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Abstract

Topology optimization is a powerful tool for global and multiscale design of structures,

microstructures, and materials. The computational bottleneck of topology optimization is

the solution of a large number of extremely ill-conditioned linear systems arising in the

finite element analysis. Adaptive mesh refinement (AMR) is one efficient way to reduce the

computational cost. We propose a new AMR scheme for topology optimization that results

in more robust and efficient solutions.

For large sparse symmetric linear systems arising in topology optimization, Krylov

subspace methods are required. The convergence rate of a Krylov subspace method for

a symmetric linear system depends on the spectrum of the system matrix. We address

the ill-conditioning in the linear systems in three ways, namely rescaling, recycling, and

preconditioning.

First, we show that a proper rescaling of the linear systems reduces the huge condition

numbers that typically occur in topology optimization to roughly those arising for a problem

with homogeneous density.

Second, the changes in the linear system from one optimization step to the next are

relatively small. Therefore, recycling a subspace of the Krylov subspace and using it to solve

the next system can improve the convergence rate significantly. We propose a minimum

residual method with recycling (RMINRES) that preserves the short-term recurrence and

reduces the cost of recycle space selection by exploiting the symmetry. Numerical results

show that this method significantly reduces the total number of iterations over all linear

systems and the overall computational cost (compared with the MINRES method which
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is optimal for a single symmetric system). We also investigate the recycling method for

adaptive meshes.

Third, we propose a multilevel sparse approximate inverse (MSPAI) preconditioner for

adaptive mesh refinement. It significantly improves the conditioning of the linear systems

by approximating the global modes with multilevel techniques, while remaining cheap to

update and apply, especially when the mesh changes. For convection-diffusion problems, it

achieves a level-independent convergence rate. We then make a few changes in the MSPAI

preconditioner for topology optimization problems. With these extensions, the MSPAI

preconditioner achieves a nearly level-independent convergence rate. Although for small

to moderate size problems the incomplete Cholesky preconditioner is faster in time, the

multilevel sparse approximate inverse preconditioner will be faster for (sufficiently) large

problems. This is important as we are more interested in scalable methods.
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Chapter 1

Introduction

Structural design optimization includes size, shape and topology optimizations. In size

optimization we specify a truss structure, and the goal is to find the optimal size for each

member as demonstrated in Figure 1.1(a). This is a finite-dimensional optimization problem.

In shape optimization we specify the topology of the design, and the goal is to find the

optimal shape of the holes and materials as demonstrated in Figure 1.1(b). This is an

infinite-dimensional optimization. Both size and shape optimization require some level of

prior knowledge about the nature of the design problem to determine a proper solution space

that includes the optimal solution.

On the other hand, in topology optimization we specify only an allowed physical domain,

and the goal is to find the optimal material distribution in this physical domain. That is,

the optimization algorithm determines which parts of the space should be material and

which parts should be empty. It is an infinite-dimensional optimization in the continuum

setting. All possible structures, or material distributions to be more precise, within the

specified domain are considered. To define a topology optimization problem, we specify only

the configuration of the problem, i.e., the design domain, the boundary conditions and the

loading. We do not need any prior knowledge about the final design. Therefore, in general,

topology optimization is more powerful than size and shape optimization.

Topology optimization has been used for various structural design problems. For

example, Airbus designed the wing box ribs of the A380 airplane using topology

optimization [43] and saved 500 kilogram weight (40% of the original wing ribs) in

each wing. Altair Engineering has designed bus and motorcycle frames using topology
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Figure 1.1: Three types of structural optimization. (a) size optimization; (b) shape
optimization; (c) topology optimization. The initial setups are shown on the left and the
optimal solutions are shown on the right. (Figure 1 in [62] by courtesy of Prof. Ole Sigmund)

optimization [1]. Furthermore, because of its flexibility, topology optimization has been

used for design problems other than structural design. For example, it has been used

to design Microelectromechanical Systems (MEMS) [57]. It has also been used to design

microstructural materials with extreme material properties, e.g., materials with negative

Poisson’s ratio [44] and materials with negative thermal expansion coefficient [65].

To make topology optimization a truly effective tool in the design of large structures

and complex materials, we must use large three-dimensional models. In the literature,

most work on topology optimization for continuum structures has emphasized developing

new formulations and applications, designing suitable elements, and studying existence

and uniqueness issues. The computational aspect of large-scale topology optimization,

specifically the high cost of solving many large and ill-conditioned linear systems, has not

received enough attention. Therefore, it is the main focus of this thesis.

A topology optimization algorithm lead to an evolving process of the density distribution.

In the process, the structure evolves as void and solid appear. In order to achieve accurate

and smooth results, a fine mesh representation is required for solid regions, especially at
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the surface of solid regions. However it is not necessary to use fine mesh representation

for void regions. Therefore, adaptive mesh refinement (AMR) [14, 13] is useful technique

for reducing the computational cost while achieving the same level of accuracy. Limited

amount of research has been conducted on applying AMR to topology optimization [67, 25].

In many cases, the mesh refinement strategies proposed [67, 25] lead to suboptimal designs.

In this thesis, we propose a more robust and efficient mesh adaptation strategy for topology

optimization. It provides more freedom for the design to move to its global optimum, and

it allows for mesh derefinement which further reduces the computational cost.

The main computational cost in topology optimization comes from the finite element

analysis, which involves solving a long sequence of linear systems of the form:

K(i)u(i) = f . (1.1)

Here, K(i) is the stiffness matrix, which is a function of the design variables at the ith

optimization step, f is the load vector, and u(i) is the displacement vector. Currently, direct

solvers are most commonly used because of the very large condition numbers arising in

topology optimization. However, direct solvers cannot effectively handle large 3D problems,

because they scale poorly in terms of the storage requirements and the computational cost.

This makes them prohibitively expensive for large systems. On the other hand, iterative

solvers have low storage requirements and the computational cost per iteration is often

linear in the problem size. Therefore, as long as the convergence rate is reasonably fast,

iterative solvers can solve very large problems efficiently.

Iterative solvers offer additional advantages compared with direct solvers. First, we do

not need to solve the finite element problem very accurately in the early phase of the topology

optimization process. Second, iterative solvers are relatively easy to parallelize [17, 73, 40],

which is important for very large problems. Third, iterative solvers can use solutions from

previous systems as starting guesses, leading to smaller initial residuals and reduced solving
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time. Last, for a sequence of linear systems that change slowly, we can reduce the total

number of iterations by recycling subspaces of earlier search spaces [51, 39].

In topology optimization, the change in the design variables becomes small after the first

few optimization steps. Therefore, the change in the system matrix K from one optimization

step to the next is also small, and the Krylov subspace recycling methods introduced in [51]

are likely to be effective. Some topology optimization problems lead to a nonlinear system

in each optimization step [31]. If we use a Newton or quasi-Newton method for the non-

linear system, the (approximate) Jacobians often change sufficiently slowly so that we can

further exploit recycling, for example, see [39]. In most structural problems, the matrices

are symmetric but not necessarily positive definite. For example, in vibration problems

symmetric indefinite matrices arise [63]. For such matrices, MINRES (minimum residual

method) [50] is the method of choice. Therefore, we study Krylov subspace recycling with

the MINRES method. Figure 1.2 demonstrates the basic idea of the recycling MINRES

method. We solve the first system by building the Krylov subspace K(1). We obtain the

most important subspace R(1) out of K(1) for recycling. For the following systems, we build

the Krylov subspace K(j) such that it is orthogonal to the recycle space R(j−1) from the

previous system. We obtain the solution of the linear system and an updated recycle space

R(j) from the union of K(j) and R(j−1). If we judiciously choose the recycle space R(j) such

that it contains the most “important” information, we would obtain the solution of the linear

system in fewer iterations. We study the selection of the recycle space in this thesis. We

make recycling more efficient by exploiting symmetry and short-term recurrences.

For symmetric systems, the ratio between the largest and smallest eigenvalues governs the

worst-case upper bound on the convergence rate of a Krylov subspace method. In topology

optimization, this ratio can be extremely large because of the wide range of magnitudes

of the element densities. This ill-conditioning also affects the accuracy in the solution of

the linear system. We address this ill-conditioning by using a diagonal rescaling before

applying a more general preconditioner like an incomplete factorization. Our analysis and
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Figure 1.2: Demonstration of recycling MINRES. K denotes the Krylov subspace, and R
denotes the recycle space.

demonstrations with 1D problems show that a simple diagonal rescaling reduces the huge

condition numbers arising from topology optimization problems to a magnitude of roughly

the condition numbers arising from problems with homogeneous densities.

In addition to the rescaling technique, a more general preconditioner is required to further

improve the convergence rate. For large-scale simulations on adaptive meshes, a desired

preconditioner should be easy to adapt to the changes in the mesh. For this reason, we are

interested in sparse approximate inverse (SPAI) preconditioners [35, 11, 22, 24, 23, 12]. First,

the columns of a SPAI preconditioner are independent and explicitly stored. Therefore, the

construction and the matrix-vector multiplications of a SPAI preconditioner are easy for

parallelization. Second, the weak data interdependencies allow us to limit the update of

a SPAI preconditioner locally to places where the mesh changes or the coefficients of the

system change drastically. However, the local support property of SPAI preconditioners

makes them ineffective to capture global modes. In many applications, we need a very large

sparsity pattern for SPAI to get a good convergence rate. Such a large sparsity pattern
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leads to higher computational cost for constructing and applying the preconditioner. This

problem can be remedied by multilevel techniques at a low cost. We propose a new method

of using multilevel techniques in SPAI. Exploiting the hierarchical structure of the adaptive

mesh, our method significantly improves the convergence rate of an iterative solver and yet

remains relatively cheap.

The remainder of this thesis is organized as follows. In Chapter 2, we give a brief

introduction to topology optimization. Then, we propose a new mesh adaptation strategy

for topology optimization that gives more robust and efficient solutions compared to the

strategies in the existing literature [67, 25]. In Chapter 3, we analyze the ill-conditioning

introduced by the wide range of element densities in topology optimization, and show that

a simple diagonal rescaling can largely cure this artificial ill-conditioning. In Chapter 4,

we discuss subspace recycling for Krylov subspace methods. In particular, we introduce

a variant of the MINRES method that includes subspace recycling for symmetric systems

arising in topology optimization. We also discuss the adaptation of our recycling MINRES

method for AMR. In Chapter 5, we introduce a new multilevel sparse approximate inverse

preconditioner for AMR. We first consider convection-diffusion problems, and then move

on to its application and adaptation to topology optimization problems. In Chapter 6, we

provide an overview of the major contributions in this thesis and suggest some future work.

Readers interested in Krylov subspace methods are referred to the book Iterative methods

for sparse linear systems by Yousef Saad [58], and the book Iterative Krylov Methods

for Large Linear Systems by Henk A. van der Vorst [72]. Readers interested in topology

optimization and its applications are referred to the book Topology Optimization: Theory,

Methods and Applications by Martin P. Bendsøe and Ole Sigmund [9], which covers a wide

range of topics and lists a large number of reference papers.
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Chapter 2

Topology Optimization with Adaptive
Mesh Refinement

In this chapter, we first introduce some background on topology optimization, including the

modeling and solution scheme. As the solution of a topology optimization problem evolves,

holes and solid regions appear. It is often efficient to use adaptive mesh refinement (AMR).

We discuss some related work in the literature and propose a more robust and efficient mesh

adaptation strategy.

2.1 Topology Optimization

Topology optimization is a relatively new branch of structural optimization. Unlike shape

and size optimization, topology optimization constructs a structure by material points,

similar to the process of constructing a picture from pixels. In the continuum setting,

the feasible design space includes all configurations (i.e., shape, size and connectivity) in

a given domain. Therefore, it is generally more powerful than traditional shape and size

optimization.

A desired result of topology optimization consists of either material points or void points.

However, it is mathematically difficult to work with integer (discrete) variables, so this

condition is typically relaxed. By allowing intermediate material density between 0 (void)

and 1 (solid), functions become continuous and differentiable. To steer the solution back

to discrete 0/1 values, we penalize intermediate densities by making them uneconomical in

terms of stiffness per volume.

At an early stage, the homogenization method [7] was used to derive the stiffness for
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intermediate densities based on certain configurations of microstructures. The solutions for

the problems discussed here, however, are not supposed to contain microstructures. Thus,

the stiffness for intermediate material densities based on the homogenization approach only

serves as a means of penalization. Later on, the Solid Isotropic Material with Penalization

(SIMP) approach was proposed [8] as a simpler way to interpolate the stiffness of intermediate

density. The SIMP material model was originally thought of as a fictitious material model,

but later on it was proved that there exist materials with the stiffness derived by the SIMP

model if the penalization parameter is greater than or equal to three.

In the following sections, we briefly review the mathematical definition of topology

optimization problems in the continuum and finite element discretization settings. In the

finite element setting, we discuss two approaches, namely the element-based approach and

the node-based approach with Continuous Approximation of Material Distribution (CAMD)

[46]. The CAMD approach is further extended to model functionally graded materials

(FGMs) with the so-called FGM-SIMP model [56].

2.1.1 Topology Optimization in Continuum Setting

In the continuum setting, the design variable we optimize is the material density field in a

specified design domain. In a desired solution, the material density at any point should be

either 0 or 1. For the relaxed problem, the material density can take intermediate values

between 0 and 1. The problem is posed as the minimization of an objective function, such

as the mean compliance, subject to a volume constraint. The compliance is a function of

the displacement, which is implicitly defined by the density-dependent equilibrium equation.

The problem statement for minimization of compliance subject to volume constraint is as

follows:
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Figure 2.1: Topology optimization problem configuration. Ω is the design domain; Ω0 is the
domain with fixed boundary conditions; f is a body force; t is a surface traction; p is a
point force.

min
ρ∈[0,1]

a(u, u) (2.1)

s.t.


u ∈ {w ∈ W 1

2 (Ω) | w = u0 on Ω0} ,

a (u, v) = l(v) ∀v ∈ {w ∈ W 1
2 (Ω) | w = 0 on Ω0} ,∫

Ω
ρdΩ ≤ V0,

where Ω is the whole domain in which we solve the design problem, Ω0 is the domain with

fixed boundary conditions, W 2
1 (Ω) is the Sobolev function space defined on domain Ω [3, p.

115], V0 is the volume constraint, and

a (u, v) =

∫
Ω

ε(v) · (C(ρ)ε(u))dΩ, (2.2)

l(u) =

∫
Ω

f · udΩ +

∫
Γt

t · udΓ + p · u. (2.3)

In mechanics, 1
2
a(u, u) is the internal strain energy, a(u, u) is the compliance of the

structure, and l(u) is the external energy from a body force f , a surface traction t, and

point forces p (see Figure 2.1).

An analytical solution in the continuum setting is generally not possible, and the finite
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element method is often used to discretize both the displacement field and material density

field. However, the interpolation for the displacements and densities can be independent

[54].

2.1.2 Finite Element Discretization

Element-based Approach

To solve the problem numerically, we discretize the problem using finite elements. We

use a lower order interpolation for the density field than for the displacement field. The

most common approach is to use (bi-,tri-)linear interpolation for the displacement field and

piecewise constant density throughout each element. The compliance minimization problem

after finite element discretization can be defined as

min
ρe∈[ρo ,1],∀e

fT u (2.4)

s.t.


K(ρ)u = f for x ∈ Ω \ Ω0,

u = u0 for x ∈ Ω0,∑
e ρeVe ≤ V0,

where the stiffness matrix K is a function of the density vector (discretized density field),

and Ve is the volume of element e. To avoid singularity of the stiffness matrix, we enforce a

small positive lower bound ρo on the element density, typically 10−3.

We use the SIMP method to make the undesirable intermediate densities between 0 (or

ρo) and 1 unfavorable. In this case, the elasticity tensor is defined as a function of the element

density

Ee = ρp
eE0, (2.5)

where p is the penalization parameter. With a parameter p > 1, an intermediate density

for an element is made unfavorable due to its relatively low contribution to the stiffness
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Figure 2.2: 3D beam design on a 3× 1× 1 domain with the element-based approach.

compared to its material cost. A common choice for p is three, which results in intermediate

material properties that satisfy the Hashin–Strikman bound for any real composite materials.

In Figure 2.2, we give the result of a 3D beam problem using the element-based approach.

Exploiting the symmetry in the z direction, we solve the problem on only half of the domain

with a 180×60×30 trilinear element (B8) mesh discretization, which leads to 324,000 design

variables and over 1 million degrees of freedom in the finite element simulation.

Node-based Approach

For smoother and more realistic results, we can model the design variable by representing the

material density at mesh nodes and interpolating the density inside each element. This node-

based approach is called Continuous Approximation of Material Distribution (CAMD) [46].

The mesh for discretization of the density field usually coincides with that for discretization
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of the displacement field. However, the two meshes are not necessarily the same [54]. Higher

order polynomial shape functions can be used to improve the accuracy of the displacement

field. However, only first order shape functions are used for the density field because higher

order shape functions may result in negative material density.

With this discretization, the compliance minimization problem is defined as

min
ρi∈[ρo ,1],∀i

fT u (2.6)

s.t.


K(ρ)u = f for x ∈ Ω \ Ω0,

u = u0 for x ∈ Ω0,∫
Ω

ρdV ≤ V0,

The elasticity tensor is still a function of the density field, but now it varies inside each

element.

E(x) = (ρ(x))pE0, (2.7)

ρ(x) =
∑

i

Ni(x)ρi. (2.8)

where ρi represents the density at node i. Therefore, we need numerical integration, such as

Gaussian quadrature, to compute the stiffness matrix and the volume cost.

We solve the same 3D beam problem as in Figure 2.2 with the CAMD approach. With a

coarser mesh 84× 28× 14, we achieve a design of similar resolution, as shown in Figure 2.3.

Functionally Graded Material Domain

If we design with functionally graded material, the material properties vary in space [52, 53].

In particular, the elasticity tensor is a variable with respect to the position as well as the

density [56, 30]:

E(x) = ρ(x)E0(x). (2.9)

12



Figure 2.3: 3D beam design with the CAMD approach.

For a simple exponentially graded material in 3D, the elasticity tensor using the FGM-SIMP

model is given by

E(x) = ρ(x)E0e
αx+βy+γz. (2.10)

To capture the gradient of FGM properties inside each element, we usually use the CAMD

approach. The parameters 1/α, 1/β and 1/γ denote the length scales of nonhomogeneity in

the x, y and z directions, respectively.

As an example, we solve a 3D cantilever beam problem for both homogeneous material

and functionally graded material. Both solutions are obtained using the CAMD approach on

a 210× 70× 70 B8 mesh without exploiting symmetry. The results are shown in Figure 2.4.

While the design for the homogeneous material shows symmetry in both y and z directions,

the design for the functionally graded material is symmetric only in the z direction and has

more material at the bottom of the domain where the material is softer.

2.2 Finite Element Solution Scheme

The general scheme for topology optimization is illustrated in Figure 2.5. First, we set up

the geometry, the finite element (FE) mesh, the loading and boundary conditions, and we
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Figure 2.4: A 3D cantilever beam on a 3 × 1 × 1 domain. (a) problem configuration; (b)
design result for homogeneous material; (c) design result for exponentially graded material
(the material is only graded in the y direction and is softer on the bottom than on the top).
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Figure 2.5: The general scheme of topology optimization.

initialize the density distribution ρ. Then, we start the optimization loop. In the loop,

we assemble and solve the equilibrium equations Ku = f in (2.4) and (2.6) using the

FE discretization and a linear solver. Next, in the sensitivity analysis, we compute the

derivatives of the objective function with respective to the design variables, e.g., ∂c/∂ρe for

(2.4) or ∂c/∂ρi for (2.6). Thereafter, we can apply an optional low-pass filter to remedy the

checkerboard problem [60, 61, 64], which can be also addressed by an alternative minimum

length scale approach [36]. In the next step, we compute an update of the design variable.

There are various optimization algorithms applicable to topology optimization. For instance,

Optimality Criteria (OC) is a simple approach based on a set of intuitive criteria [9, 7], while

the Method of Moving Asymptotes (MMA) is a mathematical programming algorithm that

is more robust and well-established [69]. After updating the design variables using a chosen

optimization algorithm, we check the convergence of the design.
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In general, the optimization takes many steps to converge. The computationally most

expensive part of this loop is the finite element analysis (FEA), which must be carried out

many times. In this thesis, we propose faster solvers and preconditioners for solving the

sequence of evolving linear systems arising from the FEA.

2.3 Adaptive Mesh Refinement for Topology

Optimization

In the field of topology optimization, problems are solved most commonly on fixed uniform

meshes with a large number of elements in order to achieve accurate design results. However,

as holes and solid regions appear in the design, it is more efficient to represent the holes with

fewer large elements and the solid regions, especially the material surface, with more fine

elements. Since the shape and position of the holes and solids initially unknown, the most

economical mesh representation for the design is unknown a priori. Therefore, adaptive

mesh refinement (AMR) is very suitable for topology optimization. The purpose of AMR

for topology optimization is to get the design that would be obtained on a uniformly fine

mesh, but at a much lower computational cost by reducing the total number of elements and

having fine elements only where necessary.

Limited amount of research has been conducted into applying AMR to topology

optimization [67, 25]. In [67], Stainko chooses to refine only the elements at the interface

between solid and void. In [25], Costa and Alves choose to refine the void elements on the

solid/void interface and all the material elements. However, their approaches share some

similarities. First, both approaches use only refinement, but no derefinement. Second, both

approaches solve the design problems on a fixed mesh until convergence before carrying out

mesh refinement. When the mesh is refined to the specified finest level, it is unchanged

for the remainder of the optimization. This works well in terms of refining the design.

However, for some design problems, a converged solution on a coarser mesh may not be the
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optimal solution on a finer mesh. Mesh refinement based only on the coarser level solution

may erroneously confine the solution on the finest mesh to a smooth version of the coarse

level solution. Therefore, the approaches proposed in [67, 25] sometimes lead to suboptimal

designs, and thus a more robust refinement strategy is required. Furthermore, for designs

with thin structures, the starting coarsest mesh must be fine enough to give a reasonable

result. In many cases, derefinement would save more computational effort when holes appear.

Here, we propose a more economical and more robust mesh adaptation scheme for topology

optimization.

2.3.1 Mesh Adaptation for Topology Optimization

We represent the adaptive mesh in a hierarchical fashion. Following the refinement of an

element, the new finer elements are stored as the children of the original element in a tree

structure. This makes mesh refinement easier and derefinement possible. We only need to

add and remove tree nodes for refinement and derefinement, respectively.

The convergence criterion for topology optimization is often that the maximum change in

the design variables for the last optimization step is smaller than a certain tolerance, which

we usually set as 0.01. We adapt the mesh when the following conditions are satisfied:

1. the relative change in the compliance is smaller than a threshold;

2. a given number of optimization steps have occurred since the last mesh (de)refinement.

The first condition is satisfied when the solution is almost trapped in a local minimum, which

may be caused by the undesirable mesh. Then, we adapt the mesh to allow the design to

change further. The second condition is to avoid mesh (de)refinement from happening too

frequently and limits the cost of mesh adaptation. The mesh is refined once at least every

ten optimization steps. Using these conditions, we can start with a fairly coarse mesh, and

we may carry out mesh (de)refinement before the design converges on any mesh if necessary.

17



To avoid confinement of the design solution by the mesh, in addition to multiple mesh

(de)refinements on the same level, we also construct a layer of fine elements outside the

material surface in order to provide some freedom for the material to be redistributed locally.

We adapt our mesh according to the following procedure.

1. Mark all the elements for refinement or derefinement based on the following criteria:

• If element e is solid, i.e., ρe ∈ [ρs, 1] with a chosen density threshold ρs, we mark

it for refinement.

• If element e is void, i.e., ρe ∈ [ρo , ρs], but there are solid elements within a given

distance ramr, we mark element e for refinement; otherwise, we mark element e for

derefinement (see Figure 2.6).

2. Check the mesh compatibility and make the following adjustments through two sweeps

of all elements:

• In the first sweep, we unmark the elements that are marked for derefinement, if

they have sibling element not marked for derefinement.

• In the second sweep, we adjust the mark where level two or higher edge

incompatibility happens, and allow only level one incompatibility, see Figure 2.7

and refer to Section 2.3.2.

The above refinement criteria result in a layer of fine elements on the void side of the

solid/void interface, which allows the material to be redistributed locally. If a material

boundary has moved to the fine/coarse element interface, another mesh (de)refinement

process takes place and makes another layer of fine elements around the current material

surface to allow further local redistribution of the material. Where the material have been

removed, some of the fine elements are derefined in order to keep the optimization efficient.
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Figure 2.6: Refinement criteria for void element. Element a is marked for refinement for it
has solid elements within distance ramr; element b is marked for derefinement.
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Figure 2.7: Mesh incompatibility with examples of quad, triangle and hex elements. (a)
level one edge incompatibility marked by red edges and circled nodes; (b) level two
edge incompatibility marked by red edges and circled nodes. We allow level one edge
incompatibility (see Section 2.3.2), but we avoid level two or higher incompatibility by
refining the gray coarse elements, or not derefining their children elements if these gray
elements result from a potential derefinement.
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2.3.2 Implementation with libMesh

For the implementation of adaptive mesh refinement, we use the libMesh library [41]

developed at the University of Texas at Austin and the Technische Universität Hamburg-

Harburg. The libMesh library consists of a C++ framework for numerical simulations of

partial differential equations on serial and parallel platforms. It supports 1D, 2D and 3D

finite element and finite volume simulations on adaptive meshes. It uses PETSc [5, 4] for the

solution of linear systems on both serial and parallel platforms.

We have developed 2D and 3D topology optimization algorithms on top of libMesh.

Currently, we use element-based design variables, the SIMP method for material interpola-

tion [8], the OC method for optimization [9, 7], and Sigmund’s filter technique [60, 61, 64].

There is a small modification we make in Sigmund’s filter for a nonuniform mesh. The filter

takes a distance and density weighted average on the sensitivities of all elements in a certain

radius as

∂̂c

∂ρe

=
1

ρe

∑
d Hde

∑
d

ρdHde
∂c

∂ρd

, (2.11)

where ∂c/∂ρe is the sensitivity of the compliance with respect to the density of element e,

and Hde is a distance weight defined as

Hde = max{rmin − dist(d, e), 0}. (2.12)

The parameter rmin is a given radius for the filter, and dist(d, e) is the distance between the

centers of elements d and e. For a nonuniform mesh, we consider different element sizes by

adding element volume as part of the weight in the filter [67] as

∂̂c

∂ρe

=
1

ρe

∑
d HdeVd

∑
d

ρdHdeVd
∂c

∂ρd

. (2.13)

The filter radius rmin is often a physical size independent on the mesh representation. Notice

that the filter will be effectively deactivated if its size is smaller than that of the smallest
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element, i.e., no element has any neighbors within distance rmin. This plays a role in the

mesh refinement strategy because we have to start with a relatively fine mesh for the filter

to work properly.

Due to the hierarchical data structure of libMesh, we cannot avoid mesh incompatibility

completely. However, we do avoid level two or higher edge incompatibility, see Figure 2.7.

The remaining level one mesh incompatibility results in hanging nodes, e.g., the circled

nodes in Figure 2.7. We handle those by enforcing constraints in our stiffness matrix. We

can divide the degrees of freedom (DOFs) into two groups. Group one consists of all the

unconstrained DOFs, and group two consists of the constrained DOFs on the hanging nodes.

The constrained DOFs can be computed by linear interpolation from unconstrained DOFs.

If we define vector ũ on the unconstrained DOFs, then

u =

 ũ

P ũ

 =

 I 0

P 0


ũ

0

 (2.14)

is the mapping of ũ on all the DOFs, where P is the interpolation matrix. We solve the

original linear system Ku = f on all the DOFs by solving a constrained system

 I P T

0 0

K

 I 0

P 0

 û =

 I P T

0 0

f . (2.15)

Since libMesh does not drop the constrained DOFs in the linear system, the constrained

system in (2.15) is singular when there is any hanging node. This singularity is fine for

Krylov subspace methods as long as the right hand side is consistent, but it may cause

problems for preconditioners. To avoid this singularity, we set the diagonal entries of the
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system that correspond to the constrained DOFs as 1 and solve


 I P T

0 0

K

 I 0

P 0

 +

 0 0

0 I


 û =

 I P T

0 0

f . (2.16)

In the end, we recover the constrained DOFs by applying the interpolation matrix as

u =

 I 0

P 0

 û. (2.17)

2.3.3 Results and Discussion

In order to demonstrate the improvement our new AMR scheme makes, we solve a design

problem on both a fixed uniform mesh and an adaptive mesh, and with both our AMR

scheme and the approaches in [67, 25].

One approach to measuring the difference between two designs is to take the 1-norm

of the difference between the two density vectors, if they are defined on the same uniform

mesh. If the two designs are represented on two different meshes, uniform or not, it is more

appropriate to measure their relative difference with

D(ρ(1), ρ(2)) =

∫
Ω
|ρ(1) − ρ(2)|dΩ∫

Ω
ρ(1)dΩ

. (2.18)

This can be done by refining the meshes for both designs to a same fine mesh, and then

evaluating the 1-norm of the difference between the designs.

As our first experiment, we solve the 2D beam problem shown in Figure 2.8(a) on a

uniformly fine mesh. Figure 2.8(b) shows an intermediate result, and Figure 2.8(c) the

converged design. The truss at the lower-right corner has risen up noticeably from the

intermediate result to the final one.

Next, we solve the same problem following the strategy mentioned in [67, 25]. We start
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with a relatively coarse mesh (64×32), and obtain the converge optimization solution shown

in Figure 2.9(a). Then, we refine the mesh according to this coarse level result and get the

refined mesh shown in Figure 2.9(b). Next, we solve the optimization problem on this locally

refined mesh until convergence, and then refine the mesh and solve again. Finally, we obtain

the result on the finest mesh shown in Figure 2.9(c). The same truss at the lower-right corner

has been stuck at the finest elements, making this solution different than the solution we

obtain on the uniformly fine mesh. This confinement is artificially imposed by the undesired

mesh obtained based only on the coarse level solution. Moreover, we have to start with a

relatively fine mesh, such as the one in Figure 2.9(a), because a coarser initial mesh would

lead to an unreasonable solution due to the deactivation of the filter. In this case, mesh

adaptation with only refinement and no derefinement leaves fairly fine elements at the void

regions on the final mesh, which could otherwise be derefined for further improvement on

efficiency.

Now, we solve the same problem, starting with the same coarse mesh as shown in

Figure 2.9(a), but following the strategy proposed in Section 2.3.1. We allow multiple

mesh adaptations on any level and a layer of fine elements on the void side of the solid/void

interface. This leads to the final result shown in Figure 2.10(c), with two intermediate

results shown in Figures 2.10(a) and (b). The mesh changes from the intermediate results

to the final one when the material distribution changes. The element size on the finest

parts of the meshes in Figure 2.10 is the same as that of the uniform mesh shown in Figure

2.8. Compared to the solution shown in Figure 2.9, the solution obtained with our mesh

adaptation strategy is much closer to the solution obtained on the uniform mesh. Under the

measurement given in (2.18), the relative difference between the designs in Figure 2.9(c) and

Figure 2.8(b) is 0.196, while the relative difference between the designs in Figure 2.10(c) and

Figure 2.8(b) is only 1.68×10−3. Furthermore, with derefinement, we have coarser elements

at the void regions compared to the final mesh shown in Figure 2.9(c).

The next problem is a three-dimensional cantilever beam as shown in Figure 2.11 with the
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Figure 2.8: Topology optimization on a 256× 128 uniform mesh. (a) problem configuration
(volume constraint V0 is 50% of the domain volume); (b) an intermediate result; (c) final
converged result.
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Figure 2.9: Topology optimization on an adaptive mesh with single mesh refinement on each
level. (a) converged result on the coarsest mesh with 2048 elements; (b) converged result
on the intermediate mesh with 5675 elements; (c) converged result on the final mesh with
20216 elements.
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Figure 2.10: Topology optimization on an adaptive mesh with multiple dynamic mesh
refinement and derefinement on each level. (a)–(b) intermediate results; (c) final converged
result on a nonuniform mesh with 23099 elements, whose finest resolution is the same as the
uniform mesh in Figure 2.8.
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Figure 2.11: 3D cantilever beam example with domain scale 2:1:1.

volume constraint as 25%. Exploiting the symmetry, we use only a quarter of the domain.

We solve it on a fixed uniform mesh with 128 × 32 × 32 B8 elements, and on an adaptive

mesh starting with 64× 16× 16 B8 elements and following our (de)refinement strategy. The

final results are shown in Figure 2.12. The relative difference between these two designs

is only 9.09 × 10−4. We use the RMINRES solver proposed in Chapter 4 to solve the FE

systems. The system on the adaptive mesh is less than half the size of the one on the fixed

uniform mesh, and is even smaller at the start of the optimization process. The number

of RMINRES iterations for the adaptive mesh is slightly smaller than for the fixed uniform

mesh, because the FE systems on the adaptive mesh are less ill-conditioned. Therefore, the

adaptive mesh reduces the solving time significantly (see Figure 2.13).

Now, we present a more complex 3D example shown in Figure 2.14. In a cross-shaped

domain, we want to find the optimal design subject to the fixed boundary on the front

and back ends at the bottom and two loads on the left and right side at the bottom. The

maximum volume allowed is 20% of the domain volume. We solve this problem both on a

uniform mesh and on an adaptive mesh. The results are shown in Figures 2.15 and 2.16,

respectively. The uniform mesh consists of 40960 B8 elements, while the final adaptive mesh

consists of only 19736 B8 elements. Moreover, the optimization requires over 200 steps to

converge on the uniform mesh, but only 106 steps on the adaptive mesh. The adaptive

mesh refinement saves about 70% computational time in total. Nonetheless, the relative L1

difference between the two design is 0.0258.
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(a)

(b)

Figure 2.12: Final solutions of the 3D cantilever problem in Figure 2.11 obtained on only
quarter of the domain indicated by the mesh. (a) final solution on a fixed uniform mesh
with 128 × 32 × 32 elements; (c) final solution on an adaptive mesh with 57173 elements,
whose finest resolution is the same as that of the fixed uniform mesh.
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Figure 2.13: Comparison between the solutions on the fixed uniform mesh and the adaptive
mesh. (a) number of unknowns in the FE systems; (b) number of RMINRES(200,10)
iterations (see Chapter 4) for each step of topology optimization; (c) solving time of the
FE systems with RMINRES(200,10).
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Figure 2.14: A 3D compliance minimization problem in a cross-shaped domain with the
front and back ends at the bottom fixed and the left and right ends at the bottom pulled
down. The volume constraint V0 is 20% of the domain volume.
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Figure 2.15: The optimization solution of the problem shown in Figure 2.14 on a finite
element mesh with 40960 B8 elements of uniform size.
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Figure 2.16: The optimization solution of the problem shown in Figure 2.14 on an adaptively
refined mesh. The final mesh consists of 19736 B8 elements.
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Chapter 3

Preconditioning for Topology
Optimization

Most topology optimization applications, structural designs in particular, require finding the

solutions of symmetric linear systems. The convergence rates of Krylov subspace methods

for a symmetric matrix depend only on the spectrum of the matrix. In fact, the ratio

between the absolute largest and smallest eigenvalue governs a worst-case upper bound on

the convergence rate. In large-scale finite element simulations in physics and engineering,

the linear systems tend to be ill-conditioned. In topology optimization, this problem is

exacerbated by the wide range of magnitudes of the element densities.

Ill-conditioning creates two problems for numerical simulation. First, ill-conditioning may

seriously affect the accuracy of the computed solution. Second, the convergence of iterative

methods is poor for ill-conditioned problems. The second problem is generally addressed

by proper preconditioning. In principle, preconditioning does not alleviate the potential

accuracy problem, because a preconditioner that is effective for an ill-conditioned matrix

must be fairly ill-conditioned itself. This leads to two multiplications by ill-conditioned

matrices in each iteration (or three for two-sided preconditioning), which may, in turn, lead

to serious accumulation of numerical errors. In certain cases, however, the accuracy problem

can be relieved by properly rescaling the linear system. We show that this is the case for

topology optimization. This leads to a preprocessing (rescaling) step and a preconditioning

step (or two preconditioning steps, depending on one’s point of view).

In Section 3.1, we discuss the preprocessing and preconditioning for topology optimiza-

tion. The preconditioning for adaptive mesh refinement is further discussed in Chapter 5.

In Section 3.2, we illustrate the idea of rescaling from a mechanical point of view for a 1D
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problem. Borrvall and Petersson [17] suggest, without further discussion, that the condition

number of the stiffness matrix can be as large as the ratio of maximum to minimum density.

We show that this ratio provides only a lower bound on the condition number and that the

actual condition number typically is much larger. The actual conditioning is a combination

of this ratio and the conditioning of a corresponding problem with homogeneous density.

3.1 Scaling Issue in Topology Optimization

The following analysis addresses the ill-conditioning in the stiffness matrices. The two-norm

condition number of a matrix K can be defined as

κ(K) =
max‖u‖=1 ‖Ku‖
min‖u‖=1 ‖Ku‖

. (3.1)

Since

min
‖u‖=1

‖Ku‖ ≤ ‖Ke`‖ = ‖k`‖ ≤ max
‖u‖=1

‖Ku‖, for any ` = 1, . . . , n, (3.2)

where k` is the `th column of K and e` is the Cartesian basis vector with the `th coefficient

equal to 1, we have

κ(K) ≥ ‖k`1‖
‖k`2‖

, for any `1, `2 = 1, . . . , n. (3.3)

In a compliance minimization problem with the element-based approach discussed in

Section 2.1.2, a column of the global stiffness matrix is given by

k` =
∑
e∈N`

ρp
eL

T
e K0Lee`, (3.4)

where K0 is the unit element stiffness matrix, Le is the local-to-global transformation matrix,
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Figure 3.1: N`: the set of elements associated with the `th d.o.f. indicated by the circle in
the middle.

and N` is the set of elements that are associated with the `th DOF. These usually form a

2×2×2 block in the 3D mesh (see Figure 3.1). If the blocks associated with d.o.f. `1 and `2

are solid and void respectively, namely ρe = 1 for e ∈ N`1 and ρe = ρo for e ∈ N`2 , we have

k`1 =
∑
e∈N`

LT
e K0Lee`1 , (3.5)

k`2 = ρp
o

∑
e∈N`

LT
e K0Lee`2 . (3.6)

Then, assuming that the elements are uniform and isotropic, we have

κ(K) ≥ ‖k`1‖
‖k`2‖

=
1

ρp
o

. (3.7)

For ρo = 10−3 and p = 3, which are commonly used in topology optimization, the condition

number of the stiffness matrix will be greater than 109 when solid and void areas begin to

appear in the design domain. This bound holds for node-base methods as well, if we have

2× 2× 2 blocks with all solid nodes and all void nodes.

Note that this analysis provides only a lower bound on the condition number, and that

structures from homogeneous material can also have large condition numbers. However,

the analysis suggests that, to a significant degree, the ill-conditioning comes from the poor
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scaling of the material densities over the design domain. We can understand this intuitively

as follows. A change in an algebraic degree of freedom, say the Cartesian basis vector ej,

associated with a nodal basis function in a region with very small density corresponds to a

displacement that requires a very small amount of energy (eT
j K(ρ)ej small). However, that

same change in an algebraic degree of freedom, ei, associated with a nodal basis function

in a region with large density corresponds to a displacement of the same magnitude that

requires a large amount of energy (eT
i K(ρ)ei large). Since for symmetric K

κ(K(ρ)) ≥ eT
i K(ρ)ei

eT
j K(ρ)ej

, (3.8)

this shows that the system is inherently ill-conditioned. Therefore, we expect that we can

reduce the ill-conditioning due to the large variation in density by scaling the linear system

such that changes of equal magnitude in algebraic degrees of freedom yield equal changes

in energy (eT
i K(ρ)ei = eT

j K(ρ)ej for all i and j). Since this is the case for a problem

with homogeneous density, we expect that this scaling reduces the condition number of the

stiffness matrix to roughly that for a similar problem with homogeneous density. Indeed, in

general we obtain a condition number that is slightly better than that for a problem with

constant density. Alternatively, in light of (3.7), we may want to scale the linear system such

that all columns have equal norms. In the next section, we discuss the effects of rescaling

for a simple 1D problem with heterogeneous density.

We propose to rescale the stiffness matrices K by multiplying with a diagonal matrix on

both sides (for symmetry),

K̃ = D−1/2KD−1/2, (3.9)

where the entries of the diagonal matrix D are either the diagonal coefficients of K or the

absolute column sums of K, i.e., di = ‖ki‖1.

To obtain rapid convergence for iterative methods, it is important to further reduce the

condition number after rescaling by more general preconditioning techniques. For example,
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we can apply an incomplete Cholesky decomposition [47] to the rescaled stiffness matrix:

K̃ = D−1/2KD−1/2 ≈ LLT . (3.10)

We solve the preconditioned system

L−1K̃L−T ũ = f̃ (3.11)

for ũ, where f̃ = L−1D−1/2f . Then, we compute

u = D−1/2L−T ũ (3.12)

to obtain the solution of the original system Ku = f .

We note that diagonal scaling does not decrease the relative accuracy of the matrix

coefficients, and hence such scaling leads to a real improvement in the worst case numerical

error in the computed solution. The second type of preconditioning, e.g., the incomplete

Cholesky decomposition, improves the rate of convergence, but does not typically affect the

accuracy of the computed solutions. Since this type of preconditioners may fail or become

very poor for a very ill-conditioned matrix, we always explicitly rescale the stiffness matrix

before computing the more general preconditioner.

We examine the conditioning of the linear systems arising in the topology optimization

problem shown in Figure 2.2 on a 18× 6× 3 mesh. Figure 3.2 shows the condition numbers

of four matrices at each optimization step, namely the original stiffness matrix, the rescaled

matrix, the original matrix preconditioned by incomplete Cholesky, the rescaled matrix

preconditioned by incomplete Cholesky. The condition numbers of the original stiffness

matrices quickly rise to about 1011 after only a few optimization steps. However, the

condition numbers of the rescaled matrices remain at about the same level as those at the

beginning (approximately 105). We note that incomplete Cholesky takes care of the poor
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Figure 3.2: Condition numbers of the unpreconditioned and preconditioned systems with
and without rescaling for the model problem in Figure 2.2 on a 18 × 6 × 3 mesh with the
node-based approach.

scaling to some degree. However, as we mentioned above, it will not improve the accuracy

of the solution. And computing the incomplete Cholesky factor after rescaling does improve

the conditioning over the incomplete Cholesky preconditioned system without rescaling.

3.2 1D Rescaling Analysis

In this section, we use an idealized 1D elasticity problem with piecewise constant modulus

of elasticity to explain the idea of rescaling. Consider the following problem.

0 1 i− 1 i i + 1 n− 1 n

E1 Ei Ei+ 1 En

Figure 3.3: Piecewise constant modulus of elasticity Ei.

Find u(x) with boundary conditions u(0) = 0 and u(1) = 1, such that

a(u, v) ≡
∫ 1

0

E(x)uxvxdx = 0, with E(x) ≥ E0 > 0, (3.13)
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for all v with v(0) = v(1) = 0. Furthermore, following the typical case of topology

optimization, we assume that E is piecewise constant (see Figure 3.3) and varies over a

large range of values.

For simplicity, we discretize the problem using piecewise linear nodal basis functions and

a mesh with uniform elements. This yields the following linear system:



E1 + E2 −E2

−E2 E2 + E3 −E3

. . . . . . . . .

−En−1 En−1 + En





u1

u2

...

un−1


=



0

0

...

En


. (3.14)

We can write this system of equations as follows (note (Eux)x = 0⇔ Eux = constant):

Ei(ui − ui−1)− Ei+1(ui+1 − ui) = 0, for i = 1, . . . , n− 1,

where we have used u0 = 0 and un = 1. Introducing the difference matrix

D1 =



1

−1 1

. . . . . .

−1 1


and the diagonal matrix Ω = diag(E1, E2, . . . , En−1), we can write (3.14) as

(
DT

1 ΩD1 + Enen−1e
T
n−1

)
u = Enen−1. (3.15)

For a problem with constant modulus of elasticity, E, this equation gives

E
(
DT

1 D1 + en−1e
T
n−1

)
u = Een−1, (3.16)
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where DT
1 D1 + en−1e

T
n−1 is the well-known tridiagonal matrix with coefficients [−1 2 −1].

Next, we want to demonstrate two things. The comparison of (3.15) with (3.16) shows

that the extreme ill-conditioning in (3.15) must arise from the scaling introduced by Ω. First,

we demonstrate that this leads to a condition number (bound) that is roughly the product

of the condition number of the constant elasticity problem and the condition number of Ω.

Second, we show that following a proper rescaling the condition number is commensurate

with the condition number for the constant elasticity case, if the solution is properly defined.

We note that for general choices of Ω there may be no diagonal scaling that reduces the

condition number. In 1D, for example, if we have two non-adjacent ‘holes’, the displacement

for material in between the holes is not properly defined (as the modulus of elasticity

goes to zero), since there is no connection to any point with a fixed displacement. In

higher dimensions this is rarely a problem, as the topology optimization algorithm leads to

energetically favorable solutions lacking such anomalies.

Below, we need the following well-known result for symmetric positive definite matrices

A, B ∈ Rn×n and α, β ∈ R+ [3, pp. 338-9]. Let A and B be such that for all u 6= 0

α ≤ uT Au

uT Bu
≤ β. (3.17)

Then

κ(B−1/2AB−1/2) ≤ β

α
, (3.18)

where κ denotes the condition number.

Using (3.17–3.18), we can bound the condition number of the matrix in (3.15) as follows:

κ(DT
1 ΩD1 + Enen−1e

T
n−1) =

max‖u‖=1 uT (DT
1 ΩD1 + Enen−1e

T
n−1)u

min‖u‖=1 uT (DT
1 ΩD1 + Enen−1eT

n−1)u
. (3.19)
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Let y = D1u and hence u = D−1
1 y. Then

uT DT
1 ΩD1u + Enu

T en−1e
T
n−1u = (D1u)TΩ(D1u) + Enu

2
n−1

=
yTΩy + En(y1 + . . . + yn−1)

2

(D−1
1 y)T (D−1

1 y)
. (3.20)

Let Emin = mini(Ei), Emax = maxi(Ei), and let λmin be the smallest eigenvalue of the matrix

D1D
T
1 and λmax its largest eigenvalue. Furthermore, note that D1D

T
1 and DT

1 D1 have the

same eigenvalues. Since y appears quadratically in both the numerator and the denominator,

we can assume y to be normalized. Then, (3.20) gives

Eminλmin ≤
yTΩy + En(y1 + . . . + yn−1)

2

(D−1
1 y)T (D−1

1 y)
≤ nEmaxλmax, (3.21)

which finally leads to

κ(DT
1 ΩD1 + Enen−1e

T
n−1) ≤ n

Emax

Emin

λmax

λmin

= nκ(Ω)κ(DT
1 D1). (3.22)

Next, we show that scaling a problem (without non-adjacent ‘holes’) reduces the condition

number of the linear system to roughly that of a problem with constant elasticity. Let

S = diag(E1 + E2, E2 + E3, . . . , En−1 + En). (3.23)

We have

uT (DT
1 ΩD1 + Enen−1e

T
n−1)u

uT Su
=

E1u
2
1 + E2(u1 − u2)

2 + . . . + En−1(un−2 − un−1)
2 + Enu

2
n−1

E1u2
1 + E2(u2

1 + u2
2) + . . . + En−1(u2

n−2 + u2
n−1) + Enu2

n−1

=

(E1 + E2)u
2
1 + . . . + (En−1 + En)u2

n−1 − 2(E2u1u2 + . . . + En−1un−2un−1)

(E1 + E2)u2
1 + . . . + (En−1 + En)u2

n−1

=

1− 2(E2u1u2 + . . . + En−1un−2un−1)

(E1 + E2)u2
1 + . . . + (En−1 + En)u2

n−1

=
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1− 2(E2u1u2 + . . . + En−1un−2un−1)

E1u2
1 + E2(u2

1 + u2
2) + . . . + En−1(u2

n−2 + u2
n−1) + Enu2

n−1

. (3.24)

It is easy to see that the maximum of (3.24) is bounded by two. The condition number

therefore depends primarily on the minimum of (3.24). We consider three examples.

The first example examines the case of constant modulus of elasticity. The second

example demonstrates that the case of a bar with variable modulus (solid bar with a ‘hole’)

leads to approximately the same condition number after scaling as the case of a bar with

constant modulus (homogeneous). The third example shows that for the hypothetical case

of a 1D bar with two non-adjacent ‘holes’, scaling cannot remove the actual singularity.

Example 1 – Constant Modulus

For a constant modulus of elasticity, (3.24) leads to

uT (EDT
1 D1 + Een−1e

T
n−1)u

uT Su

= 1− 2u1u2 + . . . + 2un−2un−1

u2
1 + (u2

1 + u2
2) + . . . + (u2

n−2 + u2
n−1) + u2

n−1

. (3.25)

The minimum for (3.25) is obtained for ui = sin(πih), which gives ui−1ui ≈ u2
i and minimizes

the influence of the terms Eu2
1 and Eu2

n−1. This leads to a condition number for the

preconditioned system of O(h−2).

Example 2 – Variable Modulus

Now consider a problem with a ‘hole’ at the end of the bar; Ei = 1 for i = 1, . . . , n − 5,

where n � 5, and Ei = ε, 0 < ε � 1 for the remaining elements. The minimum for (3.24)

is obtained for a vector u such that |ui| = O(1) for i = 1, . . . , n− 5 and |ui| = O(ε) for the

remaining elements. After substituting for the Ei in (3.24) and dropping the ui terms that
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are O(ε), we need to minimize the following expression:

1− 2u1u2 + . . . + 2un−6un−5

u2
1 + (u2

1 + u2
2) + . . . + (u2

n−6 + u2
n−5) + εu2

n−5

. (3.26)

Comparing (3.26) to (3.25), we see that this minimization problem is essentially the same as

the constant modulus example (with a few terms of small magnitude dropped). Therefore,

the resulting condition number is about the same.

Example 3: Hypothetical Case

Finally, consider a hypothetical problem of a 1D bar with two non-adjacent ‘holes’. Let

n = 5, and let E1 = E3 = E5 = 1 and E2 = E4 = ε. Now taking u1 = u4 = 0 and

u2 = u3 = 1 in (3.24) gives

min
u6=0

uT (DT
1 ΩD1 + Enen−1e

T
n−1)u

uT Su
≤

1− 2E3u2u3

E2u2
2 + E3(u2

2 + u2
3) + E4u2

3

=

1− 2

ε + 2 + ε
=

ε

1 + ε
. (3.27)

(3.27) can be made arbitrarily small, and the condition number κ(DT
1 ΩD1 + Enen−1e

T
n−1)

can be made arbitrarily large.
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Chapter 4

Recycling Krylov Subspace Methods

In topology optimization and many other numerical algorithms, e.g., Newton’s method for

nonlinear problems, we need to solve a sequence of linear systems that evolve slowly from

one to the next. With Krylov subspace methods, we can collect a subspace of the Krylov

subspace as we iterate and use it to accelerate the solution of the next system [51, 39]. This

is the idea behind Krylov subspace recycling.

In most topology optimization problems the system matrices are symmetric. In most

cases, they are also positive definite. However, in some applications, e.g., topology design

with dynamic vibrations, they can be indefinite [63]. So, the minimum residual method

(MINRES) is the most suitable iterative solver for topology optimization. It keeps a short-

term recurrence by exploiting the symmetry, and therefore is very efficient. On the other

hand, recycling methods for general matrices, like GCRODR [51], are less efficient for

symmetric systems because of their long Arnoldi recurrence. We adapt the MINRES method

to include recycling and to keep the short-term recurrence, and we make the selection of

recycle space much cheaper by further exploiting symmetry in the underlying generalized

eigenvalue problem.

In this chapter, we first introduce the motivation of Krylov subspace recycling in Section

4.1. In Section 4.2, we discuss GCRODR, the recycling method for general systems [51]. We

address two issues for Krylov subspace recycling, namely which subspace to recycle and how

to use the recycle space in solving the next system. In Section 4.3, we adapt the recycling

idea to the MINRES method for symmetric systems. We refer to our recycling MINRES

method as RMINRES. The key issue is to select the desired subspace for recycling while
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maintaining the efficiency of MINRES. We also discuss the choice of subspace from where

the recycle space is selected and the simplification of subspace selection formulae. Both of

them make the recycle space selection much cheaper. In Section 4.5, we present numerical

results of the recycling MINRES method for topology optimization problems, and we discuss

the impact on performance that the RMINRES parameters have. In Section 4.6, we discuss

Krylov subspace recycling for adaptive meshes.

4.1 Motivation of Recycling

Consider a general linear system Ax = b and an initial guess x0. The Generalized

Minimum Residual method (GMRES) [59] builds the Krylov subspace, Km(A, r0) =

span{r0, Ar0, A
2r0, · · · , Am−1r0}, where r0 = b−Ax0, and computes the optimal solution

over that subspace. We use the Arnoldi recurrence [2, 58] to obtain an orthonormal basis of

the Krylov subspace, see Algorithm 4.1.

Algorithm 4.1: Arnoldi Recurrence

v1 ← r0/‖r0‖ ;1

for i ≥ 1 do2

vi+1 ← Avi ;3

for k = 1, · · · , i do4

hk,i ← vT
i vi+1 ;5

vi+1 ← vi+1 − hk,ivk ;6

end7

hi,i+1 ← ‖vi+1‖ ;8

vi+1 ← vi+1/hi,i+1 ;9

end10

This can be written in matrix form as

AVm = Vm+1Hm, (4.1)

where the columns of Vm are v1, · · · , vm; the columns of Vm+1 are v1, · · · , vm+1; and Hm is
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an (m + 1)×m upper Hessenberg matrix with coefficients {hij}. At step m, GMRES finds

the solution

xm = x0 + εm (4.2)

in the affine subspace x0 +Km(A, r0) such that it minimizes the residual norm.

Since all vectors in x0 + Km(A, r0) can be written as x0 + qm(A)r0, where qm ∈ Pm−1

and Pm−1 is the set of polynomials of degree m− 1, the residual norm of GMRES at step m

would be

‖rm‖ = ‖b−Axm‖ = min
qm∈Pm−1

‖(I −Aqm(A))r0‖

= min
pm∈P(0)

m

‖pm(A)r0‖, (4.3)

where P(0)
m = {pm ∈ Pm|pm(0) = 1}.

If A is diagonalizable, we have A = XΛX−1, where Λ is a diagonal matrix whose

coefficients are the eigenvalues of A. Following (4.3), we have

‖rm‖ = min
pm∈P(0)

m

‖Xpm(Λ)X−1r0‖

≤ min
pm∈P(0)

m

‖X‖‖X−1‖‖pm(Λ)‖‖r‖

(4.4)

Therefore, the convergence rate of GMRES or other Krylov methods that minimize 2-norm

of the residual is bounded by [58, p. 195]

‖rm‖
‖r0‖

≤ cond(X) min
pm∈P(0)

m

max
λ∈Λ(A)

|pm(λ)|, (4.5)

where Λ(A) is the set of eigenvalues of A. If X is not too ill-conditioned, which is true

for most problems addressed in this thesis, this bound mainly depends on the spectrum of

the matrix. For symmetric A, the similarity transformation matrix X is orthogonal, which
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means cond(X) = 1. In this case, the convergence rate solely depends on the spectrum of

A. If we could consider only an appropriate subset of Λ(A), then

min
pm∈P(0)

m

max
λ∈Λ(A)/S

|pm(λ)| (4.6)

could be significantly smaller than the bound in (4.5). In that case, the rate of

convergence would be greatly improved. This can be achieved by including the corresponding

(approximate) invariant subspace in the search space.

Given the normalization condition, pm(0) = 1, it is often effective to remove the

eigenvalues close to the origin. Depending on the problem, sometimes it is helpful to remove

outermost eigenvalues. For example, if there are only a few outermost eigenvalues separated

from the rest. For symmetric indefinite systems with only a few negative eigenvalues, it

would be extremely useful to remove the negative eigenvalues.

When solving a sequence of linear systems that change slowly from one to the next, we

often expect that the eigenvectors and eigenvalues of two consecutive systems are similar.

Therefore, an invariant subspace of one system approximates that of the next one, and

thus can be included into the search space of the next system to remove the corresponding

eigenvalues. This is the key of recycling approximate invariant subspaces. In general, this

assumption holds for systems resulting from PDEs. Especially when we consider the smallest

eigenvalues, the corresponding invariant subspace consists mostly of the smoothest modes,

which change least when the system changes smoothly.

4.2 Krylov Subspace Recycling

Now, we introduce the Krylov subspace recycling method for general systems [51]. We

address two issues, namely how to obtain an appropriate invariant subspace for recycling

and how to use such subspace in solving the next system.
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For any subspace S ⊆ Rn, we define y ∈ S as a Ritz vector of A with Ritz value θ with

respect to S [68, p. 282] if

Ay − θy ⊥ w, ∀w ∈ S. (4.7)

We also define ỹ ∈ S as a harmonic Ritz vector of A with harmonic Ritz value θ̃ with respect

to S [68, p. 292] if

Aỹ − θ̃ỹ ⊥ Aw, ∀w ∈ S. (4.8)

Let the columns of matrix W form an orthonormal basis for subspace S. We represent

y and ỹ on this basis, y = Wz and ỹ = Wz̃. Then, (4.7) and (4.8) lead to the following

generalized eigenvalue problems respectively:

W T AWz = θW T Wz = θz, (4.9)

W T AT AWz̃ = θ̃W T AT Wz̃. (4.10)

While Ritz values tend to approximate the outermost eigenvalues of A in magnitude,

harmonic Ritz values tend to approximate the eigenvalues closest to the origin [49]. Moreover,

the Ritz vectors and the harmonic Ritz vectors approximate the corresponding eigenvectors.

Therefore, as discussed in Section 4.1, including the harmonic Ritz vectors in the Krylov

subspace would remove the corresponding eigenvalues as in (4.6), and hence improve the

convergence rate of a Krylov subspace method.

When we build a Krylov subspace as we solve a linear system iteratively, we can compute

the harmonic Ritz vectors of A with respect to the Krylov subspace Km(A, r0) by solving a

generalized eigenvalue problem as in (4.10). Then, we get an approximate invariant subspace

corresponding to the smallest harmonic Ritz values as a recycle space.

When solving one system from a sequence, Ax = b, we use the recycle space from the

solution of the previous system as follows. We represent the basis for the recycle space by
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the columns of a matrix U , such that

C = AU , CT C = I. (4.11)

This can always be done with a QR decomposition [51]. In addition, we adapt the Arnoldi

process to make each new Arnoldi vector v orthogonal to range (C). This leads to the

recurrence in Algorithm 4.2.

Algorithm 4.2: Modified Arnoldi Recurrence

v1 ← r0 −C(CT r0) ;1

v1 ← v1/‖v1‖ ;2

for i ≥ 1 do3

vi+1 ← Avi ;4

vi+1 ← vi+1 −C(CT vi+1) ;5

for k = 1, · · · , i do6

hk,i ← vT
i vi+1 ;7

vi+1 ← vi+1 − hk,ivk ;8

end9

hi,i+1 ← ‖vi+1‖ ;10

vi+1 ← vi+1/hi,i+1 ;11

end12

This can be written in matrix form as

(I − CCT )AVm = Vm+1Hm ⇐⇒

AVm = CCT AVm + Vm+1Hm, (4.12)

where Hm is still an (m + 1) ×m upper Hessenberg matrix. Next, we compute the vector

εm = Uzm + Vmym, such that xm = x0 + εm minimizes ‖rm‖.

‖rm‖ =

∥∥∥∥∥∥∥r0 −A [U Vm]

zm

ym


∥∥∥∥∥∥∥
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=

∥∥∥∥∥∥∥[C Vm+1]


CT r0

βe1

−
 I Bm

0 Hm


zm

ym




∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
CT r0

βe1

−
 I Bm

0 Hm


zm

ym


∥∥∥∥∥∥∥ , (4.13)

where β = ‖(I −CCT )r0‖ and Bm = CT AVm. This least squares problem can be solved

using the QR decomposition of Hm. This approach derives from the GCRO method [28]

and is also used in the GCRODR method and GCROT with recycling [51, 39, 29].

An important issue for GMRES is that it relies (for general matrices) on a complete

orthogonalization of the Krylov subspace. Therefore, as the Krylov subspace expands,

the memory needed for the orthogonal basis vectors and the computational time for

orthogonalization increase. As a result, normally restarting is required for GMRES, and

we call the iterations between two restarts a cycle. To mitigate the reduced convergence rate

due to the loss of orthogonality to the old Arnoldi vectors caused by restarting, we use the

recycle space immediately in the next cycle for the same system.

4.3 Recycling Minimum Residual Method

In this section, we consider the MINRES method for symmetric systems, which are the most

common cases in topology optimization problems. Both MINRES and GMRES minimize

the two-norm of the residual over the Krylov subspace, and thus have the same convergence

rate for symmetric systems in exact arithmetic. The difference is that MINRES utilizes

the symmetry of the matrix, and the resulting Lanczos three-term recurrence leads to

significant reductions in memory requirements and computational cost. For symmetric

systems, GMRES-based GCRODR may still improve the convergence rate over MINRES.

However, because of its long orthogonalization, GCRODR becomes less efficient compared

to MINRES in terms of overall performance. Therefore, we need to keep the short-term
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recurrence as we do recycling and keep the recycle space selection cheap.

We can use the matrices U and C, which define the recycle space and are obtained from

solving previous linear systems, see 4.11), in the same way as in GCRODR. This leads to

the same recurrence as in (4.12). And since we make the Lanczos vectors orthogonal to the

recycle space C, we have

CT Vm = 0 =⇒ Vm = (I −CCT )Vm. (4.14)

Then (4.12) leads to

(I −CCT )A(I −CCT )Vm = Vm+1Hm

=⇒ Vm(I −CCT )A(I −CCT )Vm = Hm (4.15)

where Hm is the leading m ×m submatrix of Hm. Therefore, the symmetry of A implies

the symmetry of Hm. Since Hm is also an upper Hessenberg matrix, this gives a tridiagonal

Hm, which we will denote as T m from now on. So, including the recycle space into the

Krylov subspace does not affect the Lanczos recurrence of MINRES. Now we explain how

we adapt the MINRES method as described in [72, p. 84–86] or [33, p. 41–44] to include

the recycle space. Similarly as in GCRODR, we need to compute the vector

εm = Uzm + Vmym, (4.16)

such that xm = x0 + εm minimizes ‖rm‖. For symmetric A, (4.13) becomes

‖rm‖ =

∥∥∥∥∥∥∥
CT r0

βe1

−
 I Bm

0 T m


zm

ym


∥∥∥∥∥∥∥ , (4.17)
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where β = ‖(I −CCT )r0‖ and Bm = CT AVm. The QR decomposition of T m gives

T m = ĜT
mF m, (4.18)

where Ĝm is an orthogonal matrix of size (m + 1) × (m + 1), and F m is an upper

triangular matrix of size (m + 1) × m with bandwidth 3. The matrix Ĝ is the product

of a series of orthogonal matrices defining plane rotations, also called Givens rotations,

Ĝm = Gm · · ·G2G1 (see Algorithm 1). Let Fm be the leading m × m submatrix of F m,

and {fij} and {tij} be the coefficients of F m and T m respectively. The solution of the least

squares problem (4.17) is then

ym = F−1
m Ĝmβe1, zm = CT r0 −Bmym. (4.19)

This leads to

xm = x0 + Uzm + Vmym

= x0 + CT r0 −UBmym + Vmym

= x̂0 −UBmym + Vmym, (4.20)

where x̂0 = x0 + CT r0. Since Vm can be computed by a three-term recurrence, we only

need the last two columns of Vm for the recurrence. However, ym and ym−1 may differ in

each coefficient, so that we still need all the columns of Vm and UBm to update um. Let

{vi} and {b̂i} be the columns of Vm and UBm respectively. To be able to discard the old

vi and b̂i vectors we use the same transformations as in MINRES. Let

B̂m = UBm, B̃m = B̂mF−1
m , Ṽm = VmF−1

m , ỹm = Fmym. (4.21)
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Then

ỹm = Ĝmβe1 = GmGm−1 · · ·G1βe1 = Gmỹm−1, (4.22)

and only the mth and (m + 1)th coefficients of ỹm−1 and ỹm differ. The update (4.20)

becomes

xm = x̂0 − B̃mỹm + Ṽmỹm

= x̂0 − (B̃m−1ỹm−1 + b̃mỹm,m) + (Ṽm−1ỹm−1 + ṽmỹm,m)

= xm−1 − b̃mỹm,m + ṽmỹm,m, (4.23)

where b̃m and ṽm are the mth columns of B̃m and Ṽm respectively, and ỹm,m is the mth

coefficient of vector ỹm. Therefore, we only need the last column of B̃m and Ṽm to update

u. From the definition of B̃m and Ṽm in (4.21), we have

b̃m−2fm−2,m + b̃m−1fm−1,m + b̃mfm,m = b̂m, (4.24)

ṽm−2fm−2,m + ṽm−1fm−1,m + ṽmfm,m = vm, (4.25)

so that the columns of B̃m and Ṽm can be computed by three-term recurrences as well.

Algorithm 4.3 outlines the modified MINRES that includes the recycle space into the

search space. In this algorithm, because of the three-term recurrences, we do not need to

restart. So, in exact arithmetic, there is no need to use the recycle space generated during the

solution of a linear system in the solution of that same system1. As a consequence, we can

derive a more efficient method for recycling for symmetric matrices. Although the Lanczos

recurrence requires only the latest two basis vectors from the Krylov subspace (Lanczos

vectors) for orthogonalization and restarting is not necessary, we do need all the Lanczos

vectors to compute a recycle space. Therefore, to limit the memory requirements, we update

1In floating point arithmetic, including the recycle space obtained from the current Krylov subspace may
help remedy the loss of orthogonality that generally occurs due to rounding errors.
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Algorithm 4.3: Modified MINRES

r0 ← b−Ax0 ;1

x0 ← x0 + UCT r0 ; r0 ← r0 −CCT r0 ;2

v1 ← r0/‖r0‖ ; ỹ ← ‖r0‖e1 ;3

for m = 1, · · · do4

v̂ ← Avm ;5

/* use modified Gram-Schmidt orthogonalization for updating v̂ */

v̂ ← v̂ −C(CT v̂) ; b̂m ← U (CT v̂) ;6

tm−1,m ← tm,m−1 ; v̂ ← v̂ − tm−1,mv̂m−1 ;7

tm,m ← 〈v̂, vm〉 ; v̂ ← v̂ − tm,mvm ;8

tm+1,m ← ‖v̂‖ ; vm+1 ← v̂/tm+1,m ;9

F:,m ← Gm−1Gm−2T :,m ; /* apply the Givens rotations from the previous two10

iterations to the new column of T m */
Compute Givens rotation Gm such that F:,m ← GmF:,m has a zero coefficient at11

position (m + 1, m) ; /* see MINRES [33, p. 41–44] */
ỹ ← Gmỹ ;12

ṽm ← f−1
m,m(vm − ṽm−1fm−1,m − ṽm−2fm−2,m) ;13

b̃m ← f−1
m,m(b̂m − b̃m−1fm−1,m − b̃m−2fm−2,m) ;14

xm ← xm−1 + ṽmỹm − b̃mỹm ; /* ỹm is the mth entry of vector ỹ */15

end16

the selected recycle space periodically. In this case, a cycle refers to the iterations between

two updates of the recycle space. We keep using the recycle space from the last system for

orthogonalization, and compute and update another recycle space for the next system.

We use s to denote the maximum length of a cycle (and hence the maximum number of

Lanczos vectors kept), and k to denote the number of linearly independent vectors selected

for recycling. We use RMINRES(s, k) to indicate the recycling MINRES method with the

parameters s and k. The matrix Vj contains the Lanczos vectors generated in the jth cycle,

Vj = [v(j−1)s+1, · · · , vjs], and the matrix V j = [v(j−1)s, · · · , vjs+1] denotes Vj extended with

with one previous and one subsequent Lanczos vector. Then, for the jth cycle, the modified

Lanczos process gives

(I −CCT )AVj = V jT j, (4.26)
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Figure 4.1: Nonzero pattern of T j.

where T j is the tridiagonal matrix T j with an additional row corresponding to v(j−1)s at

the top. The bottom row corresponds to vjs+1. To be specific, T j has the nonzero pattern

shown in Figure 4.1.

Let Uj−1 give the basis of a subspace that was selected at the end of cycle j − 1 for the

current linear system. Uj−1 is used only to compute Uj after cycle j; it is not used in solving

the current linear system. The final Uj will be used for the next linear system. Below, we

discuss several options to compute Uj from U , Uj−1, and the matrix Vj containing the

Lanczos vectors generated in the latest cycle for the current system.

The modified Lanczos recurrence that includes the orthogonalization against C gives

A[U Uj−1 Vj] = [C Cj−1 V j]


I 0 Bj

0 I 0

0 0 T j

 , (4.27)

where Bj = CT AVj has been computed in the course of the iteration (see (4.26)).

Now, we have several options for selecting a new matrix Uj for recycling. The first option

is to compute the harmonic Ritz vectors of A with respect to range ([U Uj−1 Vj]). We must

include range (U ), because it is recycled from the last system and typically contains some

of the approximate eigenvectors we need. Now, all the Lanczos vectors are orthogonal to C.
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Leaving range (U ) out, we may lose those important approximate eigenvectors permanently

in the recycle space for the next system. However, including range (U ) for every cycle is

inefficient. So, as the second option, we only include range (U ) for the last cycle. The third

option is to obtain U1 from range ([U V1]) for the first cycle and Uj from range ([Uj−1 Vj])

for the jth cycle. In the last approach, the reappearance of U can be avoided as well. If

we think of U as U0, the third approach leads to more consistent formulation. So, we only

discuss the third option here.

Let

Wj = [Uj−1 Vj], W̃j = [C Cj−1 V j], H̃j =


0 Bj

I 0

0 T j

 . (4.28)

Then, (4.27) gives

AWj = W̃jH̃j. (4.29)

Now, we compute the harmonic Ritz values and vectors of A with respect to the subspace

range (Wj). These harmonic Ritz pairs (θ, w) are defined by the condition

Aw − θw ⊥ range (AWj), (4.30)

where w ∈ range (Wj). If we write w = Wjp, computing harmonic Ritz pairs is equivalent

to solving the generalized eigenvalue problem

H̃
T

j W̃ T
j W̃jH̃jp = θH̃

T

j W̃ T
j Wjp. (4.31)

We discuss the construction of this generalized eigenvalue problem later, and assume we

get the solution of it for now. We choose the k harmonic Ritz vectors with the (absolute)
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smallest harmonic Ritz values for recycling, and set Ũj = WjPj, where the columns of Pj are

the chosen eigenvectors for (4.31). Now we have C̃j = AŨj = W̃jH̃jPj. To obtain Cj with

orthonormal columns, we compute the QR decomposition of W̃j (note that by construction

almost all columns are already orthogonal),

W̃j = ŴjKj, (4.32)

and of KjH̃jPj,

KjH̃jPj = QjRj. (4.33)

Next, we set

Uj = WjP̂j, Cj = ŴjQj = W̃jQ̂j, (4.34)

where P̂j = PjR
−1
j , and Q̂j = K−1

j Qj. Then Cj is orthogonal and AUj = Cj. The two QR

decompositions (4.32–4.33) are cheap to compute because Kj has very few nonzeros, whose

positions are known in advance, and KjH̃jPj is a product of matrices of small dimensions.

Finally, to solve the generalized eigenvalue problem (4.31), we need the matrices

H̃
T

j W̃ T
j W̃jH̃j and H̃

T

j W̃ T
j Wj. We can simplify W̃ T

j W̃j and W̃ T
j Wj as follows:

W̃ T
j W̃j =


I CT Cj−1 0

CT
j−1C I CT

j−1V j

0 V
T

j Cj−1 I

 , (4.35)

W̃ T
j Wj =


CT Uj−1 0

CT
j−1Uj−1 CT

j−1Vj

V
T

j Uj−1 I

 , (4.36)
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where I is an extended identity matrix with an additional row of zeros at the top and at

the bottom. We can simplify the computation of most blocks in these two matrices further.

CT Cj−1 = CT W̃j−1Q̂j−1 = [I CT Cj−2 0]Q̂j−1, (4.37)

V
T

j Cj−1 = V
T

j W̃j−1Q̂j−1 =



0 · · · 0 1 0

0 · · · 0 0 1

...
. . . . . .

...
...

0 · · · · · · 0 0


Q̂j−1, (4.38)

CT Uj−1 = CT Wj−1P̂j−1 = [CT Uj−2 0]P̂j−1, (4.39)

CT
j−1Uj−1 = Q̂T

j−1(W̃
T
j−1Wj−1)P̂j−1, (4.40)

CT
j−1Vj = Q̂T

j−1


CT

CT
j−2

V j−1

Vj = Q̂T
j−1



0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

1 0 · · · 0


. (4.41)

From the above derivation, we can obtain V
T

j Cj−1 and CT
j−1Vj simply from Q̂j−1 (known

from the previous cycle), and we can compute CT Cj−1, CT Uj−1 and CT
j−1Uj−1 recursively

with 2k3, 2k3 and 2k(k + s)(3k + s) flops, respectively. Therefore, the computation of these

submatrices is very cheap. Only V
T

j Uj−1 must be computed explicitly by matrix-matrix

product, which takes about 2ksn flops. In summary, the cost of each update of the recycle

space is about (12k2 + 6ks + 6k + 4)n flops, ignoring the terms less than O(n). Compared

with the cost of MINRES, which is mainly determined by the matrix-vector product and

the preconditioner for each iteration, the overhead of the subspace selection is modest (see

the timing results in Section 4.5).

The general form of the RMINRES is outlined in Algorithms 4.4 and 4.5. For brevity,

in the algorithms we do not explicitly write out the slight changes for the first linear system

in the sequence, when we do not have a recycle space Û yet; and for the first cycle for each
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linear system, i.e., j = 1, when we do not have Uj−1 and Cj−1 yet. For the first system in

the sequence, we define

W1 = V1, W̃1 = V 1,

Wj = [Uj−1 Vj], W̃j = [Cj−1 V j], for j > 1. (4.42)

And for the first cycle of each subsequent system, we let

W1 = V1, W̃1 = [C V 1]. (4.43)

The Uj and Cj for these special cases can be easily derived using the simplified definitions

of W and W̃ in (4.42) and (4.43) following the approach that we describe for the general

case, and Algorithm 4.5 can be modified correspondingly.

4.4 Implementation Issues

For the experiments in the next section, we have developed our C/C++ code including

3D topology optimization and recycling MINRES. We store sparse matrices in compressed

sparse row format (CSR). The (column) vectors in U , C, Vj, and so on, are stored as one-

dimensional arrays linked by a one-dimensional array of pointers. The memory required by

the system matrix and the incomplete Cholesky factor is linear in the number of unknowns,

n, since the number of nonzero coefficients per row is never greater than 81, for our choice

of elements and mesh. The RMINRES method requires only matrix-vector multiplications,

dot products, vector updates, forward and backward solves with the incomplete Cholesky

factors, and the incomplete Cholesky decomposition itself. All of these operations have linear

computational cost.

The small matrices, e.g., the matrices in (4.33), are all stored as dense matrices in

column-wise ordering (F77 format), so that dense matrix routines from LAPACK and BLAS
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Algorithm 4.4: Recycling MINRES: solve Ax = b

Input: initial guess x0 and recycle space Û obtained from the previous system, and
parameters s and k

Ĉ ← AÛ ;1

compute the QR decomposition of Ĉ as Ĉ = CR̃ ;2

U ← ÛR̃−1 ; /* using backward substitution */3

x← x0 ; r ← b−Ax ;4

x← x + U (CT r) ; r ← r −C(CT r) ; /* use Modified Gram-Schmidt */5

γ = ‖r‖; v1 ← r/γ ; ỹ ← γe1 ;6

m← 0 ; j ← 0 ;7

while γ/‖b‖ > tol do8

m← m + 1 ;9

v̂ = Avm ;10

v̂ ← v̂ −C(CT v̂) ; b̂← U (CT v̂) ; /* use Modified Gram-Schmidt */11

tm−1,m ← tm,m−1 ; v̂ ← v̂ − tm−1,mv̂m−1 ;12

tm,m ← 〈v̂, vm〉 ; v̂ ← v̂ − tm,mvm ;13

tm+1,m ← ‖v̂‖ ; vm+1 ← v̂/tm+1,m ;14

F:,m ← Gm−1Gm−2T :,m ;15

compute Givens rotation Gm such that F:,m ← GmF:,m has a zero coefficient at16

position (m + 1, m) ;
ỹ ← Gmỹ ;17

ṽm ← f−1
m,m(vm − ṽm−1fm−1,m − ṽm−2fm−2,m) ; then drop ṽm−2 ;18

b̃m ← f−1
m,m(b̂− b̃m−1fm−1,m − b̃m−2fm−2,m) ; then drop b̃m−2 ;19

x← x + ṽmỹm − b̃mỹm ; γ ← ỹm+1 ; /* ỹm and ỹm+1 are the mth and20

(m + 1)th entries of vector ỹ, so γ = ‖r‖ */
if (γ/‖b‖ ≤ tol) or (mod(m, s) = 0) then21

j ← j + 1 ;22

compute Uj and Cj of dimension k following Algorithm 4.5 ;23

drop Uj−1, Cj−1, and all v vectors except vm+1 and vm ;24

end25

end26

Output: x as the solution of Ax = b and as the initial guess x0 for the next
system, and Uj as the Û for the next system
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Algorithm 4.5: Recycle Space Selection: compute Uj and Cj

compute CT Cj−1 following (4.37) with CT Cj−2 and Q̂j−1 already available from1

the (j − 1)th cycle ;

compute V
T

j Cj−1 following (4.38) with Q̂j−1 already available from the (j − 1)th2

cycle ; /* Copy the last two rows of Q̂j−1 */

compute CT Uj−1 following (4.39) with CT Uj−2 and P̂j−1 already available from the3

(j − 1)th cycle ;

compute CT
j−1Uj−1 following (4.40) with Q̂j−1, W̃ T

j−1Wj−1 and P̂j−1 already4

available from the (j − 1)th cycle ;

compute CT
j−1Vj following (4.41) with Q̂j−1 already available from the (j − 1)th5

cycle ; /* Copy the last column of Q̂T
j−1 */

compute V
T

j Uj−1 by matrix-matrix product ;6

assemble W̃ T
j W̃j and W̃ T

j Wj following (4.35) and (4.36) ;7

solve the generalized eigenvalue problem (4.31) and pick the k generalized8

eigenvectors corresponding to the k smallest eigenvalues to form the columns of Pj ;

compute the QR decomposition of W̃j as W̃j = ŴjKj ; /* Orthogonalize the first9

two columns of V j against Cj−1 */

compute the QR decomposition of KjH̃jPj as KjH̃jPj = QjRj ;10

P̂j ← PjR
−1
j ; Q̂j ←K−1

j Qj ;11

Uj ←WjP̂j ; Cj ← W̃jQ̂j ;12
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can be used. For the generalized eigenvalue problem (4.31) we use the LAPACK routine

DSYGV, and for QR decompositions we use the LAPACK routine DGEQRF. We use the BLAS

routines DROTG, to compute Givens rotations, and DROT, to apply Givens rotations. We

use the BLAS routine DGEMM for (small) dense matrix-matrix products. For convenience

we use the CLAPACK library, which provides an interface for C programs to LAPACK. However,

since CLAPACK routines call the corresponding LAPACK routines, we still need to adhere to

F77 storage formats. The computational cost of the work with these small matrices is

negligible. Finally, we note that the computational cost is significantly reduced by taking

the simplifications in (4.35)–(4.41) into account.

4.5 Numerical Experiments with Topology

Optimization Problems

We demonstrate the performance of our RMINRES method on a 3D design problem shown

in Figure 4.2. We compute the optimal design for a 3D beam in a hexahedron with the

left end fixed and a distributed load applied on the right bottom edge. The scale of the

hexahedron is X : Y : Z = 3 : 1 : 1. The volume fraction is 50%, and the radius of the filter

is Y/10.

X

Y

Z

Figure 4.2: Design problem: finding optimal material distribution in a hexahedron with the
left end fixed and a distributed load applied on the right bottom edge. (X : Y : Z = 3 : 1 : 1).

We use continuation on the density penalization, ranging from 1 to 3 with increments
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Table 4.1: Three discretizations used for the example in Figure 4.2.

#unknowns solution optimization
problem mesh size (in simulation) time steps
small 36× 12× 6 9, 360 0.1h 142

medium 84× 28× 14 107, 184 2.4h 139
large 180× 60× 30 1, 010, 160 45.7h 130

of 0.5. We use the OC method as the optimization algorithm. The convergence criterion

is that either the maximum change in the design variables is less than 0.01 or the relative

change of the compliance is less than 10−6. For all the iterative solvers discussed, we always

use the solution of the previous system as the initial guess of the next system to reduce the

initial error. Exploiting the symmetry of the problem, we model and simulate only half of

the domain.

We test three discretizations of increasing mesh resolution. Exploiting the symmetry of

the problem, we model and simulate only half of the domain. For each test case, Table 4.1

lists the mesh size (for half of the domain), the number of unknowns, the overall solution

time, the number of optimization steps, and the parameters used for the recycling MINRES

solver. The timings are obtained on a PC with an AMD OpteronTM252 2.6GHz 64-bit

processor, 8GB RAM of memory, and the SuSE Linux system. Figure 4.3 shows the final

topologies.

4.5.1 Recycling Results and Discussion

First, we analyze the convergence properties of RMINRES for several parameter choices on

the medium size (84 × 28 × 14) mesh. The number of optimization steps to compute the

optimal design is 139, requiring the solution of 139 linear systems.

As mentioned in the first section, we can vary the tolerance for the iterative solver,

since less accurate finite element solutions are sufficient at the beginning of the topology

optimization process. So, we can also apply a continuation approach to the tolerance of the
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Figure 4.3: Final topologies for the problem shown in Figure 4.2 on different uniform meshes.
Left: half domain; right: full domain. Top row: small mesh; middle row: medium size mesh;
bottom row: large mesh.
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Figure 4.4: Reduction in the number of iterations using a relaxed tolerance for the linear
solver (MINRES without recycling). The jumps in the iteration counts over the first 30
iterations are caused by continuation on the solver tolerance and the penalization parameter.

linear solver, which reduces the number of iterations in the early phase of the optimization

process, as shown in Figure 4.4. The jumps in the iteration counts correspond to the steps

where the tolerance of the linear solver τ is decreased or the penalization parameter p is

increased. We start with τ = 10−4 and p = 1; we decrease τ by a factor of 1/10 and increase

p by 0.5 every time the maximum change of the design variables drops below 0.1; and we

stop updating them when τ = 10−10 and p = 3. Finally, we note that allowing a higher

tolerance for the linear solver in the beginning of the optimization process did not affect the

number of optimization steps required.

Next, we consider the parameters that govern the recycling for the MINRES solver,

namely k, the dimension of the subspace that is recycled from one linear system to the

next, and s, the maximum dimension of the Krylov subspace kept to periodically update the

approximate invariant subspace that will be recycled. We carry out two sets of experiments

to analyze the effects of varying these two parameters. To make a fair comparison, we use

the solution from the previous system as the initial guess of the next system and we use
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continuation on the tolerance for both RMINRES and MINRES.

In the first set of experiments, we fix k = 10 and vary s. Figure 4.5 compares the

number of iterations and computation time for each linear system, for several choices of

s. In the first few optimization steps, the topology changes significantly, and the effect

of recycling is modest. After this, the recycling approach greatly reduces the number of

iterations to solve each linear system. We see that if we keep a larger Krylov subspace to

update the approximate invariant subspace, the recycling becomes more effective in reducing

iteration counts. Since the dimension of the recycle space itself does not change, this suggests

that we obtain a more accurate approximation to the invariant subspace this way. This

reduction in iterations significantly reduces the computation time for RMINRES, in spite of

the computational overhead from the orthogonalizations against the recycle space and from

the updates of the recycle space. Towards the end of the optimization process, recycling

leads to a 40% reduction in computation time and a 50% reduction in iterations. Notice

that increasing s beyond 100 has limited effect since RMINRES rarely takes more than

100 iterations for this problem. However, for harder problems, e.g., for finer meshes, the

solver may not converge so fast. In that case, larger values for s can be helpful. Note that

increasing s does not increase the computational cost of RMINRES. The only limit on s is

the memory size.

In the second set of experiments, we fix s = 100 and vary k. The parameter k affects both

the computational cost per iteration, specifically the number of orthogonalizations and the

cost of subspace selection, and the total number of iterations for the solver. There is a trade-

off between these two factors, and in Figure 4.6 we compare the number of iterations and

computational time for several values of k. Increasing k leads to a significant improvement

in the convergence rate; towards the end we obtain a factor 3 reduction in the number of

iterations. Time-wise, we obtain a 40% improvement. We also see that the computation

time is not overly sensitive to the choice of k. For reference, both Figures 4.5 and 4.6 show

the maximum change in the element densities for every optimization step.
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Figure 4.5: Number of iterations (niters) and time (seconds) of RMINRES(s, k) with fixed
k = 10 and varying s.
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Figure 4.6: Number of iterations (niters) and time (seconds) of RMINRES(s, k) with varying
k and fixed s = 100.
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4.6 Recycling on Adaptive Meshes

When we use adaptive mesh refinement, every time the mesh changes, the size of the linear

system changes, and the ordering of the degrees of freedom may change too. The recycle

space obtained from the old system on the old mesh becomes meaningless for the new system

on the new mesh without any interpretation. Moreover, the preconditioner introduces further

complications to recycling. In general, preconditioning changes the spectrum of the linear

system, in order to improves the convergence rate. When we carry out mesh refinement, we

need to make sure that our recycle space from the old mesh well approximates the invariant

subspace of the preconditioned systems corresponding to the smallest eigenvalues on the

new mesh. For convenience, we refer to the eigenvectors corresponding to the smallest

eigenvalues as “the smallest eigenvectors” in the following of this section. Also for the ease

of discussion, we use the following notation. First, let K be the original stiffness matrix,

K̃ = D−1/2KD−1/2 be the rescaled matrix as defined in (3.9), and K̂ = L−1K̃L−T be the

rescaled and preconditioned matrix as defined in (3.11). And let v, ṽ and v̂ be their smallest

eigenvectors respectively. We use subscript “old” to denote matrices and vectors defined on

the old mesh, and subscript “new” to denote matrices and vectors defined on the new mesh.

We denote as P the projection operator that maps an vector from the old mesh to the new

mesh by means of interpolation.

In topology optimization, we start with a homogeneous density distribution. The

eigenvectors corresponding to the smallest eigenvalues of the linear system are smooth.

When holes appear, e.g., in Figure 4.7, the smallest eigenvectors of the original stiffness

matrix consist of smooth modes on the void and are close to zero on the material, see v in

Figure 4.8. These eigenvectors contribute little to the solution of the equilibrium system.

The smallest eigenvectors of the rescaled system, however, consist of the smooth global

modes on the material instead of on the void, see ṽ in Figure 4.9.

Figure 4.10 shows the smallest eigenvectors v of the IC preconditioned systems on both
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Figure 4.7: A typical density distribution. (a) the density distribution on a nonuniform
mesh; (b) the density distribution projected on the new mesh that is adaptively refined from
the mesh in (a).
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Figure 4.8: The smallest eigenvector v of the original stiffness matrix K on the old mesh
shown in Figure 4.7(a).

the old and new meshes. Although, preconditioners do not address smooth modes well in

general, incomplete Cholesky preconditioners do make the smallest eigenvectors less smooth

than those of the unpreconditioned but rescaled system. If we project v̂old from the old

mesh to the new mesh using the interpolation operator P , w = P v̂old would not be a good

approximation to the smallest eigenvectors v̂new. To measure how well w approximates an

eigenvector of K̂, we normalize w and evaluate the following residual norm:

∥∥∥K̂w − (wT K̂w) ·w
∥∥∥ . (4.44)

In the example shown in Figures 4.7–4.10, this residual norm of the normalized w is

0.4507, which is not particularly small. Therefore, for Krylov subspace recycling with mesh

refinement, the recycled harmonic Ritz vectors on the old mesh, which tend to approximate

the smallest eigenvectors of the preconditioned system on the old mesh, would not make

good approximations to the smallest eigenvectors of the preconditioned system on the new

mesh after being projected to the new mesh by interpolation.

We discover that L−T v̂ is usually a very good approximation to ṽ, see Figure 4.11,
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Figure 4.9: The smallest eigenvectors ṽ (y direction DOFs only) of the diagonally rescaled

matrices K̃ on both the old and new meshes shown in Figure 4.7.
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Figure 4.10: The smallest eigenvectors v̂ (y direction DOFs only) of the IC preconditioned

systems K̂ = L−1K̃L−T on both the old and new meshes shown in Figure 4.7.
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Table 4.2: Approximation to the eigenvectors. Column 1 lists the matrices; column 2 lists
the exact smallest eigenvectors of the matrices in column 1; column 3 lists the vectors we use
to approximate the eigenvectors of the matrices in column 1; column 4 lists the eigenvector
residual norms of the vectors in column 3 with respect to the matrices in column 1; column
5 lists the cosines of the angles between vectors in columns 2 and 3. The vectors in columns
2 and 3 are normalized before the evaluation of columns 4 and 5.

A x1 x2

∥∥Ax2 − (xT
2 Ax2) · x2

∥∥ xT
1 x2

K̃old ṽold L−T
old v̂old 0.000010 0.999946

K̃new ṽnew L−T
newv̂new 0.000002 0.999971

K̂old v̂old LT
oldṽold 0.000000 0.999922

K̂new v̂new LT
newṽnew 0.000010 0.999957

K̃new ṽnew P ṽold 0.049190 0.998877

K̂new v̂new P v̂old 0.450701 0.866497

K̂new v̂new LT
newPL−T

old v̂old 0.166628 0.986535

and LT ṽ is also usually a very good approximation to v̂. As long as the the projection of

ṽold to the new mesh makes a good approximation to ṽnew, LT
newPL−T

old v̂old would be a good

approximation to v̂new.

Unfortunately, although the angle between the projection of ṽold to the new mesh and ṽnew

is small, the residual of P ṽold as an eigenvector of K̂new is not particularly small. Therefore,

transforming the recycle space obtained on the old mesh to the new mesh in this way do

not give a good approximation to the invariant subspace of the preconditioned system on

the new mesh either. The comparison between different pairs of vectors and the measure of

their approximations to the eigenvectors are listed in Table 4.2.

Further investigation is required for Krylov subspace recycling on adaptive meshes. For

example, the fact that the angle between of LT
newPL−T

old v̂old and v̂new is fairly small suggests

that we may use a few iterations of the Jacobi-Davidson method [66] to make LT
newPL−T

old v̂old

a better approximation to the eigenvectors of K̂.
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Figure 4.11: L−T v̂ (y direction DOFs only) on both the old and new meshes shown in Figure
4.7.
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Chapter 5

Multilevel Sparse Approximate
Inverse Preconditioner

Beyond recycling, preconditioning is an additional way to improve the performance of Krylov

subspace methods. In general, discretized linear systems resulting from engineering and

physical problems are ill-conditioned, which leads to slow convergence for iterative solvers.

For large-scale simulations, preconditioners are usually required for iterative solvers to

converge in a reasonable amount of time. In this chapter, we introduce a multilevel sparse

approximate inverse preconditioner on adaptive meshes.

5.1 Introduction and Motivation

Since adaptive mesh refinement was proposed [14, 13], it has gained its popularity in the field

of scientific simulations, mainly because it achieves high accuracy while keeping the overall

computational cost relatively low. To make AMR more flexible and efficient, especially for

parallel machines, the computational domain is usually partitioned into many small blocks,

each of which represents a uniform mesh with a small fixed number of mesh cells. In parallel

implementation, to maintain a good load balance, those blocks are redistributed over the

processors after mesh refinement [38, 45], see Figure 5.1. Moreover, local refinement and/or

derefinement on the mesh cause the system matrix to change. These properties of AMR

introduce a variety of difficulties for preconditioners.

First, preconditioners with global coupling like ILU are constructed with respect to a

certain ordering of the unknowns. In the factorization, every row and column depends

on the previous ones. Even if the mesh refinement happens only locally, it will change
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Figure 5.1: A typical data distribution before and after mesh refinement.

the system matrix, and thus affect the factorization for every following rows and columns

with respect to the chosen ordering. Moreover, the forward and backward substitutions

in these preconditioners have a strong data dependency. Although people have developed

techniques to limit global dependencies while maintaining reasonable convergence [26, 27, 74],

the redistribution of blocks for load balancing will turn local dependencies into global ones.

So, mesh adaptation and load balancing make it hard for this class of preconditioners to

adapt to highly dynamic meshes. Second, domain decomposition preconditioners, another

important class of preconditioners, are not very suitable for AMR either, especially if

changes in the mesh are relatively frequent. For domain decomposition, the whole physical

domain is decomposed into large blocks of contiguous subdomains, which are assigned

to different processors. In the AMR context, the decomposition of the domain and the

boundaries of the subdomains will change dynamically, requiring frequent recomputing of

the local factorizations and of the Schur complement (or analogous components of a domain

decomposition algorithm). This reconstruction of the local solvers and Schur complement

at every time step would be very expensive.

Sparse approximate inverses are another class of preconditioners. They are sparse

matrices that approximate the inverse of a sparse matrix either in explicit or implicit

(factorized) form [35, 11, 22, 24, 23, 12]. There are several ways to construct such sparse
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approximate inverses. One method, usually referred as SPAI, minimizes the Frobenius norm

of AM−I subject to some sparsity pattern [35, 24, 22], and gives an explicit representation

of the approximation to the matrix inverse. Another way is to construct an approximate

factorization of A−1 ≈ ZD−1W T , where Z and W are unit upper triangular and D is

diagonal. This includes FSAI [42], AINV [11], and SAINV [10], which in many cases are

more effective than SPAI in term of improving the convergence rate. However, they suffer

the same problems as ILU does.

In the AMR context, explicit SPAI turns out to overcome the difficulties mentioned above.

The approximate inverses have very weak data dependency. To calculate each column of an

approximate inverse, we need only the few columns of the system matrix that correspond

to the neighboring cells. After mesh refinement, only those columns of the system matrix

that are associated with the changed cells are changed. Hence, we can update only a few

columns of the approximate inverse, and reuse all the other columns without changes. This

makes updating the approximate inverse relatively cheap.

Moreover, the approximate inverses are stored explicitly as sparse matrices form and

applied to vectors by matrix vector multiplications. There is no forward or backward

substitution for SPAI. So, the data redistribution does not affect the sparse approximate

inverses very much. Moreover, due to the weak data dependency, both the construction and

the application of SPAI are easy to parallelize.

Unfortunately, SPAI has a serious drawback. SPAI does not effectively capture the low-

frequency global modes of the underlying operator. Therefore, in many applications, a very

large sparsity pattern is required for an approximate inverse to get a good convergence rate.

Such a large sparsity pattern leads to high computational cost to construct the approximate

inverse and apply it at every iteration. However, we can remedy this problem by multilevel

techniques at low cost. Several approaches for improving sparse approximate inverses using

multilevel techniques have been proposed. In [70], sparse approximate inverses are used as

smoothers for multigrid methods. In [19], sparse approximate inverses are combined with
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changes of basis using wavelets to derive a hierarchical structure. In [16, 75], algebraic

information is explored to construct multilevel sparse approximate inverse preconditioners.

We discuss these approaches more in depth at the end of section 5.3. In this thesis, for

adaptive hierarchical meshes, we introduce a new multilevel method to improve sparse

approximate inverse preconditioners. Exploiting the hierarchical structure of refined meshes,

our method significantly reduces the number of iterations while remaining efficient in cost

per iteration and in computing the updating the preconditioner for highly dynamic mesh.

This is achieved without requiring global algebraic information from the matrix.

We first present and analyze our preconditioner in the context of scalar diffusion and

convection-diffusion problems in Sections 5.2, 5.3, and 5.4. Then, we generalize the

preconditioner to 2D and 3D elasticity problems, and subsequently apply it to topology

optimization problems in Sections 5.5 and 5.6.

5.2 Sparse Approximate Inverse Preconditioner

We consider the solution of linear time-dependent diffusion and convection-diffusion

problems on adaptive meshes. In general, we can write these problems as

ut = (a1ux)x + (a2uy)y + b1ux + b2uy + cu + f, (5.1)

where coefficients a1, a2, b1, b2, c, and f can be functions of x and/or t but not of u or its

partial derivatives. We discretize these partial differential equations in space using a finite

difference (or finite volume) method and in time using the backward Euler method or the

Crank-Nicolson method. This results in the following systems of linear equations:

Au(n+1) + Bu(n) = u(n), (5.2)
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where n denotes the time step. We are concerned with linear solvers and preconditioners to

solve such systems efficiently. If the coefficient functions do not change with time, the linear

system (5.2) depends only on the time step and the mesh. In many situations, the time step

can be fixed, but mesh refinement and derefinement locally change the discretization. So,

we need preconditioners that are not be affected too much by the local changes of the mesh

and are cheap to update. Sparse approximate inverses satisfy our requirements.

We consider the preconditioned system AMy = b with preconditioner M and x = My.

We want to choose M such that AM is a good approximation to the identity matrix while

M is easy to compute, update, and apply. A popular way to compute such sparse matrix

M is to minimize the Frobenius norm [32, p. 55] of AM − I [35, 24, 22]. Since

‖AM − I‖2F =
∑

j

‖Amj − ej‖22, (5.3)

where mj is the jth column of M , we can compute each column of M independently by

minimizing ‖Amj − ej‖2 for a chosen sparsity pattern (with a few nonzeros per column).

So M can be computed by solving many small least squares problems in parallel, and can

be stored in explicit matrix form.

The exact inverse of a system matrix for a convection-diffusion problem is typically full.

Every column has nonzero coefficients for all rows. Figure 5.2 shows the Green’s function

for a 1D diffusion problem and a point source in the middle. Each the column of the exact

inverse corresponds to a (discrete) Green’s function, and the largest coefficients correspond

to the mesh points around the point source. Therefore, for elliptic problems we typically

choose a sparsity pattern for M that contains only a few neighboring mesh cells. This also

makes it cheap to compute and apply M .

The choice of the sparsity pattern is usually the key issue for an effective sparse

approximate inverse preconditioner. A small sparsity pattern (a pattern/stencil with few

nonzeros) yields a cheap preconditioner, but generally leads to slow convergence. For an
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Figure 5.2: Discrete Green’s function for the 1D diffusion problem −auxx + u = δ on a 129
point grid with a point source δ in the middle.

intuitive explanation, consider the 1D equation uxx = 0 for x ∈ (0, 1) with u(0) = 1 and

u(1) = 0, whose solution would be u(x) = 1− x. We discretize the problem in the standard

fashion using N + 2 grid points and a 3-point stencil, and we choose M to have the same

sparsity pattern as the system matrix A. If we take u = 0 as the initial guess, then with

every iteration of a Krylov subspace method, the nonzero values in the approximate solution

propagate by two grid points to the right. Therefore, it will take at least N/2 iterations to

converge, because a boundary condition or a local source term in elliptic problems influences

the solution over the entire domain. In another word, the solution procedure only step-

wise updates neighboring regions. So, the number of iterations for convergence is inherently

bounded from below by the “diameter” of the domain and the “diameter” of the image of

the operator AM for a point function. A larger sparsity pattern for M would include more

global information per iteration, which would improve the rate of convergence. However a

large sparsity pattern results in high computational cost in both constructing and applying

the sparse approximate inverse. This makes the preconditioner too expensive.

Before introducing our approach to improve SPAI, we review this problem further. An

observation in [15] for the Laplace equation shows that although most eigenvalues of the

residual matrix for the right preconditioned system, E = I −AM , are close to zero, there

are a small number of eigenvalues very close to 1. Even a significantly larger stencil (more
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Figure 5.3: Eigenvalues and eigenvectors of the residual matrix for the discretized system of
(5.4) and its SPAI. (a) eigenvalues of E = I −AM ; (b) eigenvectors corresponding to the
largest 3 eigenvalues.

nonzero coefficients) for the approximate inverse M does not cure this. In general, for this

problem, the eigenvalues of E that are close to 1 correspond to smooth eigenvectors. That

means sparse approximate inverses are not good at handling global low-frequency modes.

For the 1D diffusion problem ut = uxx, x ∈ (0, 1) with a homogeneous Dirichlet boundary

condition, the discretization along the time axis for a specified time step 4t results in the

following equation:

−4tuxx + u = uold, for x ∈ (0, 1) and u(0) = u(1) = 0. (5.4)

We discretize 5.4 with 129 points uniformly along the x-axis and obtain the system matrix

A, and then we compute its SPAI M with the same sparsity pattern as A. Figure 5.3

shows the eigenvalues of E = I −AM and the eigenvectors corresponding to the 3 largest

eigenvalues.

Now consider the following equation:

− auxx + u = f on (0, 1), u(0) = u(1) = 0. (5.5)

Let g(x, τ) be its Green’s function for a point source (Dirac’s delta function) at τ [18]. We

81



can represent the continuous solution u(x) as

u(x) =

∫ 1

0

g(x, τ)f(τ) dτ, (5.6)

where the Green’s function can be explicitly written out as follows using Fourier transform

[18, p. 95]:

g(x, τ) =
∞∑

k=1

2 sin kπτ

1 + ak2π2
sin kπx. (5.7)

Analogously, we can represent the discrete solution of Au = f by

u =
n∑

j=1

(A−1)jfj, (5.8)

where (A−1)j indicates the jth column of A−1. A−1 is the discrete analog and approximation

to the Green’s function g(x, τ), each column (A−1)j representing the approximate solution

for a point source. It is clear from (5.7) that the low-frequency components have much larger

weights than the high-frequency components. Similarly, the columns of A−1 have relatively

large low-frequency components and small high-frequency components. In fact, (5.6) and

(5.7) indicate that unless f has very large high-frequency components the solution is largely

determined by the low-frequency components. Therefore, we cannot expect to approximate

A−1 accurately unless we represent the low-frequency components reasonably accurately.

Unfortunately, accurately representing the low-frequency components with respect to

the standard basis provided by the mesh requires the approximation to the inverse, M ,

to be fairly dense (even if many of the coefficients are relatively small). This makes the

construction of M and the multiplication by M very expensive, particularly on a parallel

computer. Therefore, for the purpose of efficiency we require a practical sparsity pattern for

an approximate inverse to have a small local stencil, often the same as that of the matrix

A itself. In that case, the Frobenius norm minimization (5.3) gives the columns of the

approximate inverse a small wedge shape (see Figure 5.4(a)). If we look at the frequency
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Figure 5.4: Green’s function vs. SPAI. (a) the Green’s function for point source at the
midpoint, and its SPAI approximation; (b) frequency domain representations of the Green’s
function and its SPAI approximation.

decomposition in Figure 5.4(b), SPAI approximates the Green’s function very well on high-

frequency modes, but has large errors on low-frequency modes. As the approximation is

highly localized, SPAI is unable to capture the low-frequency components well.

This problem has been recognized by several people, and various methods have been

proposed to remedy it [19, 16, 21, 20]. The common underlying idea for these approaches is

to construct a new basis, such that the representation of the Green’s function with respect to

this basis is nearly a diagonal matrix; that is, outside a narrow band, the representation of

the Green’s function is nearly zero. This allows an accurate approximation of the inverse by a

sparse approximate inverse with few nonzeros. In these approaches one has to construct the

new basis, the basis transformation and its inverse, and the representation of the approximate

inverse with respect to this new basis. These procedures are not cheap but for hard problems

they may pay off in a greatly reduced number of iterations. In [19, 21, 20] the authors discuss

various approaches using hierarchical wavelet bases. In particular, in [19] two hierarchical

wavelet bases are constructed using second generation wavelets, so that unstructured meshes

can be handled well. The idea is that smooth regions in the Green’s function lead to

sufficiently small wavelet coefficients that are accurately approximated by zeros. In [16],

algebraic information is used to find a multilevel basis. To be specific, the coarsening process
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is based on the construction of the sparse approximate inverse.

Although the ideas behind our method for improving the approximation of smooth

components of A−1 are similar, our approach is different. First, we use the hierarchy already

present in the AMR meshes to construct a hierarchical preconditioner. Therefore, we do not

need to construct any new basis to work with. Second, we exploit the fact that the smooth

components of the Green’s function can be represented cheaply and reasonably accurately

using only a few nonzero coefficients at coarse levels. Hence, we do not aim for a basis in

which many or most coefficients of the approximate inverse can be approximated accurately

by zeros. Rather, we exploit the hierarchy of meshes in the standard basis associated with

the mesh to approximate the components of the Green’s function as economically as possible

at coarser levels. The key observation is that representing ‘most’ of M at the coarse levels

leads to efficient storage of M , and makes the multiplication by M very cheap. We will

introduce our method in detail in the next section.

5.3 Multilevel Sparse Approximate Inverses on

Adaptive Meshes

We first introduce some notation for adaptive (AMR) meshes. The adaptive mesh refinement

yields a hierarchy of uniform meshes, denoted by Ω` (see the 2D example in Figure 5.5).

Higher level meshes have increasingly finer resolution, and are typically restricted to smaller

and smaller part of the domain. Note that only at the coarsest level the mesh must be

contiguous. In addition to these meshes, we consider their compositions. As indicated

in Figure 5.5, we recursively define Ω̂` as the composite mesh that results from combining

meshes Ω` and Ω̂`−1, where those mesh components (points, faces, cells) on level `−1 that are

covered by Ω` are excluded. The initial composite mesh is Ω̂1 = Ω1. In many applications,

we have a minimum level of refinement `∗, i.e., Ω`∗ covers the whole domain. So Ω̂` = Ω`

for ` ≤ `∗. We obtain meshes above level `∗ by local refinements as required by the solution
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Figure 5.5: A hierarchy of meshes (first row) and the corresponding composite meshes
(second row).

accuracy.

Now we explain how matrix-vector multiplications can be done on a nonuniform,

hierarchical mesh with the help of ghost cells. We give a one-dimensional example first.

Figure 5.6 shows a composite mesh of two levels, with cells i− 1 and i on level 1, and cells

j and j + 1 on level 2. On level 1, cell i would have a ghost neighbor cell i + 1 on its right,

since its real left neighbor cell is on a different level. Similarly, on level 2, cell j would have

a ghost neighbor cell j − 1 on its left. We discretize for example a Laplace PDE at cells i

and j in the following way:

− ui−1 + 2ui − ũi+1 = 0, (5.9)

−ũj−1 + 2uj − uj+1 = 0. (5.10)

We compute the values at the ghost cells using linear interpolations:

ũi+1 =
1

2
uj +

1

2
uj+1, (5.11)
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Figure 5.6: One-dimensional composite mesh with ghost cells: (a) one dimensional composite
mesh with two levels; (b) the fine level uniform submesh with a ghost cell; (c) the coarse
level uniform submesh with a ghost cell.

ũj−1 =
3

4
ui +

1

4
ũi+1 =

3

4
ui +

1

8
uj +

1

8
uj+1. (5.12)

A matrix-vector multiplication v = A ∗ u would give us

vi = −ui−1 + 2ui − (
1

2
uj +

1

2
uj+1), (5.13)

vj = −(
3

4
ui +

1

8
uj +

1

8
uj+1) + 2uj − uj+1. (5.14)

Therefore, we can write the matrix at each cell using a standard finite difference

discretization, and store the coefficients with respect to a same standard stencil as in (5.9)

and (5.10). A matrix-vector multiplication can be done in two steps. First, we fill the ghost

cells by interpolation. Then, we compute the matrix-vector product at each cell using its

neighboring cells in the discretization stencil, which are at the same level and can be either

existing cells or ghost cells. In this way, every cell does not see the mesh change in its

neighborhood. Mesh refinement only changes how its neighboring cells (either ghost or not)

are filled. Furthermore, this homogeneous representation allow us to represent the system

matrix on coarser meshes by discretizing the PDE with the same stencil but larger cells.

To make matrix-vector multiplication cheap and convenient, we store our sparse matrices

86



row by row. The rows of A and M are the columns of AT and MT . So, we minimize

‖MA− I‖F = ‖AT MT − I‖F , (5.15)

instead of ‖AM − I‖F . Due to the chosen sparsity pattern, each row of M depends only

on the rows of A that correspond to the neighboring cells. We store and multiply M in the

same way as A. Through the use of ghost cells, the rows of M remain unchanged if the

corresponding cells are not refined or derefined.

Since we are minimizing ‖MA− I‖F , we choose to use left preconditioning, which leads

to the preconditioned system MAx = Mb and the residual matrix E = I−MA. However,

in general, the preconditioning methods we introduce below can be used for both left and

right preconditioning.

Next, using the definition of composite meshes, we define our multilevel preconditioner,

given the matrix A` and its sparse approximate inverse M` defined on each composite mesh

Ω̂`. We start with a two-level version and define the multilevel version recursively. Algorithm

5.1 describes the multiplication of the basic two-level preconditioner M2 and a vector z for

a fine composite grid, Ω̂h, and a coarse composite grid, Ω̂H . Note that Ω̂H does not need to

be the next coarser grid of Ω̂h. It can be an arbitrary coarser grid.

Algorithm 5.1: Two-level SPAI: Compute y ←M2z

Multiply fine mesh sparse approximate inverse to z: ŷ ←Mhz ;1

Compute fine mesh “residual”: rh ← z −Ahŷ ;2

Restrict rh to the coarse mesh: rH ← IH
h rh ;3

Apply coarse mesh sparse approximate inverse to rH : eH ←MHrH ;4

Prolong eH to the fine mesh: eh ← Ih
HeH ;5

Correct the preconditioned vector: y ← ŷ + eh ;6

The final result y = Pz consists of an initial approximation Mhz to A−1z (step 1),

defined by the standard sparse approximate inverse preconditioner Mh, and a coarse mesh

correction using MH (steps 2–6).

We denote this two-level method by SPAI2, where Ω̂h is Ω̂`max , the finest composite mesh.
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However, Ω̂H does not need to be the next coarser grid Ω̂`max−1. A good choice for Ω̂H is

Ω̂`∗ , for Ω̂`∗ is invariant. In that case, it is worthwhile to construct a more accurate sparse

approximate inverse there. The overall preconditioning operator for SPAI2 is

M2 = Mh + Ih
HMHIH

h (I −AMh), (5.16)

and the residual matrix becomes

E2 = I −M2A = (I − Ih
HMHIH

h A)(I −MhA). (5.17)

It has most of the eigenvalues moved closer to the origin compared with the residual matrix

of standard SPAI, since Ih
HMHIH

h A in general captures smooth mode much better than

MA.

To turn this two-level preconditioner into a multilevel preconditioner, instead of applying

MH to get eH = MHrH on the coarse grid Ω̂H at step 4, we recursively apply this algorithm

to rH to get a more accurate correction eH , especially in the sense of getting more global

information. We denote our multilevel sparse approximate inverse preconditioners as MSPAI.

In most cases, we carry out the recursive correction down to the coarsest level. However, for

PDEs with high oscillatory coefficients, a discretization on an overly coarse mesh may not

be able to capture the physics. Therefore, a correction on those coarse levels would be less

useful. In these cases, the recursive scheme should stop at an appropriate level.

For the same 1D problem as in Figure 5.2, we demonstrate the improvement of MSPAI

over SPAI in Figure 5.7. Unlike SPAI, the MSPAI approximation is almost full, which means

it captures the global information. It approximates the Green’s function on the low-frequency

modes much better than SPAI. However, the full sparsity pattern of MSPAI here does not

reflect its actual computational cost. By collecting global information in a multilevel way,

we obtain a very good approximation to the exact inverse at fairly low cost. We discuss this
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Figure 5.7: Green’s function vs. SPAI and MSPAI. (a) the Green’s Function for point
source at the midpoint, and its SPAI and MSPAI approximations; (b) frequency domain
representation of the Green’s function, and its SPAI and MSPAI approximations.

issue more in Section 5.4.

5.4 Numerical Experiments with Diffusion and

Convection-Diffusion Problems

In this section, we use NONE to denote no preconditioning, SPAI to denote the one-level

sparse approximate inverse preconditioner with predetermined sparsity pattern, SPAI2 to

denote the two-level sparse approximate inverse with the coarse mesh chosen on the coarsest

refinement level `∗ as mentioned before, and MSPAI to denote the full multilevel sparse

approximate inverse down to the coarsest refinement level. Moreover, we use I, M , M2, Mm

to denote the preconditioning matrices for NONE, SPAI, SPAI2 and MSPAI respectively.

We explain some implementation details first, and then present experimental results for

three model problems.

5.4.1 Implementation with PARAMESH

To explain the implementation details, we introduce PARAMESH [45], the AMR package we use.

PARAMESH is a FORTRAN90 parallel package, which supports simulation on multidimensional
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Figure 5.8: Mesh and data structure in PARAMESH.

adaptive meshes. It builds a hierarchy of sub-meshes to cover the computational domain,

with spatial resolution varying to satisfy the demands of applications. These sub-mesh

blocks form the nodes of a tree data structure (see Figure 5.8), and they are of small size,

e.g., 4× 4, to enable better load balance and to make mesh (de)refinement more convenient.

Exploiting this data structure, we can easily represent a discretized matrix and its sparse

approximate inverse on meshes at different levels. Moreover, as explained in Section 5.3,

on the boundary between blocks of different mesh resolution, the discretization of a PDE is

handled in a special fashion using ghost cells.

5.4.2 An Isotropic Diffusion Problem

The first model problem is an isotropic diffusion equation

ut = ∇ · (a∇u) (5.18)

in the unit square [0, 1]×[0, 1], with a discontinuous coefficient a and the boundary conditions

shown in Figure 5.9. The initial solution is u = 0 in the whole domain. We denote this

problem as DIFF.
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Figure 5.9: DIFF: diffusion problem ut = ∇ · (a∇u) in the unit square [0, 1] × [0, 1] with
a Dirichlet boundary condition on the bottom and a Neumann boundary condition on the
other three sides.

Although this is a self-adjoint PDE, the discretization on nonuniform meshes results in a

nonsymmetric linear system. This makes it inappropriate to use CG [37] as the solver here.

Therefore, we choose BiCGStab [71], since it can deal with nonsymmetric systems and does

not need matrix-vector multiplication with the matrix transpose.

We compare the sparsity pattern and the actual amount of work for SPAI, SPAI2 and

MSPAI in Table 5.1. The algebraic sparsity pattern is measured by the number of nonzeros

per column in the preconditioning operators when they are written explicitly in matrix form

on the finest composite mesh. It indicates how much information the operator collects for

a single point. The actual amount of work is measured by the average number of floating

point operations done per column in a matrix vector product. We give the comparison for

time steps 1 to 5, with the maximum refinement level increasing from 5 to 8. While MSPAI

obtains almost full approximate inverse, it requires only about 4 times the work that the

5-point SPAI needs, and the cost of MSPAI is linearly scalable to the mesh size. This is

because we collect the global information on coarse grids, where one cell represents a bunch

of cells on the finest composite grid.

In Figure 5.10, we also compare the spectra of the different preconditioned systems

– A, MA, M2A and MmA for a typical time step in the DIFF problem. Without

preconditioning, the eigenvalues of the systems are spanned on the real line from 1 to 4053
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Table 5.1: Comparison of algebraic sparsity pattern and actual work for SPAI, SPAI2 and
MSPAI. Algebraic sparsity pattern is measured by the average number of nonzeros per
column of the explicit preconditioning matrix; the actual work is measured by the average
number of floating point operations done per column in a matrix vector product.

time
step

lmax n
algebraic sparsity actual work
pattern (nnzpc) (#flop/n)

M M2 Mm SPAI SPAI2 MSPAI

1 5 4096 4.9 24.1 4022 10 30 26.6
2 6 6112 5.5 55.8 6027 10 26.8 38.0
3 7 12448 5.7 204.3 12420 10 23.2 41.6
4 8 23488 5.9 601.0 23421 10 21.8 44.2
5 8 27136 5.9 636.4 27110 10 21.6 42.6

Table 5.2: Convergence results (number of iterations) for DIFF.

time step 1 2 3 4 5

`max 5 6 7 8 8
n 4096 6112 12448 23488 27136

NONE 864 681 1296 2309 2159
SPAI 118 111 164 235 265
SPAI2 82 72 83 85 85
MSPAI 17 18 16 17 19

with a few non-real eigenvalues due to the nonsymmetric AMR discretization. The basic

SPAI rescales the system and moves a lot of the eigenvalues closer to 1. However, it still

leaves a great many eigenvalues very close to the origin. A two-level correction gives us

a better clustering of the eigenvalues at 1, while leaving fewer of them close to the origin.

With the full multilevel SPAI, almost all the eigenvalues are laid in a small circle centered

at 1 with a radius of about 0.15. Only a few eigenvalues are out of the circle, and they

are further away from the origin as compared to the other preconditioners. This becomes

easy for Krylov subspace methods, as they are efficient at handling a system with a good

clustering of eigenvalues and a few sparsely separated ones.
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Figure 5.10: Spectra of A, MA, M2A, and MmA for DIFF plotted in the complex plane
(the horizontal axes correspond to the real numbers and the vertical axes correspond to the
imaginary numbers).
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Table 5.3: Results of MSPAI for different meshes at the 2nd time step of DIFF.

`max n niters solver time

5 4096 16 0.92
6 6112 18 1.71
7 16096 14 3.26
8 36448 14 7.05

The convergence results for DIFF are listed in Table 5.2, where we set the convergence

criterion as

‖b−Axk‖
‖b‖

< 10−12. (5.19)

MSPAI significantly reduces the number of iterations compared to standard SPAI and SPAI2.

Furthermore, it yields level independent convergence rate, as the mesh is nonuniformly

refined from level 5 to level 8 for time steps 1 to 5. However, the right hand sides we

solve for different time steps are different. To give a fair comparison, in Table 5.3, we

also list the number of iterations to solve the same (second) time step but on meshes with

different maximum refinement levels. Multigrid methods are known to have a h-independent

convergence rate, but they have difficulties handling problems with discontinuous coefficients,

convection and strong anisotropy. Now, with the Krylov subspace method on top, our

combination of the multilevel approach and the sparse approximate inverse preconditioners

obtains level independent convergence rate for the DIFF problem with a discontinuous

coefficient.

Moreover, Table 5.4 gives the timing results for the DIFF problem. Although MSPAI

requires a small amount of extra work for multilevel correction, it reduces the overall solver

time by a factor of 4 as compared to the standard SPAI, and it makes the computational

cost scale linearly as the problem size increases.

94



Table 5.4: Timing results (seconds) for DIFF.

time step 1 2 3 4 5 total

NONE 9.85 11.64 43.71 146.28 157.79 369.27
SPAI 2.23 3.17 9.20 25.08 32.17 73.19
SPAI2 2.82 3.55 7.42 13.75 15.84 44.72
MSPAI 0.96 1.71 2.97 6.06 7.54 20.58

Update M 0.12 0.58 0.21 0.32 0.11 1.34
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Figure 5.11: CONVECT: convection-diffusion problem ut = ∇ · (a∇u) + bux in the unit
square [0, 1] × [0, 1] with a Dirichlet boundary condition on the bottom and a Neumann
boundary condition on the other three sides.

5.4.3 A Convection-Diffusion Problem

The second model problem is a convection-diffusion problem

ut = ∇ · (a∇u) + bux (5.20)

in the unit square [0, 1]× [0, 1]. The coefficient b is shown in Figure 5.11. The coefficient a,

the boundary conditions, and the initial solution are the same as in DIFF. We denote this

problem as CONVECT.

The spectra of the preconditioned systems on a typical adaptive mesh for the CONVECT

problem are demonstrated in Figure 5.12. MSPAI shows similar improvement here as in the

DIFF problem, although the complex magnitudes of the eigenvalues are slightly larger due
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Table 5.5: Convergence and timing results for CONVECT.

time step 1 2 3 4 5

`max 5 6 7 8 8
n 4096 6208 12064 23056 32848

convergence (niters)

NONE 832 692 1270 3985 10051
SPAI 140 125 169 249 342
SPAI2 90 80 84 98 92
MSPAI 22 18 19 21 21

timing (secs)

NONE 9.47 12.00 41.88 248.78 882.01
SPAI 2.65 3.62 9.23 25.83 49.64
SPAI2 3.08 3.97 7.30 15.55 19.95
MSPAI 1.25 1.72 3.46 7.35 9.83

Update M 0.14 0.69 0.22 0.36 0.32

to the asymmetry from the convection term.

We list the convergence and timing results for the CONVECT problem in Table 5.5. They

show similar improvement as that in the DIFF problem. The multilevel sparse approximate

inverse preconditioner significantly reduces the number of the iterations and the overall

computational time. Moreover, it achieves level independent convergence rate.

5.4.4 An Anisotropic Diffusion Problem

Anisotropic problems are in general hard for multigrid solvers. So we choose an anisotropic

diffusion problem to demonstrate the capability of our multilevel preconditioner. We solve

a discontinuous anisotropic problem

ut = auxx + buyy + f (5.21)
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Figure 5.12: Spectra of A, MA, M2A, and MmA for CONVECT plotted in complex planes
(the horizontal axes correspond to the real numbers and the vertical axes correspond to the
imaginary numbers).
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Figure 5.13: ANISO: anisotropic problem ut = auxx +buyy +f in the unit square [0, 1]× [0, 1]
with a homogeneous boundary condition on all sides.

in the unit square, with a homogeneous boundary condition. The coefficients a and b are

shown in Figure 5.13. The source function f is 10 in the shadowed area [0.4, 0.6]× [0.4, 0.6]

and zero anywhere else. The initial solution is set as u0 = 0 again. We denote this problem

as ANISO. For this problem, we choose a 5-point sparsity pattern with all 5 points lie on

the direction of strong anisotropy.

We give the convergence and timing results for ANISO in Table 5.6. Again, the MSPAI

preconditioner greatly reduces the number of iterations for the solver and improves the overall

performance. Moreover, it achieves level-independent convergence rate for the anisotropic

diffusion problem too.

5.5 MSPAI for Topology Optimization

The finite element analysis in compliance minimization problems leads to linear elasticity

systems. Figure 5.14 shows the Green’s function for a point source for a 2D elasticity

problem. The problem is defined on the unit square [0, 1]× [0, 1] with homogeneous material

properties and homogeneous boundary conditions on all four sides. The Green’s function now

has x and y components. The point source (loading) is in the x direction and in the center of

the domain. The most significant values in the Green’s function, for both x and y directions,
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Table 5.6: Convergence and timing results for ANISO.

time step 1 2 3 4 5

`max 4 5 6 7 8
n 4096 12544 28672 42496 48640

convergence (niters)

NONE 140 312 558 1271 2563
SPAI 54 127 291 306 430
SPAI2 31 44 77 156 156
MSPAI 28 40 34 36 37

timing (secs)

NONE 1.17 7.30 30.07 100.25 227.71
SPAI 0.79 5.14 26.58 41.51 65.65
SPAI2 0.89 2.86 9.91 29.33 33.49
MSPAI 1.09 3.89 7.25 13.19 19.20

Update M 0.385 0.793 1.516 1.298 0.793

are in the neighborhood of the point source. A SPAI preconditioner can capture the spikes

in the Green’s function with a relatively small sparsity pattern. Unfortunately, the Green’s

function for our elasticity problem is smooth with slowly decaying global components, similar

to diffusion problems. We derive the 2D Green’s function in continuum setting using the

Fourier transform. It has the following form:

g(x, y; x0, y0) =

 ∑
j,k≥1 aj,k sin jπx sin kπy∑
j,k≥1 bj,k sin jπx sin kπy

 , (5.22)

where

aj,k =
k2 + 1−ν

2
j2

1−ν
2

(j2 + k2)2
· 4(1− ν2)

π2E
sin jπx0 sin kπy0, (5.23)

bj,k =
−jk

1−ν
2

(j2 + k2)2
· 4(1− ν2)

π2E
sin jπx0 sin kπy0, (5.24)
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Figure 5.14: Green’s function and its Fourier decomposition for a 2D elasticity problem
on the unit square with homogeneous material properties and homogeneous boundary
conditions. The point source is in the x direction and in the center of the domain. The low-
frequency components are at the corners of the frequency domain, and the high-frequency
components are in the middle of the frequency domain.

E is the Young’s modulus, and ν is the Poisson’s ratio. The coefficients aj,k and bj,k

indicate that the Green’s function has larger low-frequency components and smaller high-

frequency components. These relatively large low-frequency components can not be captured

by standard SPAI while still maintaining a small sparsity pattern (see Figure 5.15). To

remedy this problem, we use multilevel techniques to improve the approximation to the low-

frequency modes. In the following section, we introduce a few extensions to the multilevel

SPAI preconditioner for topology optimization problems.
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Figure 5.15: SPAI and its Fourier decomposition for a 2D elasticity problem on the unit
square with homogeneous material properties and homogeneous boundary conditions. The
point source is in the x direction and in the center of the domain. The low-frequency
components are at the corners of the frequency domain, and the high-frequency components
are in the middle of the frequency domain.
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5.5.1 Adaptation for Topology Optimization

Although topology optimization shares some important properties with diffusion problems,

there are a few more things we need to consider. First, unlike the diffusion problems we

discussed before, topology optimization is a nonlinear process. The differential operator

changes, because it is a function of the changing design variables. Therefore, even though

we do not update the mesh at every optimization step as discussed in Section 2.3.1, we

still need to update the sparse approximate inverse due to the evolution of the design

variables. However, the design variables change slowly, especially towards the end of the

optimization. Many times, there is no change in most of the simulation domain, particularly

in the regions away from the solid/void interface. For those regions, the stiffness matrix

will not change. Hence, we can limit the update of the sparse approximate inverse to the

regions where the design variables do change from the previous optimization step. To be

even more economical, we can postpone updating the columns of the sparse approximate

inverse until the accumulated change of their neighboring design variables exceeds a given

threshold. When this happens, we update these columns and reset the accumulated change

of the corresponding design variables to zero. This further reduces the cost of updating the

sparse approximate inverse. We can control the accuracy of the SPAI and the cost of its

update by tuning the threshold. A higher threshold leads to less frequent updates and less

accurate sparse approximate inverses. We call this approach delayed updating.

Second, as we have discussed in Chapter 3, for topology optimization problems, it is

essential to rescale the system matrix before computing the preconditioner and solving the

system. The residual and the error of the original system and the rescaled system are defined

with respect to different scalings. On a multilevel mesh, system matrices on different levels

may be rescaled differently. So, in order to make a proper multilevel correction, we need to

incorporate rescaling into the multilevel sparse approximate inverse.

Let Ah be defined on a fine mesh and AH on a coarse mesh. We rescale them by their

102



respective diagonals as

Ãh = D
−1/2
h AhD

−1/2
h , ÃH = D

−1/2
H AHD

−1/2
H . (5.25)

Now we solve a rescaled system Ãhx̃h = b̃. Therefore, in our multilevel SPAI preconditioner,

we need to approximate Ã−1
h instead of A−1

h on both the fine mesh and the coarse mesh.

At both level, we compute the sparse approximate inverses M̃h and M̃H for the rescaled

system matrices:

M̃h ≈ Ã−1
h , M̃H ≈ Ã−1

H . (5.26)

We can approximate Ã−1
h on the coarse level as follows:

Ã−1
h = D

1/2
h A−1

h D
1/2
h

≈ D
1/2
h Ih

HA−1
H IH

h D
1/2
h

= D
1/2
h Ih

HD
−1/2
H Ã−1

H D
−1/2
H IH

h D
1/2
h

≈ D
1/2
h Ih

HD
−1/2
H M̃HD

−1/2
H IH

h D
1/2
h . (5.27)

If we define

Ĩh
H = D

1/2
h Ih

HD
−1/2
H , ĨH

h = D
−1/2
H IH

h D
1/2
h , (5.28)

(5.27) can be written as

Ã−1
h ≈ Ĩh

HM̃H ĨH
h . (5.29)

This implies that we can incorporate the difference in scaling at different levels into the

mapping operators.

In Algorithm 5.1, we replace the system matrices Ah and AH with the rescaled matrices

Ãh and ÃH , the sparse approximate inverses Mh and MH with M̃h and M̃H , and the

mapping operators IH
h and Ih

H with the modified ĨH
h and Ĩh

H defined in (5.28). This leads

to a two-level sparse approximate inverse preconditioner for Ãh. Just as in Algorithm 5.1,
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Figure 5.16: MSPAI (v = 1, s = 1) and its Fourier decomposition for a 2D elasticity problem
on the unit square with homogeneous material properties and homogeneous boundary
conditions. The point source is in the x direction and in the center of the domain. The low-
frequency components are at the corners of the frequency domain, and the high-frequency
components are in the middle of the frequency domain.

a recursive call at step 4 makes it a multilevel SPAI preconditioner of Ãh, which we denote

as M̃m.

Last, we notice that the multilevel SPAI preconditioner proposed for the scalar problems

is not accurate enough for elasticity problems. Figure 5.16 shows the MSPAI and its Fourier

decomposition for the 2D the elasticity problem on the unit square with homogeneous

material properties and homogeneous boundary conditions on all the sides. Compared with

Figures 5.14 and 5.15, this MSPAI is improved over the SPAI, but still has noticeable errors

in the low frequency modes. Therefore, to improve the accuracy of the MSPAI for elasticity
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problems, we carry out iterative refinement at the same level and perform multiple coarse

level corrections. This leads to Algorithm 5.2. We denote as s the number of same level

corrections, which can be viewed as multiple smoothing steps in multigrid solvers. We

denote as v the number of coarse level corrections, which can be viewed as multiple V-

cycles, although we do not solve exactly at the coarsest level. Setting the parameters s = 0

and v = 1, we get our original two-level SPAI method. Similarly, a recursive call at step 9

in Algorithm 5.2 makes this algorithm a multilevel scheme. Figure 5.17 shows the MSPAI

with one step of iterative refinement and two coarse level corrections for a point source for

the same elasticity problem as in Figures 5.14, 5.15, and 5.16.

Algorithm 5.2: Two-level SPAI with rescaling and multiple correc-
tions: Compute y ← M̃mz

y ← M̃hz ;1

for i = 1 to s do /* iterative refinement */2

rh ← z − Ãhy ;3

y ← y + M̃hr ;4

end5

for i = 1 to v do /* multiple coarse level corrections */6

rh ← z − Ãhy ;7

rH ← ĨH
h rh ;8

eH ← M̃HrH ;9

eh ← Ĩh
HeH ;10

y ← y + e ;11

end12
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Figure 5.17: MSPAI (v = 2, s = 2) and its Fourier decomposition for a 2D elasticity problem
on the unit square with homogeneous material properties and homogeneous boundary
conditions. The point source is in the x direction and in the center of the domain. The low-
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components are in the middle of the frequency domain.

106



5.6 Numerical Experiments with Topology

Optimization Problems

5.6.1 Implementation with libMesh and PETSc

We use libMesh [41] to support finite element analysis and adaptive mesh refinement,

and PETSc [4, 5] for linear solvers and preconditioners. We build our multilevel sparse

approximate inverse preconditioner based on the multigrid solver in PETSc. Due to the

limitations of these libraries, we need to explicitly build our mapping operators between fine

and coarse meshes in matrix form in libMesh, and pass them to PETSc. The most efficient

way would be to carry out the mapping operations on the mesh directly in libMesh. Again,

because of the asymmetry in the multilevel SPAI preconditioner, we choose to use BiCGStab

solver. PETSc has a BiCGStab implementation.

There are various ways to handle Dirichlet boundary conditions. The default way

in libMesh is to add a large diagonal coefficient to all the fixed DOFs. This is called

penalization. Another way is to set the submatrix corresponding to the fixed degrees of

freedom to an identity matrix. Since the first approach would interfere with the diagonal

scaling in our multilevel SPAI preconditioner, we modify the libMesh code to adopt the

second approach of handling Dirichlet boundary conditions.

To make delayed updating possible, we need more control over the code. Therefore, we

implemented SPAI in PETSc ourselves, even though PETSc has an implementation of SPAI,

which is provided by the SPAI package from Universität Basel [34] and follows the method

in [35]. However, our SPAI code is not optimized in terms of performance.

For delayed updating of SPAI, we update a column only after the accumulated change of

any of its neighboring design variables exceeds a given threshold. However, since libMesh

uses PETSc to solve linear systems and PETSc does not see the mesh information, every time

we do mesh refinement, we need to recalculate the sparse approximate inverse at each level.
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If we had better integration between libMesh and PETSc, we could have had more efficient

implementation for SPAI updates during mesh refinement, like what we have done with the

PARAMESH package.

5.6.2 Numerical Results and Discussion

As we have seen, for the convection-diffusion problems, our multilevel sparse approximate

inverse preconditioner leads to level independent convergence rates for the iterative solver.

This makes the computational cost linear in problem size, which is a major advantage of

this preconditioner. However, the elasticity problems with large jumps in elasticity tensors

that arise in topology optimization are in general harder problems. We list the results of

some convergence tests for 2D and 3D elasticity problems in Tables 5.7 and 5.8. We use

BiCGStab as the solver, since the preconditioned system is not symmetric even though the

elastic problem is symmetric. We compare the number of iterations using both the MSPAI

preconditioner and the incomplete Cholesky preconditioner.

We use α to measure the average growth rate of number of iterations in terms of

the problem size n. To be specific, the number of iterations is O(nα) when the number

of unknowns n increases. Ideally, we would like to see α = 0, which means the

number of iterations does not grow as problem size increases. For topology optimization,

although MSPAI does not lead to level independent convergence rate, a proper choice of

s and v makes the number of iterations close to level independent. Increasing s (the

number of same level corrections) improves the convergence rate, but does not affect the

asymptotic convergence rate α much. Whereas, increasing v improves the convergence

rate asymptotically. Compared with the incomplete Cholesky preconditioner, MSPAI with

multiple corrections improves the convergence rate significantly.

For a 2D elasticity problem demonstrated in Figure 2.8(a) with homogeneous material

properties, we analyze the spectra of the unpreconditioned and preconditioned systems. The

problem is discretized on a 24× 16 mesh. Figure 5.18(a) shows the spectrum of the rescaled
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linear system. The eigenvalues are almost uniformly spread from 0 to 1.8 on the real axis,

while a lot of them are very close to the origin. Figure 5.18(b) shows the spectrum of

the rescaled system left preconditioned by SPAI. The eigenvalues form a cluster around 1,

but there are still a large number of them spread densely from 0 to 1 and a few of them

very close to the origin. Note that some of the eigenvalues are no longer real because the

left preconditioning yields a nonsymmetric system. If we precondition the system using

our MSPAI with only one coarse level correction and no iterative refinement on the same

level, the spectrum of the preconditioned system is shown in Figure 5.18(c). Now, we have

a cluster of more eigenvalues around 1 and much fewer eigenvalues close to the origin. If

we use two coarse level corrections and one step of iterative refinement on the same level,

the spectrum of the preconditioned system as shown in Figure 5.18(d) is further improved.

More eigenvalues are clustered more closely at 1. All eigenvalues are away from the origin

except for one, which is not so close compared to the smallest eigenvalues of the previous

two preconditioned systems.

Now, we apply our multilevel SPAI preconditioner for a real topology optimization

problem on adaptive meshes. To analyze the convergence rate for MSPAI preconditioned

BiCGStab, we turn off the continuation on the material penalization parameter and the

continuation on the convergence tolerance. We solve the 3D cantilever beam problem shown

in Figure 2.4. Figure 5.19 compares the MSPAI results with and without delayed updating.

Delayed updating causes only slight deterioration in the convergence rate, but it reduces

the cost of computing the approximate inverses significantly, and thus improves the overall

performance. The spikes in Figures 5.19 (c) and(d) indicate the optimization steps when

adaptive mesh refinement happens. As we have mentioned in Section 5.6.1, we recalculate

the approximate inverses from scratch after mesh refinement, because libMesh may change

the ordering of the DOFs and PETSc has no access to that information. A better integration

of the meshing package and the solver package, with proper data structures that connects

the mesh and the matrices, may further reduce the cost of computing the sparse approximate
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Figure 5.18: Spectra of the unpreconditioned and preconditioned system for a elasticity
system plotted in the complex plane (the horizontal axes correspond to the real numbers
and the vertical axes correspond to the imaginary numbers). (a) spectrum of the rescaled
system; (b) spectrum of the rescaled system preconditioned by SPAI; (c) spectrum of the
rescaled system preconditioned by MSPAI with one coarse level correction and no iterative
refinement at the same level; (d) spectrum of the rescaled system preconditioned by MSPAI
with two coarse level corrections and one step of iterative refinement at the same level.
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Figure 5.19: Delayed update of SPAI: (a) convergence of BiCGStab with MSPAI (number of
iterations); (b) time to solve the linear system (seconds); (c) time to update/compute SPAIs
on all levels (seconds); (d) total time (pre-solve and solve).

inverses at the time of mesh refinement.

113



Chapter 6

Conclusions

This thesis focused on the computational aspects of topology optimization. In the following

section, we review the major contributions, many of which are not limited to topology

optimization, but are also useful for other simulation and PDE problems. In Section 6.2, we

discuss future work.

6.1 Contributions

Recycling MINRES method We adapted the Krylov subspace recycling idea with the

MINRES method to solve sequences of symmetric systems. We preserved the short-

term recurrence and made the subspace selection significantly cheaper by exploiting

symmetry and choosing a proper subspace to recycle from. The recycling MINRES

method greatly improves the convergence rate and reduces the overall computational

cost compared to MINRES, which is optimal for a single symmetric system.

Multilevel sparse approximate inverse preconditioner For simulations on a dynamic

mesh, the linear system changes constantly due to the change in the mesh. We proposed

a multilevel sparse approximate inverse preconditioner (MSPAI) that is inexpensive to

update when the mesh or the system change only locally. Experiments demonstrate

that this preconditioner results in level independent convergence rate for convection-

diffusion types of problems.
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Extensions of MSPAI for topology optimization We adapted the MSPAI precondi-

tioner for elasticity problems. We allow iterative refinement and multiple coarse level

corrections in order to obtain a better preconditioner. We also incorporate the rescaling

into the multilevel scheme. Experiments show that with these extensions our MSPAI

preconditioner achieves nearly level-independent convergence rate for the elasticity

problems arising in topology optimization. Therefore it scales much better in terms of

convergence rate and total computational cost compared with the standard incomplete

Cholesky preconditioner. We also proposed delayed update for topology optimization

to reduce the cost of computing the preconditioner. The update of the preconditioner

remains inexpensive for the constant but slow change of the design variables.

AMR schemes for topology optimization We proposed a new AMR scheme for topol-

ogy optimization that makes mesh refinement truly dynamic and adaptive. Our AMR

scheme provides room for the design to change and prevents the final design from being

confined by the mesh resulting from designs on coarser meshes.

Analysis of scaling issues in topology optimization We analyzed the conditioning of

the linear system in topology optimization and showed that the extreme ill-conditioning

is largely due to the bad scaling from the solid/void density ratio. We further

demonstrated that a proper rescaling reduces the huge condition numbers typical

in topology optimization to roughly those arising for problems with homogeneous

densities.

Implementation of RMINRES solver in PETSc We implemented and integrated the

recycling MINRES solver in PETSc. Through collaboration with the PETSc

development team, this RMINRES code can be made available in PETSc. In fact,

several research groups have requested our PETSc RMINRES solver and started to use

it in their applications.
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6.2 Future Work

More efficient AMR scheme As the density distribution inside the structures is largely

uniform, coarser elements can be used to represent the interior of the structures. This

requires an appropriate error estimator for the finite element solutions [55] and proper

handling of the sensitivities, but it may further reduce the computational cost.

Recycling CG and BiCGStab methods The recycling MINRES method provides an

insight to a potential recycling CG method. In principle, we can keep the short-term

recurrence in CG with recycling in a similar fashion as in RMINRES. For sequences

of nonsymmetric systems, a variation of BiCGStab can be made very efficient if we

develop a way to recycle in a bi-orthogonal recurrence.

Recycling for adaptive mesh We presented analysis and preliminary ideas for Krylov

subspace recycling on adaptive meshes in Section 4.6. We investigate different

approaches for transforming the recycle space on the old mesh to the new mesh. We

notice that although the transformed recycle vectors on the old mesh resemble the

eigenvectors of the preconditioned system on the new mesh in terms of the angles

between them, the transformed recycle vectors have large residuals as eigenvectors.

Further investigation and thoughts are needed. For example, a few iterations

of the Jacobi-Davidson method may make the transformed recycle vectors better

approximations to the eigenvectors of the preconditioned system.

6.3 Closing Remarks

As topology optimization has become a popular research area, the study in this thesis

provides positive contributions to make it a truly effective tool for designing large structures

and complex materials. This work has brought new perspectives and ideas to the study of

topology optimization, in particular the adaptive mesh refinement strategy, and the linear
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solvers and preconditioners. On the other hand, some of the methods proposed and presented

in this thesis are not limited to topology optimization problems. For example, the recycling

method is generally useful for sequences of systems arising from optimization or nonlinear

problems, and the multilevel SPAI preconditioner has been demonstrated to be effective for

convection-diffusion types of equations. In fact, the work in this thesis has gained interest

from researchers in physics and engineering fields.
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