cracks. Fracture
remains an important failure mechanism in FGMs, however, and the ability to predict
critical flaw sizes is necessary for the engineering application of these materials.

This presentation describes the development of numerical methodsused tocompute
fracture parameters necessary for the evaluation of flaws in elastic continua. The cur-
rent investigation employs post-processing techniques in a finite-element framework
to compute the J-integral, mixed-mode stress intensity factors and non-singular T-
stresses along generally-curved, planar cracks in three-dimensional FGM structures.
Domain and interaction integrals developed to compute these fracture parametershave
proved to be robust and accurate because they employ field quantities remote from the
crack. The recent emergence of promising engineering applications of FGMs motivates
the extension of these numerical methods to this new class of material.

This work first develops and applies a domain integral method to compute J-inte-
gral and stress intensity factor values along crack fronts in FGM configurations under
mode-I thermo-mechanical loading. The proposed domain integral formulation accom-
modates both linear-elastic and deformation-plastic behavior in FGMs. Next discussed
isthe extension of interaction-integral procedures to compute mixed-mode stressinten-
sity factors and T-stresses along planar, curved cracks in FGMs. The investigation ad-
dresses effects upon interaction integral procedures imposed by crack-front curvature,
applied crack-face tractions and material nonhomogeneity. An additional consideration
for T-stress evaluation includes the influence of mode mixity.
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Chapter 1

Introduction

1.1 Overview

A natural or engineered multiphase composite with macro-scale spatial variation of
material properties may be referred to as a functionally graded material, or FGM.
FGMs can enhance structural performance by optimizing stiffness, improving heat, cor-
rosion or impact resistance, or by reducing susceptibility to fracture. One promising ap-
plication of FGMs is to thermal barrier coatings, in which a ceramic coating with high
heat and corrosion resistance transitions smoothly to a tough metallic substrate. The
absence of a discrete interface between the two materials reduces the occurrence of de-
lamination and spallation caused by growth of interface and surface cracks. Fracture
remains an important failure mechanism in FGMs, however, and the ability to predict
critical flaw sizes is necessary for the engineering application of these materials.

This work describes the development of numerical methods used to compute frac-
ture parameters necessary for the evaluation of crack-like flaws in elastic continua. The
current investigation employs post-processing techniques in a finite-element frame-
work to compute the J-integral, mixed-mode stress intensity factors and non-singular
T-stresses along generally-curved, planar cracks in three-dimensional (3-D) FGM con-
figurations. Domain and interaction integrals developed over the past thirty years to
compute these fracture parameters have proved to be robust and accurate because they
employ field quantities remote from the crack. The recent emergence of promising engi-
neering applications of FGMs motivates the extension of these numerical methods to
this new class of material.

This work first develops and applies a domain integral method to compute J-inte-
gral and stress intensity factor values along crack fronts in FGM configurations under
mode-I thermo-mechanical loading. The proposed domain integral formulation accom-
modates both linear-elastic and deformation-plastic behavior in FGMs. Next discussed
is the extension of interaction-integral procedures to compute directly mixed-mode
stress intensity factors and T-stresses along planar, curved cracks in FGMs under lin-
ear-elasticloading. The investigation addresses effects upon interaction integral proce-
duresimposed by crack-front curvature, applied crack-face tractions and material non-
homogeneity. Additional considerations for T-stress evaluation include the influence of
mode mixity, crack-face tractions and computation of the anti-plane shear component
of non-singular stress, T'13.
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The present chapter provides a brief background for domain and interaction-inte-
gral methods by reviewing the relationship between the energy release rate G, mixed-
mode stress intensity factors Kj, K11 and Kjyj, the J-integral, and T-stresses. Then fol-
lows a brief review of the development of domain-integral techniques, including those
developed from the J-integral and interaction integrals, to compute these parameters.
The term “domain integral” is used to describe an area or volume integral, as opposed
to a line integral. The J-integral and interaction integrals studied in this work were
originally developed in line-integral form. Extensions of these methods to 2-D areas,
3-D surfaces and 3-D volumes simplified the implementation of these integrals as post-
processing steps to finite-element analyses.

1.2 Some Useful Fracture-Mechanics Parameters

Irwin [89] defined the energy release rate, G, as the decrease of potential energy, I1, in
a cracked body caused by an increment of crack growth [6]:

dIl
_dn 6

Here, dA denotes the new area of crack surface exposed by the increment of crack propa-

G =

gation. Theoretically, a crack propagates when G reaches a critical level, called the criti-
cal energy release rate, G¢, which is a material property. Actually, G¢ depends upon the
crack-growth-resistance curve, or R-curve, which may depend upon the configuration
of the cracked body, the rate of applied loading, material temperature etc. [6]. A flat R-
curve allows G¢ to be defined uniquely, whereas a rising or falling R-curve requires spe-
cial considerations to be made in estimating G¢. Energy release rates can be computed
analytically for simple geometries and loading conditions, but numerical procedures
such as the finite-element method enable the evaluation of G for complex bodies loaded
arbitrarily, as will be discussed shortly.

Another important fracture parameter is the stress intensity factor, K, which de-
scribes the amplitude of stresses in cracked bodies some region near the tip of a crack
in which material behavior is linear elastic. In the immediate vicinity of a crack exists
a process zone, where new crack surfacesinitially appear. In this region, voids grow and
coalescein ductile materials, crazing and crack bridging may occur in polymers and het-
erogeneous materials, and crack branching and micro-cracking often occur in brittle
solids [6]. Analyses of the process zone typically require special treatment of disconti-
nuities in which the material behavior deviates from that of a solid continuum. Beyond
the process zone lies a region in which material behavior acts as a nonlinearly-deform-
ing continuum, and beyond this area lies a region referred to as the zone of K-domi-
nance, where material deformationislinear-elastic and throughout which the stressin-
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tensity factor, K, defines the amplitude of stresses and displacements. The K-dominant
zone must be fully contained within the cracked configuration, and must be small
enough so that stresses are dominated by the crack-tip fields and not by remote loading
or edge effects.

There are three orthogonal crack-opening displacement modes, including opening,
sliding and anti-plane shear. When a K-dominant region exists, one stress intensity fac-
tor describes each opening mode, namely Kj, K11 and Kipj, respectively. The stresses in
the K-dominant zone are defined as [221]

041(r,0) 015(r,0) 045(r,8) 1110) f126) f130)
lim| 09, 0) 055(r,0) 093, 6) | = _E_1£5,(0) f155(8) f156)
r=0 0'31(7', 9) 0'32(7', 9) 0'33(7', 9) 27"' f31(9) f32(6) f33(0)

Tll 0 T13

+10 0 O |+06¢Y2 + 0032 +...., 2
T31 0 T33

where the stresses are a function of distance r from the crack tip and angle 8 from the
plane of the crack, and where the functions fj; represent angular variations with respect
to the crack plane. The matrix components in Eq. (2) are symmetric. Notice that this
expression is in the form of a series, with the lowest order of r being —1/2. Williams
[221] derived this stress variation, and proved that Eq. (2) is valid within the K-domi-
nant region of any cracked body regardless of the configuration of the specimen or the
type of loading. The inverse square-root singularity in r causes the first terms on the
right-hand side of Eq. (2) to dominate the other terms in the vicinity of the crack. The
constant (O(?)) T-stress terms, so called by Rice [182], act tangent to the crack plane,
and play a significant role in elastic-plastic fracture mechanics as will be discussed lat-
er. The higher-order terms in r (O(-1/2), 0¢3/2), 0(%/2)...) dominate the stresses far
from the crack, and include the influence of remote loading or edge effects. The form of
these terms may be obtained analytically, and the coefficients may be computed by fit-
ting the expressions with data from experiments [221, 164].

Equation (2) illustrates why the stress intensity factor, K, rather than near-tip
stresses, is useful as a fracture parameter. Cracks propagate when stresses cause the
material in the process zone to separate. The process zone, however, isthe most compli-
cated region to analyze. If crack growth can somehow be linked with the stresses in the
K-dominant region, then analyses involving linear-elastic conditions or small-scale
yielding will be sufficient. In theory, however, stresses within the K-dominant region
approach infinity near the crack tip, and it is unclear at what distance from the crack
tip stresses correspond to crack growth. Fortunately, the stress intensity factor K, is
constant throughout this region, being dependent only upon the loading, crack configu-
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ration, and in some cases, the material properties, such as in an FGM. Therefore, for
specimens in which a stress intensity factor can be computed, K defines the amplitude
of crack-tip fields that are induced by a particular applied loading. If K can be deter-
mined for a laboratory specimen under a particular loading, the value of K when the
crack begins to grow is called the critical stress intensity factor K¢, and is a material
parameter referred to as the fracture toughness. If K is below K¢, then theoretically, the
crack cannot grow, and K may be used to predict the onset of crack propagation. When
a crack does propagate, a dynamic stress intensity factor Kp, defines the amplitude of
the dynamic stresses within the K-dominant region that translates with the crack. The
K¢ value obtained from a laboratory specimen, because it is a material property, may
be compared with K-values computed for cracksin configurations composed of the same
material that have different geometries and differentloads. Thusit becomes very useful
to be able to determine stress intensity factors for arbitrary configurations under arbi-
trary loading conditions.

Irwin [90] established a relationship between the energy release rate, G, and the
stress intensity factor, K. For mixed-mode loading, this relationship is [6]

K2 + K K2
G =~ 3)

where E* = E for plane stress conditions, E” = E/(1 —v2) for plane-strain conditions, and
u=2E/(1—v). Rice [182] proved that Eq. (3) is not influenced by the non-singular T-
stresses shown in Eq. (2). Equation (3) therefore enables analytical or numerical solu-
tions for G to lead to stress intensity factor solutions. Thus, through energy-based ap-
proaches (direct computation of G) and stress-based approaches (direct computation of
stress intensity factors) analytical, semi-analytical, experimental and numerical tech-
niques have been derived and developed to compute stress intensity factors in a wide
variety of cracked bodies. Analytical solutions are typically available for relatively sim-
ple crack configurations or idealized geometries, such as flat circular, elliptical or rec-
tangular cracks, e.g. [156]. The analytical solutions are extremely useful, however, be-
cause irregular cracks can often be analyzed by assuming an idealized shape and
bounding parameters for the actual crack between solutions for an ideal crack. Analyti-
cal solutions also serve an important role by enabling verification of numerical methods
used to estimate stress intensity factors. Once numerical methods have been estab-
lished, they may be used to compute stress intensity factors along cracks in complex ge-
ometries under arbitrary loading. Experimental procedures provide the validation of
analytical and numerical techniques, and drive the development of theoretical methods
to account for observed phenomena. Due to the widespread problem of cracks in engine-
ered structures, one of the primary focuses of fracture mechanics is to estimate stress

4
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intensity factors and their relationship to the material fracture toughness and crack
growth in order to evaluate structural reliability.

An important development in computational fracture mechanics came when Rice
[181] introduced the J-integral, which may be written as

J = %I—IE(I)J (Woy; = ogtjsJn; dC, w
r

where W is strain energy density, Oj denotes stress, u; represents displacement, and
(+),;=0(-)/0X,, where X, defines 2-D Cartesian coordinates. The curve I'in the X,-X,
plane extends from the bottom crack face to the top crack face of a planar crack, enclos-
ing the crack tip. For homogeneous material under nonlinear-elastic, quasi-static, me-
chanical loading in the absence of body forces and crack-face tractions, the limit in Eq.
(4) is not necessary, and J in this case is path independent. The J-integral in Eq. (4), is
infrequently referred to as the Eshelby or Cherepanov integral, because it is the X-
component of the energy-momentum tensor developed by Eshelby [63, 64], and is analo-
gous to an integral derived previously by Cherepanov [36]. Rice [181] proved that ¢/ is
path-independent and equivalent to G. (Jin and Sun [100] discuss a commonly-
employed, mathematically inconsistent approach to equate J and G, and then provide
a mathematically rigorous derivation as an alternative to Rice’s [181] method.) The J-
integral, therefore, became a powerful tool to compute the energy release rate for anon-
linear-elastic solid, but also offered a new approach for computing stress intensity fac-
tors, through the relationship in Eq. (3). For computation of J, the contour of
integration, I', may lie outside of the K-dominant region, which may make its evalua-
tion simpler ([181]) and more accurate by avoiding the potentially inaccurate singular-
field solutions in the vicinity of the crack.

It is straightforward to compute G for an arbitrary cracked configuration using two
finite-element analyses. After computing the potential energy of the cracked solid, a
second mesh of the cracked body can be generated with the only difference being that
the crack is made slightly longer. The difference between the computed potential energy
of the cracked bodies divided by the difference in crack surface area between the two
meshes leads to G. This procedure is simple, but inconvenient, because it requires the
generation of two finite-element meshes and the solution of two boundary-value prob-
lems. Alternatively, the J-integral can be computed along an arbitrary path of the
cracked body, and requires only post-processing of numerical results. This procedure is
simpler and more efficient than solving two boundary-value problems, but it applies
only to 2-D structures. The 3-D analog of the J-integral [27] is a surface integral which
can provide only a global measure of the energy release rate for a crack, not the local
variation of stress intensity factors along the crack front.

5
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The difficulties associated with both the computation of G and the evaluation of the
J-integral for cracks in 3-D bodies motivated Parks [165, 166], and Hellen [82] to devel-
op procedures, based on a finite-element framework, to compute G using the solution
to a single boundary-value problem. Parks [165] takes the derivative of the finite-ele-
ment stiffness matrix with respect to a change in crack length, and obtains an expres-
sion for G that requires minor post-processing computationsinvolving only aring of ele-
ments surrounding the crack front. This method and subsequent related procedures are
commonly referred to as “virtual crack extension” techniques. He develops and employs
the method for 2-D and 3-D cracks, and is able to compute the local stress intensity fac-
tor along a curved 3-D crack. For a specific 2-D case, he demonstrates that his method
and the numerical evaluation of the J-integral yield identical values of G. He indicates
that the new method is “an area-analogue of the </ line integral [165].” The work by
Parks [165] appears to be the first step in the evolution of domain-integral techniques,
and he later extends the method to incorporate the effects of nonlinear material behav-
ior [166]. The approach developed by Hellen [82] is very similar to that of Parks, and
employs a finite-element framework.

Del.orenzi [46] used a continuum-mechanics approach to derive a 3-D volume inte-
gral for G that, for special cases, is equivalent to the J-integral evaluated on a 3-D sur-
face. DeLorenzi and Shih demonstrate their technique in the investigation of side-
grooved specimens under elastic-plastic loading [47]. The use of this virtual crack
extension method to evaluate a 3-D volume integral equivalent to J and G, gradually
developed during the next several years with Shih and fellow researchers [133, 147,
192, 140, 141]. The nomenclature “domain integral” refers to the use of area or volume
integrals, rather than line or surface integrals, to compute /. These methods are power-
ful because of the domain independent character of computations, and because they
employ system energy distributed throughout the body to compute G, rather than em-
ploying computed stresses and displacements at specific locations to correlate with
stress intensity factors. With the establishment of domain integrals to compute the en-
ergy release rate and stress intensity factors, the procedures became widely used in fi-
nite element codes as post-processing routines[1, 51}, and were developed for problems
including thermal loads, plasticity and dynamic effects [192, 147]. From the above dis-
cussion, it is clear that researchers at Brown University, including Rice, Parks, Shih,
Nakamura, Freund andMoran have played the leading role in extending the J-integral
to the robust domain-integral widely used today.

Therelationship expressed in Eq. (3) makesit apparent that adomain-integral tech-
nique that leads to a value of J (and thus (), is insufficient to decompose the indepen-
dent contributions of the three stress intensity factors under mixed-mode loading. The
domain integral is a powerful method to compute the local energy release rate along a
3-D crack front in a specimen under thermo-mechanical loading, and including the ef-
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fects of body forces, crack-face tractions, plastic strains (nonlinear-elastic or deforma-
tion plastic material response) and inertia under single-mode loading. The importance
of mixed-mode loading on phenomena such as crack branching encouraged researchers
to devise methods to decompose the J-integral into orthogonal components that would
enable computation of the three stress intensity factors [152, 151, 194, 86]. The decom-
position of the J-integral into orthogonal componentsis a powerful technique to extract
mixed-mode stress intensity factors, but another technique was under development
concomitantly, and proves to be much simpler for computation of the mixed-mode stress
intensity factors.

Sternet al. [203], Chen and Shield [34], and Yau et al. [226] introduce the theory and
usage of “interaction integrals,” which are path-independent integrals obtained by su-
perimposing two distinct equilibrium states. Stern et al. [203] derive their integral us-
ing Betti’s reciprocal work theorem, whereas Chen and Shield [34] (of the University
of Illinois) employ the J-integral. Both approaches enable the direct computation of
mixed-mode stress intensity factors. Yau et al. [226] employ the interaction integral
based on the J-integral, to numerically integrate line forms of the interaction integral
in 2-D bodies. Wang et al. [216] then extend the procedure to anisotropic solids. When
the domain integral had finally been developed into its modern form (e.g. Shih et al.
[192]), and others such as Nikishkov and Atluri [151] were able to decompose it into ort-
hogonal components in order to extract mixed-mode stress intensity factors, other re-
searchers, such as Nakamura and Parks [145, 143] (again, the link to Brown Universi-
ty), began to employ a domain-integral (volume) form of the interaction integral to
accomplish the same task. The widespread use of domain-based interaction-integral
procedures, ever since their appearance, indicates their preferability to decomposed
forms of the J/-integral to compute mixed-mode stress intensity factors. Abaqus [1], for
example, includes domain-integral (J-integral) and interaction-integral capabilities,
but has not incorporated decomposed J-integral techniques.

In 1985, Cardew et al. [29], and later Kfouri [105], employed a theorem attributed
to Eshelby, to devise an interaction-integral procedure based on aJ-type integral for the
computation of T-stress T'11 in 2-D cracked bodies. Sladek and Sladek [197] developed
an interaction-integral method to compute T-stresses, that is based on Betti-Rayleigh
reciprocal theorem, just as Stern et al. [203] had used the theorem to derive an interac-
tion integral for stress intensity factors. Chen et al. [33] prove that the interaction inte-
grals of Cardew et al. [29] and Sladek and Sladek [197] are equivalent. Nakamura and
Parks [146] again extend the interaction-integral method to a domain integral form
suitable for computing 71 along a curved, planar 3-D crack. For 2-D bodies, the out-of-
plane T-stress T's3 equals zero for plane stress conditions, and equals vT'1; for plane
strain conditions. Nakamura and Parks define T'33 to also depend upon the strain tan-
gent tothe crack front, e33. The third constant T-stress component 7' 3 occurs in conjunc-
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tion with mode-III, anti-plane shear loading. Moon and Earmme [139] develop an inter-
action-integral procedure based on the J-integral to compute T3 in bi-materials. Kim
et al. [107] further extend this interaction integral for anisotropic bimaterials. These
works treat only the theoretical aspects of the anti-plane interaction integral and T3
computations. Although some works employ T3 for theoretical and analytical inves-
tigations, no works have investigated methods to compute T'3.

Much work has been performed to extend domain-integral and interaction-integral
techniques for the analysis of cracks in 2-D FGMs. The current work is an investigation
of domain integrals and interaction integrals for the computation of energy release
rates, mixed-mode stress intensity factors, and T-stresses along planar, generally
curved cracksin 3-D FGMs. The following section describes specific contributions of this
work.

1.3 Research Objectives

This thesis exploresthe application of domain-integral techniques to cracksin 3-D FGM
configurations. The procedures examined herein include J-integral methods for com-
putation of the energy release rate, interaction (I) integrals for computation of stress
intensity factors, and I-integrals for computation of T-stresses. Contributions of this
study to each of these areas include the following:

e Development of a simplified domain integral to compute the J-integral in
3-D FGM configurations under thermo-mechanical loading. Justification for
using numerically-computed derivatives of field quantities, rather than ex-
plicit expressions, to simplify implementation and encompass arbitrary ma-
terial gradients and nonlinear-elasticbehavior. Provides sets of stress inten-
sity factors computed along semi-elliptical surface cracks of varying
geometry.

» Investigation of interaction-integral procedures for curved, planar cracksin
homogeneous materials under mechanical loading. Suggests distinct ap-
proaches for computation of special quantities, depending upon the type of
mesh dicretization used to define the crack. Examines the effect of crack-
front curvature on accuracy of computed stress intensity factor values, and
justifies the use of simplified procedures that omit terms to incorporate cur-
vature effects. Develops a simple numerical integration scheme to improve
the accuracy of computed stress intensity factors for eracks that carry sur-
face tractions.

¢ Examines the accuracy of an interaction integral procedure to compute
stress intensity factors along curved, planar cracks in 3-D specimens under
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mechanical loading. Proposes treatment of plane-strain computations using
3-D models. Examines the accuracy of computations that omit terms which
incorporate curvature effects.

¢ Examines the validity of an interaction integral for computation of 7-
stressesin 3-D solids under mixed-mode loading. Explores an interaction in-
tegral procedure for computing T-stresses along curved, planar cracksin 3-D
FGM specimens under mixed-mode, remote mechanical loads. Demon-
strates the accuracy of a simple procedure to compute tangential strain of
crack-front segments.

e Implementation and verification of the above domain-integral proceduresin
a robust, public-domain finite-element code with user manual.

Chapters 2-5 of the present work address specifically the above developments, and each
of these chapters is a self-contained, stand-alone study. Chapter 6 discusses the find-
ings of the previous chapters, and discusses limitations and future directions of tech-
niques employed herein. Several appendices include expressions employed in the work
that are available in the literature, in addition to details of numerical procedures dis-
cussed in the body of text.
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Chapter 2

Computation of J for Cracks Under
Mode-I Thermomechanical Loading

2.1 Introduction

In structures composed of functionally graded materials (FGMs), the spatial variation
of thermal and mechanical properties influences strongly the response to loading (see
Miyamoto et al. {138] for a general discussion). The presence of a functionally-graded
interface between two dissimilar materials, for example, can lead to a relaxation in
stresses associated with discontinuities at bi-material interfaces [81, 127, 180, 155,
157]. Because fracture remains a key failure mode of FGMs, successful application of
these materials depends upon an understanding of their fracture mechanics.

Eischen [59] and Jin and Noda [97] demonstrated the correspondence between near-
tip fields in homogeneous and nonhomogeneous bodies, which permits the application
of standard analysis techniques to cracks in FGMs. Delamination and cracking of
FGMs at coating/substrate interfaces due to thermal loads are the focus of investiga-
tions by Lee and Erdogan [127], Bao and Cai [14], Lee and Erdogan [128], Quian et al.
[173], and Gaudette et al. [73]. Takahashi et al. [209] and Fujimoto and Noda [70, 71]
examine the influence of material gradation and thermal shock on crack propagation.
Ravichandran [180], Jin and Batra [94], Cai and Bao [28], and Jin and Batra [95], dis-
cuss residual stresses, crack bridging, residual strength, fracture toughness and R-
curve behavior. The edge crack in a graded semi-infinite strip under thermal and me-
chanical loads is a case studied by Erdogan and Wu [60], Erdogan and Wu [61], Gu and
Asaro [76], Noda [154], and Noda and Jin [153].

Analytical and numerical studies of fracture in FGMs reported in the literature fo-
cus primarily on plane stress, plane strain and axisymmetric configurations [45, 59,
124, 44, 131, 189]. As understanding of the micromechanical behavior of crack growth
in FGMs progresses, computational techniques enable the analysis of realistic configu-
rations in three-dimensions for which analytical solutions do not exist. This work dis-
cusses a formulation of the J-integral (e.g. [181]) for three-dimensional (3-D) models of
FGMs with numerical implementation using a domain integral approach. Applications
focus on semi-elliptical surface cracks that have received much attention for homoge-

neous materials, and that represent a common failure mechanism in brittle materials
and FGMs [13, 104, 209, 123].
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Techniques to obtain stress intensity factors in components made of homogeneous
and nonhomogeneous materials include the displacement correlation technique (DCT)
({191, 109]), the modified crack closure integral [187, 110], the interaction integral [226]
and stress correlation [175]. For nonlinear behavior, the domain-integral technique
[133] based on the J-integral [181] remains (strictly) valid for deformation plasticity
and approximately valid for incremental plasticity. The current study considers only
linear-elastic behavior.

The next section examines the finite element analysis of uncracked bodies with
smoothly-graded material properties under thermomechanical loads, and verifies the
numerical techniques by comparison with published analytical solutions. A general,
and numerically convenient, formulation of the domain integral for nonhomogeneous
materials and quasi-static thermomechanical loads is then developed, followed by a de-
scription of the numerical evaluation in a finite-element setting. The literature pro-
vides examples to verify this technique for two-dimensional (2-D) geometries, and the
DCT verifies new stressintensity factors derived here using the J-integral approach for
3-D configurations. The study includes an initial parametric study and discussion of Ky
-values calculated for a number of semi-elliptical, surface-crack geometries in function-
ally-graded plates under mode-I tension, bending and thermal loads. Some final re-
marks and observations conclude the study.

2.2 Finite element analysis including graded material properties

With the finite element method, material properties can vary between elements or be-
tween integration points. The term homogeneous element here describes an element
with all integration points assigned a common property value; the term graded element
here describes an element with integration points that may have different property val-
ues. Many researchers, including Williamson and Rabin [222], Lee and Erdogan [127],
Anlaset al. [7], Li et al. [132], Santare and Lambros [188], Bruck and Gershon [26], and
Kim and Paulino [111] apply homogeneous and graded elements to model uncracked
FGMs. For a given level of mesh refinement, solutions generated with graded elements
generally approximate the true solution more accurately than solutions generated us-
ing homogeneous elements [111]. In addition to the zero-energy modes and shear-lock-
ing mechanisms associated with homogeneous elements [24, 120, 41], property varia-
tion between integration points may introduce additional sources of poor element
behavior. For example, with full (four-point) integration, spurious shear strains develop
in a four-noded (bilinear) quadrilateral element under a pure tension loading which
acts perpendicular to a gradation in elastic modulus. This study employs tri-quadratic
(20-noded brick) elements with graded material properties and reduced (2x2x2)
Gaussian integration—a combination shown here to yield good accuracy.
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Within graded elements, the calculation of stiffness, stress and other quantities re-
quires the value of properties at integration points. One technique to assign a spatially-
varying property at integration points employs temperature-dependent material prop-
erties. For example, we may define Young’s modulus, E(x), x = (x;,%4,%3), as a function
of temperature, and then define temperature as a function of spatial position such that
the expression 0E(x)/dT(x) X 6T(x)/dx; yields the desired value for dE(x)/ox;. The as-
signment of a zero thermal expansion coefficient then eliminates unwanted thermal
strains. Rousseau and Tippur [186] adopt this approach which is useful to verify other
implementations including those described below. This method permits only one form
of spatial variation, 0T(x)/dx;, andis not suitable for thermomechanical analyses where
temperatures and material properties vary distinctly. The current study employs a
more general procedure.

To support multiple material gradients and simultaneous thermal and mechanical
loads, element-level routines can retrieve analyst-defined values of material properties
at integration points or model nodes. An explicit function that defines the spatial mate-
rial variation, [7], or a routine that calculates properties according to a micromechani-
cal model [149] are two commonly-used methods to produce the required property val-
ues. With analyst-specified nodal values for the properties, interpolation using element
shape functions determines property values at integration points. This method incorpo-
rates an additional approximation into the boundary-value problem by linking the ac-
curacy of material properties computed at integration points, to the integration order
employed within elements. This approach has been shown to provide good accuracy, ho-
wever [132, 111], and the current study employs the nodal-values approach.

2.2.1 Performance of graded 3-D elements

This section examines the accuracy of finite-element procedures for the analysis of un-
cracked bodies with graded elastic moduli and graded coefficients of thermal expansion
(CTE). Simple boundary-value problems for 2-D (plane-strain) graded solids that have
analytical solutions available in the literature provide benchmarks to assess the perfor-
mance of the finite element analyses. To simulate plane-strain conditions, the finite-ele-
ment models described in this section have one layer of 20-noded bricks in the thickness
direction, and have out-of-plane displacements constrained to zero. Erdogan and Wu
[61] derive semi-analytical solutions for stresses in an uncracked, semi-infinite graded
strip (Fig. 2.1) subjected to fixed-grip displacement, tension and bending loads. The
strip has an exponential variation of Young’s modulus in the form Ex)=FE 1eﬁ". The
constant of material nonhomogeneity, j, follows the relation

_ L1in(Ee
ﬁ - Wln(El) ’ (1)
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Fig. 2.1. (a) Schematic of a semi-infinite strip of width W, w1th material properties
graded exponentially in the x-direction. Poisson’s ratio, v, is constant, and E;,
a;, and k;, i =1, 2, are the Young’s modulus, coefficient of thermal expansion,
and coefficient of heat conduction at x =0 and x = W, respectively. The two load
cases are: (1) an imposed, uniform axial stress, and (2) an imposed temperature
field, with T(x =0)=T1=0.05Tg and T(x =W) =T =0.5T. (b) 40 x 10 X 1-ele-
ment mesh of the uncracked strip (¢ = 0) consisting of 20-noded brick elements.
(¢) Mesh for the cracked strip: a/W= 0.4 (d) Crack-front elements with quar-
ter-point midside nodes and collapsed faces. Dimension Rp provides a measure
of domain size, and L, indicates the size of crack-front elements.

where Wdenotes the specimen width and E,/E is the ratio of Young’s modulus atx =W
andx =0. Notice that 1/§ represents the length scale of material nonhomogeneity. Pois-
son’s ratio, v, remains constant throughout the specimen. In the semi-infinite strip, the
plane-strain stress o,, due to a remotely applied axial force, N, is [61]

Oyyx) = Eoeﬂx(Ax + B), 2)

where values of A and B follow by enforcing the boundary conditions for axial force N
and moment M:

w w
f op@dx = N and J opedz = M = . @)
0 0

Figure 2.2(a) shows 0,,(x) on each y = constant section of the strip given by Eq. (2). This
curve corresponds to the ratio E,/E; = 10, with normalization by the applied stress, o,.
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The symbols indicate finite-element stresses at integration points along a constant y-
value. They agree very well with the semi-analytical solution. Figure 2.2(b) shows the
computed deformation of the finite-element model under tension loading.

Erdogan and Wu [60] also determine the stress distribution in a functionally-
graded, semi-infinite strip subjected to thermal loading. They adopt an exponentially-
varying Young’s modulus and constant Poisson’s ratio. For the thermal properties, they
also adopt exponentially-varying coefficients of thermal expansion, a(x)=a.e”", and
heat conduction, k(x) = k.e", where a, and &, denote the values of the coefficients at
x=0. Here, w and 7 set the material nonhomogeneity according to

_ Ly (% _ Lin(ke
w = Wln(a1) and 75 = Wln(kl)' 4)
Accordingly, 1/w and 1/5 represent the length scales of material nonhomogeneity asso-
ciated with thermal expansion and conductivity, respectively. The temperature dis-

tribution follows by solution of the one-dimensional (1-D), steady-state diffusion equa-
tion with spatially-dependent conductivity, i.e.

0 aT\ _
™ (k(x) 5‘;) =0, ‘ 5)
which yields

Tw) = Ce™™ + D, 6
where C and D denote constants of integration found by assigning values for ky/k,,

T(x=0) and T'(x=W). With the known temperature distribution, Erdogan and Wu [60]
show that the plane-strain stress o,,(x) has the form

E
Oyy@) = (_f%[Ax + B~ (1 + »a@(T& ~ Ty)] . @
Values for A and B follow upon application of the boundary conditions requiring, respec-

tively, zero net axial force and zero net moment:

W 14
I oyx)dx = 0 and J Oyyxdx = 0. (8)
0 0

Figure 2.2(a) shows the semi-analytical and finite-element stresses for this simple ther-
mal loading in a model with the following material properties: E,/E,=10, a,/a, =2,
ko/k;=10,T(x=0)=T,=0.05Ty, and T(x=W) =T, = 0.5T (see Fig. 2.1). The quantity
o¢= E,a,T,/(1—v) defines the conventional normalizing stress for thermal loading in
plane strain. Figure 2.2(c) shows the computed deformation of the finite-element model
for the above boundary conditions and material properties.

The semi-analytical solution for the combined tension and thermal loadings super-
poses the normalized results from Egs. (2) and (7). The corresponding finite element
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solution represents one analysis including combined thermal and tension loading (see
Fig. 2(a)). Figure 2.2(d) shows the deformed shape of the finite-element model under the
combined loading. This 2-D example provides a partial verification of the 3-D numerical
procedures used in this study to model FGMs.

2.3 The domain integral for cracks in FGMs

Three-dimensional domain integral methods rely upon volume integrals to compute J-
values pointwise along crack fronts. Early works on the domain integral method [133,
192, 140, 152, 151, 194] formulate the procedure for 2-D (area) and 3-D (volume) do-
mains, and apply the technique to cracks in homogeneous solids under linear-elastic
and elastic-plastic deformations arising from mechanical and thermal loads. Gu et al.
[77], Chen et al. [35], and Kim and Paulino [109, 112] extend the domain-integral meth-
od to 2-D FGM specimens under isothermal, linear-elastic loading. The interaction-in-
tegral method, based upon theJ-integral, is useful to obtain mixed-mode stressintensi-
ty factors in linear-elastic 3-D solids [145]. Dolbow and Gosz [53] apply the interaction
integral method to FGM specimens under mechanical loading. These studies of simple
2-D models with through cracks in FGMs determine stress intensity factors that
compare well with analytical values, but none of them investigate 3-D configurations.
The following sections describe the formulation of the 3-D domain integral for FGMs.

2.3.1 The 3-D domain integral

The following derivation of the 3-D domain integral parallels Shih et al. [192] and Mo-
ran and Shih [140] for homogeneous materials. The pointwise energy release rate along
a generally-curved, planar crack front in 3-D has the form

J(s) = lim j (Wsy; = o) )n; dC, ©)
r

where W is strain energy density, o, denotes stress, u; represents displacement, and
(-),;=8(-)/3aX;, where X, refers to local coordinates defined at each point, s, along a
crack front. Figure 2.3 illustrates the local coordinate system at location s, where X,
is normal to the crack plane, X, defines the in-plane tangent to the crack, and X; de-
fines the in-plane normal. The curve I encloses the crack front in the X,- X, plane. As
written, Eq. (9) remains valid for nonlinear-elastic material behavior, and equals the
standard J-integral [181] including effects of body forces, crack-face tractions, thermal
strains and general material property gradation only when r—07*.

In global coordinates, x;, let v,(s) be defined as the unit normal to the crack front
at positions, lyingin the X;- X5 plane. Equation (9) then represents the first component
of the vector integral
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Crack plane Xj
Crack front

Crack front

X3 C=C+C -T(s)+C~
Fig. 2.3. Schematic of I'(s) in Eq. (9). The domain for the analogous 2-D integral is the
area A, bounded by the contour C=C;+C* -T(s)+C ™.

J(s) = J4(s)vy(s) = lim L (o220 — W )m,dC, (10)

where m;= — n; on I'(s) as shown in Fig. 2.3. A virtual displacement applied to a seg-
ment of the crack front takes the form

Ol(s) = Aa 1,(s) v,(s) (11)

as illustrated in Fig. 2.4. Here, Aqa is the amplitude of the arbitrary displacement, /,.
A first-order approximation of the energy released due to the crack advance, — dx, is
[184]

- onm = f J(8)dl(s)ds , (12)
L

C

where L refers to a finite segment of the crack front, asillustrated in Figs. 2.4 and 2.5.
Equations (11) and (12) together give

- dn = JAa = Aaj JS)I, v, 8)ds , 13)
Le¢

where o represents the energy released when crack segment L advances by dl(s). By
combining Equations (10) and (13), one obtains
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/3\\

Crack front —

Crack front —

Fig. 2.4. (after Shih et al. [192]) Virtual crack advance in the local X;-X3 plane at
crack-front location s. Crack advance occurs in the Xi-direction, and is defined
as 0l(s) =Aa I (s) vp(s).

L¢ r
= Aalim j (024j1 — WO )lymdS (15)

3

where S,, shown in Fig. 2.5, is the surface created by “extruding” I'(s) in Fig. 2.3 over
a distance L along the crack front. The radius of this surface shrinks to the crack front
in the limiting process. The divergence of the integrand in Eq. (15) is zero for the same
conditions that guarantee path independence of the 2-D J-integral, i.e. quasistatic, iso-
thermal loading, elastic constitutive behavior, and no body forces or inertia. In the pres-
ence of general loading conditions, the integrand is not divergence free, and takes the
form

(aijuj,k - Wéik),i = (oij,iuj,k + ol — W, ) ) (16)

In this expression, the definition of strain energy density, W, includes the effects of ther-
mal strains, nonlinear (elastic) deformation and material gradients, as discussed in a
following section. The present goal is to obtain a volume integral equivalent to Eq. (15).
To accomplish this, we multiply both sides of Eq. (16) by an arbitrary, sufficiently
smooth vector field g,, and integrate over any simply connected region V within the
loaded body to obtain

[ (g — W) @, dV = f (0ttjon — Wop)axdV amn
14 14

where the present assumption of zero body forces and inertia causes o
An alternative expression for the left side of Eq. (17) is

i Ujop bo vanish.
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Crack front
X, Crack front

Crack plane

S=8t+8~ +S1—-S;+S9+ 83

Fig. 2.5. Surface and volume domains used to calculate J(s) at crack-front location
s =b extend from point a to point ¢, alength equal to L¢. Surfaces S; and Sy (cy-
lindrical surfaces), S and S3 (flat lateral surfaces) and S*, and S~ (top and bot-
tom crack-face surfaces) comprise surface S and enclose volume V of the do-
main integral. For general loading conditions, S; must shrink to the crack tip,
i.e. r—=0%. Vector m is the outward normal to S;, S1, S*, and S~.

J (aijuj,k - Wéki),iqde
\%

- J [(aijuj,k- Wéki)qk],idV—— ] (050 — Woy5)ap:dV . (18)
vV \'4

A surface integral results from applying the divergence theorem to the first integral on
the right side of Eq. (18). An expression for this surface integral follows from Egs. (17)
and (18):

j (Gijuj,k - Wéki)qkmids
S

4 \4
Because surface S of the above surface integral encloses an arbitrary volume V, a suit-
able definitionis S=8*+ 87+ 8, — S;+ S, + S, (see Fig. 2.5). The arbitrary function

g, varies smoothly within V as follows [192]:
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Fig.2.6. The arbitrary function g, is interpreted as a virtual crack-front displacement,
and varies from unity on surface S; at location s = b, to zero on surfaces S1, Sg and S3
(see Fig. 2.5).

L, on S,
9 =10 on S4,8,,8;
arbitrary elsewhere . (20)

Figure 2.6 illustrates schematically a permissible definition of q;. According to this defi-
nition of S and g,, the right-hand side of Eq. (19) equals the integral in Eq. (15), and
one may write

J = J (“ijuj’k“ Wéki)qk’idVJf [ (Oijuj’ki— W’k)deV’ 21)
v 14

when body forces, inertia and crack-face tractions are absent. As mentioned previously,
the second integrand in this expression vanishes for a homogeneous body underisother-
mal, quasi-static loading and elastic material behavior.

By assuming that the energy release rate varies little over the length, L, of the do-
main under consideration, J(s) may be moved outside the integrand in Eq. (13). Equa-
tions (13) and (21) then combine to yield an expression for the pointwise value of J(s):

J(s) = J . (22)
J I, (s),(s)ds
L

C

The transformation of stresses and displacements to the crack-front coordinate sys-
tem (X in Figs. 2.3-2.6) simplifies the form of Eq. (21). In this case, v,(s) = X;(s), and
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all subscripts “k” in Equations (21) and (22) become “1.” The discussion below adopts
this approach to evaluate J(s).

2.3.2 Derivative of strain energy density: W,,

The strain energy density, W, can be defined as a function of the total strain sfj, tempera-
ture ©, and spatial position x = (x;, x4, x3):

gm
kl
2 —_ m
Wiey;, 0,x) = f o deij , (23)
0
where for uncoupled, quasi-static thermomechanical analysis, mechanical strains, eZ.‘,
equal total strains, s‘l?j, minus thermal strains, eg‘ :
m . ot __ oth . ot _
el =&, - £ = gy a@)O®)d; . 24

Here, a(x) is the pointwise-isotropic coefficient of thermal expansion, ®(x) is the rela-
tive change in temperature, and 5;']‘ represents the Kronecker delta. The derivative of
strain energy density, W,,, needed to evaluate Eq. (21), becomes

oW
W, = @82}1’1 + (Wsl)explicit J %)
which, combined with Eq. (24), yields
W, = o,-j(eﬁj - #)n + (W) e -
= Uij'(sgjxl — a,; @O, — a(x)@q(x)aij) t Wot)piics @

where (W,;),,;;; denotes the derivative of strain energy density with respect to spa-
tially-dependent parameters. Substitution of Eq. (27) into Eq. (21) causes 0;; 4,1, tocan-

cel with o, ¢}, and the result is

J = f (o1 — WOy )a1,; AV
v

+ j {aij(a,l(x)@(x)aij + a(®)®,, ®)3;) - (W,l)explicit]qldV. (28)
v

The second integral of (28) represents a correction term to account for the non-vanishing
divergence of the J-integral in the presence of thermal strains and material property
gradients. Terms related to thermal effects are easily calculated from known distribu-
tions of CTEs and temperature [192]. Typically for FGMs, (W,,),,,;;; derives from a
specific definition of strain energy density [35, 109, 112]. A description of two forms for
this term follows in the next section.

2.3.3 Assessment of alternative forms of (W, )explicit
For small displacement gradientsin a nonhomogeneous, linear-elasticisotropic materi-
al, Eq. (23) becomes

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sm

W(su,x ®) = j Cijkl(x) €4l deg‘ , 29
0
where C(x) is the spatially-varying isotropic elastic constitutive tensor
Cym®) = M) 0y + (0, 0 + 0, 03) , (30)
in which 9, is the Kronecker delta, and the spatially-varying Lamé constants A(x) and
u(x) are
_ Ex) v(x) ___Ex)
M) = Tmd - @y D4 49 =50 ey B1)
(W’l )explicit is
oW oW
(W’l)explicit dE(x )E @) + avix )V’l (). (32)

For homogeneous materials governed by Eq. (29), (W,1 )0, = 0, and under isothermal
conditions, the second integral of Eq. (28) vanishes completely. In graded materials
where (W,1),050: 20, Eq. (29) leads to analytical expressions for oW/oE(x) and
oW/dv(x). For material variations expressed by smooth analytical functions, e.g.
E(x)=E e, the evaluation of E,;(x) and v,;(x) becomes straightforward, e.g.

E, (x)=pE(x).

Another example of nonzero (W,,),,,;;.;; arises when a function such as the Ram-
berg-Osgood equation describes the multi-axial nonlinear stress-strain relationship:
g;=emdy+e5+3/2X 0@)[0./0o@)"® 1 x S, /E(x), where &, is the mean strain, J;;
the Kronecker delta, sy the elastic deviator strain, g, the equivalent (Mises) stress
oo®) the yield stress, S;; the deviator stress, E(x) the Young’s modulus, and w(x) and
n(x) are the spatially-varying scalar parameters. In this case, one expression for strain

energy density is

nx)—1
1+ v(x) o2+ 3 1- ) o . 02 n&) okx)| o.

Weyp®.© = =2pey % Y 5" Fw P Taw T lEw\ow, @@ &
where p is the hydrostatic pressure, i.e. p= — (0xx + 0y, + 0..)/3. The explicit deriva-
tive (W, ) pricie OW becomes difficult to evaluate, ie.,

(W) opiis = 2By @) + 2 ) + Wy, @) + 9, ) + Woo,l(x) (34)

These two examples illustrate that although Eq. (23)is quite general, the analytical
form of (W, ),y is material-specific and likely becomes tedious to evaluate when the
“1” direction changes continuously along a 3-D curved crack relative to the property gra-
dient directions.

2.3.4 A general expression for (W,;)

explicit

Rearrangement of Eq. (27) provides an expressionfor (W, ) thatleadsto more con-

explicit
venient numerical evaluation:
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(W) piicie = Wor = T{elpr = 0 @)O@S; — a@)®,, @)3) (35)

Substitution of this expression into Eq. (28) gives

T = f (0251 = Wy, )ar,dV + f (05841 = Wy)ar dV, (36)
1'% 14

which is equivalent to Eq. (21) since O Ujpy; =0 ¢.,. This expression yields J(s) when

3

combined with Eq. (22). This is an expected resujlt {)ecause the termsin Eq. (35) are the
same as those used to transform Eq. (21) into Eq. (28). Equation (36) now replaces Eq.
(21) for numerical computation, and specifically accounts for the effects of material
gradients and thermal strains. The appearance in Eq. (36) of oy sfj,l ratherthan Oy Ujpy;
follows from the derivation rather than from a deliberate substitution. Both terms
include second derivatives of displacement, and provide similar accuracy. Equation (36)
is the three-dimensional equivalent of Eq. (6.7) in Moran and Shih [140], which defines

J for an elastic-plastic material.

Equation (36) accounts for material gradients and thermal stresses, but omits other
standard terms to account for body forces, inertia and crack-face tractions [6]. The use
of Eq. (36) to calculate / remains valid for nonlinear elasticity (deformation plasticity),
and leads to computational generality since all quantities are available from standard

finite-element calculations except W,; and ¢,,. For analyses using flow-theory

i
constitutive models with parameters that vary sjpatially, the proposed form of JJ does
not retain strict validity—this is the same issue of computing the ordinary J for
incremental-flow theory of plasticity vs. deformation plasticity. Another consideration
regarding Eq. (36) is the replacement of analytically-defined derivatives in the second
integrand of Eq. (28) by derivatives (including ¢;,;) obtained via potentially less
accurate, mesh-dependent interpolation schemes. For homogeneous materials, Eq. (28)
yields greater accuracy than Eq. (36) because (W,),,;.; and a,; vanish and the
temperature derivative, ©,,, is generally quite smooth. The remainder of this study
examinestheimplementation, accuracy and application of Eq. (36) for graded materials
under thermomechanical loading.

2.4 Numerical computations

Numerical evaluation of the integrals in Eq. (36) uses the same quadrature schemes
employed for element stiffness computation. The discretized form of Eq. (36) is

J = z Z{[("ijuju - W‘Sli)qm + (Uij g1 — W,l)ql] det(%);%k)} wp. (87
P

elems p

For the equivalent expression derived from Eq. (28), [-]1in Eq. (37) is
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[(a Uy ~ WO1,)q1s + (0 @O@S; + a)®,; )0 — (W,l)explicit)ql] . (38)

In both expressions, the outer sum includes all elements in the domain, and the inner
sum ranges over each element integration point p with corresponding weight w,. The
determinant of the coordinate Jacobian, det(-), relates local crack-front coordinates X,
to parent-element coordinates #,. Computation of spatial derivatives for strain and
strain energy density at integration points proceeds as follows:

o Use a standard procedure [41] to extrapolate strains and strain energy den-
sity from element integration points to element nodes.

o Average these extrapolated nodal values with contributions from adjoining
elements.

¢ Calculate derivatives at integration points using isoparametric interpola-
tion, i.e.

a(ft aN; o oW, & aN, 9
ONT O . 4 _ 0Ny ony
Zlkz e P and E Z }: 7, —Ew,,  (39)

where (sij)p and W, denote integration point quantltles, n is the number of ele-
ment nodes, N, is the element shape function corresponding to node I, 7, are
parent coordinates, and (¢}); and Wy are the nodal values of total strain and
strain energy density.

The WARP3D fracture code used for thisimplementation is a free, open-source, general-
purpose finite-element software developed at the University of Illinois at Urbana-
Champaign [78]. J-integral results reported here employ Egs. (37) and (39) with
20-noded isoparametric “brick” elements with reduced (2 X 2 X 2) integration.

2.5 Numerical implementation in WARP3D

The code employed for this study is publicly available in the WARP3D finite-element
software developed at the University of [llinois at Urbana-Champaign (see http://cee-
ux49.cee.uiuc.edu/cfm/warp3d.html). This general-purpose software was created spe-
cifically for the analysis of 3-D cracked solids. WARP3D includes nonlinear and dynam-
ic loading capabilities, finite-strain formulations, serial and parallel architectures,
sparse solvers, multiple material-damage models, and crack-analysis capabilities that
include the J and interaction integrals and cohesive-zone models (Gullerud et al. [78]).
The software runs on UNIX and Windows platforms, and includes readable input files
and convenient interface programs for MSC Patran.

2.6 Verification of the general J-formulation for 2-D configurations

Erdogan and Wu [61] describe analytical solutions for a crack located in a semi-infinite
strip and subjected to tensile, fixed-grip and bending loads. Figure 2.1(c) shows the
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cracked strip where a/W=0.4, and a group of ten focused (collapsed) elements, shown
in Fig. 2.1(d), surround the crack-front region. This mesh employs quarter-point ele-
ments, and coincident crack-front nodes share the same x-displacement, i.e. they have
identical node numbers. The ratio of the length, L,, of crack-front elements on the crack
plane to the strip width, W, is L, /W=0.007 (see Fig 2.1(d)). Thirteen semicircular do-
mains produce J-values in a mesh consisting of 496 20-noded bricks and 3735 nodes.
An exponential variation, E(x)=E,e®*, describes the gradient of Young’s modulus,
where E,/E, =10, and §followsfrom Eq. (1). Poisson’sratioremainsconstant at v=0.3,
and constrained out-of-plane displacements enforce plane-strain conditions. Equation
(36) leads to J(s) for an imposed tensile stress o, . The conversion of J-values to K;-val-
ues here follows the standard expression

. 2172
Kfs) = (JOE (), (40)

where E*(s) = E(s)/(1 — v?) for plane-strain conditions, E “(s) = E(s) for plane-stress con-
ditions, and E(s) denotes the value of Young’s modulus at crack-front location s. The use
of E(s) follows from the identical form of the asymptotic crack-front fields in homoge-
neous and functionally graded materials [59, 97]. For discussion, normalized K;-values
equal

K,

H
a7

K, = (41)

n

where 0, is the applied tensile stress, and a is crack depth (see Fig. 2.1). Table 2.1 lists
K, -values for two different analyses and compares them with those of Erdogan and
Wu [61]. The first analysis employs Eq. (36). To avoid the interpolations used toevaluate
Eq. (36), the second analysis uses the analytical expression for (W, ), ;.;; givenin Eq.
(32), together with Egs. (21) and (25). In all cases, an average of the J-values from do-
mains three through thirteen is inserted into Egs. (40) and (41) to define a single K,
-value shown in Table 2.1. Each domain consists of a semi-circular volume of elements
surrounding the crack front.

Table 2.1. Normalized Kj -values for a plane-strain, semi-infinite strip under axial ten-
sion (see Fig. 2.1): E,/E,=10,v=0.3,a/W=0.4.

Analysis Method Ki, % diff.

Reference Erdogan and Wu (1997) 1.588 —
15t Eq. (36) 1.579 -0.57
2nd (W, Dexpliciz Eq. (32) 1.588  +0.00

The influence of the two integrals in Eq. (36) becomes apparent in Fig. 2.7(a), which
compares the value of each integral vs. the radius, Ej, shown schematically in Fig.
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2.1(d), of the specific computational domain. With increased domain size, the influence
of the second integral increases steadily, and without this term, the J-integral becomes
proportionately inaccurate.

Through a two-step perturbation procedure, Erdogan and Wu [60] obtain K;-values
for a semi-infinite, exponentially-graded, cracked strip subjected to thermal loading
(seeFig. 2.1(a), and [223]). Equations (1) and (4) describe the exponential material vari-
ation specified for the strip. In the first step of the solution procedure, Erdogan and Wu
determine the axial stress distribution, o,,, in an uncracked, thermally-loaded strip.
This stress, shown as the lower curve in Fig. 2.2(a), represents a crack-closure stress,
which, in the second step, produces crack-face tractions acting to drive crack opening
in the cracked strip. Integral equations then yield stress intensity factors generated by
these crack-face tractions. Values taken from the graphical results of Erdogan and Wu
[60] enable comparisons with the present finite-element analyses.

In the finite-element analysis procedure used here, thermal loads act directly upon
the cracked strip. The mesh used for this analysis, shown in Fig. 2.7(b), has a height-to-
width ratio of four, a crack-length-to-width ratio, a/W, of 0.5, and constrained out-of-
plane displacements to enforce plane-strain conditions. As in the previous example, a
group of ten focused (collapsed) elements surround the crack-front region, the ratio of
crack-front element length, L, to strip width, W, is 0.007, and all crack-front nodes have
zeroy-displacement. This mesh employs quarter-point elements, and coincident crack-
front nodes share the same x-displacement, i.e. they have identical node numbers. The
mesh consists of 508 20-noded brick elements and 3829 nodes. The following examples
employ two material variations and two thermal loading conditions selected from Erdo-
gan and Wu [60] which Table 2.2
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describes. They include the application of two uniform temperature loads to an expo-
nentially-graded strip where E,/E; =5, ay/a, =2, and v=0.3, and two exponentially-
varying temperature loads to an exponentially-graded strip where E,/E,=10,
ky/k,=10,ay/a,=2,and v=0.3. Acommon normalization for K;-values obtained from
thermal loading is

K,

K, =—"__ 42
n ™ Eia,T,/ma 42

where a is crack depth, T, is initial temperature, and a; is the value of the CTE at the
cracked surface. For plane-strain conditions, E1= E 1/(1 =), and for plane stress condi-
tions, E1= E,, where E| is the value of Young’s modulus at the cracked surface. Table
2.2 lists stress intensity factors obtained from each of the four cases and their deviation
from the solution obtained from Erdogan and Wu [60]. In each of the four analyses, an
average of the J-values from fourteen domains, inserted into Eqgs. (40) and (42), leads
to a single value of K.

Table 2.2. Normalized Kj -values for a crack in a plane-strain, semi-infinite strip un-
der thermal loads (see Figs. 2.1(a) and 2.7(b)): v=0.3, a/W=0.5.

Material Variation Thermal Load =
(see Fig. 2.1) %So(%‘ggg)‘ Eq. (36) % diff.
Eg/E1=5 Ty=To=0.5T, 0.0125 0.0127 +1.6
agfa1=2
ho/ky is arbitrary T ="Ty=0.05T 0.0245 0.0241 -1.6
Ey/E1=10 T1=0.2Tq 0.0335 0.0335 +0.0
/ 5 T9=0.5Tg
as/ay =
T;=0.05T
‘ 0.041 .04 -0.2
ko/k1=10 T9=0.5Tg 0410 0.0409 0

Figure 2.7(c) shows the contribution to of both integrals in Eq. (36). Both integrals
show strong path dependence with an increase in domain size to crack length ratio,
Rp/a (see Fig. 2.1(d)). Because inhomogeneity in both elastic properties and thermal
expansion coefficients contribute to/, the path dependence is more severe than for the
mechanical loading studied above. Figure 2.7(d) shows values of Eq. (36) with an en-
hanced scale. The J-values for both mechanical and thermal loading show good domain
independence.
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2.7 Computation of mode-I Kj-values for surface cracks

Procedures for obtaining K;-valuesfor 3-D cracks include the line-spring method [183],
the modified crack-closure integral MCCI) [187, 177, 176, 148], the displacement cor-
relation technique (DCT) [191], stress correlation [175], the domain integral technique
[192], the interaction integral method [145], and the F-integral [62].

Raju and Newman [175] and Newman and Raju [150] apply the force method to sur-
face cracks in homogeneous plates under tension and bending loads. Although more re-
cent worksreport stressintensity factors for surface cracks [174, 12], the extensive solu-
tions of Newman and Raju remain a frequently-cited benchmark. For homogeneous
materials, the current study uses their results to verify mesh-refinement levels.

The methods listed above also apply to the analysis of FGMs {109]. The MCCI, DCT
and stress correlation methods are particularly useful for linear-elastic analyses of
FGMs because the presence of material gradients does not influence their formulation.
Erdogan and Wu [61] suggest that the line-spring method, combined with their semi-
analytical solutions for the graded 2-D strip discussed in Section 2.6, provides an ap-
proach for the calculation of stress intensity factors in FGMs with surface cracks. The
current study employs the DCT to verify K; -values obtained through Eq. (36).

2.7.1 Crack geometries, material variations and loadings

Figure 2.8(a) illustrates a plate with a semi-elliptical surface crack under tension, bend-
ing and thermal loads. Material properties vary only in the thickness (x) direction. The
geometry, loading and material property variations lead to mode-I conditions on the
crack plane. Symmetry permits modelling of only one quarter of the specimen. Variables
of interest in this study include: crack depth, a; crack half-length, ¢; and plate thickness
t. Dimensions 4 and b remain fixed at five times the larger of ¢ and ¢ such that the K
-values approximate those in a semi-infinite plate. The current work includes analyses
of plates for a range of practical crack geometries of a/c=1/3,a/c=1and a/c=2 and
crackdepthsofa/t=0.2,a/t=0.5 anda/t = 0.8. A specimen cross-section, illustrated in
Fig. 2.8(b), indicates through-thickness material variation, assigned to follow the form
E(x)=E e, where E;=E(x=0), E,=E(x=%), with 8 given by Eq. (1) such that
E,/E,;=0.2, 1.0 and 5.0. Poisson’s ratio remains constant at 0.25 in all cases. Figure
2.8(b) also illustrates the applied tensile stress, o;, and bending stress, o,, where
o, = 3M/bt? Table 2.3 summarizes the surface-crack geometries, material properties,
and temperature variations employed in this study.
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Fig. 2.8. (a) Surface-crack specimen showing axial, bending and thermal loads. The
hatched area illustrates the potential region for the “boundary layer” (see Sec-
tion 2.7.3). Symmetry permits analysis using one quarter of the model. (b)
Cross-section of plate showing unidirectional material variation from cracked
face to uncracked face. Bending stress is calculated from total moment M as
op =3M /bt

Table 2.3. Specified surface-crack geometries, material properties, and temperature

loads.

Quantity Specified Values
a/c 1/3,1,2

aft 0.2,0.5,0.8
Eq/Eq 0.2,1.0,5.0
va/vi 1.0

T1/T2 5, 10, 20
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Fig. 2.9. Plan view of the crack plane shownin Fig. 2.8(a). (a) Measurement in radians
of parametric angle, ¢, for a/c > 1.0. (b) Parametric angle, ¢, fora/c <1.0, and
intersection angle, y, describing the angle between the crack front and free sur-
face. For all models in this study, ¢ =90°.

Thermal loading conditions follow those used by Erdogan and Wu [60] who analyzed
a zirconia/Rene-41 composite with the properties listed in Table 2.4. Young’s modulus
(E), CTE (a), and conductivity (k) vary exponentially according to E(x)= Eleﬂx,
a(x)=ae”, and k(x) = k™, where (-), is the property value at x =0. The coefficients
of nonhomogeneity, 3, ® and 5 have values given by Egs. (1) and (4). These material
properties are taken as temperature independent.

Table 2.4. Properties for thermal loading of surface-crack specimens (Erdogan and Wu,

[601).
Material E (GPa) v a®™hH k(Cal/mmSecK)
(x=0) Zirconia 151 0.33 1.0x1075 0.05
(x=t) Rene-41 219.7 0.33 1.67x1075 0.61

Figure 2.8(a) shows the qualitative temperature distribution which follows solution
of the 1-D diffusion equation described in Section 2.2. The selected range of boundary
temperatures includes: T;=5T,, T;=10T, and T;=20T,, where T,=T(x=0) and
T,=T@ =1t =T, Toillustrate the application of Eq. (36) to thermal loading, the present
work includes analyses of plates with the three crack geometries listed in Table 2.3,
each with a crack depth of ¢/t =0.2.

2.7.2 Conversion of J to K

This paper reports values of the domain integral, Eq. (36), calculated at the corner nodes
of all crack-front elements. Parametric angle, ¢, measured in radians, describes the
location of crack-front nodes on the crack front for possible ranges of the ratio a/c (see
Fig. 2.9). At each crack-front location ¢, Eq. (40) yields K; -values from J and E,,, the
value of Young’s modulus at that location. For through-thickness material variation
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and semi-elliptical cracks, Ej ., at ¢ equals E(x) at distancex = a sin ¢ from the cracked
surface.

A general form for mode-1 stress intensity factors for semi-elliptical surface cracks
is

K =8 [ F(%.%.4,P), 43)

where S= o, for tension, and S=o0, for bending. For plane-strain thermal loading,
S=a,E,T,/(1—v), and for plane-stress, S=a,E,T[60]. Figure 2.1 defines a,, E,, and
T',- The shape factor, @, denotes the square of the complete ellipticintegral of the second
kind. /é equals half the arc length of an ellipse divided by the length of the major axis
(Merkle, 1973), a ratio commonly approximated by

1.65
1+ 1.464(%) for a/c < 1

Q= 165 (44)
1+ 1.464(%) for a/c > 1.

Function F'in Eq. (43) includes the effects of plate dimensions, crack geometry, location
along the crack front and material property variation, represented by P. A normalized
stress intensity factor expressed by

K,

K= ™ F(%.%,6,P), 45)

Q

represents a “shape factor” for the geometry, material and loading conditions under con-

sideration.

2.7.3 Stress intensity factors at the intersection of the crack front with the free
surface

Researchers employ analytical and numerical techniques to examine the change in the
singular behavior at the intersection of a 3-D crack front with a traction-free surface
[80, 20, 15, 171]. These studies demonstrate the existence of a “boundary layer” very
near the free surface over which a generalized stress intensity factor may vary sharply.
The change in singular behavior depends upon Poisson’s ratic and the angle of intersec-
tion between the crack front and the free surface, illustrated by v in Fig. 2.9(b). For
FGMs, the length scale of material gradation (e.g. parameter 1/, where Eq. (1) defines
B) should also affect the stress state and the size of the boundary layer. For a crack front
that intersects the free surface at y=90°, when Poisson’s ratio is greater than zero, the
stress singularity ( —*) in the boundary layer becomes weaker (1 <1/2), and the mode-I
stress intensity factor tends toward zero at the surface [171].

Raju and Newman [175] verify the decrease in stress intensity factors near the free
surface through a detailed mesh-refinement study of a semi-circular surface crack.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



More importantly, their study shows that the effects of the boundary layer are highly
localized, and do not influence stress intensity factors on the interior of the specimen.
Chuntu and Yingzhi [40], Li et al. {134], Rajaram et al. [174], Ayhan and Nied [12] and
Frangi [69] also demonstrate the localized influence of the boundary layer on stress in-
tensity factors through numerical analyses of straight cracks and semi-circular, quar-
ter-circular and semi-elliptical surface cracks. Nakamura and Parks[144] estimate the
region of influence of the corner singularity in semi-elliptical surface cracks as =
0.03 x a?/c, wherea and ¢ are the crack dimensions shown in Fig 2.8. Because a detailed
study of the boundary-layer influence in FGMsis not the focus of this paper, the present
work does not include sufficient mesh refinement in this region to determine adequate-
ly the layer’s size, or to capture the true variation of stress intensity factors within the
boundary layer. To acknowledge the effect of the weak corner singularity, however, for
mechanical loading, the plane-stress conversion applies here toJ-values calculated at
the free surface, i.e. ¢ =0, and the plane-strain conversion applies here for ¢ > 0. Al-
though stress intensity factors near ¢ =0 should tend toward zero in order to conform
with theory, the nonzero values reported here represent average stressintensity factors
near the free surface [175]. For thermal loading, plane-stress K -values obtained using
Egs. (40) and (45), exceed plane-strain values by a factor of [(1 — v)/(1 + v)1'/2.To avoid
reporting an increase in K;, -values in the boundary layer, we simply omit stress inten-
sity factors at ¢ =0 for thermal loading.

2.7.4 Mesh refinement

A mesh that is adequately refined for the correct solution of a boundary-value problem
of a homogeneous body may require further refinement in order to capture the effects
of material gradients. To confirm adequate refinement of meshesused in this study, val-
ues of K;, published in the literature and those obtained here using the DCT verify val-
ues of K;, obtained from Eq. (36) for both homogeneous and nonhomogeneous speci-
mens.

For 2-D cracked configurations, Eischen [59] and Jin and Noda [97] prove that the
near-tip displacement field for functionally graded materials has the same form as for
homogeneous materials. Hartranft and Sih [79] show that the singularity along a 3-D
crack front in homogeneous material (remote from boundaries) has the same form as
the crack-tip singularity in a 2-D configuration. Based on these two results, the opening
displacement of the crack face, normal to the crack plane, has the asymptotic form

K, 7

Ug = E*(S) 57;7 (4:6)

where u, denotes the displacement in the X,-direction of the coordinate system shown
in Fig. 2.3, K;is the mode-I stress intensity factor, and r is the distance behind and nor-
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mal to the crack front. The use of E*(s) in Eq. (46) is justified by the equivalence of
asymptotic crack-front fields in homogenous and functionally graded materials [569, 97].

The DCT utilizes the relationship between displacement and K expressed in Eq.
(46) to estimate stress intensity factors based on u, nodal displacements behind the
crack front. Here, element boundaries on the crack face define approximate normals to
the crack front. Values of u, and r at several nodes along one boundary, when inserted
into Eq. (46), permit the calculation of a K| -value that corresponds to each node. A plot
of these K| -values vs. r yields an approximately linear relationship between K; and r.
The intersection of this line with =0 provides the estimated crack-front K, -value for
the DCT. Equation (45) describes the normalization of these values.

2.7.4.1 Effects of mesh refinement on K; -values for FGM specimens

Stressintensity factor solutions from four different meshes of a plate with crack geome-
try a/t=0.8 and a/c =2, and an exponential material variation where E,/E, =5, pro-
videinsight into the effects of mesh refinement on the values of K. Ten 20-noded, quar-
ter-point, hexagonal elements with collapsed faces immediately surround each crack
front in the 0 direction (see Fig. 2.10). In the radial direction, the four meshes have re-
spectively 3, 5, 7, and 10 rings of elements surrounding the crack front, corresponding
tothe number of domains used to produceJ-values. Sixteen elements lie along the crack
front between ¢ =0 and ¢ = 71/2. Figure 2.10 shows a typical crack-front location in the
local x,-x, coordinate system for the 7-ring mesh. Ratios of crack-front element length,
L., toplate thickness, ¢, L,/t, range from 1.47 x 10 ~2for the 3-ringmesh, to 5.41 x 105
for the 10-ring mesh. The 3-ring mesh has 7632 elements and 34013 nodes, and the
10-ring mesh has 8752 elements and 39053 nodes. The number of nodes and elements
in each model reflects the large plate dimensions 4 and b. Increased mesh refinement
in the four models focuses primarily on the crack-front region. Figure 2.11 shows
normalized K; vs. location along the crack front for 0 <¢ <z/2, and compares K;,, ob-
tained through Egs. (36) and (46) for the 3-ring and 10-ring models. The meshes yield
results which show little variation between refinement levels, and which show close
agreement between the two methods, i.e. Eq. (36) and Eq. (46).

The reduced (2 x 2 x 2) integration triggers a small amount of hourglassingin crack-
front elements for the 7-ring model, which becomes more pronounced in the 10-ring
model. Hourglassing does not significantly affect K, in the 7-ring model—the refine-
ment level selected to discretize all subsequent models of surface-cracked plates. Figure
2.12 shows typical mesh refinement in the crack region for the three crack geometries
analyzed in this study, i.e. a/c =1/3, 1 and 2. J-values obtained from all 7-ring meshes
are an average of domains three through seven.
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Fig. 2.10. Crack-front mesh with 7 rings of elements in the radial direction, and 10
elements along the 6-direction. The ratio of L, to plate thickness ¢, L, /¢t
=7.66 X 1074 describes thelevel of mesh refinement. Rp provides a measure
of domain size.

2.7.4.2 Verification of K; -values for homogeneous specimens

A comparison of K; -values obtained from Eq. (36) with those reported by Newman and
Raju [150] verifies the present solution of the boundary-value problem for the homoge-
neous plate specimens. Figure 2.13(a) compares values of K, derived from Eq. (36) with
the Raju and Newman [175] solutions for tension loading of homogeneous material,
crack geometries a/c=1 and 2, and crack depths a/t=0.2 and 0.8. Figure 2.13(b)
compares K, -values from Eq. (36) with Newman and Raju [150] solutions for the same
models under bending. Bending loads cause portions of the crack face to close. Without
contact surfaces, finite-element solutions for these cases permit spurious crack-face dis-
placements (i.e. crack-face interpenetration) which cause some domains to preduce neg-
ative J-values. Newman and Raju [150] list the negative values; here we report only
positive values. Lee and Erdogan [128] and Anifantis [5] describe techniques to include
crack-face contact in 2-D cases. Figure 2.13 shows agreement between K, -values ob-

tained from Eq. (36) for both tension and bendingloads with the Newman and Raju solu-
tions.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.00 T T T

From J by Eq. (36),
_____-______-_\\ /10-rings

0.75

0.50 _
Tension:
alc=2
alt=0.8
0.25 E,/E,=5 .
0 | ] |
0 0.25 0.5 0.75 1.0

20 /7
Fig. 2.11. Comparison of normalized stress intensity factors, Kj,, obtained using Egs.
(36) and (46) for 3-ring and 10-ring crack-front mesh refinements where
a/c=2and a/t=0.8.

2.7.4.3 Verification of K; -values for FGM specimens

For FGM cases, the good agreement between K;, -values obtained using Eq. (36) and
those obtained using the DCT confirms that the adopted level of mesh refinement cap-
tures the effects of material property gradients. Previous applications of the DCT to 2-D
models for FGMs include Li et al. [131], Marur and Tippur [135], Rousseau and Tippur
[186] and Kim and Paulino [109]. For an exponential material variation with E,/E, =5,
Figs. 2.14(a)-(c) compare tension and bending results for each crack geometry and crack
depth. Figure 2.14(d) compares results for thermally-loaded plates with three crack ge-
ometries:a/c=1/3, 1, and 2, each with crack depth a/¢ = 0.2. The specified surface tem-
perature ratio is T;/T, =20, with the through-thickness temperature distribution as
described in Section 2.2 (and shown schematically in Fig. 2.8).

K, -valuesfor all loading cases show good agreement between the two methods(i.e.
from JJ and the DCT), with the largest difference occurring along crack-front sections
with high curvature. In Fig. 2.14(a), the largest difference for a/c =1/3 is less than 7%
of the smaller value. For a/c =2, the maximum difference in Fig. 2.14(c) is less than 5%
of the smaller value. Figures 2.15(a)-(c) compare K}, -values derived from Eq. (36) with
K, -values obtained via the DCT for all crack geometries and crack depths, for an expo-
nential material variation with E,/E, = 0.2. In this case, a maximum difference slightly
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Fig. 2.12. Typical discretization along front for surface-crack configurations.

greater than 7% occurs under tension loading near ¢ =0.25 fora/c=1/3 and a/t=0.8
(see Fig. 2.15(a)).
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Raju [150].
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2.7.5 Effect of material gradient terms on J-values

Figures 2.16(a)-(d) show J-values, calculated with and without the second integral of
Eq. (36), at three locations, ¢, along the crack front for four different combinations of
crack geometry and loading. Each curve in the figure has seven points that correspond
to the seven domains used to calculate /-values. Here, Rp/a equals the radius of the
domain, measured at ¢ =x/2, divided by the crack depth, a. Figure 2.10 illustrates Rp,
which is measured ahead of the crack front on the plane of symmetry. For the purpose
of interpreting the results shown in these figures, Eq. (28) is more intuitive than its
equivalent used for numerical implementation, Eq. (36). For tension and bendingloads,
the contribution of gradient terms at small ¢ is insignificant for all domains. This re-
flects the vanishing of E,;(x) as the crack-front normal X, becomes orthogonal to the
direction of material variation. Figures 2.16(a) and 2.16(c) show that for E,/E,=5,
omission of gradient terms leads to increased JJ-values as the domain size increases.
This increase arises from an increase in both dW/9E(x) and E,;(x) in the direction of
the crack-front normal. For a softening material, i.e. E,/E,=0.2, J-values decrease as
the domain size increases (see Fig. 2.16(b)). For the thermally-loaded specimens, the
second integrand of Eq. (36) shows a much greater influence on </ than in the tension
and bending cases, as seen in Fig. 2.16(d). Referring to Eqgs. (28) and (32), when ¢ =0,
the gradient terms E,(x), a,,(x), and ©,, (x) all vanish. At other front locations, the gra-
dient terms become significant as the domain size increases, reflecting the combined
effects of thermal loading and material gradients on /.

For all loading cases, the relative contribution of the second integrand increases
with domain size, and becomes necessary to maintain domain independence of the J-
values. Because Rp /a ratios are small for the domains employed to generate the curves
shown in Fig. 2.16, domain dependence of ./-values is not as significant as that shown
in Figs. 2.7(c) and (d) for an SE(T) specimen where Rp/a are larger. As domains de-
crease in size, the magnitude of the second integral of Eq. (36) becomes much smaller
thanthefirst (conventional) integral. This difference in relative magnitudeis a function
of the derivative (g,,) in the first integral. Figure 2.6 shows that g decreases from unity
at the crack front to zero at the outer boundary of the domain. As the domain shrinks
in size, the distance from the crack front to the outer boundary of the domain also
shrinks, and causes the derivative of g to become very large, thereby heavily weighting
the first integral [77]. This trend in/ with decreasing domain size agrees with observa-
tions made by Aoki et al. [9], Tohgo et al. [211] and Gu et al. [77] who suggest that very
small, near-tip domains yield accurate values of J in an FGM without including gradi-
ent terms—at least for linear-elastic analyses. This eliminates one advantage of the J-
integral, however, which is good accuracy when evaluated over large domainsin a rela-
tively coarse mesh. Path independence, which does not generally result without the use
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of gradient terms, indicates an acceptable level of mesh refinement. The omission of
gradient terms removes these two advantages of J-integral calculations.

It is also very useful to compare the contribution to J from individual terms in Eq.
(36). Figures 2.17(b), 2.17(c), and 2.17(d) show the influence of Egs. (47)-(50) for tension,
bending and thermal loading conditions, respectively. Results plotted in these figures
correspond to the seven domains evaluated at ¢ = 19flon a crack where a/c=1/3 and
a/t=0.2. Material variation for axial and bending loads is E,/E, =5, and for thermal
loading is given in Table 2.4. Applied temperature for the thermal case is T, /T, =20.
The plots show values of the following normalized, numerically evaluated integrals:

I f (o551) asiav @n
7 IV(" cl) 1V, (48)
7(1-5 fv ~ Wqy,,dV, and 49)
j(]:s? IV - W1q,dV, (50)

where volume V includes all elements in the current domain. Also shown in the plots
are the values obtained by combining Eq. (47) with Eq. (48) and Eq. (49) with Eq. (50).
InFigs. 2.17(a) and 2.17(b), irregularity in the magnitude of Eq. (48) and Eq. (50) occurs
in the first two domains. In Fig. 2.17(c), the irregularity extends through domain four.
This lack of smoothness indicates that convergence has not been achieved in these do-
mains. At each crack-front location of this crack geometry under the given loading con-
ditions, cancellation between the integrandsin Eq. (49) and Eq. (50) occurs after conver-
gence has been reached. For the particular crack geometries and loading conditions
under consideration, whenJ has converged, the stress work density terms described by
Eq. (49) and Eq. (50) contribute negligibly to Eq. (36), and we may consider

J (Wgy),,dv = 0 51)
14

for the numerical results presented in this chapter. Figures 2.17(b)-(d) indicate that
with the numerical approach outlined in Section 2.4, the evaluation of Eq. (36) over
small domains produces a more accurate value of J when strain energy density terms
are omitted, and that a converged value of J may be recognized by a negligible contribu-
tion from the sum of strain energy density terms. Although this is true for the loading
and material assumptions considered in this study, it is not argued here that the result
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expressed by Eq. (51) is applicable to more general crack geometries and loading/mate-
rial response conditions. Equation (51) may simply be an artefact of the symmetry of
the selected g-function or of the strain-energy density.
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2.8 Stress intensity factors for surface cracks in FGM plates

2.8.1 Tension loading

Figures 2.18-2.21 show K, -values for a selected range of specimen and crack geome-
tries, all loaded by remote tension. Because the plane-stress assumption applies to the
J-K,, conversion at the free surface, and the plane-strain assumption applies at interior
points [see Eq. (40) and Section 2.7.3], each of the curves exhibits a small kink between
values of K;, at ¢ =0 and the first interior point. To simplify discussions here, the term
“soft” applies to specimens with a material variation of E,/E, =0.2, and “stiff” applies
to specimens with a variation of Ey/E,=5.0.

Figure 2.18(a) shows that fora/c=1/3 and a/t=0.2, K, -values at all points along
the crack front are greater in the homogeneous material than in the soft material, and
greater in the soft material than in the stiff material. To explain this perhaps unex-
pected result, Fig. 2.18(b) shows the corresponding energy release rates (J-values). The
energy release rate along the deeper portion of the crack is higher in the soft material
than in the homogeneous material, as expected. In this figure, the values of JJ for
E,/E,=5.0 clearly show that as Young’s modulus increases along the crack front, the
energy release rate decreases with respect to the homogeneous material. As the modu-
lus decreases along the crack front, the energy release rate increases with respect to the
homogeneous material, as demonstrated by theJ-valuesfor E,/E, =0.2. Because of the
proximity of the J-curves for the soft and homogeneous materials, the values of E(s)
used to convert J into K, drive the stress intensity factors of the soft material below
the stress intensity factors of the homogeneous material.

For each ratio of a/c, an increase in crack depth in the soft material causes the mag-
nitude of K;, near the cracked surface to increase relative to the value of K, at the deep-
est point along the crack. For all ratios of a /¢, an increase in crack depth in the stiff ma-
terial causes the magnitude of K, to increase overall, but causes K, near the cracked
surface to decrease relative to the value of K}, at the deepest point along the crack. In
all materials, for a constant ratio of /¢, a decrease in a/c causes the value of K, near
the cracked surface to increase relative to the value of K, at the deepest point in the
crack.

In all geometries of nonhomogeneous material examined here, Young’s modulus,
E(s), varies along the curved crack front. Because E(s) influences the conversion from
J to K, (see Eq. (40)), the crack-frontlocation, ¢, of maximum J does not necessarily cor-
respond to the location of maximum K;. The curves in Fig. 2.22(a) show trends in the
variation ofJ, K; and E along the front of a surface crack under remote tension loading
witha/c=2,a/t=0.8 and E,/E,=5. Here J,(¢) =J(¢)E,/ (0?ra/Q) defines a normal-
ized value of J along the crack front, and E,(¢)=E(¢)/E, defines a normalized value
of Young’s modulus. In this figure, the maximum J-value occurs near 2¢ /7 =0.5, while
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Fig. 2.18. (a) Normalized Kj -values along a crack front under remote tension loading
for acrack witha/c=1/3 and a/t=0.2. (b) Normalized values of J along the

crack front corresponding to the Ky, -values in (a).

the maximum K, occurs near the free surface. Figure 2.22(b) shows trends in J/, K,
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Fig. 2.19. Normalized Ky -values along a crack front under remote tension loading for
a crack witha/c=1/3 and (a) a¢/t=0.5, and (b) ¢/t =0.8.

and E for an identical crack in a homogeneous material. In this case, the crack-front
locations of maximum/minimum ¢ correspond to locations of maximum-minimum K.
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To tabulate these normalized stressintensity factors, cubic-spline interpolation pro-
vides estimates of K;, at equally spaced (¢) crack-front locations in the range
0= ¢ =mn/2.Table2.5lists normalized K;-values for the selected surface crack/material
combinations under remote tension loading. Because the calculation of  occurs at a
larger number of crack-front locations than the tabulated datareflects, the tablesdonot
necessarily capture the exact maximum-minimum values of K;,. For example, Fig.
2.21(c) shows a maximum value of K;, = 0.857 at ¢ =0.024 for E,/E, = 1, whereas Table
2.5 lists a maximum value of K;,=0.823 at ¢ =0.0.
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Table 2.5. Normalized stress intensity factors, K, , along the crack front for specimens
loaded in tension.

Tension
alt=0.2 a/t=0.5 a/t=0.8
alc 2¢/n
Eq/E, Eo/Eq Eo/Eq

0.2 1.0 5.0 0.2 1.0 5.0 0.2 1.0 5.0
0.000 0.660 0.725 0.548 1.164 0.925 0.598 1.838 1.289 0.767

0.125 0.669 0.744 0.589 1.076 0.932 0.685 1.502 1.255 0.922

0.250 0.739 0.822 0.673 1.098 1.013 0.819 1378 1321 1.155

0.375 0.813 0901 0.760 1.131 1.100 0.964 1.298 1.395 1.413

1/3 0500 0.882 0972 0840 1.158 1176 1.104 1.228 1.452 1.670

0.625 0.944 1.035 0912 1.183 1.243 1.233 1.172 1.487 1.896

0.750 0.990 1.080 0.966 1.195 1.291 1.334 1.128 1.498 2.052

0.875 1.016 1.106 0.997 1.199 1.319 1.396 1.102 1495 2.126

1.000 1.027 1.117 1.011 1.200 1.327 1.420 1.094 1.490 2.141
0.000 0.997 1.140 0.917 1351 1.240 0.907 1.720 1.421 0.988

0.125 0.957 1.122 0.919 1.238 1.209 0.965 1.475 1.361 1.109

0.250 0.936 1.082 0.923 1.161 1.155 1.019 1.297 1.275 1.217

0.375 0930 1061 0.936 1109 1.124 1.075 1.171 1.220 1.320

1 0.500 0.931 1.046 0.950 1.071 1.101 1.125 1.073 1.176 1.400

0.625 0.933 1.038 0.963 1.041 1.087 1.166 1.001 1.145 1.451

0.750 0.935 1.034 0.974 1.019 1.078 1.197 0.951 1.123 1.475

0.875 0936 1.029 0979 1.004 1.070 1.212 0.922 1.105 1.470

1.000 0.938 1.027 0.981 0.997 1.067 1213 0912 1.100 1.465
0.000 0.612 0.763 0.615 0.736 0.782 0.596 0.849 0.823 0.602

0.125 0.623 0.7556 0.636 0.746 0.774 0.656 0.836 0.806 0.698

0.250 0.608 0.716 0.625 0.719 0.731 0.677 0775 0.755 0.748

0.375 0.695 0.677 0.610 0.690 0.689 0.685 0.712 0.707 0.774

2 0.500 0.574 0.637 0.588 0.651 0.646 0.679 0.643 0.659 0.772

0.625 0.547 0595 0.561 0.606 0.603 0.659 0.577 0.612 0.746

0.750 0.516 0.554 0.529 0.561 0.560 0.629 0.519 0.566 0.700

0.875 0.486 0.516 0.499 0.522 0.521 0.595 0.475 0.525 0.648

1.000 0.473 0499 0484 0.506 0.504 0.580 0.457 0.507 0.626
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Fig. 2.22. Comparison of trendsind, K, and E along a crack front under tensile load-
ing for the geometry a/c =2 and a/t = 0.8, in material where (a) Eo/E1=0.2
and (b) E9/E; = 1. In FGMs, the location, ¢, of maximum J along the curved
crack front does not necessarily correspond to the location of maximum Kj,.
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2.8.2 Bending loading

Figures 2.23-2.25 show K, -valuesfor selected crack geometries under remote through-
bending load. For some crack geometries, bending causes crack-face nodes to penetrate
the crack plane, thereby producing negative stress intensity factors. Figures and tables
for specimens under bending omit the unrealistic negative values.

Figures 2.23-2.25 show that an increase in crack depth causes stress intensity fac-
tors at the deepest part of the crack to decrease, which reflects the decreased stressfrom
bending. As expected, the decrease in K, is most pronounced in the soft material, and
smallest in the stiff material. For crack geometry a/c =1/3 (Fig. 2.23), the stressinten-
sity factor near the cracked surface increases slightly as crack depth increases. The in-
crease is largest in the soft material, and smallest in the stiff material. Whena/c=1
(Fig. 2.24) and a/c=2 (Fig. 2.25), the stress intensity factor near the cracked surface
decreases slightly with crack depth. The decrease is again largest in the soft material,
and smallest in the stiff material.

In Figs. 2.23-2.25, for a constant value of a /¢, the variation in stress intensity factor
near the cracked surface is not monotonic with increasing a /c, whereas K, at the deep-
est point of the crack decreases monotonically with increasing a/c. Near the cracked
surface, the stressintensity increases when the crack geometry changes froma/c=1/3
to 1 (from Fig. 2.23 to Fig. 2.24), but decreases when the geometry changes froma/c=1
to 2 (from Fig. 2.24 to Fig. 2.25). At the deepest point of the crack, the value of K, de-
creases for each increase in crack depth, i.e. from a/c=1/3 to 1 to 2 (Figs. 2.23-2.25).
Whena/c=1/3 and a/t=0.8 (Fig. 2.23(c)), the stress intensity factor reaches its maxi-
mum value at a point along the crack front between the cracked surface and the deepest
point on the crack front.

Table 2.6 lists normalized K; -values for the selected surface crack/material com-
binations under bending load. Dashes in the table replace otherwise negative stressin-
tensity factors. Cubic-spline interpolation again yields estimates of K, at evenly-
spaced (¢) crack-front locations in the range 0 < ¢ <n/2.
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Table 2.6. Normalized stress intensity factors, K, , along the crack front for bending
loads. Dashes replace negative stress intensity factors caused by interpenetration of
crack faces.

Bending
a/t=0.2 a/t=0.5 a/t=0.8
alc 2¢/n
Eq/Ey Eo/Ey Eq/E;

0.2 1.0 5.0 0.2 1.0 5.0 0.2 1.0 5.0
0.000 1.261 0.684 0.364 1.461 0.7568 0.377 1.572 0.856 0.433
0.125 1.160 0.680 0.387 1.141 0.710 0.417 1.028 0.752 0.494
0.250 1.141 0.721 0.434 0.939 0.699 0.476 0.682 0.676 0.570
0375 1.136 0.762 0.482 0.787 0.687 0.533 0.442 0.597 0.635
1/3 0500 1.121 0.793 0.525 0.651 0.661 0.579 0.250 0.494 0.667
0.625 1.104 0.816 0.562 0.537 0.629 0.612 0.098 0.375 0.656

0.750 1.086 0.830 0.588 0.453 0.597 0.632 — 0.263 0.605
0.875 1.073 0.837 0.603 0.403 0.576 0.641 — 0.181 0.546
1.000 1.068 0.838 0.608 0.384 0.565 0.643 — 0.143 0.510

0.000 1.884 1.067 0.607 1.805 1.025 0.570 1.712 1.001 0.568
0.125 1.614 1.012 0.599 1.286 0.908 0.582 0.984 0.815 0.594
0.250 1.380 0.934 0.591 0.878 0.762 0.581 0.480 0.592 0.581

0.375 1.210 0.876 0.589 0.603 0.643 0.576 0.187 0.405 0.543

1 0.500 1.070 0.827 0.587 0.398 0.535 0.560 0.054 0.232 0.465

0.625 0.968 0.788 0.586 0.259 0.447 0539 — 0.087 0.359
0.750 0.899 0.762 0.585 0.171 0.385 0.520 — — 0.251
0.875 0.853 0.743 0.583 0.117 0.341 0502 — — 0.155
1.000 0.838 0.735 0.582 0.098 0.324 0.494 — — 0.113

0.000 1.211 0.723 0409 1.121 0.675 0.380 1.047 0.637 0.362

0.125 1.057 0.683 0.415 0.792 0587 0.397 0.569 0.496 0.381

0.250 0.881 0.615 0.400 0511 0.474 0.384 0.240 0.334 0.354

0.375 0.727 0.548 0.381 0.298 0.364 0.357 0.049 0.180 0.293

2 0.5600 0.601 0.487 0.359 0.156 0.270 0321 — 0.060 0.206
0.6256 0.504 0434 0336 0.068 0.198 0.283 — — 0.115
0.750 0430 0.389 0.312 0.015 0.145 0.247 — —  0.030
0.875 0.378 0352 0.291T — 0.109 0.217 — — —_
1.000 0.358 0.337 0.281 — 0.097 0205 — —_ —
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2.8.3 Thermal loading

The material properties and thermal boundary conditions for analyses performed here
follow those used by Erdogan and Wu [60] as described in Section 2.2. At crack-front
locationsinterior to the specimen, Egs. (40) and (42) here produce normalized K;-values
using the plane-strain conversion. We omit stress intensity factors at the free surface
(¢ =0) (see discussion in Section 2.7.3).

Figures 2.26(a)-(c) show normalized stress intensity factors, K, for surface cracks
under thermal loading, where the crack geometry includes three ratios of a/c, and a
fixed crack depth of a/t =0.2. Table 2.4 lists the material properties, and Fig. 2.8 illus-
trates the thermal gradient where the temperature at the cracked surface, T, equals
5,10 and 20 times the temperature at the uncracked face, T',. As theratio of crack depth
to crack length, a/c, becomes larger, the variation in stress intensity factor drops more
steeply from a maximum near ¢ =0 to a minimum at 2¢ /7= 1. As a/c increases from
1/3 to 1 to 2, the magnitude of K}, at the deepest point of the crack, 2¢ /7 =1, decreases
monotonically. The value of K;, near the cracked surface increases as a/c grows from
1/3to 1, and then decreases asa/c grows from 1 to 2. Table 2.7 lists normalized K} -val-
ues for the selected surface crack/material combinations under thermal loads.

Table 2.7. Normalized stress intensity factors, K}, , along the crack front for thermal
loading. Table 2.4 lists material properties, and Fig. 2.8 shows a schematic of the tem-
perature distribution. Dashes replace stressintensity factorsin the boundary layer (see
Section 2.7.3).

Thermal Loading
a/c=1/3 afc=1 afc=2
al/t 2¢/n
T1/Ty T,/To T1/To
5 10 20 5 10 20 5 10 20
0.000 — — — — —_ — — —_ —

0.125 0.393 0.884 1866 0.582 1.309 2.765 0.395 0.888 1.874

0.250 0.377 0.847 1.789 0476 1.072 2.264 0.310 0.698 1.473

0.375 0.362 0.814 1719 0.394 0.888 1.874 0.231 0.520 1.097

0.2 0500 0.341 0.767 1619 0.324 0.730 1.541 0.168 0.377 0.796

0.625 0.318 0.716 1.513 0.270 0.609 1.286 0.122 0.274 0.577

0.750 0.299 0.673 1420 0.234 0.526 1.111 0.089 0.201 0.424

0.875 0.287 0.645 1.361 0.210 0.472 0.997 0.068 0.154 0.325

1.000 0.281 0.633 1.336 0.201 0.453 0.957 0.062 0.139 0.292
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2.9 Summary and Conclusions

This chapter describes a domain integral formulation suitable to compute J-integral
values along 3-D crack fronts in fracture specimens and components constructed of iso-
tropic, functionally graded materials (FGMs). Within a finite element setting, material
property values are specified at the model nodes with standard isoparametricinterpola-
tions to define integration point values. This approach coupled with the proposed do-
main integral thus accommodates effectively arbitrary, smooth gradations of material
properties. The proposed numerical procedures to evaluate the domainintegral use con-
ventional quantities generatedin a finite element solution and may thus be implement-
ed in a post-processor. The present study explores the numerical implementation with
applications to mode-I configurationsin 2-D and 3-D havinglinear-elastic response and
subjected to thermomechanical loading. For simple 2-D configurations, the available
analytical solutions for an edge crack loaded remotely by tension and by temperature
gradients support verification of stress intensity factors derived from ./-values com-
puted with the proposed domain integral. In 3-D surface crack configurations, the dis-
placement correlation technique yields pointwise values of stress intensity factors
along crack fronts for verification of corresponding factors computed with the domain
integral procedure. The discussions also address mesh refinement levels required to re-
solve the solution gradients ahead of the crack front in FGMs, to obtain path indepen-
dence of the J-values, and to evaluate various contributions of the domain integral.
These results demonstrate the utility and accuracy of using the proposed domain inte-
gral to compute 2-D and 3-D stress intensity factors for FGMs.

A parametric study provides stress intensity factors along crack fronts derived us-
ing the proposed domain integral for plates containing semi-elliptical surface cracks.
This initial set of 3-D stress intensity factors covers a practical range of crack sizes, as-
pect ratios and gradations of isotropic material properties (elastic modulus and coeffi-
cient of thermal expansion). Loadings considered include remote tension, bending and
through-thickness temperature gradients. All configurations reflect mode-I conditions
(geometry, boundary conditions and loadings) with material properties that vary only
in the thickness direction. The computed stress intensity factors are presented in a
standard non-dimensional form for surface cracks using both graphical and tabular for-
mats. The presence of the material property gradationsintroduces some unusual trends
in K;-values along the crack fronts (compared to those for surface cracksin homogenous
materials as characterized by the Newman-Raju solutions). Moreover, unlike configu-
rations with homogenous material properties, the locations of maximum J and maxi-
mum K;donot necessarily coincide in the presence of material property gradations. The
present set of 3-D solutions, while not exhaustive, does provide insights into the ex-
pected complexities of surface crack behavior in FGMs.
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Our ongoing work considers applications of the proposed domain integral to com-
putedJ-valuesin surface cracks for metal-ceramic FGMs that undergo elastic-plasticde-
formations. The preliminary results again show good path independence of the J-val-
ues. Such J-values may prove useful to characterize the intensity of elastic-plastic
crack-front fields in FGM specimens.
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Chapter 3

Interaction-Integral Procedures for
Curved Cracks With Surface Tractions

3.1 Introduction

The determination of accurate stress-intensity factors for mixed-mode loading in com-
plex, 3-D configurations remains a significant challenge in computational fracture me-
chanics. Defect assessments of industrial structures require reliable estimates of
stress-intensity factors—especially for fatigue life predictions that adopt a damage tol-
erance philosophy. Finite element models of complex components must have sufficient
refinement to resolve strong gradients in the near-tip fields along curved crack fronts
and must be coupled with robust numerical methods to extract the mixed-mode stress-
intensity factors from the solutions pointwise along the front. Interaction-integral
methods have emerged as perhaps the most accurate and readily implementable ap-
proach to extract mixed-mode, stress-intensity factors. These methods post-process the
computed displacements, strains and stresses from the finite element model that are
taken to represent the correct equilibrium state for the specified boundary-value prob-
lem. Another selected equilibrium state supplies auxiliary near-tip fields defined in
terms of the mixed-mode stress intensity factors. For this purpose, Williams’ [221] solu-
tion for the 2-D asymptotic stress and displacement fields in the vicinity of a crack rep-
resents awidely-used auxiliary field. Alinear combination of finite element fields (com-
monly termed the “actual” fields) with auxiliary fields constitutes a third,
superimposed, equilibrium state. Oneclass of interaction integrals arises from aninter-
pretation of theJ-integral [181]—the computation of J for the superimposed state leads
to a conservation integral composed of interacting actual and auxiliary terms that per-
mits direct computation of stress intensity factors [34]. Numerical evaluation of thisin-
teractionintegral fits conveniently into existing domain-integral procedures for J-com-
putation [192], thereby providing a readily implemented, robust and accurate tool for
linear-elastic analyses.

Through post-processing of finite-element results, Yau et al. [226] evaluate an inter-
action integral to determine mixed-mode stress intensity factors for 2-D cracks in speci-
mens under mechanical loading. Studies of interaction-integral procedures for 3-D
cracks include analyses of plates under in-plane loading [145] and elastic-plastic inter-
face cracks [190]. Dhondt [48] examines the variation in crack-front singularity along
quarter-circular corner cracks. Krysl and Belytschko [125] employ the element free Gal-
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erkin method to analyze the dynamic propagation of arbitrary 3-D cracks in homoge-
neous material. Most prior works provide interaction-integral solutions for cracks with
traction-free faces in homogeneous or bi-material specimens under quasi-static, iso-
thermal loading. Nakamura and Parks [146] discuss the formulation of an interaction
integral for thermal and body-force loads, and Cho et al. [37] analyze 2-D interface
cracks with surface tractions that interact with additional singularities caused by point
forces or dislocations. Other interaction integrals follow from the application of Betti’s
reciprocal work theorem [203, 208], or the M- and L-integrals of Knowles and Sternberg
[122, 88, 38]. Kim et al. [121] compute stress intensity factors along curved cracks in
homogeneous 3-D solids using an interaction integral derived from the M-integral
[122].

This study examines a J-integral based, interaction-integral procedure to compute
mixed-mode stress intensity factors for curved, planar cracks in three-dimensional ho-
mogeneous solids under remote mechanical loading and/or applied crack-face tractions.
For cracked, axisymmetric configurations and for curved 3-D cracks, the 2-D Williams’
[221] solutions do not satisfy equilibrium or strain-displacement compatibility when ex-
pressed in curvilinear coordinates, thereby leading to additional terms in the interac-
tion integral [142]. Nahta and Moran [142] include these curvature effects to study axi-
symmetric interface cracks. They suggest that inclusion of the curvature effects
generally should improve the interaction-integral values for a particular level of mesh
refinement. Gosz et al. [74] and Gosz and Moran [75] also include the effects of local
crack-front curvature to analyze 3-D curved interface cracks and non-planar 3-D
cracks, respectively. Krysl and Belytschko [125], however, omit curvature terms from
interaction-integral computations in their analyses of curved, 3-D cracks. For straight
and curved 3-D cracksin homogeneous materials, our present work investigates the ac-
curacy of stress intensity factors obtained using the simplified interaction integral
without curvature terms. We compare values from the simplified interaction integral
with J-integral values and with analytical solutions using models that have reasonable
levels of mesh refinement in the crack front region.

Shih et al. [192] describe a domain integral procedure to evaluate the J/-integral
along a 3-D crack front that incorporates a surface integral over traction-bearing crack
faces (needed to maintain path independence). A crack-face integral also becomes nec-
essary to preserve path independence of the interaction-integral method. Cho et al. [37]
employ such an integral in their study of cracks with surface tractions in 2-D bodies.
Gosz and Moran [75] integrate over crack surfaces to compute stress intensity factors
for traction-free, non-planar cracks. The necessary surface integral, however, does not
appear in some other interaction-integral treatments of traction-bearing cracks. This
study examines the importance of the crack-face integral and presents a simple, exact
integration procedure applicable for one class of 3-D finite elements.
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The plan of this paper is as follows: Section 3.2 reviews the domain-integral tech-
nique that forms the basis of current numerical procedures. Section 3.3 discusses the
interaction-integral procedure to compute mixed-mode stress intensity factors along
curved 3-D cracks in homogeneous solids under quasi-static, mechanical loads includ-
ing applied crack-face tractions. A description of numerical procedures follows in Sec-
tion 3.4. Section 3.5 describes a 3-D analysis of a 2-D plane-strain problem that provides
insight into the influence of the crack-face-traction integral and the improvement of-
fered by its exact integration. Section 3.6 presents mixed-mode stress intensity factors
computed using the interaction integral without curvature terms, and compares them
to values obtained from analytical solutions. Some observations conclude the work in
Section 3.8.

3.2 A domain integral for 3-D cracks with surface tractions

Shih et al. [192] develop the domain-integral method as a powerful numerical procedure
to evaluate theJ-integral for 3-D cracks. The domain-based, interaction-integral meth-
ods build upon this approach. An expression for the J-integral at location s along a 3-D
crack front is [192]

J(s) = im j (Woy; — oy ), dr, (52)
r

where Wis strain energy density, o, represents stress components, u; denotes displace-
ment components, and 6,;is the Kronecker delta. Latin subscriptsrangefrom 1to 3, and
unless noted otherwise, repeated indices imply summation. The partial derivative
(+),; = 8(+)/aX; indicates the spatial derivative of ( -) with respect to direction X, of the
local coordinate system defined at crack front position s as shown in Fig. 2.5. The con-
tour, T, with normal-vector components r;, lies in the X;- X, plane of the local coordi-
nate system, and extends from the bottom crack face to the top crack face. When the
contour shrinks to the crack front at s, Eq. (62) equals Rice’s J-integral {181] and re-
mains valid in the presence of general material behavior, body forces, crack-face trac-
tions and thermal strains.

Shih et al. [192] transform Eq. (52) into volume and surface integrals suitable for
numerical evaluation in a 3-D finite-element context. They derive an expression for
J(s), the energy released per unit advance of crack-front segment L (see Fig. 2.5). This
expression may be written as
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J(s) = [ (o1 — Wy,),,dV + J (o)1 — W,),:qdV
Jv v

f

JS++8-

where #; are components of traction acting on the crack face. Here, surfaces S +t. 87,8,
S, So, and S3, shown in Fig. 2.5, enclose the simply-connected volume V, and surface
S; shrinks to the crack front (i.e. r—=0). The scalar weight-function, g, varies smoothly
within V. A simple form for ¢ assigns it a smooth variation from zero on surfaces Sy, Sg
and Sg, to a value of 1.0 at location s on S; [192].

For elastic, homogeneous materials under quasi-static, isothermal loading with no
body forces or crack-face tractions, the second and third integralsin Eq. (53) vanish. The
second integral in Eq. (63) gives rise to interaction-integral terms that are non-zero for
curved cracks. The third integral in Eq. (63) reflects the contribution of applied crack-
face tractions. Shih et al. [192] assume that the energy release rate varies slowly along
crack segment Lo, and thus obtain the approximate expression

J(s)

[ g(s)ds
L

C

J(s) = , (54)

for the energy release rate, J(s), at location s along a 3-D crack front.

3.3 An interaction integral procedure for curved 3-D cracks with sur-
face tractions

This section reviews the formulation of an interaction integral for isothermal, quasi-
static loading of planar, 3-D curved cracks in homogeneous materials under remote
loads and crack-face tractions. We discuss a formulation that includes the effects of
crack-front curvature, and then describe the computational procedure to obtain stress
intensity factors.

3.3.1 Auxiliary fields

Williams’ solution [221] for auxiliary stress and displacement in the vicinity of a erack
has the form:

aux Kaux Kaux
oo = ZIW i + ——,2%;,351(9) + ——% e, (55)
Kaux Kaux ZKaux
aux . _ 1 [T 1 o J/r . u m /r_ _m
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where superscript “aux” denotes auxiliary fields. Appendix A provides the expressions
for f;;(6) as well as the plane-stress and plane-strain forms for gj(6,v). The symmetric
gradient of displacements defines the auxiliary strain components:

e = 2 (ugte + uz). (57)

i 2\ My ot

These 2-D auxiliary fields are a function of location  and 6, and shear modulus u. Most
interaction-integral studies use the plane-strain form of these auxiliary fields to ana-
lyze cracks in 3-D solids, with the assumption that plane-strain conditions exist (as-
ymptotically) near the crack front at locations away from free surfaces. The excellent
accuracy of reported stress intensity factors supports the adequacy of this approxima-
tion. In an alternative approach, Kim et al. [121] demonstrate the use of numerically-
generated auxiliary fields to obtain stress intensity factors.

Nahta and Moran [142], Gosz et al. [74] and Gosz and Moran [75] develop interac-
tion-integral procedures that use the 2-D auxiliary fields based on Egs. (65)-(57) for axi-
symmetric interface cracks, curved 3-D interface cracks, and 3-D cracks with non-pla-
nar surfaces, respectively. In a finite-element context, values of r and 6 in these
expressions describe the position of an element integration point in curvilinear coordi-
nates, relative to a curved crack front. Definition of the auxiliary fields in curvilinear
coordinates gives rise to additional terms in the gradients of auxiliary displacements
[74,75,142]. To quantify the accuracy of interaction-integral computations without
terms for crack curvature, numerical studies here use curvilinear coordinates to com-
pute r and 6 for auxiliary fields, but omit these additional, auxiliary-field gradients dur-
ing evaluation of the interaction integral.

3.3.2 Interaction-integral formulation

By superimposing actual (computed) equilibrium fields and auxiliary fields, J(s) for the
superimposed state, IS5, from Eq. (53) becomes

s = J [(aJ + 05y + ) - Wséli]q,idV

o1
A%
' fv[(%- 0w + i) = WoOue|ugav

) L A+ =) + wiads 9
s

Here, superscript S denotes the superimposed state. For a linear-elastic material, the
strain energy density for the superimposed state, W5, is

1
WS = —2—(aij + G;M)(Sy + e;"x) s
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=W+ We= + W, (59)

where W is

wl = ;(0 8aux+oajux y) (60)

With Eq. (59), JS separates into three parts:

Ts) = Ts) + T“() + Is) 61

where J(s) equals Eq. (53), the domain integral for the actual state; J () isthe domain
integral for the auxiliary state; and I(s) is an integral with interacting actual and auxil-
iary terms, written as

\%
1
+ J [olju}z:tlx + O.auxul L - _2_(0 Saux + Uk Jk)ali:l’iqdv
04

- J (t g + £ w1 )adS . (62)
S++8-

The third integral of Eq. (62) vanishes for crack faces without applied tractions. For
straight cracks, the second integral vanishes for quasi-static, isothermal loading of ho-
mogeneous materials in the absence of body forces. Auxiliary fields based on Williams’
2-D solution do not satisfy equilibrium or compatibility in curvilinear coordinates [142],
however, and the second integral remains non-zero for curved cracks.

The interaction-integral procedure here assumes that the same constitutive tensor,
Cijkl, couples actual and auxiliary stress and strain components, i.e.

i = Cymiep > and o5 = Cypep®. (63)

With appropriate definitions of auxiliary strain components (see Appendix E), the
constitutive tensor is the same for the 3-D actual fields and for the 2-D auxiliary fields.
Equation (63) leads to the useful relationships

UX e UK e a J— ux
G'I;jf};; = Cl:]'klgklegi = Cklljsz_]uxskl = O'Z; 6ij s (64)

which enable simplification of the stress-strain terms in the first and second integrals
of Eq. (62). Expansion of the second integral in Eq. (62) simplifies because Ojj ki) = 0
due to equilibrium (assumed to be exact) of the actual stresses, and Eq. (64) leads tothe

cancellation of two additional terms:
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Qux Qux — LLX. —_— aux Qux
05 U — Oy = 03 Uy Cijkl’lgkleij + Cljkleklalsij
QUX. — aux
=0 U Cklijgij €rlr1

— aauxu 1 O.;:ziuxg — O . (65)

] ijrl

Nahta and Moran [142] observe that 2-D auxiliary fields based on Williams’ solution
donot satisfy strain-displacement compatibility and equilibrium when defined in curvi-
linear coordinates. Therefore,

0wt - egix) = 0, and o3 = 0. (66)

Because auxiliary fields correspond to an arbitrarily-specified equilibrium state, the
third integral in Eq. (62) simplifies with the assumption that the auxiliary state has
crack faces without applied tractions. As a result of the preceding arguments, Eq. (62)
reduces to

I(S) = j (Gyu;‘”‘lx -+ aauqu 1 Jk k 51;)C1ndV
Vv
+ [ Log{usis - egez) + gty Jaav
\'4

- I t; u}’,“l"qu , 67
S++8-

The terms o;(u}7; ~ €77) and 03w, that arise here due to crack-front curvature also
appear in the 1nteract10n-1ntegral formulations for straight cracks in functionally-

graded materials [563,117].

The crack-face integral,

f uiiqds, (68)
S+ +S*

contributes significantly to stress intensity factors, but is occasionally neglected. None
of the quantities in Eq. (68) depend upon the finite element solution of the boundary-
value problem—an exact evaluation of this integral thus ensures that it does not con-
tribute error to numerical results. Section 3.4.3 and Appendix B describe a simple, exact
numerical integration procedure for Eq. (68) when element edges along the crack front
are straight.

With the value of I(s) generated using Eq. (67), computation of a pointwise value
of the interaction integral at location s, along a 3-D crack front follows Eq. (54):
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I(s)

[ q(s)ds
L

C

I(s) = (69)

3.3.3 Extraction of stress intensity factors

An expression for the energy release rate in terms of mixed-mode stress intensity fac-
tors K, Kj1 and Kigj, is

K2 + K2
J(s) = IE* II+IEVK%H,

(70)

where E* = E /(1 —v2) for plane-strain, E* = E for plane-stress conditions, and stress in-
tensity factors refer to crack-front location s. For the superimposed state, Eq. (70) be-

comes
S _ 1 anx 2 qux 2 1+ aux 2
= J(s) + J*(s) + I(s),
where
Is) = 2%;(21{1 w4 9K pKye) + LY (2K Kae) (71)

Equations (69) and (71) provide the sought-after relationship between stress intensity
factors and the interaction integral in Eq. (67). With the assigned values K{**=1.0 and
Kg# =Ky =0, Eq. (71) yields

k=216 (72)

To obtain the actual mode-I stressintensity factor from (72), we: 1) assume either plane-
stress or plane-strain conditions (based on the nature of the boundary-value problem)
for E* and for the auxiliary fields; 2) compute I(s) by evaluating the interaction integral
in Eq. (67) using the values K7**=1.0, K7}*=0.0, and Kjjf' = 0; 3) compute I(s) from Eq.
(69) for use in Eq. (72).

The selection K%*=1.0, K= K% =0, and the selection K%#=1.0, K= K&#<=0
in Eq. (71) leads to relationships between Ky, Ky and I(s):

__E
2(1 +v)

To obtain values of Kj; and Ky from Eq. (73), we evaluate Eqgs. (67), (69), and (73) with
appropriate values of K1, K{*, and K. Five distinct evaluations of the interaction
integral in Eq. (67) thus lead to values of K; and Kj; for plane-stress and plane-strain
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conditions, and to a value of Kj;; for anti-plane-shear conditions. Section 3.4 discusses
the numerical evaluation of Eq. (67).

3.4 Numerical procedures

Within a finite-element framework, numerical procedures to evaluate the interaction
integral parallel those used in conventional, element-level computations. This section
describes numerical evaluation of the integrals, discusses computation of r and 8 for the
auxiliary-fields and reviews procedures to evaluate the surface-traction integral in Eq.
(68). All procedures employed in this work are implemented in WARP3D, a general-pur-
pose, open-source finite-element code [78].

3.4.1 Numerical evaluation of volume and surface integrals

Evaluation of the integrals in Eq. (67) follows the same Gauss-quadrature procedures
employed for the computation of element stiffnesses [41]:

N elems gpts
I(s) = Z Z[(oljuﬁ‘f + 05U, — ojksj‘.‘,;“éu)q,idetJ] wp
V p P

elems gpts
aux __ oaux aux
+ Z Z{[aij(uj,li 8ij,1) + aij,iuj,l]qdetJ} wp
V p p

faces gpts
- z z<tjuj€‘,"fq detJ) wp , (74)
S p P

where the sum over volume V includes all elements in the domain, and the sum over
surface S includes each traction-bearing element face on the boundary of domain V
which lies on the crack surface. The sum over p includes all integration points, and w,
denotes the corresponding weight for that point. All quantities included in the summa-
tion must be expressed in the local, orthogonal coordinate system at location s on the
crack front (see Fig. 2.5) . Here, det J denotes the determinant of the coordinate Jaco-
bian matrix in two or three dimensions, depending upon surface or volume domains.
Repeated indices imply summation. We employ a simple “plateau” function for the vari-
ation of ¢ [192], and Gauss quadrature based on the two-point rule for linear- and qua-
dratic-displacement elements. Evaluation of these termsin the first domain of elements
that surround the crack front includes a singularity in the auxiliary fields. Standard
Gaussian integration of the singular auxiliary fields within these elements will not
yield good accuracy. However, for homogeneous material, the plateau function
employed for the g-function enables these elements to be omitted from larger domains
of integration that include only elements further from the crack front.
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Fig. 3.1 (a) Computation of r and 6 values to determine auxiliary fields at integration
point P for interaction integral evaluation at crack-front location s. In meshes
with straight element edges, distance r spans point P and the element edge
between nodes A and B, and angle PDC defines 6. Point C is the projection of
Pfoento the X1-X3 plane. (b) Quadrants I-IV in the plane PDC for computation
of 6.

3.4.2 Computation of r and 6 for auxiliary fields

Evaluation of the auxiliary fields at an integration point requires the distance r from
the crack front to the point, and the angle, 8, measured from the crack plane ahead of
the crack to the integration point (see Fig. 3.1). For curved crack fronts, Gosz et al. [74]
define the distance r between an integration point and the analytically-defined crack
front using a curvilinear coordinate system. They first project an integration point, P,
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onto the crack plane as point C in Fig. 3.1(a), and then formulate an expression for the
distance between C and the analytical definition of the curved crack front. Minimiza-
tion of this distance through a Newton procedure determines the point E along the ana-
lytically-defined crack front closest to C (see Fig. 3.1(a)). Distance r is finally measured
from E to P, and angle P-E-C determines 6.

The present work considers two different approaches to compute r and 6. For curved
crack fronts discretized using quadratic elements with curved edges, i.e. elements with
nodes that lie on the analytically-defined curve, computation of r and 8 follows the above
procedure employed by Gosz et al. [74]. For curved crack fronts discretized with linear
elements (straight edges), r is the distance D-P from line segment A-B defined by ele-
ment nodes, to integration point P, as illustrated in Fig. 3.1(a). Figures 3.1(a)-(b) and
Appendix C describe a procedure to compute r and 6 for this case. For a curved crack
represented by straight-edged elements, this approach to define » and  remains consis-
tent with the discretization of the body into finite elements. It also avoids inaccurate
computation of r and 6 when the distance from the analytically-defined crack front to
the mesh-defined crack front, distance D-E in Fig. 3.1(a), becomes significant compared
to the width of elements in the domain of integration. Figure 3.2(a) shows one quarter
of a cylindrical mesh for an embedded penny-shaped crack discretized by elements with
straight edges. Figure 3.2(b) illustrates the potentially significant deviation of an ana-
lytical curve that describes a circular crack from the crack front defined by the mesh
elements. The (actual) analytical curve in Fig. 3.2(b) extends into the fourth ring of ele-
ments surrounding the crack front, and does not correspond to the discontinuity in the
mesh that defines the crack. Within the first few rings of elements that surround the
crack front, r and 0 values computed from the analytical curve locate incorrectly the
position of integration points, thereby leading to auxiliary-fields inconsistent with actu-
al fields generated by the mesh. This necessitates the use of local orthogonal coordi-
nates to compute values of r and 8 when elements with straight edges define the crack
front. Numerical examples considered in this study employ finite-element meshes with
curved crack fronts discretized using both straight and curved element edges.

3.4.3 Numerical evaluation of the crack-face-traction integral

Consider now integration of the surface-traction integral in Eq. (67) over the surface of
an element incident on the crack front. Values of Ki**=1.0, and ¢,= 1.0 correspond to
amode-I crack-opening surface pressure, and lead to an integrable, inverse square-root
singularity:

r—>0

[ + £ dxdz = lim o(rl/z) =0, (75)
x r—0

z
lim j L u¥qdS = lim j
. 7 Pl
=0 s 0 Jx=0 Vx
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where g = 1.0 for simplicity, and where the sign of the integrand depends upon the sign
of uzTat f = + 7. The termsin Eq. (68) have no dependence on the solution to the bound-
ary-value problem—crack-face tractions, auxiliary-displacement derivatives, g-values
and the domain of integration are defined entirely by the analyst. During numerical
evaluation, as the number of integration points increases, standard Gauss quadrature
converges slowly toward the exact value for a function with a singularity at one end
point [65]. A simple change of variables, detailed in Appendix B, leads to exact integra-
tion of Eq. (68) for elements with straight edgesincident on the crack front, and requires
only minor modifications to the standard Gauss-quadrature procedure. The modified
Gauss integration, based on a 2 X 2 rule, leads to exact values of Eq. (68) for elements
with four and eight nodes on each face. For quadratic elements with quarter-point nodes
and straight edges, standard 2 X 2 Gauss quadrature integrates Eq. (68) exactly, and
the change of variables becomes unnecessary. The exact integration procedure de-
scribed in Appendix B is used here only for linear elements with loaded faces and inci-
dent on the crack front—standard 2 x 2 quadrature yields accurate values for elements
with loaded faces not incident on the crack front. Standard quadrature, based on a four-
point rule is adopted to evaluate Eq. (68) for elements with curved edges. Table 3.1 sum-
marizes the various integration schemes used to evaluate Eq. (68). Numerical results
presented here demonstrate that exact evaluation of Eq. (68) over elements incident on
the crack front increases noticeably the accuracy of stress intensity factors.

Table 3.1. Integration schemes used in this study to evaluate the crack-face-traction
integral in Eq. (68).

integration for face of integration for faces of

ex element number of nodes on o
h element incident on  elements remote from

geometry element face crack crack
4 modified 2 X 2 (exact) standard 2 % 2
straight 8 modified 2 x 2 (exact) standard 2 x 2
edges : )
8 S:)’ig:: ggg;g?r standard 2 X 2 (exact) standard 2 x 2
curved 8 (w}th quarter- standard 4 x4 standard 4 x4
edges point nodes)

3.5 3-D analyses of plane-strain and plane-stress configurations

This section discusses verification of the 3-D numerical procedures to evaluate Eq. (67)
for through-crack configurations with straight crack fronts. Finite element solutions for
a standard boundary-layer model [144] (details omitted for brevity) verify the correct
computation of mixed-mode stress intensity factors in homogeneous materials under
plane-stress, plane-strain and anti-plane-shear conditions. The present finite element
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Fig. 3.3. (a) Schematic of a SE(T) specimen with crack-face tractions. (b) Symmetric
mesh representing the cracked strip where a/W=0.4. (¢) Detail of mesh in
crack-front region showing 10 semi-circular rings and 10 sectors of elements.
(d) Elements incident on the crack front each have one collapsed face. Here,
L. describes the size of elements incident on the crack front, and Rp indicates
domain size.

procedures yield the identical K, Kjj and Kij1 values imposed on the remote boundary
of the model. Here, we focus on the analysis of a single-edge-notch tension, SE(T), speci-
men under plane-strain conditions to illustrate the influence of the crack-face traction
integral, Eq. (68).

Figure 3.3(a) illustrates a semi-infinite strip subjected to crack-face tractions. Sym-
metry permits the analysis of one-half of the specimen. The finite-element mesh shown
in Fig. 3.3(b) discretizes the model with 8-noded brick elements. Ten rings of elements
surround the crack front, and 10 sectors of elements discretize the crack-front region
in the hoop direction as shown in Fig. 3.3(c). Figure 3.3(d) shows the collapsed elements
incident on the crack front; L, describes the size of elements incident on the crack front,
and Rp describes the size of domains. For the domain of integration comprising the 10
elements immediately surrounding the crack front in the current model, only one ele-
ment of size L, /a = 0.0177 contributes to Eq. (68). With a 2 X 2 Gauss-quadrature rule,
the ratio of numerical and exact values obtained from Eq. (68) for this element reflects
an error greater than 25%. Figure 3.4 illustrates the very slow convergence of standard
quadrature toward the exact value of Eq. (68) with an increase in the number of quadra-
ture points.
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Fig. 3.4. Convergence of standard Gauss quadrature for evaluation of the crack-face
traction integral, Eq. (68), for the element incident on the crack front in the
SE(T) model.

Figure 3.5(a) shows the contribution to I(s) from each term in Eq. (67); recall that
the second integral vanishes for a straight crack front. The error introduced by using
standard 2 X 2 quadrature to evaluate Eq. (68) for the element incident on the crack
front remains significant for large domains, as shown in Fig. 3.5(b). Current results ob-
tained using “standard” quadrature match closely the stress intensity factor values ob-
tained from ABAQUS 6.4-3 [1], also shown in Fig. 3.5(b). This figure shows that by fol-
lowing the procedure in Appendix B to evaluate Eq. (68) exactly over the element
incident on the crack front, the accuracy of the stress intensity factor improves by about
1%. The lowest curve in Fig. 3.5(b) illustrates the impact of omitting the crack-face-trac-
tion contribution on the computed stress intensity factor values.

3.6 Curved cracks modeled with piecewise-linear fronts

Gosz et al. [T4] and Kim et al. [121] compare stress intensity factors computed with and
without the terms in the second integral of Eq. (67). Stress intensity factors computed
by Gosz et al. [74] for a flat, elliptical crack embedded in an infinite homogeneous body
under remote mode-I loading improve significantly when crack-front-curvature terms
are included. Kim et al. [121] demonstrate an improvement in stress intensity factors
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Fig. 3.6. (after Kassir and Sih [103]) A penny-shaped crack in an infinite homoge-
neous solid loaded by point forces P and R acting at pointx=0,y=0,z=b,
and directed parallel to the x and z axes, respectively. For the ABAQUS
6.4-3 [1] benchmark model, P=R =400.0E+6, and b=0.33.

when they employ the method of Gosz et al. [74] for a penny-shaped crack in a homoge-
neous cylinder loaded through remote displacements.

This section employs the interaction-integral procedure described in Section 3.3 to
compute mixed-mode stress intensity factors along penny-shaped and elliptical cracks
in homogeneous solids. Meshes used for examples in this section have either linear or
quadraticelements with straight edges along the front (often produced by mesh genera-
tion programs). For domain-integral computations, local crack-front curvature in the
numerical model vanishes, and computations of r and 8 valuesin alocal orthogonal coor-
dinate system follow the descriptions in Section 3.4.2, Appendix C and Figs. 3.1(a)-(b).
With this approach, gradients in the auxiliary field due to curvilinear coordinates do not
appear, and the second integral of Eq. (67) vanishes because it arises from the definition
of 2-D auxiliary fields in a curvilinear coordinate system. This section explores the accu-
racy of this simplified approach for the computation of mixed-mode stress intensity fac-
tors.

3.6.1 Penny-shaped crack in an infinite solid under mixed-mode loading

Figure 3.6 shows the problem of a circular crack in an infinite solid loaded by point
forces above the crack plane. Kassir and Sih [103] provide analytical stress intensity
factor solutions for this problem (see Appendix D.1), and the ABAQUS 6.4-3 benchmark

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



manual contains mesh data and loading conditions which we use here. Figure 3.7(a)
shows a cross-section of the mesh obtained from the ABAQUS 6.4-3 input file, which
defines 10,260 8-noded hexagonal elements. Boundary conditions consist of one fixed
node at each end of the cylinder axis; nodal forces P and R in Fig. 3.6 act with magnitude
400 MN at distance 0.33 above the crack plane. Young’s modulus and Poisson’s ratio
equal 200 GPa, and 0.3, respectively, and the ratio of cylinder height, H, and diameter,
D, to crack radius, @, are H/a =D /a = 80. Figure 3.7(b) shows domains of 24 radial sec-
tors that discretize the crack-front. Elements of size L,/a=0.00129 having one col-
lapsed face surround the crack front, and the largest domain on which we compute val-
ues (domain five) has dimension Rp /a =0.04. Thirty sectors discretize the cylinder in
the radial direction about the z-axis, and we report stress intensity factors computed
at element corner nodes on the crack front.

At each crack-front location, an average of the interaction-integral values obtained
from domains two through five yields stress intensity factors normalized as

_ Ka?/?

Figure 3.8(a) shows normalized stressintensity factors alongone-half of the crack front,

(76)

obtained from present computations and from the analytical solutionslisted in Appen-
dix D.1. Stress intensity factors generated by the ABAQUS 6.4-3 interaction-integral
routines match current values to three or more significant digits for this case and donot
appear in the figure. We also examine stress intensity factors obtained using the mesh
shown in Fig. 3.7(a) following conversion to 20-noded hexagonal elements. Here again,
element edges are straight, and thus local crack-front curvature is zero. Computations
employ reduced 2 X 2 X 2 integration and collapsed elements with quarter-point nodes
incident on the crack-front. For this problem, our stress intensity factors compare to
within 1.0% of the values generated by ABAQUS 6.4-3. Figure 3.8(a) shows the varia-
tion in stress intensity factors obtained using the higher-order elements.

Figure 3.8(b) compares energy release rate values generated using the interaction
integral, the J-integral formulation described by Eq. (53), and the analytical solutions
contained in Appendix D.1. Equation (70) converts stress intensity factors to equivalent
J-values. Normalization of J-integral values shown in Figure 3.8(b) follows

JEa3
Jn = Pz .

The mesh of 20-noded elements leads to improved accuracy. This figure demonstrates

(77

that the accuracy of interaction-integral computations along a curved crack front using
amodel with zero local curvature matches the high accuracy of J-integral computations
which here do not include effects from crack-front curvature. Close agreement between
results computed using the interaction integral, the /-integral, and analytical expres-
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Fig.3.7. (a) Section view of cylindrical mesh representing an infinite body with an em-
bedded penny-shaped crack (from ABAQUS 6.4-3 benchmark library [1]).
Dimension ratios are H/a=D/a=80. (b) View of mesh discretization in
crack-front region. Seven cylindrical domains with 24 sectors surround the
crack front. Fordomain 1, L, /a = Rp /a = 0.00129. For domain 5, Rp /a = 0.04.
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Fig. 3.8. (a) Normalized stress intensity factor values along the front of a penny-
shaped crack under mixed-mode loading due to point forces P and R. (b)

Normalized values of energy release rate determined from the J-integral, in-
teraction-integral values and analytical solutions.

sions indicates that excellent accuracy for this problem may be achieved by measuring
r and 0 from straight element edges as described in Section 3.4.2.
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Table 3.2 describes the error between numerical results and analytical resutls
through the following quantities:

\/ Z he - h2) (78)

e — h
mm (79)

mln Ihelmax ’

= __l___l_f_’nﬂﬁ (80)

D
_ 1 i i
Aave - D Z |he|max . (81)

Here, erepresents the global error, 4 is anormalized stressintensity factor (K) or energy
release rate (J) obtained using exact (superscript e) or numerical (superscript n) solu-
tions, and D is the number of points on each curve. Quantities Ay,in, Apax and Agye de-
scribe the minimum, maximum and average variation of calculated values from the
maximum analytical value. The accuracy of stress intensity factors as demonstrated by
Table 3.2 suggests that mesh refinement or use of higher-order elements (4 or p refine-
ment) should permit the interaction integral toyield arbitrarily accurate stressintensi-
ty factors without the curvature terms.

Table 3.2. Error measures of normalized stress intensity factors and energy releasera-
tes (see Figs. 3.8(a)-(b)) with respect to analytical solutions.

mesh value globale error Apin (%) Amax (%) Agve (%)
K, 0.019 0.00 3.06 1.50
e 0.012 0.06 166 110
8-noded Kiin 0.033 0.00 459 2.93
elements — & 0.010 0.04 170 0.86
T 0.012 0.12 165 1.05
K, 0.003 0.00 0.54 0.28
s 0.004 0.23 057 0.40
20-noded — -+ 0.012 0.00 164 104
elements — - Ks  0.006 0.05 1.16 0.46
T 0.004 0.00 0.74 0.31
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3.6.2 An infinite solid with a flat elliptical crack under tension

Curvature effects may be more significant for elliptical cracks than for penny-shaped
cracks. In this section, the computation of mode-I stressintensity factors along the front
of aflat elliptical crack in a homogeneous solid supports a comparison between interac-
tion-integral results by Gosz et al. [74], J-integral results, and analytical values. Crack-
face pressure provides loading conditions for the present analysis, giving additional in-
sight into the influence of the surface-traction integral in Eq. (68). This example, and
the corresponding problem in Gosz et al. [74], employ linear, 8-noded hexagonal ele-
ments. Gosz et al. [74] compute r and 8 from ananalytically-defined curve that describes
the crack front; and thusinclude auxiliary field terms reflectinglocal curvilinear coordi-
natesthat appear in the second integral of Eq. (67). Here, computations of r and 8 values
use local orthogonal coordinates as described in Section 3.4.2 with crack front geometry
defined by the element mesh.

The large rectangular specimen contains an embedded elliptical crack. The crack
has a semi-minor-axis to semi-major-axis ratio of a/c = 0.4. To allow for arbitrary crack-
face tractions, a full mesh is used here and consists of 26,504 8-noded brick elements.
Figure 3.9(a) shows one eighth of this mesh of size L/¢ = 10. Along the crack front shown
in Fig. 3.9(b), evaluation of the interaction integral occurs over domains including ele-
mentsincident on corner nodes along the crack front. Elements with collapsed faces sur-
round the crack front, and have dimension L, /a = 0.0165. Ten sectors and seven rings
of elements discretize the region surrounding the crack. Here, we report the average of
stress intensity factors computed using domains two through five at each crack-front
location.

Irwin [91] derives an analytical expression for the mode-I stress intensity factor
along the front of an elliptical crack in an infinite solid under tension:

K; = o, \/%(%)(ag cos?¢ + c2 sin2¢)1/2 , (82)

where 0, is the remote uniform tensile stress, 2c and 2a are the major and minor axis
lengths of the ellipse, parametric angle ¢ defines the crack-front location as described
inFig. 3.10,and ‘/Q is acomplete ellipticintegral of the second kind equal to €/4c, where
¢ is the arc length of the ellipse. Merkle [136] discusses a commonly-used approximate
expression for €, which for a/c<1 is [6]

Q=1+ 1.464(%—)1'65. (83)

The standard normalization of stress intensity factors for elliptical cracks follows
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Fig. 3.9. (a) One eighth of the mesh defined to model a planar, elliptical crack in an
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The full mesh includes 26,504 8-noded brick elements. (b) View of mesh in
crack-front region, where 7 rings divided into 20 sectors surround the crack
front. Ratios L/c=10, and a¢/c=0.4.

K;, = ——, (84)
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Fig. 3.10. Description of parametric angle ¢, on an elliptical crack front where
a/c<1.0. Angle w describes the direction of crack-face shear loading, rep-
resented by T.

where S= ¢, for tension loading.

Figure 3.11(a) shows the normalized mode-I stress intensity factors obtained from
Egs. (67) and (82) for crack-face pressure loading. With exact integration of the crack-
face traction integral over the element incident on the crack front, the numerical result
at all crack-front locations agrees to within 1% of the analytical expression. With stan-
dard Gauss quadrature evaluation of Eq. (68), results are within 2.5% of theoretical val-
ues, and agree very closely with values generated by ABAQUS 6.4-3 [1]. Numerical re-
sults are accurate even along the more highly-curved portion of the crack front, whereas
better path-independence of stress intensity factors occurs in areas of smaller curva-
ture.

Figure 3.11(b) compares Kj-values computed with the interaction integral toJ/-val-
ues computed using Eq. (63). Excellent agreement exists between interaction-integral
and J-integral values. Here, J-integral computations do not involve curvilinear coordi-
nates asin Fernlund et al. [67]. Excellent overall accuracy and good correspondence be-
tween J-integral and interaction-integral results for this problem imply that the use of
straight-edged elements todiscretize curved cracks essentially eliminates the influence
of local crack-front curvature on interaction-integral computations. Straight element
edges enable simple computations of r and 8 from local orthogonal coordinate systems,
eliminate auxiliary-field gradients that arise due to curvilinear coordinates, and cause
the second integral in Eq. (67) to vanish. Results in Figs. 3.11(a)-(b) demonstrate the
accuracy that can be achieved through this approach, and an additional example fur-
ther illustrates its usefulness for mixed-mode loading cases.
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3.6.3 An infinite solid with a flat elliptical crack under shear

Application of tractions parallel to the faces of the elliptical crack described in Section
3.6.2 generates mode-1I and mode-I11 loading. Computed stress intensity factors verify
the accuracy of interaction-integral procedures for mixed-mode loading of a curved
crack modeled with straight finite elements along the front. Evaluation of the interac-
tion integral at each crack-front location again leads to reported values obtained from
the average of domains two through five.

Kassir and Sih [102] derive analytical expressions for stress intensity factors along
the front of elliptical cracks under uniform shear loading, included herein Appendix D.2
for convenience. Figure 3.10 illustrates the orientation of crack-face shear according to
angle w. At the ends of the major axis, mode-II stressintensity factors vary most rapidly
for =0, and mode-III stress intensity factors vary most rapidly when w =90°. We
therefore examine stress intensity factors for these two cases.

Figures 3.12(a)-(b) show the variation of normalized stress intensity factors along
the crack front from ¢ = 0 to¢ =90°. Normalization of the stress intensity factorsfollows
Eq. (84), where S equals the magnitude of the uniform shear stress. Stressintensity fac-
tors show a maximum deviation of approximately 2.5% from theoretical values for stan-
dard quadrature evaluation of the crack-face traction integral over the elements inci-
dent on the crack front. Exact integration over these elements improves significantly
the accuracy of stress intensity factors. This example demonstrates again that the in-
teractionintegral can yield very accurate results for curved cracks with zerolocal curva-
ture in the model when the computation of » and 6 values refers to local orthogonal coor-
dinates. We now examine interaction integral results computed for curved cracks with
non-zero local curvature in the model.

3.7 Analysis of cracks modeled with curved elements along front

When elements with curved edges discretize the crack front, non-zero local curvature
in the model requires the use of curvilinear coordinates to compute accurate values of
r and 6 to evaluate the auxiliary fields. In these cases, the second integral of Eq. (67)
isnon-zero, and the gradients of some auxiliary fields involve terms that reflect explicit-
ly the local curvature of the crack front [74]. This section examines the effects of omit-
ting curvature terms during computations of the interaction integrals.

3.7.1 An infinite solid with a flat penny-shaped crack under tension

A cylindrical mesh with a penny-shaped crack under tension represents a standard
problem to explore the influence of crack-curvature terms on the interaction integral.
Figure 3.13(a) shows the cross section of a mesh composed of 16,480 20-noded brick ele-
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Fig. 3.12. Normalized analytical and numerical stress intensity factor values along
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Crack-face shear induces loading in modes II and III for (a) shear parallel
to the major axis (w =0); (b) shear parallel to the minor axis (w =90).

ments. A Young’s modulus of 30,000 and Poisson’s ratio of 0.3 describe material proper-
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ties. The ratios of mesh height H and diameter D to crack radius a are H/a =D /a = 80.
This cylindrical mesh has 20 sectors of elements surrounding the axis of symmetry, and
domains surrounding the crack front are divided into 24 sectors, as seenin Fig. 3.13(b).
Elements surrounding the crack-front have a size of L,/a =0.00129 with one collapsed
face and quarter-point nodes on edges normal to the front. Two models following the
above description provide insight into the difference between stress intensity factors
generated using a mesh with straight and curved elements incident on the crack front.
For the mesh with straight edges, computations of r and 8 in this section follow the pro-
cedure described in Appendix C which uses local orthogonal coordinates. For the mesh
with curved elements, computations of r and # use curvilinear coordinates along the
analytically-defined curve representing the crack front.

Uniform crack-face pressure o0,imposes mode-Iloading, and stressintensity factors
computed at each crack-frontlocation lead to reported stress intensity factor values ob-
tained by averaging values from domains two through five, Normalization of stress in-
tensity factors follows as

K
K, = —. (85)
In a, \/.;IE
Table 3.3 shows very good agreement among stress intensity factors obtained using the
interactionintegralin Eq. (67), the standardJ-integral (Egs. (53), (70)), analytical solu-
tions for an infinite body, and asymptotic expressions for a finite cylinder. The asymp-

totic expression for stress intensity factors corresponds to a penny-shaped crack of ra-
dius a in a finite homogeneous cylinder of radius b=D/2 loaded in tension. The
asymptotic solution is [21]

_ 2N /a1l - a/b) 1a 5a2 ad
K; = 5T~ o (1 +3p "8p2t 0.421ﬁ) , (86)

where N is the normal force acting on the cylinder. When the crack size shrinks to zero,
i.e. a/b—0, this expression reduces to the stress intensity factor for a penny-shaped
crack in an infinite body under tension [103]:

K; = 20,7, 87

where 0,is the remote tensile stress, equal to N /nb? for the finite cylinder, or the crack-
face-opening pressure for an infinite cylinder.

The mesh with curved elements yields more accurate interaction integral and J-in-
tegral results than the mesh with straight-edged elements. The straight-edge mesh in-
cludes zero error from the crack-face traction integral, while the value from the mesh
with curved edges includes some error due to the inexact 4 X 4 quadrature employed to
integrate Eq. (68). A comparison of numerical results generated from the two meshes
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indicates that the combined influence of the curvature terms in the auxiliary field and
the second integral of Eq. (67) must be less than = 1.0% for this problem.
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Table 3.3. Normalized stress intensity factors for a penny-shaped crack in an infinite
homogeneous solid under torsion and tension, illustrated in Figs. 3.2 and 3.13. Normal-
ization follows Ky, = K1/(0g/ma) for tension, and for torsion, Ky, = K11/ (xo/7a), where
19=2Ta/(nb%).

loading source result % difference
infinite body [103] 0.6366 —
finite cylinder [21] 0.6366 0.00
interaction integral _
(straight edges) 0.6299 1.05
tension from J-integral _
K, (straight edges) 0.6309 0.90
interaction integral 0.6316 ~0.79
(curved edges) ’ ’
from J-integral 0.6348 —0.98
(curved edges) ) )
infinite body [103] 0.4244 —
finite cylinder [21] 0.4244 0.00
interaction integral
(straight edges) 0.4268 +0.57
torsion from oJ-integral
K, (straight edges) 0.4307 +1.48
interaction integral 0.4194 _118
(curved edges) ’ )
from J-integral 0.4298 —0.38

(curved edges)

3.7.2 An infinite solid with a flat penny-shaped crack under torsion

The meshes employed in Section 3.7.1 also enable computation of mode-III stress inten-
sity factors for cracks in a homogeneous cylinder under torsion. Boundary conditions
for torsion loading include nodal loads and one fixed node at each end of the cylinder
(see Fig. 3.13(a)). Assignment of a high Young’s modulus to the layer of elements at both
ends of the cylinder ensures a uniform distribution of torsional stresses. Other regions
of the mesh have a Young’s modulus of 30,000 and a Poisson’s ratio of 0.3. We again re-
port stress intensity factor values obtained from the average of domains two through
five.

Table 3.3 shows good agreement between stress intensity factors obtained from the
interaction integral, theJ-integral, analytical solutions for an infinite body and asymp-
totic expressions for afinite cylinder. An expression for the mode-III stressintensity fac-
tor along a penny-shaped crack of radius a, in a finite homogeneous cylinder of radius
b=D/2, loaded in torsion is [21]
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3/2 /(1 —
Ky = 8Ta" /1 - a/b) (1 +la 302, 5a° 93a%, 0.0389—5) , (88)
373/2(p — af) 2b  8p2  16p3 128p4 b5
where T is total torque. When the crack size shrinks to zero, i.e. ¢/b—0, this expression
reduces to '
4 2T

For torque T applied to an uncracked cylinder of radius b=D/2, the quantity
7o =2Ta/nb* equals the magnitude of the linearly-varying shear stress, 7, at distance
r=a from the longitudinal axis. For the perturbed problem, in which loading conditions
consist of crack-face tractions rather than far-field loads, r = 2Tr /7b* defines the linear-
ly-varying shear tractions applied to the crack faces between r=0 and r=a. For a lin-
early-varying traction applied on the crack face to generate torsional loading (magni-
tude 7, at a), the stress intensity factor for a penny-shaped crack in an infinite body is

[103]

Ky = 5=7o/7a. (90)

Normalization of Ky follows

91)

As Table 3.3 shows, the stress intensity factor computed from the interaction inte-
gral is slightly more accurate when the model crack front has straight elements, but
computations from the J-integral improve in accuracy for the mesh with curved front
elements. The curvature terms omitted from the interactionintegral may play a greater
role for the torsion loading here than for the tension loading. Nevertheless, errors
introduced by approximate evaluations of the interaction-integral (that omit curvature
terms) remain less than 2% for this example.

3.8 Summary and conclusions

This work describes an interaction-integral formulation and computational procedure
applicable to compute mixed-mode, stress-intensity factors for curved 3-D cracks in ho-
mogeneous solids under remote mechanical loading and applied crack-face tractions.
The described procedures adapt readily into existing 3-D codes that utilize a domain-in-
tegral formulation to compute J-integral values. The commonly adopted, 2-D Williams
solutions for the mixed-mode, auxiliary field in the interaction integral does not satisfy
equilibrium or strain-displacement compatibility when expressed in curvilinear coordi-
nates used for curved crack fronts, thereby leading to additional terms in the interac-
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tion integral. A potentially significant contribution to the interaction-integral arises
when the otherwise traction-free crack faces have applied loads. Through numerical
solutions for several 3-D crack configurations, this work explores the significance of the
additional (curvature) terms on computed stress-intensity factors relative to the vari-
ous techniques often employed to mesh the cracked geometry (linear vs. quadratic ele-
ments, straight vs. curved elements alongthe crack front). These examples also explore
the significance on stress-intensity factors of loadings (tractions) applied directly on the
crack faces.

Evaluation of the interaction integral requires values for the auxiliary fields at in-
tegration points for elements within a domain defined at a crack-frontlocation. The sin-
gular nature of the auxiliary fields at the crack front necessitates highly accurate val-
ues for the crack tip coordinates (r,8) of the integration points—otherwise auxiliary field
values become grossly incorrect. The use of straight or curved finite elements along the
crack front dictates the choice of algorithms to compute the (r,6) values. For curved front
elements, an iterative Newton procedure, coupled with an analytical definition for the
local crack-front geometry, is often adopted. We show here that such a procedure may
introduce unacceptable errors for crack fronts modeled with straight elements, and
thus describe an alternative procedure to compute accurate values for (,8) using alocal,
orthogonal coordinate system for each straight element incident on the crack front.

The use of elements with straight edges (linear or quadratic) along the crack front,
coupled with the new procedure to compute (r,0) values at integration points, eliminates
the additional terms appearing in the interaction integral formulation for curvilinear
coordinates. Numerical evaluation of the interaction integral becomes identical to that
for an entirely straight crack front. The stress intensity factors computed here for mod-
els constructed with straight elements along curved crack fronts agree very closely with
corresponding values obtained through the J-integral and with available analytical
solutions. The use of quadratic elements (with straight edges) provides some additional
increase in the solution quality compared to an identical mesh of linear elements.

The examples here using curved (quadratic) elements along the crack front omit
terms in the interaction integral that arise from the definition of auxiliary fields in cur-
vilinear coordinates. Comparisons of computed stress-intensity factors with corre-
sponding J-integral values and with analytical solutions demonstrate that this simpler
interaction-integral method yields highly accurate values for curved cracks with rea-
sonable levels of mesh refinement that also provide accurate JJ-values.

The curvature terms appearing in the interaction integral appear to have an effect
similar to the use of higher-order interpolation functions (p-version mesh refinement).
Higher-order elements may improve the accuracy of a solution for a boundary-value
problem by representing more realistically the gradients in field quantities. Similarly,
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auxiliary-field terms that arise due to curvilinear coordinates represent a more accu-
rate description along a curved crack, and thus improve interaction integral results.
However, as normal mesh refinement reduces element size (h-version mesh refine-
ment), linear elements represent accurately the gradients present in the actual fields,
and the relative influence of curvature terms must diminish. The incorporation of cur-
vature terms in the interaction integral would appear most beneficial with coarse
meshes when reasonable mesh refinement is not a viable option. The analyses de-
scribed here demonstrate that omission of auxiliary-field and interaction-integral
terms arising from crack-front curvature simplifies the computation of interaction inte-
grals and yields accurate stress intensity factors with reasonable levels of mesh discre-
tization.

Finally, the numerical examples demonstrate clearly the strong significance of the
crack-face integral contribution for models containing loaded crack faces. The term
must be included and must be evaluated accurately. The special, exact integration pro-
cedure developed here for use with straight-sided, crack-front elements provides a sim-
ple approach to increase the accuracy of computed stress-intensity factors.
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Chapter 4

Computation of Mixed-Mode
Stress Intensity Factors

4.1 Introduction

A significant body of experimental work has been performed to observe crack behavior
in functionally-graded materials (FGMs), and numerical methods have been developed
to complement these experimental investigations, as well as to assist in the develop-
ment of engineered FGM systems [206, 168]. FGMs employed in applications such as
thermal barrier coatings, are exposed to severe stress gradients induced by thermal
and/or mechanical loading. These harsh conditions frequently lead to the formation of
surface cracks, which are a significant failure mechanism in FGM coatings [39, 178].
Many works develop numerical techniques to analyze cracks in two-dimensional (2-D)
FGM specimens [59, 124, 77,7, 31, 32, 43, 53, 109, 112, 116, 84], but few establish meth-
ods to analyze three-dimensional (3-D) fractures such as the surface crack.

Analysis capabilities and understanding of 3-D crack behavior in FGMs areimprov-
ing, however. Ozturk and Erdogan [161, 162] solve integral equations to obtain stress
intensity factors for axisymmetric cracks in infinite solids with a graded interface. Li
and Zou [129, 130] and Li et al. [131] perform axisymmetric finite-element analyses of
circumferentially-cracked FGM cylinders. They compute mode-I stress intensity fac-
tors using a displacement correlation technique (DCT) which links computed crack-face
displacements with Williams’ [221] stress-intensity-factor expressions for near-tip dis-
placements. Jin et al. [98, 99] investigate quasi-static and elastic-plastic mode-I crack
growthin 3-D FGMsusing a cohesive-zone model. Forth et al. [68] simulate mixed-mode
fatigue growth of surface cracks in FGMs using the DCT in conjunction with boundary-
element analysis. Walters et al. [212] use a form of the domain integral described by
Shih et al. [192], as well as the DCT, to compute mode-I stress intensity factors along
surface cracks in FGM plates under thermal and mechanical loading. Jin and Dodds
[96] employ the same domain integral to investigate crack-growth-resistance behavior
in 3-D FGM specimens under mode-I loading. Established methods for computing
mixed-mode stress intensity factors in 3-D FGMs currently seem limited to the DCT
[68]. The present work investigates a robust and accurate, domain-based interaction-
integral method for the computation of mixed-mode stress intensity factors along 3-D
cracks in FGMs.

Two-state interaction integrals are a powerful tool for the analysis of cracks under
mixed-mode loading [203, 34]. Interaction integrals involve numerical procedures simi-
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lar to those necessary to evaluate the J-integral [181, 226], and are a convenient and
accurate tool used widely to analyze cracks in 3-D solids [143, 48, 49, 50, 125, 217]. Cur-
vature of 3-D crack fronts and crack surfaces imposes special requirements on the inter-
action-integral formulation. By including curvature effects, Nahta and Moran [142],
Goszet al. [74] and Gosz and Moran [75] develop formulations of the interaction integral
for axisymmetric cracks, curved 3-D interface cracks and non-planar 3-D cracks, re-
spectively. Dolbow and Gosz [75] extend the interaction-integral technique to FGMs by
including additional terms to incorporate material gradients. Their work and subse-
quent studies employ interaction integrals to analyze cracks in 2-D FGMs [179,
113-116]. The present work extends existing capabilities to assess the significance of
crack-like defects in FGMs by investigating the interaction-integral method as a tool
for computing mixed-mode stress intensity factors along curved, planar 3-D cracks in
graded solids under mechanical loading.

The organization of remaining sections is as follows: Section 4.2 presents the do-
main integral that underlies current FGM interaction-integral formulations including
the one employed in this study. Section 4.3 reviews the interaction-integral procedure
for quasi-static, mechanical loading of FGMs, and Section 4.4 describes related numeri-
cal procedures. Section 4.5 demonstrates the accuracy of interaction-integral computa-
tions for 3-D FGMs through analyses of cracks in thin specimens under mixed-mode,
in-plane loading, and of fully 3-D specimens with cracksloaded in all three modes. Some
observations and inferences conclude the work in Section 4.6.

4.2 A domain integral for 3-D cracks in FGMs

Shih et al. [192] develop the domain-integral method as a convenient, numerical proce-
dure to evaluate the J-integral [181] for 3-D crack fronts. Because the domain integral
procedure underlies the interaction integral method employed here, this section re-
views key details of the derivation as found in Shih et al. [192].

An expression for the J-integral at location s along a 3-D crack front is [192]
J(s) = im [ (Woy; — oy n, dT, (92)
r

where Wis strain energy density, o, represents stress components, u; denotes displace-
ment components, and 0, is the Kronecker delta. Latin subscripts range from 1to 3, and
unless otherwise noted, repeated indices imply summation. The partial derivative
(+),;=0(+)/8X; indicates the spatial derivative of (- ) with respect to direction X of the
coordinate system defined at crack front position s. The contour I' with normal # lies
inthe X,- X, plane and extends from the bottom crack face to the top crack face as shown
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in Fig. 2.3. Equation (92) remains path-independent for elastic material behaviorin the
absence of body forces, crack-face tractions and thermal strains, and equals the stan-
dard J-integral [181] when the contour of integration shrinks to the crack front, i.e.

r—0%.

Shih et al. [192] integrate Eq. (92) along a crack-front segment of length L, illus-
trated in Fig. 2.4. This yields an expression for J(s), the approximate energy released
when crack segment L¢ advances by a prescribed X -displacement I(s), drawn schemat-
ically in Fig. 2.4

S,
Figure 4.1 shows the tubular surface S; obtained by sweeping contour I'(s) along the
crack front through distance L. On I'(s) and S;, m = -n as shown in Fig. 2.3. For nonho-
mogeneous materials and general loading conditions, Eq. (93) is valid only when the ra-
dius r of surface S; shrinks to zero.

To transform Eq. (93) into a volume integral for convenient numerical evaluation,
Shih et al. (1986) construct a simply-connected volume, V, enclosed by surfacesS*,S ™,
S1, St, So, and S3, shown in Fig. 4.1. They then define a continuous, vector-valued func-
tion g that varies within V according to

I(s) on S,
qk = 0 on 81,82,83,
arbitrary elsewhere. (94)

In the local crack-front coordinate system, X;, g3 =0 everywhere. Hereafter, we define
qr =q1=¢q, and employ a plateau function for q (Shih et al., 1986). With these definitions
of ¢ and with surface S defined as S=8* +8~ + 81— 8; + S+ S3, Eq. (93) becomes

1

- f (o1 — W3y, )gm,dS — J (0,1 — Wiy )qm,dS,  (95)
s S++8-

where the g-function eliminates the integrals over surfaces Si, Sg, and S3. An applica-
tion of the divergence theorem to the first integral in Eq. (95) yields a volume integral:

(o511 — Woy;),,qdV . 96)

\4

v

Forhomogeneous materialsunder elastic, quasi-static, isothermal loading with no body
forces, the second integral in Eq. (96) vanishes. For flat cracks lying in the X;-X3 plane,
mi1=mg=0onsurfaces ST and S, respectively, and since t;=0,m; Eq. (95) becomes
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Crack front

Fig. 4.1. Surfaces enclosing volume domain for computation of I(s) at location s=56
along a curved crack front. For functionally-graded material, S; must shrink
to the crack front, i.e. r—0%,

J tu;,1qdS . 97
S*+8-

Hence the energy release rate at location s equals

T(s) = f (0471 — Woy)q,,dV + [ (o041 — Woy,),,qdV
Vv Vv

S++8-

Through the definition of W, Eq. (98) accounts for elastic, thermomechanical loading of
FGMs, and remains path-independent when loading conditions do not include body
forces orinertia. If the energy release rate varieslittle along crack segment L¢, J(s) may
be approximated by [192]

Js) = —J€) 99)

I I(s)ds
L

C
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The energy release rate for cracks in 3-D specimens corresponds approximately to
stress intensity factors for opening, sliding and anti-plane modes, (K7, K11 and Kiy, re-
spectively) according to

K2 + K2

) = Lo H 1 ;;(g)(s) K%, (100)
where E'(s)=E(s)/(1-v(s)?) for plane-strain, and E"(s)=E(s) for plane-stress. For
FGMs, this expression requires material properties at crack-front location s, i.e. the
asymptotic behavior of crack-front fields is identical in homogeneous and nonhomoge-
neous materials [59]. Walters, et al. [212] employ Eqgs. (98)-(130) to calculate stress in-
tensity factors along semi-elliptical surface cracks with traction-free faces in 3-D FGM
specimens under mode-I thermomechanical loading. Nikishkov and Atluri [152] dem-
onstrate how to decompose J(s) into three orthogonal components, enabling calculation
of the three stress intensity factor components. The domain form of the interaction inte-
gral employs Eqgs. (98)-(130) to directly determine the stress intensity factors.

4.3 An interaction integral for 3-D cracks in FGMs

Interaction-integral procedures generally are performed as a post-processing step after
the solution of a boundary-value problem. The method typically requires the superposi-
tion of actual, computed equilibrium fields, with corresponding fields from an auxiliary
equilibrium state selected by the analyst. Evaluation of a conservation integral for this
superimposed state leads to expressions that comprise interacting actual and auxiliary
terms. Interaction integrals have been developed from Betti’s reciprocal theorem [203]
theJ-integral [34], and the L- and M-integrals of Knowles and Sternberg [122, 38, 106].
The present section describes an interaction-integral procedure to compute stress in-
tensity factors along cracks in 3-D FGMs under mechanical loading, and discusses
termsthat arise due tomaterial nonhomogeneity and crack-front curvature. We discuss
three formulations that account for material gradient effects, the asymptotic behavior
of the integrals, and the computational procedure to obtain stress intensity factors.

4.3.1 A domain integral for two superimposed equilibrium states

The interaction integral method constitutes a post-processing step that utilizes the
stresses, strains and displacements generated during the solution of a boundary-value
problem. We refer to numerically-calculated quantities as actual fields. By superimpos-
ing actual fields with auxiliary fields corresponding to a second, arbitrary equilibrium
state, we obtain fields for the superimposed state. For this superimposed state, Eq. (98)
becomes
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T = I [(ay + 0wy, + ) - W(S)éli]q,idv
14

+ j (o + 0510 + ) - W, qdv
\4

- J (t + &) (0 + i )ads . (101)
S*++S-

Here, superscripts (1) and (2) indicate actual and auxiliary fields, respectively, and (S)
denotes the superimposed state. We must now examine the strain energy density for the
superimposed state, W, to separate Eq. (101) into useful components.

The strain energy density, W, is a function of position x = (x;,x,,x3), and a function
of strain components ¢;. For a linear-elastic, nonhomogeneous material, W is

WS(x) = %(aij + 0;“’“)(8” + sg;.”")

— 1 1 Uux aux 1 aux Qux
=50, a“ t3 (oyay + 0% J)
=W + We= 4+ W | (102)
where W is
1 aux aux
WO = Loy ez + o2 ey ) (103)

4.3.2 The interaction integral

Equation (102) permits the separation of Eq. (101) into three parts:

T = Js) + T + Is), (104)

where f S)(s) becomes the domain integral for the superimposed state, J(s) equals Eq.
(98), the domain integral for the actual state, J"“(s) is the domain integral for the auxil-
iary state, and I(s) is the domain form of the interaction integral, written as

K7 _1
14
+ j [ayuj","l" + 05U, ;( Jke‘“‘" + a ejk)éu},lqu
\%

- J (tj o + g j,l)qu. (105)
S*+85-

For quasi-static, isothermal loading of homogeneous specimens in the absence of body
forces and crack-face tractions, the second and third integrals of Eq. (105) vanish. Be-
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cause auxiliary fields correspond to an arbitrary equilibrium state, Eq. (105) simplifies
with the assumption that the auxiliary state includes no crack-face tractions. The sur-
face integral in Eq. (105) thus becomes

j t;usirqdsS . (106)
S++8-

Equation (106) defines the term apparently neglected in earlier works, as discussed in
Section 4.3.1. We now discuss choices for auxiliary fields that lead to the calculation of
stress intensity factors.

4.3.3 Auxiliary fields

A common approach to introduce stress intensity factors into the interaction integral
is to define auxiliary fields according to the asymptotic fields near a crack [221]:

qux Koux Kaux
aux I I II_rll I ,III
o = L) + 1) + —=—FI@g) 107
T O T
aux Koaux
aux _ __1 AP | 1§ r 1
= Sam y o8 OV F 5y 2n8 O
2K
(7
+ = g 0.0, (108)
e = 3 (ug + uge) (109)

where r and 6 are polar coordinates measured from the crack front, and u(s) and v(s) are
respectively the shear-modulus and Poisson-ratio values at erack front location s. For
convenience, Appendix E supplies expressions for the angular functions f;;(8) and the
plane-stress and plane-strain forms for g;(6, v(s)). Eischen [59] proves that the asymp-
totic crack-tip fields in homogeneous and graded materials are identical in form, which
means that Eqs. (107)-(109) are valid for FGMs. Anlas et al. [8] study the zone of domi-
nance of these expressions in FGMs.

These 2-D auxiliary fields are a function of location r and 8, and shear modulus u.
Nakamura and Parks [144] and Gosz et al. [74] use these fields to analyze cracks in 3-D
solids by assuming that near-plane-strain conditions exist near the crack front. Their
accurate results for stress intensity factors demonstrate the adequacy of this approxi-
mation. Kim et al. [106] demonstrate the use of numerically-generated auxiliary fields
to obtain stress intensity factors. Near-tip fields in homogeneous and graded materials
exhibit similar asymptotic behavior [59], and therefore Egs. (107)-(108) are useful aux-
iliary fields for FGMs. For FGMs, the displacements in Eq. (108) depend upon the value
of the shear modulus at crack-front location s:

E(s)

M(S) = m . (110)
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4.3.4 Constant constitutive tensor interaction-integral formulation

Auxiliary fields defined by Eqgs. (107)-(109) satisfy equilibrium, compatibility, and
constitutive relations at crack-frontlocation s where the asymptotic functions maintain
validity for both homogeneous and graded material. A constant constitutive tensor, em-
ploying material properties at crack-front location s in the FGM specimen, relates auxil-
iary stresses and strainsats as 05T = C ik l(s)s;."". Ifthe auxiliary fields follow this consti-
tutive relation, they represent equilibrium in a homogeneous material with properties
described everywhere by u(s). Actual fields, however, represent equilibrium in a materi-
al with spatially-varying properties described by u(x). This is apparent from Eq. (102)
written in terms of the constitutive tensors:

WS = W+ wes + W

= HCyu@eye, + Coylolegiess + Cpy@eyed + Cuyley) (111)

With the auxiliary fields described above, Eq. (105) becomes

14
1 aux ux 1 aux
+ f [2( + o) = §ogacy + Uij‘i’i%)]qdv
v

- j t, usqds . (112)
St+8-

In Eq. (112), the Tyt and 03U, terms cancel due to equilibrium, and other terms
combine because oyuf;=0,e7] and 05U,y —a‘;“xey,l All terms in Eq. (112) corre-
spond to the expressions in Egs. (107)-(109) and their derivatives, and material-proper-
ty values at crack-front location s. Standard finite-element procedures enable numeri-
cal calculation of actual stress and strain derivatives [41]. Rao and Rahman [179]
employ Eq. (112) to calculate stress intensity factors for cracks in 2-D FGMs under re-
mote mechanical loading, and we adopt the nomenclature of Kim and Paulino [115] who
describe Eq. (112) and its associated auxiliary fields as the “constant constitutive ten-
sor” formulation.

4.3.5 Non-equilibrium interaction-integral formulation

Another choice for auxiliary fields includes displacements and strains defined accord-
ing to Egs. (108)-(109), and stresses derived from the FGM constitutive tensor (see Ap-
pendix E):

05" = Cym@eRi” s (113)
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so that

Uxr — . —
ij,i—O cx =0

o =2 x# 0.

i

(114)

Atx =s, material properties for the FGM are valid for use in the auxiliary fields of Egs.
(107)-(109). Kim and Paulino [115] refer to the interaction integral based on this choice
of auxiliary fields as the “non-equilibrium” formulation. Equation (113) leads to the use-
ful relationship

ay_gg]yx = Cy‘kl(x)sklé‘z-ux = Cklij(x)eg'uxekl = (Tzuxé‘ij s (115)

where the same constitutive tensor, C
(2-D) fields (see Appendix E):

ijkl(x), operates on both actual (3-D) and auxiliary
0y = Cyj)ey and o7 = Cyplders . (116)
Equation (64) enables the expression of Eq. (103) as

W = g g0 = 0%y 117

iy

Either expression for Wlin Eq. (117) is suitable for numerical evaluation, and each may
be used to verify the other. With auxiliary fields defined according to Egs. (108), (109)
and (113), Eq. (105) becomes

16 = | (o + o = apeidu)anav
\ %

aux Uux Ux — aux ___ aux
+[ (Oijuj,li+ Gl T O, — 0y E 0;:& )qu

Yyl
- j t; uliyqds . (118)
S+4+8-
Here, we employ Eq. (117), and eliminate ;; T due to equilibrium of actual stresses.
The definition of auxiliary stresses in Eq. (113) implies that in general, 6%“u. ., z0. To

avoid calculating numerical derivatives of strain and stress in the secondyi,;tg;'ral, we
may rewrite the stress-derivative term as
018y = Cyppr @Iege ™ + Crpadey, 1877
= Cippry @y el™ + Cpyia)e ey
= Cippy @eed™ + 0f %y, . (119)

When these expressions combine with Eq. (118), the result becomes
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Is) = f (ogusts + o%ouy — 020y, )a, AV
A%

+ [ {‘71,;“],1 Cint (x)gkla‘i;“x}qdv
v

_ J t,uqds (120)
S+ +S‘

where the relationships o;uf7; = 0yei] and o3"u;, ;= 03 LJ,1 eliminate some terms.
Because Eq. (113) generates non-equilibrating aux111ary stresses remote from the crack
front, o7u;, is nonvanishing, and we have 037 = Cyp,; @i + Cyypy(a)e]. In Eq.
(120), auxiliary displacements and strains employ material propertles at crack-front
location s. Eq. (120) contains fewer terms than Eq. (118), and does not include deriva-
tives of actual stresses or strains. Kim and Paulino [115] employ Eq. (120) to calculate
stress intensity factors for cracks in 2-D plane-stress and plane-strain problems with

remote mechanical loading.

4.3.6 Incompatibility interaction-integral formulation

The two forms of the interaction integral discussed previously include the effects of
FGM properties through assumptions regarding constitutive relations or stress equilib-
rium. The interaction integral for FGMs originally proposed by Dolbow and Gosz [75]
accounts for material gradients through the definition of auxiliary strain. Strains de-
fined by Eq. (109) are compatibile with displacements described by Eq. (108). In what
Kim and Paulino [115] refer to as the “incompatibility formulation,” however, auxiliary
strains depend upon auxiliary stresses defined by Eq. (107) and the spatially-varying
compliance tensor (see Appendix E):

ey = Syu®oy", (121)

Auxiliary stressesin Eq. (107) satisfy equilibrium, but strain-displacement compatibil-
ity is satisfied only when material properties correspond to crack-front location s. At s,

18)057=0.6(u,,; + u;,y), but for ¥ = s,

aux
therefore, & i it Upds

Uk

£ = S )on = 2w + ul) (122)

This incompatibility causes additional terms to appear in the interaction-integral for-
mulation because
oy uss — eg) = 0. (123)

The relationships expressed in Egs. (64), (116) and (117) remain valid for this formula-
tion, and Eq. (105) becomes
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I(s) = [ (oijuj‘.‘,“f + crl‘?j“"uj,l - jkej‘-’,;‘x 61i)q,idV
\%

+ j (o‘--u‘."‘" + 0%
%

— aux ___ aux
ROk e T 0y O£ )qu

i YUl

- [ tusiyqds . (124)
S+48-

aux — UX.
i1 = Oinitkjs1

um. Eq. (65) enables the removal of derivatives of actual stresses and strains from Eq.
(124), yielding

Here, o =0 because actual and auxiliary stress fields satisfy equilibri-

Its) = j (aijuj’uf +OG i ajksffxali)q’idv
v
+ J ["ij(”}’f‘ﬁ - e) - Cijkl,l(x)ekls‘l?}”"]qu
v

— J tjulvqdS, (125)
S++8-

where the relations ojuff = 0,257 and 03“u;,,; = 03¢5, again simplify the expres-

sion. The term aij(uj‘?j‘fi - eg;.‘j’i) results directly from the incompatibility between auxilia-
ry strains and displacements, and the second integral of Eq. (128) vanishes for homoge-
neous material. Auxiliary displacements in this formulation require material

properties at crack-front location s. Derivatives of auxiliary strain follow as
eg1 = Syt @G + Sy @y (126)

where Eq. (107) defines auxiliary stresses.

Dolbow and Gosz [53], Rao and Rahman [179] and Kim and Paulino [114] employ
Eq. (128) to calculate stress intensity factors for cracks in 2-D FGM geometries under
remote mechanical loading. Kim and Paulino also employ this formulation to calculate
stressintensity factors for cracksin orthotropic FGMs [113]. The current study also em-
ploys Eq. (128) for numerical implementation.

4.8.7 Influence of crack-front curvature on the interaction integral

Computation r- and -values for the 2-D auxiliary fields in Egs. (107)-(109) occurs in
planes orthogonal to the crack front. For curved cracks, auxiliary fields must therefore
be defined in curvilinear coordinates. Nahta and Moran [142] cbserve thatin a curvilin-
ear coordinate system, the 2-D auxiliary fields described by Williams’ [221] solution, do
not satisfy strain-displacement compatibility or stress equilibrium. Therefore,
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aij(uj‘?,"fi - e;‘:’{) = 0, and a’;‘j’f =0, 127

For curved cracks, these non-vanishing terms appear in the interaction integral, and
some auxiliary-field gradients also become non-zero (see [74]). Thus both crack-front
curvature and material nonhomogeneity bear similar influences on interaction-inte-
gral expressions. However, crack-front curvature requires the interaction integral toin-
clude both expressions in Eq. (127), whereas for two of the previously described interac-
tion-integral formulations for FGMs, material nonhomogeneity requires either the
expression in Eq. (113) or that in Eq. (123).

4.3.8 An interaction integral for curved 3-D cracks in FGMs

Here, we will employ the incompatibility formulation toincorporate material gradients
into the interaction-integral formulation. By combining the effects of both material non-
homogeneity and curvature as discussed previously, Eq. (105) may be expressed as

I(s) = J <Gljuj"j’i" + 05U, — ajkej‘.‘,;‘xél,-)q,idV
v

aux X ux
* j [Gij(ujali Zu’l) + aZn 1 ijkz,l(x)ekls;;“x]qdv
v

- I t uqdA (128)
St45-

where equilibrium of actual stresses causes oy;,u?T to vanish. For straight, traction-
free cracks in homogeneous material, the second and third integrals of Eq. (128) vanish.
For straight, traction-free cracks in FGMs, the third integral and the underlined terms
in the second integral vanish, and Eq. (128) reduces to the interaction integral proposed
by Dolbow and Gosz [53]. Kim [108] and Paulino and Kim [169] prove the existence of
the interaction integral for FGMs by demonstrating that the second integral in Eq.
(128) vanishes in the limit as the domain size shrinks to zero. A point-wise value of the

interaction integral along a 3-D crack front follows from the procedure in Eq. (99), i.e.

I(s) _

[ g(s)ds
L

c

I(s) = (129)

4.3.9 Extraction of stress intensity factors

As a function of the mixed-mode stress intensity factors K, Ky and Ky, the energy
release rate may be expressed as [6]

K2+ K2
_ A 1+ 1(s)
J6) = et + S P K (130)
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where E*(s) = E(s)/(1 -v(s)?) for plane-strain, and E"(s) = E(s) for plane-stress condi-
tions. For FGMs, this expression requires material properties at crack-front location,
s. From Eq. (130), superposition of actual and auxiliary states gives

2 2
) = E()[(KI K)o+ (K + K‘ﬁ"‘)] S+ K

= J(8) + J™(s) + I(s),

where

I(s) = ) 1+ v(s)

2K K@ + 2K K® )

E* ( ) ( (ZKIIIK?ﬁx ) . (131)

Equations (128), (129) and (131) provide the necessary relationship between the inter-
action integral and actual stress intensity factors. By alternately assigning a non-zero
value to only one auxiliary stress intensity factor, Eq. (131) yields

E*(S)

Ks) = Z216) , Kyls) = L216), amd Kiyo) = wo)l9).  (132)

4.3.10 Behavior of volume and area integrals

The singular auxiliary fields in Eq. (128) govern the existence of the integrals as the
domain size shrinks to zero. For volume integrals, we consider a cylindrical domain and
first examine a representative term in the first integral of Eq. (128) for a constant value
of g,i :

lim J oulg, AV = J OG04~y drdf dz ~ J drdédz = 0. (133)
\ v

r—0

The behavior of the first two terms in the second integral of Eq. (128) can be observed
by rewriting Eq. (126) as follows [108]:

62 = Syun @R + (Syu®) — Syy®) Jor + Sy@ots . (134)

According to the definitions of auxiliary stress and displacement used

in the incompatibility formulation, S (s)o%]=0.5@;]+u’), and therefore

oWy — Syr(8)og;y) = 0. An expression for the first two terms of the second integral in
Eq (128) is then

g, ( J:ll - 81]:1) GU[ ijkl,l(x)gzlfx - (Sykl(x) - Si]'kl(s))azlffl] . (]_35)

Asymptotic fields in homogeneous and functionally graded material have the same
form when the functions describing material-property variations are bounded, continu-
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ous and differentiable. Material property variation in this case may be described by a
Maclaurin series expansion about crack-front position s (=0) [569]:

2
S = Sy(r,0,2) = Sijkl(s)(l + r8%,(0,2) + 5-8%,0,2) + 0¢?) +) , (136)

where Sgkl(G, z) and Sgkl(G, 2) are bounded, continuous and differentiable functions of
6 and 2. This definition of the compliance tensor implies that S, @) =0@P), where
B=0,and (S, *) — S;;,(s)) ~O@?), wherey = 1. In the limit as domain size r approaches
zero, for a constant g-value, f=0, and y =1, the second integral of Eq. (128) behaves as

r—0

limf [akl(u;’uxll - 82}'?’{) - Cijkzq(x)ekle;“"]qu,
- f {o(,~1/z)[0(r-1/ 2) + 0033 + 0C~1H0¢~12) }q rdrdfdz,
v

== [ drdfdz = 0. (137)
v

The integrands of the first two integrals in Eq. (128) are therefore well-behaved.

Integration over the surface of an element adjacent to a crack front enables us to
observe the behavior of the surface-traction integral in Eq. (128). Values of K7**=1.0,
t5=1.0 and g(r,2) = 1.0 correspond to a mode-I crack-opening surface pressure, and lead
to an integrable, inverse square-root singularity:

z r
lim [ tiusqdS = [ [ + ’-‘-/(-_ii—) drdz = O(/2) = 0, (138)
s 0Jo

where the sign of the integrand depends upon the sign of usy at 0= t . All terms in
Eq. (138) are independent of the solution to the boundary-value problem because crack-
face tractions, auxiliary-displacement derivatives, g-values and the domain of integra-
tion are defined a-priori by the user. Section 3.4.3 describes a simple transformation
that enables standard Gauss quadrature procedures to integrate exactly the surface-
traction term which generally contains an inverse-square root singularity in elements
adjacent to the crack.

4.4 Numerical aspects

Evaluation of the interaction integral usingthe finite-element method employs numeri-
cal techniques similar to those used to solve the boundary-value problem. This section
provides a description of some relevant procedures. All computations in this study uti-
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lize WARP3D, afreely-distributed, open-source finite-element code with extensive frac-
ture-analysis capabilities, developed at the University of Illinois at Urbana-Cham-
paign [78].

4.4.1 Numerical evaluation of volume and surface integrals

In a finite-element context, standard Gauss quadrature procedures permit the evalua-
tion of Eq. (128) (e.g. [41]):

B elems 8pts

I(s) = z Z[(Uyu;:‘f + o"‘“x ajksj?,;"‘éli)q,idetJ] wp

V p "
elems gpts
+ Z Z{[Uﬁ(ujﬂz - gyy]_) + O'Zu 0 ijkl’l(x)sklgz'ux]q detJ} wp

V p )

faces gpts
- Z Z(t uauquetJ) wp , (139)

where the summations 1nclude all integration points on the interior or on the face of ele-
ments included in volume V. Weight w, scales the function at each integration point,
and det J represents the determinant of the coordinate Jacobian for 2-D surface or 3-D
volume coordinates. In this study, the g-function follows the plateau variation described
by Shih et al. [192], and varies from zero on surfaces Ay, Ao and As, to 1.0 at crack-front
positionson A; (see Fig. 4.1). Quadrature over element volumes employs a 2 X 2 X 2 rule.
The surface integral in Eq. (128) has an inverse-square-root singularity and comprises
only terms defined a-priori by the analyst. For elements with straight edges, we com-
pute this integral exactly, according to the simple procedure described by Walters et al.
(2004b). For elements with curved edges, we employ standard 4 X 4 Gauss quadrature.

4.4.2 Computation of material-property derivatives

Numerical evaluation of Eq. (139) requires derivatives at element integration points of
the compliance- and constitutive-tensor components. We interpolate specified nodal
material properties E(x) andv(x) and compute their X;-derivatives at integration points
using standard isoparametric interpolation (e.g. [132, 110]):

r 3, 0N, 8
EBay = 3 NAE®),; , E@),y)p = Z e Ee), (40
I=1 I=1k= 1
oN; on,,

@), = }:N,(v(x»,, and (@),;) = Z 2 0@), (141

617 aX

where (E(x)), and (v(x)), denote material properties at integration points, n is the num-
ber of element nodes, (E(x)); and (v(x)); are material properties at node 7, Ny is the ele-
ment shape function for node I evaluated at integration point p, and , are parent coor-
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integration
point

crack front

X1-X3plane =

crack plane crack-front element ~element edge
with collapsed face

Fig. 4.2. Computation of r and 6 for an integration point in a domain of four straight-
edged elements. I(s) values lead to stress intensity factors at crack-front loca-
tion s.

dinates. Integration-point values of E(x),1 and v(x),1 enable the direct computation of
constitutive-tensor derivatives as

9C 31y (%) 3C /%)

Com®r1 = —payE@,, + — v,y (142)

where the quantities 4(-)/E(x) and a(-)/v(x) denote explicit derivatives of () with re-
spect to E(x) and v(x). The same process yields Sz (%),;.

4.4.3 Computation of r and 6 for auxiliary fields

Auxiliary stresses and strains of order OG-~ 1/2) are extremely sensitive to small errors
in 7 when r is small. It is therefore important to compute - and #-values in curvilinear
coordinates. Gosz et al. [74] and Gosz and Moran [75] provide thorough details for this
procedure. For curved cracks discretized by finite elements with straight edges, it is
more appropriate to compute r and 8 using local Cartesian coordinates defined on each
segment of the crack-front, as illustrated in Fig. 4.2 and described with more detail in
Walters et al. [213].
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4.5 Numerical examples

This section presents examples that include the computation of mode-I and mode-II
stress intensity factors in thin, 3-D FGM specimens under in-plane loading, as well ag
in fully 3-D configurations.

4.5.1 Boundary-layer model (homogeneous material)

A boundary-layer model enables verification of the current interaction integral imple-
mentation for cracks in homogeneous media. Here, discretization of a thin circular disk
of radius R consists of one layer of 20-noded hexagonal elements. The ratio of thickness
t to model radius, R, is £/R =0.018 (see Fig. 4.3). Elements form 36 “sectors” in the cir-
cumferential direction, and 43 concentric “rings” around the crack front. Thirty-six ele-
ments with collapsed faces and quarter-point nodes surround the crack front. Displace-
ment boundary conditions corresponding to William’s solution (Egs. (A7)-(A9)) induce
pure mode-I, mode-II and mode-III conditions in three separate analyses. For pure
mode-Iloading, nodes at the model boundary (at distance R from the crack front) under-
go imposed displacements u and ug, as defined in Eqgs. (A7)-(A8) where Kj equals an
assigned value, and K77 = 0. Similarly, Egs. (A7)-(A8) produce boundary displacements
u1 and ug for pure mode-II loading when Ky equals an assigned value, and K1=0. Use
of plane-stress auxiliary fields (Appendix A) in the interaction integral yields stress in-
tensity factors for the plane-stress state. For plane-strain conditions, we assign ug =0
everywhere and employ the plane-strain auxiliary fields to obtain stress intensity fac-
tors from the interaction integral. Pure mode-III loading results from the assignment
of displacements u) =0, ug =0 to all nodes in the model, where Eq. (A9) defines ug for
an assigned value of Kyy1. Displacements of all nodes in the model according to nonzero
values of Kj, K11 and Kiyg test the fully mixed-mode case.

Evaluation of the interaction integral for the cases described above, i.e. modes I and
I1for plane stress and plane strain, and anti-plane shear for mode I11, yield stressinten-
sity factors that match to within four or more digits the stress intensity factors used to
generate displacement loading conditions. These results verify the correct implementa-
tion of the first integral in Eq. (128) for analyses of 3-D homogeneous solids with cracks
under plane and anti-plane loading. Shim et al. [193] develop a novel boundary-layer
technique that permits verification of numerically-computed stress intensity factors,
but here, we employ results from numerical studies in the literature. We now examine
a problem to verify the second integral of Eq. (128) that includes effects of material non-
homogeneity.

4.5.2 3-D analyses simulating plane-stress and plane-strain conditions

The interaction-integral procedure enables computation of stress intensity factors in
thin 3-D configurations under in-plane loading (e.g. [220, 145]). Analyses of a middle-
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Fig. 4.3. Boundary-layer model used to verify correct calculation of stress intensity
factorsin a cracked homogeneous solid under plane (modes I-II, plane-stress,
plane-strain) and anti-plane (mode-III) deformations. Dimension
t/R=0.018. Mesh has 11,054 nodes and 1548 20-noded hexagonal elements
arranged in 36 circumferential sectors and 43 rings in the radial direction.
36 collapsed elements with quarter-point nodes surround the crack front.

crack tension specimen with an inclined crack permit useful observations regarding the
simulation of plane-stress and plane-strain conditions with 3-D FGM models. Figure
4.4(a) shows the 3-D mesh with a crack inclined at 36°, used to model this problem. A
study of mesh-refinement levels for domain-integral computations in 2-D FGMs is
found in Kim and Paulino [115]. In the present model, twenty elements with collapsed
faces and quarter-point nodes surround the crack front as shown in Fig. 4.4(b). Length
L, indicates the size of the element adjacent to the crack front, and dimension Rp de-
scribes the radius of a domain of elements that surround the crack front. Model height
H, width W, and thickness ¢, have values relative to crack length 2a given by
H=W=20a, and ¢t =0.125qa. Crack-front elements are of size L,/a =0.0177. In this ex-
ample, Young’s modulus varies in the x-direction as E(x) =E0eﬁx, where Eg=FE(x=0),
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(a)

Fig. 4.4. (a) Mesh for fixed-grip displacement of a specimen with a crack inclined
at 36° (see Table 4.1). Distance between crack fronts=2qa. (b) 20 collapsed
crack-front elements of size L, /a=0.0177 surround each crack front. Ratio
Rp/a describes domain size in this work.

Pfa=0.5 and v=0.3. For loading, all nodes along y=H have an imposed displacement
A =Hzeg, where ¢ is an assigned strain value. For plane-stress simulations, the model
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permits through-thickness deformations. Constrained through-thickness displace-
ments impose plane-strain conditions.

For simulated plane-stress conditions, the model employed here generates non-zero
through-thickness stresses, 034, when v =0, Williams’ [221] solution for plane-stress
conditions leads to a non-zero value for the gradient of through-thickness strain:

#5551 -[ P (o + a%%x)],l = 0. (143)
Consequently, the product 043254, appearing in the second integral of Eq. (128)
introduces error into computed stress intensity factors for simulated plane-stress con-
ditions. Two analyses demonstrate the magnitude of this error. The first analysis allows
non-zero ogs-values caused by through-thickness Poisson contraction, and for the sec-
ond analysis, 033¢54:; =0. Table 4.1 lists normalized stress intensity factors computed
for the left and right crack fronts in this model. Normalization of stressintensity factors
follows

K,=—X__. (144)
Eyeqyna

When 043557, =0, computed stress intensity factors compare well with those of Konda
and Erdogan [124], Dolbow and Gosz [53], Kim and Paulino [115] and Dong and Paulino
[64]. These results recommend assigning a zero value to the product o35¢5%%; when Eq.
(128) is used for 3-D simulations of plane-stress configurations. Alternative formula-
tions of the interaction integral for FGMs may not require such a modification (see e.g.
[179, 169]). An analysis of the current model for plane-strain conditions leads to com-
puted stress intensity factors that match closely the results obtained by Dong and Pau-
lino [54] (see Table 4.1).

The interaction integral formulation incorporates material nonhomogeneity
through the second integral of Eq. (128). Figure 4.5(a)-(b) illustrate the influence of the
components of this integral on computed stress intensity factors for this 2-D problem.
The plots show relative contributions to computed values of I(s) from the various compo-
nents of Eq. (128), for each of the domains surrounding the right crack tip. In the figure,
Eq. (128) is separated into the following components:

I = ] (ayuj“,"f + 0%y, ajkaj‘.‘,;‘xéli)q,idV (145)
14

I, = [ 05wt — e Jadv (146)
14
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Fig. 4.5. Relative contribution of interaction-integral terms vs. increasing domain
size for (a) Ky and (b) Ky for an inclined crack in an exponentially-graded
M(T) specimen under plane-strain, fixed-grip loading.
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Influence of the second integral in Eq. (128) (I3 +I3) increases with domain size, thus
maintaining the path independence of I(s). Percentages shown on the right of each plot
indicate the relative contribution to values of I(s) from domain-integral components for
the domain of size Bp/a = 1.0. These 2-D examples demonstrate the accuracy of 3-D in-
teraction-integral computations for thin FGM specimens.

Table 4.1. Normalized stress intensity factors for in-plane displacement loading of a
plate with a through crack inclined at 36° (see Fig. 4.4).

analysis source Ky, left Ky, right Kiy, left  Kiy, right
Konda & Erdogan [124] 0.460 0.925 -0.365 -0.548
present 0.446 0.902 -0.367 -0.556
plane present modified” 0.457 0.922 -0.362 -0.551
stress  Dolbow & Gosz [53] 0.467 0.930 -0.364 -0.560
Kim & Paulino [115] 0.456 0.922 -0.362 -0.551
Dong & Paulino [54] 0.457 0.923 -0.363 -0.550
plane present 0.504 1.02 -0.398 -0.605
strain  Dong & Paulino [54] 0.505 1.02 -0.399 -0.605
“033 £33,1%%=0

4.5.3 Analysis of planar, curved 3-D cracks in FGMs

This section examines four boundary-value problems involving mixed-mode loading of
planar, curved cracks in FGMs. All examples in this section employ plane-strain auxil-
iary fields, with the assumption that near-plane-strain conditions exist near the crack
front. Gosz et al. [74] demonstrate that interaction-integral formulations incorporating
the influence of crack-front curvature as described in Sections 4.3.3 and 4.3.8, can great-
ly improve computed stress intensity factors for cracksin homogeneous and bi-material
specimens. Kim et al. [106] also show differences between numerical results that
employ and omit corrective terms due to crack curvature. Walters et al. [213] show that
for a variety of mixed-mode crack problems in homogeneous material, the influence of
curvature terms depends significantly upon mesh discretization, and becomes very
small with mesh-refinement levels that permit accurate computation of J-integral val-
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ues. In this study we omit all terms from the interaction integral procedure that arise
solely from the influence of crack-front curvature. Omitted terms include those under-
lined in Eq. (128), and auxiliary-field quantities that reflect crack curvature [74]. Use
of the terms in Eq. (123) is dictated by material nonhomogeneity and not by crack-front
curvature. Computation of r and 6 values in curvilinear coordinates as described in Sec-
tion 4.4.3, is necessary for good accuracy, however, when curved elements align the
crack front. In the sequel, comparisons of computed values with analytical solutions
demonstrate that good accuracy can be achieved using these approximations.

4.5.4 Mode-I and mode-II loading of a penny-shaped crack in a graded inter-
facial layer

This example compares numerical and semi-analytical stress intensity factors for a
penny-shaped crack under mixed mode-I, mode-II loading conditions in an infinite sol-
id, with a functionally-graded interfacial layer. In this configuration, a semi-infinite sol-
id with Young’s modulus E; occupies the half-space z<0, and another half-space with
modulus Ej occupies the region z=h. A graded interfacial layer lying in the region
0 <z <h has a Young’s modulus described by Eo(z) = E1e#2, Eo(z = h) = E5. Material prop-
erties at z=0 and z =/ are continuous, but material gradients are not. Poisson’s ratio
remains constant at 0.3 throughout the body.

When Poisson’s ratio is non-zero, tension loading of this FGM specimen generates
mode-I and mode-II crack-front loading. Thisillustrates why for cracksin FGMs, stress
intensity factorsinduced by remote loading generally do not correspond, through super-
position, to stress intensity factors generated by crack-face tractions of the same direc-
tion and magnitude. The current numerical example employs uniform tractions acting
normal to the crack surfaces. This allows a direct comparison between present results
and the solutions provided by Ozturk and Erdogan [162], who solve integral equations
to obtain stress intensity factors for the axisymmetric crack problem.

A cylindrical mesh with a penny-shaped crack shownin Fig. 4.6(a) comprises 16,480
20-noded brick elements. Cylinder height H and diameter D compare to crack radius
aas H/a=D /a=80. Figure 4.6(b) shows the mesh near the crack-front, and illustrates
schematically the material variation. The cylinder is formed by 20 sectors of elements
that surround the longitudinal axis, and the crack is surrounded by 24 sectors of ele-
ments, as shown in Fig. 4.6(b). Elements incident on the crack front have quarter-point
nodes and collapsed faces, and are of size L, /a = 0.00129. Two such meshes allow a com-
parison between interaction-integral results obtained using either straight-edged or
curved quadratic elements along the crack front. At any location along the crack, the
average of interaction-integral values computed for domains two through five produces
stress intensity factors normalized as
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Fig. 4.6. (a) Mesh for infinite body with a penny-shaped crack on the boundary of a
graded interfacial layer. (b) View of mesh in crack-front region showing sche-
matic of material variation in interfacial layer for 2/a = 1.0. Twenty-four sec-
tors of elements of size L,/a =0.00129 surround the crack front.
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K, = K (149)

to/ma’

where #g is the magnitude of the crack-face traction. Table 4.2 lists present numerical

results as well as stress intensity factors computed by Ozturk and Erdogan [162] for
different interfacial-layer thicknesses and material gradients. Stress intensity factor
values obtained using curved crack-front elements are more accurate than those ob-
tained from the mesh with straight crack-front segments despite the error introduced
by inexact evaluation of the crack-face-traction integral in Eq. (128). For this crack con-
figuration, accuracy of the numerical results depends heavily upon mesh refinement
within and near the graded region, which in this example includes only 3 layers of ele-
ments for h/a=0.5, and 5 layers of elements for & /a= 1.0 (see Fig. 4.6(b)). Values in
Table 4.2 agree well with Ozturk and Erdogan [162] for moderate material gradients
in the interfacial layer. A finer mesh discretization would permit computation of accu-
rate results for more severe material gradients within the interfacial layer.

Table 4.2. Normalized stress intensity factors for a penny-shaped crack at the edge of
a graded interface between two semi-infinite solids under tension (see Fig. 4.6).

hj/a PBa Es3/E; result Ky, % diff. K, % diff.
Ozturk & Erdogan [162] 0.6366 — — —
— 00 1.0 straight edges 0.6299 -1.05 — —
curved edges 0.6316 -0.79 — —
Ozturk & Erdogan [162] 0.6079 — 0.0149 —
05 0.5 1.28 straight edges 0.6035 ~0.72 0.0146 -2.01
curved edges 0.6048 -0.51 0.0148 -0.67
Ozturk & Erdogan [162] 0.5955 — 0.0201 —
1.0 05 1.65 straight edges 0.5913 -0.71 0.0196 -2.49
curved edges 0.5924 -0.52 00199 -1.0

We now examine the effect of domain size on path independence of computed stress
intensity factors for this problem, using the mesh with curved edges, in which element
nodes lie on a circular crack front. For the homogeneous problem, normalized Kj-values
are compared with normalized Ki-values obtained from computed J-integral values us-
ing the plane-strain conversion:

- JE*

The ratio of the maximum domain size Rp, to crack radius «, is 0.66 for this problem.

(150)

Figure 4.7 illustrates a very small variation between the computed Ki-values for small
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Fig. 4.7. Normalized values of K vs. domain size Rp/a, for a penny-shaped crack in
aninfinite solid under remote tension. The FGM case is for a graded layerillus-
trated in Figs. 4.6(a)-(b) where h/a =1 and Es/E; =1.65.

and large domains, both for the homogeneous case and the FGM case. This indicates
that the effect of curvature terms omitted from Eq. (128) does not appear to change sig-
nificantly within the range of domain sizes employed for this problem. Whether this
trend holds for larger domains (Rp/a > 1) or for coarser meshes is uncertain.

Again using the mesh with curved edges, the influence of termsin Eq. (128) included
for nonhomogeneity (i.e. Is and I5 in Eq. (146) and Eq. (147)) can be observed. Figures
4.8(a)-(b) illustrate relative contributions to K1 and Kjj from terms I1-I4 in Egs. (145)-
(148). For mode-I computations, the FGM term I, contributes roughly 2% for the largest
domain, and the contribution from I3 is numerically insignificant, while the homoge-
neous term I; and the crack-face traction term I, largely determine the computed Kj-
value. For mode-II computations, 71 and Iy dominate, while I3 is negligible, and 14 is
zero. The contribution from I3 for this problem is negligible because it involves the de-
rivative of material gradients in the local X;-direction, while the actual material gradi-
ent is in the Xs-direction.
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Fig. 4.8. Contributions to I(s) from components I;- I for a penny-shaped crack sub-

jected to surface pressure in a graded interlayer (h/a =1, E3/E; =1.65) for (a)
Kj and (b) K11 computations.
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4.5.5 Contribution of crack-face-traction integral to mixed-mode stress intensi-
ty factors

On the surfaces of a planar crack, where 8 = + 7, auxiliary displacements based on Wil-
liams’ [221] solution (Appendix A) yields the following derivatives for each loading
mode:

mode I: K‘ﬁ‘x = Kﬁ‘f =0

Kaux(lc + 1) 0
g = i = 05 ugti = = cos@sin(g) oD

mode II: Ki“ = K3f =0

K‘“‘"(IC + 1D
du(s) 2ar

uds = y@ = 0y = L ———cos(6) s1n(9) (152)

mode II: Ki“ = KiF =0

ud =udi =0, = i ————=—cos(f) s1n(9) (153)
151 21 3:1 /u S /—

These expressions demonstrate complete uncoupling of the loading modes in the crack-
face-traction integral. Consequently, if a crack-face traction acts parallel to one of the
three axes of the local crack-front coordinate system illustrated in Fig. 4.1, Eq. (106)
generates no contribution from crack-loading modes that correspond to the other two
axisdirections. For example, take the case of an FGM specimen in which material gradi-
ents cause an applied crack-face pressure (¢2) to induce mixed-mode loading along the
crack front. In this example, the crack-face-traction integral in Eq. (128) is non-zero
only for mode-I interaction-integral computations, and therefore contributes no error
to the computed mode-1I stress intensity factor. To evaluate the mode-I stress intensity
factor K| in this case, K{**=1.0, and K{1*= K7 =0. For 6= +x, the integrand of Eq.
(106) includes the product

tolk(s) + 1)
tuss = | (0.0)(0. 2 4 (0.0)0.0 154

which includes the crack-surface traction, to. For mode-Ilinteraction-integral computa-
tions, K{j*=1.0, K7 = K{ji'=0, and the crack-face-traction integral includes

qux __ (IC(S) + 1)
tiuiy = [i (. O)W + (£9)(0.0) + (0.0)(0. 0)] (155)

meaning that the crack-surface-traction integral does not contribute to I(s) for mode-II
calculations, as witnessed in Fig 4.8(b). The integrand of Eq. (106) for mode-III com-
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putations similarly vanishes for loading caused by 9. This example demonstrates that
for problems where crack-face tractions induce mixed-mode loading, Eq. (106) contrib-
utes to I(s) for only one of the modes. The surface-traction integral isnon-zero only when
crack-face tractions have a non-zero component in the direction of crack opening repre-
sented by the non-zero auxiliary stress intensity factor.

4.5.6 Mode-III loading of a penny-shaped crack in a graded interfacial layer

This third example of a 3-D configuration demonstrates the accuracy of interaction-in-
tegral computations of mode-IlI stress intensity factors along cracksin a 3-D FGM. The
crack geometry, material variation and finite-element meshes for this problem follow
the descriptions in Section 4.5.4 and Fig. 4.6. Nodal loads at opposite ends of the cylin-
der apply torsion loading, and fixed nodes at the center of each cylinder face supply
constraints (see Fig. 4.6(a)). The element layer at each end of the cylinder is assigned
a high value of Young’s modulus in order to ensure a uniform distribution of torsional
stresses throughout the model.

At locations along the crack front where interaction-integral computations are per-
formed, the average of stress intensity factors obtained from domains two through five
is again the reported value. Normalization of the mode-III stressintensity factor follows
Eq. (149), where tg=2Ta/nb%, in which T is the total applied torque, and b=D/2 is the
cylinder radius. In the case of torsion applied through crack-face tractions, g would be
the magnitude of the traction at r=a.

Table 4.3 compares stress intensity factors computed for this problem with those ob-
tained by Ozturk and Erdogan {161], who solve integral equations for an axisymmetric
crack with torsion applied to the crack faces. Computed stress intensity factors show
excellent agreement with the semi-analytical results even when material gradients are
severe. For a similar material gradient, the mode-I1I problem shows very good accuracy
compared to the mode-I, mode-II problem. This is likely due to the fact that for pure tor-
sion, the governing equations of elasticity reduce to the Laplace equation, enabling the
same mesh to approximate the solution more accurately. In thisexample, stressintensi-
ty factor values obtained using the mesh with straight element edges are more accurate
than those obtained from the mesh with curved elements, which may be an effect of
omitting crack-front curvature terms from the interaction integral.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.3. Normalized stress intensity factors for a penny-shaped crack at the edge of
a graded interface between two semi-infinite solids under torsion (see Fig. 4.6).

h/a E3/Eq result Knm, % difference
Ozturk & Erdogan [161] 0.424 —
— 1.0 straight element edges 0.427 +0.71
curved element edges 0.419 -1.18
Ozturk & Erdogan [161] 0.483 —
1.0 1/22 straight element edges 0.483 +0.0
curved element edges 0.475 —-1.66
Ozturk & Erdogan [161] 0.383 —
1.0 22 straight element edges 0.386 +0.78
curved element edges 0.379 -1.04
Ozturk & Erdogan [161] 0.509 —
0.5 0.1 straight element edges 0.510 +0.20
curved element edges 0.501 —-1.57
Ozturk & Erdogan [161] 0.395 —
0.5 3.0 straight element edges 0.398 +0.76
curved element edges 0.390 -1.27

Domain independence of computed stress intensity factors for mode-III computa-
tions is very good, as illustrated in Fig. 4.9 for the mesh with curved edges. For both the
homogeneous and FGM cases, the two largest domains shown in Fig. 4.9 yield Kyjy, -val-
ues that increase very slightly from values of smaller domains. This small variation
may be due to the curvature terms omitted from Eq. (128), because a similar variation
does not occur in normalized Kyyr-values obtained through J-integral computations ac-

cording to
Ky = J72E. (156)

Contributions to computed K7y, -values from individual components of Eq. (128) are
illustrated in Fig. 4.10 for the mesh with curved edges. Once again, component I; domi-
nates the other terms. Term I contributes approximately 5% for the largest domain,
and I3 is zero everywhere because the material gradient is in the X;-direction. This ex-
ample provides useful comparisons with a semi-analytical solution, and demonstrates
that good accuracy can be achieved when the interaction-integral formulation omits
curvature terms. In the above example of a penny-shaped crack under tension and tor-
sion loading, it is apparent that the strength and direction of the material gradient in-
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Fig. 4.9. Normalized values of K1y vs. domain size Rp /a, for a penny-shaped crack in

an infinite solid under remote torsion. The FGM case is for a graded layer illus-
trated in Figs. 4.6(a)-(b) where h/a =1 and Es/E, =22.
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Fig. 4.10. Contribution to I(s) from components I;-I3 for a penny-shaped crack in a
graded interlayer in an infinite solid under torsion, where h/a =1, E3/E1 =22.

fluences strongly the contribution of FGM termsin Eq. (128). Amaterial gradientin the

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/|
Jg
E 2
~
(@)
%
o)
t
<

(b) '

Fig. 4.11. (a) Infinite plate with semi-elliptical surface crack under remote tension.
Stressintensity factors decrease to zero in shaded “boundary-layer” region. (b)
Parametric angle ¢ indicates location along the crack front.

plane of the crack would engage the I3 term in Eq. (147). It is therefore useful to examine
another 3-D crack geometry in order to investigate the influence of all FGM terms in
the presence of different material gradients.

4.5.7 Mode-I loading of a semi-elliptical surface crack in an FGM plate

This analysis compares stress intensity factors obtained through interaction-integral
and J-integral computations for a semi-elliptical surface crack in a functionally-graded
plate under remote tension (see Fig. 4.11(a)). Poisson’s ratio is constant at 0.25,
through-thickness gradients in Young’s modulus vary according to E(x)=Ee’*,
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E1=E(x=0) E;=E(x=1), and E3/E1 equals 0.05, 1 and 20. The ratio of crack widthc,
to crack depth a, is a/c =2, and the ratio of crack depth to plate thickness ¢, isa/t=0.8.
Other plate dimensions are L = 2¢. Parametric angle ¢ describeslocation alongthe crack
front, as shownin Fig. 4.11(b). Symmetry of the problem permits reduction of the analy-
sismodel to one-quarter of the plate, discretized with a mesh 0f 13,556 20-noded hexago-
nal elements generated using FEACrack [66] software, shown in Fig. 4.12(a). Figure
4.12(b) shows the mesh discretization in the crack-front region, where 8 collapsed ele-
ments of size L, /a=0.00267 surround the crack front, and are in turn surrounded by
semi-circular rings of elements. The high level of mesh refinement apparent in Fig.
4.12(b) ensures good accuracy of computed J-integral and stress intensity factor values.
Element edges along the crack front are straight, such that local crack-front curvature
is zero, and computation of r and # employs local Cartesian coordinates as described pre-
viously.

At each of 73 crack-front locations, twenty semi-circular rings of elements enable
computation of stress intensity factors using twenty different domains. Interaction-in-
tegral computations yield highly path-independent Kp,-values, which, for nearly all
crack-front locations, were identical up to four significant figures for domains 2-20.
Standard normalization of stress intensity factors for elliptical cracks follows

K, = , (157)

where 0y is the uniform remote tensile stress, and where @ may be approximated by

Q=1+ 1.464(5—)1'65 (158)

for a/c>11[6]. Figure 4.12(c) shows the variation along the crack of normalized stress
intensity factor values obtained through Eq. (128). Comparison in the figure is made
with stress intensity factors obtained from computations using a domain form of the J-
integral for FGMs described by Walters et al. [212]. In this example, mesh refinement
near the free surface (¢ = 0°) does not permit computations to reflect the true variation
in stress intensity factor values, which decrease to zero within a boundary layer shown
schematically in Fig. 4.11(a) [171]. Values for the domain at the free surface are there-
fore omitted from Fig. 4.12(c). Due to inaccuracy of values computed using domains ad-
jacent to the plane of symmetry (¢ = 90°), these values are also omitted from Fig. 4.12(c).
Values computed using the J-integral and the interaction integral agree very well. For
the homogeneous case, the plotted lines cannot be distinguished from one another, be-
cause the maximum difference between data pointsislessthan 0.1%. For all three cases
of material variation, the maximum difference between the J-integral and interaction-
integral curvesisless than 0.75%. Figure 4.12(c) also shows values of K, computed us-
ing the interaction integral computed without the FGM terms Is and I35 in Egs.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(b)

W

K Cc
1.25 In T ] ! ( )
from I(s) including all terms B
- - — - from I(s) without FGM terms (Is =I3=0)
A fromJ-integral [212]

= S

0.75 -

afc=2
0.5 a/t=0.8 % ]
a z = =
<— Free Surface E,/E,=0.05
| ] ]
0'250 0.25 0.5 0.75 1.0

2¢ [

Fig. 4.12. (a) Quarter-symmetric mesh of semi-elliptical surface crack in plate under
remote tension. {(b) Detail of discretization in crack-front region. (¢) Normal-
ized Kj-values along crack.
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(146)-(147). Despite large material gradients in the FGM cases, the maximum contribu-
tion of these omitted terms for any data point occurs at the point closest to ¢ =90°, and
is less than 1.2% of the total value. The difference between the interaction-integral
curves with and without FGM terms becomes greatest toward ¢ = 90° because the expo-
nentially-varying material gradients are the steepest in that region.

Specimen and crack geometries may limit the domain size that can be employed
practically for interaction-integral computations. The largest domain employed in this
example was of size Rp/a =0.053. This domain size can be compared to domain sizes
shown in Figs. 4.5(a)-(b), 4.8(a)-(b) and 4.10, to give an idea of the expected contribution
of FGM terms. In each of these example problems, the contribution of FGM termsis very
small for the smallest domains. The plots in Fig. 4.12(c) therefore indicate that for
mode-I loading of FGMs, a highly refined mesh with domain sizes small compared to
the crack geometry, yields stress intensity factors that do not depend significantly upon
the FGM terms, and that show no noticeable dependence upon the omitted curvature
terms. The former observation has been made by various others (e.g. [77]), and the lat-
ter observation agrees with numerical examples in Walters et al. [213].

4.5.8 Mixed-mode loading of a semi-elliptical surface crack in an FGM plate

A final example illustrates the variation of computed stress intensity factors for a sur-
face crack under mixed-mode loading. The plate geometry, crack aspect ratio, material
variation, loading conditions and mesh refinement level in the crack-front region are
identical with those in the previous example in Section 4.5.7. In this example, however,
the crack inclines at w =45° to the plate-thickness direction, as illustrated in Fig.
4.13(a). Therefore, though the ratio o/t = 0.8 remains unchanged from the previous ex-
ample, the inclined crack extends only to a depth of 0.57 of the plate thickness. FEA-
Crack [66] software again generated the mesh, which is shown in Figs. 4.13(a)-(b). Ex-
cellent path independence of computed stress inensity factors is apparent in Fig.
4.13(c), which shows values computed for each of the twenty domains at crack-front
location ¢ = 85°, for each mode of loading and for each material variation. However, as
in the previous example of a surface crack under mode-I loading, the small size of the
domains with respect to the crack size, severely limits the influence of the FGM terms
I5 and I3. The small domain size may also limit the potential influence of curvature
terms, which have no influence on at least the first four significant digits in the com-
puted values shown in Fig. 4.13(c). Figures 4.14-4.16 show total contributions from I
and I3 to the stress intensity factor values computed along the crack front for each mode
ofloading. The maximum contribution of these FGM terms occursin the region of steep-
est material variation, yet represents a very small portion of the computed values in
each case. Figures 4.17-4.19 illustrate the contributions of terms I;-I5 for each of the
twenty domains used to compute stress intensity factors at crack-front location ¢ = 85°.
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Fig. 4.13. (a) Mesh of semi-elliptical crack, inclined at w = 45°, in plate under remote
tension. (b) Detail of discretization in crack-front region. (¢) Normalized K-val-
ues vs. domain size for twenty domains at crack-front location ¢ = 85°.

Terms I5 and I3 do become significant for this problem, but they largely cancel each oth-
er, making their combined contribution quite small.

4.6 Discussion and conclusions

This work examines interaction-integral procedures for planar, curved cracks in 3-D
functionally-graded solids under remote mechanical loading and applied crack-face
tractions. Computations omit auxiliary-field and interaction-integral terms that arise
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Fig. 4.14. Variation of Ky, along front of surface crack inclined at 45° in FGM plate
under tension.
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Fig. 4.15. Variation of K1y, along front of surface crack inclined at 45° in FGM plate
under tension.

due to the effects of crack-front curvature. The excellent potential accuracy of computed
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Fig. 4.17. Components of I(s) for Ky computations at ¢ = 85° along semi-elliptical crack
inclined at 45° in FGM plate under remote tension where Eq/E1 = 20.

stress intensity factors indicates that the influence of these terms is small for the prob-
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Fig. 4.19. Components of I(s) for Kyj1 computations at ¢ =85° along semi-elliptical
crack inclined at 45° in FGM plate under remote tension where Eg/E1=20.

lems considered, and that the proposed approach may yield very accurate stressintensi-
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ty factors with sufficient mesh refinement. Comparisons of computed stress intensity
factors with existing semi-analytical solutions demonstrate that the interaction inte-
gral is an accurate and useful tool for the analysis of cracks in 3-D FGM configurations.
The interaction-integral terms included to incorporate material gradients also contrib-
ute very little to stress intensity factor computations when the ratio of the domain size
to the crack size is small. This suggests a methodology to employ interaction-integral
codes that do not include FGM terms (e.g. ABAQUS [1]) to compute stress intensity fac-
tors for cracks in FGMs. First, in order to solve the boundary-value problem for the
FGM, material properties may be assigned to nodes through an input file, or to integra-
tion points through a user subroutine. Then, a figure such as 4.5(a)-(b), generated from
a simple 2-D configuration having similar material gradients, can suggest a domain
size for acceptable error in stress intensity factors computed without FGM termsin the
interaction integral.

In the future, interaction-integral computations might complement experimental
investigations of mixed-mode crack growth in 3-D FGMs. Also, the anisotropy inherent
to some FGM systems may encourage development of presented techniques to extend
the work of Dhondt [50] who employs the interaction integral method to analyze aniso-
tropic 3-D specimens, and Kim and Paulino [114], who employ it for the analysis of 2-D
orthotropic FGM specimens. Analysis of cracks near the interface of an FGM coating
with a homogeneous substrate would require a combination of the approach developed
by Gosz et al. [74] and that employed herein. Interaction-integral terms to include ther-
mal-strain effects would add the important capability to analyze cracks in FGM ther-
mal barrier coatings. T-stresses are another parameter easily computed using interac-
tion integrals which may prove useful for analyzing constraint effectsin metallic FGMs.
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Chapter 5

Computation of T-Stresses for
Mixed-Mode Loading

5.1 Introduction

The elastic T-stresses are the constant terms in the asymptotic expansion of Williams
[221] for stresses in the vicinity of a crack tip. The first two terms in this expansion are

011(7,0) 0150, 0) 014(r,0) f110) f120) f130) T,, 0 Ty
091, 0) 05, 0) | = K f220) fosO) | + 0 01}, (159
symm 0g3(r,0)| V27T | symm fas®] |symm T

where stresses are a function of polar coordinates r and 0 originating at the crack tip,
and the angular functionsf;;(6) depend only upon the angle 6. The three non-zero compo-
nents of T-stresses act tangent to the crack plane. Larsson and Carlsson [126] demon-
strate that T-stressinfluences strongly the size of the near-tip plastic-zone under small-
scaleyielding conditions in two-dimensions (2-D). Parks [167] and Wang [218] make the
same observation for cracks in three-dimensional (3-D) bodies. Results from these stud-
ies encourage the use of T-stress as a parameter to describe stress biaxiality and crack-
tip plasticity.

Avariety of methods have been developed to compute stress intensity factors for 2-D
and 3-D bodies. The most widely used numerical methods for determining T-stresses
include direct stress and direct displacement methods, through which T-stresses are de-
duced from computed values of stress and K [126, 3, 219, 83, 225, 11, 16], and interac-
tion-integral methods, which employ a path-independent integral constructed from the
J-integral.

Cardew et al. [29] and Kfouri [105] employ a theorem due to Eshelby, to obtain a
path-independent interaction integral whose value is directly proportional to The 7-
stress normal to the crack, T'11. Their integral derives from the J-integral written for
the superimposition of two equilibrium states: one is that of the actual boundary value
problem, and the other comprises the analytical expressions for stresses, strains and
displacements near the tip of a wedge loaded by a point force. Nakamura and Parks
[146] extend this procedure to the 3-D case. Most works in the literature that employ
the interaction-integral method to compute T-stresses derive from this procedure. Sla-
dek and Sladek [197] develop an interaction integral using the Betti-Rayleigh recipro-
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cal theorem, which Chen et al. [33] prove to be analytically equivalent to the integral
of Cardew et al. [29] and Kfouri [105].

Because of their robustness and accuracy, interaction integrals have been developed
to compute T-stresses for a variety of materials and loading conditions. Sladek and Sla-
dek study cracks in homogeneous material under static, dynamic and thermal loading,
and isotropic bimaterials [195-200]. Jayadevan et al. [92] also compute T-stress for dy-
namic loading. Yang and Yuan [227] compute the singular and non-singular terms in
the Williams’ expansion [221] for anisotropic solids. Jeon and Im [93] compute higher-
order terms in the expansion for elastic-plastic cracks. Without solving the boundary-
value problem, Beom and Earmme [23] and Cho et al. [37] use the interaction integral
as a tool to derive analytical expressions for the stress intensity factors and T-stress in
isotropic homogeneous and bimaterial solids carrying surface tractions and interacting
with singularities. Moon and Earmme [139] and Kim et al. [107] similarly derive ana-
lytical expressions for in-plane (T'11) and out-of-plane (T';3) T-stresses for interface
cracks in isotropic and anisotropic solids under in-plane and anti-plane loading. Kim
and Paulino [113, 116, 117] employ interaction-integrals to compute T-stress in 2-D iso-
tropic and orthotropic FGMs. The purpose of this work is to investigate the interaction-
integral procedure for cracksin 3-D homogeneous and FGM under mixed-mode loading.
Further work involving the anti-plane T-stress T' 3 can be found in the paper by Walters
et al. [215]

The organization of remaining sections in this study proceeds as follows: Section 5.2
reviews the interaction-integral formulation for generally-curved, 3-D cracks in func-
tionally-graded material. Section 5.3 describes computation of T-stresses using the in-
teraction integral. Details of the numerical implementation follow in Section 5.4. Sec-
tion 5.5 includes example problems that partially verify 3-D computations for analyses
of cracks in 2-D homogeneous and functionally-graded specimens. Analyses of T-
stresses for 3-D cracks in homogeneous and functionally-graded specimens follow in
Section 5.6. Concluding remarksin Section 5.7 discuss the potential of presented meth-
ods and describe future possibilities for investigation.

5.2Interaction-integral formulation

This section reviews interaction-integral procedures that enable the computation of
stress intensity factors and T-stresses in this study.

5.2.1An interaction integral for FGMs including surface tractions

The interaction integral employed in this work derives from the evaluation of Rice’s
[181] J-integral for two superimposed equilibrium states, and was first developed by
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Chen and Shield [34]. Typically, the actual state refers to the solution of the boundary-
value problem in question, and the superimposed auxiliary state describes quantities
selected by the analyst to involve desired quantities. The J-integral formulated for the
superimposed state separates into three integrals: one integral comprises only actual
quantities, another only auxiliary quantities, and the third—the interaction integral—
comprises interacting quantities which are the product of actual and auxiliary terms.
Rice [182] demonstrates that although the T-stress influences the plastic zone size, it
has no effect upon energy release rates computed using the J-integral. This indicates
that the standard J/-integral may be employed in the construction of the interaction in-
tegral.

Crack-front curvature, surface tractions and material inhomogeneity all influence
the formulation of the interaction integral, and their combined effects lead to the follow-
ing expression [214]:

I(s) = I <aljuj“,"f +0%u;,, — o; s“’“‘éll)q,ldV
A4
+ J [og{ugis — eges) + o0 — Copan @heneg adv
4

_ J t, usqds, (160)
S++S‘

where I(s) represents the interaction-energy release rate per unit advance of crack-
front segment L, shown in Fig. 5.1. The volume integrals refer to the simply-connected
domain enclosed by surfaces Sy, Sg, S3, S, St and S, alsoillustrated in Fig. 5.1. Sur-
face Sy shrinks to the crack front, and surfaces S* and S~ correspond to the upper and
lower crack faces, respectively. Asdenoted in Eq. (160), g is a scalar-valued function that
here follows the plateau variation described by Shih et al. [192], varying from zero on
surfaces S1, S, and S3, to a value of unity on surface §; atlocation s along the crack front
where evaluation of the interaction integral occurs. Components of stress g;;, displace-
ment u;, strain &, and traction ¢, reflect actual quantities when no superscript is pres-
ent, and refer to auxiliary quantities with the superscript aux. For a nonhomogeneous
material, constitutive tensor Cj;z;(x) depends upon spatial location x = (X3, Xp, X3) ac-
cording to the coordinate system shown in Fig. 5.1. The Kronecker delta is 6;;, and (-),;
indicates the partial derivative 4(-)/X; with respect to direction X;.

For cracks with traction-free faces, the surface integral in Eq. (160) vanishes. The
second volume integral in Eq. (160) arises due to the influence of crack-front curvature
and material nonhomogeneity, as described originally by Nahta and Moran [142], Gosz
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Fig. 5.1. Domain of integration used to evaluate I(s) at crack-front location s =b. Surfa
S1, Sg, S3, S, and S~ enclose a simply-connected volume. Surface S; shrinks
crack front, i.e.r—=0%, and surfaces S*and S~ represent the top and bottom crack
respectively.

et al. [74], and Dolbow and Gosz [53]. Material gradients are incorporated through the
following terms [53]:

] [aij(u}?f‘fi - 8%) - Cijkl’l(x)gklgg'ux]qdv’ (161)
%

which vanish in homogeneous material. The effects of crack-front curvature are repre-
sented by the following terms [142, 74, 75]:

j [C’J(“f‘f‘ - Ei}‘i’i) + Ué}lﬁ’fuj,l]qu. (162)
v

Walters et al. [213, 214] observe that the influence of curvature effects on computed
stressintensity factors canbe very small (< 1%) when mesh discretization permits com-
putation of converged J-integral values. Therefore, in this study, we omit the under-
lined terms in Eq. (162), as well as auxiliary-field gradients that are non-zero in curvi-
linear coordinates (see [74]). The value of I(s) obtained from Eq. (160) leads to a
point-wise value of the interaction integral along the crack front, I(s), through the as-
sumption that I(s) is nearly constant along crack-front segment L¢:
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Crack front/ \Xa

Fig. 5.2. Line loads f and f3 normal and tangent to the crack front, and T-stresses on
a differential element at 6=n.
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5.3 Computation of T-stresses using interaction integrals

This section discusses interaction procedures for the computation of T-stresses for 2-D
and 3-D cracks in specimens under mixed-mode, remote mechanical loading. Subsec-
tions 5.3.1 and 5.3.2 review procedures for in-plane, mixed-mode loading of thin speci-
mens. The following subsection describes a current procedure to compute T-stresses
along 3-D cracks in specimens under mode-I loading. Subsection 5.3.4 investigates the
use of this procedure for T-stress computations along 3-D cracks under mixed-mode
loading. The consideration of T3 is addressed in the paper by Walters et al. [215].

5.3.1 Auxiliary fields for computation of T11(s)

To compute T-stress T'1; in 2-D homogeneous specimens, Cardew et al. [29] and Kfouri
[105] select as auxiliary fields the solution by Michell [137] for the stress distribution
generated by a line load acting normal to the apex of a wedge, as illustrated in Fig. 5.2.
For a crack, where the included angle of the wedge equals 27, the stresses for plane-
strain conditions are [137, 210]:

ux___fl 3 ux___fl tn 2 aux__fl 2 :
011" = — Fpcos 0, 055" = n———rcos()sm 0, 07y = 77 COS fsind,
0%F = y(@™* + g%¥) = — ——Vfl cosf , 0% = g% = () (164)
33 11 22 7r » Y13 23 .

Here, f1 indicates the force per unit length of the line load applied along the crack front
in the local X; direction. Displacements derived from Eq. (164) are
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u1 = - _—8—7;/7——1113 ZJ-T‘ZL-SHI 9, (165)
-1
wowr =~ Vg0 N Gnpeoss, (166)
8mu 4y
us =0, (167)
e‘;’“‘ S ijkl(x)az.”x , (168)

where «=(3—v)/(1+v) for plane stress, « =(3—4v) for plane strain, and coordinate
x1=d specifies a point at a fixed distance from the crack front. For FGMs, we use materi-
al propertiesthat correspond to the crack tip at r = 0, with the assumption that the fields
expressed by Egs. (164)-(167) have the same asymptotic form in both homogeneous and
functionally-graded materials. Auxiliary strains for homogeneous material are the
symmetric gradient of displacements. Equation (168) defines auxiliary strains (see
[53D.

5.3.2 Extraction of T11(s) from interaction integral for in-plane loading

Cardew et al. [29] obtain a relationship between the interaction integral and T'1; by as-
suming that actual fields follow Williams’ [221] aysmptotic solution including the non-
singular T-stress:

K

TJ‘;@U(G) + T110,,05; (169)

uy = 2M/‘g @.v) + Zu \/~g (9v)+T"cos9 (170)

K
oy = ——Lfi}.(m +

=..l/LI Ky [r 1 _vTr..
u2 2,“ an2(01 'V) + 2/4 2ng2 (6, 'V) E ) 'Slne ) (171)
1
eij Z(uhj + uJ,l) ’ (172)

where i, j=1...2, E’=E and v’=v for plane-stress conditions, and E’=E/(1—v?) and
v’ =v/(1—v) for plane-strain conditions. Appendix A lists expressions for f;;(6) and g;(6,
v). Also,

T3 =0 : plane stress

T33 = 'VT11 : plane strain. (173)

These expressions are identical in form for homogeneous and FGMs (Eischen [59]). For
FGMs, the shear modulus, 4, and Poisson’s ratio, v, must reflect material-property val-
ues at the crack tip. Cardew et al. [29] combine the auxiliary fields in Egs. (164)-(166)
with actual fields defined by Eqgs. (169)-(172), and evaluate a 2-D line integral analo-
gous to the first integral in Eq. (160):

I = }E%f {ijefgxa (Uyu;,uf + a;ux J,l)}nidr' (174)
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Integration from — tox along a circular contour, I, that shrinks to zero, simplifies this
integral to an expression that links T4, f1, and I. Simplification occurs because higher-
order terms (O(%), > 0) in the actual fields represented by Egs. (169)-(172) vanish as-
ymptotically close to the crack tip, and singular actual-field terms, OG-~ 1/2), cancel
each other out, leaving only one non-zero actual stress:

on =Ty, (175)
which leads to stress-strain and strain-displacement relationships given by

1+
Upp =& = __Sﬁic'Tn » Ugsg = €99 = Ksy Tyystigg =gy = 0. (176)

Auxiliary fields that interact with these terms are

aur — paux — 1t K qux K= 3 oux
Uy = e T Ty on Ty a2 a77)

With these actual and auxiliary fields, Eq. (174) reduces to

3 ux T 1 ux
I=-lim J 0%y n,dl = — El*l lim La; ndr . (178)

Tractions 03“n; on contour I’ equilibrate auxiliary force f;, and so Eq. (178) gives [29]
7, =E1, (179)
fi

Material nonhomogeneity also requires consideration of the second integral in Eq. (160)

in order to observe any influence on the relationship between T'1; and I. As the domain
radius shrinks to zero, terms that arise due to strain-displacement incompatibility van-
ish because material properties approach material-property values at the crack tip, i.e.
Sijr1(®)—>S;jri(s) as x—s. Therefore,

Uj(uj“f - Sé}‘i’i) =0. (180)

If derivatives of terms in the FGM constitutive tensor are of the order O(P), B=0, re-
maining components in Eq. (161) behave as follows:

lim J Cijpir1 @le ey dl’ =~ lim [ 0GHOGC=1H0¢r " rdo = 0. (181)
r r

Therefore, Eq. (179) is valid for both homogeneous and functionally-graded materials.
Kim and Paulino [117] provide details regarding the behavior and existence of FGM in-
tegrals. Goszet al. [74] observe that interaction-integral terms due to crack-front curva-
ture are not sufficiently singular to affect the expression in Eq. (179). To observe the
behavior of the crack-face tractionintegral, take arectangular element on the crack face
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Fig. 5.3. Configuration studied by Cho et al. [37]: semi-infinite crack loaded with
crack-face tractions that go to zero at the crack tip.

at 0 =, and assume, for simplicity, that g is constant. The crack-face-traction integral
in Eq. (160) then behaves as

Z rr=x
lim | tu%7qdS = lim tl——fl*—drdz = lim(lnr) = — «, (182)
r=0 | 7 r—0 J o ) _ nEr r—0

where ©§.} and ugs, are zero (see Eqgs. (166)-(167)). In order for Eq. (182) to exist, it is
necessary to assume that shear traction £; on the crack face is zero at r=0 (see [37]).
When mode-I crack-opening tractions, f9, act on the crack surface, and shear traction
t1 is zero, Eq. (182) vanishes. Cho et al., [37] derive an expression for T'11 near the tip
of a semi-infinite interface crack loaded by crack-face tractions, as illustrated in Fig.
5.3. Their expression for T'1; reduces to the following for a homogeneous material:

0
d.
Tll = %j [ttl()p(xl) + tht(xl)}__f:xill . (183)

Here, t'fp(xl) and t‘l"’t(x 1) describe tractions on the top and bottom crack faces, respec-
tively, which vary as a function of coordinate x1, and which equal zero at the crack tip.
The interface crack lies in the plane xo =0 (see Fig. 5.3). The analagous 3-D expression
for Eq. (183) may be obtained by equating the crack-face-traction integral in Eq. (160)
to Eq. (179) and integrating over a semi-infinite crack surface. When only crack-open-
ingtractions t‘;’P(xl) and £5°%(x1) act on the crack faces, Eq. (183) implies that T';; = 0. But
itis knownthat uniform remote stress, and by correspondence, crack-openingtractions,
induce a non-zero value of T for this configuration. Equation (183) therefore implies
that the auxiliary fields described by Egs. (164)-(167) do not lead to a useful expression
between T'1; and I for loading induced by crack-opening tractions.
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Evaluation of Eq. (160) with actual fields provided by the solution to the boundary-
value problem, and auxiliary fields given by Egs. (164)-(166), leads to a value of I(s) and
then T'11(s) through Eq. (179). The procedures in this section for 2-D analyses are also
valid for 3-D analyses of thin structures that simulate plane-stress or plane-strain con-
ditions.

5.3.8 Computation of T11(s) along 3-D cracks under mode-I loading

Nakamura and Parks [146] extend the method of Cardew et al. [29] to the case of 3-D
cracks under mode-I loading in homogeneous material. They assume that actual
stresses follow Williams’ [221] solution for plane strain:

_ K
v V2mnr

Functions £;;(0) appear in Appendix A, and out-of-plane stress components are

o X0 + T)10,8y,6,j=1..2. (184)

K 0
For plane-strain conditions, T'33(s) =v(s)T'11(s), but for general 3-D conditions, Nakamu-
ra and Parks [146] define T'33(s) as

Tys(8) = " + v(©)T1;(s), (186)

and identify o” with a state of simple tension tangent to the crack front which causes
extensional strain £33, and Poisson contractions £11 and 92, described by

v(s)o™

O (187)

£
g
Eaq = =, and €11 = g9 = — V(8)Eqa =
3~ E@E)’ 11 22 (s)egg

With these additional strains, the plane-strain, strain-stress relationships in cylindri-
cal coordinates become

&pp = -z—lﬁ[(l — VIO — V"ee] - vg , (188)
= L1fq— - _vo”
20 = 5, [(1 =)oy — vorr R (189)
* g
s&=%,em=§f, (190)

where r and 6 are measured in planes orthogonal to cylindrical axis z, and g, ogg and
0y are the polar forms of the stress components represented by Eq. (184). Integration
of the polar form of the strain-displacement relationships, in which Egs. (188)-(190) re-
present strain components, leads to the following displacements in Cartesian coordi-
nates:
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\/— g, P Sl /L NP 0" o050, (191)

T E E
K 1+ 9T *
1y = 2; gJ®,v) - L_éjl_lirsine - 1—%—-rsine , (192)
z .
g = J gE—dZ = %(22 - zl) 3 (193)
2y

where functions g; (0, v) are the same here asin Eq. (170)-(171), and appear in Appendix
A. When ¢" =0, Egs. (191)-(192) reduce to the plane-strain mode-I displacements de-
fined in Egs. (170)-(171). With the actual stresses described by Egs. (184)-(186), actual
displacements defined by Egs. (191)-(193), actual strains that follow Eq. (172) where
es3=0 /E, and auxiliary fields given by Eqgs. (164)-(167), the line integral in Eq. (174)
yields

Is) = 72<{T1,6)[1 = v()?] - v(s)o™e)} . (194)

fi
E(s)
For a 3-D crack, I(s) denotes a value obtained from Eq. (174) at crack-front position s,
and T'11(s) denotes the T-stress computed at that crack-front location. Rearrangement

of Eq. (194) gives

Iy = —EO [I(s>

[1- V(S)z] f1

Evaluation of Eq. (160) with actual fields defined by the numerical solution to the
boundary-value problem, and auxiliary fields defined by Egs. (164)-(167), leads to a val-
ue of I(s) with which Eq. (163) and Eq. (195) produce a value of T'11(s). Tangential strain
£33(s), computed numerically at crack-front location s, enables the computation
0" =Eesa(s), and then T33(s) through Eq. (186). For an FGM, material properties in Eq.
(195) must reflect values at crack-front location s. A comparison of Eq. (195) with Eq.

+ v(s)e35(s) ] (195)

(179) shows that vegs(s) acts as a penalty term that reduces T'11(s) when contraction tan-
gent to the crack front, —e33(s), lowers the stresses induced by strain &1;. When
e33(s)=c =0, Eq. (195) reduces to the plane-strain form of Eq. (179). Therefore, Eq.
(195) is valid for mode-I loading of cracks in homogeneous or functionally-graded mate-
rial, and yields values of T'11(s) that either increase or decrease from plane-strain val-
ues, depending upon the sign of e33(s). Section 5.4 discusses numerical computation of
tangential strain at the crack front, £33(s). The next section explores the relationship
between I(s) and T'1(s) when mixed-mode loading exists.

5.3.4 Computation of T11(s) for 8-D cracks under mixed-mode loading

This section examines the approach of Nakamura and Parks [146] for mixed-modeload-
ing conditions. Here, actual fields are again assumed to follow Williams’ [221] solution
including the three non-singular 7-stresses:
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K
f @ + o fO)

K, Ky
Y anfy J2nr

+ T1151i51' + Ty30505 + T13(51i63j + 8481;) (196)
K - )
11 = 5 37810, + i 27616 v+ L2 000 ¥ reosh,  (197)
Ug = o 2ng2(0 V) + / 552 g ) — — rsing — i rs1n9 (198)
29 .
m o= 9836, + I rcose + I QE—dz . (199)
2

Here, i,j=1...2, the expressions for f;;(f) and g;(0,v) follow Appendix A, T's3 follows Eq.
(186) and actual strains follow Eq. (168). Equation (196) is simply a restatement of Eq.
(159). When Kj, K71 and Ky are non-zero, Eq. (174) again leads to the relationship in
Eq. (195). This indicates that Eq. (195) is valid for mixed-mode loading conditions, and
that T'11 and T's3 are uncoupled from T3 in this procedure. When Kj, K11 and Kyyy are
all zero, or for any combination of zero and non-zero stress intensity factors, Eq. (195)
continues to describe the relationship between T'11(s) and I(s) obtained through Eq.
(174). Thisindependence of T'y1(s) and I(s) from stress intensity factorsis apparent with
an examination of terms that contribute to Eq. (174). For any combination of non-zero
Kj, K11 and Kjp values, the only terms in Eq. (174) that do not vanish as r—0, and that
do not cancel with other terms, are 03{*u1,1 and 04{*u1,1. In these two terms, all compo-
nents containing Kj, K11 or Kiyz either vanish or cancel out, and the only remaining com-
ponents contain Ty; and ¢ Thus Eq. (195) derives from Eq. (174) when T'y; is non-zero.

5.3.5 Computation of T13(s) for cracks under anti-plane shear

Auxiliary fields generated by a uniform line load applied tangent to a crack front, lead
to an expression that links T'13(s) with I(s). Moon and Earmme [139] determine the com-
plex potentials for asymptotic stresses and displacements near the tip of an interface
crack in a 2-D, bi-material specimen loaded by an out-of-plane force acting at the crack
tip. By considering the single material as a particular case of the bimaterial by using
the same properties for both materials, an auxiliary stress field is obtained from their
potentials:

o = — Q%; ,and 03" = 0, (200)

in cylindrical coordinates, which can be converted to auxiliary fields in Cartesian coor-
dinates. Here, f3 is the out-of-plane force acting at the crack tip. Figure 5.2 illustrates
the 3-D analog of this problem, where uniform line load f3 acts tangent to a 3-D crack
front. To obtain a relationship between T'13(s) and I(s), actual anti-plane fields are as-
sumed to vary according to Williams’ [221] solution for mode III:
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Km( . 9) Km0
Oyq = —sing| + Tia, 0gq = —==cC08%, 201D
13 /——an 2 13 23 F——an 2
2K T
Ug = /JHI /—Z%Sin-g + —%rcos@ ) (202)
_ %13 _ Y3 _ 23 _ Ussp (203)

813—5/;—7,823—*2; 9
Evaluation of the line integral in Eq. (174) with auxiliary and actual fields defined ac-
cording to Eqgs. (200)-(203), leads to the following relationship between T'13(s) and I(s)
[1391:

1(s)uls)
fs

For 3-D cracks, I(s)=1I and T13(s) =T13 at crack-front position s. At 8 =m, the surface-

T yq(s) = (204)

traction integral in Eq. (160) becomes

Z rr=x

. o L f3 o _

11_{% [ tjuj,lqu = %1_1;% I [ t3mdrdz == &E%(ln r)= — o, (205)
S 0 Jr=0

In order for Eq. (205) to exist, the shear traction £3 must be zero at r =0 (see Cho et al.

[37D).

5.4 Numerical aspects

5.4.1 Numerical evaluation of the interaction integral

In this work, evaluation of volume integrals in Eq. (160) employs standard 2x2x2
Gauss quadrature, and surface integration uses a 2 X 2 rule. Computation of » and 8 val-
ues for auxiliary-field quantities employs a curvilinear coordinate system when ele-
ment edges are curved, and is based on local Cartesian coordinates when element edges
on the crack front are straight. Gosz et al. [74] and Walters et al. [213] discuss these two
approaches in greater detail. Computations in this study follow Walters et al. [213] by
omitting auxiliary-field terms and the underlined terms in Eq. (160), which are non-
zero in curvilinear coordinates (see [74)).

5.4.2 Computation of strain tangent to crack front, £33(s)

Equation (195) indicates that the accuracy of computed T'11(s) and T'33(s) values may de-
pend strongly upon the accuracy of computed tangential strain e33(s). Nakamura and
Parks[146] compute e33 at location s, by using the ug displacement components of adja-
cent crack-front nodes and nodal shape functions. They discuss some of the potentially
significant influences that e33(s)-values may have on interaction-integral computation-
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Fig. 5.4. Gauss quadrature in parent coordinates &, of the JacobianJ, yields the unde-
formed and deformed lengths of crack-front segment L. The ratio of the
change in length to the undeformed length, AL¢/L¢, provides an approximate
value for strain g53 tangent to the crack front at location s, i.e. £33(s).

s. In the current study, we approximate e33(s)-values as ALg/L¢, which is the change
in length divided by the undeformed length of the crack-front segment enclosed within
the domain of integration (see Fig. 5.4). This approximation is valid when e35(s) varies
little along crack-front segment Lo. Computation of the undeformed and deformed

crack lengths follows
1
Ly, = J |J|dE , (206)
-1
where
) AN O AN O AN
|J| = (-{-%l) + (—(-%2) + (-55%) (207

is the coordinate Jacobian. Integration occurs in parent (natural) coordinates, illus-
trated in Fig. 5.4, where X; are actual coordinates of crack-front nodes in the local sys-
tem shown in Fig. 5.4. For planar cracks in the undeformed configuration, .Xy/0%
equals zero in the local coordinate system, but it may be non-zero in the deformed state.
Derivatives of the nodal shape functions, Ny, allow computation of partial derivatives
as

0X; &N,
= I;?{(Xi)l, (208)

where n is the number of nodes on the element edge defining the crack front, and (X;);
is the value of X; at node I. Evaluation of Eq. (207) with Gauss quadrature follows
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edges gpis

Le= > > || pwp, (209)
L p

where the sum over edges L, includes element edges along the crack front within the
current domain of integration. The sum over p includes integration points with weight
wp. For crack fronts discretized by elements with straight edges, one Gauss point is suf-
ficient for exact integration because |/ | is constant in this case. For quadraticelements
with curved edges, this study employs standard 4-point Gauss quadrature to integrate

|J |, which is then the square root of a quadratic polynomial. Accuracy of computed AL-
¢/Lc values approaches the accuracy of the solution to the original boundary value
problem, and therefore provides accurate estimates of £33(s) when the tangential strain
varies little along L¢.

5.4.3 Computation of stress intensity factors

Williams’[221] asymptotic solutions for stresses and displacements near a crack tip are
auxiliary fields commonly employed in interaction-integral procedures to computat s-
tress intensity factors (e.g. [226]). For homogeneous and non-homogeneous material,
auxiliary fields defined by the singular stress terms in Williams’ [221] series solution
have the same form [59], but for nonhomogeneous material, Poisson’s ratiov, and shear
modulus x4, must represent material-property values at crack-front location s. After

evaluation of Egs. (160) and (163), stress intensity factors follow immediately as (e.g.
[143D

K© = Z19216), Kys) = E110), and Kyyo) = o), (210)

where E* = E/(1-v2) for plane-strain and E* =E for plane-stress problems.

5.5 Numerical simulations of thin specimens

In-plane loading of thin specimens enables simulation of 2-D problems using a 3-D nu-
merical framework. In this section, available T-stress solutions for 2-D homogeneous
and functionally-graded materials enable a partial verification of current numerical
procedures.

5.5.1 Modified boundary-layer model

Boundary-layer models represent the region surrounding a 2-D crack tip or a 3-D crack
front wherein Williams’ [221] asymptotic solutions govern the behavior of stresses and
displacements. In brittle materials or in metals under small-scale-yielding conditions,
a process zone or plastic zone develops in the immediate vicinity of the crack front, and
transitions to a zone of K-dominance where stress intensity factors expressed by Wil-
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liamsg’ [221] solution describe field quantities. Boundary-layer models are typically cir-
cular (2-D) or cylindrical (3-D) models of the crack-front region, with traction or dis-
placement boundary conditions prescribed by Williams’ solution with a specified stress
intensity factor, Stress intensity factors computed using such models should match the
applied values, thus enabling verification of numerical solution methods [6].

Larsson and Carlsson [126] show that under small-scale yielding, imposed fields de-
scribed by Williams’ [221] solution generate plastic zones of different sizes in fracture
specimens with differing geometries. They demonstrate that the non-singular T-stress
term in Williams’ [221] solution is a parameter that largely accounts for this discrepan-
cy in plastic-zone size. Modified boundary-layer models include the effects of T-stress
in the boundary conditions imposed on a traditional boundary-layer model. Assigned
T-stress values enable verification of numerical procedures used to compute the non-
singular stresses in the vicinity of a crack. Recently, Shim et al. [193] have developed
a modified boundary-layer method for FGMs, but we do not employ their method here,
depending, rather, upon available numerical solutions in the literature. Here, to verify
interaction-integral computations of T-stress under mode-I and mode-II loading in ho-
mogeneous material, displacement boundary conditions applied tonodes on the perime-
ter of amodified boundary-layer model reflect either plane-stress or plane-strain condi-
tions. Material behavior is linear elastic throughout the model. For mode-III loading
and verification of T3 computations in homogeneous material, anti-plane-shear dis-
placements apply to the nodes along the circumferential strip of the model (see Fig.
5.5(a)).

Aboundary-layer model for this study, shown in Fig. 5.5(a), consists of 2000 8-noded
hexagonal elements, and has one element layer through the thickness. Crack length,
a, equals mesh radius, R, and mesh thickness, ¢, is described by ¢/a =0.1. Fifty circular
rings of elements that surround the crack front are divided circumferentially into forty
slices, or sectors. Elements surrounding the crack front each have one collapsed face,
and a characteristic length, L, described by L,/a =0.000434 (Fig. 5.5(b)). In this study,
dimension Rp describes domain size, and Rp for domain 1 equals L,. Table 5.1 lists im-
posed and computed stress intensity factors and T-stresses, and shows that computed
T-stresses have accuracy similar to computed stress intensity factors for cases investi-
gated. These modified-boundary-layer-model analyses verify interaction-integral pro-
cedures to compute T-stresses for cracks under mixed-mode loading in homogeneous
material. Figure 5.6 illustrates the deformation of a boundary-layer model with dis-
placements prescribed by Eq. (202) where Kyip=1, and T'13=0. The figure also shows
the deformation of a modified-boundary-layer model caused by displacements pre-
scribed by Eq. (202), where Ki11=0, and T13=1.
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circumference
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L L,=Rp domain 1

Fig. 5.5. (a) Modified boundary-layer model for verification of T-stress computations
for homogeneous materials. Dimension R/t=10. Mesh has 4102 nodes and
2000 8-noded hexagonal elements arranged in 50 circular rings divided into 40
sectors around the circumference. Dimension Rp describes domain size in this
study. (b) Collapsed elements of size L, =0.000434 surround the crack front.
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(a) (e)

(b)

)

(c) (g)

(d) (h)

Fig. 5.6. Boundary-layer model with displacements prescribed by Eq. (202) where
Ki1=1.0and T'13=10.0: (a) side view, (b) top view, (¢) left view, (d) right view.
Modified boundary-layer model with displacements prescribed by Eq. (202)
where Kyi=0.0and T'15 = 1.0: (e) side view, (f) top view, (g) left view, (h) right
view.
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Table 5.1. Imposed and computed stress intensity factor and T-stress values for the
crack front in a homogeneous, modified boundary-layer model (Fig. 5.5(a)).

loading conditions quantity imposed value computed value
Ky 1.000 0.9949
plane stress K 1.000 1.003
Tu 1.000 1.000
Ky 1.000 1.004
_ K1 1.000 1.003
plane strain To 1.000 1,000
Tss — 0.3000 (=vT11)
Ky 0.000 0.000
uniform stress K1 0.000 0.000
tange?t to crack Th 0.000 0.000
ront ¥
Tss 1.000 (=0") 1.000
K 1.000 1.001
anti-plane shear Tog 1000 1000

5.5.2 FGM plate with inclined center crack

Verification of T-stress computations for simulated 2-D conditionsin FGMs follows from
an analysis of a through-crack inclined at 30° from horizontal. Material variation fol-
lows

E@x) = Eef*» (211)

according to the coordinate system illustratedin Fig. 5.7, and Poisson’s ratio is constant
at v=0.3 throughout the model. The current finite-element model includes a crack of
length 2a, in a plate with height and width dimensions of H = W=20q, and a thickness
of t=0.125a. The mesh consists of 2057 20-noded brick elements. Twenty elements of
size L, /a=0.0177, having one collapsed face, surround each crack front. Reported 7-
stresses are the average of T-stress values computed using domains 2-10, which shows
excellent path-independence.

Table 5.2 lists T';1-values computed for simulated plane-stress conditions, and a uni-
form remote displacement loading described by A = H /e, where ¢g is an assigned strain
value. Normalized T-stress values follow as T'11, =T11/Eqg9, where Ejg is the value of
Young’s modulus at the crack front where values are reported. Because Poisson’s ratio
is non-zero, the current 3-D model has non-zero through-thickness stresses, and we set
03355, =0 to improve the accuracy of interaction-integral computations for assumed
plane-stress conditions [214]. Values in Table 5.2 show good agreement with T-stresses
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Fig. 5.7. Model for fixed-grip displacement (A) of an infinite FGM plate with a
through-crack inclined 30° from horizontal. Distance between left and right
crack fronts =2a. Dimensions H = W= 20a, and ¢ =0.125a. The mesh discreti-
zation consists of 2057 20-noded brick elements. Twenty collapsed elements of
size L,/a =0.0177 surround each crack front.

reported by Dong and Paulino [64] and Kim and Paulino [113, 117] for this crack speci-
men. Figures 5.8(a)-(b) show the relative contribution of interaction-integral compo-
nents to the total value of T computed for each domain. The second integral of Eq. (160)
contributes a smaller proportion to I for stress-intensity-factor computations (~ 6% for
the largest domain) than for T-stress computations (~17% for the largest domain).
However, the first two terms in the second integral of Eq. (160) have a much smaller
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Fig. 5.8. Relative contribution of interaction-integral terms for various domain sizes
used to compute values of (a) K7 and (b) T'1; for an inclined crack in an expo-
nentially graded M(T) specimen under plane-stress, fixed-grip loading. Per-
centages indicate relative contributions of individual terms at Rp/a=1.0.
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contribution to I for T-stress computations than for stress-intensity-factor computa-
tions. Forthis problem, these terms contribute negligibly to the computed T-stress until
the domain size becomes greater than Rp/a=0.5.

Table 5.3 lists normalized T-stress values for the same FGM specimen under remote
tension loading, and assumed plane-stress and plane-strain conditions. Constrained
out-of-plane displacements lead to plane-strain conditions. Normalized T-stress values
are obtained as T'11, = T'11/09, where gg is the magnitude of the remote tensile stress. For
plane-strain conditions, T'33, =vT'11,. Stressintensity factors and T-stresses show close
agreement between plane-stress and plane-strain conditions, which verifiesinteraction
integral computations for these two loading conditions. The exact T-stress solution for
the homogeneous configuration is found in Smith et al. [201].

Table 5.2. T-stress T'11 at the left and right crack-fronts of a through crack inclined at
30°in an FGM plate under fixed-grip loading and assumed plane-stress conditions (see
Fig. 5.7). Young’s modulus varies as E(x)= Eoef*, and Poisson’s ratio is constant at
v=0.3. Normalization follows T'11,, = T'11/E¢¢o.

Pa=0.0 Ba=0.25 Pa=0.5
reference - - -
T11, left  Tqi, right Tiy, left  Thy, right Ty, left Ty, right
present —0.5000 —-0.5000 —-0.4793 —0.4810 —0.4404 —0.4294
Paulino& 5001 _05001 -04727 -04871 —0.4444 —0.4200
Dong [54]
Paulino &
Kim [169] —0.4974 —-0.4974 04754 —-0.4810 -0.4360 —-0.4334
Kim &
Paulino —0.4974 —-0.4974 —-0.4763 —0.4790 —0.4371 —0.4288
[113]

Table 5.3. T-stresses for the left and right fronts of an inclined crack in an FGM plate
under remote tension loading (Fig. 5.7(a)). Normalization follows T}, =T /oy.

Pa=0.0 Pa=0.25 Ba=0.5
problem value - - -
left right left right left right

plane Ty,  —0.5083 -0.5110 -0.9760 -0.5870 -1.277 -—-0.4818
stress
plane Ty, —0.5084 -0.5111 -0.9759 -0.5832 -1.293 -—0.4811
strain Tss, —0.1525 —-0.1533 -0.2928 -0.1750 -—0.3879 -0.1443

T11n -0.50 -0.50 — — — _
exact 015 —0.15 - - - -
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5.6 Numerical simulations of 3-D specimens

In this section, numerical examplesillustrate the accuracy of T-stress computations for
cracksin 3-D configurations under mode-I and mixed-mode loading conditions. The ex-
amples also demonstrate that the magnitude of non-singular T-stress T';3 can be signifi-
cant in magnitude relative to T'1;. All interaction-integral computations for 3-D prob-
lems employ plane-strain auxiliary fields, and the plane-strain assumptionin Eq. (210).

5.6.1 Penny-shaped crack in an infinite body under uniform remote tension

Mode-Iloading of a penny-shaped crack in an infinite solid under remote tension yields
some useful observations regarding:

o accuracy of Ty; values computed using Eq. (195),
e convergence of T'11 values with p-version mesh refinement, and
¢ path-independence of computed values with changing domain size.

The geometry selected for this problem is a cylinder, whose height H and diameter D
compare to the crack radius a through the ratios H/a =D/a =80. The ABAQUS 6.4-3
[1] benchmark library provides a mesh for this problem which we use here. Figure 5.9
shows a cross-section of the mesh, comprising 8-noded hexagonal elements, and a view
of mesh discretization in the crack-front region. Nine rings of elements, each divided
into 24 sectors, surround the crack front. The first ring of elements has collapsed ele-
ments of size L,/a=0.00129. The ninth domain is of size Rp/a =0.66.

Wang [217] derives a closed-form expression for T'1; along a penny-shaped crack in
an infinite solid under remote tension og:
T, = — _1_+7_2100. (212)
In this example, the T'1; value normalized by the remote stress, is T'11 /0= 0.8. Figure
5.10 shows a plot of the ratio of computed T'1; values to this analytical value for the first
9 domains surrounding the crack front. Small domains show high inaccuracy, whereas
domains 8 and 9 show very good agreement with the analytical value, and demonstrate
both convergence and path-independence. Converged (path independent) domain-inte-
gral values generally indicate good accuracy of the numerical solution. Others (e.g.
ABAQUS6.4-3 [1], Kim and Paulino [117]) observe that for a given level of mesh refine-
ment, computed T-stresses typically have greater path dependence than stressintensi-
ty factors computed using the interaction-integral, or J-integral values computed
through the domain integral procedure. A comparison of domain-based computations
forJ-integral values, K7 values, and 7T-stress demonstrates an interesting difference in
convergence behavior for this problem. Domain-integral computations (e.g. [192]) yield
J-values for these domains, and interaction-integral computations yield K7 values. The
analytical expression of Kj for this problem is [103]

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30 sectors in cir-
cumferential di-
rection

(@)

'\ X
z
location of applied [— axis of symmetry

nodal loadsPand R _ ' __ . . .
(x=y=0, 2=0.33) :
(see Fig. 5.11) -\\ ‘
E <

(b) : —x
i B
crack //

|‘ a 'i \ i‘—
Rp for domain 9
Fig. 5.9. (a) Section view of cylindrical mesh approximating an infinite body with a
penny-shaped crack (from ABAQUS [1] benchmark library). Dimension ra-
tios H/a=D/a=_80. (b) View of mesh discretization in crack-front region.

Seven cylindrical domains with 24 sectors surround the crack front. For do-
main 1, L, /a=Rp/a=0.00129. For domain 9, Rp/a =0.66.
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Fig. 5.10. Effect of mesh refinement and domain size on convergence of J, KT and T'1;
values computed using the domain integral (/) and the interaction integral (K7,
T11) for a penny-shaped crack in an infinite homogeneous solid under remote
tension gg. The finite-element mesh comprises either 8-noded or 20-noded hex-
agonal elements.

K = 20y /na. 213)
The analytical value of Kj leads to an approximate J-value for 3-D problems through
[91]

J=1=- —EVZKg_ (214)

Figure 5.10 shows that computed values of J and K} are more accurate in the smaller
domains, but become more path independent in the larger domains. This demonstrates
that for a given mesh, it may be necessary to use different sets of domains to compute
an accurate, averaged value of J, Ky or T'1;. Upon refining the mesh of 8-noded bricks
by converting the elements to 20-noded bricks, the convergence of computed values to
the analytical solution becomes clear in Figure 5.10. All computed J and Ky values have
high accuracy, and show excellent path independence over all domains. Computed val-
ues of 7’11, however, become accurate and path independent only in the larger domains.
The trends illustrated by these two meshes indicates that larger domains may be neces-
sary to compute accurate values of T'1; than are necessary to compute accurate values
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of J or Ki. Because T-stresses computed here using Eq.(195) employ the same value of
tangential strain, ¢33, for all domains, the accuracy of this strain does not play a role
in the path independence of T values.

An examination of the terms in Eq. (195) further supports the approach of Nakamu-
ra and Parks [146], which begins with the definition of T35 described in Eq. (186). Table
5.4 shows the contribution to the computed T-stress from the term Evess/(1 —v?) in Eq.
(195). Computed values shown in the table represent quantities obtained using do-
mains 8 and 9 in the mesh comprising 8-noded elements. For this example, the stan-
dard, plane-strain computation of T-stress as T'11 = EI/[fi(1 —v?)] (see Eq. (179)) would
lead to a value of T'1; with an error of approximately —23%. By including the effect of
tangential strain according to Eq. (195), the computed value has an error of less than
0.5%. Thisillustrates the accuracy of the method of Nakamura and Parks[146] for prob-
lems involving mode-I loading. Table 5.4 also shows that for this loading and geometry,
the computed value of T's3 is nearly equal to the analytical value of T';.

Table 5.4. Components of Eq. (195) for T'11, and of Eq. (186) for T'33, computed with the
mesh of 8-noded brick elements shown in Fig. 5.9. Values demonstrate the contribution
of tangential strain £33 for a penny-shaped crack in an infinite solid under remote ten-

sion gy.

component of Eq. (195) value normalized by g

I/fi xE]/(1—v%) ~0.6188

vesg X E/(1~v2) —0.1847

T11 —-0.8035

T'1 (exact) -0.8

component of Eq. (186) value normalized by oy

G*=E833 —-0.5603

vT11 -0.2410

T3 —-0.8013

5.6.2 Penny-shaped crack in an infinite body under mixed-mode loading in-
duced by point forces

The finite-element mesh of 8-noded brick elements employed in section 5.6.1 (Fig. 5.9)
enables the observation of T-stresses along a penny-shaped crack under mixed-mode
loading conditions. The problem configuration, as provided by the ABAQUS 6.4-3 [1]
benchmark library, includes two nodal forces acting on the axis of the cylinder, normal
to the crack face and tangent to the crack face, at a distance of 0.33 above the plane of
the crack, asillustrated in Fig. 5.11. The example problem employs forces P and R = 400
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Fig. 5.11. (after Kassir and Sih, [103]) A penny-shaped crack in an infinite homoge-
neous solid loaded by point forces P and R acting at pointx=0,y=0,2=5, and
directed parallel to the x and z axes, respectively. For the ABAQUS [1] bench-
mark model, P=R =400.0E+6, and b=0.33.

MN, Young’s modulus =200 GPa, and Poisson’s ratio=0.3. Displacement boundary
conditionsin the ABAQUS problem include two fixed nodes, one at each end of the cylin-
drical axis. These boundary conditions are adequate to enable the computation of accu-
rate stress intensity factors [213] and T'y; values, but computed T'13 values show an un-
symmetric variation along the crack front. Therefore, the displacement boundary
conditions were modified, and include the full constraint of all nodes on one end-face of
the cylinder.

Path independence of computed T-stress values differs slightly for this loading con-
dition compared to the case of remote tension, as shown in Fig. 5.12 for a randomly-se-
lected location along the crack front. As with remote tension loading, values of T'1; con-
verge toward path independence in larger domains, but with the loading caused by
concentrated forces, T'11 values begin to diverge in domain 9. Preliminary computed val-
ues of T'13 show higher path independence in smaller domains, and begin to diverge in
domain 8. Figure 5.12 guides the selection of reported T-stress values which for T'1; are
the average of domains 6 through 8, and for T'13 are the average of domains 4 through
7.

Figure 5.13(a) shows the variation of analytical stressintensity factors for this prob-
lem provided by Kassir and Sih {103]. These values, normalized as
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Fig. 5.12. Effect of increasing domain size on convergence of T-stress values at the
randomly-selected location (6 =84°) for a penny-shaped crack in an infinite
homogeneous solid loaded by point forces P and R. The finite-element mesh
employs 8-noded hexagonal elements.

Ka3/2
K, = , 215

provide a reference to indicate the mixed-mode loading conditions that coincide with
computed T-stresses. Figure 5.13(b) shows values of T-stresses computed along the
crack front, normalized as

2
T, = T-I%‘-- (216)

5.6.3 Penny-shaped crack in an infinite body under bending

An additional numerical analysis of a penny-shaped crack under bending demonstrates
the accuracy of the approach described in Section 5.4.2 to compute tangential strain egg
using quadratic finite elements. Fig. 5.14 provides a schematic of the specimen geome-
try. Remote bending induces stress g,, normal to the crack plane, that varies along the
crack front as

Ou = aba’:cow ) (217)
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Fig. 5.13. (a) Normalized analytical stress intensity factor values along the front of
a penny-shaped crack in an infinite solid loaded by point forces P and R. (b)
Normalized T-stresses along the penny-shaped crack computed using the
mesh of 8-noded brick elements obtained from the ABAQUS 6.4-3 bench-

mark library.
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Fig. 5.14. View of one eighth of mesh generated by FEACrack [73] for analysis of a
penny-shaped crack in an infinite solid under bending.

where @ indicates position along the crack front, a is the crack radius, r is the radial dis-
tance from the center of the crack, and oy is the magnitude of 0,, on the crack front at
6=0 and 8 =m. Figure 5.14 illustrates one eighth of the finite-element mesh employed
to simulate this problem. The mesh of 7104 20-noded brick elements, generated using
FEACrack [66] software, is a cube with sides equal in dimension to six times the crack
radius a. Five rings of elements surround the crack front, which is discretized into 32
straight segments along the circumference (i.e. local crack curvature is zero). Hexago-
nal elements with one collapsed face and quarter-point nodes immediately surround
the crack front. Bending loads applied to both ends of the full mesh consisted of a linear-
ly-varying surface traction imposed by work-equivalent nodal loads. For this problem,
Wang [217] derives a closed-form expression for T'13:

T, = (— 8 g)ab cosf - 218)

Figure 5.15 illustrates the path independence of computed T'1; values for the five do-
mains at § =45°, and demonstrates that good path independence does not necessarily
indicate convergence to the exact solution.

To verify that the same boundary-value problem is being solved, Figure 5.16(a)
compares Ki-values generated by interaction-integral computations in WARP3D and
ABAQUS 6.4-3 [1], with analytical values reported in Kassir and Sih [103]. Figure
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Fig. 5.15. Path independence of computed T'11 values for penny-shaped crack in an

infinite solid under bending. Plotted values were computed using 5 different
domains at 6=45°

5.16(b) shows the normalized values T'11(6)/0p, for the range 6 =0 to 6=90°, obtained
from Eq. (218), from present computations, and from ABAQUS 6.4-3. The close agree-
ment between computed stress intensity factors in Eq. 5.16(a) suggests that the differ-
ence in accuracy of computed T-stress values in 5.16(b) is likely due to the method
employed here to compute the crack-front tangential strain e33(s). With further mesh
refinement, T'y;-values computed using ABAQUS 6.4-3 converge to the exact solution
for this problem, as demonstrated by Wang [217].

5.6.4 Mode-I loading of a semi-elliptical surface crack in a graded plate

Tension loading of an FGM plate with a surface crack enables verification of computed
T1-values for 3-D cracks in FGMs. Figure 5.17(a) shows a quarter-symmetric mesh of
the cracked plate, which has dimension ratios ¢/c=2, a/t=0.8 and L/H = 2. Selected
ratios of through-thickness exponential material variation, following Eq. (211), are
E9/E1=1,E9/E1=20and Eo/E, =0.05. Figure 5.17(b) shows plots of computed T'11-val-
ues alongthe length of the crack for each of these ratios. The plots also show the T'y1-val-
ues computed without the terms in the second integral of Eq. (160). The plots omit val-
ues at the free surface and the plane of symmetry, due to inaccuracy at these locations.
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Fig. 5.16. (a) Normalized stress intensity factor values along the front of a penny-
shaped crack in an infinite solid under bending. (b) Normalized T'; values.

Interaction-integral computations of stress intensity factors for the same problem,
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shown in Fig. 4.12(c), show much weaker dependence upon the FGM terms, which con-

tribute less than 2% to total values.
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Ayatollahi et al. [11] discuss several simple methods to determine 7'1;-values for
cracks under mode-I/mode-II loading, using computed stresses and displacements. For
mode-I loading, the simplest of these methods is to determine the stress normal to the
crack front, g,,, at an angle of 8 =x (see Fig. 5.2). According to Eq. (159), this stress
should be equal to T'1;. For each crack-front location at which interaction-integral val-
ues are computed, we determine the value of oy, at nodes on the crack surface alongele-
ment boundaries, as shown in Fig. 5.17(a). A linear least-squares curve fit of multiple
values at each crack-front location then enables extrapolation of a g, -value to the crack
front. These extrapolated values of 0,,, at each location along the crack are the T'y1-val-
ues shown plotted in Fig. 5.17(b), which agree very closely with the T;-values com-
puted using the interaction integral.

5.6.5 Mixed-mode loading of a semi-elliptical surface crack in an FGM plate

A final example illustrates the variation of computed stress intensity factors for a sur-
face crack under mixed-mode loading. The plate geometry, crack aspect ratio, material
variation, loading conditions and mesh refinement level in the crack-front region are
identical with those in the previous example in Section 4.5.7. In this example, however,
the crack inclines at w =45° to the plate-thickness direction, as illustrated in Fig.
4.13(a). Therefore, though the ratio a/¢t = 0.8 remains unchanged from the previous ex-
ample, the inclined crack extends only to a depth of .57 of the plate thickness. FEA-
Crack [66] software again generated the mesh, which is shown in Figs. 4.13(a)-(b). Ex-
cellent path independence of computed stress inensity factors is apparent in Fig.
4.13(c), which shows values computed for each of the twenty domains at crack-front
location ¢ =85°, for each mode of loading and for each material variation. However, as
in the previous example of a surface crack under mode-I loading, the small size of the
domains with respect to the crack size, severely limits the influence of the FGM terms
I5 and I3. The small domain size may also limit the potential influence of curvature
terms, which have no influence on at least the first four significant digits in the com-
puted values shown in Fig. 4.13(c). Figures 4.14-4.16 show total contributions from I
and I3 to the stress intensity factor values computed along the crack front for each mode
of loading. The maximum contribution of these FGM terms occursin the region of steep-
est material variation, yet represents a very small portion of the computed values in
each case. Figures 5.20-5.21 illustrate the contributions of terms I -I5 for each of the
twenty domains used to compute stress intensity factors at crack-front location ¢ = 85°.
Terms Iy and I3 do become significant for this problem, but they largely cancel each oth-
er, making their combined contribution quite small.
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values along crack generated using interaction integral and local oy, stresses

on crack faces.

5.7 Discussion and conclusions

This study has examined an interaction-integral procedure for planar, generally-
curved cracks in 3-D FGMs under mixed-mode loading. The interaction-integral for-
mulation for T-stress in homogeneous materials, proposed by Nakamura and Parks
[146], hasbeen demonstrated to be very accurate because it incorporates strain tangent
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Fig. 5.20. Components of I(s) for T1; computations at ¢ =85° along a semi-elliptical
surface crack under mode-I loading.
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Fig. 5.21. Components of I(s) for T'; computations at ¢ = 85° along an inclined, semi-
elliptical surface crack under mixed-mode loading.

to the crack. The formulation has also been shown herein to remain valid for mixed-
mode loading.

The interaction integral formulation proposed by Dolbow and Gosz [53] for com-
putation of mixed-mode stress intensity factors in FGMs has been used successfully in
conjunction with Eshelby’s theorem to compute values for T'1; in 2-D FGMs under plane
loading[113, 116-118]. Here, this method hasbeen explored for cracks in 3-D FGMs, and
comparisons with alternative methods for T-stress computation demonstrate its good
accuracy.

Anti-plane T-stress T'13 has been treated in analytical works involving non-planar
crack propagation [4, 224]. Some interesting problems involving mixed-mode loading
indicate that 713 may contribute to crack behavior under constraint. An investigation
of the plastic zone size in the presence of T'13 may provide such insight.

Further work is needed to develop the interaction integral for the case when crack
surfaces carry tractions. It was shown here that the derivation by Cho et al. [37] of an
analytical expression for T-stress near traction-bearing cracks, actually proves that the
contribution from the crack-face loading term is zero for tractions that induce mode-I
opening. An alternative auxiliary field may be necessary toincorporate surface-traction
effects.
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The complexity of the interaction integral implementation, compared with the oth-
er, direct verification methods employed in this study, is offset for one primary reason.
Direct-stress methods are not as well-defined as domain-integral methods. For exam-
ple, the analyst must choose which nodes in a given mesh to employ when estimating
T+, for an arbitrary crack. The domain approach, however, is somewhat more pre-defi-
ned for a given mesh, because there is a unique body of elements surrounding the crack
front from which domain computations may be made. Another advantage typically at-
tributed to domain-integral procedures—that of observable convergence to a path-inde-
pendent value—is no longer such when compared to direct stress methods. At each
crack-front location, it is possible to compute T-stress values at several nodes at varying
distances from the crack. In this study, a curve-fitting procedure enabled the extraction
of a single value. Therefore, when different nodes yield comparable T-stress values for
a given crack-front location, this consistency is a strong indication of a good solution,
just as path-independent values often signal accurate domain-integral computations.
Perhaps the choice of a domain-integral method or a direct-stress technique to compute
T-stresses will depend more upon available software or convenience rather than upon
some inherent advantage of one technique over the other. In such a light, the contribu-
tion of this study is the substantiation of one more powerful tool which the analyst may
use to compute T-stresses.
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Chapter 6

Summary and Conclusions

Chapter 1 of the present work provides a background for domain and interaction-in-
tegral methods by reviewing the relationship between the energy release rate G, mixed-
mode stress intensity factors Ki, Ki1 and Kijp, and the J-integral. Then follows a brief
review of the development of domain-based techniques to compute these parameters.
An introduction to the significance of T-stresses follows next, and includes a thorough
review of theoretical, numerical and experimental work in the literature.

Chapter 2 describes the development and application of a general domain integral
method to obtainJ/-values along crack frontsin three-dimensional configurations of iso-
tropic, functionally graded materials (FGMs). The present work considers mode-I, lin-
ear-elastic response of cracked specimens subjected to thermomechanical loading, al-
though the domain integral formulation accommodates elastic-plastic behavior in
FGMs. Finite element solutions and domain integral J-values for a two-dimensional
edge crack show good agreement with available analytical solutions for both tension
loading and temperature gradients. A displacement correlation technique provides
pointwise stress-intensity values along semi-elliptical surface cracks in FGMs for com-
parison with values derived from the proposed domain integral. Numerical imple-
mentation and mesh refinement issues to maintain path independent J-values are ex-
plored. The paper concludes with a parametric study that provides a set of stress
intensity factors for semi-elliptical surface cracks covering a practical range of crack
sizes, aspect ratios and material property gradations under tension, bending and spa-
tially-varying temperature loads.

Chapter 3 examines a two-state interaction integral for the direct computation of
mixed-mode stress intensity factors along curved cracks under remote mechanical
loads and applied crack-face tractions. We investigate the accuracy of stress intensity
factors computed along planar, curved cracks in homogeneous materials using a simpli-
fied interaction-integral that omits terms to reflect specifically the effects of local crack-
front curvature. We examine the significance of the crack-face-traction term in the in-
teraction integral, and demonstrate the benefit of a simple, exact numerical integration
procedure to evaluate the integral for one class of 3-D elements. The work also discusses
two approaches to compute auxiliary, interaction-integral quantities along cracks dis-
cretized by linear and curved elements. Comparisons of numerical results with analyti-
cal solutions for stress-intensity factors verify the accuracy of the proposed interaction-
integral procedures.
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Chapter 4 applies a two-state interaction integral to obtain stress intensity factors
along cracks in three-dimensional functionally-graded materials. The procedures are
applicable to planar cracks with curved fronts under mechanical loading, including
crack-face tractions. Interaction-integral terms necessary to capture the effects of ma-
terial nonhomogeneity areidentical in form to terms that arise due to crack-front curva-
ture. A discussion reviews the origin and effects of these terms, and a simplified,
approximate interaction-integral expression is used in this work to compute stress in-
tensity factors. The selection of terms is driven by requirements imposed by material
nonhomogeneity (and not crack-front curvature) in conjunction with appropriate mesh
discretization along the crack front. Aspects of the numerical implementation with (iso-
parametric) graded finite elements are addressed, and examples demonstrate the accu-
racy of the proposed method.

Chapter 5 develops two-state interaction-integral procedures for the computation
of T-stresses for three-dimensional cracksin FGMs under mixed-mode, remote mechan-
ical loading. Previous techniques address mixed-mode loading of cracks in two-dimen-
sional functionally-graded materials, and mode-I loading of three-dimensional cracks
in homogeneous solids. This study extends these procedures to the computation of 7-
stress along three-dimensional crack fronts in functionally-graded material under
mixed-mode loading conditions. In addition, the approach widely used in the literature
to compute T-stresses for cracks under remote mechanical loading is investigated for
computing T-stresses in the presence of crack-face tractions, and is found unsuitable.

The present chapter provides some final comments on domain-integral techniques
for computation of fracture parameters, and discusses future directions where research
is needed to extend their capabilities for some important problems.

6.1 Some comments on crack-analysis techniques

Domain integral techniques remain one of the most powerful and robust methods to
compute fracture parameters for static cracks. Their strength arises from their basis
on the energy stored in a cracked body. Many methods based on stress analysis, rely
upon the accuracy of computed displacements, strains and stresses at specific locations
with a finite-element mesh. These computed field quantities can then be correlated to
analytical expressions involving fracture parameters such as stress intensity factors or
T-stresses [10]. The displacement correlation technique employs Williams’ [221] ex-
pressions involving the mixed-mode stress intensity factors, with computed displace-
ments at a specific location described by r and 6 from a crack front. This process is open
to the question of what location should be selected from which to deduce K7 Any node
within the K-dominant region should, theoretically, yield an identical value of K. But
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in most finite-element meshes, thisis clearly not the case. The displacement correlation
technique normally produces a fairly large variation in K at nodes near to the crack and
far from the crack. A consistent approach might deduce K from nodes at locations de-
scribed by fixed values of either r or 6 or both. Another option is to compute values at
a fixed 6 but at multiple r-values, and then fit a line through computed values of K. Ex-
trapolation of this line to r =0 should produce an accurate value for K. But the question
then still involves selecting a proper set of r-K points through which to fit the line. Some
region should exhibit a somewhat linear variation, but this region may change signifi-
cantly between various locations along a curved 3-D crack. Between a semi-elliptical
surface crack, a penny-shaped embedded crack, or an SE(T) specimen with a straight
crack front, it requires subjective judgement to deduce fracture parameters using these
stress-based methods.

The use of hybrid or enriched elements enables computation of mixed-mode stress
intensity factors by embedding into elements surrounding the crack front, analytical
expressions for stress, strain and displacement, such as Williams’ [221] solution [22, 12,
163]. These techniques are similar to domain-integral techniques in that they employ
a group of elements surrounding the crack, and have much in common with interaction-
integral methods because both normally use closed-form expressions to incorporate
fracture parameters such as stress intensity factors. Hybrid and enriched elements are
normally integrated into the boundary-value-problem solution, whereas domain-inte-
gral techniques rely entirely upon post-processing routines. Both techniques require
comparable effort to implement, especially to achieve user-friendly, automatic defini-
tions of the integration domains. A major strength of domain and interaction-integral
procedures is the ability to compute the fracture parameters using elements remote
from the crack front. The path-independent nature of the domain-based approaches al-
lows many different volumes within a single structure to be employed, each of which
should yield a fairly similar value when a converged solution is achieved. Elements re-
mote from the crack can yield very precise values for field variables, whereas elements
incident on the crack front will always require special treatment in order to capture ac-
curately the singular behavior induced by the discontinuity. For analysis of stationary
cracks, computations with elements remote from the crack, and redundancy obtained
from the use of multiple domains, give domain and interaction-integral methods a sig-
nificant advantage over enriched-element procedures that extract fracture parameters
from elements incident on the crack. Enriched elements can be used over larger areas
surrounding the crack, however [163], and they can also be used in conjunction with do-
main-integral techniques, thus providing both improved accuracy near the crack, and
the benefit of using remote field variables (see, e.g. [52]). The previous descriptions do
not represent a thorough review of numerical techniques to compute fracture parame-
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ters for cracks in 3-D bodies, but they do represent some of the more common, and by
implication, more useful, approaches.

6.2 Limitations of crack analysis with finite elements

Traditional finite-element methods require a crack to lie along element boundaries.
This requirement usually makes it very time consuming to construct a mesh with a
crack, especially in 3-D, because the mesh must include refined elements situated ac-
cording to the crack geometry. If the engineer prefers hexagonal elements because of
their well-known superior accurary to tetrahedral elements, it will most likely be im-
possible to generate automatically a mesh for a geometry with an arbitrary crack. Soft-
ware companies, such as the makers of FEACrack software [66], find success with pow-
erful, user-friendly mesh assembly programs that generate ready-to-use meshes,
composed of hexagonal elements, for a library of complicated cracked geometries.

A significant challenge in computational fracture mechanics is the simulation of
crack propagation. The challenge liesin two areas: mesh generation and crack-propaga-
tion criteria. For finite-element methods, remeshing a cracked body after each incre-
ment of crack propagation becomes extremely costly. In three dimensions, automatic
crack propagation is much more difficult than in two dimensions, and because of re-
meshing requirements, the traditional finite-element method, in this endeavor, is not
the most streamlined numerical procedure. Boundary-element methods (BEMs), be-
cause of a reduced dimensionality of the boundary-value problem, become much more
attractive for 3-D crack propagation, because only the surface of the body, including
crack faces, must be meshed. The addition of 2-D elements to an extending crack surface
is much simpler than the remeshing of an entire 3-D region surrounding an advancing
crack front [30]. Domain-integral procedures, similar to those employed in this study,
have been developed as post-processing tools in conjunction with boundary element
methods [207]. Crack propagation is a much simpler task for the many problems for
which BEMs may be used.

Recently, a large variety of mesh-free methods have been developed that are power-
ful for modeling arbitrary and propagating cracks (e.g. [17, 58, 18, 158, 19, 57, 58, 125]).
For ease of modeling, mesh-free methods have an advantage over traditional finite-ele-
ments, in that they employ groups of nodes, rather than a regular assembly of elements,
over which to estimate the solution to the boundary-value problem. These methods
largely eliminate the requirement for tedious mesh construction in the vicinity of irreg-
ular geometrical features such as cracks. Because of their significant differences with
traditional finite-element approaches, mesh-free methos cannot straightforwardly
employ the large variety of powerful solvers and pre and post-processing software that
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hasbeen developed for finite-element methods. This potential drawback has driven the
development of new crack analysis and crack-modeling techniques that employ a tradi-
tional finite-element framework [158, 159, 160, 52, 125, 204, 55, 56, 205, 85]. These
methods enable crack growth simulations to be performed using a single finite-element
mesh. Without the requirement for remeshing, these techniques offer a promising alter-
native to crack-propagation simulations using the traditional finite-element method.
These new methods allow for computation of fracture parameters such as the energy
release rate and stress intensity factors through domain-based J-integral and interac-
tion-integral procedures {562, 170]. The domain and interaction integrals studied in the
present work should also be useful for the analysis of 3-D cracks using these new tech-
niques.

6.3 Future directions

Various possible extensions of the domain and interaction integrals studied in this work
remain unexplored. The robustness and accuracy of the integrals examined in the pre-
vious chapters, warrants their further development. Some promising areas include:

¢ Anexamination of the general form of the domain integral employed here to
compute energy release rates for FGMs, indicates that two terms numerical-
ly cancel each other. This cancellation may be due to the principle of recipro-
cal work, or perhaps the symmetry of the g-function. For problems involving
linear-elasticity and small-deformations, the form of the integral that omits
the cancelled terms, leads to a simplified domain-integral expression. All nu-
merical values reported for domain-integral computations in Chapter 2
would remain essential unchanged without the additional terms. The sim-
pler domain integral might also be explored for the possibility of leading to
a simplified interaction integral for FGMs.

e Krysl and Belytschko [125] have employed the interaction integral to com-
pute stress intensity factors for dynamically-propagating cracks in 3-D ho-
mogeneous bodies. Song and Paulino [202] compute dynamic stressintensity
factors for cracksin 2-D FGMs. Sladek and Sladek [196, 199] have developed
the interaction integral to compute T-stress T'1; for dynamic loading. Com-
putation of stress intensity factors and T-stresses for dynamic loading of
cracks in 3-D FGMs remains unexplored.

e An interaction integral for thermal loading has been developed by Sladek
and Sladek [195]. Because FGMs have significant potential as thermal barri-
er coatings, the interaction integral for 3-D FGMs invites extension to the
thermal loading case for computation of stress intensity factors and 7-
stresses.
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o Chapter 5 explores the computation of T-stresses for mechanical loading,
and discusses a proof that current formulations employing auxiliary fields
derived from a point (line) load acting at the crack tip (front), lead to a zero
contribution from the crack-face traction integral in Eq. (160) (see also Eq.
(183)). To compute an accurate value of T for cracks that carry surface trac-
tions, it will likely be necessary to employ different auxiliary fields. One pos-
sibility for auxiliary fields in this situation might be the analytical solution
for traction loading on the surface(s) of an infinite wedge (e.g. [25, 101]).

o  With the verification of the 3-D numerical techniques in this study, and with
their availability in the WARP3D [78] software, it is now possible to easily
employ them to study behaviors of cracked 3-D FGM bodies. For example,
Jin and Dodds [96] employ the numerical procedure described in Chapter 2
with WARP3D to study R-curve behavior in FGMs. Shim et al. [193] employ
the numerical procedures in Chapter 5 to develop a small-scale-yielding
boundary-layer model that enables the prediction of the plastic zone size in
FGM specimens. In addition to these studies, there is a wide variety of crack
behaviors in 3-D FGM configurations that the numerical procedures in this
work permit investigating. In addition, the sets of stress intensity factors
listed in Chapter 2 are available for analysts to either estimate stress inten-
sity factors in experimental specimens, or to verify numerical computations.
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Appendix A

Asymptotic Crack-Tip Fields

Auxiliary fields employed here follow the 2-D analytical solutions obtained by Williams

[221] for asymptotic stresses and displacements near a crack tip [NO TAG]:
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where v and u are respectively Poisson’s ratio and the shear modulus, and
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Appendix B

Exact Integration of
Crack-Face-Traction Integral

A change of variables permits the exact integration of Eq. (68). For a 1-D function f(r)
with an inverse square-root singularity at one boundary of the domain of integration,
the substitution of r=12+ a, removes the singularity [172]:

Jb-a
J A2 +a)dt B >a). (C1)

b
j frdr =
a 0
For example, define f(r) = 1/+/r, and assign integration limitsa and b asr=0andr=1,,
the length of an element adjacent to the crack front, illustrated in Fig. 3.3(d). The rela-
tionship 2 =r leads to f(t2 +a) = 1/t, giving

L. JL. JL.
Lagr= ol = 2dt = 2 /L., (C2)
0 ‘/; 0 t 0

which is the exact result. To evaluate Eq. (68) over a flat 2-D surface where coordinate
zistangent to the crack front, flz,r) includes traction values, ¢;, auxiliary-displacement
derivatives, Ut and g-function values. Standard Gauss quadrature is adequate to in-
tegrate exactly in the z-direction.

Toimplement the above procedure numerically, a change of variablesin parent (nat-

ural, intrinsic) coordinates is performed. From (C1), we have

1 1 1 (2
j J f&,n) dnd€ = [ j 2t f,¢% — 1) dtdE (C3)
-1J -1 ~-1J0

where the inverse square-root singularity of fi§,n) in parent coordinates corresponds to
the lower integration boundary # = — 1. In Eq. (C3) and in the steps that follow, we as-
sume that parent coordinate £ is tangent to the crack front, and that 5 corresponds to
distance r from the crack front. Integrands in Eq. (C3) include traction values, ¢ auxil-
iary-displacement derivatives, uit g-function values, and the determinant of the coor-
dinate Jacobian, det .

In order to apply a Gauss quadrature rule formulated for the interval [ - 1,1], to the
inner integral of Eq. (C3) over interval [0,4/2], it is necessary to employ the standard
transformation [65]:

_b-a b+ a
t = 51+ 5 (C4)
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where a and b are the new limits of integration, 0 and /2, respectively. Equation (C4)
gives

1 dt 1
-y + 1), and &£ = = Ch
fé(" ), an dn V2 (©3)

and the quadrature for Eq. (C3) over one element face becomes

t =

gpts

1 2
E 2t f&,t* — Dwp , C6

where the summation includes all Gauss integration points at parent coordinates (§,£),
where Eq. (C5) defines ¢. Weights wj, in Eq. (C6) correspond to the standard Gauss-
quadratureruleformulated overinterval £ = =[—1,1],and 1/n/2is theJacobian of the
interval transformation, or d¢/dn in (C5).

The following steps describe the procedure for evaluating Eq. (68) through the quad-
rature described by Eq. (C6).

¢ 1) Collect data for element faces and nodes (coordinates, g-values, tractions
etc.).

e 2) Loop over integration points. A 2 X 2 quadrature rule yields exact results
for the constant face tractions employed in this study.

e 3) For the current integration point, obtain weight w,, and parent coordi-
nates (,7) based on a standard rule for the interval § =n=[-1,1].

¢ 4) Shift the value of  according to Eq. (C5): pew=£1=1//2(n+ 1).
* 5) Redefine 5 as in Eq. (C3): = (jnew)? — 1.

¢ 6) Evaluate standard element shape functions, shape-function derivatives,
the coordinate Jacobian matrix, and the determinant of the coordinate Jaco-
bian matrix, det J, using the standard value for §, and the value of  obtained
from step 5.

e 7) Use element shape functions to determine the local coordinates,
(Xll’,XIZ’,Xg), of the current integration point, and the g-value and traction
value at the integration point.

¢ 8) Compute distance r and angle 8 = £z from the crack front to the integra-
tion point based on the coordinates determined in step 7.

o 9)Evaluate the auxiliary-displacement derivative uj“,“l” using u, r and 6 from
the previous step, and 1.0 for the stress intensity factor.

* 10)Evaluate theintegrand in Eq. (C6) as: wp X g(€,m) X £,(&,7) X uj‘."“l"(S ) X det
J, where summationisimplied by the repeated index, and # follows from step
5.
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e 11) Complete the quadrature in Eq. (C6) by multiplying the result of step 10
by 1/V2 X 2nnew.

¢ 12) Sum contribution from integration point, and cycle to next point.

In steps 1-12, only steps 4, 5 and 11 differ from standard quadrature procedures. Exam-
plesin Sections 3.5 and 3.6 demonstrate that including these three simple steps to inte-
grate Eq. (68) exactly, may markedly improve the accuracy of stress intensity factors.
Steps 4, 5 and 11 are required for the exact integration of Eq. (68) for 8-noded elements
with four nodes on each face, and for 20-noded elements with 8 nodes on each face. When
quarter-point elements border the crack front, steps 4, 5 and 11 should not be employed
because the quarter-point nodes cause standard quadrature to integrate Eq. (68) exact-
ly. Standard Gauss quadrature provides good accuracy for elements not incident on the
crack front.
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Appendix C

Computation of r and 6 for
Elements With Straight Edges

The following steps describe one procedure to compute r and 8 for curved, planar crack
fronts defined by elements with straight edges. Definitions use coordinates in the local
crack-front coordinate system shown in Fig. 2.5, and the notation described in Figs.
3.1(a)-(b):

¢ 1) Determine the crack-front segment nearest the integration point, and ob-
tain coordinates of the nodes at each end of the segment. Call these points
A and B, where B has the larger value of X3.

e 2) Use element shape functions to determine the coordinates of the integra-
tion point P in the local crack-front system, (Xll’,Xlz’,Xg):

n
XP = > N(X);. (B1)
I=1
o 3)The area of the parallelogram defined by AB and AP equals the magnitude
of the cross product of AB and AP, or ||AB X AP|. Compute height r of the par-
allelogram as the area divided by the length of the base AB:

_laBxap|

B2)
[4B] (

Point C is the projection of integration point P onto the crack plane, which is the X;-X3
plane. In local coordinates, C= (XII, O,Xg). Point D is the point on segment AB closest
to point C. Angle PDC defines 6. The plane PDC on which r is defined, coincides with
the local X;-X5 plane only for straight crack fronts. Figure 3.1(b) illustrates quadrants
of a coordinate system in the plane defined by points PDC, with point D at the origin,
and segment DC orthogonal to the local Xy-axis. Computation of @ involves two addition-
al steps:

e 4)Use Xg to determine if P lies above or below the crack plane, and use the
sign of cross product AB X AC to determine whether the integration point is
ahead of or behind segment AB.

o b) For quadrants I-IV illustrated in Fig. 3.1(b), compute 6 as
XP XP
L o= sin—l(—;?-) ; II: § = 180° - sin-l(—,,l) ,  (B3)
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r r

xP xP
II: 6 = — 180°— sin~ 1| =2 |; IV: 6 = sin~1[ =2} . B4YH

For the crack-face-traction integral where 8 = + 7, the sign of the Xy-coordinate of the
centroid of the loaded element conveniently indicates the sign of 6.
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Appendix D

Stress Intensity Factor Solutions

D.1 Circular crack in an infinite body loaded by point forces

Kassir and Sih [103] provide analytical solutions for the stress intensity factors around
a penny-shaped crack in an infinite homogeneous medium loaded by point forces above
the crack plane. Figure 3.6 illustrates the geometry and nomenclature used in the fol-
lowing expressions. For point-load P, which acts parallel to the x-axis at distance b from
the crack plane, the stress intensity factors are

= Pcos8 _ -1 _ 30 _ 220
K; 473/2(1 — v)a3/2 (1 21’)(C°t 20”11 zg) (1 N z2)2 , (D1)
0

Koo = Pcos
07 473/2(1 — v)(2 — v)a3/2

9 — )22
+ 2 [2(1-—1;2)—(——-%]’

1+22

3(1 —»)(1 - 2v)z0[cot‘1zo ~ 20 ]
0

1+ 22 1+ 22
(D2)
_ (1 — 2v)Psin® _ -1 1
I~ 4.7'[3/2(2 _ ’V)a3/2 [3 32()COt ZO + 1 T Zg] } (D3)

where constantzg =b/a. Here, the sign of Eq. (D3) agrees with the definition of auxiliary
displacement ug (Eq. (A9)), as defined in the crack-front coordinate system shown in
Fig. 2.5. For point force R, which acts parallel to the z-axis at distance b from the crack
plane, the stress intensity factors are

K- R | PR @
L om3/2(1 — »)a3/2\ 1 + zg 1+ zg ’
= R — ZO — -1 —_ ____?._z_o_..._ 3
L gl ZV)[l + 23 . zo] (1+ ZZ)Z
0 (D5)

D.2 Elliptical crack in an infinite body under shear

Kassir and Sih [102] obtain expressions for mode-II and mode-III stress intensity fac-
tors alongthe front of a shear-loaded, flat elliptical crack in a homogeneous solid. Figure
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2.9illustratesthe measurement of crack-front location ¢, and the orientation @ of shear
loading with respect to the axes of the ellipse. Expressions for the mode-II and mode-I11
stress intensity factors at location ¢, are [102]:

Kyp= - ( 4’;/2((12 sin?¢ + b2 cos2¢)_1/4(cB sing + aAcos¢) , (D7)
ca
Ky = L—l—lz—c&l?);—/;-)—(az sin®¢ + b? cosqu)*l/‘l(cA sing — aBcos¢) , (D8)

where u is the shear modulus, and quantities A and B equal

A = ca’k?T cosw (DY)
44| k2 - ER) + vk 2K )|
B = ca’k?T sinw (D10)
4u[ (k2 + vk"DER) - vk'2K(k)|
where
2 '
B =1-(%), and k? + 22 = 1. (D11)

Solutions to complete elliptical integrals of the first and second kinds, represented re-
spectively by E(k) and K(k), are available through many commercial mathematical soft-
ware packages, and are tabularized in standard references such as Abramowitz and
Stegun [2].
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Appendix E

Constitutive Relations for
FGM Interaction-Integral Terms

E.1 Constitutive and compliance tensors

Constitutive relations for an isotropic elastic material under isothermal mechanical

loading relate stress components, ¢, to strain components, &., according to

i ij?
0= Agpp0,+ 2ue; (e.g. Fung, 1965). Here, ijk =1, 2 or 3, and the repeated index implies
summation. The symbol 6;; is the Kronecker delta, and E = E(x) and v =v(x) are Young’s

modulus and Poisson’s ratio for the FGM. The Lamé parameters A and u are

_ vx)E(x) Ex)

1 + v - 2v(x)) 2(1 + v(x) ~
Current formulations of the interaction integral for functionally-graded solids include
the term Cy),q (x)sg)eg), where in this study, sgl)

nents for the actual 3-D field, and egjz) denotes 2-D plane-stress or plane-strain auxiliary

A

and u = (B5)

denotes mechanical strain compo-

fields corresponding to Williams’ solution (Williams, 1957). This term and the relations

expressed in Eq. (64) require the constitutive tensor C,,,(x) to be identical for actual

ijk

(3-D) and auxiliary (2-D) fields. The constitutive relation in matrix form for actual fields
is
(o, | [ + 2  iw Ax) 0o o0 o0 |[ey

o Alx) Ax) + 2ulx) Alx) 0 0 0 €99

Os3 | _ Ax) Ax) Ax) + 2ulx) 0O 0 0 ¢33 | (B6)

012 0 0 0 2ux) 0 0 €19

O23 0 0 0 0 2ulx) 0 €93

J1a 0 0 0 0 0 2Zulx) €43
where ¢; are (symmetric) tensor-strain components. With appropriate definitions of

strain components, Eq. (B6) is valid for 3-D actual fields, and 2-D plane-stress and
plane-strain auxiliary fields. Equation (B6) corresponds to plane stress when
£33 =V(e 1+ E99)/w—1), and gy3=¢,3=0, and corresponds to plane strain when
£33 = €93 = £,3 =0. Therefore, for isotropic elastic functionally-graded material, the gen-

eralized Hooke’s law for 3-D actual and 2-D auxiliary fields is
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where the constitutive tensor Cjj;(x) is identical in both expressions. This permits the

straightforward computation of Cyy;, ®)eye” in Eq. (64).

The interaction-integral formulation used in this work defines strain components
as the product of the compliance and auxiliary-stress tensors, e = Sijkl(x)az;"‘. The
compliance relations are &;= —10,,,0,,/(2u(34 + 2u)) +1/2u0; (Fung 1965). Thus for
auxiliary fields, the compliance relationships may be expressed as

& 1 —v® —vx) 0 0 0 5ot
€5 -v@) 1 —vx) O 0 0 e

&3 | = E(I;) ~vlw) — i) 1 0 0 0 A
€15 0 0 0 l+v® 0 0 g

€93’ 0 0 0 0 1+vx) O o

£13_| | 0 0 0 0 0 1+v@)| |0ty |

where g5 are (symmetric) tensor-strain components. Appropriate stress definitions
make Eq. (B8) valid for 3-D actual fields, and 2-D plane-stress and plane-strain auxilia-
ry fields. Equation (B8) corresponds to plane stress when 045" = 055" = 05" =0, and cor-
responds to plane strain when ¢35° =v(0{j* + 045"), and 045* = 01%* = 0. Therefore, for iso-
tropic elastic functionally-graded materials, the compliance relation for 3-D actual and
2-D auxiliary fields is

& = Sijkl(x)akl , and sz.”" = Sijkl(x)aZ';". By

E.2 Derivatives of constitutive- and compliance-tensor components

For the incompatibility formulation, derivatives of constitutive and compliance tensor
components are necessary for the evaluation of Cijkl, 1 (x)ag
@ . According to the method described in Section
4.4.2, this procedure requires explicit derivatives of the constitutive and compliance

e gjz) and auxiliary strain de-
rivatives 82.].2’)1 = Syp1 (x)ol(fl) +8u®o

tensor components with respect to material properties E(x) and v(x). The matrix repre-
sentations in the Appendix E Section E.1 have six non-zero components. Derivatives of
the constitutive matrix components are

OA + 2u) _ (1 - v(x) 04 +2u) _  2E@)(2 — v(x))
oE(x) (1 + vE)(1 - 2v(x))’ vix) 1+ v(®)2(1 — w(x))?

A _ v(x) od_ _ _ E@Q + 2v)?)
0E(x) (1 +vx)(1 - 2v))’ wvx) (1 + v@)21 - 2vx)?2’
2u _ 1 2u _ - E@)
0E@) (1 +v®)’ w) (1 + v@)?
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Derivatives of the compliance matrix components are

9 (1 )\_ -1 i ( 1 ) _ 0
IE@)\E®)] E@x)2’ v(x) \E(x) ’

i [—v@®)) _ &) ? (—v(x)) _ -1
dE(x)\ Ex) Ex)2’ ovix)\ E@) Ex)’

9 (L+vm) _ — 1 +vk) 9 (1+v(x))= 1
JE@)\ E) Ex)? ' o\ E@X) E@®)’
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