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Abstract

Asphalt concrete is a quasi-brittle material that exhibits time and temperature dependent
fracture behavior. Softening of the material can be associated to interlocking and sliding
between aggregates, while the asphalt mastic displays cohesion and viscoelastic properties.
To properly account for both progressive softening and viscoelastic effects occurring in a
relatively large fracture process zone, a cohesive zone model (CZM) is employed. Finite
element implementation of the CZM is accomplished via user subroutines that can be used
in conjunction with general-purpose software. The bulk properties (e.g. relaxation modulus)
and fracture parameters (e.g. cohesive fracture energy) are obtained from experiments. In
this study, artificial compliance and numerical convergence (which are associated with the
intrinsic CZM and the implicit finite element scheme, respectively) are addressed in detail.
New rate-independent and rate-dependent CZMs, e.g. a power-law CZM, tailored for frac-
ture of asphalt concrete are proposed. A new operational definition of crack tip opening
displacement (CTOD), called d5, is employed to considerably minimize the contribution of
bulk material in measuring fracture energy. Predicted numerical results match well with
experimental results without calibration. Simulations of various two- and three-dimensional
mode I fracture tests, e.g. disk-shaped compact tension (DC(T)), are performed consider-
ing viscoelastic effects. The ability to simulate mixed-mode fracture and crack competition
phenomenon is demonstrated in conjunction with single-edge notched beam (SE(B)) test
simulation. The predicted mixed-mode fracture behaviors are found to be in close agree-
ment with experimental results. Fracture behavior of pavement under tire and temperature

loadings is explored.
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Chapter 1

Introduction

Asphalt concrete has various features which distinguish it from other materials. Bulk (back-
ground or volumetric) material of asphalt concrete shows viscoelastic effects and material
gradients due to asphalt binders and oxidative hardening, respectively. Asphalt concrete
shows quasi-brittle behavior and time and temperature dependence with respect to fracture
behavior. These aspects have been quite difficult for researchers and engineers to exam-
ine and classify. This thesis addresses how to properly account for these issues in order
to increase understanding of asphalt concrete fracture behavior and to reasonably predict
experimentally-derived responses.

This chapter presents an overview of the project. Crucial aspects in modeling asphalt
concrete and pavement in context of bulk material and fracture characterizations are intro-
duced. Then, research objectives of this study are provided, followed by a brief presentation

of the thesis organization.

1.1 Overviéw

Reflective cracking has occurred in nearly all types of asphalt overlays, whether placed on
existing asphalt or concrete pavements. Due to mechanical and environmental loadings,
movements take place at its joints or pre-existing notches, and as a result, cracks start to
grow from existing joints or cracks. Reflective cracking in overlays causes water penetration

thereby weakening the foundation of the pavement structure and contributing to increased
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roughness and joint deterioration. A number of studies have been conducted in an effort
to minimize or delay the occurrence of reflective cracking. However, earlier attempts were
not successful in mitigating reflective crack nor did they provide a significant economic
benefit [18, 76, 82].

Recently, SemMaterials (previously Koch Materials) has developed a promising reflec-
tive crack control treatment, called STRATA reflective crack relief system (RCRS) (see
Figure 1.1). The STRATA RCRS is a highly strain-tolerant interlayer, which protects the
more brittle asphalt overlay from stress intensities caused by existing jointé or cracks. The
STRATA is composed of a premium polymer modified asphalt binder at a high asphalt con-
tent in a dense fine aggregate mixture. Based on a performance-based specification, the mix
is designed and certified using the flexural beam fatigue test. This system has been placed
in the field and most treated sections have shown relatively better performance compared
to untreated control sections. However, the fracture mechanisms in the system are not well
understood. This problem needs to be investigated from a fundamental, systematic and in-
depth point of view. Thus, the goal of the GOALI* project [94] is to address this problem by
means of an integrated approach involving experiments, numerical and theoretical analysis,

computational modeling and simulation, parametric study and field validation.

Figure 1.1: Illustration of STRATA ductility [94].

The author’s role in this project is to recognize important factors affecting asphalt con-

crete fracture and pavement responses in context of bulk (background) and fracture char-

1GOALI: Grant Opportunities for Academic Liaison with Industry
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acterizations and to properly address the relevant factors in the analysis (see Figure 1.2)

including
e Material gradient due to oxidative hardening of the asphalt surface course [79].
e Time and temperature dependence in bulk and fracture.
o Quasi-brittle behavior (laboratory tests and pavement system).

These aspects will be covered throughout the thesis in detail.

Asphalt concrete pavement

Bulk characterization
- Viscoelasticity
- Material gradient

Fracture characterization
- time and temperature dependence
- quasibrittle behavior

Figure 1.2: Asphalt concrete characterization.

1.2 Bulk material behavior

Time and temperature dependence as well as material gradient of asphalt concrete bulk
material are regarded as crucial aspects and, as a result, need to be properly taken into
account in order to have a better understanding of asphalt concrete and pavement responses.
Material gradient can be treated using graded finite elements, which initially were developed
and applied to functionally graded materials or FGMs. Viscoelastic effects are considered

by means of the use of hereditary integral formulation.
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1.2.1 Graded finite elements

The graded element incorporates the material property gradient at the size scale of the
element, while the homogeneous element, which has been used in traditional layered analysis
of pavement [85], produces a stepwise constant approximation to a continuous material
property field such as the one shown in Figure 1.3. Graded elements are implemented by
means of direct sampling properties at the Gauss points of the element [63, 112], as illustrated

by Figure 1.4. The finite element stiffness matrix relations can be written as [52]
Ku=f (1.1)

with
K = / BTD(x)Bd (1.2)
Q
where u is nodal displacement vector, f is the load vector, B is the strain-displacement
matrix which contains gradients of the interpolating functions, D(x) is the constitutive

matrix (variable), and Q is the domain of element. In the present work, the elasticity matrix

D(z)= D(z,y) is assumed to be a function of spatial co-ordinates.

E(z)

(b) (c)

Figure 1.3: Homogeneous versus graded finite elements: (a) property variation along one
coordinate axis (z); (b) homogeneous elements; (c) graded elements. Notice that the property
of the homogeneous elements corresponds to the property at the centroids of the graded
elements. Also notice that F(z) is Young’s modulus, which is a function of 2.

zZ

The integral in Eq. (1.2) is evaluated by Gauss quadrature, and the matrix D(x) is spec-

4
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P(x,y)

L.

X

Figure 1.4: Graded element with direct sampling of properties at the Gauss points. The
notation P(x,y) denotes a generic material property such as Young’s modulus (E(x,y)) and
Poisson’s ratio (v(x,y)) in isotropic elasticity analysis.

ified at each Gaussian integration point. Thus for two-dimensional problems, the resulting

integral becomes:

N N
K = Z Z Bz;DijBijJijwiwj (13)

i=1 j=1

where the subscripts i and j refer to the Gaussian integration points, J;; is the determinant

of the Jacobian matrix, and w; and w; are the Gaussian weights.

1.2.2 Viscoelasticity

The constitutive law for isotropic viscoelasticity in the form of a hereditary integral formu-
lation is [2, 26, 128§]

4 t

oy(t) = / 2G(E — ¥)ésydt + 5 / K(€ = )émedt, (1.4)
_ 0

0
where K and G are bulk and shear relaxation moduli, respectively, and are functions of
the reduced time £. The superscripted dots denote differentiation with respect to time ¢.
The symbol d;; is the Kronecker delta, and &g and e;; are components of the mechanical
volumetric and deviatoric strains, respectively. The bulk (K) and shear (G) relaxation
moduli can be defined individually using Prony series representation

K(§) = Koo + Z Kiexp(—¢/tF) G(&) = Goo + Z Giexp(—¢/1F), (1.5)

i=1
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where K., and G, are the long term bulk and shear moduli, respectively. In general, the
material has a different relaxation time of 7% and 7€, and different moduli of K; and G;,
and a variable number of Prony series parameters ending in ng and ng. In this study, all
relaxation is assumed to occur in the shear mode [99).

Two approaches are generally considered in order to obtain the relaxation modulus. The
first is to conduct a relaxation test, where constant strain is imposed and a generalized
Maxwell model is used to describe the resulting material response. The second is to conduct
a creep test, where constant stress is imposed and a Voight-Kelvin model is used to describe
creep compliance behavior, which is then used to obtain the relaxation modulus using inter-
conversion schemes [48, 93]. The second approach is preferable when working with asphalt
concrete due to several reasons (e.g. a constant stress creep test is easier to perform than
the constant strain relaxation test) [93].

The creep compliance function using a Voight-Kelvin model is given as

N
D(E) = D)+ Di(1 — e é/m) 4 =, (1.6)

i1 M
where ¢ is reduced time, D(€) is creep compliance at the reduced time, and D(0), D;, 7; and
7, are model constants. The reduced time £ is obtained from t/ar where ¢ is a real time and
ar is a temperature shift factor. Model constants are obtained from creep tests conducted
at multiple temperatures, and shift factors are evaluated from shifting the compliance versus
time curve at different temperatures in a log scale to establish a smooth, continuous curve.

Interconversion of the time dependent creep compliance function of Eq. (1.6) yields a

relaxation modulus given as
N+1

B) =) Ee/m, (1.7)

where E() is a relaxation modulus at the reduced time of ¢, and E; and 7; are model
constants for the master relaxation modulus curve. Figure 1.5 shows a generalized Maxwell

model, which is a widely used constitutive model to describe the linear viscoelastic behavior
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of asphalt concrete.

It '“"'c '1: =

2 5

_|’C

Figure 1.5: Viscoelasticity in asphalt concrete: Generalized Maxwell model (10 parameters)
for viscoelastic characterization.

1.3 Fracture characterization

A number of studies have been conducted to obtain better understanding of cracking
mechanisms and to tackle the cracking problem in asphalt concrete. Majidzadeh et al. [78]
made an early attempt to study crack propagation using fracture testing. Abdulshafi and
Majidzadh [3] applied the J-integral concept to fatigue and fracture of asphalt mixtures in
conjunction with the disk-shaped specimen. Kim and El Hussein [65] used three point bend-
ing tests to explore fracture behavior of asphalt concrete and evaluate fracture toughness of
asphalt concrete at low temperatures. Jacobs et al. [54] employed Paris’ law to analyze crack-
ing in asphalt concrete and to obtain more insight into the crack propagation and resistance
of asphalt mixes. Bhurke et al. [14] developed a test protocol to calculate fracture toughness
of asphalt concrete at low temperatures. Castell et al. [20] investigated fatigue crack growth
in laboratory beam specimen and layered pavements using the code Franc2D/L. Addition-
ally, several other researchers [90, 111, 119] have applied fracture mechanics principles in the
study of cracking in’ asphalt concrete laboratory specimens and pavements.

However, a number of studies conducted thus far do not account for both quasi-brittle
behavior and viscoelastic effects inherent in asphalt concrete properly. Asphalt concrete
is considered a quasi-brittle material due to the relatively large fracture process zone size

with respect to the structure size. This aspect makes it very difficult to apply linear elastic

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fracture mechanics (LEFM) to asphalt concrete fracture study, because thle fracture process
zone in which progressive softening occurs is no longer inside of the K-dominance region where
stress is proportional to 1/+/r. Section 1.3.1 will provide detailed explanation on quasi-brittle
behavior. Furthermore, asphalt concrete exhibits time and temperature dependent fracture
behavior. Unfortunately, this behavior is not well understood due to limited experimental
data and understanding. Detailed issues on viscoelasticity will be presented in Section 1.3.2.

This work employs a powerful numerical scheme, a cohesive zone model (CZM), to inves-
tigate fracture behavior of asphalt concrete because bot'h progressive softening effects and
viscoelastic effects occurring in a relatively large fracture process zone can be taken into
account properly by means of a suitable constitutive model between displacement jump and
the corresponding traction. The early conceptual works related to the cohesive zone model
(CZM) date back to the early 60s and were carried out by Barenblatt [7, 8], who proposed
the CZM to study perfectly brittle materials and Dugdale [36], who adopted a fracture pro-
cess zone concept to investigate ductile materials exhibiting plasticity. During the 90s, leaps
were made as a result of the pioneering works by Needleman and his co-workers [86, 144],
and Camacho and Ortiz [19]. Xu and Needleman [144] proposed a potential-based cohesive
zone model in which cohesive elements are inserted into a finite element mesh in advance,
which follow an exponential cohesive law. In such a scheme, as displacement between cohe-
sive elements increases, the traction initially increases, reaches a maximum, and then decays
monotonically. However, the model by Xu and Needleman induces artificial compliance due
to the elasticity of the intrinsic cohesive law. To alleviate such problems, Geubelle and
Baylor [41] and Espinosa and Zavattieri [39] adopted bilinear CZMs, and Song et al. [124]
proposed a power-law CZM to reduce the compliance by providing an adjustable initial
slope in the cohesive law. Another noteworthy CZM is the extrinsic cohesive law proposed
by Camacho and Ortiz [19] where a new surface is adaptively created by duplicating nodes
which were previously bonded. The extrinsic CZM eliminates the artificial compliance in-

herent in the intrinsic CZM. Recently, Paulino and his co-workers developed a new data
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structure to facilitate the insertion of cohesive elements in conjunction with the extrinsic
CZM [22, 23]. Subsequent investigations have been carried out to address issues of ductility
fracture [34, 74, 108], brittle fracture [43, 145], concrete fracture [10, 37], asphalt concrete
fracture [122], fracture in functionally graded materials [55, 56, 96], dynamic crack propaga-
tion [109, 120, 146, time discontinuity [91], fatigue [77, 136], interfacial fracture [24, 41, 100],
thermomechanical behavior [15, 29] and mixed-mode fracture [130].

A relatively small number of studies have been performed investigating viscoelastic frac-
ture. Early works in this area include the important contributions of Knauss [67] and
Schapery [113], who developed theories for macroscopic cracks in viscoelastic media. More
recently, a number of different attempts have been made to consider rate effects in a material
separation model. Knauss and Losi [68] combined a viscoelastic constitutive model with a
damage function. Rahulkumar et al. [100] and Allen and Searcy [4] adopted a hereditary
integral approach, which is identical to the formulation for the bulk material, in conjunction
with a traction-separation function. Additionally, Bazant and Li [12] formulated a rate-
dependent cohesive crack model. Finally, Xu et al. [141] has also proposed a rate-dependent
CZM, having both rate-independent and rate-dependent material parameters which are de-

termined from experiments and numerical analysis.

1.3.1 Quasi-brittle behavior

Fracture behavior of asphalt concrete deviates from LEFM considerably due to the relatively
large fracture process zone in which progressive nonlinear softening behavior, e.g. microc-
racking and void formation, occurs. This zone is surrounded by a non-softening nonlinear
zone characterized by hardening or perfect plasticity. In general, fracture behavior of all ma-
terials can be categorized as brittle, ductile and quasi-brittle, depending upon the relative
sizes of the softening and hardening zones with respect to the size of the structures [13] (see
Figure 1.6).

In the first material type (see Figure 1.6 (a)), the size of the fracture process zone is
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bulk material

Softening

Hardening

Softening

(2) (b) ©
Figure 1.6: Three types of fracture behavior [13]: (a) brittle; (b) ductile and; (c) quasi-brittle.

relatively small compared to the structure size. With brittle materials, the entire fracture
takes place in very small region so that LEFM can be generally applied. Plexiglass, glass
and brittle ceramics are considered brittle materials. In the second type (see Figure 1.6 (b)),
ductile material, the size of the fracture process zone where material separation occurs is
still small, although hardening zone is not small. This kind of behavior is effectively treated
by the elasto-plastic fracture mechanics. Many ductile metals fall into this category. The
behavior of quasi-brittle materials (see Figure 1.6 (c)) shows the relatively large fracture
process zone size compared to the structure size. A major part of the nonlinear fracture
process zone experiences progressive softening due to microcracking and crack initiation and
propagation. Various approaches, such as a CZM, are undertaken to handle this behavior

properly. Concrete, rocks, fiber composites and asphalt concrete are all of this type.

1.3.2 Viscoelastic fracture

Figure 1.7 illustrates viscoelastic behavior including bulk and fracture. The outermost zone
is assumed to be viscoelastic, while the intermediate zone is viscoelastic hardening. The
innermost zone is the viscoelastic fracture process zone in which the softening of material

differs at different rates and temperatures. The relative contribution of each zone to fracture
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Figure 1.7: Time dependent behavior of the zones: (a) rate-dependent hardening; (b) rate-
dependent softening.

behavior is not well understood. Moreover, the contribution of time and temperature to
material separation is not well known either. As a result, relatively a few studies have been
carried out to investigate time and temperature dependent fracture behavior in viscoelastic
materials. In addition, assumptions and calibrations played a considerable role in their
studies with varying degrees of success under particular conditions.

For quasi-brittle material, two possibilities must be examined, excepting case 1 in which
time and temperature dependence is neglected in both bulk and fracture materials (see
Chapter 4). In case 2, the outer zone is linear viscoelastic and the fracture process zone
is time and temperature independent, as presented in Chapters 5 and 6. In case 3, both
the outer zone and the fracture process zone are time and temperature dependent, which is

addressed in Chapter 7.

Table 1.1: Various cases for fracture modeling in asphalt concrete using a CZM.

CASES | Bulk (background) Cohesive (fracture)
Case 1 | No viscoelastic effects | No viscoelastic effects

Case 2 Viscoelastic effects No viscoelastic effects
Case 3 Viscoelastic effects Viscoelastic effects
11
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1.3.3 Cohesive zone model

The cohesive zone model provides a computationally efficient way to simulate damage oc-
curring in a process zone located ahead of a crack tip (see Figure 1.8). This approach, which
involves nonlinear constitutive laws described by displacement jump and the correspond-
ing traction along the interfaces, provides a phenomenological model to simulate fracture
behavior such as crack nucleation, initiation and propagation.

Figure 1.8 illustrates the CZM concept in the opening mode (pure mode I) where ¢, and
0n, respectively, denote normal traction and normal opening displacement, o, is material
strength, and . denotes displacement corresponding to zero traction. The true (material)
crack tip indicates a point where traction is zero and the cohesive (fictitious) crack tip is a
point where the traction reaches a maximum. The cohesive zone (or fracture process zone) is
defined as the region between the true crack tip and the cohesive crack tip where complicated
fracture behaviors, including inelasticity, occur. The cohesive surfaces are joined together by
a cohesive traction, which depends upon the displacement jump across crack faces. As the
displacement jump increases due to an increase of external force or compliance in structure,
the traction first increases, reaches a maximum, and then decays monotonically to zero.
The material-separation response depends on the critical traction, critical displacement, and

fracture energy, which represent the cohesive parameters, and cohesive law softening shapes.

1.3.4 Fracture energy

A very imp'ortant material property that is required for the CZM is the cohesive fracture
energy (or the energy required to fully separate the material). For concrete, which is quasi-
brittle material like asphalt concrete, the 1985 RILEM committee on fracture mechanics of
concrete has recommended a three—poipt bend specimen in order to measure the fracture
energy [27]. The recommendation is based on the fictitious crack model by Hillerborg et
al. [47]. The fracture energy absorbed by the beam is represented by the area under the load

and the load line displacement (LLD). Note that, in this case, the load and the displacement

12
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Figure 1.8: Schematic representation of (a) the cohesive zone concept and (b) the normal
opening displacement (4,) and the normal traction (¢,) along a cohesive surface. Notice
that o, and J. are the material strength and the critical displacement, respectively, which
are cohesive parameters.

are both downward. For asphalt concrete, Wagoner et al. [133, 134] proposed two laboratory
fracture tests, i.e. single-edge notched beam (SE(B)) test and disk-shaped compact tension
(DC(T)) test, in order to evaluate fracture energy. Wagoner et al. [133, 134] utilized the
crack mouth opening displacement (CMOD) to evaluate fracture energy, because the CMOD
is a measurement required to perform the experiment. The fracture energy is estimated as
the area under the load versus CMOD curve. In the SE(B) test, the loading is imposed
downward (i.e. vertically), while the CMOD opens horizontally. However, the CMOD in
the SE(B) test can be seen as an alternative measurement to the load line displacement
for particular dimensions of the beam. Figure 1.9 illustrates schematic drawings of the
undeformed shapes, and deformed shapes of a potential SE(B) test when the crack reaches
the boundary of the beam specimen. Note that recoverable strain energy is minimal when
crack reaches the top edge of the beam specimen. Using the geometrical information and
considering rigid body motion, one obtains the following relationship between the CMOD

and the load line displacement as

L:2L =CMOD/2: Load line displacement (1.8)
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&  CMOD = Load line displacement

Thus, the fracture energy represented by the area under the load versus the CMOD curve

can be considered as a candidate fracture energy.

|A

! 2L oL '

Undeformed shape

N

Load line displacement (LLD)

1
Deformed shape |<_>|

CMOD=LLD

Figure 1.9: Schematic illustration of the SE(B) test. Note that the deformed shape of the
SE(B) indicates a rigid body mode.

1.3.5 Convergence and artificial compliance issues

In spite of the great successes of a CZM, numerical convergence problems and artificial
compliance are unavoidable when an implicit finite element method and an intrinsic CZM,
respectively, are employed. Unlike an explicit finite element method where the evaluation
of the tangent stiffness matrix is not nécessary in solving a boundary value problem, when
an implicit finite element scheme is adopted, numerical convergence problems occur because

a cohesive law slope (i.e. dt,/04,), which is used for the evaluation of the tangent stiffness

14
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matrix, changes from positive to negative, as normal opening displacement (4,) increases
(see Figure 1.10). This problem is rarely observed when cohesive elements are inserted
along a predefined line. Numerical convergence problems, however, are more pronounced
when a number of cohesive elements are inserted over an area in absence of known crack

paths [122, 127]. Section 5.4 provides a discussion of numerical convergence.

Figure 1.10: A schematic drawing of a cohesive law in terms of normal opening displacement
(0,) and normal traction (t,).

Unlike an extrinsic CZM in which cohesive elements are inserted adaptively [19, 22, 23],
artificial compliance is inherent in the intrinsic CZM due to a pre-peak slope. To address
CZM compliance, the simple one-dimensional problem with bulk and cohesive elements is
adopted (see Figure 1.11). F denotes the force, h is the length of the bulk material, u is
the stretch of the bulk material, d,, is the displacement jump between the cohesive surfaces,
and A is the area of the block upon which F is applied. Imposing an equilibrium condition

between bulk and cohesive elements with unit area A [66], one obtains
Ee =ké, (1.9)

where F is Young’s modulus, € is strain of the bulk material and & is a constant of proportion-
ality between displacement jump and the corresponding traction, i.e. stiffness. Combining

e =u/h and E, = 0 /ety = oh/{u + d,) with Eq. (1.9), one obtains the effective modulus

15
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(E.) under mode I condition as follows

h h 1
E.=E E E [1 - 1—,4 =E , (1.10)

“utd, hRIEJE

E

where o, and d.. denote the maximum traction (finite material strength) and the displace-
ment at the peak traction, respectively. o./d.. represents the pre-peak slope. It is important
to note that in order to avoid confusion between d, and d.., d.. is defined as displacement

corresponding to the peak traction, while 4. is displacement at zero traction in this thesis.

"Figure 1.11: One dimensional problem with bulk and cohesive elements.

Figure 1.12 shows the effective modulus of a one-dimensional specimen as a function of
h, 8, and o.. From this result, we observe that as the ratios o./F and h/d. increase,
the compliance due to the pre-peak slope of the cohesive law is negligible, indicating that
the effective modulus (E,) of the specimen approaches the properties of the continuum (E).
This is intuitive :beca,use as the ratio of o./F and h/d, increases, the relative contribution of
cohesive elements to global responses decreases, and as a result, the amount of artificially in-
duced compliance becomes small. Section 5.2 will discuss compliance inherent in an intrinsic

CZM in detail.
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Figure 1.12: Effective modulus as a function of A, é.., and o..

1.4 Research objectives

This thesis investigates various crucial aspects in modeling asphalt concrete and pavement
in terms of bulk (background) material and fracture characterizations. The procedures ex-
amined herein include an application of graded elements to pavement, an improvement of
current rate-independent and viscoelastic CZMs, two and three-dimensional crack propa-
gation simulations, and a comparison of numerical results with experimental results. The

detailed research objectives of each chapter in this study are summarized as follows:

e To implement graded elements into the ABAQUS user material (UMAT') subroutine
and to verify the implementation. To apply graded elements for pavement analysis
considering aging related stiffness gradients due to oxidative hardening of the asphalt

surface course.

e To implement a cohesive zone model by means of ABAQUS user element (UEL) ca-

pability. To verify the implementation using a double cantilever beam (DCB) test.

17
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To perform sensitivity analysis to cohesive parameters. To numerically demonstrate
that cohesive element sizes chosen in this study are small enough to capture nonlinear
behavior properly. To compare a force (P) versus crack mouth opening displacement

(CMOD) curve of numerical results with that of experimental results.

e To investigate compliance due to a pre-peak slope of intrinsic CZMs in conjunction with
asphalt concrete material. To check energy balance using disk-shaped compact tension
(DC(T)) test simulation. To perform a mixed-mode single-edge notched beam (SE(B))
test simulation, in which cohesive elements with a regular pattern are inserted over an
area to allow cracks to propagate in any general direction, considering viscoelastic
bulk (background) material. To compare the predicted mixed-mode crack trajectory
with experimental results. To explore the influence of finite element discretizations on
numerical convergence. To explore crack competition phenomenon between nucleation

and initiation.

e To improve the present power-law CZM to 1) reduce artificial compliance, 2) model
general cases, e.g. mixed-mode and three-dimensional, and 3) have various choices in
terms of CZM softening shapes. To introduce do5 as an operational definition of CTOD
and employ it when evaluating cohesive fracture energy. To perform three-dimensional
DC(T) test simulation. To propose a suitable CZM softening shape for asphalt concrete

fracture modeling. To examine the influence of CZM softening shapes.

e Toillustrate motivations and challenges in developing a viscoelastic CZM. To develop a
viscoelastic CZM from the activation energy theory of the rate process of bond rupture
in conjunction with reasonable assumptions and simplifications. To propose appropri-
ate procedures to evaluate several parameters accounting for time and temperature
effects. To perform sensitivity analysis to several parameters of the viscoelastic CZM.
To validate the proposed viscoelastic CZM and procedures by comparing predicted

numerical results with experimental results.
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e To demonstrate the ability of a cohesive zone modeling technique to perform pavement
crack propagation simulation and to investigate pavement fracture behavior subjected

to various tire and temperature loadings.

1.5 Thesis organization

This thesis is organized as follows: Chapter 2 addresses the application of graded elements
to pavement in which Young’s modulus is graded due to oxidative hardening. Chapter 3 pro-
vides theoretical and numerical aspects of three cohesive zone models adopted in this study.
Chapter 4 describes fracture modeling Lising the exponential model without consideration for
viscoelastic effects in both bulk and fra;,cture. Chapter 5 investigates asphalt concrete frac-
ture behavior considering viscoelastic 5ulk material in conjunction with the bilinear CZM.
Chapter 6 improves the previous powexf—law CZM and examines the usage of g5 for asphalt
concrete fracture modeling. Chapter 7 develops a novel viscoelastic CZM from the activation
energy theory of the rate process of bond rupture in conjunction with reasonable assump-
tions and simplifications. Chapter 8 demonstrates fracture modeling in pavement subjected
to tire and temperature loading using a CZM. Chapter 9 presents summary, conclusions and
suggestions for future work.

Each of these chapters is a self-contained, stand-alone study. At the same time, as the
number of chapter increases, one sees overall research progress. For example, we explore
asphalt concrete pavement responses without fracture (see Chapter 2), then investigate frac-
ture behavior in asphalt concrete using a CZM (see Chapters 4-7), and finally apply a CZM
to pavement fracture study (see Chapter 8). With respect to a CZM employed for frac-
ture modeling, first we use the potential based exponential CZM (see Chapter 4), then the
bilinear CZM (see Chapter 5) and the power-law CZM we improved in this study (see Chap-
ters 6-8). First, two dimensional analysis is performed (see Chapters 4, 5, and 7) and then
three-dimensional analysis is carried out (see Chapter 6). Regarding viscoelastic effects, we

perform fracture analysis without consideration of viscoelastic effects in both bulk and frac-
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ture (see Chapter 4). Then, we consider viscoelastic bulk materials only (see Chapters 5 and

6) and finally viscoelastic effects in both bulk and fracture (see Chapter 7).
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Chapter 2

Application of graded finite elements
for asphalt pavements

Asphalt paving layers, particularly the surface course, exhibit vertically graded material
properties. This grading is caused primarily by temperature gradients and aging related
stiffness gradients. Most conventional existing analysis models do not directly account for
the continuous grading of properties in flexible pavement layers. As a result, conventional
analysis methods may lead to inaccurate prediction of pavement responses and distress under
traffic and environmental loading. In this chapter, the graded element implementation using
the user material subroutine (UMAT) capability of the finite element software ABAQUS [2]
is verified using benchmark problems. Numerical examples using the UMAT are provided

to illustrate the benefits of using graded elements in pavement analysis.

2.1 Introduction

Modern pavement design procedures involve structural modeling of the layered pavement
system, as a tool to select and optimize materials and layer thickness to satisfy the design
criteria for pavement serviceability under anticipated traffic loads and environmental con-
ditions. Ideally, the structural model used for design will accurately estimate the critical
responses in the pavement system and predict, as a function of time, distress development

such as fatigue, fracture and permanent deformation. There are many complexities to con-
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sider in properly modeling flexible pavement systems, including: non-linear material behav-
ior, variable interface conditions, complex tire load patterns, and temperature and asphalt
aging effects. Most of these complexities can be adequately addressed by using finite element
modeling approaches [16, 60]. It can be argued that the most important aspect of flexible
pavement modeling is the proper treatment of near-surface materials, since this region is in
direct contact with vehicular loads and environment. Proper analysis is critical in the design
of layer thickness and selection of surface materials to avoid premature failure.

One shortcoming of commercially available finite element codes at the present time is the
inability to properly handle severe material property gradients within elements. In particular,
oxidative hardening of the asphalt surface course is known to create a severe modulus gradient
with depth [79]. Of course, one benefit of the finite element method is the ability to assign
different material properties to elements in the mesh and as a result, one can approximate a
material property gradient by assigning different properties to successive layers in the model.
In pavement, this layered approach has been quite common [85, 60, 111]. The following
quotation extracted from the mechanistic-empirical pavement design guide [85] is a good
example illustrating the prevalence of the layered approach in the analysis of pavements.
“The original pavement structure defined by the user usually has 4 to 6 layers. However,
the Design Guide software may subdivide the pavement structure into 12 to 15 sublayers for
the modeling of temperature and moisture variations. The Design Guide software performs
the sublayering internally based on the material type, layer thickness and the location of
the layer within the pavement structure.” However, this approach requires a very fine mesh
to achieve accuracy, which can lead to excessive solution times. This is particularly critical
in pavements, where three dimensional modeling is generally required, due to geometric
asymmetries [59].

Thus, it is desirable to model the material property variation at the element level so that
coarser meshes can be used, while maintaining accuracy. Recently such elements (called

graded finite elements) have been developed and applied to functionally graded materials or
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FGMs [63, 112]. Significant advances have been made in the analysis of FGMs using graded
finite elements including fracture mechanics investigations involving stress intensity factors
and T-stress evaluation [62, 64].. Unlike traditional laminated composites, in FGMs the
material grading is continuous. This has the benefit of avoiding stress concentration and
delamination, leading to a more durable material. Although the initial emphasis in FGM
development was for thermal barrier coating for spacecraft [49], many other applications
have followed. These include: nuclear breeder reactors [53], high density magnetic recording
media [126], and biomaterials, such as dental and other implants [88, 137]. Although an
aged asphalt pavement is graded by environmental causes rather than by design, many of the
analysis tools used to analyze FGMs can be applied or modified for use in flexible pavement
analysis and design. Such is the motivation for the current work.

Thus, the graded finite elements are advantageous for two main reasons: 1) to model
material gradient in a single pavement layer such as the stiffening effect induced by aging
of the top asphalt layer; 2) to model material gradient between two adjoining layers by
means of a smooth transition of material properties (rather than a sharp transition as in
the traditional approach). The graded interlayer simulates the actual merit of materials
that may occur in engineering practice. The graded interlayer leads to smoother and more

reliable interfacial stress.

2.2 Spectral analysis of graded finite elements

A brief introduction on graded finite elements is presented in Section 1.2.1. A comparison
between homogeneous and graded elements by means of a simple element using spectral
analysis reveals further differences between elements. Consider a square element of unit

length with the origin at the left-bottom-corner. The Young’s modulus is given by

E(z) = Ee* (2.1)
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where /1 = 1.0 and 8 = 0.0 for the homogeneous material case and § = 1.0 for the
nonhomogeneous material case. Figures 2.1 and 2.2 illustrate a comparison between the two

cases for the Q4 element. The following observations can be made

e As expected, the number of rigid modes (3) and spurious deformation (zero energy)
modes (e.g. 2 spurious modes for Q4 with 1x1 Gauss integration) is the same for both

cases (homogeneous and graded elements).

e Symmetry, as expressed by the deformation modes (eigenvectors) is broken for graded

elements, i.e. there are no repeated eigenvalues.

o The total energy (U; = A\;/2,i = 1...NDOF's) increases for the FGM with 8>0. Here
NDOFss indicates the number of degree of freedom in the element and ); indicates the

i — th eigenvalue.

0 0 0 0.2884

0.2884 0.3846 0.3846 0.9615

Figure 2.1: Eigen-analysis for Q4 (2x2 Gauss quadrature) and 8 = 0 (homogeneous mate-
rial). The numbers indicate the eigenvalues ()\;).

2.3 Verification of UMAT

Analytical solutions [38] for isotropic FGMs where material properties vary exponentially

along the z direction are used as a reference to verify the implementation of the UMAT.
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0.4660 0.6859 0.6902 1.6822

Figure 2.2: Eigen-analysis for Q4 (2x2 Gauss quadrature) and 8 = 1 (FGM). The numbers
indicate the eigenvalues (J;).

Moreover, by means of this example, the benefit of using the graded element approach is
illustrated by comparing unaveraged nodal stresses obtained with graded elements with those
obtained from the layered approach.

Consider a rectangular finite plate of width W = 9 and height H = 9 as illustrated in
Figure 2.3. A constant traction of o; = 1 perpendicular to the material gradation is applied
to the top edge and displacement boundary conditions, us = 0 for the bottom edge and
u; = 0 for the left bottom node, are prescribed (see Figure 2.3 (b)). Consistent units are
employed. The finite element mesh consists of 81 Q8 elements, which are either graded or

hombgeneous elements. The elastic modulus varies exponentially along the x direction

E(z) = E(o)gﬂx, B = Vlv' log [%] (2.2)

where E(0) = 1, E(W) = 8, and § is an independent material nonhomogeneity parameter
which has units [length]~!. Therefore 1/8 is the length scale of nonhomogeneity. A constant
Poisson’s ration of 0.3 is employed. Plane stress condition and 3 x 3 Gauss quadrature are
adopted.

For tension loading, the compatibility condition, 85§y /0x? = 0, yields strain and stress
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(a)

Figure 2.3: Functionally graded plate: (a) geometry - the domain covered by dotted line
indicates the geometry used in the FEA; (b) a finite plate used in FEA with boundary
conditions and material properties.

fields given by [38]
ey = Az + B, (2.3)

oy () = E'(0)e”*(Az + B), (2.4)

where E'(0) is E(0) for plane stress and E(0)/(1 — v?) for plane strain. The coefficients A

and B are determined from the following equilibrium conditions for the tension loading

W w
/ oyy(x) dr = N and / oy(x)r do = M, (2.5)
0 ‘ Jo

where N is 0;W and M is assumed to be zero. Therefore, the stress distribution is [38]
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BN g, [ (WP —28ePW + W2 + 28

Oyy(z) = Te ePW G2W2 — e2PW | 9efW — |

BV [PV (W22 + 38W — 4) + W22 — 28W + 8] — W — 4 (2.6)
(P — 1)(ePW B2WZ — €28 1 2eBW — 1) : '

_|_

Figure 2.4 compares unaveraged nodal stresses interpolated from stresses at Gauss points
using graded and homogeneous Q8 elements. The abscissa indicates the horizontal distance
from the zero coordinate. The ordinate indicates o,. Bending effects due to both the expo-
nential material gradation and the constant traction perpendicular to the material gradation
lead to the trend that the exact solution first increases and then decreases with the increase
of z (see Figure 2.4). The homogeneous Q8 elements show piecewise variation due to the
stepwise approximation of the continuous material property. However, the graded Q8 ele-
ments show remarkably smooth stress variation and match with the analytical solution quite
well demonstrating the verification of the UMAT implementation. The relatively small dif-
ferences observed between the analytical solutions and the numerical results using the graded
Q8 elements may be attributed to the fact that the analytical solution is derived based on
an infinite plate length, while the numerical results are determined based on a finite length.
Regarding performance of both graded and homogeneous elements, the graded elements are
superior to homogeneous elements due to the following reasons: 1) unaveraged stresses using
layered elements show large differences between the boundary where material property is not
continuous, while graded elements predict almost identical unaveraged stresses at the same
boundary; 2) unaveraged stresses using graded elements show much better approximation to
the exact solution in every element than those using homogeneous elements. Nodal averaging
schemes and refined meshes can improve the performance of the layered approach. However,
averaging of nodal stresses may lead to inaccurate responses especially in the vicinity of
corners, cracks or other discontinuities. Furthermore, refined meshes can increase compu-

tational expense, particularly for three dimensional analysis which is generally required in
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pavement analysis due to geometric asymmetries. Notice that the use of graded elements
leads to averaging or approxzimation process in the material properties (by adopting a vari-
able D matriz - see Eq. (2)) rather than averaging at the end, i.e. after discretization and

solution of the boundary value problem.

1.8 1 T : T
— Analytical Solution
0. Q8 Graded Element
1.6 - - Q8 Homogeneous Element ||
1.4}F
A=1 R. ?\
1.2 [N SN R |
=
t
o

0.8

LIt

E=E(O)exp(Bx)
v=0.3

0.6

04} .
0.2} ﬁ
* X
0 1 1 1 L
o 1 2 3 4 5 6 7 8 9

Figure 2.4: Stress distribution (o,) using Q8 elements for tension loading perpendicular to
the exponential material gradation along the x direction. The inserts show the specimen
before and after deformation.

2.4 Application of UMAT for a pavement system

A numerical example was chosen to coincide with a pavement case study previously
conducted at the University of Illinois involving highway I-155, a four-lane divided interstate
pavement in central Illinois near the town of Lincoln (see Figure 2.5). This pavement section
has received considerable attention because it has shown several surface related problems,
such as block cracking, thermal cracking, and longitudinal surface cracking [51, 75]. I-155
is a full-depth asphalt pavement, with 375 mm of hot-mix asphalt on a lime-stabilized clay

subgrade.
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Figure 2.5: Typical pavement cross-section for Illinois I-155.

Although a detailed case study of I-155 is beyond the scope of this paper, it is hoped
that the theoretical framework and preliminary analysis conducted herein will be of future
benefit for forensic investigations of I-155 and other pavements showing premature distress
development. Early testing of recovered binder from I-155 indicated very severe aging of the
surface. For example, the binder viscosity at 60°C which was approximately 4000 Poise just
after construction, had increased to over 100,000 Poise near the surface after three years in

service.

2.4.1 Input parameters and assumptions

To evaluate the response of the I-155 pavement structure using the graded finite element
approach, a description of the asphalt mixture property gradients as a function of depth
was needed, particularly near the pavement surface where gradients are most severe. Gra-
dients in material properties within a given pavement asphalt arise due to two main effects:
1) oxidative hardening (aging) of the asphalt layer, particularly near the surface and ; 2)

temperature gradients within the pavement, giving rise to material gradients due to the
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extreme sensitivity of asphalt modulus and Poisson’s ratio to temperature. Unfortunately,
insufficient mixture testing of materials obtained at multiple depth in the pavement was
available at the time of this study to completely describe the material property gradients on
I-155. Fortunately, empirical models have been developed by Mirza and Witczak [79] and
Witczak [138]. Thus, they were used to approximate the asphalt concrete material property
gradients based upon asphalt viscosity, pavement age, depth below the pavement surface, air
void content, asphalt content, etc. The severe aging gradients obtained with these models
were found to be consistent with those reported in the experimental field investigations of
Huber and Scherocman [51] and Lippert [75]. Table 2.1 summarizes the inputs used in the

global aging model and modulus prediction model.

Table 2.1: Input Parameters for Global Aging Model Runs to compute asphalt Concrete
Modulus Gradient with Depth. T denotes temperature.

Input Parameters Value
Cumulative Percent Retained on 3/4" Sieve 0
Cumulative Percent Retained on 3/8" Sieve 8.0
Cumulative Percent Retained on 4 Sieve 42.0
Percent passing 200 Sieve 4.6
Volume of Effective Asphalt Content 10.0
Loading Time(sec) 0.1
Mean Average Air Temperature 51.4
Pavement Age in Months 96
In-Place Air Voids(percent) 7
A=(log Penetration at Ty — log Penetration at Ty) [(T1 — T5) 11.0248
VTS=(log log viscosity at Ty — log log viscosity at Ty) [(log Ty — log Tz) || -3.7053

In order to obtain pavement moduli under a realistic temperature gradient, it was nec-
essary to predict pavement temperatures versus depth at I-155. To accomplish this, the
Enhanced Integrated Climatic Model [71], or EICM, was employed along with measured air
temperature at Lincoln, IL at tracked by the Illinois State Water Survey at the University of
Illinois at Urbana-Champaign. The EICM program is a one-dimensional coupled heat and
moisture flow model, which was used in the current study to predict pavement temperature
profiles as a function of measured air temperature, latitude, percent sunshine, emissivity,

surface short wave absorptivity, maximum convection coefficient, wind speed, and several
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other factors. The predicted pavement temperature versus depth for I-155, at 5 AM on July
4, 1997 is given in Figure 2.6. Although the selection process of this specific temperature
event was somewhat arbitrary for the purposes of this analysis, the selected temperature
profile appeared to create a fairly high stiffness gradient (which was desirable from the
standpoint of illustrating differences between the graded element approach and the layered
approach). Temperature profiles from cooler months were found to produce higher overall
pavement stiffness, but much lower stiffness gradients. This is because the mixture stiffness,
as obtained from Witczak [138] modulus prediction model, tends to approach a plateau at
approximately 21GPa. Since all other model coefficients were held constant, this mixture
plateau is caused primarily by a plateau in the binder stiffness master curve as the glassy
modulus is approached. In the case of an aged pavement such as I-155, a very low stiffness
gradient was predicted during the winter months and even portions of the spring months.

Temperature(C)
do 15 2p 2? 30

50F

100

150

2001

2501

Depth below surface(mm)

300

350F

400 ' : '

Figure 2.6: Predicted pavement temperature versus depth for I-155, near Lincoln, Illinois,

at 5 A.M. on July 4, 1997.

Figures 2.7 and 2.8 present the dynamic modulus and Poison’s ratio versus depth based

upon the empirical prediction models of Mirza and Witczak [79] Clearly, the combination of
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temperature and aging gradients creates a large gradient of predicted E* with depth for the
selected conditions, particularly in the first 100mm of depth. Poisson’s ratio is predicted to
increase with depth in pavement. Simple polynomial models were fit, as shown on Figures 2.7

and 2.8, to facilitate input of these parameters into the graded and layered FE models.

Dynamic Modulus, E* (GPa)
o?. 4 6 8 1.0 1? 1.4 1'6 18 20

501
£ 1oor
E
§ 150 <«—— E*~Gradient due to both aging and temperature effects
g Fitted Polynomial Function
)] J
200
g [Asphalt Surface Course ___|}38.1mn
= || 337mm
£ 250} 4
&
a 304mm
300 1
Inf.
350} 1
1=14600mm
400 L L 1 1 L 1 1 H

Figure 2.7: Dynamic modulus versus depth computed from aging, climatic, and modulus
models with fitted function.

2.4.2 Two-dimensional pavement model

A four-lane pavement structure of length 2L = 14600mm with thickness of surface and
binder 374.7mm, thickness of subgrade 304.1mm and thickness of soil 9144mm was analyzed
in conjunction with the UMAT where graded and homogeneous elements were implemented.
To reduce the model size, a symmetry condition was adopted. Displacement boundary
conditions of us = 0 for the bottom edge were prescribed. Normal and shear stresses induced
by a truck tire, based upon measured contact stresses by Myers et al. [84] for a radial tire,
were used. For simplicity, a single radial truck tire was applied to the pavement surface

because the purpose of this analysis is primarily focused on making a relative comparison
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Figure 2.8: Poisson’s ratio versus depth computed from aging, climatic, and modulus models
with fitted function.

between the graded element and layered element approaches. The material properties where
aging and temperature are taken into account were applied to surface and binder courses (see
Figures 2.7 and 2.8). Young’s modulus was taken as E = 138M Pa in the lime-cemented
subgrade and £ = 35M Pa in the soil. Four layered pavement systems were constructed

using 23840 Q8 elements. Plane strain condition was adopted with 3 x 3 Gauss quadrature.

2.4.3 Pavement modeling results

Three strategic evaluation regiohs within the pavement model were examined to quantify
the difference between graded elements and the traditional layered approach as shown in
Figures 2.9 through 2.12. Figure 2.9 illustrates normalized unaveraged horizontal stress pro-
files for graded and homogeneous elements along the depth at the location where maximum
surface tension occurs. The range of stresses in the plot is between 0.2 and 0.52M Pa. It is
located at 2400 mm away from the center of the applied load. The abscissa indicates the

vertical evaluation depth to 40 mm below the surface and the ordinate indicates unaveraged
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horizontal stresses, i.e. o,. Along the boundaries where material properties are not continu-
ous, layered elements predict a large diﬁerence in unaveraged stress, while graded elements
predict almost identical unaveraged stresses, illustrating the superiority of graded elements.
Moreover, surface tensile stresses, which are important in thermal cracking problems, are

underestimated when homogeneous elements are used, as shown in Figure 2.9.

A Y
AY
AN
< \ Center of Applied Loads
0.9 VER
2044 2400
\ d E
* N N Surface & Binder ”
[723 0.8 N - b
9 Subgrade §
®»
?
N 0.7 In-situ Clay Subgrade 3 T
g (=Y
£ L=7300
2 o6k Graded approach s |
Layered approach
0.5} b
0.4 . .
0 5 10 15 20 25 30 35 40

d(mm)

Figure 2.9: 2D graded model versus 2D layered model: Normalized unaveraged horizontal
stress (0,) with depth (d) at the location where maximum tensile stresses occur.

Figure 2.10 shows the comparison of compressive stresses between graded and layered
approaches. The abscissa indicates the vertical evaluation depth up to 40mm below the
surface, starting just below the center of the applied loads. The ordinate indicates the
normalized unaveraged horizontal stresses, i.e. 0,. The range of stresses is between -6.6 and
-2.1MPa. As expected, homogeneous Q8 elements show piecewise variation. However, this
does not occur with the graded elements. Moreover, the surface stresses are underestimated
when homogeneous elements are adopted. A benefit of graded elements is pronounced when
the stiffness gradient is severe (see Figure 2.7) for this problem. Notice that although the

realistic tire loads [84] consisting of the normal and shear traction are applied, surface tension
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under the tire loads are not observed in this simulation.
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-0.4f
One layer
e
@ -0.5F
b One element Center of Applied Loads
= -—» Pl
7 *
he] —0-6 B I b
g‘, Surface &Binder dl E
g Graded
£ -0.7F approach Subgrade 3
Z “
-0.8 )
In-situ Clay Subgrade §
_0.9) L=7300 |
M Layered
R approach
_1 1 1 1. L 1 1 L
0 5 10 15 20 25 30 35 40

d (mm)

Figure 2.10: 2D graded model versus 2D layered model : Normalized unaveraged horizontal
stress (o,) with depth (d) along the center of the tire loads.
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Figure 2.11: 2D graded model versus 2D layered model : Normalized unaveraged vertical
stress (o,) with depth (d) along the center of the tire loads.
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Figure 2.12: 2D graded model versus 2D layered model : Normalized unaveraged horizontal
strain (e,) with depth (d) along the center of the tire loads.

Normalized unaveraged o, versus vertical depth is plotted for two different approaches in
Figure 2.11. The range of stresses in the plot is between -1.15 and -0.84M Pa. The absolute
magnitude of o, decreases as the vertical distance increases. However, for o,, which is an
important stress component in evaluating rutting potential in pavements, the two approaches
yield almost identical results. Normalized unaveraged tensile strains for graded and layered
approaches are illustrated in Figure 2.12. The range of strains in the plot is between 0.37
and 0.46 x 1073, The abscissa indicates the vertical distance from the bottom of the surface
to 85 mm above this point, directly beneath the center of the applied loads. The absolute
magnitude of ¢, de;creases almost linearly with position. As expected, the difference between
graded and layered approaches are insignificant in this case, where material gradations are
small. Thus, for the purpose of a traditional fatigue analysis (bottom-up cracking due to

bending induced tensile stresses), the traditional layered approach may suffice.
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2.5 Concluding remarks

This chapter presents the development and application of graded finite elements for pavement
analysis. The implementation of the UMAT was verified by comparing the numerical results
with the analytical solutions by means of the isotropic graded materials where Young’s
modulus varies perpendicular to the loading direction. Numerical examples illustrate the
benefits of using graded elements.

The combination of temperature and aging gradients led to the prediction of a large E*
gradient with depth for the selected conditions on Interstate pavement I-155 in Illinois. The
stiffness gradient was found to be severe as far down as 100mm of depth.

In general, the graded finite element method used here provides better results over the
conventional finite element solution, which involves assigning mixture properties in layers.
As expected, the differences were most pronounced when evaluating near-surface pavement
responses, where severe material gradients are present due to environmental exposure. The
use of fine meshes and stress averaging techniques can be used to minimize errors in the
layered approach. However, both of these techniques can have significant drawbacks. For in-
stance, very fine meshes are computationally expensive, particularly when conducting three-
dimensional analyses. Furthermore, averaging of nodal stresses was shown to lead to inac-
curacies at layer interfaces of different materials, and may lead to inaccuracies in areas of

high stress gradients, such as in the vicinity of cracks or other discontinuities.
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Chapter 3

Cohesive zone models

This chapter provides theoretical and numerical aspects of three cohesive zone models
adopted in this study. For each model, both traction vector and tangent modulus matrix
are evaluated. A description on how the cohesive element is incorporated into a finite ele-
ment framework follows. Experimental procedures to evaluate bulk properties and cohesive

parameters, e.g. relaxation modulus, fracture energy and material strength, are presented.

3.1 Various cohesive zone models

In this section, three cohesive laws, i.e. exponential, bilinear and power-law CZMs, are
presented in detail. Both traction vector and tangent modulus matrix (cohesive material

Jacobian) are evaluated.

3.1.1 Potential based exponential model

An exponential form for the free energy potential proposed by Xu and Needleman [144]
between the displacement jump and the corresponding traction provides a computationally
convenient description of the decohesion process represented by a shape of constitutive model,
material strength and cohesive fracture energy. The present formulation and notation are

fairly based on the work by Needleman, Ortiz, Dodds and co-workers [86, 89, 108].
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The exponential form for the free energy potential is given by [144]:

o= ettt [t~ (11 1) o (2] o

where o, is the material strength (critical traction), and §,. is the critical displacement in
which traction becomes a maximum. The effective displacement (d.) and the corresponding

effective traction (t.) for two-dimensional (2D) analysis become:

Se = /2 + P22, t.= /2 + 02, (3.2)

in which subscript e denotes effective, d, and J, represent normal opening and shear sliding
displacements, respectively, and ¢, and ¢, stand for the corresponding normal and shear
tractions, respectively. The parameter 8, which is defined as the ratio between maximum
normal traction and shear traction, is introduced to express the formulation with single
effective displacement by assigning different weights for displacements and tractions along
normal and shear directions.

As illustrated in Figure 3.1 (a), the relationship between the effective displacement and

the corresponding traction, upon loading, follows the form:

— a¢ — Oe 66
fe= g5 = exp(l)acé—; exp(—==), (3.3)

C cc

and for unloading and reloading, the traction can be obtained with the following expression:

te = (2—2) Oe, (3.4)

where subscript « indicates a point where unloading starts to occur in the cohesive law (see
Figure 3.1 (a)). The unloading path follows toward the origin of the cohesive law. The

cohesive fracture energy is defined by:
G, = / R (35)
0

The shear and normal tractions are obtained from differentiating energy potential, ¢,
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Figure 3.1: The exponential cohesive law in terms of (a) the normalized effective displace-
ment and the normalized effective traction and (b) the non-dimensional normal opening
displacement and non-dimensional normal traction for different ratios of non-dimensional
shear sliding displacements.

with respect to shear sliding and normal opening displacements, respectively:

00006, b6 b —b. 6,

R T A N B RO A 3)
Y A N Ay A

TR T TR N W S &7

Figure 3.1 (b) shows the cohesive law in terms of non-dimensional normal opening displace-
ment and non-dimensional normal traction for several different ratios of normalized shear
sliding displacements.

The tangent modulus matrix, C, is obtained from differentiating tractions, i.e. ¢, and
tn, with respect to shear sliding and normal opening displacements, i.e. §; and §,. The

components of the tangent modulus matrix are given as

_Ot,  tB% | 2 te
033_853_ 5, +—5‘g’“ A—ge- (3.8)
Oty ., Oty B%0,4, te
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in which t. is given by Eq. (3.3) and A is given as

te 5
A:Zb—a} (3.11)

3.1.2 Bilinear cohesive zone model

Despite the many successful applicatiens of the potential based exponential cohesive law
reported in the literature, the model inherently produces artificial compliance due to a pre-
peak slope described in this cohesive law. Recently, Espinosa and Zavattieri [39] formulated
a bilinear model to reduce CZM compliance by providing an adjustable initial slope in the

cohesive law.

Non-dimensional effective displacement and effective traction are defined as

A A
Ae = \/(5—c> + (3:) and (3.12)
te= /2 + &, (3.13)

respectively. 4. is a critical displacement where complete separation, i.e. zero traction,

occurs.
As illustrated in Figure 3.2 (a), the cohesive law in terms of non-dimensional effective

displacement and effective traction has the following expression

A
O Xe < Aar
te = Jder (3.14)
OeT3s Xe > Acr

For unloading and reloading, the traction can be obtained from

u=(%>&. (3.15)

The pre-peak region represents the elastic part of the intrinsic cohesive law whereas the

softening portion after the peak load accounts for damages occurring in the fracture process
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zone (see Figure 3.2 (a)). Notice that the parameter A, is non-dimensional displacement in
which the traction is a m;LXimum, and is incorporated to reduce the elastic compliance by
adjusting the pre-peak slope of the cohesive law. In other words, as the value of A, decreases,
the pre-peak slope of the cohesive law increases and as a result, artificial compliance is

reduced. The cohesive fracture energy is given as

1

Gc = §5c0'c (316)
1.2 1.2
- P
-~ <) A =0.25, 1 n
e°  1f o 1 e ) 3,
L £
< § 5./8 =0
S Loading T s ¢
£ 08f £ o8t 5,/8,=02
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(a) (b)

Figure 3.2: A bilinear cohesive law in terms of (a) non-dimensional effective displacement
and non-dimensional effective traction and (b) non-dimensional normal opening displacement
and non-dimensional normal traction.

For A, < A, the components of the traction vector are given as

1 (6 1 [6n
ts = ch; (3;) and t, = UCE (-g:) , (3.17)
and for A\, > A, the shear and normal tractions are described by
1 Xe 1 [0 1—- Ae 1 (6,
t= 0T 3o (E) and tn = oo 55 (5—c> . (3.18)

Figure 3.2 (b) shows the bilinear cohesive law in terms of non-dimensional normal open-

ing displacement and non-dimensional normal traction for several different ratios of non-
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dimensional shear sliding displacements.
The tangent modulus matrix is obtained from differentiating tractions, i.e. t; and t,,
with respect to relative displacements, i.e. d, and d,. For A, < A, the tangent modulus

matrix components are given as

ats 6tn _ UC
Css = 8—63' = Cnn = 8_(Sn = ——)\crdc (319)
Bt Bt '
Csn - '58'; - Cns - 8_53 =0 (320)

and for A, > A, they are given as

2 2
cc 1

80y, 1= D \ N2 1— Ao \ D02 2352
Ot, o, 8.0, O On 8.0 16,0,
Con = B6, Cne = 86, 11— e (Aeag) (Aeag) A=A Acr ( A3 64 ) (3:22)
Bty 5.0c ( 0n \° 8.0¢ 1 142
on=ge =15 () 05 (e ws) 6w

dé,, 1— A
3.1.3 Power-law cohesive zone model

A CZM softening shape for asphalt concrete and other quasi-brittle materials is as important
as the cohesive parameters, i.e. fracture energy and material strength, due to the relatively
large size of the fracture process zone compared to the structure size. However, most CZMs
including the models presented in Sections 3.1.1 and 3.1.2 do not have an variable to control
a CZM softening shape, which represents progressive softening phenomena occurring along
the fracture process zone. In this study, a power-law cohesive zone model [35] is revisited
and improved 1) to reduce artificial compliance, 2) to model general cases, e.g. mixed-mode
and three-dimensional, and 3) to have various choices in terms of CZM softening shapes.
The effective displacement, J., and the effective traction, t., for three-dimensional (3D)

analysis become

§o= /02 + 02 = /62 + 62, + &2, (3.24)
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te =12+ 12 =1/t2 +t4 +12 (3.25)
in which d,; and d5 denote components of shear sliding displacement (Js), and ts; and ts

are components of shear traction (¢;).

The power-law cohesive zone model can be expressed as

. { 0be/ec  Bo < uc (3.26)

O'C(l - 56/50)0‘ 5e > 6cc

where J,. is displacement where traction becomes a maximum, 4. is critical displacement in
which a complete separation (i.e. zero traction) occurs, « is an internal variable affecting a
CZM softening shape. Notice that §.. is a user defined variable to control a pre-peak slope

which influences artificial compliance. The parameter . is obtained by equating the area of

the displacement and traction curve to the cohesive fracture energy which is given as

¢
q, = 2% / todé, (3.27)
2 Soc

Figure 3.3 (a) illustrates various shapes of the power-law CZM. The ordinate is normalized
effective traction. The abscissa is effective displacement which is normalized with respect to
critical displacement evaluated when o = 1, say 6210, Notice that d../62=1° = 0.1. When
a is equal to zero, it is a rectangular shape. As « increases, the shape of the power-law CZM
softening curves changes from the linear to nonlinearly decaying shapes. Notice that when
a = 1, this model is equivalent to the bilinear model [39] explained in Section 3.1.2. The
bilinear model refers to the model in which slopes of both pre-peak and post-peak curves are
linear, and is different from the bilinear softening curve, which is commonly used in concrete
literature [13].

For é, < d.., the components of the traction are expressed as

) ) é.
ls1 = Uc-f—l_) lo2 = o'c(sLav tn = chll'a
cc cC

T (3.28)
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Figure 3.3: The power-law cohesive zone model in terms of (a) the normalized effective dis-
placement and the normalized effective traction and (b) the non-dimensional normal opening
displacement and non-dimensional normal traction for different ratios of non-dimensional
shear sliding displacement.

and for é, > &, they are governed by

= = T g
te = oc(l— %)am%,
= oll- 2 TR e (3:29)
The components of tangent modulus matrix are give as
Casn = -g(ts—z, Csis2 = % = Cys1 = gg—i,
Csin = % = Cne1 = %, Cs2s2 = gg—z,
Cson = ?;:;: = Cps2 = —8%’ Crn = g%:, (3.30)

where the traction components are given by Eq. (3.28) for d. < 4., and by Eq. (3.29)
for 6, > 0. Figure 3.3 (b) shows the power-law CZM with o = 10 for various ratios

of non-dimensional shear sliding displacement in terms of non-dimensional normal opening .
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displacement and non-dimensional normal traction.

3.1.4 Remarks

From Sections 3.1.1 through 3.1.3, various cohesive laws are presented. In this section, brief
remarks on the CZMs are provided. Figure 3.4 illustrates a comparison of normal traction
versus normal opening displacement among the exponential CZM, the bilinear CZM and the
power-law CZM with o = 10. Notice that the bilinear CZM is equivalent to the power-law
CZM with o = 1. Material strength (o.) and cohesive fracture energy (G.) are assumed to
be 1 for the illustration purpose. Consistent units are used.

Artificial compliance is not avoidable in an intrinsic CZM and the pre-peak slope of the
CZM is a major source of the compliance. An attractive feature in the bilinear and power-
law CZMs compared to the exponential model is that we can control the pre-peak slope to
minimize compliance. In this section, d.. is defined as 0.01a2=1. As illustrated in Figure 3.4,
the pre-peak slope of the bilinear and power-law CZMs is much stiffer than that of the
exponential CZM so that undesirable compliance can be reduced. Discussion on artificial
compliance is presented in Chapter 5.

For asphalt concrete and other quasibrittle materials, a CZM softening shape is as rel-
evant as cohesive parameters due to the relatively large size of the fracture process zone
compared to the structure size. A nice feature in the power-law CZM compared to the bi-
linear and exponential CZMs is that we can have various choices in CZM softening shapes
which represents progressive softening behavior occurring along the fracture process zone.
For instance, the bilinear model (see Figure 3.4) has the constant reduction of capacity with
respect to displacement jump, which may not be relevant to asphalt concrete. This aspect

is discussed in detail in Chapter 6.
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cohesive laws.

3.2 Computational framework

The section describes how the cohesive element is incorporated into a finite element frame-

work. A displacement-based formulation is adopted.

3.2.1 CZM formulation

The principle of virtual work considering the cohesive element contribution is given as:

T . «\T _ ’U,*T — .
/V(s)adV /S(d)tdS /S( YTt dS = 0, (3.31)

where superscript 7' denotes transpose, o is the Cauchy stress tensor, €* is the virtual strain
tensor, t is the traction on the boundary, é* is the virtual displacement jump across the
cohesive element, u* is virtual displacement in the bulk (background) material, and S and
V represent the current (deformed) surface and volume, respectively.

An implicit displacement-based finite element scheme requires evaluation of several terms

such as a force vector and a tangent stiffness matrix based on different numerical schemes.
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The evaluation of the tangent stiffness matrix and the force vector is necessary for the
iteration of the Newton-Raphson method and the Riks method. An additional term, which
is an incremental load vector, needs to be defined for the iteration of the Riks method [2].
The force vector and the tangent stiffness matrix of the cohesive elements are obtained
from the second term of Eq.(3.31) and the first variation of the second term in Eq.(3.31),
respectively. Notice that the incremental load vector of the cohesive elements to be defined
for the Riks method is zero for the CZM because a cohesive force is independent of the Riks
load parameter.

Due to the fact that the integration is carried out at Gauss points, we need to interpolate
displacement at nodal points to relative displacement at Gauss points using B matrix, which

consists of shape function:

8* = B@", (3.32)

in which 6 and @* represent virtual relative displacement vector at the Gauss points and
virtual displacement at the nodal points, respectively. Substituting Eq.(3.32) into the second

term of Eq.(3.31), one obtains the virtual cohesive element work, which is given as

W* = S/ (@)TBTt)dS = (a*)T S/ BTtds (3.33)

Thus, the force vector due to cohesive elements can be obtained as follows:
f= / BTtdS (3.34)
s

The first variation of the virtual work, dW*, is obtained from differentiation of Eq. (3.33)

with respect to relative displacements, i.e. 4, and d,, and is given as

dw* = (a*)T / (BTdt)ds. (3.35)
S

Notice that ¢t is a function of 4, and §; such that dt can not be zero. The relationship

between traction and displacement jump is given by the tangent modulus matrix, C, which
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is obtained as
T N
fte) — o) 30

Btn /08, Otn/Ss
Oty /86, ly/DS,

where C is given by

Thus, the tangent stiffness matrix is given by the usual expression

K = / BTCBJS. (3.37)
S

Notice that Eqs. (3.34) and (3.37) are formulated based on the updated Lagrangian formu-

lation.

3.2.2 Finite element implementation

This section describes how the CZMs presented in Section 3.1 are incorporated into the
ABAQUS user element (UEL) [2]. In the UEL, the contribution of cohesive elements to the
force vector and the tangent stiffness matrix, which are functions of displacements, cohesive
parameters and internal variables, should be defined. Because the force vector and the tan-
gent stiffness matrix need to be defined globally, while the cohesive law represents a local
separation and traction relationship, transformation between global and local coordinates is
necessary. Consider the 4-noded cohesive element shown in Figure 3.5. The parameter
represents the angle between global and local coordinates. X and Y denote global coordi-
nates, while s and n indicate local coordinates. Nodes 1 and 2 are located on the bottom of
the element whereas nodes 3 and 4 are located on the top of the element. Each node has two
degrees of freedom. The global displacement vector of the nodes belonging to the cohesive

element can be expressed as follows:
T
u = [uy uy vk up vk ud vk uy] (3.38)
where superscripts indicate node numbers.
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Cohesive Elements 3
(Deformed)

Cohesive Elements
(Undeformed)

Figure 3.5: Schematic drawing of a 4-noded linear cohesive element. Variables d, and 6,
represent shear sliding and normal displacement jump, respectively. Variables u% and u3
denote global displacements of node 2 along X and Y directions, respectively. The variable
(5§,1 4 represents the opening displacement along Y direction, while # indicates the angle
between global and local coordinates. Notice that X and Y denote global coordinates,
whereas s and n denote local coordinates.

Based on the global coordinate system, the relative displacements (i.e. dx and dy)

between top and bottom nodes can be obtained as

5¢Y ‘1000 0 0 —1 01
534 0100 0 0 0 -1
by (=Lu, L= (3.39)
533 0010 -1 0 0 0
59 0001 0 -1 0 0]

where L is the operator matrix, and superscripts denote corresponding nodes of the interface
element for which cohesive separation will be enforced (see Figure 3.5). The relative global

displacement at Gauss points can be obtained as follows

5§’4) 6&}#‘)
Ox Ny, 0 Ny 07]68? 53 5.10
- =N = NLu 3.40
Sy 0 M 0 N | @Y §%°)
5&3,3) 6§/2,3)
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Note that dx and dy require transformation from global coordinates to a local coordinate
system for the cohesive element. Let matrix R define the orthogonal transformation from
global reference frame (X,Y’) to the element specific, local coordinate system (s,n), where
the direction n lies normal to the cohesive element. Finally, the relative local displacement

vector, &, and &, is obtained as follows

ds
{ } = Bu=RNLu. (3.41)
on

The global nodal force vector and global tangent stiffness matrix for a 4-noded cohesive

element can be evaluated as:
1 1
f= / Bthd(, K= / BTCBJyd¢ (3.42)
-1 -1

where Jy denotes the Jacobian between reference and original coordinates. Notice that the
evaluation of the traction vector (t) and the tangent modulus matrix (C) are presented for

each cohesive law in Section 3.1, e.g. Eqgs. (3.6) through (3.10).

3.3 Determination of bulk and cohesive properties

In this section, experimental procedures to obtain bulk and cohesive parameters, i.e. complex

modulus, relaxation modulus, fracture energy and material strength, are presented briefly.

3.3.1 Complex modulus

The complex (dynamic) modulus is often used to characterize the time-temperature modulus
of asphalt concrete, and is used as a material property for the design of asphalt pavement
layers (NCHRP 1-37a). The essence of the test is to apply a sinusoidal compressive loading
on the specimen and measure the strain response. The complex modulus is simply the
amplitude of the stress wave divided by the amplitude of the strain wave. In order to
capture the time-temperature dependency, the complex modulus is measured over a range

of frequencies (25, 10, 5, 1, 0.5, and 0.1 Hz) and temperatures (-10 to 60 °C).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3.2 Relaxation modulus

In order to obtain relaxation modulus in asphalt concrete, first a creep test, where constant
stress is imposed, is performed and a Voight-Kelvin model is used to describe creep compli-
ance behavior. Then, interconversion schemes are adopted to obtain relaxation modulus.
The creep compliance, D(t), is usually the primary quantity to be obtained for the creep
test for which the Superpave IDT test is employed. For typical asphalt mixtures, creep
test in which a fixed load that prodﬁces a horizontal deformation of 0.00125 mm to 0.0190
mm for 150-mm diameter specimens are employed is performed for multiple temperatures,
e.g. -20, -10, and 0°C. Model constants are obtained from creep tests and shift factors are
evaluated from shifting compliance versus time curve at different temperatures in log scale to
establish a smooth and continuous curve. Various schemes are employed to obtain relaxation
modulus from creep compliance. Detailed creep test procedures and interconversion schemes

are found in references [1, 17, 48, 93].

3.3.3 Cohesive parameters

Two experimental fracture properties of material strength and fracture energy are evaluated
as material inputs into the CZM. The first-failure tensile strength determined from the IDT
test is defined as the material strength. The procedure for determining the first-failure
tensile strength is outlined in the AASHTO specification [1]. Figure 3.6 (a) illustrates IDT
test setting.

The fracture energy of asphalt concrete is the other fracture property required as an input
into the CZM. Either the single-edge notched beam (SE(B)) and the disk-shaped compact
tension (DC(T)) test was used for determining the fracture energy. The crack-mouth opening
displacement (CMOD) was increased at a linear rate to produce a stable post-peak fracture.
The CMOD rate was determined by trial and error to produce a peak load at approximately
five seconds into the test. Five seconds was selected as the time to peak load based on

the AASHTO procedui"e [1] for determining the tensile strength. The fracture energy was
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determined by calculating the area under either the load-CMOD curve or the load-d25 and
normalizing by the cross-sectional area of the specimen. A detailed procedure for specimen
preparation and test controls of the SE(B) and DC(T) test are outlined [133, 134]. For

illustration purpose, the SE(B) test apparatus is shown in Figure 3.6 (b).

Figure 3.6: Experimental setting of (a) IDT test and (b) SE(B) test.

3.4 Concluding remarks

In this chapter, various aspects of three cohesive zone models are presented. Both trac-
tion vector and tangent stiffness matrix are evaluated for each cohesive law. Computational
framework is presented in conjunction with ABAQUS user element (UEL) subroutine. Ex-

perimental procedures to compute bulk properties and cohesive parameters are presented.
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Among the various CZMs investigated, the power-law CZM appears to be the most suited
for investigating fracture of asphalt concrete due to the capability to control a pre-peak
slope, which influences artificial compliance, and to have various softening shapes, which
affect progressive softening behavior. It includes the bilinear model as as a special case when

a=1.
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Chapter 4

Fracture modeling using the
exponential CZM

This chapter explores fracture behavior in asphalt concrete using an intrinsic cohesive zone
model (CZM). The separation and traction response along the cohesive zone ahead of a crack
tip is governed by an exponential cohesive law [144] specifically tailored to describe cracking
in asphalt pavement materials by means of softening associated to the cohesive law. Finite
element implementation of the CZM is accomplished by means of a user-subroutine using
the user element (UEL) capability of the ABAQUS software, which is verified by simula-
tion of the double cantilever beam test and by comparison to closed-form solutions. The
cohesive parameters of finite material strength and cohesive fracture energy are calibrated
in conjunction with the single-edge notched beam (SE(B)) test. The CZM is then extended
to simulate mixed-mode crack propagation in the SE(B) test in which cohesive elements are
inserted over an area. It is shown that the simulated crack trajectory compares favorably

with that of experimental results.

4.1 Introduction

In order to better understand cracking in pavement systems, many experimental investi-
gations have been conducted. Majidzadeh [78] first attempted to study crack propagation

using fracture testing. Since then, several researchers [54, 80, 101] have developed fracture
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testing programs, with varying degrees of success, to measure and describe crack initiation
and propagation in asphalt concrete. Cohesive zone models (CZMs) have been used in the
analysis and simulation of crack propagation for both homogeneous and nonhomogeneous
material systems. Dugdale [36] and Barenblatt [7, 8] proposed cohesive models to investi-
gate ductile and brittle material fracture behavior, respectively. Xu and Needleman [144]
and Camacho and Ortiz [19] presented a potential based cohesive model and stress-based
cohesive model, respectively, with a corresponding implementation by means of the finite
element method. These models have been extended to explore crack propagation in con-
crete [109], ductile metals [108] and functionally graded materials (FGMs) [96]. Recently,
an improved description of the exponential cohesive zone model by Xu and Needleman [144]
was developed by van den Bosch et al. [130]. Cohesive zone modeling involves the placement
of interface elements in a finite element model, where the separation law used at the interface
describes a typical softening curve. Cohesive zone models are particularly useful for compu-
tational modeling of fracture processes for a number of reasons, including: 1) computational
efficiency; 2) ability to simulate complex global fracture behavior with a relative simple,
local (intrinsic) damage function; 3) ability to simulate crack nucleation, crack initiation,
and non-prescribed, mixed-mode crack propagation. For asphalt concrete, Soares et al. [121]
used a cohesive zone modeling approach to investigate crack propagation in indirect tension
(IDT) specimens using the cohesive law proposed by Tvergaard [129]. However, they per-
formed only pure-mode I crack propagation simulations in conjunction with IDT and they
did not address important issues clearly, e.g. selection of a cohesive element size.
Therefore, the following important aspects of cohesive zone modeling of asphalt concrete

are presented and discussed in this chapter thoroughly:

e Verification of the CZM implementation into ABAQUS user element (UEL) using dou-

ble cantilever beam (DCB) test simulation.

e Sensitivity analysis of cohesive parameters to fracture response.
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o Justification of selecting cohesive element sizes for asphalt concrete fracture modeling.

¢ Simulation of mixed-mode crack propagation in conjunction with SE(B) test in which
mesh discretizations of cohesive elements are tailored to the crack trajectory predicted

by I-Franc2D [61].

e Comparison of complete crack trajectory of the present numerical simulation using
the Riks method [103, 30] and the user element (UEL) of ABAQUS [2] with that of

experimental results.

4.2 Verification of CZM

In order to verify the numerical implementation of the exponential CZM explained in Sec-
tion 3.1.1 into the UEL of ABAQUS, a DCB test simulation is performed, because the DCB
is well accepted by the fracture community and an analytical solution exists. Using linear
elastic beam theory, the analytical solution for crack length in terms of Young’s modulus

(E), the end displacement (A), the beam height (H) and the cohesive fracture energy (G.)

[3SEH3A?

Figure 4.1 illustrates a schematic of the DCB geometry. To avoid shear effects in the

is obtained as [5]

beam, a relatively slender DCB of length L = 200mm and width H = 10mm is adopted.
External displacement is applied to the node located at x = 0 and y = 0 upward and down-
ward. Cohesive elements are inserted along the middle of specimen. Two-dimensional plane
strain elements and linear four node cohesive elements are employed for the bulk material
and cohesive material, respectively. To obtain material and cohesive parameters, a 9.5-mm
nominal maximum sized aggregaﬂte surface mixture is selected, which is used at the Greater
Peoria Regional Airport. Young’s modulus is taken as 14.2 GPa, based upon the afore-
mentioned modulus tests. A Poisson’s ratio value of 0.35 is assumed, based upon previous

experience with similar materials. The cohesive fracture energy and material strength for
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this mixture are 344J/m? and 3.56 M Pa, respectively. For the exponential model, 0.14, is

defined as the crack tip location.

Cohesive Elements

\l\\
=

24| }

P L |

Figure 4.1: Schematic drawing of the double cantilever beam (DCB) test in which H is
the thickness, 2A is crack mouth opening displacement, L is the total length, and a is the
distance from the crack mouth to the assumed crack tip location.

Figure 4.2 illustrates a comparison between numerical and analytical solutions. The
abscissa indicates normalized crack length, a/L, and the ordinate indicates the normalized
crack opening displacement, A/J.. The numerical results show excellent agreement with
the analytical solution. Notice that even for both initial stage and final stage of crack
propagation, which are influenced by boundary conditions, both numerical and analytical

results agree reasonably well.

4.3 Mode-I single-edge notched beam (SE(B)) test
simulation

In this section, utilizing mode I SE(B) test, various important aspects of CZM are presented.
First, justification of cohesive elements size is provided. Three different cohesive element
sizes are chosen and numerical results for each cohesive element size are compared to make
sure that element sizes chosen in the simulation are small enough to capture the nonlinear

behavior occurring along the cohesive zone [66]. Second, sensitivity analysis to cohesive
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Figure 4.2: Comparison between numerical and analytical solutions for the DCB specimen.

parameters of material strength and cohesive fracture energy is performed. Finally, cohesive
parameters of material strength and cohesive fracture energy are calibrated by comparing

numerical result with experimental results of SE(B) test.

4.3.1 Selection of a cohesive element size

When the concept of the cohesive zone model is combined with the discrete finite element
method, a numerical issue on the sensitivity of the size of cohesive element to the numer-
ical solution arises. It is due to the fact that the cohesive zone is represented by a highly
nonlinear relation between traction and displacement jump such that enough cohesive ele-
ments need to be inserted along the cohesive zone in order to capture nonlinearly softening
behavior properly. Camacho and Ortiz [19] showed that, as cohesive element size increases,
considerable accuracy is lost under dynamic loading. Furthermore, they reported that some
of fragmentation and branching is suppressed when the coarse mesh is adopted. Recently,

Klein et al. [66] explored the influerice of cohesive element sizes in conjunction with the
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double cantilever beam, and illustrated that coarse meshes yield accelerated crack growth,
i.e. larger discrepancy between numerical and analytical solutions. Ruiz et al. [109] studied
mesh size sensitivity to computational results, e.g. reaction versus time curve, simulating
SE(B) tests with and without pre-notch under dynamic loading. They observed that for the
cracked SE(B), the reaction histories and energy consumption are almost identical for differ-
ent cohesive element sizes; while for the uncracked SE(B), the cohesive energy consumption
is larger for the finer mesh and as time increases, the discrepancy of the reaction increases
for different cohesive element sizes. A general rule in choosing the element size is that there
should be at least 3 elements or so along the fracture process zone. For some specific brittle
materials, the fracture process zone can be estimated theoretically as [102]

fc—ﬂ E G,

T RT _ 2.2
81—-v202,

(4.2)

where G, is the cohesive fracture energy and o, is a measure of material strength in an
average sense. However, this estimation may not be valid for materials such as asphalt
concrete which is quasi-brittle and viscoelastic, because Eq. (4.2) is evaluated based on the
assumption that energy is absorbed in a very thin cohesive zone without any consideration
of viscoelastic effects. Thus, from numerical point of view, although viscoelastic effects are
not directly considered, it is crucial to make sure that the cohesive element size chosen is
not sensitive to artifacts of the numerical solution. In this study, three different cohesive
element sizes, i.e. 0.1mm, 0.2mm and 1.0mm, are employed.

Figure 4.3 (a) illustrates a simply supported SE(B) with length of 376mm, height of
100mm and thickness of 75mm. A mechanical notch is simulated, which extends 19mm
upward from the bottom edge of the beam. Displacement boundary conditions are imposed
at the center of the top edge of the model. Figures 4.3 (b) and (c) show a finite element
configuration for the whole geometry and the center region of the specimen where cohesive
elements are inserted, respectively. Notice that cohesive element size 1.0mm is used in

Figure 4.3. Two-dimensional, four-noded cohesive elements are inserted along the center
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of the specimen. The bulk material is modeled as elastic, homogeneous, isotropic, and
rate-independent. Given the low test temperature and short test duration, it is assumed
that the bulk material can be adequately simulated with elastic materials. In this analysis,
E =14.2GPa, v = 0.35, G, = 344J/m? and o, = 3.56 M Pa. The Newton-Raphson method

and plane strain conditions are adopted.

P
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O 1
'TBT < Cohesive elements
a=19
A g Eepaiall
o 26; 162 ; 162 : 26|<_
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% i
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12
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Figure 4.3: Geometry and mesh for analysis of the SE(B) test: (a) geometry and boundary
condition; (b) mesh configuration for whole geometry; (c¢) mesh detail along the middle of the
specimen. Notice that cohesive elements are inserted along the middle line of the specimen.
Notice that cohesive element size 0.1mm is used.

To illustrate that the cohesive element size chosen in this study is objective (i.e. some-
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how independent of a particular numerical solution), a local quantity, e.g. d»5, and global
quantities, i.e. CMOD and total dissipated energy due to fracture, are evaluated and com-
pared. The ds5, which is measured from gage length of 25mm spanning the original crack
tip, is introduced for operational definition of crack tip opening displacement (CTOD) with
the following advantages: it is a local quantity near crack tip; and it can be applied to any
cracked specimen due to direct and easy measurement of CTOD. The proposed d45 measure-
ment is inspired by the work by Schwalbe and his coworkers [116, 114] who proposed the
insightful §5 concept. Notice that the original concept of d5 was developed and has been ap-
plied for fine grain sized materials like steel [21]. However, due to the coarse microstructure
of asphalt concrete (e.g. aggregate sizes ranging from 4.75mm to 19mm in this study), the
d—type evaluation in the order of 25mm is more appropriate, leading, for instance, to the
d25 definition. Notice that a schematic is provided in Figure 4.4 (a).

Figure 4.4 (a) illustrates P (applied force) versus displacement curves in which both
CMOD and éq5 are plotted together. Figure 4.4 (b) shows the consumption of the cohesive
fracture energy as the crack propagates. The abscissa indicates the CMOD and the ordinate
indicates the total dissipated fracture energy. Due to accumulation of the cohesive fracture
energy, it shows an increasing trend of the total dissipated fracture energy with an increase
of the CMOD. Both the global and local responses as a function of different cohesive element
sizes are nearly identical demonstrating that the cohesive elements chosen in this particular

investigation are small enough to be insensitive to numerical artifacts.

4.3.2 Sensitivity analysis with respect to cohesive fracture
energy and material strength

In this section, the sensitivity analysis to cohesive parameters of material strength and frac-
ture energy is carried out to exploré the influence of cohesive parameters, i.e. o, = 3.56 M Pa
and G. = 344J/m? [133]. The geometry, boundary conditions and material properties used

here are the same as those used in Section 4.3.1.
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Figure 4.4: Comparison of (a) the P versus CMOD and dy5 and (b) the CMOD versus the
total dissipated fracture energy for different cohesive element sizes: ¢;=0.1mm, ¢,=0.2mm
and £3=1.0mm. Notice that ¢; introduces a length-scale in the problem.

Figure 4.5 (a) illustrates the sensitivity of P versus CMOD curve to different cohesive
fracture energy. Three different fracture energies, i.e. 1.2G., G, and 0.8G., are employed

with a constant value of critical strength. As the cohesive fracture energy is increased, the

area of P versus CMOD curve is increased and the maximum load is increased as well. This
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result is intuitive because as the intrinsic fracture energy used in the CZM is increased, more
fracture energy is dissipated, which is indicated by an increased area under the P versus
CMOD curve. The softening trend, however, seems insensitive to the magnitude of fracture
energy. Figure 4.5 (b) shows the sensitivity of P versus CMOD curve to different critical
strength, 1.20., o, and 0.80.. As the critical strength is increased, the maximum load is

increased, while the area of the curve remains almost constant.

4.3.3 Calibration of cohesive parameters

In the nonlinear cohesive constitutive model, cohesive fracture energy and material strength
are two important parameters. These parameters are measured directly from the experi-
ments, and reflect the actual viscoelastic heterogeneous material. However, in the present
numerical modeling, bulk material is assumed as elastic, homogeneous and rate-independent,
while cohesive material is assumed as inelastic and rate-independent. So, the parameters of
the CZM model are calibrated by fitting present numerical results into experimental results
in order to take into account these differences between the actual and numerical models. The
same geometry, boundary conditions and material properties, which are used in Section 4.3.1,
are employed in this section.

A first order calibration of material strength and cohesive fracture energy was accom-
plished by matching present numerical results with experimental SE(B) test results (see
Figure 4.6). Relatively small calibration shifts of cohesive parameters, i.e. 0.7G, = 0.7 X
344J/m? and 1.10, = 1.1 x 3.56 M Pa, are required to bring simulated results into reasonable
comparison with measured results. The calibrated cohesive parameters are employed in the

following simulations.

4.4 Mixed-mode SE(B) test simulation

Using the calibrated cohesive parameters and the cohesive element size 1.0mm, a simulation

of mixed-mode crack propagation in the SE(B) test is carried out. The cohesive elements are
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Figure 4.5: Sensitivity of P versus CMOD curve to (a) different cohesive fracture energy and
(b) different material strength. Notice that o, = 3.56 M Pa and G. = 344J/m?.

inserted over an area. Figure 4.7 (a) shows the geometry, boundary condition, and region
enclosed by the dashed lines. The length, height and thickness are 376 mm, 100mm and
75mm, respectively. The crack tip is located at 65mm left and 19mm above from the center

of bottom edge. Displacement boundary condition is applied at the center of the top edge
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Figure 4.6: Comparison between experimental result and numerical result with calibrated
parameters.
of the model. The cohesive elements are inserted over an area enclosed by the dashed lines.
Figure 4.7 (b) illustrates finite element discretization for the whole geometry and Figure
4.7 (c) shows finite element mesh details of the region where cohesive elements are inserted.
The SE(B) structure is constructed by 5810 3-noded triangular elements for bulk materials,
and by 1010 4-noded linear elements for cohesive materials. Notice that in order to avoid
numerical convergence problems, the mesh of Figure 4.7 (c) is tailored to the crack trajectory
predicted by I-Franc2D [61], and the Riks method [30, 103] is employed for this simulation.
Figure 4.8 (a) shows the final deformed shapes which can be obtained with convergent
solutions using the Riks method. A magnification factor of 10 is used to make the crack
trajectory visible. We observed that when the Newton-Raphson method is adopted, the
cracks begin to grow but eventually the solution diverges when a crack tip reaches around 40
percent of the height of the SE(B) specimen. The main reason of the numerical convergence

problem in the CZM is that during the quasi-static calculation, we often reach a point where
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Figure 4.7: Mixed-mode SE(B) test: (a) geometry and boundary condition; (b) mesh con-
figuration for whole geometry; (c) mesh detail where cohesive elements are inserted. Notice
that dashed line indicates an area where cohesive elements are inserted.

the incremental solution jumps back and forth between two near equilibrium states [127].
However, in this study, this numerical problem is not observed when the Riks method is
employed indicating its superior performance compared to the Newton-Raphson method in
this particular problem. Detailed discussion on numerical convergence will be presented in
Chapter 5. Figure 4.8 (b) illustrates the comparison of the crack trajectory between experi-
ment and numerical results obtained using the Riks method. Green and blue lines indicate

the crack trajectory of the front and back side of the specimen based on the experimental
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results, respectively. The red line indicates the numerical result, which is in good agreement

with the experimental results.

)

Figure 4.8: Simulation of mixed-mode SE(B) test: (a) deformed shape showing crack tra-
jectory (scale factor is three); (b) comparison of crack trajectory between numerical and
experimental results. Red line indicates the crack trajectory obtained from the 2D CZM,
while blue line and green lines denote the crack trajectory from the experiment (front and
back faces, respectively).

4.5 Concluding remarks

A potential-based cohesive zone model was implemented using a ABAQUS user-specified
element (UEL) and employed to simulate crack propagation in asphalt concrete laboratory
fracture test of SE(B). To verify the CZM implementation into the UEL of ABAQUS, the
slender double cantilever beam is chosen and analyzed. The numerical results from this
simulation matched the analytical solution remarkably well even for small crack extensions,
which included boundary effects. Using the cohesive parameters obtained from the exper-
iment, i.e. the material strength from the IDT and the fracture energy from the SE(B),

a simulation of the SE(B) fracture test was performed to calibrate cohesive parameters.
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Overall, the trend, peak load and corresponding CMOD of present numerical results with
the calibrated cohesive parameters matched well with experimental results. Moreover, using
the same SE(B) test, sensitivity analysis to cohesive element sizes, and cohesive parameters
of material strength and fracture energy was performed. The cohesive element sizes chosen
here, i.e. 0.1mm, 0.2mm and 1.0mm, were shown to be insensitive to the numerical solutions.
As fracture energy increases, the peak load and the area of the curve increases. Moreover,
as the critical strength increases, the peak load increases. Mixed-mode crack propagation
simulation of SE(B) test was performed using the calibrated cohesive parameters. In this
analysis, the cohesive elements were inserted over an area to allow crack propagation along
an arbitrary direction. To avoid numerical convergence problems, the Riks method was em-
ployed. The complete crack trajectory of present numerical results matched well with that

of experimental results.
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Chapter 5

A bilinear cohesive zone model
tailored for fracture of asphalt
concrete

A bilinear cohesive zone model (CZM) is employed in conjunction with a viscoelastic bulk
(background) material to investigate fracture behavior of asphalt concrete. An attractive
feature of the bilinear CZM is a potential reduction of artificial compliance inherent in the
intrinsic CZM. In this study, finite material strength and cohesive fracture energy, which
are cohesive parameters, are obtained from laboratory experiments. Finite element imple-
mentation of the CZM is accomplished by means of a user-subroutine which is employed
in a commercial finite element code (e.g., UEL in ABAQUS). The cohesive plarameters are
calibrated by simulation of mode I disk-shaped compact tension results. The ability to sim-
ulate mixed-mode fracture is demonstrated. The single-edge notched beam test is simulated
where cohesive elements are inserted over an area to allow cracks to propagate in any gen-
eral direction. The predicted mixed-mode crack trajectory is found to be in close agreement
with experimental results. Furthermore, various aspects of CZMs and fracture behavior in
asphalt concrete are discussed including: compliance, numerical convergence problems, and

energy balance.
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5.1 Introduction

Cohesive zone modeling has gained considerable attention over the past decade, as it repre-
sents a powerful yet efficient technique for computational fracture studies. During the 90s,
leaps were made as a result of the pioneering works by Needleman and his co-workers [86, 144],
and Camacho and Ortiz [19]. Xu and Needleman [144] proposed a potential-based cohesive
zone model in which cohesive elements are inserted into a finite element mesh in advance,
which follow an exponential cohesive law. In such a scheme, as displacement between cohe-
sive elements increases, the traction initially increases, reaches a maximum, and then decays
monotonically. On the contrary, Camacho and Ortiz [19] presented a stress-based extrinsic
cohesive law where a new surface is adaptively created by duplicating nodes which were pre-
viously bonded. Recently, the CZM by Xu and Needleman [144] has been widely used over
the model by Camacho and Ortiz [19], because it is relatively easier to implement into the
finite element method (FEM). For the study of fracture in asphalt concrete, most efforts to
obtain a better understanding of cracking mechanisms in this particulate viscoelastic materi-
als have taken an experimental approach [3, 14, 65, 78]. Recently, Soares et al. [121] applied
a cohesive zone model to investigate mode I crack propagation in the Superpave Indirect
Tension Test (IDT) using the cohesive law proposed by Tvergaard [129]. Song et al. [123]
simulated mode I and mixed-mode crack propagation of laboratory fracture tests, e.g. the
single-edge notched beam (SE(B)) test, using a potential based cohesive zone model [144]
and investigated various aspects of fracture behavior in conjunction with experiments. How-
ever, the models used [129, 144] in asphalt concrete fracture modeling thus far are found
to induce considerable artificial compliance due to the pre-peak slope of the intrinsic co-
hesive law. To diminish artificial compliance inherent in an intrinsic CZM, Geubelle and
Baylor [41] and Espinosa and Zavattieri [39] adopted bilinear cohesive zone models to reduce
the compliance by providing an adjustable initial slope in the cohesive law. In this study,

the bilinear model [39] is employed to reduce artificial compliance.
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A relatively fewer number of studies have been carried out which address fracture in
viscoelastic materials. Early works in this area include the important contributions of
Knauss [67] and Schapery [113], who developed theories for macroscopic cracks in viscoelastic
media. More recently, a number of different attempts have been made to consider rate effects
in a material separation model. Knauss and Losi [68] combined a viscoelastic constitutive
model with a damage function. Rahulkumar et al. [100] and Allen and Searcy [4] adopted
a hereditary integral approach, which is the identical with the formulation for the bulk ma-
terial, in conjunction with a traction-separation function. Bazant and Li [12] formulated a
rate-dependent cohesive crack model. Xu et al. [141] has also proposed a rate-dependent
CZM, having both rate-independent and rate-dependent material parameters which are de-
termined from experiments and numerical analysis. However, the literature is currently
devoid of numerical simulations of fracture in asphalt concrete which consider viscoelastic
effects.

Thus, the scope of this chapter is as follows:

e To numerically quantify the effects of CZM compliance with respect to fracture in

asphalt concrete.

e To present a bilinear CZM, which has been implemented as UEL in ABAQUS, to

effectively reduce artificial compliance in asphalt concrete fracture simulations.

o To investigate the fracture behavior of asphalt concrete considering bulk (background)

material viscoelasticity.

e To simulate mixed-mode crack propagation in a SE(B) test in which cohesive elements
with a regular pattern are inserted over an area to allow cracks to grow in dny general

direction and to minimize influence of mesh discretization on crack trajectory.

o To compare the mixed-mode crack trajectory obtained from CZM simulation with that

of experimental results.
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e To study numerical convergence problems in mixed-mode CZM fracture simulation

(including influence of finite element discretization).

e To explore crack competition phenomenon between nucleation and initiation, and pre-
dict the exchange of stability between crack initiation and propagation at a critical

pre-notch offset.

5.2 CZM compliance issues

CZM compliance is presented briefly in Section 1.3.5. In this section, it is discussed thor-
oughly. In order to correlate material properties of asphalt concrete and the compliance
of the cohesive models, two cohesive models [39, 144] are employed. Identical material
properties are used in the comparison of the two models, namely: F = 14.2GPa, v = 0.35,
0. = 3.56 M Pa and G, = 344J/m?. These properties were measured from samples of asphalt
concrete tested as part of the design of a surface mixture for the rehabilitation of taxiway
E at the Greater Peoria (Illinois) Regional Airport in 2001. The effective modulus of the
exponential model [144] and bilinear model [39] as a function of & and é, is plotted in Figure
5.1. Significant compliance is induced due to the low ratio of o./FE, e.g. o./FE=0.000276,
when the exponential model is adopted. A considerable reduction of compliance results
when the bilinear model is employed. Moreover, the effective modulus (Feyss) approaches
the properties of continuum (E) as A, decreases.

To investigate further the compliance of the cohesive laws [39, 144] using asphalt concrete
materials, a simulation of a recently developed SE(B) test for asphalt concrete is performed.
Figure 5.2 (a) illustrates a simply supported SE(B) with a length of 376mm, a height of
100mm and a thickness of 75mm. The simulated mechanical notch extends 19mm from
the bottom edge of the beam. External loading is imposed at the center of the top edge
of the model. Figure 5.2 (b) shows the finite element configuration for the whole geometry,

which is constructed using 28112 3-noded triangular plane strain elements. Figure 5.2 (c)
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Figure 5.1: Effective modulus as a function of h and d. using bilinear and exponential cohesive
zone models [144, 39] for asphalt concrete material properties.

illustrates mesh details for the regions where cohesive elements are inserted. Three different
cases are considered. In the first case, cohesive elements are inserted only along the center
of the specimen with 800 4-noded linear cohesive elements. In the second case, cohesive
elements are inserted over central region of the specimen between (-0.2, 19.0) and (0.2, 99.2)
with 13236 4-noded linear cohesive elements. Finally, in the third case cohesive elements are
inserted between (-9.2, 19.0) and (9.2, 99.2) with 32186 4-noded linear cohesive elements.
Notice that the number of cohesive elements used in cases II and III is approximately 15 and
40 times, respectively, larger than that of case I.

Force (P) versus crack mouth opening displacement (CMOD) curves using the exponen-
tial model and the bilinear model for case I are plotted in Figure 5.3 (a). For comparison
purposes, the P versus CMOD curve obtained when cohesive elements are not used is plotted,
which establishes a baseline corresponding to zero artificially-induced compliance. When the
bilinear model is adopted, the compliahce is reduced tremendously. Moreover, the influence

of Acr in the bilinear model is noteworthy. To examine the relationship between number of
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Figure 5.2: SE(B) test simulation: (a) geometry and boundary condition; (b) mesh configu-
ration for the whole geometry; (c) mesh details for the regions where cohesive elements are
inserted.

cohesive elements and compliance, P versus CMOD curves using the bilinear model for the
three cases are plotted in Figure 5.3 (b). It is clearly observed that as the number of cohesive
elements increases, the compliance likewise increases. This is intuitive because as the num-
ber of cohesive elements increases, the contribution of the cohesive elements in terms of the
compliance likewise increases. Thus, it is recommended to minimize the number of cohesive

elements, if possible, and to adopt cohesive zone models which can control a pre-peak slope,
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e.g. a bilinear CZM, when modeling fracture in asphalt concrete.
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Figure 5.3: Comparison of P versus CMOD curves: (a) using cohesive zone models {144, 39]
for the case I; and (b) using the bilinear model [39] for the three cases.
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5.3 Computational results considering viscoelastic
bulk material

In this section, energy balance is presented and simulation of crack propagation in the mode
I DC(T) test and mixed-mode SE(B) test are carried out. Notice that brief explanation on

viscoelasticity is presented in Section 1.2.2 so that it is not repeated here.

5.3.1 Energy balance

Wagoner et al. [134, 135] proposed the disk-shaped compact tension test, or DC(T), for as-
phalt concrete. Figure 5.4 (a) illustrates a DC(T) specimen which is 150mm high, 145mm
long and 50mm thick. The length of the mechanical notch is 27.5mm, leading to a/w = 0.25.
Loading pins are inserted in the holes and pulled apart with a closed-loop servohydraulic
loading system to induce opening. Figure 5.4 (b) shows mesh discretizations for the whole
geometry. The DC(T) test specimen is constructed using 2376 4-noded quadrilateral plane
strain elements for the bulk elements and 88 4-noded linear elements for the cohesive el-
ements. The cohesive elements are inserted along the middle of specimen to enable the
simulation of pure mode-I crack propagation. Cohesive elements of 1.0mm size are em-
ployed, as these are found through parametric investigation to be small enough to capture
nonlinear softening behavior occurring in the cohesive zone [123]. A constant Poisson’s ratio
is used: »=0.35. The cohesive fracture energy obtained at —10°C' and 1mm/min. CMOD
loading rate is 324J/m? (G. = 324J/m?), and the material strength measured at —10°C is
3.58 M Pa (o, = 3.58 M Pa) [131]. Tables 5.1 and 5.2 contain the generalized Maxwell model
parameters and shift factors, respectively. Notice that bulk and cohesive material properties
employed in the remainder of simulations are based on a typical surface mixture used in
central Illinois in which the binder grade is PG 64-22 and a nominal maximum aggregate
size (NMAS) of 9.5mm is used [131]. The instantaneous modulus and the modulus at 60sec.
and ~10°C are 25.6GPa and 11.9G Pa, respectively.

Figure 5.5 (a) shows energy components for a DC(T) test simulation with a controlled
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(b)

Figure 5.4: DC(T) test simulation; (a) geometry and boundary condition; (b) mesh config-
urations for the whole geometry.

Table 5.1: Prony series parameters for the master relaxation modulus using the generalized
Maxwell model [131].

Relaxation Modulus Parameters
i || Ei(GPa) 7;(sec)
1 34 12
2 3.4 162
3 5.9 1852
4 6.8 17476
5 6.1 465460

CMOD rate of 1mm/min. loading rate and material parameters associated with —10°C.

The abscissa represents time and the ordinate denotes components of total energy. The
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Table 5.2: Temperature shift factors [131].

Temperatures | log(1/ar)
—20°C 0
-10°C 1.34

0°C 2.70

total dissipated fracture energy is computed as part of the UEL and is given as

Ef = Z//te ds. dA (5.1)

where superscript f denotes fracture, A represents area, and d, and ¢, denote effective dis-
placement and the corresponding traction between a cohesive element, respectively. As
illustrated in Figure 5.5 (a), dissipated fracture energy increases as time increases, which
is expected. However, recoverable strain energy and dissipated creep energy show different
behavior. As time increases, recoverable strain energy increases, reaches peak point around
10 seconds and then decays as the crack extends through the specimen. This trend is almost
identical with that of load versus time as illustrated in Figure 5.5 (b). On the other hand,
the creep energy dissipation increases gradually before 40 seconds and shows a steady-state
trend after 40 seconds. The contribution of recoverable strain energy, dissipated creep energy
and dissipated fracture energy to the total work is 35, 10 and 55 percent, respectively at 10

seconds, and 2, 5 and 93 percent, respectively at 60 seconds.

5.3.2 Calibration of cohesive parameters in the DC(T)

In the nonlinear cohesive constitutive model, the cohesive fracture energy and material
strength are the main parameters used in this study. While these parameters obtained
from experiments reflect viscoelastic heterogeneous material, several assumptions are made
in the current modeling: 1) the bulk element is assumed to be viscoelastic homogeneous;
and 2) the cohesive element is assumed to be elastic homogeneous. Furthermore, a cohesive

fracture energy obtained from equating to an area of a force versus CMOD curve [118] may
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Figure 5.5: DC(T) simulation: (a) energy balance with 1.0mm/min. CMOD loading rate at
—10°C; (b) a load versus time curve.
overestimate the local work of separation, because CMOD is contributed from both the bulk
and fracture. As a result, model calibration is necessary. In this work, parameters of the
CZM model are calibrated by fitting present numerical results to experimental results in
order to account for the differences between experiments and numerical simulations.

Figure 5.6 compares the present numerical results with experimental results. The abscissa
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indicates CMOD(mm) and the ordinate indicates the load P(KN). Three specimens are
tested at -10C and 1mm/min. loading rate. Detailed procedures for the DC(T') test are
described by Wagoner et al. [134]. The predicted P versus CMOD curve matches favorably
with that of experimental results. Relatively small calibration shifts of cohesive parameters,
ie. 0.7G, = 0.7 x 324J/m? and 0.950, = 0.95 x 3.58 M Pa, are required to bring simulated
results into reasonable comparison with measured results. For the rest of simulations, the

calibrated cohesive parameters are adopted.

3-5 T T L] T T

Present CZM (O.7*Gc, 0.95*60) J

Experimental results

N
[8}]
T

P(KN)

0.5

0.2 0.4 0.6 0.8 1 1.2
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Figure 5.6: Comparison of P versus CMOD curves between numerical and experimental
results [135].
5.3.3 Mixed-mode crack propagation in the SE(B)

Unlike the previous example (mode I) where a crack path is predefined, in the simulation
of mixed-mode fracture in the SE(B) test cohesive elements are inserted over an area to
allow cracks to propagate in any direction. Figure 5.7 (a) shows the geometry, boundary

condition, and shaded region where cohesive elements have been inserted. The length, height
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and thickness of the SE(B) specimen are 376mm, 100mm and 75mm, respectively. The
notch tip is located at 65mm left and 19mm above the center of the bottom edge of the
beam. External loading is imposed at the center of the top edge of the model for the
mid-span loading configuration of the SE(B) test. Figures 5.7 (b) and (c) illustrate finite
element discretization for the entire model along with mesh details in the shaded region
where cohesive elements are inserted. The shaded region between (123, 19) and (150, 95) is
constructed in a regular pattern with 3-noded triangular elements having an aspect ratio of
1:1.9 (= z : y). The SE(B) structure is constructed using 5398 3-node triangular elements
for bulk material, and by 3066 4-node linear elements for cohesive interfaces. Viscoelastic
analysis is performed. We assume the same cohesive fracture energy for mode-I and mode-II.

Figure 5.8 (a) illustrates the final deformed shapes and crack trajectories. A magnification
factor of 30 is used to make crack trajectories visible. Figure 5.8 (b) shows a comparison of
the crack trajectories of experimental and numerical results obtained from the viscoelastic
analysis. Green and blue lines indicate the crack trajectory of the experimental results
and a red line indicates the crack trajectory of the present numerical simulation, indicating

favorable agreement.

5.4 Discussion on numerical convergence

It has been reported that one of the challenges in cohesive zone modeling is a numerical con-
vergence problem when an implicit displacement based finite element scheme is used. This
problem is rarely observed when cohesive elements are inserted along a predefined line. Nu-
merical convergence problems, however, are pronounced when a number of cohesive elements
are inserted over an area in the absence of known crack paths. In this section, numerical con-
vergence is presented and discussed in context of mesh discretization and nonlinear equation
solvers. For simplicity, viscoelastic effects are not considered in this portion of study.
Several researchers [108, 46, 107] have explored integration schemes and/or nonlinear

equation solvers to avoid convergence problems when using cohesive zone models. Regard-
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Figure 5.7: Mixed-mode SE(B) test: (a) geometry and boundary condition; (b) mesh con-
figuration for the whole geometry; (c) mesh details of the shaded region of (123,19) and
(150,95) where cohesive elements are inserted.

ing integration schemes, Roy and Dodds [108] reported that the Newton-Cotes integration
rule leads to oscillatory opening profiles and induces numerical divergence, indicating that
conventional Gauss Quadrature is superior to the Newton-Cotes. Han et al. [46] adopted
a Lobatto 3 x 3 numerical integration for interface elements and a modified version of the
arc-length control to avoid numerical divergence for three dimensional problems. Regard-

ing nonlinear equation solvers, several researchers adopted arc-length methods to overcome
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(b)

Figure 5.8: Simulation of the mixed-mode SE(B) test: (a) deformed shape showing crack
trajectory (scale factor is 30); (b) comparison of the crack trajectory between numerical
and experimental results. Red line indicates the crack trajectory obtained from the present
numerical simulation, and green and blue lines denote the crack trajectories from the exper-
iment.

numerical convergence problems in conjunction with cohesive elements [46, 107]. This arc-
length method, initially proposed by Riks and modified by Crisfield [30] and others succeeded
in tracing the limit point and post peak responses by a prescribed arc-length. However, it has
often been reported that the arc-length method still fails to converge at or near the limiting
points. Rots and de Borst [107] pointed out that “this instability should be attributed to the
global constraints equations including all the degree of freedom, which was contradictory to
the fact that the failure zone or fracture process zone is highly localized.”

To address and clarify these numerical issues associated with the CZM, crack propagation

analysis of the mixed-mode SE(B) test is performed. The geometry, boundary conditions,
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material properties and cohesive parameters of SE(B) test are identical with those of SE(B)
test in Section 5.3.3 (see Figure 5.7 (a)). The three different mesh discretizations are adopted
to study the influence of mesh discretization on the numerical convergence (see Figures 5.9
(a), (d) and (g)). Furthermore, two nonlinear solvers, i.e. the Newton-Raphson and the
Riks methods, are employed to explore their influence on the convergence. Notice that the
meshes of Figures 5.9 (a) and (d) are constructed in a regular pattern, while the mesh of
Figure 5.9 (g) is tailored to the crack trajectory predicted using a discrete fracture approach
with the program I-FRANC2D [61].

Figure 5.9 illustrates the final crack trajectory for different mesh discretizations using two
nonlinear solvers before the solutions experience divergence. The bottom-left point in each
deformed shape corresponds to the original crack tip and the top-right point corresponds
to the location of external loading. Figures 5.9 (a), (d), and (g) illustrate mesh details for
Figures 5.9 (b) and (c), (e) and (f), and (h) and (i), respectively. Several important observa-
tions from this analysis include: 1) for the meshes constructed in a regular pattern, the Riks
method yields better performance than the Newton-Raphson method with a varying degree
of success depending on the mesh discretization; 2) for the mesh tailored to the crack trajec-
tory predicted from I-Franc2D, both nonlinear solvers perform very well demonstrating that
the degree of numerical convergence highly depends upon the finite element discretizations;
3) once crack branching occurs, numerical solutions are rarely converged; and 4) if the crack
propagation angle of finite element discretization is similar with that of either analytical or
experimental results, say an optimal crack trajectory, numerical solution converges relatively

well.
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Figure 5.9: Final crack trajectory: (a), (d) and (g) show mesh details for (b) and (c), (e)
and (f), and (h) and (i), respectively. The Newton-Raphson is used for (b), (e) and (h), and
the Riks method is adopted for (c), (f) and (i). Notice that the bottom left point of each
deformed figure corresponds to the original crack tip and the top right point corresponds to
the location of applied loading. Magnification factor 50 is used for (b), (c), (e) and (f), and
the magnification factor 10 is employed for (h) and (i) to make crack trajectory visible.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5 Crack competition phenomenon: nucleation
versus initiation and propagation

This section investigates crack competition between nucleation and initiation. In actual
roads, asphalt concrete pavement is loaded in both tension and shear, and as a result,
understanding mixed-mode fracture events in asphalt concrete is crucial. The crack compe-
tition phenomenon was investigated by offsetting the mechanical notch from the centerline
of the single-edge notched beam (SE(B)) [45, 57, 109, 132]. The SE(B) specimens, which
are notched at an offset with respect to the central cross section, lead to asymmetric loading
conditions, and thus, mixed-mode fracture. A benefit of a SE(B) test simulation is that
mode-I and mixed-mode fractures can be easily induced with a different offset of the notch
with respect to the central cross section, considering crack competition between initiation
and nucleation mechanisms. Figure 5.10 illustrates schematic drawings of various fracture
phenomena. The variable s denotes the clear span length of the beam, and the variable ~
defines the crack offset, i.e.

offset =r s/2 (5.2)

With the notch located along the middle of the specimen, mode-I crack propagation can be
simulated (see Figure 5.10 (a)). As the notch moves from the central cross section to the
boundary, crack competition between nucleation and initiation is induced. When = is lower
than the critical value 7., which is defined as the exchange of fracture mechanisms from
crack initiation to crack nucleation at a critical notch offset, crack initiates from the existing
notch tip and propagates (see Figure 5.10 (b)). On the contrary, when v > 7., a crack
nucleates at the bottom of the specimen and propagates (see Figure 5.10 (c)).

John and Shah [57] and Guo et al. [45] experimentally investigated crack competition
phenomenon in plain concrete beams subjected to dynamic loading. John and Shan [57] ob-
served that the transition from crack initiation to crack nucleation occurs at a critical offset

of around 0.7, i.e. v, = 0.7. Wagoner et al. [132] investigated the competition mechanisms
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Figure 5.10: Three different fracture behaviors: (a) mode I; (b) initiation and propagation;
and (c) nucleation and propagation.

employing an asphalt concrete beam subjected to quasi-static loading, and found that ., is
between 0.5 and 0.55. Geometry and dimensions of the beams tested by John and Shah [57],
Guo et al. [45], and Wagoner et al. [132] are illustrated in Figure 5.11. Note that the dimen-

sions of the tested beam by John and Shah [57] are fairly smaller than those of the beams by
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Guo et al. [45] and Wagoner et al. [132]. Ruiz et al. [109] investigated these problems em-
ploying a three-dimensional extrinsic CZM. Sam et al. [110] used a two-dimensional cohesive
zone modeling technique to investigate the experiment tested by John and Shah [57]. Ruiz
et al. [109] and Sam et al. [110] reasonably predicted the exchange of stability between crack
initiation and nucleation at a critical pre-notch offset. Chong and Kuruppu [25], and Khan
and Al-Shayea [58] investigated mixed-mode fracture in geomaterials such as limestone rock,

using the semi-circular specimen with an inclined crack at the central line.

100mm

$/2=101.6mm $/2=165.1mm $/2=162mm

(a) (b) ©

Figure 5.11: Dimensions of the beams tested by: (a) John and Shah [57]; (b) Guo et al. [45];
and (c) Wagoner et al. [132].

5.5.1 Experimental investigations

Wagoner et al. [132, 133] experimentally explored crack competition phenomenon in asphalt
concrete. Experimental procedures and results are summarized briefly. The geometry and
boundary conditions are already illustrated in the previous section (see Figure 5.11 (c)).
In this test, a load-line displacement control is conducted to ensure that crack competition
phenomenon between crack initiation and nucleation occurs. The load line displacement rate
Smm/min. is adopted. A single 4.75mm NMAS mixture is used. Figure 5.12 (a) illustrates
the actual beam with mixed-mode fracture, whereas Figures 5.12 (b) and (c) show crack
paths for v = 0.5 and v = 0.55, respectively. Solid and dotted lines denote crack trajectories
of front and back faces, respectively. As shown in Figure 5.12, the exchange of stability from

crack initiation to crack nucleation occurs between 0.5 and 0.55.
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Figure 5.12: Experimental results with various notch offsets [132, 133]: (a) the actual beam
with mixed-mode fracture; (b) crack trajectories for v = 0.5; and (c) crack paths for v = 0.55.
Solid and dotted lines denote crack trajectories of front and back faces, respectively.

5.5.2 Numerical studies

Cohesive zone modeling technique is adopted to investigate the competition phenomenon
between initiation and nucleation. Figure 5.13 (a) schematically shows the geometry, bound-

ary conditions, and lines along which cohesive elements are inserted. The length, height and
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thickness are 376 mm, 100mm and 75mm, respectively. The crack tip is located at 78mm left
and 19mm above from the center of the bottom edge, leading to v = 0.48. The displacement
boundary condition, which increases linearly with respect to pseudo-time, is applied at the
center of the top edge of the model. Cohesive elements are inserted in advance along the
middle of the specimen to induce nucleation and propagation, and along the line, which is
connected to the existing notch tip, to cause crack initiation and propagation. Figure 5.13
(b) illustrates a finite element configuration for the whole geometry when v = 0.48. The
SE(B) structure is constructed by 5748 3-noded triangular and 2065 four-noded quadrilateral
elements for the bulk material and 181 four-noded linear elements for the cohesive material.
Plane strain condition is adopted. Figures 5.13 (c¢) and (d) illustrate mesh details for the
notch tip region and the central cross section, respectively. The cohesive element size 1.0mm
is used to ensure that the size is small enough to properly capture nonlinear behavior occur-
ring along the fracture process zone. The fracture energy and material strength calibrated
in Section 5.3.2 are employed. F = 14.2GPa and v = 0.35 are used.

Figure 5.14 shows the outcomes of the numerical simulations considering crack competi-
tion between nucleation and initiation. Deformed shapes with a magnification factor 30 are
shown for both v = 0.48 and v = 0.56. A crack initiates from the existing crack tip and prop-
agates when v = 0.48, while a crack is nucleated at the bottom of the central cross section
and propagates when v = 0.56. The exchange of stability between crack initiation and nucle-
ation at a critical pre-notch offset occurs between v = 0.48 and v = 0.56, demonstrating that
the numerically predicted <. is in excellent agreement with the experimental finding (see
Table 5.3). Figures 5.15 and 5.16 illustrate o, for v = 0.48 and v = 0.56, respectively, at
different loading steps. These contour plots show crack competition and interaction phenom-
ena between nucleation and initiation, and crack propagation clearly. Tensile stresses of the
red-colored region are higher than those of other areas. For v = 0.48, when external loading
is imposed, energy starts to be accumulated around the existing notch tip and the bottom

of the central cross section. As external loading increases, more energy is accumulated for
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Figure 5.13: SE(B) test simulation considering crack competition phenomenon: (a) geometry
and boundary conditions; (b) mesh discretization for the whole geometry; (c) mesh details
for the notch tip region in which a crack initiates and propagates; and (d) mesh details for
the central cross section where crack nucleation and propagation occur.
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both areas, demonstrating crack compefi’cion between initiation and nucleation. Then, more
energy is absorbed at the crack tip and crack starts to propagate from the existing notch tip,
while energy decreases around the bottom of the middle of the specimen and crack arrests.
Finally, most external works are transformed to make a crack propagate from the existing
notch tip to the top of the specimen, illustrating mixed-mode fracture. For v = 0.56, a
similar observation is obtained at earlier steps of the analysis. However, more energy is
built up around the middle of the specimen, indicating crack nucleation and propagation.
On the contrary, cohesive elements inserted above the notch tip arrest the development of a
material failure. Finally, most energies are used for crack propagation from the bottom of

the specimen.

Table 5.3: Comparison of ~.. between numerical and experimental results.

767‘
Experiment | 0.5~0.55

Modeling | 0.48~0.56

5.6 Concluding remarks

In this study, a bilinear cohesive zone model is used for fracture modeling in asphalt concrete
laboratory tests such as DC(T) and SE(B) considering viscoelastic effects in bulk materials.
In Section 5.2, the issues regarding compliance of the cohesive laws, i.e. potential-based co-
hesive zone model [144] and bilinear model [39], are explored by simulating a one-dimensional
problem [66] and a two-dimensional SE(B) test in asphalt concrete. It is demonstrated that
the bilinear cohesive zone model [39] is more appropriate for asphalt concrete materials than
the model by Xu and Needleman [144]. In Section 5.3, numerical results considering vis-
coelastic bulk material are presented. Simulation of the DC(T) fracture test is presented, in
which the cohesive elements are inserted along the middle of the specimen to permit mode I
crack propagation. This simulation is used to calibrate the cohesive zone model parameters

to experimental results. Overall, the predicted load CMOD behavior is found to match well
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Figure 5.14: Numerical results: (a) initiation and propagation when v = 0.48 and (Db)
nucleation and propagation when v = 0.56. Magnification factor 30 is used to make crack
trajectories visible.

with experimental results. In the mixed-mode SE(B) test simulation, cohesive elements are
inserted over an area to allow cracks to grow in any direction. Moreover, a regular finite ele-
ment discretization is used to lower the influence of mesh discretization on crack trajectory.
A mixed-mode crack propagation simulation is performed with good success. The mixed-
mode crack trajectory from the present simulation is found to match remarkably well with
experimental results. In Section 5.4, numerical convergence problems are discussed. In this
study, it is observed that a numerical divergence is unavoidable for mixed-mode simulations,
and highly depends upon the nature of the finite element discretization used. In Section 5.5,
crack competition phenomenon between initiation and propagation is studied numerically
in conjunction with the SE(B) test simulation in which cohesive elements are inserted in

advance to simulate either crack initiation or nucleation, and propagation. The predicted
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Figure 5.15: Numerical results demonstrating crack initiation and propagation when v =
0.48. Crack propagates from the crack tip location.
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Figure 5.16: Numerical results illustrating crack nucleation and propagation when v = 0.56.
Crack propagates at the middle region of the specimen.
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~Yer 18 found to be in excellent agreement with the experimental results.
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Chapter 6

Three-dimensional power-law cohesive
zone modeling in conjunction with the
095 concept

A cohesive zone model (CZM) has been effective in exploring fracture behavior in various
materials. In general, the cohesive parameters associated to material strength and cohesive
fracture energy are considered more important than a CZM softening shape. However, the
influence of the CZM softening shape becomes significant as the relative size of the fracture
process zone compared to the structure size increases, which is relevant for asphalt concrete
and other quasi-brittle materials. In this study, the power-law CZM [35] is revisited and
improved 1) to reduce artificial compliance by means of an internal variable controlling a
pre-peak slope, 2) to model general cases (e.g. mixed-mode and three-dimensional), and 3)
to have various softening shapes. Then, the improved power-law CZM is employed to inves-
tigate the influence of the CZM softening shape on asphalt concrete fracture behavior and to
propose a suitable softening shape for asphalt concrete. Furthermore, a new parameter, da5,
which was inspired by the insightful 5 concept of Schwalbe and co-workers, is proposed as
an operational definition of a crack tip opening displacement (CTOD). The d95 measurement
is incorporated into experimental validation of its usefulness with asphalt concrete. Once
the o5 parameter is deemed relevant, fhe parameter is utilized to measure fracture energy.

Three dimensional DC(T) test simulation is performed considering bulk (background) ma-
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terial viscoelasticity. The integration of the do5 parameter and the new power-law CZM
has provided further insight into asphalt concrete fracture behavior with good agreement

between the experimental results and numerical simulations.

6.1 Introduction

Asphalt concrete is used as a surfacing material for pavement structures throughout the
world with large amounts of money being invested into the maintenance of these pavement
structures. Although there are many distresses, or causes of deterioration, associated with
asphalt concrete, a major concern is fracture of asphalt concrete, which decreases the service-
ability of the structure. Until recently, empirical relationships are utilized to develop design
approaches that reduce the likelihood of the pavement structure fracturing [50]. However,
these empirical approaches are limited to specific pavement structures, since extrapolating
the design approaches to different pavement designs (pavement thickness, materials, envi-
ronmental effects, etc.) may not result in good performing pavements. The movement in
recent years in the asphalt concrete pavement community has been to incorporate funda-
mental mechanics into the pavement designs that would allow for the prediction of pavement
performance over a wide range of design variables. Specifically, fracture mechanics is being
applied to characterize the mechanisms that initiate and propagate a crack through asphalt
concrete by using experimental and computational techniques [72, 121, 122, 134].

Asphalt concrete has been shown to exhibit quasibrittle and time and temperature de-
pendent fracture where the softening of the material can be attributed to the microstructure
where the aggregates have the ability to interlock and slide, while the asphalt mastic displays
cohesion and viscoelastic properties. Among several computational techniques, a cohesive
zone model is considered as an attractive computational method, because we can define a
suitable constitutive model in terms of displacement jump and traction. Due to the relatively
large size of the fracture process zone compared to the structure size in asphalt concrete and

other quasi-brittle materials, a CZM softening shape becomes as relevant as the cohesive
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parameters associated to material stréngth and cohesive fracture energy, and as a result,
it becomes crucial to adopt a proper CZM softening shape to obtain reasonable numerical
results. Unfortunately, most CZMs including the models [39, 129, 144] used in asphalt con-
crete fracture studies can not control a CZM softening shape, which represents progressive
softening phenomena occurring along the fracture process zone. For example, the bilinear
CZM [129] has the constant reduction of traction with respect to displacement jump (see
Figure 3.2). The bilinear model can be reasonable for a particular material, but may not be
good for other materials. It can be costly to implement a CZM with a differént softening
shape, whenever needed. So, from a computational point of view, it can be very attractive
to have a CZM which can have various softening shapes. In this study, a power-law cohesive
zone model [35] is revisited and improved 1) to reduce artificial compliance, 2) to model
general cases, e.g. mixed-mode and three-dimensional, and 3) to have various choices in
terms of CZM softening shapes.

One of the material properties that are required for the CZMs is the cohesive fracture
energy, or the energy required to fully separate the material. Work conducted by Wagoner et
al. [134] suggests that the fracture energy of asphalt concrete can be obtained by using a disk-
shaped compact tension specimen, DC(T'), in which the fracture energy is obtained by using
the CMOD of the specimen. This is utilized since the CMOD is a measurement required to
perform the experiment. The main disadvantage of using the CMOD for obtaining fracture
energy is that the CMOD is a quantity contributed by the specimen structure, i.e. the bulk
material and fracture, not solely by fracture. In this work, a new displacement measurement,
025, is introduced to provide a local quantity of CTOD. The work of Schwalbe and his colleges
provided the framework for the d95 measurement with their work of the 85 quantity [114, 115,
117]. The 85 measurement was developed and applied to fine-grained materials with great
success. The challenge with applying the d-measurement to asphalt concrete is the coarse
microstructure that has aggregates as large as 25 mm (see Figure 6.1 for typical asphalt

concrete microstructure). For this current study, the maximum aggregate size in the asphalt
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concrete mixture is 9.5 mm, therefore, the measurement at the notch tip is obtained over
a 25 mm gage length to ensure that the influence of the aggregates are minimized from
the measurements. As a general rule for heterogeneous mixtures, such as asphalt concrete,
the gage length should be at least 3 times the maximum aggregate size [106]. The fracture
energy obtained from the Jo5 parameter may provide better estimation for asphalt concrete
mixtures, since the compliance associated with the global response is reduced. The work

herein will go on to describe the usefulness of the do5 parameter.

Figure 6.1: Typical asphalt concrete microstructure.

6.2 Power-law cohesive zone modeling

A CZM softening shape for fracture study in quasibrittle materials is as important as the
cohesive parameters, i.e. fracture energy and material strength, due to the relatively large
size of the fracture process zone compared to the structure size. To model fracture behavior
in concrete, which is the best example among quasibrittle materials, the rectangular and
linear softening curves were proposed initially. However, it turned out that these softening
curves capture concrete fracture behavior poorly. Next shape was a bilinear softening curve
by Peterson [97]. Reasonable numerical results were obtained using the bilinear shape.

Since then, many research group have proposed various bilinear type softening curves such
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as bilinear shapes [105, 139], exponential shapes [28, 44, 98] and power-law shapes [35].
However, the literature is currently devoid of study on a CZM softening shape in asphalt
concrete fracture modeling. In this study, the improved power-law CZM [124] is used to
explore the influence of CZM softening shapes and to propose a suitable one for an asphalt
concrete fracture study.

Figure 6.2 (a) illustrates a DC(T) specimen which is 143 mm high, 139 mm long and
35mm thick. The length of the mechanical notch, say a, is 26.5mm, leading to a/w=0.25.
A displacement control inducing a constant CMOD rate of 1.0mm/min. is adopted. Figure
6.2 (b) shows three dimensional mesh discretizations for the whole geometry. The DC(T)
test specimen is constructed using 28094 8-node brick elements for the bulk material and
840 8-node elements for the cohesive material. The cohesive elements are inserted along
the middle of specimen to enable the simulation of pure mode-I crack propagation. A
symmetry condition along the thickness direction is employed to reduce a computational
cost. A constant Poisson’s ratio is used: ¥=0.35. The fracture energy obtained at —20°C
and Imm/min. CMOD rate is 190J/m? in the context of CMOD, and the material strength
measured at —20°C' is 2.90M Pa. Model parameters (see Table 6.1) and shift factors (see
Table 6.2) evaluated from the IDT test are adopted for viscoelastic analysis of bulk materials.
The geometry, material properties, and cohesive parameters are based on the cored pavement
material in northeast Iowa, in which PG64-22 binder is used.

Table 6.1: Prony series parameters for the master relaxation modulus using the generalized
Maxwell model [131].

Relaxation Modulus Parameters
i || Ei(GPa) 7;(sec)
1 3.54 15
2 3.43 249
3 1.75 4817
4 7.21 57378
5 11.92 2605452

Figure 6.3 shows a comparison of the present numerical results with the experimental
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Figure 6.2: DC(T) test simulation: (a) geometry and boundary conditions; (b) mesh config-
urations for the whole geometry.

Table 6.2: Temperature shift factors [131].

Temperatures | log(1/ar)
—30°C 0
—20°C 1.95
—10°C 3.2

results. In the present simulations, the power-law CZM with o = 1 and a = 10 is used.

When the power-law CZM with @ = 1 is used, the numerical results overpredict both the
peak load and the area under the curve, which is identical with observation by other research

groups [13]. Furthermore, the discrepancy between the numerical and experimental results is
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considerable around the peak load and becomes small as a crack approaches to the boundary.
It is attributed to the fact that the linear softening curve of the bilinear CZM, which has
the constant reduction of capacity with respect to displacement jump, does not properly
represent softening phenomena. In fact, it is observed in asphalt concrete that the capacity
to resist crack opening drops suddenly due to cracks along interfaces between aggregates and
asphalt mastics, and then the cohesion occurs because of asphalt mastics and interlocking.
When the power-law CZM with o = 10 is employed, the peak load and the softening trend
of the present numerical results are quite similar with those of the experiments. It can be
inferred from the comparison that the softening shape represented by the power-law with
a = 10 is a reasonable approximation of softening phenomena occurring along the fracture
process zone. However, the area under the curve of the numerical results is bigger than that
of the experiments. This indicates that the energy evaluated in context of the CMOD is
over-estimated. It is intuitive because when the CMOD is employed to compute fracture
energy, both the bulk and fracture contribute to the evaluation of cohesive fracture energy.
The issues related to the evaluation of fracture energy will be thoroughly discussed in next

section.

6.3 The 695 approach

In this section, experimental investigations are performed to illustrate that 625—measurerhent
is more appropriate in evaluating cohesive fracture energy than C MO D-measurement in

asphalt concrete.

6.3.1 Experimental set-up

The development of the dq5 measurement is conducted using a disk-shaped compact ten-
sion, DC(T), specimen. The DC(T) test has been successfully developed for estimating the
fracture energy of asphalt concrete [134]. In addition to the typical measurements, the test

set-up for the Jo5 measurements require two extra clip gages to be attached to the specimen
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Figure 6.3: Comparison of a P versus CMOD curve between the numerical and experimental
results.

at the notch tip. Gages are attached to the specimen at a gage length of 25 mm on both
sides of the specimen (See Figure 6.4 (a)). The data presented herein is obtained at a single

test temperature of —20°C and a constant CMOD rate of 1 mm/min.

6.3.2 Validation

The fracture energy is estimated using the DC(T) specimen at —20°C and a CMOD rate
of 1 mm/min. The energy is calculated using both the CMOD and 825 measurements. Two
replicates are tested and the results are shown in Table 6.3. The average fracture energy
calculated using the CMOD is 190J/m? while the fracture energy calculated from the dos
measurement is 120J/m?2. The difference between the CMOD and d,5 measurements can be
seen in Figure 6.5. The initial slope of the load-CMOD curve up to the peak is greater for
the 05 measurements indicating that the ds5 measurement minimizes the extraneous bulk
contribution that is associated with the CMOD measurement.

Another important experimental finding from the dy5 measurement is the difference in
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CMOD

Figure 6.4: The parameter dy5: (a) experimental setting [131]; (b) schematic drawing. Note
that Aa denotes a distance between the original crack tip and the current crack tip.

Table 6.3: Fracture energy of the two replicates at —20°C' [131].

fracture energy

Replicate || CMOD | dp5 (face 1) 825 (face 2)
1 180 116 117
2 200 129 118
Average 190 120

the shape and rate of the displacements. The CMOD is utilized as the test control and

had a constant opening rate of 1 mm/min. The do5 measurements do not show a constant
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Figure 6.5: Load versus displacement of CMOD and d25 (experimental results) [131].

opening rate. As shown in Figure 6.6, the do5 measurement showed a nonlinear response up
to a point, then a linear response. Typical results have shown that the time corresponding
to the inflection point where the §,5 measurement rate becomes constant is close to the time
at the peak load of a P versus CMOD curve (see Figure 6.5). Once the d55 opening rate
is constant, the rate is less than the CMOD rate by 30 percent. More importantly, as a
temperature increases, the difference of fracture energy between using the do5 and CMOD
measurements becomes significant as illustrated in Figure 6.7. It is intuitive because as we
increase temperatures, structures become more compliant and as a result, the contribution
of bulk material to the CMOD increases. So, based on experimental investigation, we can
conclude that for asphalt concrete, which shows time and temperature dependent behav-
ior, the dys measurement is more suitable in evaluating fracture energy than the CMOD

measurement.
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Figure 6.7: Comparison of fracture energy in context of the dy5 and CMOD for different
temperatures [131].
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6.4 Computational results

In this section, a three-dimensional DC(T) test simulation is performed to illustrate that the
calibration procedure can be removed when we use 1) the power-law CZM with o = 10 to
represent progressive softening phenomena occurring along the fracture process zone and 2)
the do5 measurement to compute cohesive fracture energy. Figure 6.8 illustrates comparison
between the experimental results and the numerical results in terms of P and CMOD. In
the modeling, the power-law CZM with @« = 10 and o = 1 is used. Cohesive fracture
energy evaluated in context of the dy5 and CMOD are 120J/m? and 190.J/m?, respectively.
Material strength o, is 2.90M Pa. When the conventional bilinear CZM, i.e. the power-
law CZM with o = 1, and G, = 190J/m? are used, the considerable discrepancy of the
softening trend between the numerical and experimgntal results is generated. In addition,
the peak load of the numerical results is over-estimated. However, good agreement between
the numerical and experimental results is obtained when the power-law CZM with o = 10
and G, = 120J/m? are adopted.

Figure 6.9 illustrates time versus displacements, i.e. the CMOD and the dq5, of the
experiments and numerical results. The CMOD of both numerical results and experiments
are identical which is expected because of the boundary condition imposed. For the dys,
the numerical results favorably match with experimental results. Both the numerical and
experimental results have a very close deflection point. From the simulations, it is inferred
that when we use the power-law CZM with a = 10 and cohesive fracture energy evaluated
in context of the d5, numerical results can be reasonably predicted without any calibration.

Figure 6.10 illustrates a deformed shape and o, corresponding to P=1KN before the
peak. When the imposed displacement increases, energy is accumulated at the initial crack
tip, which is denoted by red color in the contour plot. Then, the crack tip propagates
to the left boundary as red regions move from the original crack tip to the left boundary.

Magnification factor 500 is employed to make crack propagation visible.
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Figure 6.8: Comparison of the numerical results with the experimental results.
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Figure 6.9: Time versus CMOD and d55. Notice that in this simulation, the power-law CZM
with o = 10 is employed and the fracture energy evaluated in conjunction with the dy5 is
adopted.
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Figure 6.10: Stresses o, and deformed shapes. Note that magnification factor 500 is employed
to make crack propagation visible.

6.5 Concluding remarks

A common approach to measure fracture energy in asphalt concrete is to utilize the CMOD
since the CMOD is a measurement required to perform the experiment and easy to be
measured. However, due to the contribution of the bulk and fracture to the computation of
fracture energy, the fracture energy using the conventional approach is over-estimated and as
a result, calibration procedures in numerical modeling are unavoidable [122, 123]. Therefore,
the d95 parameter is proposed as an operational definition of crack tip opening displacement
(CTOD) in asphalt concrete. The use of the do5 parameter in evaluating fracture energy
leads to more reasonable numerical results due to the fact that the do5 is more close to local
quantity than the CMOD.

Due to the relatively large size of the fracture process zone compared to the structure

size in asphalt concrete and other quasi-brittle materials, a CZM softening shape becomes
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as relevant as the cohesive parameters associated to material strength and cohesive fracture
energy. In this study, the improved power-law CZM model [124] is employed to investigate
the influence of various CZM softening shapes and to propose a suitable one for asphalt
concrete fracture study. When the power-law CZM with o = 1, which is equivalent to
the bilinear CZM, is adopted, it captures the peak load and the softening behavior poorly.
There is a significant improvement in modeling when a nonlinearly decaying softening curve
represented by the power-law CZM with a = 10 is employed. The integration of the do5
measurement in computing cohesive fracture energy and the improved power-law CZM with
a = 10 has provided further insight into asphalt concrete fracture with good agreement

between the experimental and numerical results.
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Chapter 7

Rate-dependent cohesive zone
modeling for asphalt concrete
fracture: exploratory investigation

This chapter develops a novel rate-dependent CZM from the activation energy theory of the
rate process of bond rupture in conjunction with reasonable assumptions and simplifications,
and proposes appropriate procedure to evaluate several parameters accounting for time and
temperature effects. Additionally, sensitivity analysis to the new parameters introduced into
the proposed CZM is carried out. The proposed rate-dependent CZM improves numerical
results significantly, leading to a better comparison with experimental results, when vis-
coelastic effects are considerable. The predicted numerical results at —30°C, —20°C and

—10°C are found to be in close agreement with experimental results.

7.1 Motivation

A rate-independent CZM may not be sufficient to capture viscoelastic fracture behavior
properly [100]. To demonstrate this point, the DC(T) test simulation is carried out. Figure
7.1 (a) illustrates a DC(T) specimen which is 143 mm high and 139 mm long and 30mm
thick. The length of the mechanical notch is 26.5mm, leading to a/w=0.25. A displacement
control inducing constant CMOD rate of 1.0mm/min is adopted. Figure 7.1 (b) shows a

two-dimensional mesh discretization for the whole geometry. The cohesive elements are
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inserted along the middle of the specimen to enable the simulation of pure mode-I crack
propagation. Cohesive fracture energy and material strength at —10°C and —30°C are
shown in Table 7.1, and cohesive fracture energy is evaluated based on the o5 measurement.
Note that the material strength at —10°C and —30°C is assumed to be 79 percent and
82 precent, respectively, of material strength obtained from experiment at —20°C. Model
parameters (see Table 7.2) and shift factors (see Table 7.3) evaluated from the IDT test are
adopted for viscoelastic bulk materials. The material parameters are based on the cored
pavement in northeast IOWA, in which PG58-34 performance graded asphalt binder is used.
The power-law CZM with o = 10 is used to account for progressive softening behavior

occurring along the fracture process zone.

Table 7.1: Fracture energy and material strength [131].

-10°C | -30°C
Fracture energy (G.) (J/m?) 410 162
Material strength (o.) (M Pa) | 2.85 2.95

Table 7.2: Prony series parameters for the master relaxation modulus using the generalized
Maxwell model [131].

Relaxation Modulus Parameters.
i || Ei(GPa) 7:(sec)
1 4.7 15
2 6.4 259
3 6.0 4112
4 5.2 59041
5 4.9 2320938

Table 7.3: Temperature shift factors [131].

Temperatures | log(1/ar)
—-30°C 0
-20°C 1.55
-10°C 3.35
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Figure 7.1: DC(T) test simulation: (a) geometry and boundary conditions; (b) mesh config-
uration for the whole geometry.

Figure 7.2 illustrates a comparison of P versus CMOD curves between numerical and ex-
perimental results for different temperatures of —30°C and —10°C. At —30°C, the numerical
results using the rate-independent power-law CZM with o = 10 match favorably with the
experimental results, which demonstrates that a rate-independent CZM can be used for as-
phalt concrete fracture at low temperatures, provided that viscoelastic effects are minimal.
However, as temperature increases (e.g. —10°C), the discrepancy between numerical and
experimental results becomes significant. This comparison indicates that if rate effects are

important, time and temperature effects occurring along the fracture process zone need to be
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Figure 7.2: Comparison of P versus CMOD curves between numerical and experimental
results for different temperatures. In this case, rate independent CZM has been employed.

considered properly in order to obtain reasonable numerical results. Consequently, the rest
of this chapter will be devoted to the development and the validation of a rate-dependent

CZM.

7.2 Related work

In this section, a brief literature review on viscoelastic fracture modeling is provided. Knauss
and Losi [68] investigated rate and temperature-dependent behavior of polymers by incorpo-
rating the effect of the nonlinear constitutive response of the failing material. They claimed
that “Instead of prescribing these cohesive forces as a separate material function, it would
seem fundamentally preferable to compute their rate-dependent evolution from the constitu-
tive behavior for the disintegrating material so that their development is coupled mutually to

the viscoelastic response of the surrounding bulk materials.” So, they proposed the following
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expression: | _
ot = (o) [ Ol —t) &
o d

in which o(t) denotes stress, which is function of time; v(¢) is a damage parameter, which is
extrapolated to zero at maximum strain; and G is the shear relaxation moduli. Notice that
the above expression is a multiplication of the damage function, ¢, and the hereditary inte-
gral used to characterize viscoelastic bulk material. Rahul-Kumar et al. [100, 99] employed
a cohesive zone model to investigate polymer interfacial fracture. Allen and Search [4] ex-
tended the works by Knauss and Losi [68] and Rahul-Kumar et al. [100, 99] by incorporating
micromechanics.

Bazant and his coworkers [9, 12, 73, 140] developed a rate-dependent softening law based
on the activation theory of the rate-process of bond rupture on the atomic scale [42] to
investigate time-dependent fracture behavior in concrete. The final expression for the rate-

dependent law becomes

6 = dosinh ("_—Uf(‘s"l) , (7.2)

c

in which 4, is normal opening displacement rate occurring along the fracture process zone,
bo is reference normal opening displacement rate, and f(d,) is a unique softening stress-
displacement law for infinitely slow loading. To deal with a large fracture process zone in
typical of concrete and other quasi-brittle materials, a boundary integral formulation of the
cohesive crack model in terms of the compliance functions for loads applied anywhere on the

crack surface is introduced, which reads

6n = f1 {a — o.asinh (5—">‘ , (7.3)
do

where asinh is an inverse function of sinh.

Xu et al. [143] and Kogan et al [69] proposed a separate material function to handle
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viscoelastic fracture, which is given by

lon = 0O¢

5\
(&) o

in which m and &, are parameters associated with viscoelastic fracture. The stress o, is
assumed to be either constant for a Dugdale-like model [143], or a function of opening

displacement [69]. Rahul-Kumar et al. [100] extended the above expression to

AN
1+ (5—()) ] | (7.5)

Xu et al. [141, 142] investigated rate effects of failure in adhesive bonds where the source

bon = tn(én)

of time-dependency is the rate of the material separation in the fracture process zone. A
rate-dependent CZM consisting of rate-independent and rate-dependent material separation

parameters is given as

dtyn
L

dty, dé,
+ kotyn = 7 [E(S— + k‘g] —C—lt— + kot, (76)

where u is the cohesive zone viscosity with a unit force per velocity per area, and k, is a
secondary cohesive zone stiffness with a unit of force per relative displacement per area. The
rate-independent and rate-dependent material separation parameters are obtained with rea-
sonable experimental and numerical analyses efforts. Double cantilever beam joints bonded
with a high-density polyethylene based adhesive under constant loading rates were investi-
gated [141, 142].

To account for particle interaction in a viscous medium, Nguyen et al. [87] developed
a rate-dependent cohesive continuum model in which elastic bond breaking and viscous
weakening are considered. The cohesive interactions are modeled using phenomenological
bond force law, whereas the local resistance is described through a continuum viscosity
function. Afterwards, they employed the model to analyze steady-state peeling and dynamic

crack growth.
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7.3 Challenges

Asphalt concrete may show different fracture behavior for different temperatures and loading
rates due to asphalt binders displaying viscoelastic properties. Furthermore, each binder may
show different sensitivity to temperature and rate. This problem can be illustrated by the
DC(T) test results performed on different asphalt concrete samples cored in northern Iowa.
The performance graded asphalt binders PG64-22 and PG58-34 were used in the asphalt
concrete samples. Asphalt concrete with a PG64-22 binder is referred to as IOWA-MAT-A
and asphalt concrete with a PG58-34 binder is IOWA-MAT-B. Figures 7.3 (a) and (b) illus-
trate P versus CMOD curves for IOWA-MAT-A and JOWA-MAT-B, respectively, at three
different temperatures, —30, —20 and —10°C. Figure 7.3 (a) shows that as temperature
increases, the peak load increases likewise. Similarly, the area of the curve increases, indicat-
ing that the energy dissipated due to fracture is proportional to the increase of temperature.
The general trend of the three curves, e.g. post-peak trend, is quite identical. Fracture be-
havior of regular concrete is similar to that shown in Figure 7.3 (a) [11]. On the other hand,
in Figure 7.3 (b), as temperature increases, the area of the curve increases, while the peak
load first increases and then decreases. The pre-peak and post-peak trends of the curves
for —30°C' and —20°C are different from those for —10°C. The overall fracture behavior of
IOWA-MAT-A is found to be different from that of IOWA-MAT-B. Each binder of asphalt
concrete plays a considerable role in fracture behavior with different dependence on vari-
ous temperatures and loading rates. Thus, prediction of time and temperature dependent

fracture behavior in asphalt concrete poses a great challenge.

7.4 Development of a rate-dependent CZM

In this section, development of a rate-dependent CZM is presented. The approach taken
in this study is briefly explained, and a rate theory from which a rate-dependent CZM is

derived is provided. Additionally, a sensitivity analysis to several parameters introduced into
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Figure 7.3: P versus CMOD curves: (a) IOWA-MAT-A (PG64-22); and (b) IOWA-MAT-B
(PG58-34).

a new rate-dependent CZM is performed. Finally, summary and remarks on the proposed

rate-dependent CZM are provided.
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7.4.1 Approach

In this work, we employ the activation energy theory of the rate-process of bond rupture to
derive a separate material function which can deal with time and temperature dependent
fracture in asphalt concrete. In other words, we combine the work by Bazant and his
coworkers [9, 12, 73, 140] with the ones by Kogan et al. [69] and Rahul-Kumar et al. [100].
The motivation for combining two different approaches to derive a rate-dependent CZM is

that we can accomplish the following goals:
o utilize a well-known theory, the activation energy theory

e account for rate and temperature effects to the existing rate-independent CZMs, e.g.

the power-law CZM (see Eq. (7.5))

¢ implement the CZM into a finite element framework easily, not only because we can
simply multiply both rate and temperature effects to the existing rate-independent
CZM implementation but also because we can avoid the burden in handling the hered-

itary integral appeared in the approaches [4, 68, 99].

7.4.2 On the theory of rate processes

Fracture results from rupture of bonds between atoms or molecules. The atoms or molecules
in solids are in a random vibratory motion around their equilibrium positions representing
the minimum potential of the bond forces [42, 70]. The potential energy surface of the
bond force exhibits maxima representing energy barriers called activation energy, Q. If the
maximum kinetic energy of the atom or molecules exceeds the activation energy, the atom
or molecules can jump over the activation energy barrier, which signifies a rupture of the
bond. The frequency of the jumps of atoms or molecules over their activation energy barrier
controls the rate of the rupture process, which is the rate constant, x, whose unit is second™?.

Arrhenius said that the rate of a chemical reaction with temperature should be expressed
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by an expression of the form [42, 70]
K = ce”9/RT (7.7)

where c is a frequency factor, R is the universal gas constant (R = 8.3144J/mol/K) and T
is absolute temperature (K). The elementary rate constant, &, is a fundamentally impor-
tant quantity. Time and temperature-dependent crack growth processes are described as a
function of k, which is expressed in terms of well-defined physical quantities and represents
all effects that control crack growth. The rate of fracture is assumed to be proportional to
&, which is equal to the number of particles whose kinetic energy exceeds a certain energy
value within a unit time. When external work, W, is applied to the bond which will undergo

fracturing, Eq. (7.7) is modified as follows
Ky = ce”(Q-W/ET (7.8)

in which subscript b signifies that the quantity is associated with the atomic bond-breaking

process. Similarly, the rate constant for the backward activation, i.e. healing, is given as
K = ce”(@+W)/ET (7.9)

in which subscript A denotes healing. Figure 7.4 represents the breaking and healing energy
concepts under the external work, W. The abscissa and ordinate indicate crack growth
direction and activation energy, respectively.

The fracture constitutive equation is the resultant of the two steps regarding bond break-

ing and healing:
v = Ly — Lk, = Lee Q@ WV/ET _ [ce=(Q+W)/RT L-;—e‘Q/RT sinh(W/RT) (7.10)

where v is velocity and L is the distance over which the crack moves after each activation.
The Arrhenius type equation, justified by the rate-process theory for bond rupture, was

introduced into LEFM-type fracture modeling by Zhurkov [147] and was proposed for the
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Figure 7.4: The energy barrier when both bond-breaking and bond-healing occur [70].

crack band and cohesive crack models by Bazant [9].

7.4.3 Rate-dependent CZM

To derive a rate-dependent CZM, it is important to introduce reference temperature, Ty, and
to denote that

Co = L%e'Q/ RTo — constant. (7.11)

Assuming W/RT, as o /0., one modifies Eq. (7.10) at any temperature T as follows [12]:

o Ty o Q Q@
v = Cpsinh (T Uc) exp <RT0 RT) , (7.12)

where ¢ is assumed as overall crack bridging stress occurring along the fractufe process zone
and o, is tensile strength. Bazant and his coworkers [12, 73] pointed out that “Although
at first it seems questionable to deduce Eq. (7.12) directly from the rate of rupture of
atomic bonds, which represent a process on a far smaller scale, as far as the 4rates are

concerned, such bridging of many scales is known to be admissible and has been successful
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in many other applications of rate process theory [40, 42].” The basic assumption is that
the macroscopic fracture growth is proportional to the process of atomic bond ruptures.
With further modifications and assumptions, Bazant and his coworkers [12, 73] derived a
rate dependent softening law for the cohesive crack model from the activation energy theory
of the rate-process of bond ruptures on the atomic level (see Eq. (7.2)). The rate-dependent
softening law [9] is modified to be used in a boundary integral formulation of the crack
cohesive model in terms of the compliance functions (see Eq. (7.3)).

Replacing v and Cy with 6, and 50, respectively, one obtains the following expression

c .. (Tho Q @
0n = O0psinh (T Uc) exp (RTO RT) (7.13)
T Q _ Q\&
S0 = o, T asinh (exp ( AT RTO) 50) (7.14)

in which 4y is reference normal opening displacement rate and b, is normal opening displace-
ment rate occurring along the fracture process zone. Substituting o for t¢,, and defining

parameters v and x as

T Q @
_r __ L _« 1
V=g Xx=exp (RT RTO), (7.15)
one simplifies Eq. (7.14) to
tyn = Ocyasinh (xi—n> , (7.16)
0

in which ¢,, stands for viscoelastic normal traction and the parameters + and x, which
account for temperature effects, become 1 if T = Ty. Although temperature effects are taken
into account outside and inside of the asinh function in Eq. (7.16), it is convenient to assume
x=1 so that effects of temperature and rate to material strength are decoupled. The stress
o, is assumed to be constant for a Dugdale-like model [143]. It is important to consider
the following aspects in Eq. (7.16): 1) When 4, is very small, ,, becomes almost zero as
illustrated in Figure 7.5, which is not realistic such that a new parameter, ¢, is introduced to
consider infinitely slow loading; and 2) Rate-dependent normal traction, t,,, never reaches

a peak and decays under constant normal opening displacement rate, §,, due to o. (see
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Figure 7.5). Thus, one obtains

ton = tnfv = tn'YaSinh ((;_n + C) ) (717)
0

in which f, is a function accounting for rate and temperature effects. Notice that Eq.

(7.17) is similar to Eq. (7.5) except for functions accounting for viscoelastic effects, i.e.
N . m

['yasinh (%ﬁ +¢ )} and [1 + (%ﬁ) ] . It is implicit in the model that as loading rate decreases,

material strength decreases likewise, which generally agrees with experimental observations.

3 T L} L}

2.5¢ .

asinh(x)

0.5f .

X

Figure 7.5: asinh function.

However, in Eq. (7.17), both material strength and the area of the displacement jump
and traction curve representing cohesive fracture energy are proportional to f,, which is not
realistic for asphalt concrete. To illustrate this point, the power-law CZM with a = 1 (i.e.

bilinear model) is used so that Eq. (7.17) becomes
acg‘sﬁfv = acgﬂ-'yasinh (%ﬁ + () On < Occ
ton = “ “ . (7.18)
ool = 2z fo = 0c(1 = &) gogay vesinh (% + C) % > b

Figure 7.6 shows viscoelastic cohesive laws for different magnitudes of f,. The parameter
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e is defined as 0.1627! to show the pre-peak region clearly, which is for illustration pur-
poses. The abscissa denotes non-dimensional normal opening displacement and the ordinate
represents non-dimensional viscoelastic normal traction. As f,, which includes effects of
temperature and rate, duplicates, the peak traction and the area of the curve also duplicate.
Furthermore, regardless of the magnitudes of f,, the critical displacement, in which normal
viscoelastic traction is zero, is the same. Since asphalt concrete with different binders is
found to show various fracture behaviors (see Section 7.3), it is convenient to replace d. with
.0, Which is viscoelastic critical displacement, as shown in Eq. (7.18), in order to consider

different fracture energies for various temperatures and rates. Thus, Eq. (7.18) becomes

UCS%Z/[U = acg—"fyasinh (%ﬂ + C) On < Occ
fom = o AR 8 (7.19)
O'C(]. — -ﬁ)m_fv = O'C(]. - ﬁ)m’}’%lﬂh (g’ol + C) On > Occ

We propose the following relationship between §,. and 4.
Sue =11 f 16, (7.20)

to ensure that fracture energy and material strength for different temperatures and rates

vary independently.

7.4.4 Summary

In this section, the proposed viscoelastic CZM is summarized. Although the model is ex-
plained in the previous sections, each term is clearly explained before this model is used for
viscoelastic fracture modeling. If the power-law CZM is used, the final forms of the proposed

viscoelastic CZM are

6 ~ -
Ope™ On < O ‘
ton = 5 e ‘ (7.21)
G'vc(]- - '&,n;)a(l_gcc/gvc)a 6n > Jcc
in which
6vc = n_lfq;_léc-, (722)
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Figure 7.6: Viscoelastic cohesive laws for different values of f,,.

Oyc = f0007 (723)
[ n
fo = 7yasinh (—.— + {) . (7.24)
do
Viscoelastic cohesive fracture energy is obtained if we assume o = 1 as follows:
1 1 -1p-1 -1
Gye = 50“6% = §fuacn [ be=n"G,. (7.25)

The notation is defined as such: t,, is viscoelastic normal traction; o, is viscoelastic mate-
rial strength; é.., which controls artificial compliance, is displacement corresponding to peak
traction; d, is normal opening displacement; « is an internal variable affecting a CZM soft-
ening shape; J,. is viscoelastic critical displacement, in which viscoelastic traction becomes
zero; 8, is normal opening displacement rate; b0 is reference opening displacement rate; v is
a parameter to account for temperature effects; ¢ is introduced to consider slow loading rate
case; and 4., 0. and G, are critical displacement, material strength, and cohesive fracture
energy, respectively, evaluated at reference temperature and loading rate. Notice that Eq.

(7.21) is identical with Eq. (3.26) except that o, and 4. in Eq. (3.26) are replaced with o,
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and d,., respectively. Rate and temperature effects on material strength are explicitly con-
sidered as expressed by Eqgs. (7.23) and (7.24), while both effects to cohesive fracture energy
are implicitly taken into account through the parameter 5 (because cohesive fracture energy
obtained from experiments accounts for both effects already). More importantly, fracture
energy and material strength vary independently for different temperatures and rates. In
this study, . is defined as 0.01627! so that it is constant regardless of different rates and

temperatures.

7.5 Sensitivity analysis

In this section, sensitivity analysis to bn, v, and n is performed. The parameters b, and v
affect peak traction, i.e. material strength, while n influences the area of the displacement
jump and traction curve, i.e. cohesive fracture energy. For the sake of illustration, the
following values are assumed: a = 1, 0. = 1, 6 = 1, G, = 0.5, d.. = 0.01, ( = 0.6
and &, = 1.0. Consistent units are used. Figure 7.7 (a) compares viscoelastic cohesive
laws for different normal opening displacement rates with fixed 7 = 1 and v = 1. As 4y,
increases, the peak traction, i.e. material strength, increases. This trend is similar with
experimental observation. However, the area under the curve remains constant due to the
constraint established by Eq. (7.25). Figure 7.7 (b) shows various viscoelastic cohesive laws
for different magnitudes of the parameter y with fixed 4,=0.575 and = 1. As ~ increases,
the peak traction increases and vice-versa, with a constant area under the curve for all cases.
Viscoelastic cohesive laws for different values of the parameter n with fixed §,=0.575 and
v = 1 are illustrated in Figure 7.7 (c). As 7 increases, the area of the curve increases, while
the peak traction remains the same. Thus, as v and 6, increase, peak traction (i.e. material
strength) increases. However, they do not influence fracture energy, which is only affected
by the parameter 7.

The combination of the two variables, which is 4,, or ~ and 7, can generate rate-dependent

cohesive laws with various fracture energies and material strengths. For example, Figure 7.8
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Figure 7.7: Illustration of rate-dependent cohesive laws: (a) for different normal opening
rates 0, with n = 1 and v = 1; (b) for different magnitudes of the parameter v with
0, = 0.575 and n = 1; and (c) for different magnitudes of the parameter n with ¢, = 0.575
and v = 1.
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shows various viscoelastic cohesive laws considering various 4, and n with fixed v = 1.
The solid line denotes a cohesive law at reference temperature and rate. The solid line
with circles represents a case in which as loading rate increases, both material strength and
fracture energy increase. The solid line with crosses illustrates a case in which as loading rate
increases, material strength increases, while fracture energy decreases. The solid line with
squares stands for a case in which as loading rate decreases, material strength decreases, while
fracture energy increases. Due to various and complicated viscoelastic fracture behaviors of
asphalt concrete, we propose the idea of independently controlling two important parameters,

material strength and fracture energy, to capture fracture behavior reasonably.

1.4

§ =2°0.575,1=0.6
8 =2'0.575,1=1.2

§ =0.575,1=1.0

1.2

§ =0.5"0.575, 1=0.8

0.8F

vn

0.6

0.4

0.2}

% 02 04 06 08 1 12 14 16
)
n
Figure 7.8: Viscoelastic cohesive laws for different magnitudes of the parameter n and 4,

with v = 1.

7.6 Proposed procedure

We proposed the novel rate-dependent CZM from the activation energy theory of the rate
process of bond rupture in conjunction with reasonable assumptions and simplifications.

This CZM, from Egs. (7.21) to (7.24), can represent various situations, which may be
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relevant to asphalt concrete. Before applying the proposed viscoelastic CZM to investigate
time and temperature dependent fracture behavior in asphalt concrete, we need to adopt
an acceptable procedure for various cases under different temperatures and rates. A general

procedure is employed in order to:

e obtain cohesive parameters associated to material strength and cohesive fracture energy

at reference temperature and loading rate

e simulate a fracture test using cohesive parameters at the reference conditions, and

calibrate a parameter n

e determine 7 and v, which are viscoelastic parameters, using the ratio of cohesive pa-
rameters between the reference temperature and loading rate, and current temperature

and loading rate

e perform fracture test simulation subjected to the current temperature and loading rate
condition using the parameters, which are evaluated at the reference condition, and

the viscoelastic parameters, which are evaluated at the current condition

To illustrate the point, suppose we use the power-law CZM. The parameters to be eval-
uated are d., o¢, 0, @, C, ¥, 7 and 0. The cohesive parameter o, is obtained from the IDT
test in asphalt concrete. The parameter d.., which has a good effect on reducing artificial
compliance, is assumed as 0.0162=}, in which §2=! is obtained from 2G./o.. The cohesive
parameter G, is obtained from the fracture tests, e.g. DC(T) test. The parameter ¢, which
influences CZM softening shape, is assumed as 10, because we found that this softening shape
captures fracture behavior in asphalt concrete reasonably well. The cohesive parameter d,
can be obtained from Eq. (3.27). Notice that the cohesive parameters, o. and é., are based
on experimental tests at the reference temperature and reference loading rate.

The parameters ¢, v, 7 and 8o are newly introduced variables of the proposed viscoelastic

CZM. For concrete, it is assumed that for infinitely slow loading rate, there exists a unique
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softening behavior, and material strength is around 80 percent of material strength obtained
under normal loading rate fracture test [12, 140]. For asphalt concrete, we expect to have
more pronounced viscoelastic effect so that ¢ is taken as 0.6. Material strength at infinitely
slow loading rate is assumed to be around 60 percent of material strength obtained at normal
loading rate. The parameter 8, which is constant reference displacement rate, is taken as bas
which is normal opening displacement rate at the initial crack tip. the parameter v expresses
the relationship between referent and current temperatures, and any difference between the
two affects the value of 4. Since the parameter  is multiplied by material strength o, to
generate viscoelastic material strength o,., it is determined based on the ratio of materiai
strength evaluated between the reference temperature and the current temperature. Suppose
we have material strength at two different temperatures with the same loading rate, oy and

oo. Using Egs. (7.23) and (7.24), the following relationship can be obtained:

Ope = 01 = ’ylasinh(%ﬁ +¢)o. (7.26)
0

on
Ope = Og = 72asinh(5— + ¢)o. (7.27)
0

Subscripts 1 and 2 denote temperature 1 and temperature 2, respectively, and o, is material
strength evaluated at the reference loading rate and temperature. Since we evaluate oy
and o, at the same loading condition, we speculate that the contribution of the rate term
[asinh(%ﬁ +¢ )} to material strength between Eqgs. (7.26) and (7.27) is very close. So, one
obtains

U
g1

The parameter i, which considers various cohesive fracture energies for different tempera-
tures and loading rates, is evaluated based on the ratio of cohesive fracture energy evaluated
between the reference temperature and loading rate and the current temperature and loading

rate. Similarly, one obtains

ne=m Gy (7.29)
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‘Two important viscoelastic parameters, n and vy, have physical meaning that 7 implicitly
accounts for viscoelastic effects on cohesive fracture energy, whereas y explicitly represents

temperature effects on material strength.

7.7 Computational results

In this section, the proposed viscoelastic CZM is employed to investigate time and tempera-
ture dependent fracture behavior of asphalt concrete. Asphalt concretes IOWA-MAT-A and
IOWA-MAT-B are used to validate the novel viscoelastic CZM and procedures proposed in

this study.

7.7.1 Case I: IOWA-MAT-A

In this section, asphalt concrete IOWA-MAT-A is adopted. The same geométry and bound-
ary condition used in Section 7.1 are employed, except for the difference in thickness. The
thickness of the specimen is 35mm. The fracture energies and the material strengths for
three different temperatures are shown in Table 7.4. The fracture energy is obtained using
the dos-measurement. Constant 1.0mm,/min CMOD rate is adopted for the DC(T) test for
three temperatures. Material strength at —20°C is obtained from the experimental test, i.e.
IDT test, and for the rest of the temperatures, We assume material strength. Model param-
eters (see Table 6.1) and shift factors (see Table 6.2) evaluated from experiments using the
IDT test are adopted for viscoelastic analysis of bulk materials. The geometry and material
and cohesive parameters are based on the cored pavement material, in which PG64-22 binder
is used, located in northeast Iowa. In this analysis, —20°C and 1mm/min CMOD rate are
chosen as reference temperature Tp and reference loading rate, respectively. The power-law
CZM with o = 10 is used.

DC(T) test simulation subjected to the reference temperature and loading rate condition
is carried out. The parameter v equals 1 at the reference temperature (ie. T =Ty =

—20°C) (see Eq (7.15)). The purpose of this simulation is to find an appropriate value of
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Table 7.4: Fracture energy of the two replicates and material strength at —10°C, —20°C
and —30°C' [131].

Fracture energy (J/m?)
Temperature | Replicate face 1 [face 2 Material strength (MPa)
1 180 | 175
-10°C 2 161 127 2.45
Average 160
1 116 117
-20°C 2 129 | 118 2.9
Average 120
v 1 73 | 61
-30°C 2 80 | 74 2.6
Average 72

the parameter . Figure 7.9 illustrates a comparison of P versus CMOD curves between
numerical and experimental results. Two solid lines denote experimental results, while solid
circles stand for numerical results. The predicted numerical results using n = 0.8 are in
close agreement with the experimental results. Magnitudes of all parameters used in this

simulation are shown in Table 7.5.

1.8 T T T T

1.6

1.41

1.2¢

s -
<

a 0.8 J

0.6 .

04 .

0.2 J

. . . . 1

0 0.2 0.4 0.6 0.8 1

CMOD (mm)

Figure 7.9: Comparison of P versus CMOD curves between numerical and experimental
results at T = Ty = —20°C.
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Table 7.5: Magnitudes of parameters of the viscoelastic CZM under —20°C' and 1mm/min
CMOD rate condition.

« 8ee G, Oe e ¢ ) 7
10 | 0.000828 mm 120J/m2 2.9MPaqa | 0.436 | 0.6 | 0.7mm/min | 0.8

[

Before we perform DC(T) test simulation subjected to —30°C and 1mm/min CMOD
rate, parameters v and n at —30°C' and Imm/min CMOD rate need to be defined using the
parameters v = 1 and n = 0.8 obtained at the reference temperature (—20°C) and CMOD

rate (1mm/min). The parameter v is obtained from the following relationship:

e s05C e 0_;1*:-30°C 26
—-30°C _ . T=Tp =12 —-0.89 7.30
v i o1 =To 2.9 (730

Similarly, the parameter 7 is obtained from

o ( 1 =To | f!( '
T'=-30°C T=T; [ — “ 8 — I 34 : 3'
n ] ° GT:——300 : "7:2 ' ( ) )

Using the parameters obtained, the present numerical results are compared with experimen-
tal results (see Figure 7.10). The abscissa and ordinate denote CMOD and P, respectively.
The predicted pre-peak shape, peak load and post-peak shape match favorably with exper-
imental results.

For DC(T) analysis at —10°C and 1mm/min CMOD rate, the parameters v and n are
obtained as follows, using the same approach described above:

T=-10C 945

T=-10°C _ T=Ty % _ _
y = T=To T, =1 59 — 0.85 (7.32)
100 GI=h 120
T=-10°C _ T=Tp_Yec _ _
n n —Gg’:_loo 0. 160 0.6 (7.33)

Numerical results at —10°C and 1mm/min CMOD rate are plotted together with experimen-
tal results in terms of CMOD and P (see Figure 7.11). Two solid lines denote experimental
results and solid circles stand for numerical results. The numerical results match reasonably

well with experimental results.
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Figure 7.10: Comparison of P versus CMOD curves between numerical and experimental
results at 7' = —30°C' and 1mm/min CMOD rate.
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Figure 7.11: Comparison of P versus CMOD curves between numerical and experimental
results at T'= —10°C and 1mm/min CMOD rate.
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It is demonstrated that the proposed viscoelastic CZM and procedures capture time
and temperature dependent behavior in asphalt concrete well. It might be attributed to
reasonable assumptions and approaches, which were described before, along with reliable
experimental test data. Figure 7.12 compares predicted numerical results with the experi-
mental results at —30°C' and —10°C. The predicted pre-peak trend, peak load and post-peak

trend are found to be in excellent agreement with the experimental results.

1.8 T T T T

v : Experiment
1.6F ® - — -e: Modeling ’

1.4

1.2

0 0.2 0.4 0.6 0.8 1
CMOD (mm)

Figure 7.12: Comparison of P versus CMOD curves between numerical and experimental
results.

7.7.2 Case II: IOWA-MAT-B

In this section, asphalt concrete IOWA-MAT-B, whose fracture behavior is found to be
different from that of asphalt concrete IOWA-MAT-A, is utilized to further validate the
proposed viscoelastic CZM and procedures further. The same geometry and boundary con-
ditions used in Section 7.1 are employed. Fracture energy and material strength at three
different temperatures are shown in Table 7.6 along with the thickness of the test samples.

Because the samples are cored from actual field pavement, the thickness varies a little bit.
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Constant 1.0mm/min CMOD rate is adopted for the DC(T) test at three temperatures. Ma-
terial strength at —20°C' is obtained from the experimental test, i.e. IDT test, and material
strength at —10°C' and —30°C' is assumed as 79 percent and 82 precent, respectively, of ma-
terial strength at —20°C. Model parameters (see Table 7.2) and shift factors (see Table 7.3)
evaluated from the IDT test are adopted for viscoelastic analysis of bulk materials. The
geometry and material and cohesive parameters are based on the cored pavement material,
in which PG58-34 performance graded asphalt binder is used, located in northeast Iowa.
In this analysis, —20°C is chosen as reference temperature, Ty. The power-law CZM with

a = 10 is used (as before).

Table 7.6: Fracture energy of the two replicates and material strength at —10°C, —20°C

and —30°C.
Fracture energy (J/m?)
Temperature | Thickness | Replicate face 1 |face 2 Material strength (M Pa)
1 463 | 394
-10°C 25 2 359 | 422 2.85
Average 410
1 238 | 217
—20°C 30 2 176 | 185 3.6
Average 204
1 121 162
-30°C 30 2 192 175 2.95
Average 163
In Figure 7.13 (a), predicted numerical results at the reference temperature 7 = —20°C

are compared with experimental results in terms of P versus CMOD. The solid line and
solid circle denote experimental and numerical results, respectively. The numerical results
with n = 0.6 are found to be in good agreement with experimental results. Using the same
procedures explained above, the parameters (y and 7) evaluated for —30°C and —10°C are
shown in Table 7.7. Figures 7.13 (b) and (c) show a comparison of P versus CMOD curves
between numerical and experimental résults for —30°C and —10°C, respectively. Notice that
the numerical and experimental results illustrated in Figure 7.13 (c) are for the thickness

30 rather than 25. In other words, the force (P) of numerical and experimental results at
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—10°C is multiplied by the factor 1.2. The predicted pre-peak trend, peak load and post-peak
trend match favorably with experimental results, demonstrating that the proposed viscoelas-
tic CZM with reasonable procedures can be applicable in viscoelastic fracture modeling in
asphalt concrete. For comparison with Figure 7.2, predicted numerical results using the pro-
posed viscoelastic CZM are compared ‘With experimental results for —30°C' and —10°C in
Figure 7.14. For the lower temperature —30°C' in which viscoelastic effects are minor, there
is little difference in predicted results between that with the viscoelastic CZM and that with
the rate-independent CZM. However, as temperature increases the rate-independent CZM
modeling underestimates the peak load and the area of the curve, whereas reasonable nu-
merical results are predicted using the proposed viscoelastic CZM. Thus, when viscoelastic
effects are considerable, we need to account for time and temperature dependent fracture

properly to obtain reasonable viscoelastic fracture responses.

Table 7.7: Magnitudes of parameters of the viscoelastic CZM for three temperatures with
1mm/min CMOD rate.

Temperature | o Oce G, Oc O ¢ o n 107
-10°C 0.3 | 0.79
—20°C 10 | 0.00113 mm | 204J/m? | 3.6MPa | 0.593 | 0.6 | 0.68mm/min [ 0.6 1
-30°C 0.76 | 0.82

7.8 Concluding remarks

Asphalt concrete shows varied viscoelastic fracture behavior for different temperatures and
loading rates due to asphalt binders displaying different viscoelastic properties. As a result,
it is difficult to accurately capture viscoelastic fracture behavior in asphalt concrete using
either rate-independent CZMs or conventional viscoelastic CZMs. In this work, we employed
the activation energy theory of the rate-process of bond rupture to derive a separate material
function which can deal with time and temperature dependent fracture, in conjunction with
reasonable assumptions and simplifications. The final forms of the proposed viscoelastic

CZM has a nice feature, i.e. Eq. (7.21) is almost identical with Eq. (3.26) except that
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Figure 7.13: Comparison of P versus CMOD curves between numerical and experimental
results at: (a) T =Ty = —20°C; (b) T = —30°C; and (c) T = —10°C.
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Figure 7.14: Comparison of P versus CMOD curves between numerical and experimental
results [135].

o. and d, in Eq. (3.26) are replaced with o, and &, respectively. Moreover, appropriate
procedures to evaluate several parameters accounting for time and temperature effects are
adopted. The proposed viscoelastic CZMs and procedures as shown in Egs. (7.21) through
(7.24) are able to represent various situations which are relevant to asphalt concrete, due
to the idea of controlling two important parameters, i.e. material strength and cohesive
fracture energy, independently, considering viscoelastic effects explicitly and implicitly.
Asphalt concretes IOWA-MAT-A and IOWA-MAT-B are used to validate the novel vis-
coelastic CZM and procedures proposed in this study. For both materials, —20°C and
Imm/min CMOD rate are chosen as reference temperature and loading rate, respectively.
At the reference condition, v equals 1 and 7 is calibrated to create a reasonable agreement
between numerical and experimental results. Once the parameter 7 is calibrated at the ref-
erence condition, the parameter v and # are evaluated at current temperatures and loading
rates using the procedures explained above. For —30°C and —10°C), the predicted numerical

results are found to be in good agreement with experimental results. This demonstrates that
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the proposed viscoelastic CZM with reasonable procedures can be applicable to viscoelastic

fracture modeling in asphalt concrete.
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Chapter 8

Pavement fracture using cohesive
zone modeling

In asphalt concrete overlay systems, reflective cracking has been a major cause of distress. It
is crucial to understand fracture mechanism in pavement well and to develop a procedure to
minimize crack occurrence. Recently, a cohesive zone modeling technique has been developed
and used widely to explore fracture behavior in various materials. In this chapter, a CZM
is employed to simulate crack initiation and propagation, and to study fracture behavior in
the actual pavement section (see Figure 8.1), located in northern IOWA, under temperature
and tire loadings. Further detailed investigations of field modeling, (e.g. Iowa and Missouri)

can be found in Dave’s Ph.D. thesis [31]

Figure 8.1: Actual pavement section in IOWA.
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8.1 Field description

The pavement of length 12200mm with thickness of surface 42mm, binder 43mm, leveling
75mm, portland cement concrete (PCC) 253mm, and soil 6100mm is analyzed using a
cohesive zone modeling technique. Asphalt concrete pavement consists of surface, binder,
and leveling courses. The performance graded asphalt binder PG64-22 is used for the three
courses. The PCC, placed between the asphalt concrete and the soil, has a joint. The
thickness of the pavement is 4572mm. A schematic drawing of the pavement section is

illustrated in Figure 8.2.

Surface 42mm

Bindei 43mm

Figure 8.2: Schematic drawing of the pavement section in IOWA.

Figure 8.3 (a) shows the geometry and boundary conditions. Cohesive elements are
inserted along the middle of the asphalt concrete, which is located above the PCC joint,
to represent typical crack initiation and propagation, i.e. reflective cracking, in pavement.
Interfaces among the asphalt concrete, the PCC, and the soil are assumed to be fully bonded.
Displacement boundary conditions of u, = 0 for the bottom edge and w, = 0 for the left
bottom node are prescribed. The temperature profile provided by Dave [31, 32} is employed

as temperature loading for the asphalt concrete and the PCC. Enhanced integrated climatic
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model [71] is used to obtain temperature profile through the depth of the pavement using
the data such as air temperatures, precipitation, wind speed, pavement layer thicknesses,
thermal properties and heat capacity. Figure 8.4 illustrates temperature profile between 4
and 5 p.m. on January 29, 2006 along the depth of the pavement. After temperature loading
for one hour, tire loading is imposed for 0.1 second. Figures 8.3 (b) and (c) show mesh details
for the whole geometry and the region where cohesive elements are inserted. The geometry is
constructed using 12133 four-noded quadrilateral plane strain elements for the bulk material
and 41 four-noded.linear element for the cohesive material. Viscoelastic effects are considered
in the asphalt concrete. Model parameters of relaxation modulus and shift factor for the
asphalt concrete three layers are shown in Tables 8.1 and 8.2. Young’s modulus for the PCC
and the soil is 31GPa and 35M Pa, respectively. Table 8.3 shows Poisson’s ratio for each
layer. Fracture energy and material strength for the asphalt concrete layers are illustrated
in Table 8.4. Fracture energy is obtained from the DC(T) test under 1mm/min. CMOD
rate and —20°C in conjunction with the dy5 measurement. Material strength is obtained
from the IDT test based on AASHTO specification [1]. The power-law CZM with o = 10
is employed in this simulation. The parameter d.., which influences artificial compliance, is
defined as 0.0162='. Note that although magnitudes of material strength and fracture energy,
i.e. cohesive parameters, vary depending on temperature and local rate, in this simulation
we employ the same fracture energy and material strength regardless of temperature and

local rate, which leads to qualitative conclusions.

Table 8.1: Model parameters for three different layers [131].

Surface Binder Leveling
i [ Bi(GPa) t(sec) | E;(GPa) 7(sec) | E;(GPa) 7,(sec)
1 3.5 15 3.7 17 4.0 17
2 4.4 249 5.2 319 4.2 342
3 1.7 4817 2.3 7085 3.1 7160
4 7.2 57378 7.1 98891 6.6 104485
5 11.9 2605452 11.6 6082416 9.7 5467244
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Figure 8.3: Pavement modeling: (a) geometry and boundary conditions; (b) mesh configu-
ration for the whole geometry; and (c) mesh details for the regions where cohesive elements
are inserted.
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Figure 8.4: Temperature profile along the depth of the pavement.

Table 8.2: Temperature shift factors (log(1/ar)) [131].

Temperature | Surface | Binder | Leveling
—-30°C 0 0 0
—-20°C 1.95 1.9 1.8
-10°C 3.2 3.5 3.55

Table 8.3: Poisson’s ratio for each layer [131].

Layer v
Surface | 0.37
Binder | 0.37

Leveling | 0.25

PCC 0.15

Soil 0.3

Table 8.4: Fracture energy and material strength for the three layers (Imm/min. CMOD
rate and —20°C) [131].

Surface | Binder | Leveling
Fracture energy (G.) (J/m?) 120 123 110
Material strength (o.) (M Pa) 2.9 2.79 3.07
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8.2 Numerical results

Figures 8.5 (a) and (b) show a deformed shape of the whole geometry and the regions where
cohesive elements are inserted, respectively, due to the temperature loading. It induces
tension on the top of the pavement structure and as a result, causes top-down cracking.
Figures 8.6 illustrates the deformed shape of the pavement structure under the tire loading.
Compression is induced on the top of the structure, while tension is generated around the
region right above the PCC joint. As expected, temperature induces top-down cracking,

while tire loading causes reflective cracking in this particular example.

8.3 Discussion

When an overlay is placed on an existing pavement, physical tearing of the overlay takes
place as a result of movement at the joints and cracks in the underlying pavement layer.
Reflective cracking has occurred in nearly all types of asphalt overlays, whether placed on
existing asphalt or concrete pavements. This cracking in the overlay allows water to perco-
late into the pavement structure thereby weakening the roadbed foundation and contributing
to increased roughness and joint deterioration. A number of studies have been conducted in
an effort to minimize or delay the occurrence of reflective cracking. For example, geotextile
interlayers (paving fabrics) have been placed over existing pavements before overlay construc-
tion in an attempt to isolate movements in the underlying layer and/or to act as an overlay
reinforcement [76]. Early treatment methods (pre-1995) were not successful in mitigating
reflective crack occurrence nor did they provide a significant economic benefit [18, 76, 82]. In
this work, a truly integrated study involving laboratory experiments, analysis, simulations,
and field observations is performed (see Figure 8.7). Experiments on the bulk materials
are performed to extract bulk properties, e.g. relaxation modulus, and fracture testing is
conducted to evaluate fracture quantities, e.g. fracture energy. These experiments provide

data for a cohesive zone model, which is tailored for fracture of asphalt concrete. Then,
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Figure 8.5: Deformed shape of the pavement structure under the temperature loading: (a)
whole geometry; and (b) regions where cohesive element are inserted.

a CZM is used to investigate fracture behavior in asphalt concrete and pavement. In this
chapter, as a result of the integrated approach, the ability of a cohesive zone modeling tech-
nique to simulate crack propagation in pavement under temperature and loading conditions
is demonstrated. Temperature loading induces top-down cracking, while tire loading causes

reflective-cracking in this example. A nice feature of computational modeling is that vari-
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Figure 8.6: Deformed shape of the pavement structure under the tire loading: (a) whole
geometry; and (b) regions right above the PCC joint where cohesive element are inserted.

ous geometries, boundary conditions, and constitutive models can be taken into account to

evaluate pavement performance. Parametric studies considering several different conditions
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can help to develop a procedure to prevent or minimize crack occurrence in pavement.

Figure 8.7: Integrated approach involving experiment, modeling and field.
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Chapter 9

Concluding remarks

In this study, a cohesive zone model is employed to investigate viscoelastic fracture behav-
ior in asphalt concrete. The various CZMs, such as the power-law CZM, are implemented
by means of ABAQUS user element (UEL) capability. Cohesive parameters are experimen-
tally evaluated. Artificial compliance and numerical non-convergence are addressed in detail.
New rate-independent and dependent CZMs tailored for fracture of asphalt concrete are pro-
posed. A new operational definition of crack tip opening displacement (CTOD) is employed
to considerably minimize the contribution of bulk material in measuring fracture energy.
Simulations of various two- and three-dimensional mode I fracture tests, e.g. disk-shaped
compact tension (DC(T)), are performed considering viscoelastic effects. Numerical results
match reasonably well with experimental results. The mixed-mode single-edge notched beam
(SE(B)) test is simulated with cohesive elements inserted over an area to allow cracks to
propagate in any general direction. The predicted mixed-mode crack trajectory is found to
be in close agreement with experimental results. Crack competition phenomenon between
initiation and nucleation is explored and the reasonable .. is obtained. The ability to in-
vestigate fracture behavior in pavement is demonstrated. In this chapter, the summary and

conclusions are presented and suggestions for future work are provided.
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9.1 Summary

Chapter 1 of the present work provides a thorough literature review of theoretical, numerical,
and experimental work related to cohesive zone modeling and fracture in asphalt concrete.
Chapter 1 introduces crucial aspects in modeling asphalt concrete and pavement in context
of bulk material and fracture characterizations, and also provides research objectives of this
study. Chapter 1 concludes with the organization of the thesis.

Chapter 2 presents the development and application of graded finite elements for pave-
ment analysis and a theoretical formulation for the graded finite element method is provided.
The implementation of the UMAT is verified by comparing the numerical results with the
analytical solutions by means of the isotropic graded materials where Young’s modulus varies
perpendicular to the loading direction. The graded element is applied for the asphalt pave-
ment study to consider the aging effect more efficiently and accurately compared to conven-
tional approach.

Chapter 3 provides theoretical and numerical aspects of three cohesive zone models
adopted in this study: the potential based exponential model [144], the bilinear CZM [39] and
the improved power-law CZM [35, 124]. For each model, both traction vector and tangent
modulus matrix are evaluated. A description on how the cohesive element is incorporated
into a finite element framework follows. Experimental procedures to evaluate bulk properties
and cohesive parameters, e.g. relaxation modulus, fracture energy and material strength,
are presented as well.

Chapter 4 describes fracture modeling using the exponential model. Verification of the
CZM implementation into ABAQUS user element (UEL) is presented using double cantilever
beam (DCB) test simulation and sensitivity analysis to cohesive parameters is performed.
Additionally, Chapter 4 discusses the selection of cohesive element sizes for asphalt concrete
fracture modeling. Mixed-mode crack propagation simulation is carried out in conjunction

with SE(B) test in which mesh discretizations of cohesive elements are tailored to the crack
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trajectory predicted by I-Franc2D [61]. Finally, a complete crack trajectory of the present
numerical simulation using the Riks method [30] is compared with that of experimental
results.

Chapter 5 investigates asphalt concrete fracture behavior considering viscoelastic bulk
material in conjunction with the bilinear CZM, and numerically quantifies effects of CZM
compliance on asphalt concrete fracture. Chapter 5 also presents the motivation for using
the bilinear CZM. SE(B) mixed-mode crack propagation simulation is performed and the
predicted crack trajectory is compared with experimental results. The influence of finite
element discretizations on numerical convergence is explored in conjunction with mixed-
mode fracture simulation. Crack competition and interaction phenomena between initiation
and nucleation are studied in conjunction with a SE(B) test simulation.

Chapter 6 improves the previous power-law CZM and examines the usage of ds5 for
asphalt concrete fracture modeling. The influence of CZM softening shapes on fracture
behavior of asphalt concrete is studied and a suitable softening shape for asphalt concrete
fracture modeling is proposed. Experimental investigations illustrate that do5-measurement
is more appropriate in evaluating cohesive fracture energy than the C MO D-measurement in
asphalt concrete. Three dimensional DC(T) test simulation is performed using the power-law
CZM and the d,5.

Chapter 7 develops a novel viscoelastic CZM from the activation energy theory of the
rate process of bond rupture in conjunction with reasonable assumptions and simplifications,
and proposes appropriate procedures to evaluate several parameters accounting for time
and temperature effects. Sensitivity analysis to the new parameters introduced into the
proposed CZM is carried out. Asphalt concretes IOWA-MAT-A and IOWA-MAT-B are
used to validate the novel viscoelastic CZM and procedures proposed in this study.

Finally, Chapter 8 demonstrates the ability of cohesive zone modeling in simulating crack
initiation and propagation and in exploring fracture behavior of pavement under tire and

temperature loading. An actual pavement section located in northern Iowa is employed. All
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material properties and cohesive parameters used in the simulation are obtained from the

experiments.

9.2 Conclusions

The major contributions of this study can be summarized as follows:

o A graded element is implemented via user material (UMAT) capability of ABAQUS.
The implementation of the UMAT is verified using a benchmark problem. The graded
finite element method used here provides superior results over the conventional finite
element solution, which involves assigning mixture properties in layers. More impor-
tantly, the differences are most pronounced when evaluating near-surface pavement

responses, where severe material gradients are present due to environmental exposure.

o A cohesive zone model is implemented by means of ABAQUS user element (UEL)
capability. Its implementation is verified using a double cantilever beam test. The
numerical results show good agreement with the analytical solution even for both initial

and final stages of crack propagation, which are influenced by boundary conditions.

e Mixed-mode crack propagation simulation is carried out using SE(B) test in which
cohesive elements with a regular pattern are inserted over an area to allow cracks
to propagate in any general direction. The predicted mixed-mode crack trajectory is

found to be in close agreement with experimental results.

e Numerical convergence problems associated with a cohesive zone model is explored.
Simulation of mixed-mode SE(B) test constructed with various finite element dis-
cretizations is performed using Riks and Newton-Raphson methods. Several important
observations from this analysis are obtained. First of all, for the meshes constructed
in a regular pattern, the Riks method yields better performance than the Newton-
Raphson method with varying degrees of success depending on the mesh discretiza-

tion. Secondly, for the mesh tailored to the crack trajectory predicted from I-Franc2D,
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both nonlinear solvers perform very well, demonstrating that the degree of convergence
depends highly upon the finite element discretizations, Thirdly, once crack branching
occurs, numerical solutions are rarely converged. Finally, if the crack propagation angle
of finite element discretization is similar with that of either analytical or experimental
results, i.e. an optimal crack trajectory, the numerical solution converges relatively

well.

e Crack competition phenomenon is studied numerically in conjunction with SE(B) test
in which cohesive elements are inserted in advance to simulate either crack initiation or
nucleation, and propagation. The predicted =, is found to be in excellent agreement

with the experimental results.

e A power-law cohesive zone model [35] is revisited and improved firstly to reduce
artificial compliance, secondly to model general cases, e.g. mixed-mode and three-

dimensional, and thirdly to have various choices in terms of CZM softening shapes.

e The influence of a pre-peak slope and a post-peak shape of a CZM is examined thor-
oughly. The pre-peak slope is a major source of artificial compliance, while the post-
peak shape affects progressive softening phenomena occurring along the fracture pro-
cess zone. It is clearly observed that as the number of cohesive elements increases,
the compliance likewise increases. Moreover, as the pre-peak slope becomes stiff, the
compliance decreases considerably. This study suggests minimizing the number of co-
hesive elements, if possible, and adopting a cohesive zone model which can control a
pre-peak slope. For brittle and ductile materials, material strength and cohesive frac-
ture energy, i.e. cohesive parameters, are considered to be more important than a CZM
shape. However, the author demonstrates that the influence of a CZM softening shape
becomes significant as the relative size of the fracture process zone compared to the
structure size increases, which is relevant for asphalt concrete and other quasi-brittle

materials. It is found that a nonlinear softening curve represented by the power-law
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CZM with a = 10 captures fracture behavior of asphalt concrete reasonably well.

Simulation of various two dimensional and three dimensional laboratory fracture tests,

such as SE(B), is performed considering bulk (background) viscoelasticity.

o {95 parameter is proposed as an operational definition of crack tip opening displacement
(CTOD) in asphalt concrete. The usage of the do5 parameter in evaluating fracture
energy leads to more reasonable numerical results due to the fact that the do5 is more

close to local quantity than the CMOD.

A combination of o5 measurement and the improved power-law CZM which can control
the pre-peak slope and the softening shape can lead to reasonable numerical results

without any calibration.

A novel viscoelastic CZM is derived from the activation energy theory of the rate pro-
cess of bond rupture in conjunction with reasonable assumptions, simplifications and
procedures. The proposed viscoelastic CZM improves numerical results significantly,
leading to a reasonable comparison with experimental results when viscoelastic effects
are considerable. The predicted numerical results for —30°C, —20°C and —10°C are
found to be in good agreement with experimental results. The peak load and the
post-peak trend match especially well with experimental results. Therefore, it can be
concluded that the proposed viscoelastic CZM and procedures can be applicable for

asphalt concrete viscoelastic fracture study.

e A CZM is employed to investigate fracture behavior in asphalt concrete pavement
located in northern Iowa under various loading conditions. Temperature induces top-

down cracking, while tire loading causes reflective cracking in this particular example.
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9.3 Suggestions for future work

e In pavement, fatigue is one of the major sources of distress caused by incessant repe-
tition of tire loads and temperature cycles. The Paris equation [92] has been widely
used to explore fatigue phenomena in various materials. However, a few researchers
pointed out that it provides a data correlation scheme rather than a predictive capa-
bility [6, 104, 125]. More importantly, its applicability to asphalt mixture is limited,
because asphalt mixture generally behaves nonlinearly [81]. In addition, if the frac-
ture process zone size is large compared to the structure size, which is relevant to
asphalt concrete and other quasi-brittle materials, the Paris equation may not be ap-
plicable [104]. Thus, a CZM is a promising technique to explore fatigue in asphalt
concrete and pavement, because material nonlinearity associated to fracture occurring
along the large cohesive zone can be considered properly in terms of displacement and
traction. However, the current CZMs used in this study need to be modified to imple-
ment the degradation of the cohesive properties due to cyclic loading. One approach
is to introduce a damage variable which decreases with the increase of the number of

cycles into the CZMs [77, 104].

e Cohesive parameters in asphalt concrete, i.e. fracture energy and material strength,
depend on temperature and local rate. In the pavement modeling the same fracture
energy and material strength are assumed, regardless of local rate, because of the lack
of information regarding the relationship between the cohesive parameters and local
rate. For example, current fracture tests, e.g. the DC(T), generate different local rates
along the fracture process zone, and as a result, may not be well-suited to find the
relationship between the cohesive fracture energy and local rate. Consideration of the
different fracture energy and material strength for different local rates in the modeling
will lead to better numerical results. Thus, either a new experiment inducing constant

local rate along the fracture process zone needs to be proposed or analyses efforts need
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to be made to find the relationship using current data.

e Asphalt paving layers, particularly the surface course, exhibit vertically graded mate-
rial properties, which are most pronounced at the surface of the pavement and decrease
rapidly with depth from the surface. This grading is caused primarily by temperature
gradients and aging related stiffness gradients. The overall ideas applied to gradation
of bulk materials (see Chapter 2) can be extended to viscoelastic materials. Consid-
ering correspondence principle in viscoelastic graded materials [83, 95], a functionally
graded generalized Maxwell model can be developed to consider aging and temperature

gradients in asphalt concrete.

Figure 9.1: Pavement with crack offset.

e Typically, when an overlay is placed on an existing pavement, physical tearing of the

overlay takes place as a result of movement at the joints. Thus, cracks generally initiate
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at the joints and propagate. However, a crack offset phenomenon is observed when
STRATA RCRS is placed between the PCC and the surface course (see Figure 9.1).
The author speculates that an understanding crack competition phenomenon between
initiation and nucleation is important in this particular problem. In this study, numer-
ical investigations on crack competition phenomenon between initiation and nucleation
are carried out and presented in Section 5.5 in conjunction with a laboratory fracture
test simulation. In order to investigate the crack offset mechanism in pavement, seam-
less integration of experiment, modeling, and field needs to be undertaken along with

the extension of the current numerical study on the crack competition phenomenon.

o A benefit of a computational approach is that it can be used as a tool for performing
design or material optimization where various parameters are adjusted until the sim-
ulations yield desirable responses. For instance, material strength and fracture energy
are important parameters related to fracture. Material strength governs an onset of
material damage, while fracture energy describes the amount of total energy used until
a material experiences a complete separation. So, parametric studies with different
magnitudes of cohesive parameters can help to optimize the material which shows the

best performance for a given condition [33].
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Appendix A
ABAQUS user subroutine for the

three-dimensional power-law CZM

C ko ok ok sk sk ok ok sk ok ok sk ok ok ok sk ok sk ok k ke ke ok ok ok sk sk ok sk sk 3k ok ok ok sk ok ok sk ok ok Sk sk o sk sk e 3k sk ok ok sk ok sk sk sk ke ok ok ok ok sk ok sk ok ok ok ok ok

c The main purpose of UEL is to determine rhs and amatrx

c where rhs is an array containing the contribution of this element
c to the r.h.s vector of the overall system of equations and

c amatrx is an array containing the contribution of this element

c to the stiffness matrix of the overall system of

c equations.

Coskokask koo Kok ok ok o Kok Aok ok ok Kok ok ok ok ok o ksl skl o sk ok ok ok o Kok o Kok sk ok ok ok o ok sk ok ok ok ok o ok
c

c THE SAVED VARIBLES REQUIREMENT FOR VARAIQOUS ELEMENT TYPES

c AS FOLLOWS:

C

c STATIC

€ e

c

c 8-node 3D element TYPE=U3

c

Cokokakak sk skok ok sk K KKK oK KoK ok ok o o ook ok ok ok sk ok sk sk s sk sk s ok ok sk ok sk ok Kok sk ok ok o o ok sk sk ok sk ok o sk o ok o ok sk sk ske sk ok
c

¢ Power-law cohesive zone model

c

¢ Song, S.H., Paulino, G.H. and Buttlar, W.G.

¢ Ref : Three-dimensional power-law cohesive zone model for fracture
modeling of asphalt concrete(to be submitted for journal
publication)

3D elements : (4 real properties + 1 integer properties)

O o0 000
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OO0 00 000 0000

props(1) = G_c (cohesive fracture energy)

props(2) = Sigma_c (material strength)

props(3) = alpha (parameter influencing CZM softening shapes)

props(4) = del_cc/del_c (del_c: displacment at zero traction)
(del_cc: displacement at peak traction)

[l

jprops(1)

1 = Power-law CZM

Cakokakak sk akook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok sk ok ok 3K ok o Sk sk ok sk ke ok sk ok ok ok ok ok ok ok oK ok ok o ok sk ok ok ok 3k ok ok ok ok sk ok sk sk sk sk ok sk sk sk ok

OO0 0 0 00 000000000000

DESCRIPTION OF SUBROUTINE

k_element_3d_8node : determine "rhs" and "amatrx" of 3d-8node element

k_B_matrix_3D : determine B matrix which will be used for
determining "amatrx"(K) matrix, i.e. int ([B]’[D][B])

K_gauss_shape_function_3D : determine the shape function

k_compute_traction_jacobian_3D: determine the traction vector "rhs" and

the tangent modulus matrix

k_compute_del_c : compute new critical displacement

k_transformation_matrix_3D : determine the transformation matrix

k_matrix_transpose : transpose a matrix

k_matrix_zero: initialize a matrix

k_matrix_add : add two matrices

k_vector_zero: initialize a vector

k_matrix_multiplication: perform the matrix multiplication

k_matrix_multiplied_scalar: matrix is multiplied by scalar

C 3k vk ke ok ok ke ok o ok sk o ok ok ok ke o ok ok e Sk s ok 3k ok sk ok ke sk sk ok 3k sk ok sk sk ok ok ok ke ok ok 3k ok sk ok ok ok ok 3k 3k 3k 3k ok 3k sk ok ok ok 3k ok 3k sk ok ok 3k sk ok ok sk ok ok

C

C

subroutine uel(rhs,amatrx,svars,energy,ndofel,nrhs,nsvars,
X props,nprops,coords,mcrd,nnode,u,du,v,a, jtype,time,dtime,
x kstep,kinc, jelem,params,ndload, jdltyp,adlmag,predef ,npredf,
x lflags,mlvarx,ddlmag,mdload,pnewdt, jprops,njprop,period)

include ’ABA_PARAM.INC’
dimension

x rhs(mlvarx,*) ,amatrx(ndofel,ndofel) ,props(*),
x svars(nsvars),energy(8),coords(mcrd,nnode) ,u(ndofel),
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x du(mlvarx,*),v(ndofel),a(ndofel) ,time(2),params(*),
x jdltyp(mdload,*),adlmag(mdload,*),ddlmag(mdload,*),
x predef (2,npredf ,nnode) ,1flags(*), jprops (*)

C
¢ -—— Find the element type
c jtype : the value of n from inputdata Un. Un is the type=Un.
c
if (jtype .eq. 3) then
call k_element_3d_8node (rhs, amatrx, props, coords,u,
& jprops, ndofel, mcrd, nnode, mlvarx,
& jtype, jelem, nrhs)
endif
return
end
c
c
c I
subroutine k_element_3d_8node (rhs, amatrx, props, coords,
& u, jprops, ndofel, mcrd, nnode, mlvarx,
& jtype, jelem, nrhs)
C
c
¢ - Important convention on node numbering
c
c 8 7 4 3
c o + e +
c | side 2 | | side 1 |
c | (btm) | | (top) |
c Fom—————— + Fmm—————e +
c 5 6 1 2
c
c
include ’ABA_PARAM.INC’
c
c————- UEL subroutine variable
c
dimension
& rhs(mlvarx, *),amatrx(ndofel,ndofel),props(*),
& coords(mcrd,nnode) ,u(ndofel), jprops(*)
c
c----Local Variables
c

dimension
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& cur_coord(3,8),aJacob_M(2,3), Rot_M(3,3),
& SFD(2,4), delta_u_l_gp(3), Bmat(3,24), shape_f(4),
& residual_global(ndofel,nrhs), stiff_global(24,24),
& dummy_mat (3,24), cur_coord_mid(3,4), Trac_Jacob(3,3),
& Trac(mcrd,nrhs), Transformation_M(24,24),
& stiff_local(24,24), trans_dummy(24,24),
& residual_local(ndofel,nrhs), cur_coord_local(3,8),
& delta_s1(4), delta_s2(4), delta_n(4),Bmat_T(24,3),
& Transformation_M_T(24,24)
c
c————- Initialize
c
call k_matrix_zero(amatrx, ndofel, ndofel)
call k_matrix_zero(rhs, ndofel, nrhs)
call k_matrix_zero(aJacob_M, 2, 3)
call k_matrix_zero(Trac,mcrd,nrhs)
call k_matrix_zero(Trac_Jacob, mcrd, mcrd)
call k_matrix_zero(B_mat, mcrd, ndofel)
call k_matrix_zero(B_mat_T, ndofel, mcrd)
call k_matrix_zero(Transformation_M, ndofel,ndofel)
call k_matrix_zero(Transformation_M_T, ndofel,ndofel)
call k_vector_zero(delta_u_l_gp,mcrd)
call k_matrix_zero(residual_local,ndofel,nrhs)
call k_matrix_zero(residual_global,ndofel,nrhs)
c
C—===—= Update current coordinates considering displacements
c
do i=1, merd
do j = 1, nnode
cur_coord(i,j) = coords(i,j) + u(3*(j-1)+i)
enddo
enddo
c
c-——-~Evaluate a mid-surface of the element
c
doi=1,3
cur_coord_mid(i,1) = 0.5d0*(cur_coord(i,1) + cur_coord(i,5))
cur_coord_mid(i,2) = 0.5d0*(cur_coord(i,2) + cur_coord(i,6))
cur_coord_mid(i,3) = 0.5d0*(cur_coord(i,3) + cur_coord(i,7))
cur_coord_mid(i,4) = 0.5d0*(cur_coord(i,4) + cur_coord(i,8))
enddo
c
c————- Determine the rotation matrix, Rot_M, which is based on the center
c point of the mid plane betwen side 1 and side 2.
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C——== Compute the Jacobian matrix using Jacob_M=[S.D] (2x4)* [cur_coord

c _mid] (4x3)
c———== Notice that the row of the Jacobian matrix define vectors on the
c———-- tangent plane. For the normal vector, just take cross product.

SFD(1,1)=-0.25d0
SFD(1,2)=0.25d0
SFD(1,3)=0.25d0
SFD(1,4)=-0.25d0
SFD(2,1)=-0.25d0
SFD(2,2)=-0.25d0
SFD(2,3)=0.25d0
SFD(2,4)=0.25d0

e
do i=1, 2
do j=1,3
do k=1,4
aJacob_M(i, j)=aJacob_M(i, j)+SFD(i,k)*cur_coord_mid(j,k)
enddo
enddo
enddo
c
c————- Measure the usual Jacobian of the transformation between the
c referent and current coordinates which is used for computing
c element stiffness matrix and the force vector.
c
dumi=aJacob_M(1,2)*aJacob_M(2,3)~aJacob_M(1,3)*aJacob_M(2,2)
dum2=aJacob_M(1,3)*aJacob_M(2,1)-aJacob_M(1,1)*aJacob_M(2,3)
dum3=aJacob_M(1,1)*aJacob_M(2,2)-aJacob_M(1,2)*aJacob_M(2,1)
a_Jacob=sqrt (duml**2+dum2**2+dum3**2)
c
aLen=(aJacob_M(1,1)**2+aJacob_M(1,2)**2+aJacob_M(1,3)*%2)**x0.5
Rot_M(1,1)=aJacob_M(1,1)/alen
Rot_M(1,2)=aJacob_M(1,2)/alen
Rot_M(1,3)=aJacob_M(1,3)/alen
c
aLeni=(aJacob_M(2, 1)**2+aJacob_M(2,2)**2+aJacob_M(2,3) **2) *%0.5
Rot_M(2,1)=aJacob_M(2,1)/aLlenl
Rot_M(2,2)=aJacob_M(2,2)/alenl
Rot_M(2,3)=aJacob_M(2,3)/aLenl
c

Rot_M(3,1)=Rot_M(1,2)*Rot_M(2,3)-Rot_M(1,3)*Rot_M(2,2)
Rot_M(3,2)=Rot_M(1,3)*Rot_M(2,1)-Rot_M(1,1)*Rot_M(2,3)
Rot_M(3,3)=Rot_M(1,1)*Rot_M(2,2)-Rot_M(1,2)*Rot_M(2,1)
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c————- Compute the transformation matrix
c
call k_transformation_matrix_3D (Rot_M, Transformation_M, jtype,
& ndofel)
call k_matrix_transpose(Transformation_M, Transformation M_T,
& ndofel, ndofel)
c
c——=== Measure the local coordinates
c cur_coord_local=Rot_M*cur_coord
c
do i=1, nnode
cur_coord_local(l,i)=Rot_M(1,1)*cur_coord(1l,i)+
& Rot_M(1,2)*cur_coord(2,i)+Rot_M(1,3)*cur_coord(3,i)
cur_coord_local(2,i)=Rot_M(2,1)*cur_coord(1,i)+
& Rot_M(2,2)*cur_coord(2,i)+Rot_M(2,3)*cur_coord(3,i)
cur_coord_local(3,i)=Rot_M(3,1)*cur_coord(1,i)+
& Rot_M(3,2)*cur_coord(2,i)+Rot_M(3,3)*cur_coord(3,1i)
enddo
c
c————- Compute the local opening (normal opening and shear sliding)
c
do i=1, 4
delta_s1(i)=cur_coord_local(l,i+4)-cur_coord_local(l,i)
delta_s2{(i)=cur_coord_local(2,i+4)-cur_coord_local(2,i)
delta_n(i)=cur_coord_local(3,i+4)-cur_coord_local(3,i)
enddo
doi=1, 4
c
Cm=mmm——= Determine shape functions
c
call K_gauss_shape_function_3D (i, shape_f)
c
Crmmm determine one normal opening displacment and two
c shear sliding displacements at Gauss points
c
call k_vector_zero(delta_u_l_gp,mcrd)
do j=1, 4 ! 4 means 4 different shape function
delta_u_l_gp(1) = delta_u_l_gp(1l)+delta_s1(j)*shape_£(j)
delta_u_1_gp(2) = delta_u_l_gp(2)+delta_s2(j)*shape_£(j)
delta_u_1l_gp(3) = delta_u_1l_gp(3)+ delta_n(j)*shape_f(j)
enddo
c
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c-————--= Compute traction vector (Trac) and

c tangent modulus matrix (Trac_Jacob)
c
call k_compute_traction_jacobian_3D (props, delta_u_l_gp,
& jprops,Trac,Trac_Jacob, nrhs,
& jelem,mcrd)
c
Cmmmmmm—= Determine B matrix and so on
c
call k_B_matrix_3D (shape_f, Bmat, jtype, mcrd, ndofel)
call k_matrix_transpose (Bmat, Bmat_T, ndofel, mcrd)
c
c——————-- Compute the stiffness matrix
c Perform [Bmat]_t#*[Trac_Tacob]*[Bmat]
c mcrd is the dimension 34 -> 3
c ndofel is total dofs in each element. i.e. 3d 8node —> 24
c
call k_matrix_multiplication(Trac_Jacob, Bmat, dummy_mat,
& mcrd, ndofel, mcrd)
call k_matrix_multiplication(Bmat_T,dummy_mat,stiff_local,
& ndofel,ndofel ,mcrd)
c
C———————= Transform local stiffness matrix to global stiffness matrix
c K_global=transformation_m’*local_stiff*transformation_m
c
call k_matrix_multiplication(Transformation_M_T, stiff_local,
& .trans_dummy, ndofel, ndofel,
& ndofel)
call k_matrix_multiplication(trans_dummy, Transformation_M,
& stiff_global, ndofel, ndofel,
& ndofel)
c
C—————--= Multiply Jacobian to local stiffness matrix and add each Gauss
c point contribution to the stiffness matrix of each element.
c
call k_matrix_multiplied_scalar (stiff_global,ndofel,ndofel,
& a_Jacob)
call k_matrix_add(stiff_global, amatrx, ndofel, ndofel)
c
Crmm Similar procedure used in evaluating amatrx is employed.
c

call k_matrix_multiplication(Bmat_T,Trac,residual_local,
& ndofel,nrhs,mcrd)
call k_matrix_multiplication(Transformation_M_T,
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& residual_local,residual_global,ndofel,nrhs,ndofel)

call k_matrix_multiplied_scalar (residual_global,ndofel,nrhs,
& a_Jacob)

call k_matrix_add(residual_global, rhs, ndofel, nrhs)

c
enddo
c
return
end
c
c I
subroutine k_transformation_matrix_3D (Rot_M,Transformation_M,
& jtype,ndofel)
C
c
include ’ABA_PARAM.INC’
c
dimension Transformation_M (ndofel, ndofel), Rot_M(3,3)
c
if (jtype.eq.3) then
num=8
endif
doi=1, num
dum = 3*(i-1)
Transformation_M(dum+1,dum+1) = Rot_M(1,1)
Transformation_M{(dum+1,dum+2) = Rot_M(1,2)
Transformation_M(dum+1,dum+3) = Rot_M(1,3)
Transformation_M(dum+2,dum+1) = Rot_M(2,1)
Transformation_M{dum+2,dum+2) = Rot_M(2,2)
Transformation_M{(dum+2,dum+3) = Rot_M(2,3)
Transformation_M(dum+3,dum+1) = Rot_M(3,1)
Transformation_M(dum+3,dum+2) = Rot_M(3,2)
Transformation_M{(dum+3,dum+3) = Rot_M(3,3)
enddo
c
return
end
c
c
subroutine K_gauss_shape_function_3D (i, shape_f)
c ‘
c
include ’ABA_PARAM.INC’
c
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dimension
& GP_coord(2), shape_f(4)

if (i.eq.1) then
GP_coord(1)=-sqrt(1.0d0/3.0d0)
GP_coord(2)=-sqrt (1.0d0/3.0d0)
elseif (i.eq. 2) then
GP_coord(1)=sqrt (1.0d0/3.0d0)
GP_coord(2)=-sqrt(1.040/3.0d0)
elseif (i.eq. 3) then
GP_coord (1)=sqrt(1.0d40/3.0d0)
GP_coord (2)=sqrt(1.0d0/3.0d0)
elseif (i.eq. 4) then
GP_coord(1)=-sqrt(1.0d0/3.0d0)
GP_coord(2)=sqrt (1.0d0/3.0d0)
endif

shape_f (1)=0.25d0* (1-GP_coord (1) ) * (1-GP_coord(2))
shape_f (2)=0.25d0* (1+GP_coord (1) ) *(1-GP_coord(2))
shape_£ (3)=0.25d0* (1+GP_coord (1) ) * (1+GP_coord(2))
shape_f (4)=0.25d0* (1-GP_coord(1))* (1+GP_coord(2))

return

end

subroutine k_B_matrix_3D (Shape_F, Bmat, jtype, mcrd, ndofel)

include ’ABA_PARAM.INC’
dimension Shape_F(*),Bmat(mcrd,ndofel)
call k_matrix_zero(Bmat, mcrd, ndofel)

if (jtype.eq.3) then
Bmat(1,1) = Shape_F(1)
Bmat(1,4) = Shape_F(2)
Bmat(1,7) = Shape_F(3)
Bmat(1,10) = Shape_F(4)
Bmat(1,13) = -Shape_F(1)
Bmat(1,16) = -Shape_F(2)
Bmat(1,19) = -Shape_F(3)
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Bmat (1,22)
Bmat(2,2)
Bmat (2,5)
Bmat (2,8)
Bmat(2,11)
Bmat (2,14)
Bmat(2,17)
Bmat(2,20)
Bmat (2,23)
Bmat (3,3)
Bmat (3,6)
Bmat (3,9)
Bmat (3,12)
Bmat(3,15)
Bmat(3,18)
Bmat (3,21)
Bmat (3,24)

endif

ret

end

urn

-Shape_F(4)

= Shape_F(1)
= Shape_F(2)
= Shape_F(3)
= Shape_F(4)
= -Shape_F(1)

-Shape_F(2)
~Shape_F(3)

= -Shape_F(4)
= Shape_F(1)
= Shape_F(2)
= Shape_F(3)
= Shape_F(4)
= -Shape_F(1)
= -Shape_F(2)
= -Shape_F(3)
= -Shape_F(4)

&
&

subroutine k_compute_traction_jacobian_3D (props,
delta u_l_gp ,jprops, Trac, Trac_Jacob, nrhs,
jelem, mcrd)

include ’ABA_PARAM.INC’

dim

ension

& Trac(mcrd, nrhs),Trac_Jacob(mcrd,mcrd), props(*), jprops (k)

dimension
& delta_u_1_gp(3)

if (jprops(1).eq.1) then ! this is power-law CZM
Crm———————= number of integer variables: 4
Fracture_e = props(1)
T_max = props(2)
alpha= props(3) ! t=tcx(1l-eff_del/del_c) alpha
ambda_cr= props(4) ! delta_cc/del_c
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delta_t1l_gp=delta_u_l_gp(1)
delta_t2_gp=delta_u_l_gp(2)
delta_n_gp =delta_u_l_gp(3)

s this is displacement in which traction becomes zero
del_c=props(1)/props(2)*(props(3)+1.0d0)

Cm———————- this is displacement in which traction becomes a peak
del_cc=del_c*ambda_cr

c
del_eff=sqrt(delta_n_gp**2+delta_t1_gp**2+delta_t2_gp**2)

c

C—————————- Calculate new del_c

c

anew_del_c=del_c
if (alpha.gt.1.0d0) then
call k_compute_del_c (alpha,del_c,del_cc,T_max,Fracture_e,
& del_c_new, ambda_cr)
del_c=del_c_new
del_cc=del_c*ambda_cr
endif

if (del_eff .le. del_cc) then
Trac(1,1)=T_max*delta_tl_gp/del_cc
Trac(2,1)=T_max*delta_t2_gp/del_cc
Trac(3,1)=T_max*delta_n_gp/del_cc
Trac_Jacob(1,1)=T_max/del_cc
Trac_Jacob(2,2)=T_max/del_cc
Trac_Jacob(3,3)=T_max/del_cc
Trac_Jacob(1,2)=0.0d0
Trac_Jacob(1,3)=0.0d0
Trac_Jacob(2,1)=0.0d0
Trac_Jacob(2,3)=0.0d40
Trac_Jacob(3,1)=0.0d40
Trac_Jacob(3,2)=0.0d0
elseif ((del_eff .gt. del_cc).and.(del_eff .1t. del_c)) then
Trac(1,1)= T_max*(1-sqrt(delta_tl_gp**2+delta_t2_gp**2+delta_n_gp*
#%2) /del_c)**alpha*delta_t1_gp/sqrt(delta_t1_gp**2+delta_t2_gp**2+d
#elta_n_gp**2)/(1-ambda_cr)**alpha
Trac(2,1)= T_max*(1-sqrt(delta_tl1_gp**2+delta_t2_gp**2+delta_n_gp*
#%2) /del_c)**alpha*delta_t2_gp/sqrt(delta_tl_gpx*2+delta_t2_gp**2+d
#elta_n_gp**2)/(1-ambda_cr)**alpha
Trac(3,1)= T_max*(1-sqrt(delta_tl_gp**2+delta_t2_gp**2+delta_n_gp*
#x2) /del_c)**alpha*delta_n_gp/sqrt(delta_tl_gp**2+delta_t2_gp**2+de
#1lta_n_gp**2)/(1-ambda_cr)**alpha
al = -T_max*(1-sqrt(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**
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#2) /del_c)**alpha*alpha/(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**
#2) /del_c*delta_t1_gp**2/(1-sqrt(delta_tl_gp**2+delta_t2_gp**2+delt
#a_n_gp**2) /del_c)/(1-ambda_cr)**alpha+T_max*(1-sqrt(delta_t1_gp*+*2
#+delta_t2_gp**2+delta_n_gp**2) /del_c)**alpha/sqrt(delta_tl_gp**2+d
#elta_t2_gp**2+delta_n_gp**2)/(1-ambda_cr)*+*alpha-T_max*(1-sqrt(del
#ta_tl_gp**2+delta_t2_gp**2+delta_n_gp**2)/del_c)**alphaxdelta_tl_g
#p**2/sqrt (delta_t1_gp+*2+delta_t2_gp**2+delta_n_gp**2)**3/(1-ambda
#_cr)**alpha

a2 = -T_max*(1-sqrt(delta_ti_gp**2+delta_t2_gp**2+delta_n_gp**
#2) /del_c)**alphaxalpha/(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**
#2) /del_c*delta_t2_gp/(1-sqrt(delta_t1_gp**2+delta_t2_gp**2+delta_n
#_gp**2)/del_c)*delta_t1_gp/(1-ambda_cr)**alpha-T_max*(1-sqrt(delta
#_t1_gpx*2+delta_t2_gp**2+delta_n_gp**2)/del_c)**alpha*delta_t1_gp/
#sqrt (delta_tl_gp**2+delta_t2_gp**2+delta_n_gp**2)**3/(1-ambda_cr)*
#*alphaxdelta_t2_gp

a3 = -T_max*(1-sqrt(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**
#2) /del_c)**alpha*alpha/(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**
#2)/del_c*delta_n_gp/(1-sqrt(delta_t1_gp¥*2+delta_t2_gp**2+delta_n_
#gp**2) /del_c)*delta_t1_gp/(1-ambda_cr)**alpha-T_max*(1-sqrt(delta_
#t1_gpr*2+delta_t2_gp**2+delta_n_gp+**2)/del_c)**alphaxdelta_t1_gp/s
#qrt (delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**2)*k3/(1-ambda_cr)**
#alphaxdelta_n_gp

a4 = -T_max*(1-sqrt(delta_tl_gp**2+delta_t2_gp**2+delta_n_gp**
#2) /del_c)**alpha*alpha/(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**
#2)/del_c*delta_t2_gp**2/(1-sqrt(delta_tl_gp**2+delta_t2_gp**2+delt
#a_n_gp**2) /del_c)/(1-ambda_cr)**alpha+T_max*(1-sqrt(delta_tl_gp**2
#+delta_t2_gp**2+delta_n_gp**2)/del_c)*+*alpha/sqrt(delta_tl_gp**2+d
#elta_t2_gp**2+delta_n_gp**2)/(1-ambda_cr)**alpha-T_max*(1-sqrt(del
#ta_tl_gpr*2+delta_t2_gp**2+delta_n_gp**2)/del_c)**alpha*delta_t2_g
#p**x2/sqrt (delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**2)+**3/(1-ambda
#_cr)**alpha ,

ab = -T_max*(1-sqrt(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**
#2)/del_c)**alpha*alpha/(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**
#2) /del_c*delta_n_gp/(1-sqrt(delta_t1_gp**2+delta_t2_gp**2+delta_n_
#gp**2) /del_c)*delta_t2_gp/(1-ambda_cr)**alpha-T_max*(1-sqrt(delta_
#t1_gpk2+delta_t2_gp**2+delta_n_gp**2) /del_c)**alphaxdelta_t2_gp/s
#qrt(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp+**2)**3/(1-ambda_cr)**
#alphaxdelta_n_gp

ab = -T_max*(1l-sqrt(delta_tl_gp**2+delta_t2_gp**2+delta_n_gp*x*
#2) /del_c)**alphaxalpha/(delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**
#2)/del_c*delta_n_gp**2/(1-sqrt(delta_t1_gp**2+delta_t2_gp**2+delta
#_n_gp**2)/del_c)/(1-ambda_cr)**alpha+T_max* (1-sqrt(delta_t1_gp**2+
#delta_t2_gp**2+delta_n_gp+*+*2)/del_c)**alpha/sqrt(delta_t1_gp**2+de
#1ta_t2_gp**2+delta_n_gp**2)/(1-ambda_cr)**alpha-T_max*(1-sqrt(delt
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#a_tl_gp**2+delta_t2_gp**2+delta_n_gp**2)/del_c)**alpha*delta_n_gp*

#*2/sqrt (delta_t1_gp**2+delta_t2_gp**2+delta_n_gp**2)**3/(1-ambda_c

#r)**alpha
Trac_Jacob(1,1)=al
Trac_Jacob(1,2)=a2
Trac_Jacob(1,3)=a3
Trac_Jacob(2,2)=a4
Trac_Jacob{(2,3)=ab
Trac_Jacob(3,3)=a6
Trac_Jacob(2,1)=a2
Trac_Jacob(3,1)=a3
Trac_Jacob(3,2)=a5

elseif (del_eff.gt.del_c) then

Trac(1,1)=0.0d0
Trac(2,1)=0.040
Trac(3,1)=0.040
Trac_Jacob(1,1)=0.0d0
Trac_Jacob(2,2)=0.0d40
Trac_Jacob(3,3)=0.0d0
Trac_Jacob(1,2)=0.0d0
Trac_Jacob(1,3)=0.0d0
Trac_Jacob(2,1)=0.0d40
Trac_Jacob(2,3)=0.0d0
Trac_Jacob(3,1)=0.0d40
Trac_Jacob(3,2)=0.0d0

endif
c
endif
c
return
end
c
c
subroutine k_compute_del_c (alpha, del_c, del_cc,
& T_max, Fracture_e, del_c_new, ambda_cr)
c
c

include ’ABA_PARAM.INC’

anew_del_c=del_c
if (alpha. gt. 1.0d0) then
anew_del_c=-1.*exp(log(-.5000000000%(-2.*T_max*((del_c-1.
*del_cc)/del_c)**(alpha+l.)*del_c+2.*Fracture_e
& *(1.-1.*ambda_cr)**alpha*alpha+2. *Fracture_e

54
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*(1.—1.*ambda_cr)**alpha—1.*del_cc*T_max

&
& *(1.-1.*ambda_cr)**alpha*alpha-1.*del_cc*T_max
& *(1.-1.*%ambda_cr)**alpha)/T_max/del_c)/
& (alpha+l.))*del_c+del_c
a_right=del_c
a_left=anew_del_c
aa=0.5+(a_left+a_right)
a_center=aa
del_cc=ambda_cr*aa
do jj=1, 100000
sum=0.0d0
do kk=1, 10000
ainterval=(aa-del_cc)/10000
al=del_cc+(kk-1)*ainterval
a2=del_cct+kk*ainterval
a_mean=(al+a2)/2.0d0
sum=sum+T_max*(1-a_mean/aa)**(alpha)
& /((1-ambda_cr)**(alpha))*ainterval
enddo
sum=sum+0.5d0*del_cc*T_max
if (Fracture_e. ge. 1.00001d0*sum) then
a_left=a_center
aa=0.5*(a_left+a_right)
a_center=aa
del_cc=ambda_crx*aa
elseif (Fracture_e .le. 0.99999d0*sum) then
a_right=a_center
aa=0.5*(a_left+a_right)
a_center=aa
del_cc=ambda_cr*aa
else
del_c=aa
del_cc=ambda_cr*aa
goto 1000
endif
enddo
endif
c
1000 del_c_new=del_c
c
return
end
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subroutine k_matrix_transpose (A,B,n1,n2)

Cc
include ’ABA_PARAM.INC’
c
dimension A(n2,n1), B(ni,n2)
c
do i=1,nl
do j=1, n2
B(i,j)=A(j,1)
enddo
enddo
C
return
end
193
subroutine k_matrix_zero (A,nl,n2)
c
include ’ABA_PARAM.INC’
c
dimension A(ni1,n2)
c
do i=1,n1
do j=1, n2
A(i,j)=0.0d0
enddo
enddo
c
return
end
subroutine k_matrix_add (A,B,nl1,n2)
C
c
include ’ABA_PARAM.INC’
c
dimension A(n1,n2), B(nl,n2)
c
do i=1,n1
do j=1, n2
B(i,j)=B(i,j)+A(i,]j)
enddo
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enddo

c
return
end
c
c
subroutine k_vector_zero (A,nl)
C
include ’ABA_PARAM.INC’
c
dimension A(nl1)
c
do i=1,n1
A(i)=0.0d0
enddo
c
return
end
c
cc
subroutine k_matrix_multiplication (A,B,C,n1,n2,n3)
C
c
include ’ABA_PARAM.INC’
c
dimension A(n1,n3), B(n3, n2), C(nl, n2)
c
call k_matrix_zero (C,n1,n2)
c
do i=1,n1
do j=1, n2
do k=1, n3
C(i,j)=C(i,j)+A(i,k)*B(k,j)
enddo
enddo
enddo
c
return
end
c
cc

subroutine k_matrix_multiplied_scalar (A,n1,n2,fac)
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include ’ABA_PARAM.INC’

c
dimension A(ni1,n2)
c
do i=1,n1
do j=1, n2
A(1,j)=A(1,j)*fac
enddo
enddo
c
return
end
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Appendix B

ABAQUS user subroutine for the
two-dimensional power-law CZM
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THE SAVED VARIBLES REQUIREMENT FOR VARAIOUS ELEMENT TYPES
AS FOLLOWS:

STATIC

4-node 2D element TYPE=U1

props(1) = G_c (cohesive fracture energy)
props(2) = Sigma_c (material strength)
props(3) = alpha (parameter influencing CZM softening shapes)

props(4) = del_cc/del_c (del_c: displacment at zero traction)
(del_cc: displacement at peak traction)

props(5) = thickness

jprops(1)

1 = Power-law CZM

O 0O 0 0 00000000000 00O00O0
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DESCRIPTION OF SUBROUTINE
k_element_2d_4node : determine "rhs" and "amatrx" of 2d-4node element

k_B_matrix : determine B matrix which will be used for
determining "amatrx"(K) matrix, i.e. int ([B]’[D]([B])

O 0 0 0 OO0
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K_gauss_shape_function : determine the shape function

k_gauss_point: obtain the information on Gauss points

k_compute_traction_jacobian: determine the traction the tangent modulus
matrix(D)

k_transformation_matrix : determine the transformation matrix

k_compute_del_c : see appendix 1

k_matrix_transpose : see appendix 1

k_matrix_zero: see appendix 1

k_matrix_add : see appendix 1

k_matrix _multiplication: see appendix 1

k_matrix_multiplied_scalar: see appendix 1

QOO0 OO0 O 0 00 00 000

subroutine uel(rhs,amatrx,svars,energy,ndofel,nrhs,nsvars,
X props,nprops,coords,mcrd,nnode,u,du,v,a,jtype,time,dtime,
x kstep,kinc, jelem,params,ndload, jdltyp,adlmag,predef ,npredf,
x 1lflags,mlvarx,ddlmag,mdload,pnewdt, jprops,njprop,period)

include ’ABA_PARAM.INC’

dimension
x rhs(mlvarx,*),amatrx(ndofel,ndofel) ,props(*),
x svars(nsvars) ,energy(8) ,coords(mcrd,nnode) ,u(ndofel),
x du(mlvarx,*),v(ndofel),a(ndofel),time(2),params(*),
x jdltyp(mdload,*),adlmag(mdload,*),ddlmag(mdload,*),
x predef (2,npredf ,nnode) ,1flags(*), jprops ()

if (jtype .eq. 1) then
call k_element_2d_4node (rhs, amatrx, props, coords,
& u, jprops, ndofel, mcrd, nnode, mlvarx,
& jtype, jelem, nrhs)
endif

return
end

subroutine k_element_2d_4node (rhs, amatrx, props, coords,
X u, jprops, ndofel, mcrd, nnode, mlvarx,
X jtype, jelem, nrhs)

c 4 side 2 3
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c e +
c | |
c | |
C Fomm e ——————— +
c 1 side 1l 2
c
include ’ABA_PARAM.INC’
c
c———== UEL subroutine variable
c
dimension
x rhs(mlvarx, *),amatrx(ndofel,ndofel),props(*),
x coords(mcrd,nnode) ,u(ndofel), jprops(*)
c
c¢——--Local Variables
c
dimension
x cur_coord(2,4),
x cur_coord_mid(2,2), Transformation_M(8,8),Shape_F(2),
x cur_coord_local(2,4),delta_n(2), delta_t(2),
x Bmat(2,8),Trac(2),Trac_Jacob(2,2),
x dummy_mat(2,8),residual_local(8), residual_global(8),
x trans_dummy(8,8),stiff_global(8,8),stiff_local(8,8),
x Bmat_T(8,2), Transformation_M_T(8,8)
c

call k_matrix_zero(amatrx, ndofel, ndofel)

call k_matrix_zero(rhs, ndofel, nrhs)

call k_matrix_zero(Trac,mcrd,nrhs)

call k_matrix_zero(Trac_Jacob, mcrd, mcrd)

call k_matrix_zero(B_mat, mcrd, ndofel)

call k_matrix_zero(B_mat_T, ndofel, mcrd)

call k_matrix_zero(Transformation_M, ndofel,ndofel)
call k_matrix_zero(Transformation_M_T, ndofel,ndofel)
call k_matrix_zero(residual_local,ndofel,nrhs)

call k_matrix_zero(residual_global,ndofel,nrhs)

do i =1, mcrd
do j = 1, nnode
cur_coord(i,j) = coords(i,j) + u(2*(j-1)+i)

enddo
enddo
doi=1, 2

cur_coord_mid(i,1) = 0.5d0*(cur_coord(i,1) + cur_coord(i,4))
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cur_coord_mid(i,2) = 0.5d0*(cur_coord(i,2) + cur_coord(i,3))

enddo
c
d_length = ((cur_coord mid(1,1) - cur_coord_mid(1,2))**2 +
X (cur_coord_mid(2,1) - cur_coord_mid(2,2))*%2)**0.5
o_length = ((coords(1,1)-coords(1,2))**2 +
X (coords(2,1)-coords(2,2)) **2)**0.5
c
xx = (cur_coord_mid(1,2) - cur_coord_mid(1,1))/d_length
yy = (cur_coord_mid(2,2) - cur_coord mid(2,1))/d_length
c
call k_transformation_matrix (xx,yy,Transformation_M, jtype,
& ndofel)
call k_matrix_transpose(Transformation_M, Transformation M_T,
& ndofel, ndofel)
c
do i = 1, nnode
cur_coord_local(l,i) = xx*cur_coord(1l,i) + yy*cur_coord(2,i)
cur_coord_local(2,i) = -yy*cur_coord(1l,i) + xx*cur_coord(2,i)
enddo
c
delta_n(1) = cur_coord_local(2,4) - cur_coord_local(2,1)
delta_n(2) = cur_coord_local(2,3) - cur_coord_local(2,2)
delta_t(1) = cur_coord_local(l,4) - cur_coord_local(1l,1)
delta_t(2) = cur_coord_local(1,3) - cur_coord_local(1,2)
c
doi=1, 2
num_iter=i
c
call k_gauss_points (num_iter, GP_each, GPW_each)
call k_shape_function (GP_each, Shape_f, jtype, 2)
c
delta_t_gp = delta_t(1)*Shape_F(1) + delta_t(2)+*Shape_F(2)
delta_n_gp = delta_n(1)*Shape_F(1) + delta_n(2)*Shape_F(2)
c
call k_compute_traction_jacobian (props,delta_n_gp,delta_t_gp
& , jprops,Trac,Trac_Jacob,d_length,o_length
& ,jelem, num_iter, GPW_each,mcrd, nrhs)
c
call k_B_matrix (Shape_F, Bmat, jtype, mcrd, ndofel)
call k_matrix_transpose (Bmat, Bmat_T, ndofel, mcrd)
c

a_Jacob=GPW_each#*0.5%0_length*props(5)
call k_matrix_multiplication(Trac_Jacob, Bmat, dummy_mat,
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& mcrd, ndofel, mcrd)
call k_matrix_multiplication(Bmat_T,dummy_mat,stiff_local,
& ndofel,ndofel,mcrd)
call k_matrix_multiplication(Transformation_M_T, stiff_local,
trans_dummy, ndofel, ndofel,
& ndofel)
call k_matrix_multiplication(trans_dummy, Transformation_ M,

&

& stiff_global, ndofel, ndofel,
& ndofel)
call k_matrix_multiplied_scalar (stiff_global,ndofel,ndofel,
& a_Jacob)
call k_matrix_add(stiff_global, amatrx, ndofel, ndofel)
c
call k_matrix_multiplication(Bmat_T,Trac,residual_local,
& ndofel ,nrhs,mcrd)
call k_matrix_multiplication(Transformation M_T,
& residual_local,residual_global,ndofel,nrhs,ndofel)
call k_matrix_multiplied_scalar (residual_global,ndofel,nrhs,
& a_Jacob)
call k_matrix_add(residual_global, rhs, ndofel, nrhs)
enddo
c
return
end
subroutine k_B_matrix (Shape_F, Bmat, jtype, mcrd, ndofel)
c
c
include ’ABA_PARAM.INC’
c
dimension Shape_F(*),Bmat(mcrd,ndofel)
c

call k_matrix_zero (Bmat, mcrd, ndofel)

if (jtype.eq.1) then
Bmat(1,1) = Shape_F(1)
Bmat(1,3) = Shape_F(2)
Bmat(1,5) = -Shape_F(2)
Bmat(1,7) = -Shape_F(1)
Bmat(2,2) = Shape_F(1)
Bmat(2,4) = Shape_F(2)
Bmat(2,6) = -Shape_F(2)
Bmat(2,8) = -Shape_F(1)
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endif

return

end

c====
subroutine k_transformation_matrix(xx,yy,Transformation_M, jtype,
& n_dim)

include ’ABA_PARAM.INC’
dimension Transformation_M(n_dim,n_dim)

if (jtype.eq.1) then
num=4

endif

doi=1, num
dum = 2%(i-1)
Transformation_M(dum+1,dum+1)
Transformation_M(dum+1,dum+2)
Transformation_M(dum+2,dum+1)
Transformation_M(dum+2,dum+2)

enddo

XX
yy

]
|
<}
B

XX

return
end

subroutine k_gauss_points (num_iter, GP_each, GPW_each)

include ’ABA_PARAM.INC’

if (pum_iter.eq.1) then
GP_each = -0.5773502691896d0
GPW_each = 1.0d40

elseif (num_iter.eq.2) then
GP_each = 0.5773502691896d00
GPW_each = 1.0d0

endif

return
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end

subroutine k_shape_function (GP_each,Shape_F, jtype, n_dim)

c
include ’ABA_PARAM.INC’
C
dimension Shape_F(n_dim)
c
c-———- 2d 4node element.
c
If (jtype.eq.1) then
Shape_F(1)=0.5d0%(1.d0-GP_each)
Shape_F(2)=0.5d0+*(1.d0+GP_each)
endif
c
return
end
c
c
subroutine k_compute_traction_jacobian (props,delta_n_gp,
x delta_t_gp,jprops,Trac,Trac_Jacob, d_length, o_length,
& jelem, num_iter, GPW_each,mcrd, nrhs)
C
c
include ’ABA_PARAM.INC’
c
dimension
& Trac(mcrd, nrhs),Trac_Jacob(mcrd,mcrd), props(x), jprops(x)
c
if (jprops(1) .eq.1) then
C————=-= if alpha=0, rectangular cohesive model
c——————-—-= alpha=1, bilinear model
Cm——mmm———e alpha=2"inf exponentially decaying curve
Fracture_e = props(1)
T_max = props(2)
alpha= props(3) ! t=tc*(1-eff_del/del_c) alpha
ambda_cr= props(4) ! same meaning with bilinear model
thickness=props(5)
c

del_c=props (1) /props(2)*(props(3)+1.0d0)
-del_cc=del_c*ambda_cr
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del_eff=sqrt(delta_n_gp**2+delta_t_gp**2)

C
if (alpha.gt.1.0d0) then
call k_compute_del_c (alpha, del_c, del_cc, T_max, Fracture_e,
& del_c_new, ambda_cr)
del_c=del_c_new
del_cc=del_c*ambda_cr
endif
c

if (del_eff .le. del_cc) then
Trac(1,1)=T_max*delta_t_gp/del_cc
Trac(2,1)=T_max*delta_n_gp/del_cc
Trac_Jacob(1,1)=T_max/del_cc
Trac_Jacob(2,2)=T_max/del_cc
Trac_Jacob(1,2)=0.0d0
Trac_Jacob(2,1)=0.0d0
elseif ((del_eff .gt. del_cc).and.(del_eff .1t. del_c)) then
al = T_max*(1-sqrt(delta_t_gp**2+delta_n_gp**2)/del_c)**alpha*
#delta_t_gp/sqrt(delta_t_gp**2+delta_n_gp*+*2)/(1-ambda_cr)**alpha
a2 = T_max*(1-sqrt (delta_t_gp**2+delta_n_gp**2)/del_c)**alpha*
#delta_n_gp/sqrt(delta_t_gp**2+delta_n_gp**2)/(1-ambda_cr)**alpha
a3 = -T_max*(1-sqrt(delta_t_gp**2+delta_n_gp**2)/del_c)**alpha
#xalpha/(delta_t_gp**2+delta_n_gp**2)/del_c*delta_t_gp**2/(1-sqrt(d
#elta_t_gp+*2+delta_n_gp**2)/del_c)/(1-ambda_cr)**alpha+T_max*(1-sq
#rt(delta_t_gp**2+delta_n_gp**2)/del_c)**alpha/sqrt(delta_t_gp**2+d
#elta_n_gp**2)/(1-ambda_cr)**alpha-T_max*(1-sqrt(delta_t_gp**2+delt
#a_n_gp**2)/del_c)**alphaxdelta_t_gp**2/sqrt(delta_t_gp**2+delta_n_
#gp**2) *x3/ (1-ambda_cr)**alpha
a4 = -T_max*(1-sqrt(delta_t_gp**2+delta_n_gp**2)/del_c)**alpha
#xalpha/(delta_t_gp**2+delta_n_gp**2)/del_c*delta_n_gp/(1-sqrt(delt
#a_t_gp**2+delta_n_gp**2)/del_c)*delta_t_gp/ (1-ambda_cr)**alpha-T_m
#ax*(1-sqrt(delta_t_gp**2+delta_n_gp**2)/del_c)**alpha*delta_t_gp/s
#qrt(delta_t_gp**2+delta_n_gp**2)**3/(1-ambda_cr)**alpha*delta_n_gp
ab = -T_max*(1-sqrt(delta_t_gp**2+delta_n_gp**2)/del_c)**alpha
#xalpha/(delta_t_gp**2+delta_n_gp**2)/del_c*delta_n_gp**2/(1-sqrt(d
#elta_t_gp**2+delta_n_gp**2)/del_c)/(1-ambda_cr)**alpha+T_max*(1-sq
#rt(delta_t_gp**2+delta_n_gp**2)/del_c)*+*alpha/sqrt(delta_t_gp**2+d
#elta_n_gp**2)/(1-ambda_cr)**alpha-T_max*(1-sqrt(delta_t_gp**2+delt
#a_n_gp**2) /del_c)**alpha*delta_n_gp**2/sqrt(delta_t_gp**2+delta_n_
#gp**2) **3/ (1-ambda_cr)**alpha
Trac(1,1)=al
Trac(2,1)=a2
Trac_Jacob(1,1)=a3
Trac_Jacob(1,2)=a4
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Trac_Jacob(2,2)=ab
Trac_Jacob(2,1)=Trac_Jacob(1,2)
elseif (del_eff.gt.del_c) then
Trac(1,1)=0.0d40
Trac(2,1)=0.0d0
Trac_Jacob(1,1)=0.0d40
Trac_Jacob(1,2)=0.0d0
Trac_Jacob(2,1)=0.0d0
Trac_Jacob(2,2)=0.0d40

endif
endif
c
return
end
c
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