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Asphalt ConcreteAsphalt Concrete

� Constituents: 
– Asphalt Binder

– Aggregates

� Asphalt Binder: 
– Derived from Crude Oil

– Many times modified with polymers to enhance 
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– Many times modified with polymers to enhance 
properties

– Undergoes oxidative aging (stiffening) with time

� Asphalt Concrete (Asphalt Mixture)
– Large fraction produced as hot-mix asphalt (HMA)

– Most common form of pavement surfacing material 
(96% of pavement surface in United States)



MotivationMotivation

�� Cracking in Asphalt Concrete Pavements Cracking in Asphalt Concrete Pavements 
and Overlays:and Overlays:

�� Reflective crackingReflective cracking

�� Thermal crackingThermal cracking

�� Big Picture:Big Picture:
–– Predict reflective and thermal cracking in asphalt Predict reflective and thermal cracking in asphalt 
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–– Predict reflective and thermal cracking in asphalt Predict reflective and thermal cracking in asphalt 
concrete pavementsconcrete pavements

–– Design pavements and overlays (with/without Design pavements and overlays (with/without 
interlayers) to prevent thermal/reflective crackinginterlayers) to prevent thermal/reflective cracking



MotivationMotivation: Progress in Recent Years: Progress in Recent Years

� Significant improvements have been made 
towards accurate simulation of asphalt 
pavement systems:
– Viscoelastic characterization and modeling

– Fracture energy measurements

– Cohesive zone fracture model

– Integrated studies
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– Integrated studies
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� Sources:
1. Oxidative aging

2. Temperature dependence of material properties

3. Other sources (construction, additives etc.)
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Asphalt Concrete is ViscoelasticAsphalt Concrete is Viscoelastic

Asphalt mixtures from US36 
(near Cameron, MO)
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Temperature = -20ºC



MotivationMotivation

Layered Graded
E1

E2

E3

E(x)

� Layered approach is the current state of practice
– AASHTO MEPDG (Aging Gradient)

Simulation Approaches for Non-Homogeneous Structures

10

– AASHTO MEPDG (Aging Gradient)

Asphalt Concrete
E(t=t’, T(t’))

Granular Base

Subgrade



Pavement Analysis and DesignPavement Analysis and Design
Viscoelastic Lab Characterization: 

(Chapter 3)

(a) Aging Levels

(b) Test Temperatures

Anticipated aging conditions 

(based on distress type and 

design life)

Pavement structure and 

field conditions

Temperature distribution
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Viscoelastic FGM finite-element 

method (Chapters 4 and 5)

(a) CP-Based Analysis

(b) Time-Integration Analysis

Pavement Analysis and Design:

(a) Study of critical responses (e.g. tensile strains at bottom of AC layer)

(b) Prediction of pavement performance

(c) Comparison of design alternatives (structure and/or materials)

Few examples shown in Chapter 6
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ObjectivesObjectives

� Develop efficient and accurate simulation scheme 
for asphalt concrete pavements

� Viscoelastic characterization of asphalt concrete 
(Chapter 3)

� Viscoelastic analysis
a) Correspondence Principle (Chapter 4)
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b) Time Integration Scheme (Chapter 5)

� Account for:
– Aging gradients

– Temperature dependent property gradients

� Simulate asphalt concrete pavements and overlay 
systems (Chapter 6)
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Viscoelastic CharacterizationViscoelastic Characterization

� Asphalt concrete samples

� Use of indirect tensile test (IDT), AASHTO-T322

� Softer/Compliant Mixtures � Crushing under 
loading head

14



Flattened IDT TestFlattened IDT Test

� Increase contact area to prevent crushing 
under loading head

� Viscoelastic solution to bi-axial loading 

� Results indicate flat IDT as a viable alternative 
to IDT
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Viscoelasticity: Commonly used models Viscoelasticity: Commonly used models 
for asphaltic materialsfor asphaltic materials

� Could be classified as:
– Prony series forms (Generalized models)

– Parabolic models

– Others

� Prony series form: Generalized Maxwell Model
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� Prony series form: Generalized Maxwell Model
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Viscoelasticity: Constitutive modelsViscoelasticity: Constitutive models
� Parabolic Models:

– Huet-Sayegh Model (1965):

10,)(

:dashpot)dependent  (time Unit Parabolic

<<= kt
A

t
kσ

ε
Parabolic
Units
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– 2S2P1D Model: Di Benedetto et al. (2005, 2007)

� Other Models: Power law, sigmoidal etc.

� Fewer parameters compared to generalized 

models

� Shared parameters between asphalt binders, 

mastics and mixtures



Viscoelasticity: Prony Series ModelsViscoelasticity: Prony Series Models

� Generalized Maxwell model is selected for the 
current study:
– Applicability to asphaltic and other viscoelastic 
materials

– Flexibility w.r.t. fitting of experimental data

– Equivalence between compliance and relaxation 
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– Equivalence between compliance and relaxation 
forms

– Transformations are well established

– Compatibility with previous research (e.g. GOALI 
study, ABAQUS etc.)

– Availability of model parameters for variety of 
asphalt mixtures
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Viscoelasticity: BasicsViscoelasticity: Basics

� Constitutive Relationship:

� Model of Choice: Generalized Maxwell Model
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� Time-Temperature Superposition
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Viscoelasticity: Correspondence PrincipleViscoelasticity: Correspondence Principle

� Correspondence Principle (Elastic-Viscoelastic 
Analogy): “Equivalency between transformed (Laplace, 
Fourier etc.) viscoelastic and elasticity equations”
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εσ K3= εσ ~~
3~ K=

� Extensively utilized to solve variety of nonhomogeneous
viscoelastic problems:
� Hilton and Piechocki (1962): Shear center of non-homogeneous 

viscoelastic beams

� Mukherjee and Paulino (2003): Correspondence principle for
viscoelastic FGMs



Graded Graded Finite ElementsFinite Elements

� Graded Elements: Account for 
material non-homogeneity within elements
unlike conventional (homogeneous) elements

� Lee and Erdogan (1995) and Santare and Lambros (2000) 

– Direct Gaussian integration (properties sampled at integration points) 

� Kim and Paulino (2002) 

Homogeneous Graded

� Kim and Paulino (2002) 
– Generalized isoparametric formulation (GIF)

� Paulino and Kim (2007) and Silva et al. (2007) further 
explored GIF graded elements
– Proposed patch tests

– GIF elements should be preferred for multiphysics applications 

� Buttlar et al. (2006) demonstrated need of graded FE for 
asphalt pavements (elastic analysis)
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Generalized Generalized IsoparametricIsoparametric Formulation (GIF)Formulation (GIF)

� Material properties are sampled at the element nodes

� Iso-parametric mapping provides material properties at 
integration points

� Natural extension of the conventional isoparametric
formulation

)),.(egPropertiesMaterial yΕ(x y

( ) [ ]0, 3 2E x y E Exp x y= −
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General FE General FE ImplementationImplementation

� Variational Principle (Potential):
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� Stationarity forms the basis for problem description:
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NonNon--Homogeneous Viscoelastic FEMHomogeneous Viscoelastic FEM

� Equilibrium:

� Solution approaches:
1. Correspondence Principle (CP)
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2. Time-Integration Schemes

� Recursive Formulation

ã(s) is Laplace transform of a(t); s is transformation variable
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NonNon--Homogeneous Viscoelastic FEMHomogeneous Viscoelastic FEM
1. Correspondence Principle (CP)

� Benefits:

– Solution does not require evaluation of hereditary integral

– Direct extension of elastic formulations

� Limitations:

– Inverse transformations are computationally expensive 

– Transform/Convolution should exist for material model and 
boundary conditions boundary conditions 

2. Time-Integration Schemes (Recursive formulation)

� Benefits:

– Fewer limitations on material model and boundary conditions

� Limitations:

– Convergence studies are required to determine time step size

– Elaborate formulation and implementation

� Both are explored in this dissertation
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CPCP--Based Implementation (Ch. 4)Based Implementation (Ch. 4)

Define problem in time-domain (evaluate load vector        ..

and stiffness matrix components            and         )

Perform Laplace transform to evaluate             and            ..

Solve linear system of equations to evaluate nodal 

displacement, 
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Verification examples:
1. Analytical solution (Creep extension shown here)

2. Comparison with commercial software
28

displacement, 

Perform inverse Laplace transforms to get 

the solution, 

Post-process to evaluate field quantities of interest 

( )iu s%

( )i
u t

Collocation is chosen 
as method of choice
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Verification with ABAQUS: Material GradationVerification with ABAQUS: Material Gradation
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Time Integration Approach (Ch. 5)Time Integration Approach (Ch. 5)

� Above could be solved sequentially using 
Newton-Cotes expansion (material history 
effect needs to be considered)
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� Alternatively, recursive formulation could be 
developed that requires only few previous 
solutions
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TimeTime--Integration Analysis (Ch. 5)Integration Analysis (Ch. 5)

Recursive Formulation (Yi and Hilton, 1994):
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Verification examples:
1. Analytical solution (Stress relaxation shown here)

2. Comparison with commercial software
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Verification: Comparison with ABAQUSVerification: Comparison with ABAQUS

� Temperature Dependent Property Gradient
– ABAQUS Simulations: Using layered gradation

– Temperature distribution �
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Ref. Temperature = -20 C
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Functionally Graded Viscoelastic Asphalt Functionally Graded Viscoelastic Asphalt 
Concrete ModelConcrete Model
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� Viscoelastic Characterization of Asphalt 
Concrete

� Viscoelastic FGM Finite Elements

� Correspondence Principle Based Analysis
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� Correspondence Principle Based Analysis

� Time Integration Analysis

� Application Examples: Asphalt Pavement

� Summary and Conclusions



Pavement Analysis and DesignPavement Analysis and Design
Viscoelastic Lab Characterization: 

(Chapter 3)

(a) Aging Levels

(b) Test Temperatures

Anticipated aging conditions 

(based on distress type and 

design life)

Pavement structure and 

field conditions

Temperature distribution
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Viscoelastic FGM finite-element 

method (Chapters 4 and 5)

(a) CP-Based Analysis

(b) Time-Integration Analysis

Pavement Analysis and Design:

(a) Study of critical responses (e.g. tensile strains at bottom of AC layer)

(b) Prediction of pavement performance

(c) Comparison of design alternatives (structure and/or materials)

Few examples shown in Chapter 6
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ExampleExample--1: Full Depth AC Pavement1: Full Depth AC Pavement
� Based on I-155, Lincoln IL

� Single Tire load simulated (up to 1000 sec loading time)

� Aged material properties (Apeagyei et al., 2008)

� Surface of AC: Long term aged

� Bottom of AC: Short term aged

Surface Course (38.1 mm)2.5
x 10

5
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ExampleExample--1: FEM 1: FEM DiscretizationDiscretization

Coarse Mesh Fine Mesh

6 Layers

� Two mesh refinement levels

� Coarse mesh: Graded and Homogeneous simulations

� Fine Mesh: Layered simulations
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ExampleExample--1: Simulation Results1: Simulation Results

� Material Distributions:

� FGM

� Layered

� Aged

� Unaged

� Pavement Responses:

� Tensile strain at bottom of asphalt layer (to 
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� Tensile strain at bottom of asphalt layer (to 

investigate cracking and fatigue)

� Shear strain at wheel edge (longitudinal 

cracking/rutting)

� Comparison of FGM and Layered predictions

� Compressive strain at interface of asphalt layers
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ExampleExample--1: Strain at Bottom of AC1: Strain at Bottom of AC
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ExampleExample--1: Peak Shear Strain1: Peak Shear Strain
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ExampleExample--1: FGM vs. Layered1: FGM vs. Layered
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Example 2: Graded InterfaceExample 2: Graded Interface

� Pavement: LA34, Monroe LA

� Two simulation scenario

47

� Two simulation scenario

1. Step interface 2. Graded interface
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Material PropertiesMaterial Properties
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Functionally Graded Viscoelastic Asphalt Functionally Graded Viscoelastic Asphalt 
Concrete ModelConcrete Model
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Concrete

� Viscoelastic FGM Finite Elements
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� Correspondence Principle Based Analysis

� Time Integration Analysis

� Application Examples: Asphalt Pavement

� Summary and Conclusions



SummarySummary

� Viscoelastic graded finite elements using GIF are 
proposed

� Correspondence principle based formulation is 
developed and implemented

� Recursive formulation is utilized for time-integration 
analysis

� Verifications are performed by comparison of present 
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� Verifications are performed by comparison of present 
approaches with:
– Analytical solutions

– Commercial software (ABAQUS)

� Asphalt pavement systems are simulated:
– Aged pavement conditions

– Graded interfaces



ConclusionsConclusions

� Aging and temperature dependent property 
gradients should be considered in simulation of 
asphalt pavements

� Non-homogeneous viscoelastic analyses 
procedures presented here are suitable and 
preferred for simulation of asphalt pavement 
systemssystems

� Proposed procedures yield greater accuracy and 
efficiency over conventional approaches

� Layered gradation approach can yield significant 
errors

– Most pronounced errors are at layer interfaces in the 
stress and strain quantities.
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Conclusions (cont.)Conclusions (cont.)

� Interface between asphalt concrete layers can be 
realistically simulated using the procedures 
discussed in the current dissertation

� When using the layered approach, averaging at 
layer interfaces may lead to significantly different 
predictions as compared to the FGM approach

– The difference is usually exaggerated with time – The difference is usually exaggerated with time 
when a significant viscoelastic gradation is 
present
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Other Applications and Future ExtensionsOther Applications and Future Extensions

Applications and ExtensionsApplications and Extensions

Transition Layers Characteristics
Micromechanical Predictions

Graded Viscoelastic + 
Stress Dependent Model
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Applications and ExtensionsApplications and Extensions

Design of Viscoelastic 

FGMs

( , )E x t

Analysis of graded viscoelastic 
materials:
• Metals at high temperature
• Polymers
• Geotechnical materials
• PCC/FRC
• Biomaterials
• Food industry

Other material models:
• 2S2P1D
• Power law etc.

ABAQUS UMAT Subroutine 



Thank you for your attention!!Thank you for your attention!!

E1 E2 EN

τ1 τ2 τN

Questions??Questions??
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