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ABSTRACT 

ASPHALT PAVEMENT AGING AND TEMPERATURE DEPENDENT PROPERTIES THROUGH A 

FUNCTIONALLY GRADED VISCOELASTIC MODEL 

 
Eshan V. Dave 

Department of Civil and Environmental Engineering 

University of Illinois at Urbana Champaign 

 

William G. Buttlar, Advisor 

Glaucio. H. Paulino, Advisor 

 

Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative 

aging of asphalt binder and temperature cycling due to climatic conditions being the 

major cause of non-homogeneity. Current pavement analysis and simulation procedures 

dwell on the use of layered approach to account for these non-homogeneities. The 

conventional finite-element modeling (FEM) technique discretizes the problem domain 

into smaller elements, each with a unique constitutive property. However the assignment 

of unique material property description to an element in the FEM approach makes it an 

unattractive choice for simulation of problems with material non-homogeneities. 

Specialized elements such as “graded elements” allow for non-homogenous material 

property definitions within an element. This dissertation describes the development of 

graded viscoelastic finite element analysis method and its application for analysis of 

asphalt concrete pavements. 

Results show that the present research improves efficiency and accuracy of 

simulations for asphalt pavement systems. Some of the practical implications of this work 

include the new technique’s capability for accurate analysis and design of asphalt 

pavements and overlay systems and for the determination of pavement performance with 

varying climatic conditions and amount of in-service age. Other application areas include 

simulation of functionally graded fiber-reinforced concrete, geotechnical materials, metal 

and metal composites at high temperatures, polymers, and several other naturally existing 

and engineered materials. 
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CHAPTER 1 – INTRODUCTION 

 

 

CHAPTER 1 - INTRODUCTION 

1.1 BACKGROUND 

Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative 

aging of asphalt binder and temperature cycling due to climatic conditions represent the 

major cause of this non-homogeneity. Current pavement analysis and simulation 

procedures involve the use of a layered approach to account for these non-homogeneities; 

a common example of such an approach is the recently developed American Association 

of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Design 

Guide (MEPDG) [1]. Figure 1-1 illustrates the difference between layered and smoothly-

graded approaches for a simple geometry consisting of material variation in one 

direction. In this example the layered approach is shown with sub-division of body into 

three layers and each modeled using average properties ( iE ), where as in case of 

smoothly-graded modeling approach the material variation is accounted for through 

spatial dependence of material property, given by ( )E x .  

 

Figure 1-1: Layered versus smoothly-graded modeling approach 

 

The conventional finite-element modeling (FEM) technique discretizes the problem 

domain into smaller elements, each with a unique constitutive property. The capability to 

effectively discretize the problem domain makes it an attractive simulation technique for 

Layered Approach Smoothly Graded Approach 

1E
2E

3E

 E x

x
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modeling of complicated boundary value problems such as asphalt concrete pavements. 

However the assignment of unique material property description to an element in the 

conventional FEM approach makes it an unattractive choice for simulation of problems 

with material non-homogeneities. Specialized elements such as “graded elements” allow 

for non-homogenous material property definitions within an element. This dissertation 

describes the development of a graded viscoelastic finite element analysis method and its 

application for analysis of asphalt concrete pavements. Apart from simulation of asphalt 

pavements, the present approach could also be utilized for the analysis of other 

engineering systems that exhibit graded viscoelastic behavior. Examples of such systems 

include metals and metal composites at high temperatures [2, 3]; polymeric and plastic 

based systems that undergo oxidative and/or ultraviolet hardening [4-6] and graded fiber 

reinforced cement and concrete structures [7]. Other application areas for the graded 

viscoelastic analysis includes accurate simulation of the interfaces between viscoelastic 

materials such as the layer interface between different asphalt concrete lifts or 

simulations of viscoelastic gluing compounds used in the manufacture of layered 

composites [8]. 

1.2 ASPHALT PAVEMENT SYSTEMS 

There are over 2.2 million miles of paved roads across the United States, out of 

which 94% are surfaced with asphalt concrete [9]. Asphalt concrete pavements (also 

known as flexible pavements) can be broadly classified into four types.  

1.2.1 Conventional Asphalt Pavements 

These types of pavement systems are most commonly utilized and the pavement 

structure consists of subbase, base, and asphalt concrete layer on top of soil subgrade. 

The layer thicknesses depend on the traffic loading as well as the soil subgrade 

conditions. Figure 1-2 shows typical cross-section of conventional asphalt pavement 

systems. 
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Figure 1-2: Typical Cross Section of Conventional Asphalt Pavement 

 

1.2.2 Full-Depth Asphalt Pavements:  

As the name suggests this type of pavement systems eliminates the need for base or 

subbase layers and instead a thicker asphalt concrete layers is constructed directly on top 

of the soil subgrade. In case of poor subgrade conditions, the top few inches of soil 

subgrade may be stabilized to improve the support conditions. A typical full-depth asphalt 

pavement cross-section is illustrated in Figure 1-3. 

 

Figure 1-3: Typical Cross Section of Full-Depth Asphalt Pavement 

 

1.2.3 Surface Treatments  

The primary applications for surface treatments can be divided into two categories: 

(1) low volume roads, and (2) surface improvement (non structural overlays). For low 

volume roads, the surface treatments provide a low cost riding surface with limited 

structural capacity. On a deteriorated pavement surface, treatments such as open graded 

Surface Course (Asphalt Concrete)          (25-50 mm/1–2 inch) 

Binder Course (Asphalt Concrete)       (200-400 mm/8–16 inch) 

Soil Subgrade (top ~150 mm/6 inch are treated/compacted) 

Surface Course (Asphalt Concrete) (25-50mm/1–2 inch) 

Binder Course (Asphalt Concrete) (50-100mm/2–4 inch) 

Base/Sub-base (Granular or Stabilized Material)  

(100-300mm/4–12 inch) 

Soil Subgrade (top ~150 mm/6 inch are treated/compacted) 
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friction courses (OGFC) are constructed to improve drivability and reduce surface 

distresses such as low friction resistance or raveling or to improve drainage.  

 

Figure 1-4: Typical Cross Section of Surface Treatments 

 

1.2.4 Overlay Systems 

Asphalt concrete overlay systems provide an economical and rapid means for 

improving the structural and functional capabilities of deteriorated asphalt or concrete 

pavements.  Apart from usage of traditional dense graded asphalt concrete layers a variety 

of specialty systems have been developed. For instance the reflective crack relief 

interlayer (RCRI) system described by Blankenship et al. [10], RCRI is engineered to 

improve the reflective cracking resistance of asphalt overlays.  

  

 

Figure 1-5: Typical Cross Section of Overlay Systems 

 

Asphalt Overlay System   (50-100 mm/2–4 inch) 

(may have multiple layers/mixtures) 

Soil Subgrade (top ~150 mm/6 inch are treated/compacted) 

Existing Deteriorated/Cracked Pavement 

       (varying thickness) 

Surface Course (Asphalt Concrete)   (19-50 mm/0.75–2 inch) 

Base Course  

(Granular or stabilized) 

       (75-150 mm/3–6 inch) 

Soil Subgrade (top ~150 mm/6 inch are treated/compacted) 

Existing Deteriorated Pavement 

       (varying thickness) 
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1.3 REFLECTIVE AND THERMAL CRACKING IN ASPHALT PAVEMENTS 

Reflective and thermal cracking in asphalt pavements and overlays are a major 

source of pavement deterioration and structural failure. Thermal cracks in asphalt 

pavements form as a result of high cooling rates and/or low pavement temperature as a 

result of climatic events. When the thermally induced straining causes stresses in the 

longitudinal direction to exceed material capacity, damage is initiated.  This damage can 

eventually result in the development of fully grown transverse crack. A typical thermal 

crack in an asphalt pavement is shown in Figure 1-6. An ongoing United State 

Department of Transportation (USDOT) pooled fund study is focused on the 

development of laboratory testing and computer simulation procedures for improving the 

prediction of thermal cracking in asphalt pavements. The first phase of this study made 

tremendous strides in development of analytical and numerical prediction models on 

cracking in asphalt concrete [11]. One of the future extensions to the fracture prediction 

procedures developed in this study is to capture the effects of aging in the asphalt 

pavements. 

 

 

Figure 1-6: Thermal Cracking in Asphalt Pavement 
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When an overlay is placed on an existing pavement, physical separation of the 

overlay often takes place as a result of movement at the joints and cracks in the 

underlying pavement layer. Temperature and tire-induced movements, concentrated at 

underlying joints and cracks in the existing pavement lead to stresses in the overlay, 

which significantly contribute to reflective cracking.   Reflective cracking in the overlay 

allows water to percolate into the pavement structure and weaken the subbase and also 

contributes to many forms of pavement deterioration, including increased roughness and 

spalling. Figure 1-7 shows a reflective crack in the field for a pavement section located at 

IA9 near Decorah, IA. 

 

 

 

Figure 1-7: Reflective Cracking in Asphalt Overlay 

 

Paulino et al. [12] undertook a joint study between the National Science Foundation 

(NSF), the University of Illinois and an industry partner on integrated approach for 

reflective cracking control treatment analysis and design procedures. This study produced 

significant developments on laboratory fracture characterization and numerical 
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simulations of cracking in asphalt pavements. Wagoner et al. [13-17] developed fracture 

tests for asphalt concrete and performed extensive testing on laboratory and field samples 

for overlay and interlayer mixtures. Cohesive zone fracture models tailored for asphalt 

concrete have been developed by Song et al. [18-21]. The integration of laboratory 

fracture testing and cohesive zone fracture model has been successfully performed for the 

NSF study and other follow up studies on thermal and reflective cracking of asphalt 

pavements and overlays [22, 23]. 

Besides the two research projects described previously several other researchers have 

explored modeling approaches for study of cracking in pavements. However, most of 

these studies ignored the property gradients in asphalt pavements due to oxidative aging 

and effect of non-homogeneous temperature distributions. 

Non-homogeneous viscoelastic analysis procedures are developed through the 

doctorate research described in this dissertation. When incorporated with the previous 

research preformed at the University of Illinois [12-22, 24] the research described herein 

will increase simulation reliability of thermal and reflective cracking in asphalt 

pavements through accurate and efficient consideration of aging and thermally induced 

property gradients in asphalt pavements. 

1.4 PROBLEM STATEMENT 

The main objective of this research is to develop a procedure that can accurately and 

efficiently simulate linear viscoelastic response of asphalt concrete pavements. The 

scheme should be capable of accounting for the linear viscoelastic material behavior at 

moderate and low temperatures, and the material property gradients caused by the effects 

of oxidative aging and thermal gradients. The formulations and implementations should 

undergo in-depth verification to ensure the accuracy and comparisons with conventional 

approaches should be made to demonstrate the efficiency of procedures developed herein. 

1.5 RESEARCH OBJECTIVES AND OUTLINE 

In order to develop a simulation scheme according to the problem statement 

described above the objectives for this research were identified as follows: 
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 Development and implementation of a finite-element analysis method (code) 

that can effectively and accurately solve linear viscoelastic problems 

 Implementation of specialized graded element(s) to capture time-dependent 

material gradation 

 Application of the aforementioned analysis techniques for the simulation of 

asphalt concrete pavements under typical loading conditions. 

The research outline employed to meet the objectives listed above has been 

summarized in Figure 1-8. The key development includes implementation of finite-

element analysis code for solving functionally graded viscoelastic boundary value 

problems. This can be performed by two approaches: (1) the use of an elastic-viscoelastic 

correspondence principle, and; (2) the use of a time-integration scheme. More details on 

each item within this outline are discussed in subsequent chapters. 

 

Figure 1-8: Outline of Doctorate Research 

Objective: Effectively simulate asphalt concrete pavements 

with consideration of aging and thermal gradients 

Requirement: Develop functionally graded 

viscoelastic finite element analysis procedure 

Use elastic-viscoelastic 

correspondence principle for 

development of analysis 

procedure 

Use time-integration scheme for 

development of analysis 

procedure 

Verify analysis procedure Verify analysis procedure 

Compare two graded viscoelastic analyses approaches with 

layered approach 

Simulations of Asphalt Concrete Pavements: 

 Demonstrative Examples (Comparison to layered approach) 

 Simulation of Different Types of Asphalt Pavement Systems 
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1.6 ORGANIZATION OF DISSERTATION 

This dissertation consists of eight chapters. The subsequent chapters are organized as 

follows, 

 Review of FGMs and Viscoelastic Models: This chapter describes the 

background information on FGMs and commonly used viscoelastic constitutive 

models. In addition to the background information, this chapter provides the 

summary of previous research that has been conducted in fields of simulation of 

FGMs, simulation of viscoelastic materials, and modeling of asphalt pavements. 

 Viscoelastic Characterization of Asphalt Concrete: The testing and analysis 

procedures in regular and flattened indirect tensile configuration are discussed in 

this chapter. Viscoelastic characterization of three mixtures is presented and 

comparisons are made between results from regular and flattened geometries. 

  Functionally Graded Viscoelastic Finite Element Analysis using 

Correspondence Principle: The basic viscoelastic constitutive relations are 

presented in this chapter followed by the formulation of the viscoelastic graded 

finite-element procedure. The implementation details along with verification 

examples are presented in the later portion of this chapter. 

 Functionally Graded Viscoelastic Finite Element Analysis using Time 

Integration Scheme: Background information on various time-integration 

schemes for viscoelastic finite-element analysis is presented. Detailed 

description of the time-integration schemes of interest are presented in this 

chapter followed by the verification examples. 

 Case Studies, Asphalt Concrete Pavement Systems: This chapter describes a 

variety of example problems where the analysis procedures developed in 

chapters 4 and 5 are utilized for simulation of three types of asphalt pavements 

systems. The simulation results are discussed and comparisons are made 

between the procedure proposed in this dissertation and the typical simulation 

approaches.   
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 Conclusions and Extensions: The contributions and key findings from this study 

are described in this chapter along with the recommendations and future 

extensions. 

 Nomenclature: This chapter describes the list of symbols that have been used 

throughout this dissertation. Unless otherwise indicated the symbols used in the 

write-up, figures, equations and tables refer to this chapter.  

 References, Appendices, and Author’s Biography 
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CHAPTER 2 – REVIEW OF FGMs AND VISCOELASTIC MODELS 

 

CHAPTER 2 – REVIEW OF FGMS AND VISCOELASTIC MODELS 

2.1 FUNCTIONALLY GRADED MATERIALS 

Functionally Graded Materials (FGMs) are characterized by spatially varied 

microstructures created by non-uniform distributions of the reinforcement phase with 

different properties, sizes and shapes, as well as, by interchanging the role of 

reinforcement and matrix materials in a continuous manner [25]. They are usually 

engineered to produce property gradients aimed at optimizing structural response under 

different types of loading conditions (thermal, mechanical, electrical, optical, etc) [26]. 

These property gradients are produced in several ways, for example by gradual variation 

of the content of one phase (ceramic) relative to other (metallic) used in thermal barrier 

coatings, or by using a sufficiently large number of constituent phases with different 

properties [27]. Hilton [28, 29] has proposed designer viscoelastic FGMs (VFGMs) that 

are tailored to meet the design requirements such as viscoelastic columns subjected to 

axial and thermal loads. Muliana [30] has recently proposed micro-mechanical model for 

thermo-viscoelastic response of FGMs. 

Apart from the engineered or tailored FGMs, several engineering materials naturally 

exhibit graded material properties. Silva et al. [31] have extensively studied and 

simulated bamboo, which is a naturally occurring graded material. Apart from natural 

occurrence a variety of materials and structures exhibit non-homogeneous material 

distribution and constitutive property gradations as an outcome of manufacturing or 

construction practices, aging, different amount of exposure to deteriorating agents etc. 

Asphalt concrete pavements are one such example, whereby aging and temperature 

variation yield continuously graded non-homogeneous constitutive properties. 
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2.2 ASPHALT CONCRETE PAVEMENTS AS GRADED STRUCTURES 

The constituents of asphalt concrete include asphalt binder (bitumen) and mineral 

aggregates. Asphalt binder is derived from crude oil as a by-product of fractional 

distillation. Due to its organic nature asphalt binder undergoes oxidative aging as time 

progresses, the effect of which is most prominent in form of hardening or stiffening. The 

effect of aging creates graded material properties due to variation in the amount of aging 

across the depth of pavement. The Strategic Highway Research Program (SHRP) Project 

A-368 dealt with the chemical composition changes during the aging process of asphalt 

binders. The final report from this project identifies the process of age hardening as a 

non-reversible and continuous process that extends throughout the life of a pavement 

[32]. The aging and temperature induced property gradients have been well documented 

by several researchers in the field of asphalt pavements [30, 33-35]. The current state-of-

the-art in viscoelastic simulation of asphalt pavements is limited to either ignoring non-

homogeneous property gradients [22, 36-38] or considering them through a layered 

approach, for instance, the model used in the American Association of State Highway and 

Transportation Officials (AASHTO) Mechanistic Empirical Pavement Design Guide 

(MEPDG) [1]. Significant loss of accuracy from the use of the layered approach for 

elastic analysis of asphalt pavements has been demonstrated [39]. 

Age hardening can be divided into two stages. Mirza and Witczak [33] refers to them 

as short term hardening, which occurs during the mix production and construction and in-

situ field aging which occurs during the service life of a pavement. In-situ field aging or 

long-term aging is the source of property gradient through the pavement. Illustration of 

aging gradient through the asphalt concrete pavement thickness is shown in Figure 2-1. 

The illustration is based on prediction made by “Global Aging Model” used in AASHTO 

MEPDG [1] for an eight year old asphalt concrete pavement located in central Illinois 

type climatic conditions.  
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Figure 2-1: Asphalt Concrete Complex Modulus after Eight-Years in Service (predicted 

using Mirza and Witczak’s global aging model)    

 

Constitutive properties of asphalt concrete are significantly temperature dependent. 

Asphalt concrete creep compliance varies significantly with temperature (c.f. Figure 2-2). 

Nam and Bahia [40] have measured and reported a significant dependence of coefficient 

of thermal expansion of asphalt binder and mixtures on temperature. Due to climatic 

variations the pavement structure undergoes transient thermal conditions. Typical 

variation of temperature in asphalt concrete pavement during the course of a winter day is 

shown in Figure 2-2. Due to temperature gradients, material property gradients are 

essentially always present within asphalt pavements.  

Other sources of graded material properties through the pavement includes effects of 

moisture, material gradation formed due to non-uniform compaction, bad construction 

practices (such as segregation), etc. 
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Figure 2-2: Temperature Variation through the Thickness of Asphalt Concrete Pavement   

2.3 ASPHALT CONCRETE MATERIAL BEHAVIOR 

Krishnan and Rajagopal [41] have reviewed the history of asphalt usage, its 

mechanical behavior and historical modeling approaches. Asphalt concrete exhibits 

viscoelastic material behavior at low and moderate pavement service temperatures [42]. 

The indirect tensile test (IDT) developed by Buttlar and Roque [43] and adopted as 

AASHTO T-322 [44] is the most commonly used procedure for viscoelastic 

characterization of asphalt concrete materials. The test procedure typically involves 1000-

second creep testing of three replicate samples at three test temperatures. Creep-

compliance at various test temperatures is calculated from the IDT creep testing. Chapter 

3 describes the analysis procedure for extraction of viscoelastic properties from indirect 

tensile creep tests. Creep-compliances for a 9.5-mm nominal maximum aggregate size 

(NMAS) mixture, manufactured with a typical Illinois roadway binder (PG64-22 [45]) at 

temperatures of 0, -10, and -20°C, are shown in Figure 2-3 [16]. The creep compliance 

measured at three temperatures could be shifted using time-temperature superposition 

principle to obtain creep-compliance master-curve. Creep compliance master-curve could 

thereafter be interconverted to obtain the relaxation modulus master-curve, which is 

shown in Figure 2-4 [43, 46]. Notice that as common with other polymeric materials the 

bulk compliance/modulus seems to have a delayed creep/relaxation behavior.  
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Figure 2-3: Creep Compliance of 9.5-mm NMAS PG64-22 Asphalt Concrete 

  

Figure 2-4: Relaxation Modulus Master-curve of 9.5-mm NMAS  

PG64-22 Asphalt Concrete 
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By comparing Figure 2-2 and Figure 2-3 the severity of the material property 

gradient created due to temperature variation can be seen. For example, if the pavement 

surface temperature is -10°C and the temperature at the bottom of the asphalt concrete 

layer is 0°C the properties could have as much as 50% difference even at loading times as 

short as 10-seconds. This effect becomes exaggerated at longer loading times. Apart from 

the temperature dependence of material properties the thermal gradients also cause 

inaccuracies in commercially available finite-element simulation codes (such as Abaqus) 

since they usually utilize an averaged element temperature in the calculations rather than 

allowing for temperature variation within the element. 

2.4 REVIEW OF VISCOELASTIC MODELS 

It is common practice to visualize viscoelastic material models by means of different 

arrangements of linear spring(s) and linear dashpot(s). Major benefits of using springs 

and dashpots for visualization of viscoelastic material models are: 

 Springs and dashpots allow us to visualize behavior of material with more ease, 

which may not be the case of purely mathematical models 

 It is easy to arrange springs and dashpots in various series and parallel 

arrangements, whereby if material behavior is well understood, it is easy to 

come up with a model that will duplicate this behavior 

 Spring-Dashpot systems allow user to add or remove springs and dashpots on 

basis of the complexity of material behavior 

The basic response of a linear spring is same as that of a linear elastic material and of 

a dashpot is same as of Newtonian fluid. The constitutive relationships for these basic 

elements are given as, 

 

Linear Spring, 

Linear Dashpot, 

ij ijkl kl

kl
ij ijkl

C

d

dt

 


 




 (2.1) 

Please refer to the Chapter 8: Nomenclature for description of the symbols throughout 

this dissertation.  
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In the case of asphaltic materials, the basic viscoelastic models such as Maxwell, 

Kelvin, 3-parameter solid and 3-parameter liquid models are too simple to properly 

capture the actual material behavior. Burger’s model could probably capture the behavior 

of asphalt binder. However in general, it is not very suitable for asphalt mixtures. More 

commonly used viscoelastic models for asphalt concrete include: 

 Generalized models (Prony series models) 

 Parabolic models 

 Power law model 

 Sigmoidal models 

2.4.1 Generalized Models 

Generalized models are developed by series or parallel combinations of number of 

simpler models (such as Maxwell or Kelvin Model). Through the combination of simpler 

models it is possible to capture complex responses, such as those exhibited by asphalt 

mixtures. The most commonly used form of generalized viscoelastic models are 

generalized Maxwell model and generalized Kelvin model. Both of these models are 

inter-convertible to each other depending on prescribed condition. For strain prescribed 

conditions generalized Maxwell model can be expressed in form of Prony series, the 

generalized Kelvin model takes similar form for stress prescribed condition. Therefore 

these models are also known as Prony series form. 

Generalized Maxwell Model: This model is obtained through parallel arrangement of 

a number of Maxwell models. Figure 2-5 illustrates a common form of generalized 

Maxwell model. The material properties such as shear and bulk moduli for the 

generalized Maxwell model are given as, 

    
1

/
n

ijkl ijkl ijklh h
h

C C Exp t 


  
   (2.2) 

where,  ijkl h
C  are the spring (elastic) constants, and  ijkl h

  are the relaxation time 

of each Maxwell unit. Relaxation time is related to spring constant and dashpot viscosity 

as, 
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C


   (2.3) 

 

Figure 2-5: Generalized Maxwell Model 

 

Generalized Kelvin Model: This model is obtained by series arrangement of a 

number of Kelvin models as shown in Figure 2-6. Notice that the generalized Kelvin 

model illustrated here is the Prony series form corresponding to the generalized Maxwell 

model discussed previously. This model being of preference for stress prescribed 

conditions, the material properties such as shear or bulk compliances are commonly 

represented by it. The compliance for the generalized Kelvin model is given by, 

         
 0

1
0

1 /
n

ijkl ijkl ijkl ijklh h
h ijkl

t
D t D D Exp t 



     
   (2.4) 

 where  ijkl h
D  are the spring compliances and  ijkl h

  are the retardation time of the 

Kelvin units which is related to spring compliances and dashpot viscosities  ijkl h
  as, 

 D   (2.5) 

𝐸1 𝐸2 𝐸3 𝐸ℎ  

𝜏1 𝜏2 𝜏3 𝜏ℎ  
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Figure 2-6: Generalized Kelvin Model 

2.4.2 Parabolic Models 

Huet [47] proposed the parabolic relationship for viscoelastic behavior of 

hydrocarbon based materials. The relationship proposed by Huet can be visualized in the 

form of a special type of dashpot whereby the constitutive relationship has a parabolic 

form as function of time. Strain for a prescribed stress 𝜎 for parabolic model proposed by 

Huet is given as,  

   ,0 1kt t k
A


     (2.6) 

The parameters A  and k  are generally determined through experiments. 

Sayegh [48] proposed the Huet-Sayegh model for asphalt concrete materials; the 

Huet-Sayegh model uses the linear springs and the parabolic dashpots. This model 

consists of total of six material parameters, one for each spring and two for each 

parabolic unit. The Huet-Sayegh model is illustrated in Figure 2-7. 

In recent years Di Benedetto and colleagues [49-52] have further extended the Huet-

Sayegh model, they have proposed a 2S2P1D (2-springs, 2-parabolics, and 1-dashpot) 

model, whereby a dashpot has been added in series combination with the spring and 

parabolic unit. An illustration of the 2S2P1D model is shown in Figure 2-8. The 2S2P1D 

model has been shown to have fit the asphalt concrete data with significantly fewer 

𝐷0 

𝐷1 

𝐷2 

𝜆1 

𝜆2 

𝜂0 
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parameters when compared to generalized models [51]. Another merit of the 2S2P1D 

model for application to asphaltic materials is presence of unique model parameters going 

from binders to mastics to mixtures as show by Di Benedetto et al. [51, 52]. A functional 

form of 2S2P1D model for creep compliance can be given by, 

  
 

 
 

 0

/ /1 1
1

1 1

k h
t t t

J t
E E k h

 




 
     

    
 

 (2.7) 

where, 0 , , , , , ,E E k h    are all model parameters and   is the gamma function. 

 

 

 

 

 

 

 

Figure 2-7: Huet-Sayegh Model 

 

 

 

 

 

 

 

Figure 2-8: 2S2P1D Model (Di Benedetto et al. [49]) 
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2.4.3 Power-Law Model 

Power law type of relationship has been extensively used for asphalt binders. The 

bending beam rheometer [53] test for determining flexural creep stiffness of asphalt 

binder utilizes power law model to fit the test data. Unlike previously presented models 

this model is presented in only mathematical form (it is not illustrated through 

combination of springs and dashpots). As the name suggests this model is characterized 

by power-law type of functional form. An example of power-law model representing 

creep-compliance would be, 

   0 1 2

a bD t D D t D t    (2.8) 

where, parameters , ,iD a b  are all experimentally determined. 

2.4.4 Sigmoidal Models 

Asphalt concrete complex modulus prediction models such as Witczak predictive 

equation [54-57] and Hirsch model [58] use sigmoidal function for fitting the predicted 

data as well as measure lab data. The sigmoidal function is a generic function that is used 

to fit for both complex modulus as well as relaxation modulus due to its s-shaped nature. 

However as in case of power law model the sigmoidal model does not have a physical 

interpretation. An example of sigmoidal function used by Witczak et al. [54] is as 

follows, 

  
 1 log

E t
Exp t




 
 

   
 (2.9) 

where , ,    and   are all material constants determined through experiment or 

predictive (regression) equations. 

2.5 SIMULATION OF FUNCTIONALLY GRADED MATERIALS 

Extensive research has been carried out to efficiently and accurately simulate 

functionally graded materials. Cavalcante et al. [26], Zhang and Paulino [59], Reddy [5], 
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Paulino and Kim [60, 61], Song and Paulino [62], have all recently worked on finite-

element simulations of FGMs. 

Graded elements have significant benefits over standard elements types in the 

context of simulating non-homogeneous isotropic and orthotropic materials using a finite-

element framework [61]. Lee and Erdogan [63] and Santare and Lambros [64] have used 

graded elements with direct Gaussian integration. This type of formulation involves 

selection of material properties directly at the Gauss integration points. Kim and Paulino 

[65] proposed graded elements with generalized isoparametric formulation (GIF). The 

details on the generalized isoparametric formulation for graded elements are discussed in 

following subsection. 

2.5.1 Generalized Isoparametric Formulation for Graded Elements 

In the conventional finite-element method a single set of properties are assigned to 

an element. In case of graded elements with GIF the constitutive material properties are 

selected at each nodal point and interpolated back to the Gauss-quadrature points 

(Gaussian integration points) using isoparametric shape functions. Using GIF, the non-

homogeneous viscoelastic material properties such as, shear relaxation modulus  G t  

and bulk modulus  K t  are interpolated as, 

      
1 1

,
m m

i ii i
i i

G t N G t K N K t
 

          (2.10) 

where  iN  are the iso-parametric shape functions corresponding to node i , and m  is the 

number of nodal points in the element. 

This concept is illustrated in Figure 2-9. The figure shows the sampling of the 

material properties at element nodes. The non-homogeneous material properties are 

shown by the shaded plane and property sampling is indicated by the arrows in z-

direction. The bold faced (red-colored) arrows show the interpolation of material 

properties from node points to one of the Gaussian integration points (shown by plus 

marks). 
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Paulino and Kim [61] recently presented a series of weak patch tests for the graded 

elements. This work demonstrated the existence of two length scales: (a) length scale 

associated with element size, and (b) length scale associated with material non-

homogeneity. Consideration of both length scales is necessary in order to ensure 

convergence.  

 

 

 

Figure 2-9: Generalized Isoparametric Formulation for Graded Elements 

2.5.2 Example: Comparison of Homogeneous and Graded Element 

A simple example is presented here to illustrate the use of generalized isoparametric 

graded finite element. Simulations were performed for a functionally graded body loaded 

in uniaxial tension. The problem geometry is as shown in Figure 2-10. Notice that the 

material variation is in both x and y directions. The simulations are performed by 

discretizing the body into four six-node triangular elements each with three Gauss-

integration points. In case of standard (homogeneous) element average material 

properties were assigned to each element. The results for each approach are shown in 

terms of the stresses in the x-direction. Notice that the stress evaluation for the graded 

element was performed at the integration points using shape function interpolation. 

The results clearly illustrate the superiority of graded elements in capturing the 

material non-homogeneity. 
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(a) Problem Description 

 

(b) Homogeneous Elements: Stresses in x-direction 

 

 

(c) Graded Elements: Stresses in x-direction 

Figure 2-10: Comparison of Standard (Uniform) Element with Graded Element 

 

 0( , ) 3 2E x y E Exp x y 
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2.5.3 Application of GIF Elements 

Buttlar et al. [39] have used GIF elements for simulation of an aged flexible 

pavement system (I-155, near Lincoln, IL). Figure 2-11 shows one of their results. This 

figure compares the simulation results for graded and layered approaches. Notice that this 

work was limited to elastic material behavior and effects of time and temperature on 

properties of asphalt concrete were not considered. 

 

Figure 2-11: Unaveraged Horizontal Stresses in an Aged Flexible Pavement (reproduced 

from Buttlar et al. [39]) 

 

Zhang and Paulino [59] have recently used graded elements for dynamic analysis of 

graded beams. They have also illustrated the use of graded elements for simulation of 

interface between different material layers. Song and Paulino [62] have used graded 

element for evaluation of dynamic stress-intensity factors in functionally graded 

materials. Walter et al. [66] evaluated stress-intensity factors (SIFs) for FGMs under 

mode-I thermo-mechanical loading. Silva et al. [67] extended graded elements for 
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multiphysics applications and have shown the properties of the elements in such 

circumstances. 

2.6 ANALYSIS OF VISCOELASTIC FUNCTIONALLY GRADED MATERIALS 

Analysis of viscoelastic problems is typically approached in two ways: 

 Correspondence Principle (CP): It allows for readily using the elastic solution or 

derived viscoelastic solution based on existing elastic solution, such as beam 

bending etc. However CP has limitations on its applicability for solving 

boundary value problems with non-homogeneous material properties.  

 Time-Integration: Solve the convolution integral by means of either exact 

integration or numerical integration. For numerical methods such as finite-

element analysis, the solution requires use of numerical integration scheme. 

This can be more clearly explained by means of an example. For a simple one-

dimensional (1D) problem, the stress-strain relationship for viscoelastic material is given 

by convolution integral shown in equation (2.11). 

      ' ' '

0

t

t E t t t dt    (2.11) 

If one is interested in solving for the stress and material properties and imposed 

strain conditions are know. Using the elastic-viscoelastic correspondence principle the 

convolution integral could be deduced to the following relationship using an integral 

transform such as the Laplace transform: 

      s E s s   (2.12) 

Notice that the above functional form is similar to that of the elastic problem, thus 

the analytical solution available for elastic problems could be directly applied to the 

viscoelastic problem. The transformed stress quantity,  s  is solved with known  E s  

and  s . Inverse transformation of  s  provides the stress  t . 
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For this 1D problem the time-integration based solution is obtained by directly 

solving the time integration. However as the problem gets more involved the analytical 

integration may not be possible and numerical integration becomes necessary.    

2.6.1 Correspondence Principle (CP) for Analysis of Viscoelastic FGMs 

Over the years.  the correspondence principle has been extensively used for the 

analysis of non-homogeneous viscoelastic materials.. Hilton and Piechocki [68] used this 

principle for exploring the shift in shear center of non-homogeneous viscoelastic beams; 

Schapery [69] used this principle for the calculation of stress intensity factors (SIF) in 

non-homogeneous viscoelastic medium. More recently Sladek et al. [4, 70] have used the 

correspondence principle based solution scheme for analysis of viscoelastic FGM solids 

using the Petrov-Galerkin boundary integral method. Recently Chang et al. [71] used the 

correspondence principle for evaluating thermal stresses in polymeric films with graded 

interlayers. 

Research by Paulino and Jin [72] and Mukherjee and Paulino [73] demonstrated the 

conditions pertaining to material non-homogeneity whereby the elastic-viscoelastic 

correspondence principle could not be used for solving viscoelastic problems. They have 

provided the conditions for the description of constitutive models of materials for which 

correspondence principle is rendered invalid. Jin [74] has reiterated these findings 

regarding the limitations of correspondence principle for non-homogeneous viscoelastic 

materials. Further details on limitation of correspondence principle in context with non-

homogeneous viscoelastic materials are discussed in Chapter 4. 

2.7 MODELING OF ASPHALT CONCRETE PAVEMENTS 

Asphalt concrete pavement systems have been traditionally analyzed by means of 

layered elastic approach [9]. Several layered elastic analysis programs have been offered 

such as Kenlayer from University of Kentucky [9, 75], JULEA developed by Uzan [76, 

77], BISAR from Shell Bitumen [78], WESLEA developed originally at US Army Corps 

of Engineers and most recently MNLAYER by Khazanovich and Wang [79]. Most of 

these programs rely on a layered approach for simulation of the non-homogenieites in the 

asphalt concrete. Alkasawneh et al. [80] have extended layered elastic approach to 
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account for temperature variation in the pavement structure through a graded approach. 

However the use of layered elastic analysis approach has several limitations such as 

assumption of non-realistic boundary conditions, lack of viscoelasticity in simulation of 

asphalt concrete, difficulty in simulating coupled thermo-mechanical analysis etc.  

Finite-element analysis of asphalt concrete pavements has also been widely used. 

Axysymmetric analysis program Illi-Pave developed by Elliot and Thompson [81] was 

one of the pioneering works in this field. Recently a variety of pavement distresses have 

been studied using finite-element analysis. For example Dave et al. [22], Baek and Al-

Qadi [38], Ling et al. [82] have studied reflective cracking, Mun et al. [83] studied 

fatigue cracking and Novak et al. [84] studied rutting in asphalt concrete pavements and 

overlays. As with layered elastic analysis a limited amount of finite-element studies 

consider the non-homogeneities such as aging and temperature variation. Buttlar et al. 

[39, 85], Kim and Buttlar [36], and Myers et al. [86] have all considered effects of aging 

and temperature variation through the depth of asphalt concrete pavement in numerical 

simulations. Among these studies only Buttlar et al. [39] have utilized smoothly graded 

modeling approach. As mentioned earlier they used the GIF elements proposed by Kim 

and Paulino [65] and their results reinforce the superiority of graded approach in 

comparison with the traditional layered approach. Song et al. [19, 20, 87] have simulated 

the crack propagation in asphalt concrete using cohesive zone modeling approach. Their 

work has shown that the use of viscoelastic bulk properties yield better agreement 

between numerical and experimental results. The natural extension to these previous 

studies would be incorporation of time and spatial dependence in the simulation of 

asphalt concrete pavements which would require a graded viscoelastic analysis technique, 

as presented herein. 

2.8 SUMMARY 

Through the background information obtained from literature review on modeling of 

FGMs, analysis of viscoelastic FGMs, asphalt concrete material behavior and analysis of 

asphalt concrete pavements, following key points could be summarized in context of the 

this research: 
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 In order to accurately capture the key responses of flexible (asphalt) pavement it 

is important to model asphalt concrete as a viscoelastic material. 

 Asphalt concrete layers exhibit significant property gradients due to aging and 

temperature variations, these gradients should be included in the analysis of 

pavement systems. 

 The graded finite-element analysis approach is better suited and more efficient 

for simulation of asphalt pavements with consideration of aging and thermal 

gradients. Other effects can naturally be included in the formulation. 

 A finite element formulation for graded viscoelastic analysis can be developed 

using either correspondence principle or time-integration approach. 

Based on the above shown summary, the following research was conducted: 

 Development of viscoelastic finite element analysis procedure with generalized 

isoparametric formulation (GIF). 

 Implementation and verification the finite element analysis code with (a) 

correspondence principle, and (b) time-integration schemes. 

 Simulation of viscoelastic FGM boundary value problems using the analysis 

codes developed through this research: 

o Beam (property gradients and temperature induced gradients) 

o Radially graded viscoelastic body with stationary crack 

o Asphalt pavements (aging property gradients and simulation of 

graded interfaces) 
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3 Equation Chapter (Next) Section 1Chapter 3 VISCOELASTIC 

CHARACTERIZATION OF ASPHALT CONCRETE 

CHAPTER 3 – VISCOELASTIC CHARACTERIZATION OF ASPHALT CONCRETE 

 

CHAPTER 3 – VISCOELASTIC CHARACTERIZATION OF ASPHALT 

CONCRETE 

3.1 INTRODUCTION 

This chapter describes the testing and analysis procedures used in the viscoelastic 

characterization of asphalt mixtures. The Indirect Tension Test is frequently used in the 

evaluation of asphalt materials due to its convenience for capturing both viscoelastic 

properties and tensile strength. The indirect tensile testing mode is a very practical 

configuration for testing of asphalt concrete, as Hot Mix Asphalt (HMA) samples are 

often cylindrical in shape.  When samples are taken from the field, a core barrel is 

utilized, producing cylindrical specimens, as illustrated in Figure 3-1.  In addition, the 

laboratory equipment used to produce HMA samples uses a cylindrical shaped mold 

during compaction. During the Strategic Highway Research Program (SHRP), in the mid-

1990’s, a test protocol was developed for evaluating creep and strength properties of 

HMA mixtures [43] in indirect tension.  The test was, somewhat arbitrarily, dubbed with 

the acronym “IDT” during the SHRP program. Both properties are measured on the same 

sample, with the non-destructive creep test run before the destructive strength test. 

3.2 MOTIVATION AND BACKGROUND 

  This is especially the case when crushing failures occur under the narrow loading 

strips prior to or in exclusion of the desired tensile failure, which is assumed to occur 

along a vertical plane spanning between the loading strips.  The IDT setup developed for 

HMA uses a 19 mm wide loading strip on the top and bottom of the testing specimen (c.f. 

Figure 3-2).  With the increased use of finer aggregate gradations and polymer modified 

asphalt binders in HMA mixtures, the IDT results can be suspect, particularly at testing 

temperatures above 0°C because of excessive deformations and crushing under the 
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narrow loading heads during the creep and strength testing. Figure 3-3 illustrates one 

such example from the current study. 

 

Figure 3-1: Field Core Sample Procurement (inset: Cored Sample) 

 

 

Figure 3-2: Indirect Tensile Creep and Strength Test Setup (AASHTO T-322) 
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Figure 3-3: Crushing Under the Loading Head 

 

Wagoner et al. [16] briefly discussed this problem for an HMA interlayer mixture 

manufactured with heavily modified polymer asphalt binder and fine aggregate gradation, 

specially designed to reduce reflective cracking of HMA overlay pavements. One 

solution to this crushing problem is to increase the contact area between the loading 

heads and sample. 

Towards this end, it is important to identify a test geometry that minimizes the 

material damage near the loading heads while providing sufficient tension in the middle 

of specimen for a global tensile failure. In the area of rock mechanics, the idea of a 

flattened Brazilian disc specimen has been studied [88, 89].  This testing configuration 

increases the surface area between the loading heads and sample; thereby reducing 

localized crushing and increasing the predominance of failure in tension within the 

sample. In place of the traditional 150-mm diameter, 50-mm thick, cylindrical specimen, 

Dave et al. [90]  introduced a new specimen configuration for strength testing of HMA. 

In place of the loading heads at the top and bottom, the specimen was trimmed to produce 

flat planes with parallel faces, creating a “flattened-IDT.”  Figure 3-4 show the flattened 

IDT geometry. 
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Figure 3-4: Flattened IDT Specimen Geometry (left: Test Schematics; right: Flattened 

IDT test setup) 

 

A closed-form solution does not appear to exist, which considers the exact specimen 

geometry and loading condition present in the flattened IDT arrangement. Three-

dimensional (3D) viscoelastic FE simulations were employed by Dave et al. [90] in an 

effort to optimize specimen geometry. The central angle   formed by the flattened faces 

was utilized to describe the extent of flattening. The stress contours showing vertical 

stresses (y-Direction) obtained from FE simulations for regular and flattened geometry 

are shown in Figure 3-5. The ratio of peak compressive stresses under the loading head 

and the peak tensile stresses near the middle of specimen for varying degree of flattening 

(angle  ) are plotted in Figure 3-6. The first iteration of this study showed that  = 50° 

provides maximum ratio between the peak tensile stresses and peak compressive stresses. 

A follow-up study is currently underway to further improve on the flattened IDT 

geometry by means of laboratory testing of additional samples as well as more FE 

simulations. The viscoelastic characterizations from the follow-up study are presented 

later in this chapter. 
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Figure 3-5: Stress Contours in Vertical (y) Direction (left: regular IDT, right: flattened 

IDT) 

 

Figure 3-6: Ratio of Peak Compressive and Tensile Stresses 
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The extraction of viscoelastic properties and tensile strength of material in the 

current AASHTO T-322 test specifications rely on solution of bi-axial stress states and 

application of corrections for bulging and gage point rotations as described by Buttlar and 

Roque [43]. There is scope for improvement to the current analysis procedure due to 

following factors: 

 Current analysis procedure assumes constant Poisson’s ratio during the duration 

of test. Hilton [91] has demonstrated the lack of consistent definition for 

Poisson’s ratio for viscoelastic theories and furthermore shown the significant 

variation of so called “elastic Poisson’s ratio” during the course of creep tests. 

 The creep compliance is evaluated for the current analysis procedure with 

assumption of point load applications and top and bottom of specimen. In other 

words, the analysis ignores the width of the loaded area. 

 In case, the flattened IDT geometry is consistently utilized for determination of 

tensile strength, it is important to develop analysis procedure for extraction of 

creep properties for same geometry. This is important as typically same 

specimens are first tested for viscoelastic characterization through non-

destructive creep tests and thereafter for strength tests. 

3.3 INDIRECT TENSILE CREEP TEST DATA ANALYSIS 

In context of motivations described in the previous section a viscoelastic solution for 

biaxial indirect tensile creep test is developed and discussed in this section. The elastic 

solution for the cylindrical diametral compression is presented in first section, the 

subsequent section extends the elastic solution for viscoelastic problems.  

3.3.1 Elastic Solution 

 For the IDT geometry, an elastic solution has been initially proposed by Hertz [92]. 

This solution provides the peak tensile and compressive stresses for the specimen loaded 

with point loads on top and bottom as shown in equation (3.1). 
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where, P  is the imposed load, D  is the specimen diameter, and L  is the specimen 

length.   

 Hondros [93] provided the stress fields for cylindrical bodies in diametral 

compression (refer to Figure 3-7),  
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where, a  is the width of loading strip. Using the plane-stress conditions, the elastic 

stress-strain conditions are written as, 
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For the IDT test setup (c.f. Figure 3-2Figure 3-2) the displacements near the center of 

specimen are measured by means of clip on extensometer gages. The horizontal and 

vertical displacements are related to the strains as follows: 
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Using equations (3.2), (3.3), and (3.4) the displacements are rewritten as, 
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where, ( 1,2,3,4)jI j  are dimensionless factors that depend on specimen geometry and 

gage length, GL . 

 

  

 

 

 

 

 

 

Figure 3-7: Geometry and Boundary Conditions for the Hondros Solution 

3.3.2 Viscoelastic Solution 

Hondros solution (elastic) could be extended to viscoelastic solution by means of the 

correspondence principle. Chapter 4 provides in-depth review of the correspondence 

principle and the theory of viscoelasticity. 

The elastic material constants E  and   could be transformed to viscoelastic material 

quantities, creep compliances  J t  and  M t : 
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The symbol tilde  ~  represents the Laplace transformation of time dependent quantities 

and s  is the transformation variable. 

Taking Laplace transformation of equation (3.5) and using viscoelastic material quantities 

(equation (3.6)) provides the viscoelastic solution in Laplace space, 
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Inverse Laplace transformation provides the viscoelastic solution,  
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(3.8) 

For creep tests, the load is imposed as, 

      0 ; Heavyside FunctionP t P H t H t   (3.9) 

Using load description, equation (3.9) and solving convolution integrals in equation (3.8), 

the final relationship between the displacements and material properties are obtained as,  
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The above shown set of equations could be used in conjunction with statistical methods 

to extract the creep compliances,    ,J t M t , from the lab measured displacements, 

   ,x yu t u t . 

3.4 TESTING AND ANALYSIS 

For this study, regular and flattened IDT specimens are tested. Two degrees of 

flattening,  =35° and 50° is explored at this stage. For comparison, Figure 3-8 shows 

regular and 50° flattened IDT specimens side-by-side. Notice the metal gage points glued 

near the center of the specimens, used for mounting the displacement gages. 

  

 

 

 

 

 

 

 

 

 

 

Figure 3-8: 50° Flattened (left) and Standard (right) IDT Test Specimens 

 

The creep tests are performed for 1000 seconds at three test temperatures, 0, -10, and 

-20°C, following the AASHTO T322 procedure. Three replicates are tested, with 

displacement gages mounted in both horizontal and vertical directions on specimen faces. 

Compliances are calculated using the viscoelastic solution outlined in previous section, 

and time-temperature superposition is performed to generate creep-compliance master 

curves.  Finally, a generalized Kelvin model is fit to the master-curve. 
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3.4.1 Material Details 

The first step in the experimental plan is the selection and testing of three HMA 

mixtures in the regular IDT configuration.  The three HMA mixtures are chosen in an 

attempt to elicit differing amounts of crushing failure, which is thought to be related to 

maximum aggregate size and binder stiffness.  Therefore, one mixture is designed to have 

a large aggregate structure and is combined with a relatively stiff asphalt binder.  It is 

anticipated that this mixture, labeled Mix-22, will not exhibit significant crushing during 

strength testing in the AASHTO T322 IDT test.  The second mixture is designed to have 

a small aggregate structure and a semi-stiff binder.  It is anticipated that this mixture, 

termed Mix-28, will experience a moderate level of crushing during the regular IDT 

strength test.  The third mixture used a small aggregate structure with a soft binder.  It is 

anticipated that this mixture, labeled Mix-40, will experience significant crushing during 

the regular IDT test.  Table 3.1 and Table 3.2 summarize aggregate and binder 

characteristics for the three mixes used in this study. 

Table 3.1: Aggregate Structure 

 
Nominal Maximum 

Aggregate Size 
Aggregate Structure 

Mix-22 9.5 mm Large 

Mix-28 4.75 mm Small 

Mix-40 4.75 mm Small 

 

Table 3.2: Binder Characteristics 

 
Binder Type Binder Characteristics 

Mix-22 PG64-22 Stiff 

Mix-28 PG58-28 Semi-Stiff 

Mix-40 PG58-40 Soft 
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3.4.2 Data Analysis 

The AASHTO procedure describes the limit for linearity criteria of asphalt concrete 

as 500 microstrains. More recent work by Airey and Rahimzadeh [94] and Masad and 

Papagiannakis [95] suggest a linear viscoelastic limit for asphalt mixtures as low as 100 

microstrains. These criteria were visited during the data analysis, since the validity of 

elastic-viscoelastic correspondence principle is limited to linear viscoelastic conditions. 

Test results for Mix-22 and Mix-28 showed that the peak strain response near the center 

of the test specimens were limited to 100-microstrains or lower in most instances. For 

tests performed at 0°C at very long loading times (> 500 seconds) a level of 200 

microstrains was reached. In the case of Mix-40, the strains exceeded 500 microstrains at 

a test temperature of 0°C. As the test data obtained for Mix-40 at 0°C was beyond the 

range of linearity, it was excluded from further analysis. 

3.4.3 Results 

The creep compliance master-curves for Mix-22, Mix-28 and Mix-40 are presented 

in Figure 3-9, Figure 3-10, and Figure 3-11 respectively. Note that the markers represent 

the test data and the lines represent the generalized Kelvin model representing the 

mastercurve. All mastercurves are plotted at a reference temperature of -20°C. 

The creep compliances from regular rand flattened IDT are also placed on unity 

plots, as shown in Figure 3-12, Figure 3-13, and Figure 3-14. In general, good agreement 

was found between the two testing approaches, suggesting that the flattened IDT 

arrangement may be a viable alternative to the standard IDT testing arrangement 

described in AASHTO T-332.  Notice that the flattened IDT results for Mix-22 with    

35° show significant deviation from regular and the 50° flattened tests. The extent of 

deviation for this set of results make them suspect and at this point further testing is 

needed to verify the results. The results for other two mixtures indicate that the 35° 

flattened IDT yields results closer to regular IDT and the degree of variation is within 

anticipated experimental variation.  
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Figure 3-9: Mix-22 Creep Compliance Mastercurve (reference temperature = -20°C) 

 

Figure 3-10: Mix-28 Creep Compliance Mastercurve (reference temperature = -20°C) 
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Figure 3-11: Mix-40 Creep Compliance Mastercurve (reference temperature = -20°C) 

 

Figure 3-12: Comparison of Mix-22 Regular and Flattened Creep Compliances 
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Figure 3-13: Comparison of Mix-28 Regular and Flattened Creep Compliances 

 

Figure 3-14: Comparison of Mix-40 Regular and Flattened Creep Compliances 
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More work is currently underway to further develop and validate this method.  It is 

hoped that through improved analysis and addition experimental validation, the flattened 

IDT arrangement will serve as a versatile test for obtaining creep compliance and tensile 

strength of a broad range of asphalt-aggregate mixtures. 

3.5 SUMMARY 

Creep testing of three asphalt concrete mixtures is performed using the AASHTO 

T322 test protocol on regular cylindrical test specimens as well as for the flattened 

geometry. The Hondros solution is extended for viscoelastic problem through use of 

correspondence principle. Test data is analyzed for both configurations based on the 

extension of Hondros solution. For analysis of the flattened IDT geometry, it was 

assumed that the Hondros solution will provide enough accuracy to assess the feasibility 

of the proposed testing configuration. 

Comparison of regular and flattened IDT results shows variations ranging from 9% 

to 32%. The 32% variation is for the Mix-22 with 35° flattened IDT, the significant 

variation between this set and the regular and 50° flattened IDT tests are considered 

suspect at this point and further testing is necessary. Apart from this one set, the range of 

variation between regular and 35° flattened IDT is between 9.1 and 9.6%. For 50° 

flattened IDT the range of variation from regular IDT is 9.3 to 17.8%. These ranges of 

variability are well within the typical testing variability for the creep tests on asphalt 

concrete. The sources of variation between the creep compliances determined from 

regular and flattened IDT specimens could include the assumptions made in the data 

analysis, e.g., the applicability of the Hondros solution for the flattened geometry, as well 

as testing and measurement variability associated with testing of asphalt mixtures with 

relatively small specimen dimensions.   

Based on this limited study it can be inferred that the flattened IDT geometry may be 

a viable alternative to the current AASHTO procedure for low temperature viscoelastic 

characterization of asphalt concrete material, and especially advantageous when indirect 
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tensile strength testing is required.  A follow up study is currently underway to further 

optimize the extent of flattening [96]. 
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4 Equation Chapter (Next) Section 1Chapter 4 Functionally Graded Viscoelastic Finite 

Element Analysis using Correspondence Principle 

CHAPTER 4 – FUNCTIONALLY GRADED VISCOELASTIC FINITE ELEMENT ANALYSIS 

USING CORRESPONDENCE PRINCIPLE 

CHAPTER 4 – FUNCTIONALLY GRADED VISCOELASTIC FINITE 

ELEMENT ANALYSIS USING CORRESPONDENCE 

PRINCIPLE 

4.1 INTRODUCTION 

This chapter discusses the basic viscoelastic constitutive relationships, limitations of 

correspondence principle in regard with material non-homogeneity, finite-element 

formulation using correspondence principle, numerical integral transforms, 

implementation and verification, and examples showing comparison with the layered 

approach. 

4.2 VISCOELASTIC CONSTITUTIVE RELATIONSHIPS 

The basic stress-strain relationships for viscoelastic materials have been presented 

by, among other authors, Hilton [97] and Christensen [98]. The constitutive relationship 

for quasi-static, linear viscoelastic isotropic materials is given as: 

 

        

    
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x t G x t t x t dt

K x t t dt

     

   









 
   

 

 





 (4.1) 

where 
ij  are stresses, 

ij  are strains at any location x . The parameters G  and K  are the 

shear and bulk relaxation moduli, 
ij  is the Kronecker delta, and 't  is the integration 

variable. Subscripts ( , , , 1,2,3)i j k l   follow Einstein’s summation convention. The 

reduced time   is related to real time t  and temperature T  through the time-temperature 

superposition principle: 
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   ' '

0

( )

t

t a T t dt    (4.2) 

For a non-homogeneous viscoelastic body in quasi-static condition, assume a 

boundary value problem with displacement iu on volume u , traction iP  on surface   

and body force iF , the equilibrium and strain-displacement relationships (for small 

deformations) are as shown in Equation (4.3), 

  , , ,

1
0,

2
ij j i ij i j j iF u u      (4.3) 

repectively, where, iu  is displacement and    
,

/ jj
x   . 

4.3 ELASTIC-VISCOELASTIC CORRESPONDENCE PRINCIPLE (CP) 

4.3.1 Introduction 

The concept of equivalency between transformed viscoelastic and elastic boundary 

value problems can be found in Read [99]. This technique been extensively utilized by 

researchers to analyze variety of non-homogeneous viscoelastic problems including, but 

not limited to, beam theory [68], finite-element analysis [100], and boundary element 

analysis [70]. 

Using correspondence principle one obtains the Laplace transform of the stress-strain 

relationship described in Equation (4.1) as, 

            , 2 , , , ,ij ij kkijx s G x s x s K x s x s        (4.4) 

where s  is the transformation variable and the symbol tilde (~) on top of the 

variables represents transformed variable. The Laplace transform of any function  f t  is 

given by, 

        
0

L f t f s f t Exp st dt



        (4.5) 



 

49 

Equilibrium (Equation (4.3)) for the boundary value problem in the transformed 

form becomes, 

 
         

       

, , ,

, ,

, 2 , , 2 , ,

, , , ,

d d

j j j

j j

x s G x s x s G x s x s

K x s x s K x s x s

  

 

 

 
 (4.6) 

where superscript d  indicates the deviatoric component of the quantities. 

Notice that the transformed equilibrium equation for a non-homogeneous 

viscoelastic problem has identical form as an elastic non-homogeneous boundary value 

problem. 

4.3.2 Limitation of CP for Non-Homogeneous Viscoelastic Problems  

Mukherjee and Paulino [73] demonstrated the limitation and inapplicability of 

correspondence principle for certain class of non-homogeneous viscoelastic material 

models. They have broadly classified the non-homogeneous viscoelastic materials into 

two categories based on the structure of constitutive models: (a) Separable models, and 

(b) Inseparable models. 

Separable Model: The separable models are characterized by their time and space 

dependent portions; whereas the material parameters have either spatial or time 

dependence, but not both. In essence the functional form for these types of models would 

be as follows: 

      ,G x t G x f t  (4.7) 

 

Inseparable Model: The inseparable models have material parameters that are 

simultaneously dependent on both space and time. Thus the separation of the constitutive 

properties as shown in Equation (4.7) is not possible. 

Paulino and Jin [72] and Mukherjee and Paulino [73] concluded that in order for 

successful application of CP following equivalencies must exist: 
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        

       , , , ,

Elastic Formulation Transformed Viscoelastic Formulation

, ; , ;

, ; ,i i i i

G x sG x s K x sK x s

G x sG x s K x sK x s



 

 

 (4.8) 

In case of separable models due to separation of the spatial and time dependent parts, 

equivalency is established between the elastic terms    , ,,i iG x K x  and transformed 

viscoelastic terms        , ,,i iG x f s K x g s . However the equivalency in-general is 

inconsistent in case of inseparable class of models because the spatial dependence of 

 ,iG x and/or  ,iK x  could be quite different from that of  , ,iG x s  and/or  , ,iK x s . 

4.3.3 CP for Non-Separable Models 

The restrictions and failure of correspondence principle shown by Paulino and Jin 

[72] and Mukherjee and Paulino [73] are too strict and can be relaxed to some extent. 

Christensen [98] briefly mentioned this by explaining that for using transformation 

method, while using inertia terms, the equivalency could still be established however, in 

this case the equivalency is not between elastic solution and transformed viscoelastic 

solution, but it is between transformed elastic solution and transformed viscoelastic 

solution. Recently, Khazanovich [79] showed correspondence between elastic solutions 

and operator-transformed viscoelastic problems using Volterra operators in conjunction 

with Laplace transforms. This modified transformation allows the correspondence 

principle to be valid for broader types of functionally graded viscoelastic material 

models. Hilton [101] also discussed that the conditions on separable model can be 

relaxed.  

The use of CP for inseparable models can be demonstrated by redefining the elastic 

constants as  ,G x s  and  ,K x s  instead of  G x  and  K x . Thus the equivalencies 

shown in Equation (4.8) is now be described as, 

        

       , , , ,

Elastic Formulation Transformed Viscoelastic Formulation

, , ; , , ;

, , ; , ,i i i i

G x s sG x s K x s sK x s

G x s sG x s K x s sK x s



 

 

 (4.9) 
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In light of these equivalencies the definitions for separable and inseparable models 

could changed, whereby for a series type model, say generalized Maxwell model, the 

separable and inseparable forms of relaxation functions are given as shown below [101]. 

Separable Form: 

    
 1

,
n

h

h h

t
G x t G x Exp

x

 
  

 
  (4.10) 

Inseparable Form: 

    
 1

,
,

n

h

h h

t
G x t G x Exp

x t

 
  

 
  (4.11) 

Using the above shown revised separable and inseparable forms of generalized 

Maxwell model the failure of CP for the inseparable model can be shown. The material 

non-homogeneity is assumed to have exponential variation with space. The relaxation 

moduli for these models are assumed to have following forms. 

Separable Model: 

    
 

   
1 1

,
n n

h h h

h hh

t
E x t E x Exp E x Exp g x t

x 

 
       

 
   (4.12) 

where, dashpot relaxation time,        1/ /h h h hx g x x E x   ; spring coefficient, 

   h h hE x E Exp a x ; and dashpot viscosity,    h h hx Exp a x   

Inseparable Model: 

    
 

   
1 1

, ,
,

n n

h h h

h hh

t
E x t E x Exp E x Exp g x t t

x t 

 
       

 
   (4.13) 

where, dashpot relaxation time,        , 1/ , , /h h h hx t g x t x t E x   ; ,h hE   and ha  are 

the material properties and  f t  is any function of time. The length scale of 

inhomogeneity is 1/ ha .  
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In order to evaluate the equivalencies (Equation (4.9))  ,E x s  and  , ,iE x s   for 

each of the above shown models is evaluated.  

Separable model, 

  
 

 1

,
n

h

h h

E x
E x s

s g x




  (4.14) 

  
  

 

    

  
, ,

, 2
1

,
n

h h hi i

i

h h h

E x E x g x
E x s

s g x s g x

 
  
  

  (4.15) 

Inverse Laplace transform of Equation (4.15) yields, 

  
    

      
 

,

,

1
,

, ,
n h i

i

h h h i

E x Exp g x t
E x t E x t

xE x g x tExp g x t

   
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   
  (4.16) 

Inseparable model, assume that  f t t ,  

  
 

   
 

2
22

0
1

,
4

h

sn

g x

h hh

E x s
E x s Exp Exp t dt

g xg x

 
     

 
   (4.17) 

As seen from equation (4.17) for an inseparable model where the dashpot properties 

have a very simple dependence on time   f t t  the analytical Laplace transform is 

non-existent, leading to non-applicability of CP. Notice that the failure is imposed purely 

in form of mathematical limitations. In case of the separable model, the CP can be 

applied by using revised equivalencies from equation (4.9) and the transformed 

viscoelastic quantities from equations (4.14) and (4.16). 

4.4 SELECTION OF MATERIAL MODEL 

For the research proposed in this study the Prony series models (Generalized 

Maxwell model) was selected to represent constitutive relationship of asphalt concrete. 

The selection of Prony series model was based on following factors. 
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4.4.1 Applicability to Material 

Prony series models have been used most extensively to represent the viscoelastic 

material behavior of asphalt concrete at low and moderate temperatures. Buttlar et al. 

[43] showed that the Prony series models provide very good fit to the laboratory test data. 

A number of studies conducted at University of Illinois and elsewhere over the period of 

last decade have further reinforced the applicability of Prony series models to asphalt 

concrete properties [11, 16, 43]. 

4.4.2 Flexibility of Model 

Prony series models are highly flexible in the sense that they are capable of capturing 

a range of viscoelastic materials due to their series type of structure. Hence depending on 

the complexity of material behavior the number of material parameters can be adjusted. 

In case of asphalt concrete it is common practice to use ten parameters (Example, Five 

unit generalized Maxwell model) as this many parameters have shown to capture the 

material properties. The use of highly customized model that may only be applicable to 

asphalt concrete type material was also non-preferable as the applications of the current 

research are not limited to field of asphalt concrete. 

4.4.3 Compatibility with Current Research 

As described earlier the goal of this research is to develop graded viscoelastic finite-

element analysis formulation using both correspondence principle and time-integration 

schemes. It is important to choose a model that is compatible with this proposed research, 

for example the sigmoidal model may not be the model of choice while using 

correspondence principle, as the analytical Laplace transform of the model involves 

higher order mathematics.   

4.4.4 Other Factors 

In addition to the factors discussed above other reasons for using Prony series 

models include: 
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 Access to extensive data base of Prony series parameters for various asphalt 

concrete types (binder grades, aggregate types, aging levels, mix types etc.) 

within the research group of author. 

 Availability of Prony series models in commercial software such as ABAQUS 

that is useful to verify the implementation as well as allow for future 

customizations. 

 Familiarity of author with use of this type of model.  

4.5 VISCOELASTIC FGM FINITE ELEMENT FORMULATION 

The derivation of finite element formulations using variational principle is described 

by many authors, including in textbooks by Cook et al. [102] and Reddy [103]. The 

variational principle for quasi-static linear viscoelastic materials under isothermal 

conditions can be found in Gurtin [104]. Taylor et al. [105] extended it for thermo-

viscoelastic boundary value problem, 
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(4.18) 

where u  is the volume of body,   is the surface on which tractions iP  are prescribed, 

iu  are the displacements and 
ijklC  are space and time dependent material constitutive 

properties, 
ij  are the mechanical strains and 

*

ij  are the thermal strains while 
ijkl  is the 

reduced time related to real time t  and temperature T  through time-temperature 

superposition principle of equation (4.2). The first variation provides the basis for the FE 

formulation, 
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The element displacement vector iu  is related to nodal displacement degrees of freedom 

q  through the shape functions 
ijN , 

      ,i ij ju x t N x q t  (4.20) 

Differentiation of equation (4.20) yields the relationship between strain i  and nodal 

displacements iq  and derivatives of shape functions 
ijB , 

      ,i ij jx t B x q t   (4.21) 

Equations (4.19), (4.20) and (4.21) provides the equilibrium equation for each finite 

element, 
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where 
ijk  is the element stiffness matrix, if  is the mechanical force vector and th

if  is the 

thermal force vector, which are described as follows 
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      * , ,l Tx t x x t    (4.26) 

where   is the coefficient of thermal expansion and T  is the temperature change with 

respect to initial conditions. 

On assembly of the individual finite element contributions for the given problem 

domain, the global equilibrium equation can be obtained as, 

     
 

   
'
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'

0

, , ,
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j th
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t
 


  

  (4.27) 

where 
ijK is the global stiffness matrix, iU  is the global displacement vector and iF  and 

th

iF  are the global mechanical and thermal force vectors respectively. The solution to the 

problem requires solving the convolution shown above to determine nodal displacements. 

Hilton and Yi [100] have utilized the CP-based procedure for implementing the FE 

formulation. However the previous research efforts were limited to use of conventional 

finite elements, while in the current dissertation graded finite elements have been utilized 

to efficiently and accurately capture the effects of material non-homogeneities. Graded 

elements with GIF (described in Chapter 2) are used herein. 

Using the elastic-viscoelastic CP, the functionally graded viscoelastic finite element 

problem could be deduced to have a functional form similar to that of elastic problems. 

Laplace transform of the global equilibrium shown in equation (4.27) is, 

        , , ,th

ij j i iK x s u s F x s F x s   (4.28) 

Notice that the Laplace transform of hereditary integral (equation (4.27)) led to an 

algebraic relationship (equation (4.28)), this is major benefit of using CP as the direct 

integration for solving hereditary integrals will have significant computational cost. As 

discussed in a previous section, the applicability of correspondence principle for 

viscoelastic FGMs imposes limitations on functional form of constitutive model. With 

this knowledge it is possible to further customize the finite-element formulation for the 

generalized Maxwell model. Material constitutive properties for generalized Maxwell 

model is given as, 
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     
 1

(no sum),  
n

ij ij h
h ij h

t
C x t C x Exp



 
  
 
 

  (4.29) 

where  ij h
C  are the elastic contributions (spring coefficients) and  ij h

  are the viscous 

contributions from individual Maxwell units, commonly called relaxation times. 

For the generalized Maxwell model, the global stiffness matrix K  of the system can 

be re-written as, 

        0 0, (no sum)t

ij ij ij ij

ij

t
K x t K x Exp K x K t



 
    

 

 (4.30) 

where  
0

ijK  is elastic contribution of stiffness matrix and tK  is the time dependent 

portion.   

Using (4.28) and (4.30) the problem description can be summarized as,  

          0 , , (no sum)t th

ij ij j i iK x K s U s F x s F x s   (4.31) 

4.6 FINITE ELEMENT IMPLEMENTATION 

The finite-element formulation described in a previous section is implemented for 

solving two dimensional plane and axisymmetric problems. The implementation is coded 

in the commercially available software Matlab
®

. Primary reason for selection of Matlab
®

 

is the availability of in-built robust equation solver and ease of programming. The code is 

provided in the Appendix-A. The implementation of the analysis code is divided into five 

major steps as shown in Figure 4-1. 

. 
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Figure 4-1: Outline of Finite Element Analysis Procedure 

 

4.6.1 Numerical Integral Transform 

For the generalized Maxwell model the Laplace transform of the time-dependent 

portion of stiffness matrix,  t

ijK t  is directly (and exactly) determined using the 

analytical transform (equation (4.32)). 

  
 

 1 1

n
ijt h

ij

h ij h

K s
s








  (4.32) 

In the current implementation the Laplace transform of quantities other than stiffness 

matrix are performed using trapezoidal rule with assumption that the quantities are 

piecewise linear functions of time. Thus, for a given time dependent function  F t , the 

Laplace transform  F s  is estimated as, 

  
        

    

1
1 1

2
1 1

1N
i i i i

i i i

s t F t Exp st F t Exp st
F s

s t F Exp st Exp st


 

 

     
  

      
  (4.33) 

Define problem in time-domain (evaluate load vector  F t and stiffness 

matrix components  0K x  and  tK t ) 

Perform Laplace transform to evaluate  F s  and  tK s  

Solve linear system of equations to evaluate nodal displacement,  u s  

Perform inverse Laplace transforms to get the solution,  u t  

Post-process to evaluate field quantities of interest  
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where t  is the time increment, N  is total number of increments and F  is the change 

in function F  for the given increment. 

The inverse Laplace transform is of greater importance in the current problem as the 

problem is ill posed due to absence of function description on the imaginary plane. 

Several researchers have extensively studied this problem and proposed numerical 

techniques for numerical Laplace inversion. In general the methods are proposed for the 

set of problems where they provide most reliable results; hence it is important to select a 

technique that suits well to the problem at hand. Narayanan and Beskos [106, 107] have 

provided comprehensive comparison of various numerical inversion techniques. In case 

of boundary integral methods researchers have preferred use of Stehfest algorithm [108, 

109] however in case of finite-element simulations this method could prove quite 

expensive and also distributes the evaluated functions over both real and imaginary 

portions of time domain. In the current study three numerical inversion techniques are 

studied, fast fourier transform (FFT) based method proposed by Durbin [110], Weeks’ 

method based on Laguerre functions [111, 112] and collocation method proposed by 

Schapery [113, 114]. The key motivation for using FFT based inversion technique is the 

availability of FFT algorithm in Matlab
®

. The other two methods are selected based on 

recommendations from Narayanan and Beskos [106, 107] and Yi [115]. 

Initial trials for different functions of time (linear, exponential, logarithmic and 

power) are used as test functions to evaluate the suitability of each of the inversion 

techniques. The preliminary results indicate that the collocation method is the most 

efficient in sense of available accuracy for the cost of computation. The Weeks’ method is 

the second best option and the FFT based algorithm is the last choice. FFT based 

algorithms are in general preferable for oscillatory type of time functions and hence for 

the selected test functions they did not perform well. Another benefit to using collocation 

method is its flexibility in making selection of the inversion parameters. 

The approximate inverse transform of function  f s  in collocation method is given 

by following series form, 
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    
1

n

i i

i

f t g Exp t


   (4.34) 

where ig  is related to  f s  through, 

    
1

1

1 1,2, ,
n

j

i

j i

s f s g i n








 
   

 
  (4.35) 

It is apparent from equations (4.34) and (4.35) that the selection of appropriate function 

for parameter   is critical. Cost and Becker [116] have shown that   should be selected 

in such a way that the exponential function shown in equation (4.34) is centered at the 

desired location on the log t  scale. While Schapery [117] recommended selection of    

that are centered at any point on log s  scale. A functional form for   is determined by 

combining the recommendations by Schapery [117] (Exponential term) and Cost and 

Becker [116] (Power term). 

  10
ib

a
n

i

s
iExp n i

a


 
   

 
 (4.36) 

where a  and b  depend on region of interest on the log t  scale and other symbols are 

same as those shown in previous equations.  

For the current implementation the numerical inverse transform is compared with 

exact inversion using generalized Maxwell model (c.f. equation (4.29)) as the test 

function. The results, shown in Figure 4-2, compare the exact analytical inversion with 

the numerical inversion results. The numerical inversion was carried out using 20 and 

100 collocation points. With 20 collocation points the average relative error in the 

numerical estimate is 2.7%, whereas with 100 collocation points, the numerical estimate 

approaches the exact inversion. 
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Figure 4-2: Numerical Laplace Inversion using Collocation Method 

4.7 VERIFICATION EXAMPLES 

In order to verify the present formulation and its implementation a series of 

verifications were performed. The verification was divided into two categories: (a) 

verification of the implementation of GIF elements to capture material non-homogeneity, 

and (b) verification of the viscoelastic portion of the formulation to capture time and 

history dependent material response.  

4.7.1 Verification of Graded Elements 

A series of analyses were performed to verify the implementation of the graded 

elements. The verifications were performed for fixed grip, tension and bending (moment) 

loading conditions. The material properties were assumed to be elastic with exponential 

spatial variation. The numerical results were compared with exact analytical solutions 

available in the literature [65]. The comparison results for fixed grip loading, tensile 

loading and bending were performed. The results for all three cases show a very close 
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match with the analytical solution verifying the implementation of the GIF graded 

elements. Comparison for the bending case is presented in Figure 4-3. 

 

 

Figure 4-3: Comparison of Exact (line) and Numerical Solution (circular markers) for 

Bending of FGM Bar (insert illustrates the boundary value problem along with material 

gradation) 

 

4.7.2 Verification of Viscoelastic Analysis 

Verification results for the implementation of the correspondence principle based 

viscoelastic functionally graded analysis were performed and are provided. The first 

verification example represents a functionally graded viscoelastic bar undergoing creep 

deformation under a constant load. The analysis is conducted for the Maxwell model. 

Figure 4-4 compares analytical and numerical results for this verification problem. The 

analytical solution [73] was utilized for this analysis. It can be observed that the 

numerical results are in very good agreement with the analytical solution. 
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Figure 4-4: Comparison of Exact and Numerical Solution for the Creep of Exponentially 

Graded Viscoelastic Bar 

 

The second verification example is simulated for fixed grip loading of an 

exponentially graded viscoelastic bar. The numerical results are compared with the 

available analytical solution [73] for a viscoelastic FGM. Figure 4-5 compares analytical 

and numerical results for this verification problem. Notice that the results are presented as 

function of time, and in this boundary value problem the stresses in y-direction are 

constant over the width of bar. Excellent agreement between numerical results and 

analytical solution further verify the veracity of the viscoelastic graded finite-element 

formulation derived herein and its successful implementation. 
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Figure 4-5: Comparison of Exact and Numerical Solution for the Relaxation of 

Exponentially Graded Viscoelastic Bar 

4.8 COMPARISONS WITH COMMERCIAL SOFTWARE 

In this section an example utilizing the graded viscoelastic analysis scheme discussed 

in this chapter is presented. The example is for a simply supported functionally graded 

viscoelastic beam in a three-point bending configuration. In order to demonstrate the 

benefits of the graded analysis approach, comparisons are made with analysis performed 

using commercially available software (ABAQUS
®
). In the case of ABAQUS

®
 

simulations, the material gradation is approximated using a layered approach and 

different refinement levels. 

4.8.1 Boundary Conditions 

Figure 4-6 shows the geometry and boundary conditions for the graded viscoelastic 

simply supported beam. A creep load,  P t , is imposed at mid-span: 
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      0 ; HeavysideFunctionP t P h t h t   (4.37) 

 

  

 

 

 

Figure 4-6: Graded Viscoelastic Beam Problem Configuration 

4.8.2 Material Distribution 

The viscoelastic relaxation moduli on the top (y = y0) and bottom (y = 0) of the beam 

are shown in Figure 4-7. The variation of moduli is assumed to vary linearly from top to 

bottom as follows: 
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0 0

, Top Bottom

y yy
E y t E t E t

y y

   
    
   

 (4.38) 

  

Figure 4-7: Relaxation Moduli on Top and Bottom of the Graded Beam 
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4.8.3 FE Models 

The problem was solved using three approaches namely, (a) graded viscoelastic 

analysis procedure (present paper); (b) commercial software ABAQUS with different 

levels of mesh refinements and averaged material properties assigned in the layered 

manner, and (c) assuming averaged material properties for the whole beam. In the case of 

the layered approach using commercial software ABAQUS, three levels of discretization 

were utilized. A sample of the mesh discritization used for each of the simulation cases is 

shown in Figure 4-8. Table 4.1 presents mesh attributes for each of the simulation cases. 

 

 

Figure 4-8: Mesh Discretization for Various Simulation Cases (1/5
th

 beam span shown for 

each case) 

    

Table 4.1: Mesh Attributes for Different Analysis Options 

Simulation Case 
Number of 

Elements 

Number of 

Nodes 

Total 

Degrees of 

Freedom 

FGM/Average/6-Layer 720 1573 3146 

9-Layer 1620 3439 6878 

12-Layer 2880 6025 12050 

 

4.8.4 Results and Discussions 

The parameter selected for comparing the various analysis options is the mid span 

deflection for the beam problem discussed earlier (c.f. Figure 4-6). The results from all 

four simulation options are presented in Figure 4-9. Due to the viscoelastic nature of the 

problem, the beam continues to undergo creep deformation with increasing loading time. 

The results further illustrate the benefit of using the graded analysis approach as a finer 

FGM Average 6-Layer 9-Layer 12-Layer 
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level of mesh refinement is required in order for the layered approach to begin to 

converge with the graded approach. The results also demonstrate the drawback of using 

averaged properties which yield significantly poorer results when compared to graded 

and layered approaches. Also it is worthy to note that in the case of graded viscoelastic 

problems it is important to consider the results over the complete time history. In the 

current problem the severity of the material gradation increases with time. This effect is 

apparent in the results, where the deviation between graded and layered approaches 

increases with increasing time.    

 

Figure 4-9: Normalized Mid-Span Deflection for the Beam 

4.9 SUMMARY 

A functionally graded viscoelastic finite element formulation based on 

correspondence principle is proposed. The formulation is implemented to solve two-

dimensional plane and axi-symmetric problems. The GIF is extended for graded (non-
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the inverse Laplace transformation. The implementation is verified for cases involving 

material non-homogeneities as well as viscoelastic effects.  

Using these new techniques, an application example is presented. The example 

provided a comparison between graded, averaged homogeneous and layered approaches. 

Also a comparison between the predictions made using the present approach versus those 

made by commercially available software is provided.  
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5 Equation Chapter (Next) Section 1Chapter 5 - Functionally Graded Viscoelastic 

Finite Element Analysis using Time-Integration Scheme 

CHAPTER 5 – FUNCTIONALLY GRADED VISCOELASTIC FINITE ELEMENT ANALYSIS 

USING TIME-INTEGRATION SCHEME 

CHAPTER 5 – FUNCTIONALLY GRADED VISCOELASTIC FINITE 

ELEMENT ANALYSIS USING TIME-INTEGRATION SCHEME 

5.1 INTRODUCTION 

The previous chapter described the formulation, implementation and verification of 

the viscoelastic FGM analysis scheme using the correspondence principle. At this point it 

is important to reiterate the necessity for the implementation of the time-integration-

based finite element code. The key motivations for formulating and implementing the 

time-integration-based analyses are: 

 Limitation of correspondence principle in solving certain type of boundary value 

problems, such as transient thermal boundary conditions; 

 Excessive dependence of the analysis accuracy on the numerical integral 

transform methods in case of the correspondence principle, furthermore lack of a 

readily available technique to estimate error; 

 Inverse integral transformation is not very accurate over a very wide range of 

time intervals, especially near the boundaries (very short and very long loading 

times); and 

 In order to minimize the error in numerical inverse integral transform, the 

numerical inversion parameters need to be adjusted depending on the problem 

and the material properties. 

This chapter describes brief overview of available time-integration schemes for 

viscoelastic analysis followed by description of methods of choice and finally the details 

on implementation and verification for the methods of choice. 
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5.2 TIME INTEGRATION APPROACHES 

A detailed description of a functionally graded viscoelastic finite element 

formulation is presented in Chapter 3. The final problem description can be written in 

form of following convolution integral, 

          ' ' '

0

0 , ,

t

e

ij j ij j jK x u K x u t dt F x t     (5.1) 

Hopkins and Hamming [118] and Lee and Rogers [119] have performed some of the 

pioneering works on direct numerical integrations for solving viscoelastic problems. This 

preliminary work demonstrated use of Newton-Cotes expansion to ensure that complete 

material history is considered for predicting the results at any given time. The finite 

element problem described in equation (5.1) can be solved using a Newton-Cotes 

expansion as, 
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 


(5.2) 

It is important to notice that the above solution requires storage of solutions at all 

time increments prior to the current increment. In past, the limitation on storage memory 

motivated several researchers to develop numerical methods that circumvent need for 

storing the previous solutions. 

5.2.1 Brief Review of Time-Integration Approaches for Viscoelastic Analysis    

   A direct integration scheme represents the above shown expansion (Equation(5.2)) 

into a series of time increments where integrations are performed over each increment 

through approximate schemes such as trapezoidal rule or Newmark method [120]. Dubois 

et al. [121] proposed direct integration through incremental scheme suited for fracture 

analysis of viscoelastic materials. Ellsiepen and Hartmann [122, 123] utilized differential-

algebraic equation form of the constitutive equations for solving linear and non-linear 

dynamic viscoelastic problems using diagonally implicit Range-Kutta methods for time 

marching schemes. Hartmann and Wensch [124] have also utilized differential-algebraic 

equations with Rosenbrock type numerical scheme, which are beneficial over previous 
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methods due to its iteration-less nature. Mesquita and Coda [125] have proposed 

incremental scheme for dynamic analysis of viscoelastic materials represented by Kelvin 

model. The disadvantage of the direct integration approaches is the high memory 

requirement for storage of responses from all previous iterations as well as computational 

times in accessing that information. 

Zak [126] utilized a numerical scheme that utilizes history of one iterative step to 

calculate stresses in solid rocket propellant using a finite-difference formulation. The 

procedure is based on calculation of the increment in the material response for a given 

time step. Zienkiewicz et al. [127] used a similar incremental scheme in the finite-

element framework to solve the linear viscoelastic problems. Taylor et al. [105] extended 

the similar scheme to solve thermo-mechanical problems; this was obtained through 

extending variational function proposed by Gurtin [104] to include the thermal strain 

contributions. Over the period of last three decades several researchers have proposed 

different types of numerical integration schemes for viscoelastic finite-element analysis. 

Yi and Hilton [128] proposed a recursive formulas using Newmark average acceleration 

method for transient dynamic response of viscoelastic composite laminates. A similar 

approach has been utilized for nonlinear thermo-viscoelastic analysis of laminated 

composite shells [129]. Several integration schemes have been proposed by modification 

of the recursive schemes. Another popular integration approach is the one utilized by 

Zocher et al. [130] called the integration point constitutive update scheme. The 

integration point constitutive update scheme utilizes separation of stress increments 

whereby linearly related stress contribution to strain increment is directly updated and the 

non-linear contribution is evaluated from the previous iteration. Poon and Ahmad [131] 

improved on the integration point constitutive update scheme for thermo-viscoelastic 

problems by using the time-temperature superposition relations. Yang and Han [132] 

have proposed a recursive integration scheme suited for non-linear viscoelastic analysis. 

The recursive formulation is achieved by expending all variables in form of non-linear 

differential-integral equation systems with boundary and initial values. This leads to a 

series of recurrent linear boundary value problem for which corresponding FEM based 

formulae were developed. 
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Haj-Ali and Muliana [133] proposed non-linear viscoelastic FEM procedure whereby 

the constitutive equations are expressed in an incremental form for each time step with 

assumption of a constant incremental strain rate. They proposed iterative procedure with 

predictor-corrector type steps combined with the recursive integration method. Similar 

procedure was utilized by Muliana and Khan [134] for analysis of thermo-rheologically 

complex viscoelastic materials and more recently by Sawant and Muliana [135] for non-

linear orthotropic viscoelastic materials.  

The time stepping scheme implemented in the commercial finite element analysis 

code ABAQUS was briefly explored. The Newton-Raphson time stepping scheme is 

utilized by ABAQUS, whereby the creep-strain increment in each step is evaluated and is 

compared against the user provided maximum value. The software assumes the iteration 

to be convergent as long as creep strain increment is lower than the user prescribed value. 

Notice that the most of the recent integration procedures have been proposed for 

solving non-linear viscoelastic problems. For the analysis of linear problems these 

procedures revert back to one of the following categories: (a) direct integration,  

(b) incremental approach, or (c) recursive approach. The focus of this dissertation is 

limited to linear viscoelastic problems. In this dissertation the direct, incremental and 

recursive integration approaches were explored. The recursive scheme was chosen for 

further exploration and simulation of pavement systems. 

5.3 ANALYSIS USING INCREMENTAL SCHEME 

The incremental approach to solving viscoelastic problems involve determination of 

the solution increment at the current time step based on the neighboring solutions in time. 

Mathematically this is expressed as, 

      
1

1 p

n n m n n m n n m n m

m

u t t t u t t u
p t

   



 
    

  
  (5.3) 

where, solution at time, nt is represented in terms of neighboring p solutions.  
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The incremental scheme proposed by Zak [126] is implemented for finite-difference 

analysis of an axisymmetric problem. The implementation is verified by comparing the 

results with analytical solution provided by Freudenthal and Shinozuka [136, 137]. 

5.3.1 Problem Description 

The problem consists of infinitely long thick-walled viscoelastic hollow cylinder 

bonded inside a rigid casing. Figure 5-1 illustrates the problem geometry.  

 

 

 

 

 

 

Figure 5-1: Problem Geometry 

 

The material properties are assumed to be: 
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 (5.4) 

The thermal strain is imposed by means of time dependent temperature variation 

given as, 

   1
t

T t Exp


 
   

 
 (5.5) 

5.3.2 Results and Comparison with Analytical Solution 

The above shown problem is analyzed for the hollow cylinder with internal and 

external diameters of 1 and 3 units respectively. For two levels of geometry 

𝒛 

𝒓 
𝜽 

Rigid Case 
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discretizations (number of radial partitions) and time discretizations (time steps) the 

radial stresses and tangential stresses are numerically calculated and compared to 

analytical solution. Figure 5-2 shows the comparison of numerical and analytical results 

for tangential stresses and Figure 5-3 shows comparison for radial stresses. The 

comparison shows good agreement with analytical solution. 

The simulation times for this relatively simple problem with finite-difference 

approach were relatively high. The accuracy levels are also not as great as those obtained 

from the recursive and direct integration schemes (discussed later). Nonetheless the 

implementation of incremental scheme provided better understanding on the topic of 

numerical integration and provided necessary background to the author for understanding 

and implementing recursive scheme.  

  

Figure 5-2: Comparison of Analytical and Numerical Evaluation of Tangential Stresses 
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Figure 5-3: Comparison of Analytical and Numerical Evaluation of Radial Stresses 

5.4 FINITE ELEMENT ANALYSIS USING RECURSIVE SCHEME 

The recursive integration scheme based on the formulation by Yi and Hilton [128] is 

presented in this section for viscoelastic FGM problems. Comparisons between the direct 

integration and recursive approaches for homogeneous and FGM viscoelastic problems 

are made and the results are described later in this section. The subsequent sections 

describe more rigorous verification and validation examples.  

5.4.1 Recursive Formulation 

The viscoelastic FGM represented by generalized Maxwell model with h  units, the 

kernel 
ijK expands as, 

     
  

'

1

,
m

e

ij ij h
h ij h

K x K x Exp
x

 




 
  
 
 

  (5.6) 

The nodal displacements and its time derivatives can be approximated as, 
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 (5.7) 

Using assumptions shown in equation (5.7), the kernel form in equation (5.6) and by 

performing integration by parts, the viscoelastic FGM FE problem described in equation 

(5.1) can be expressed as, 
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where, 
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5.4.2 Implementation and Verification 

The formulation described in previous section is implemented in the commercially 

available software Matlab
®

. The code is provided in Appendix B. The finite-element 

implementation is performed for solving two-dimensional (2D) planer and axisymmetric 

problems. A series of verification examples are simulated to ensure the accuracy of 
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verification and implementation. Preliminary comparisons are made between direct 

integration and recursive integration schemes. 

The verifications are made at different levels of sophistication; the initial 

verifications ensure the accuracy of formulation for homogeneous viscoelastic problems. 

Later examples demonstrate verification for functionally graded viscoelastic boundary 

value problems. 

Verification Example: Creep of Homogeneous Viscoelastic Bar 

A viscoelastic boundary value problem simulating 100 second creep extension of a 

bar is simulated using recursive and direct integration methods. The computation times 

and solution accuracy are determined for different time step sizes. 

The same boundary value problem was solved using the CP-based formulation 

described in Chapter 4. The computation times and error analysis for different time step 

sizes are plotted in Figure 5-4 and Figure 5-5. Notice that cumulative errors over the 

analysis period are plotted. The analysis present results as expected, with larger 

computation times for smaller time step sizes and lower errors for smaller time steps.  

The general observation from this example shows greater computation cost for direct 

integration compared to recursive formulation; this is due to continuous access and 

computations utilizing all the previous solutions at each increment. The solution accuracy 

for both time integration approaches depends on time step sizes. Recursive formulation 

requires smaller time step sizes compared to direct integration for same level of accuracy. 
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Figure 5-4: Computation Times for Different Solution Schemes 

 

 

Figure 5-5: Error Analysis for Different Solution Schemes 
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Verification Example: Three Point Bending of Viscoelastic Beam 

A viscoelastic beam in three-point bending condition is simulated using recursive FE 

formulation. The geometry and boundary conditions are shown in Figure 5-6, the mid-

span loading condition is given as: 

      0 ; Heavyside functionP t P h t h t   (5.10) 

The relaxation modulus for the beam is presented in Figure 5-7. FE simulations are 

performed using time step sizes of 0.1, 1, 2, 5, 10, and 20 seconds. The normalized mid-

span deflections are presented for FE simulations along with analytical solutions in 

Figure 5-8. The inset in Figure 5-8 shows the evolution of error for different time step 

sizes. As anticipated the results converge with analytical results as the time step size 

reduces. The results show that the recursive formulation based implementation predicts 

accurate results for homogeneous viscoelastic boundary value problem when the time 

step size is reduced sufficiently.  

 

 

 

 

 

 

 

Figure 5-6: Viscoelastic Beam Problem Configuration 
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Figure 5-7: Relaxation Modulus for the Beam Bending Verification Example 

 

Figure 5-8: Normalized Mid-Span Deflections for the Viscoelastic Beam 
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Verification Example: Relaxation of Functionally Graded Viscoelastic Bar 

This example demonstrates the capability of recursive FE method in predicting the 

response for viscoelastic FGM problem. The verification example from Mukherjee and 

Paulino [73] is utilized. The simulations are performed for time step sizes of 0.1, 0.2, 0.5 

and 1 second. The example represents a functionally graded viscoelastic bar undergoing 

stress relaxation under fixed grip loading. Figure 5-9 compares numerical results with 

analytical solution. The results show very good agreement with analytical solution for 0.1 

second time step. 

 

Figure 5-9: Comparison of Exact and Numerical Solution for the Exponentially Graded  

Viscoelastic Bar in Fixed Grip Loading 
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bar undergoing creep loading is simulated. Closed form solution from Mukherjee and 

Paulino [73] is compared with the FE predictions. The simulations are performed using 

time step size of 0.1 second. Figure 5-10 compares numerical results with analytical 

solution at different loading times. The results show very good agreement with analytical 

solutions further demonstrating the veracity of the viscoelastic graded finite-element 

formulation presented herein and its successful implementation. 

 

 

Figure 5-10: Comparison of Exact and Numerical Solution for the Exponentially Graded  

Viscoelastic Bar in Creep Loading 
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induced properties gradients along the thickness (y-direction) creates material non-

homogeneity. The FGM analysis is compared with layered gradations with varying 

degree of layer refinements. The layered analyses are performed using ABAQUS
®
. It is 

important to ensure that the present formulation is capable of capturing temperature 

induced property gradients as the HMA pavement systems always exhibit this type of 

behavior (c.f Section 2.2).  The boundary conditions and temperature distribution for the 

beam are shown in Figure 5-11. 

 

 

 

 

 

 

 

 

   

Figure 5-11: Boundary Conditions and Temperature Distribution (legend on right 

provides temperature in °C) 
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factors link the thermal distribution to the material property distributions as described in 

Section 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-12: Temperature Input for Different Simulation Cases (solid line: FGM 

approach (present formulation), dashed line: layered approach (ABAQUS
®

) 
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Figure 5-13: Relaxation Modulus (inset: Time temperature superposition shift factors) 

 

The mesh structures and the mesh statistics for different simulation cases are shown 

in Figure 5-14. Notice that the significant difference between the number of degrees of 

freedom (DOF) for different simulation cases (c.f. Table 5.1). The simulation results are 

plotted in Figure 5-15. The results for the problem are presented in form of normalized 

mid-span deflections as function of time. The results clearly demonstrate the accuracy of 

the present formulation in capturing temperature-induced viscoelastic property gradients. 

With increasing mesh refinement levels the layered gradation begins to converge with the 

FGM results. Figure 5-16 shows the deviation of the layered approach from the 

viscoelastic FGM approach. 

 

 

 

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reduced Time

N
o

rm
a

li
z
e

d
 R

e
la

x
a

ti
o

n
 M

o
d

u
lu

s
, 

E
(t

)/
E

0

-20 -15 -10 -5 0
0

1

2

3

4

Temperature (deg. C)

L
o

g
 S

h
if

t 
F

a
c

to
r,

 a
T

Reference Temperature = -20°C 



 

86 

 

 

Figure 5-14: Mesh Discretization for Various Simulation Cases (1/5
th

 beam span shown 

for each case) 

Table 5.1: Mesh Attributes for Different Analysis Options 

Simulation Case 
Number of 

Elements 

Number of 

Nodes 

Total 

Degrees of 

Freedom 

FGM/6-Layer 720 1573 3146 

9-Layer 1620 3439 6878 

12-Layer 2880 6025 12050 

  

 

Figure 5-15: Normalized Mid-Span Deflections for Thermally Induced Graded Beam 
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Figure 5-16: Deviation of Layered Results with FGM Results 
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where IK  and IIK are mode I and mode II stress intensity factors (SIFs),  ijf   and 

 ig   are angular functions for stresses and displacements, and T  is the T-stress.  

Marur and Tippur [140] utilized FEM for investigation of crack tip stress fields in 

FGMs. Kim [141] investigated crack-tip stresses in exponentially graded materials 

through use of boundary layer model and evaluated auxiliary fields for FGMs.  

5.5.2 Problem Description and FE Mesh 

Figure 5-17 shows the problem description along with angular convention. Amongst 

others, Eftis et al. [142] have presented the loading conditions on the outer boundary 

corresponding to the asymptotic stresses at the crack tip. In the current example Mode I 

displacement loading conditions were assumed, these are given by, 
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 (5.12) 

 The finite element model was developed with 3232 elements and 6599 nodes using 

6 node plane stress triangular elements (T6). Figure 5-17 shows the FE mesh, the average 

element side length of 0.2 R  was utilized along the periphery which was reduced to 

410 R   at the center.  
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Figure 5-17: Problem Description and FE Model 

 

5.5.3 Material Gradation 

The simulations are performed for a viscoelastic FGM with radial gradations for both 

elastic and viscous properties. A generalized Maxwell model is utilized for representation 

of time and space dependent material. The functional form of the material properties and 

the gradation for various components of the generalized Maxwell model are shown in 

equation (5.13). Notice that the stiffness of material at any given time is greatest along 

the periphery and lowest at the center of the body. The material gradation is illustrated in 

Figure 5-18, the plot shows variation of relaxation modulus with time and radial  

distance, r . In addition to the viscoelastic FGM material two cases representing the most 

compliant and stiff materials are simulated, these are recovered from Equation (5.13) for 

0r   (compliant) and r R  (stiff).  
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Figure 5-18: Relaxation Modulus Variation with Radial Distance and Time 

5.5.4 Results 

The elastic stress fields for the homogeneous cases are first visited to ensure the 

accuracy of the FE solutions. The results at instantaneous loading (time, t = 0) for the 

“stiff” material are shown in Figure 5-19. The plot shows the variation of stresses at 

different deflection angles. The results are shown for four radial distances and as 

anticipated the stresses match closely. This set of results provides confidence that the 

displacement boundary conditions are accurately imposed and the elastic FE analysis 

yield correct results. 

The elastic normal and shear stress fields for both homogeneous material 

distributions and FGM distribution are presented in Figure 5-20. Stresses for FGM are 

shown for one radial distance  / 0.012r R  . The elastic stresses are found to be 

matching with the results reported by previous researchers, such as Kim [141]. The FGM 

stress fields are consistently in between the “stiff” and “compliant” materials, as 
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expected. Notice that as the deflection angle approaches the crack     the stress free 

conditions are recovered. In order to demonstrate the effect of radial gradation on elastic 

stresses, normal stresses are plotted at different radial distances for FGM along with 

homogeneous materials (c.f. Figure 5-21). 

  

Figure 5-19: Elastic Stresses for Homogeneous “Stiff” Properties at Different Radial 

Distances 
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Figure 5-20: Elastic Stresses for All Material Distributions (Homogeneous and FGM) 

 

 

Figure 5-21: Elastic Stresses (y-Direction) for FGM (at Four Radial Distances) and 
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The key motivation of this study is to demonstrate the viscoelastic stress fields for 

FGM. The distribution of stresses with time and deflection angles for different material 

distributions (homogeneous and FGM) is extracted from the FE analysis. The normal 

stresses (y-direction) for homogeneous and FGM conditions are shown in Figure 5-22. 

The results clearly demonstrate the viscoelastic stress relaxation with increasing time. In 

order to further explore the stress relaxation behavior, the peak normal stresses for each 

material type are plotted against time, as shown in Figure 5-23. It should be noted that the 

relaxation of stresses is not distributed evenly with time. This trend illustrates the graded 

nature of the time dependent material properties. If the spatial gradation of constitutive 

parties was limited to elastic components the plots would have shown constant deviation 

between different radial distances. For this example, the time effect of property gradation 

is most pronounced between the radial distances of r/R = 0.0122 and r/R = 0036. 

The shear stresses for all material types are shown in Figure 5-24. The greatest shear 

stresses are observed at shortest loading times and for stiffest material properties. Stress 

relaxation is evident in all cases as with the normal stresses. Figure 5-25 shows the peak 

shear stresses for both homogeneous material distributions and at four radial distances for 

FGM. The relaxation behavior of stresses again demonstrates the effect of combined 

spatial and temporal variation in properties.  

 

 

 

 

 

 

 

 

(a) Compliant Material    (b) Stiff Material 

(i) Homogeneous Material 
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(a) r/R = 0.0122     (b) r/R = 0.288 

(ii) FGM 

Figure 5-22: Viscoelastic Normal Stresses (y-Direction) for All Material Distributions 

(Homogeneous and FGM) 

 

Figure 5-23: Peak Normal Stresses (y-Direction) for All Material Distributions 

(Homogeneous and FGM)  
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(a) Compliant Material    (b) Stiff Material 

(i) Homogeneous Material 

 

 

 

 

 

 

 

(a) r/R = 0.0122     (b) r/R = 0.288 

(a) r/R = 0.0122     (b) r/R = 0.288 

(ii) FGM 

Figure 5-24: Viscoelastic Shear Stresses for All Material Distributions 

(Homogeneous and FGM) 
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Figure 5-25: Peak Shear Stresses for All Material Distributions (Homogeneous and FGM) 

 

5.5.5 Summary of Boundary Layer Analysis 

A radially graded viscoelastic FGM in mode-I loading conditions is simulated to 

study the crack tip responses. The elastic stress results match the results presented by 

previous researchers. This further verifies the accuracy and efficiency of the GIF 

elements and the loading conditions for the example. The viscoelastic crack tip stresses 

are shown for loading times up to 100 seconds. The non-homogeneous time dependent 

portions of the constitutive properties are evident from the stress results. 

The example presented here demonstrates that the FE formulations discussed in this 

chapter are capable of predicting the stationary crack fields in viscoelastic FGMs.   

5.6 SUMMARY 

Various time integration schemes for viscoelastic FE analysis have been explored 

through a survey of technical literature. Three major classes of time integration methods 
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schemes. The incremental scheme presented by Zak [126] was explored by means of 

finite difference code. The recursive formulation for non-homogenous viscoelastic finite 

elements is presented and implemented in form of a computer code. A series of 

verification examples are shown to verify the implementation for homogeneous and 

functionally graded viscoelastic problems. An example problem is presented 

demonstrating the use of proposed formulation for simulation of temperature induced 

viscoelastic functionally graded boundary value problem. Comparisons are made with 

commercial software ABAQUS
®
 which demonstrate the accuracy and efficiency of 

proposed approach over conventional layered approach. The comparison example also 

validates the present approach for accurate analysis of temperature-induced viscoelastic 

FGMs, which, apart from aging, is the key source of gradation in asphalt pavements. 

Boundary layer analysis for crack tip fields in viscoelastic FGM is presented. The 

elastic and viscoelastic stress fields are shown for homogeneous and FGM conditions. 

The results demonstrate the veracity of the time-integration based viscoelastic FE 

analysis in predicting crack tip fields. This ensures that the current formulation is capable 

of analyzing asphalt concrete pavements with stationary cracks.  
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6 Equation Chapter (Next) Section 1Chapter 6 Case Studies: Asphalt Concrete 

Pavement Systems 

CHAPTER 6 – CASE STUDIES: ASPHALT CONCRETE PAVEMENT SYSTEMS 

 

CHAPTER 6 – CASE STUDIES: ASPHALT CONCRETE PAVEMENT SYSTEMS 

6.1 INTRODUCTION 

This chapter describes the applications aspects of the present research in the context 

of asphalt pavement systems. The preliminary section describes the relevance and 

implications of present research in context of analysis and design of asphalt pavements. 

Three case studies illustrating the use of the formulations and finite element codes 

developed in Chapters 3 and 4 for analysis of asphalt concrete pavements. Pavement 

systems analyzed include aged conventional and full-depth asphalt pavements and 

overlay-interlayer system with graded interface. The analyses are performed using the 

research described in this dissertation as well as the conventional approaches. The results 

from both are compared and contrasted.  

6.2 PRACTICAL IMPLICATIONS OF THE PRESENT RESEARCH 

The asphalt pavement continuously undergoes property variations due to effects of 

aging and climatic cycling. A pavement section constructed at the University of Illinois’ 

Advance Testing and Research Engineering Laboratory (ATREL) for study of reflective 

cracking is shown in Figure 6-1. Notice that on left the pavement is shown immediately 

following the construction, whereas picture on right shows the pavement after nineteen 

months. The difference in pavement surface texture and color are result of aging and 

climatic weathering, this demonstrates continuous variations that asphalt pavements 

commonly undergo.  
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Figure 6-1: Pavement Section at ATREL  

(left: immediately after construction right: 19 months after construction) 

  

Analysis and design of pavements based only on homogeneous properties obtained 

using single aging conditions and without consideration of temperature induced gradients 

leads to non-realistic performance predictions. The present research enables pavement 

designers to simulate the pavements under various climatic conditions and in-service 

ages. 

The critical pavement distress of interest generally changes with pavement age and 

climatic conditions. From a mechanistic perspective, the three major distress mechanisms 

are commonly studied, these include: rutting or permanent deformation, load associated 

cracking (fatigue and reflective cracking), and non-load associated cracking (thermal and 

block cracking). For all of these mechanisms it is critical to consider temperature induced 

property gradients.  In addition to this, for cracking related distresses, the aging induced 

gradation will play a key role.  

The practical implication of the present research is to enable pavement engineers to 

accurately and efficiently predict pavement performance. Based on the distress 

mechanisms of interest, practicing engineers can select the aging levels and the choice of 

temperature distribution. For example, a study of thermal cracking performance will 

require simulation of pavements during critical cooling event with non-homogeneous 
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temperature distribution and aged pavement conditions. The relevance of the present 

research is illustrated in realm of pavement design and analysis in Figure 6-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2: Relevance of Present Research in Context of Pavement Analysis and Design 
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6.3 PAVEMENT SYSTEM 1, CONVENTIONAL ASPHALT PAVEMENT 

An asphalt pavement simulation example is presented in this section to illustrate the 

application of the CP-based graded viscoelastic finite element analysis procedure. The 

simulation was also conducted for the same problem using the layered approach, and 

results from layered and graded approaches are compared. 

6.3.1 Pavement Section 

A conventional asphalt pavement section was simulated. Section details are shown in 

Figure 6-3 along with the finite-element mesh. 

 

Figure 6-3: Pavement Section and FE Mesh 

 

6.3.2 Asphalt Concrete Properties 

The pavement is assumed to be highly aged, and hence the asphalt concrete layer is 

simulated as a graded viscoelastic material. Apeagyei et al. [34, 143] have studied the 

effects of antioxidant treatment on asphalt binders and mixtures. They have performed 

viscoelastic characterization of short-term and long-term aged asphalt mixtures. Short 

term and long-term aged properties from Apeagyei et al. are utilized for simulation of 

aged asphalt concrete pavement in this example. The shear relaxation modulus is 
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assumed to be varying linearly through the pavement thickness, going from a long-term 

aged condition on surface to a short-term aged condition on the bottom of the asphalt 

concrete layer. This is illustrated in Figure 6-4. The bulk modulus is assumed to be 

constant with time. In the case of the layered simulation, the asphalt concrete layer is 

divided into six layers, where each layer is assigned average properties. 

 

 

Figure 6-4: Relaxation Modulus of Asphalt Concrete (variation with height  

of AC layer and time) 

6.3.3 Boundary Conditions 

Boundary conditions for the simulation problem are given in Figure 6-3. The 

imposed load is applied to simulate a single 40kN (9000lb) tire with 700kPa (100psi) 

pressure. Contact pressure is assumed to be vertically oriented (no horizontal loading). 

The asphalt concrete temperature is assumed to be uniform through the thickness, with a 

value of -10°C. 
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6.3.4 Results and Discussions 

In the case of asphalt pavements, stresses in the horizontal direction are often of 

interest to the pavement engineer, as they are taken as critical response parameters at low 

and intermediate temperatures. These stresses are commonly linked to fatigue cracking in 

pavements, which is one of the most devastating pavement damage mechanisms. The 

horizontal stresses directly under the tire load are compared for layered and graded 

viscoelastic approaches. The results are shown in Figure 6-5 for stresses at a loading time 

of 100 seconds. Notice that in order to exaggerate the difference between layered and 

graded approaches, the nodal stresses are presented for the graded approach, whereas for 

the layered approach, the nodal stresses are averaged in a layered fashion. Hence the 

discontinuities are observed at layer interfaces. It is interesting to note that the extent of 

tensile stresses is relatively low as compared to the compressive stresses near the surface. 

This trend is not unexpected for the aged pavement system, as the material closer to 

surface is stiffer and thus accumulates greater stresses, while unaged material near the 

bottom is compliant and exhibits a greater degree of stress relaxation. 

 

Figure 6-5: Stresses in Horizontal Direction (x-direction) directly under the Tire Load 
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6.4 PAVEMENT SYSTEM 2, FULL-DEPTH ASPHALT PAVEMENT 

A full-depth asphalt pavement is modeled using aged, unaged, functionally graded 

and layered gradations. The pavement section is modeled after interstate highway I-155 

near town of Lincoln, IL located in mid-western USA. This pavement has been 

previously studied by Buttlar et al. [39] using graded finite-element technique. 

6.4.1 Pavement Section 

This section of highway is constructed as a full-depth asphalt concrete pavement 

with lime-stabilized clay subgrade. The pavement consists of a 1.5-inch of surface course 

followed by 13-inches of binder course. The cross-section of the pavement is illustrated 

in Figure 6-6. 

 

 

 

 

 

 

 

Figure 6-6: Full-Depth Asphalt Pavement Section (I-155, Lincoln, IL) 

 

6.4.2 Asphalt Concrete Properties 

The asphalt concrete properties for the simulations are approximated based on the 

laboratory test results reported by Apeagyei et al. [34, 143]. In order to simulate an aged 

pavement condition, it was assumed that short-term aged properties represent material at 

the bottom of asphalt concrete layer and long term aged properties represent material at 

the top of asphalt concrete layer (c.f. Figure 6-6). The variation of the material properties 

is chosen similarly to that predicted by the Global Aging Model [33]. Figure 6-7 shows 

the relaxation modulus variation with time and space (across asphalt concrete thickness). 
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As anticipated, the material is significantly stiffer at the pavement surface and short 

loading times; and conversely, most complaint near the pavement bottom at longer 

loading times. 

 

 

Figure 6-7: Relaxation Modulus of Full-Depth AC Pavement (variation with Height of 

AC Layer and Time) 

 

As mentioned previously four material distributions are simulated. Viscoelastic FGM 

analysis is performed by simulating the spatial and temporal material variation which is 

shown in Figure 6-7, and thus this material representation is labeled as “FGM” 

throughout the rest of this section. Layered approximation is utilized to compare and 

contrast with the FGM approach; thus this representation is labeled as “Layered” and two 

homogeneous materials are simulated representing short term aging properties 

(“Unaged”) and long-term aging properties (“Aged”). The “Aged” and “Unaged” 

properties are similar to those shown in Figure 6-7 at top (height = 375.1 mm) and 
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bottom (height = 0 mm) of asphalt layer respectively. For layered approximation the 

surface course is divided into six layers (6.35 mm each) and the base course is divided 

into sixteen layers (21 mm). The property gradients are significantly steep near the top of 

asphalt concrete, thus finer resolution is utilized near the top. 

6.4.3 FE Model and Boundary Conditions 

A two-dimensional axisymmetric model is used for the simulations. Two levels of 

mesh discretizations are utilized. Two meshes are generated; the first one is utilized for 

simulation of graded and homogeneous material properties (FGM, Unaged, and Aged 

properties), and the second one with higher refinement is utilized for performing 

simulations using layered approximation. The FE meshes for the full domain as well as 

the asphalt concrete layers are shown in Figure 6-8. The total nodal degrees of freedom 

for the coarser mesh are 72150, versus 129060 for the finer mesh utilized in the layered 

approach. 

A single tire with 40 kN (9000 lb.) load and 758 kPa (100 psi) inflation pressure is 

simulated. The simulations are performed for quasi-static loading conditions with the 

loading times up to 1000 seconds. The domain extent, load and displacement boundary 

conditions are shown in Figure 6-9. 
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(a) Fine Mesh (AC Properties: Homogeneous and FGM), 72150 DOFs 

 

(b) Coarse Mesh (AC Properties: Layered Gradation), 129060 DOFs 

Figure 6-8: FE Meshes for Full Depth AC Pavements (Inset: Region of AC Layers) 
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Figure 6-9: FE Model Schematic 

6.4.4 Results 

The pavement response parameters that are commonly utilized in analysis and design 

of asphalt pavements are: (1) compressive strain at the top of asphalt concrete, (2) tensile 

strain at the bottom of asphalt concrete, and (3) shear strain at the edge of tire load. The 

first two have been empirically related to pavement’s permanent deformation and fatigue 

behaviors. The shear strain has been recently studied by several researchers to relate it 

with longitudinal cracking along the wheel path.  

The vertical strains directly under the wheel load for different loading times are 

shown in Figure 6-10 for unaged material properties. The results are as anticipated with 

the compressive strains reaching peak value shortly under the surface and dropping off 

with increasing depth. The viscoelastic effect is also evident in this plot, showing increase 

in strains with longer loading times. 

The peak compressive strains near the top of asphalt layer for each of the four 

material properties (unaged, aged, FGM, and layered) are shown in Figure 6-11. 

Similarly the peak tensile strains near the bottom of asphalt layer and peak shear stresses 
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at the edge of tire loading for each of the material property distributions are shown in 

Figure 6-12 and Figure 6-13 respectively.  

 

Figure 6-10: Strain in y-y Direction across AC Thickness for Unaged Conditions 
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Figure 6-11: Peak Strain in Vertical (y) Direction 

 

Figure 6-12: Peak Strain in Horizontal (x) Direction 
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Figure 6-13: Peak Shear Strains (x-y Direction) 

6.4.5 Discussion of Results 

The typical responses indicate that the layered approach provides reasonable 

approximation compared with the graded approach. However it should be noted that 

significantly higher mesh refinement is utilized for the layered analysis. In addition to 

this, the quantities in the plots are evaluated in proximity of surface or bottom of asphalt 

concrete where the responses may not have been so sensitive to the material variation. 

The predictions from layered approaches are questionable at the interfaces of layers and 

this could lead to significant errors in the analysis, as illustrated by looking at a response 

at the interface of surface and base course within asphalt pavement. Figure 6-14 shows 

strains in y-y direction near the interface at 1000 second loading time. It can be observed 

that as much as 20% error is incurred while utilizing layered approach, whereas the 

graded approach provides smooth predictions without jump in the strains.  
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Figure 6-14: Strain in Vertical Direction at Interface of Surface and Binder Courses 

 

The following key points can be observed from the simulation results: 

 It is important to consider effects of aging in the course of analysis; the unaged 

predictions made using unaged properties may be significantly different from 

those obtained with the consideration of aging. 

 The viscoelastic FGM analysis procedure developed herein provides an accurate 

and efficient way of analyzing asphalt pavements. 

 Layered approach may provide results with significant errors in derivative 

quantities at the layer interfaces. 

 The most severe response observed for this limited study was the high 

magnitude of shear strains generated at the edge of tire load.  
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6.5 PAVEMENT SYSTEM 3, OVERLAY-INTERLAYER SYSTEM WITH GRADED 

INTERFACE 

6.5.1 Introduction and Motivation 

A common practice in the design and construction of asphalt concrete layers in a 

pavement is to utilize a number of different courses ranging from 18 mm (3/4 inch) to 75 

mm (3 inch) in thickness. The interfaces between these layers form a continuously graded 

zone of finite thickness. In the case where the asphalt pavement is constructed with the 

same asphalt concrete for different courses this interface does not require any special 

attention for modeling. In contrast, for the pavements designed and constructed with 

layers of significantly different properties it is critical to give due attention to the graded 

nature of the interface. Typical examples of pavement systems with significantly different 

materials include overlay–interlayer systems, surface treatments with open graded 

mixtures laid on top of dense graded mixtures, and special treatments that yield varying 

asphalt binder content through the thickness of course, such as chip seals or bonded 

overlays. The interfaces of different construction lifts are shown in Figure 6-15 for two 

asphalt pavements. The boxes (dotted lines) indicate the region of interface where 

visually it could be observed that materials from the two layers have varying properties. 

 

 

 

 

 

 

 

 

 

Figure 6-15: Cross Section of Asphalt Pavements showing Interfaces  

between Different Construction Courses 
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The current state of practice in modeling of asphalt concrete pavements is to assign 

infinitesimally small thickness to the interface between different asphalt courses or lifts. 

In the current example, this type of approach is labeled as “Stepped Interface” due to 

jump in material properties at the boundary.  The viscoelastic FGM FE analysis 

procedure developed in this dissertation may be a useful tool for the simulation of 

viscoelastic interfaces. This example compares the responses obtained for graded versus 

stepped interfaces for asphalt pavements. Furthermore it demonstrates the capability of 

formulations presented herein to simulate the graded interfaces.  

6.5.2 Pavement Section 

The pavement section from Louisiana State Highway, LA34 located near town of 

Monroe in northern Louisiana is selected as the basis for constructing the simulation 

model. The pavement section is constructed in form of overlay-interlayer system. This 

pavement is part of the NSF sponsored reflective cracking study by Paulino et al. [12]. 

Figure 6-16 shows the picture of pavement section, which undergoes heavy truck traffic 

due to its close proximity to paper mill. 

6.5.3 FE Model and Boundary Conditions 

The finite element model for the pavement analysis is developed on basis of the 

pavement information obtained from site visits as well as the cross section details 

obtained from construction plans and cored samples. Figure 6-17 shows the cross section 

of the pavement as utilized for FE model construction. The FE simulations are performed 

using an assumption of 2D axisymmetric conditions.  

As described previously, the focus of this example is to compare two simulation 

approaches for interfaces between asphalt concrete construction lifts, Figure 6-17 

illustrates the two simulation approaches regarding the representation material gradation.  
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Figure 6-16: Pavement Section (LA34 near Monroe, LA) 

 

Figure 6-17: Pavement Cross Section and FE Model Schematics 

 

Two key properties are needed for accurate simulation of graded interfaces, (1) 

height or width of interface, and (2) distribution of material properties within the 

interface. In this example, the following assumptions are made: 

 The width of the interface is 9.5 mm; this assumption is made on the basis of the 

nominal maximum aggregate sizes (NMAS) of the asphalt mixtures. The surface 

course is a 19 mm NMAS mixture and the RCRI mixture is 4.75 mm NMAS. 
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 The material properties are assumed to be transitioning in linear fashion from 

one mixture to another over the thickness of interface. A better approach for 

obtaining viscoelastic property gradation at the interfaces would be to 

incorporate micromechanical approaches such as those proposed by Yin et al. 

[144], which, preferably, would be validated through experiments. This has been 

identified as one of the future extensions of this dissertation. 

6.5.4 AC Material Properties 

Wagoner et al. [16] have tested and analyzed the field core samples from LA34 

highway. The relaxation moduli for overlay and interlayer mixtures are shown in Figure 

6-18. The variation of material properties at the interface for “step interface” and “graded 

interface” are shown in Figure 6-19 and Figure 6-20 respectively. Notice the mismatch of 

properties at midpoint of interface for the stepped approach. 

 

Figure 6-18: Relaxation Modulus for Surface and Interlayer Mixtures 
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Figure 6-19: Relaxation Modulus Variation for Step Interface 

 

 

Figure 6-20: Relaxation Modulus Variation for Graded Interface 
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6.5.5 Results 

The response parameter that is utilized for comparing the two simulation approaches 

is the stresses in horizontal direction directly under the tire load. Figure 6-21 shows the 

variation of stresses as function of height of asphalt layers. The results are presented for 

10, 100, and 100 second loading times. Notice that the stresses exhibit non-physical 

“jump” at the step interface. This jump in stresses is illustrated in Figure 6-22; the plot 

shows variation of as much as 49% between the predicted tensile stresses at the bottom of 

overlay. The tensile stresses at bottom of overlay are important for reflective cracking 

simulations. In particular, the tensile stresses are compared with tensile strength of 

material and that serves as the threshold parameter for onset of damage. 

 

 

Figure 6-21: Stress in Horizontal Direction (x-direction) directly under the Tire Load 

(different loading times are shown) 
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Figure 6-22: Stress in Horizontal Direction (x-direction) at Interface 

 

The variations of peak tensile stresses within the interface with loading times are 

shown in Figure 6-23. The plot shows peak stresses for graded interface and three set of 

plots for step interface: (1) peak stress for surface course, (2) peak stress for RCRI, and 

(3) Average of surface course and RCRI stresses. The motivation for plotting average 

stresses for step interface is to demonstrate that simple averaging of responses (stresses or 

strains) at the interface significantly over predicts the response compared to graded 

interface. For the current example the averaging yields as much as 30% higher values 

when compared to graded interface.  
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Figure 6-23: Peak Tensile Stresses in the Overlay 

6.5.6 Summary and Findings 

An example is presented for an overlay-interlayer pavement system based on an 

actual pavement section on Louisiana state highway 34. The interface between overlay 

and interlayer is modeled using two approaches, a more conventional step interface and a 

more physical graded interface. The graded interface is assumed to have thickness of  

9.5mm and the viscoelastic properties are assumed to be varying linearly within the 

interface. Based on this limited study on asphalt concrete layer interface, the following 

key points are observed: 

 The physical interfaces between different asphalt lifts require special modeling 

considerations. 

 Assumption of interface with infinitesimal thickness (step interface) yields 

unrealistic stress responses. 

 The limited study shown here demonstrated a significant variation between peak 

tensile stresses obtained from step and graded interfaces. 
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 The average stresses from step interfaces were also found to be significantly 

greater than those obtained from graded interface. 

 More work is needed to identify: 

o Thickness/Length scale of asphalt concrete interfaces; and 

o Property variations within the interface.  A micromechanical 

approach might be a useful tool for generating the required inputs 

for the graded interface model. 

6.6 SUMMARY 

Three case studies for conventional, full-depth and overlay-interlayer asphalt 

pavement systems are simulated and the key results are discussed. For each of the cases 

the viscoelastic FGM FE methods developed in Chapters 4 and 5 are utilized. The results 

from viscoelastic FGM analysis approach are contrasted with conventional asphalt 

pavement simulation approaches. Results reveal the strength of viscoelastic FGM 

procedure over conventional approaches, such as, layered gradation or stepped interfaces. 

The predictions from layered approaches are found to be significantly deviant from FGM 

predictions for same computational costs. By increasing the mesh refinements and in-turn 

the computational costs, the responses from layered gradations starts to approach the 

FGM representations. The key finding from the case studies is that for accurate and 

efficient simulation of asphalt pavements the viscoelastic FGM analysis is necessary. 
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7 Equation Chapter (Next) Section 1Chapter 7 Conclusions and Extensions 

CHAPTER 7 – CONCLUSIONS AND EXTENSIONS 

 

 

CHAPTER 7 – CONCLUSIONS AND EXTENSIONS 

7.1 SUMMARY AND FINDINGS 

This dissertation describes the development, implementation, verification and 

application of viscoelastic FGM finite-element analysis procedures. Two formulations 

have been presented, (1) correspondence principle based, and (2) recursive time 

integration procedure, respectively. 

A viscoelastic characterization procedure using the indirect tensile test is presented 

and comparisons are made between regular and flattened test geometries. In depth 

verification is performed for the formulations developed and implemented in this thesis. 

The verification examples demonstrate the accuracy and efficiency of the proposed 

procedures, when compared to conventional approaches. Three types of asphalt pavement 

systems have been simulated using the procedure developed herein. The results are 

compared against the conventional simulation approaches. The application examples 

further demonstrate the superiority of the proposed approaches over the conventional 

methods. 

The key findings identified on the basis of research conducted in this study are 

summarized as follows: 

 The indirect tensile creep test (IDT) can be utilized for determination of 

viscoelastic properties of asphalt concrete at low and intermediate test 

temperatures. 

 The flattened IDT geometry is a viable alternative to regular IDT for viscoelastic 

characterization of asphalt concrete at low and intermediate temperatures. 

 Non-homogeneous form of generalized Maxwell model is selected as the 

constitutive model of choice for the formulations developed herein.  
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  The correspondence principle (CP) based finite element procedure for 

viscoelastic FGM problems presented in Chapter 4 is capable of accurate and 

efficient simulation of non-homogeneous viscoelastic boundary value problems. 

 In this study, the collocation method is found as the method of choice for 

numerical Laplace inversion. 

 The recursive time-integration finite-element procedure for viscoelastic FGM 

problems presented in Chapter 5 is capable of accurate and efficient simulation 

of non-homogeneous viscoelastic boundary value problems. 

 The generalized isoparametric formulation (GIF) extended to non-homogeneous 

viscoelastic finite elements makes for an attractive simulation method for 

asphalt pavements when compared to conventional approaches such as use of 

layered gradations. 

 Verification examples for CP-based and time-integration finite element 

implementations ensure the veracity of the formulations and the 

implementations discussed in this dissertation. 

 Comparisons with commercial software ABAQUS
®
 for both CP-based and 

time-integration formulations further verifies and demonstrates the importance 

of the procedures developed in this study. 

 Stationary crack tip fields have been determined for a radially graded 

viscoelastic FGM under Mode-I loading conditions. The results demonstrate the 

significant variation in the stresses with both space and time. This demonstrates 

the importance of considering of both spatial and temporal variations when 

simulating viscoelastic FGMs.   

 Ignoring aging and temperature induced property gradients in asphalt concrete 

yield significant errors in the predicted responses. 

 Significant deviations were found between graded and stepped interface 

modeling approaches for asphalt pavements. The deviation is anticipated to be 
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greatest for pavement systems with greater mismatch between layer properties, 

for example, that which is present in some overlay-interlayer systems. 

7.2 CONCLUSIONS 

Based on the findings from this study following conclusions can be drawn: 

 The non-homogeneous viscoelastic analyses procedures presented in this 

dissertation are suitable and preferred for simulation of asphalt pavement 

systems. 

 The proposed procedures yield greater accuracy and efficiency over 

conventional approaches for simulation of non-homogeneous viscoelastic 

problems.  

 The layered approach for simulation of aging and temperature induced property 

gradients in asphalt concrete can yield significant errors; the most pronounced 

errors are at layer interfaces in the stress and strain quantities. 

 The interface between asphalt concrete layers can be realistically simulated 

using the procedures developed in this thesis. 

 In a limited study of aged full-depth asphalt pavements, the shear strains at the 

tire edge were found to be the most critical response. 

 In case of layered approaches, at the layer interfaces the average of results from 

each material can be significantly different when compared to continuous FGM 

results at the same location. This difference is usually exaggerated with time 

when the time dependent (viscous) portion of material has spatial gradation. 

7.3 FUTURE EXTENSIONS 

Based on the finding and conclusions from this study following extensions are 

recommended: 

 Further verification and validations are required for the flattened indirect tensile 

test for viscoelastic characterization and strength determination of asphalt 
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concrete. Verifications should include numerical simulation of the creep tests for 

different test geometries. Comparisons should be made between numerically 

determined viscoelastic properties with inputted properties to the analysis 

model. Analysis procedure similar to that utilized by Buttlar and Roque [43] 

could be used for development of correction factors if necessary. 

 In the current study generalized Maxwell model was used for constitutive 

representation of non-homogeneous viscoeasltic material, the formulations 

should be extended to other commonly used models for asphalt concrete such as 

2P2S1D model proposed by Olard et al. [49, 50]. 

 Limited data is available on variation of viscoelastic properties of asphalt 

concrete with age, the procedures developed in this thesis depend significantly 

on availability of this information. More testing and analysis should be 

performed to further verify and validate aging prediction models. The widely 

utilized global aging model by Mirza and Witczek [33] has been validated only 

for binder viscosity tests and amplitude of complex moduli. 

 One of the key application areas of this dissertation research is thermal and 

reflective cracking predictions in asphalt pavement systems. The development 

from this research enables realistic simulation of age and temperature induced 

property gradients in bulk material, which significantly increases accuracy over 

the current state of practice. Future extension to graded viscoelastic cohesive 

fracture model is necessary to further enhance the accuracy of pavement crack 

modeling. Song [87] has worked on preliminary development of rate and 

temperature dependent cohesive fracture model and Braham et al. [145] have 

performed fracture characterization of asphalt concrete with varying degree of 

aging, these could be used as the basis for further development. 

 The numerical inversion schemes studied in this thesis such as collocation 

method or Laguerre’s functions are computationally inefficient. Approximate 

inversion formulae have been proposed by Schapery and Park [114] and Park 

and Kim [146], amongst others. These should be explored to increase efficiency 
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of CP-based implementations due to their significantly lower computational 

costs. 

 Micromechanics considerations for prediction of graded viscoelastic properties 

should be studied. This is of particular interest for fracture simulation of 

significantly heterogeneous material such as asphalt concrete. Figure 7-1 

demonstrates the effect of material heterogeneity during the fracture through 

asphalt concrete. Different failure modes are evident in the pictures, including 

cohesive failure of asphalt mastic, cracking of aggregates, and adhesive failure 

of interface between aggregate and mastic. Previously Kim and Paulino [147] 

have utilized micromechanical models for elastic simulation of fracture in FGMs 

and Yin et al. [148] described micromechanical models for prediction of 

viscoelastic properties of asphalt mastics. 

 

 

 

 

 

 

 

  

Figure 7-1: Fractured Faces of Asphalt Concrete Specimens 

Fractured aggregate faces 
(selected) 
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 This thesis explored incremental and recursive formulations for performing 

time-integration.  Further evaluations of these methods are needed to study the 

theoretical basis of these numerical schemes. Krenk [149] has recently studied 

the energy conservation in Newmark time integration algorithms, similar 

analyses should be carried out for the time integration schemes studied in this 

dissertation. 

 Finally, it is recommended that the current formulations be implemented in form 

of user defined elements (UEL) in commercial software ABAQUS
®
. The key 

motivation is to take benefit of efficient pre-processing, analysis and post-

processing interfaces as well as for utilization of ABAQUS
®
 finite-element 

mesh library of asphalt pavements developed previously [12]. 

7.4 SOME APPLICATIONS OF THE PRESENT RESEARCH 

Few examples of have been presented in Chapters 4, 5, and 6 demonstrating the 

application of this research. There are broad areas of application for the present research 

within the field of asphalt pavements as well as outside. Some of the immediate 

applications for the current work are identified here: 

 The viscoelastic FGM analysis described in this dissertation can be used for 

analysis and design of asphalt pavements. Based on the distress mechanism of 

interest the aging and temperature conditions can be chosen as the sources of 

non-homogeneities. 

 The present analysis codes can be utilized as material selection tools for asphalt 

pavement and overlay systems. Using the aged and unaged viscoelastic 

properties the simulation code allows practicing engineers to make comparisons 

between different combinations of asphalt materials at different aging levels. 

Similar comparisons and selections are possible for selection of appropriate 

materials based on the anticipated climatic conditions. 

 Bonded overlay systems are becoming popular structural and functional 

improvement strategies for deteriorated pavements. These type of systems 
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consists of emulsified asphalt tack coats with high application rates. During the 

process of lay-down and construction the tack coat wicks upwards into the 

asphalt concrete layer, as illustrated in Figure 7-2. This type of bonded overlay 

system exhibits significant viscoelastic property gradients through the thickness 

due to the spatially graded of tack-coat distribution. The present research 

provides a useful tool for the study of bonded overlay systems. 

 

Figure 7-2: Tack Coat Emulsion Wicking up (reproduced from [150]) 

 

 Hilton [28, 29] has proposed designer viscoelastic FGMs that are tailored for a 

various applications using analytical formulations. The analyses procedures 

developed in this dissertation can be applied in similar fashion for design of 

viscoelastic FGMs for complicated boundary value problems for which, 

analytical solutions are not available. 

 Many geotechnical materials exhibit viscoelastic behavior, for example behavior 

of sands as recently demonstrated by Bang et al. [151]. Factors such as moisture 

distribution [152, 153], temperature non-homogeneity [154], pore distribution 

[155] etc. commonly yield naturally existing and man-made geotechnical FGMs. 

The analyses procedures described in this dissertation can be applied for 

simulation of naturally exiting and man-made geotechnical deposits and their 

interactions with civil engineering structures. 

 Portland cement concrete (PCC) and paste exhibits creep behavior necessitating 

viscoelastic analysis [156, 157], the properties depend on temperature [158] and 
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extent of cement hydration [156]. The viscoelastic FGM analysis is appropriate 

for simulation of PCC during the course of curing (short term) as well as long 

term creep. 

 Significant amount of plant and animal tissues exhibit graded viscoelastic 

properties, one such example is human bones where porosity distribution makes 

it a viscoelastic FGM [159-161]. Analysis of biomaterials is another application 

of the present research. 

 Other application areas of the present research include engineering materials that 

exhibit non-homogeneous viscoelasticity as a result of varied sources such as, 

temperature distribution, aging, moisture distribution, radiation, and curing. The 

applications vary across broad realm ranging from food industry [162] to 

metallurgy [3, 163] to polymer science [164]. 
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CHAPTER 8 – NOMENCLATURE 

 

 

CHAPTER 8 – NOMENCLATURE 

The symbols and notations used throughout this dissertation are described herein. 

Unless otherwise indicated the symbols used in the text, equations, figures and tables 

refer to the list provided below. 

8.1 CONSTITUTIVE RELATIONSHIP 

 

: Location

: Time

: Temperature

, , , :  Subscripts with values of 1, 2, and 3 used in

               conjunction with summation convention   

: Coefficient of thermal expansion and contraction

:Stifijkl

x

t

T

i j k l

C x



 

 

 

 

 

fess tensor

, : Relaxation modulus tensor

, : Creep compliance tensor

, :Shear or Deviatoric relaxation modulus

, :  Shear or Deviatoric creep compliance

, : Bulk or Volumetric relaxation mod

ijkl

ijkl

C x t

D x t

G x t

J x t

K x t

 

 

 

 

 

ulus

, :  Bulk or Volumetric creep compliance

:Viscosity

: Elastic or viscous contribution from  unit of generalized model

:  Relaxation time

: Retaradation time

:  Stress tensor

ijkl

ijkl h

ijkl

ijkl

ij

ij

M x t

x

h

t

t













:Strain tensor
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 

 

, :Reduced time

: Time-temperature superposition shift factors

: Kronecker's delta

Superscript  indicate deviatoric (shear) component

ijkl

ijkl

ij

t T

a T

d




 

8.2 FINITE-ELEMENT FORMULATION  

:Potential

: Displacements

: Prescribed tractions

:Nodal displacement vector

:Isoprarametric shape functions

:  Derivative of shape functions

: Element mechanical force vector

: Element thermal

i

i

i

i

i

i

th

i

u

P

q

N

B

f

f



 force vector

: Element stiffness matrix

:  Global mechanical force vector

: Global thermal force vector

: Global stiffness matrix

: Elastic component of stiffness matrix

: Viscous component o

ij

i

th

i

ij

e

ij

t

ij

k

F

F

K

K

K f stiffness matrix

 

8.3 TIME INTEGRATION SCHEMES 

 

   

 

1 2

:  Time at increment 

: Time step size

, : Reduced time increment corresponding to real time increment, 

, & , :  Viscous contributions in the element kernel for recursive method

: S

n

n

ij n ij n

i n

t n

t

T t t

v x t v x t

R t





 

olutions from previous time steps contributing to current time step

 

  



 

132 

References 

REFERENCES 

 

 

REFERENCES 

[1] "Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement 

Structures," ARA Inc., ERES Consultants, NCHRP Project 1-37A Final Report, 2002.  

[2] C. Billotte, P.J. Carreau, and M.C. Heuzey, (2006) "Rheological characterization of a 

solder paste for surface mount applications," Rheologica Acta, 45:374.  

[3] S. Koric, and B.G. Thomas, (2008) "Thermo-mechanical models of steel 

solidification based on two elastic visco-plastic constitutive laws," Journal of Materials 

Processing Technology, 197:408.  

[4] J. Sladek, V. Sladek, and C. Zhang, (2005) "Stress analysis in anisotropic functionally 

graded materials by the MLPG method," Engineering Analysis with Boundary Elements, 

29:597-609.  

[5] J.N. Reddy, and R.A. Arciniega, (2007) "Large deformation analysis of functionally 

graded shells," International Journal of Solids and Structures, 44:2036-52.  

[6] A. Hollaender, J.E. Klemberg-Sapieha, and M.R. Wertheimer, (1995) "Polymer 

oxidation induced by vacuum-ultraviolet emission," Surface and Coatings Technology, 

Vol. 74-75 55.  

[7] J.R. Roesler, G.H. Paulino, C. Gaedicke, A. Bordelon, and K. Park, (2007) "Fracture 

behavior of functionally graded concrete materials for rigid pavements," Transportation 

Research Record, 2037:40-49.  

[8] H. Diab, and Z. Wu, (2007) "Nonlinear constitutive model for time-dependent 

behavior of FRP-concrete interface," Composites Science and Technology, 67:2323.  

[9] Y.H. Huang, "Pavement Analysis and Design," Prentice-Hall, Inc., Englewood Cliffs, 

New Jersey, 1993.  

[10] P. Blankenship, N. Iker, and J. Drbohlav, (2004) "Interlayer and design 

considerations to retard reflective cracking," Transportation Research Record, 1896:177-

186.  

[11] M. Marasteanu, A. Zofka, M. Turos, X. Li, R. Velasquez, X. Li, C. Williams, J. 

Bausano, W. Buttlar, G. Paulino, A. Braham, E. Dave, J. Ojo, H. Bahia, A. Gallistel, and 



 

133 

J. McGraw, "Investigation of Low Temperature Cracking in Asphalt Pavements," 

Minnesota Department of Transportation, Research Services MS 330, St. Paul, MN 

55155, Report: 776, 2007.  

[12] G.H. Paulino, W.G. Buttlar, P.B. Blankenship, E.V. Dave, M.P. Wagoner, and S.H. 

Song, "Reflective crack control treatment and design procedures: a new integrated 

approach," National Science Foundation, CMS 0219566, Washington, DC, 2007.  

[13] M.P. Wagoner, W.G. Buttlar, G.H. Paulino, and P.B. Blankenship, (2005) 

"Investigation of the fracture resistance of hot-mix asphalt concrete using a disk-shaped 

compact tension test," Transportation Research Record, 1929:183-192.  

[14] M.P. Wagoner, W.G. Buttlar, and G.H. Paulino, (2005) "Disk-shaped compact 

tension test for asphalt concrete fracture," Proceedings of the Society for Experimental 

Mechanics, Inc, 52:270-7.  

[15] M.P. Wagoner, W.G. Buttlar, and G.H. Paulino, (2005) "Development of a single-

edge notched beam test for the study of asphalt concrete fracture," Geo-Frontiers 2005, 

137-149.  

[16] M.P. Wagoner, W.G. Buttlar, G.H. Paulino, and P.B. Blankenship, (2006) 

"Laboratory testing suite for characterization of asphalt concrete mixtures obtained from 

field cores," Journal of Asphalt Paving Technologists, Proceedings of the Annual 

Meeting, Association of Asphalt Paving Technologists, Vol. 75 815-852.  

[17] M.P. Wagoner,"Fracture Tests for Bituminous Aggregate Mixtures: Laboratory and 

Field Investigations," Doctorate Thesis, University of Illinois at Urbana-Champaign, 

Urbana, IL, 2006.  

[18] S.H. Song, G.H. Paulino, and W.G. Buttlar, (2006) "Simulation of crack propagation 

in asphalt concrete using an intrinsic cohesive zone model," Journal of Engineering 

Mechanics, 132:1215.  

[19] S.H. Song, G.H. Paulino, and W.G. Buttlar, (2006) "A bilinear cohesive zone model 

tailored for fracture of asphalt concrete considering viscoelastic bulk material," 

Engineering Fracture Mechanics, 73:2829-2848.  

[20] S.H. Song, G.H. Paulino, and W.G. Buttlar, (2006) "Simulation of crack propagation 

in asphalt concrete using an intrinsic cohesive zone model," Journal of Engineering 

Mechanics, 132:1215-1223.  

[21] S.H. Song,"Fracture of Asphalt Concrete: A Cohesive Zone Modeling Approach 

Considering Viscoelastic Effects," Doctorate Thesis, University of Illinois at Urbana-

Champaign, Urbana, IL, 2006.  



 

134 

[22] E.V. Dave, S.H. Song, W.G. Buttlar, and G.H. Paulino, (2007) "Reflective and 

Thermal Cracking Modeling of Asphalt Concrete Overlays," Proceedings of the Advance 

Characterization of Pavement and Soil Engineering Materials – 2007, Vol. 2 1241-1252.  

[23] E.V. Dave, A.F. Braham, W.G. Buttlar, G.H. Paulino, and A. Zofka, (2008) 

"Integration of Laboratory Testing, Field Performance Data, and Numerical Simulations 

for the Study of Low-Temperature Cracking," Proceedings of the 6th RILEM 

International Conference on Cracking in Pavements, Vol. 1 369-378.  

[24] W.G. Buttlar, G.H. Paulino, and S.H. Song, (2006) "Application of graded finite 

elements for asphalt pavements," Journal of Engineering Mechanics, 132:240-249.  

[25] S. Suresh, and A. Mortensen, "Functionally Graded Materials," The Institute of 

Materials, IOM Communications Ltd., London, 1998.  

[26] M.A.A. Cavalcante, S.P.C. Marques, and M. Pindera, (2007) "Parametric 

formulation of the finite-volume theory for functionally graded Materials-part I: 

analysis," Journal of Applied Mechanics, 74:935-45.  

[27] Y. Miyamoto, W.A. Kaysser, B.H. Rabin eds., "Functionally Graded Materials: 

Design, Processing and Applications," Kluwer Acedemic, Dordrecht, The Netherlands, 

1999,  

[28] H.H. Hilton, (2005) "Optimum linear and nonlinear viscoelastic designer 

functionally graded materials - Characterizations and analysis," Composites Part A: 

Applied Science and Manufacturing, 36:1329-1334.  

[29] H.H. Hilton, (2006) "Tailored designer functionally graded materials for minimizing 

probabilistic creep buckling failures in linear viscoelastic columns with large 

deformations and follower loads," 47th AIAA/ASME/ASCE/AHS/ASC Structures, 

Structural Dynamics and Materials Conference, Vol. 1 328-344.  

[30] N.W. Garrick, (1995) "Nonlinear differential equation for modeling asphalt aging," 

Journal of Materials in Civil Engineering, 7:265.  

[31] E.C.N. Silva, M.C. Walters, and G.H. Paulino, (2006) "Modeling bamboo as a 

functionally graded material: lessons for the analysis of affordable materials," Journal of 

Materials Science, 41:6991-7004.  

[32] J.F. Branthaver, J.C. Petersen, R.E. Robertson, J.J. Duvall, S.S. Kim, P.M. 

Harnsberger, T. Mill, E.K. Ensley, F.A. Barbour, and J.F. Schabron, "Binder 

Characterization and Evaluation, Volume 2: Chemistry," Strategic Highway Research 

Program, National Research Council, Final Report, SHRP A-368, Washington, DC, 

1993.  



 

135 

[33] M.W. Mirza, and M.W. Witczak, (1996) "Development of a global aging system for 

short and long term aging of asphalt cements," Journal of Asphalt Paving Technologists, 

Proceedings of the Annual Meeting, Association of Asphalt Paving Technologists, Vol. 

64 393-430.  

[34] A.K. Apeagyei,"Antioxidant Treatment for Asphalt Binders and Mixtures," 

Doctorate Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2006.  

[35] A.D. Chiasson, C. Yavuzturk, and K. Ksaibati, (2008) "Linearized approach for 

predicting thermal stresses in asphalt pavements due to environmental conditions," 

Journal of Materials in Civil Engineering, 20:118.  

[36] J. Kim, and W.G. Buttlar, (2002) "Analysis of reflective crack control system 

involving reinforcing grid over based-isolating interlayer mixture," Journal of 

Transportation Engineering, 128:375-384.  

[37] B. Saad, H. Mitri, and H. Poorooshasb, (2006) "3D FE analysis of flexible pavement 

with geosynthetic reinforcement," Journal of Transportation Engineering, 132:402.  

[38] J. Baek, and I.L. Al-Qadi, (2006) "Finite element method modeling of reflective 

cracking initiation and propagation: Investigation of the effect of steel reinforcement 

interlayer on retarding reflective cracking in hot-mix asphalt overlay," Transportation 

Research Record, 1949:32-42.  

[39] W.G. Buttlar, G.H. Paulino, and S.H. Song, (2006) "Application of graded finite 

elements for asphalt pavements," Journal of Engineering Mechanics, 132:240-249.  

[40] K. Nam, and H.U. Bahia, (2004) "Effect of binder and mixture variables on glass 

transition behavior of asphalt mixtures," Journal of Asphalt Paving Technologists, 

Proceedings of the Annual Meeting, Association of Asphalt Paving Technologists, Vol. 

73 89-119.  

[41] J.M. Krishnan, and K.R. Rajagopal, (2003) "Review of the uses and modeling of 

bitumen from ancient to modern times," Applied Mechanics Reviews, 56:149-214.  

[42] F.L. Roberts, P.S. Kandhal, E.R. Brown, "Hot Mix Asphalt Materials, Mixture 

Design, and Construction," NAPA Research and Education Foundation, Lanham, 

Maryland, 1996.  

[43] W.G. Buttlar, and R. Roque, (1994) "Development and evaluation of the strategic 

highway research program measurement and analysis system for indirect tensile testing at 

low temperatures," Transportation Research Record, 1454:163-171.  

[44] AASHTO, "Standard Test Method for Determining the Creep Compliance and 

Strength of Hot Mix Asphalt (HMA) Using the Indirect Tensile Test Device (T-322)," 



 

136 

American Association of State Highway and Transportation Officials, Washington, DC, 

2004.  

[45] ASTM, "Standard Specification for Performance Graded Asphalt Binder," Vol. 

D6373-99, 1999.  

[46] D.W. Christensen, and R.F. Bonaquist, "Evaluation of Indirect Tensile Test (IDT) 

Procedures for Low-Temperature Performance of Hot Mix Asphalt," Federal Highway 

Administration, NCHRP-530, United States, 2004.  

[47] C. Huet,"Etude par une méthode d'impédance du comportement viscoélastique des 

matériaux hydrocarbonés," Doctorate Thesis, Faculté des Sciences de l’université de 

Paris, Paris, 1963.  

[48] G. Sayegh,"Variation des modules de quelques bitumes purs et bétons bitumineux," 

Doctorate Thesis, Faculté des Sciences de l’université de Paris, Paris, 1965.  

[49] H. Di Benedetto, B. Delaporte, and C. Sauzéat, (2007) "Three-dimensional linear 

behavior of bituminous materials: Experiments and modeling," International Journal of 

Geomechanics, 7:149-157.  

[50] F. Olard, H. Di Benedetto, A. Dony, and J.C. Vaniscote, (2005) "Properties of 

bituminous mixtures at low temperatures and relations with binder characteristics," 

Materials and Structures, 38:121-126.  

[51] H. Di Benedetto, F. Olard, C. Sauzéat, and B. Delaporte, (2004) "Linear viscoelastic 

behaviour of bituminous materials: from binders to mixes," Road Materials and 

Pavement Design, 5:163-202.  

[52] B. Delaporte, H. Di Benedetto, P. Chaverot, and G. Gauthier, (2007) "Linear 

viscoelastic properties of bituminous materials: from binders to mastics," Journal of 

Asphalt Paving Technologists, Proceedings of the Annual Meeting, Association of 

Asphalt Paving Technologists, Vol. 76 393-430.  

[53] H.U. Bahia, and D.A. Anderson, (1995) "Development of the bending beam 

rheometer; Basics and critical evaluation of the rheometer," ASTM, Proceedings of the 

Conference on Physical Properties of Asphalt Cement Binders, Vol. 1241 28-50.  

[54] M.W. Witczak, and O.A. Fonseca, (1996) "Revised predictive model for dynamic 

(complex) modulus of asphalt mixtures," Transportation Research Record, 1540:15-23.  

[55] T.K. Pellinen, and M.W. Witczak, (2002) "Use of stiffness of hot-mix asphalt as a 

simple performance test," Transportation Research Record, 1789:80-90.  

[56] T.K. Pellinen, M.W. Witczak, and R.F. Bonaquist, (2004) "Asphalt mix master 

curve construction using sigmoidal fitting function with non-linear least squares 



 

137 

optimization," Recent Advances in Materials Characterization and Modeling of Pavement 

Systems, 83-101.  

[57] J. Bari, and M.W. Witczak, (2006) "Development of a new revised version of the 

Witczak E* Predictive Model for hot mix asphalt mixtures," Journal of Asphalt Paving 

Technologists, Proceedings of the Annual Meeting, Association of Asphalt Paving 

Technologists, Vol. 75 381-424.  

[58] D.W. Christensen Jr., T. Pellinen, and R.F. Bonaquist, (2003) "Hirsch model for 

estimating the modulus of asphalt concrete," Journal of Asphalt Paving Technologists, 

Proceedings of the Annual Meeting, Association of Asphalt Paving Technologists, Vol. 

72 97-121.  

[59] Z. Zhang, and G.H. Paulino, (2007) "Wave propagation and dynamic analysis of 

smoothly graded heterogeneous continua using graded finite elements," International 

Journal of Solids and Structures, 44:3601-3626.  

[60] J.H. Kim, and G.H. Paulino, (2005) "Consistent formulations of the interaction 

Integral method for fracture of functionally graded materials," Journal of Applied 

Mechanics, 72:351-64.  

[61] G.H. Paulino, and J.H. Kim, (2007) "The weak patch test for nonhomogeneous 

materials modeled with graded finite elements," Journal of the Brazilian Society of 

Mechanical Sciences and Engineering, 29:63-81.  

[62] S.H. Song, and G.H. Paulino, (2006) "Dynamic stress intensity factors for 

homogeneous and smoothly heterogeneous materials using the interaction integral 

method," International Journal of Solids and Structures, 43:4830-4866.  

[63] Y.D. Lee, and F. Erdogan, (1995) "Residual/thermal stresses in FGM and laminated 

thermal barrier coatings," International Journal of Fracture, 69:145-65.  

[64] M.H. Santare, and J. Lambros, (2000) "Use of graded finite elements to model the 

behavior of nonhomogeneous materials," Journal of Applied Mechanics, 67:819-22.  

[65] J.H. Kim, and G.H. Paulino, (2002) "Isoparametric graded finite elements for 

nonhomogeneous isotropic and orthotropic materials," Journal of Applied Mechanics, 

69:502-14.  

[66] M.C. Walters, G.H. Paulino, and R.H. Dodds Jr., (2004) "Stress-intensity factors for 

surface cracks in functionally graded materials under mode-1 thermomechanical 

loading," International Journal of Solids and Structures, 41:1081-118.  

[67] E.C.N. Silva, R.C. Carbonari, and G.H. Paulino, (2007) "On graded elements for 

multiphysics applications," Smart Materials and Structures, 16:2408-2428.  



 

138 

[68] H.H. Hilton, and J.J. Piechocki, (1962) "Shear Center Motion in Beams with 

Temperature Dependent Linear Elastic or Viscoelastic Properties," Proceedings of the 

Forth U.S. National Congress of Applied Mechanics, 1279-1289.  

[69] R.A. Schapery, "A Method for Predicting Crack Growth in Nonhomogeneous 

Viscoelastic Media," Texas A and M Univ College Station Mechanics and Materials 

Research Center, United States, 1977.  

[70] J. Sladek, V. Sladek, C. Zhang, and M. Schanz, (2006) "Meshless local Petrov-

Galerkin method for continuously nonhomogeneous linear viscoelastic solids," 

Computational Mechanics, 37:279-289.  

[71] W.J. Chang, T.H. Fang, and Y.C. Yang, (2007) "Thermoviscoelastic analysis of 

polymeric film on an elastic substrate with graded interlayer," Japanese Journal of 

Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 46:1604-

1607.  

[72] G.H. Paulino, and Z.H. Jin, (2001) "Correspondence principle in viscoelastic 

functionally graded materials," Journal of Applied Mechanics, 68:129-32.  

[73] S. Mukherjee, and G.H. Paulino, (2003) "The elastic-viscoelastic correspondence 

principle for functionally graded materials, revisited," Journal of Applied Mechanics, 

70:359-63.  

[74] Z.H. Jin, (2006) "Some notes on the linear viscoelasticity of functionally graded 

materials," Mathematics and Mechanics of Solids, 11:216-24.  

[75] Y.H. Huang, (1973) "Stresses and Strains in Viscoelastic Multilayer Systems 

Subjected To Moving Loads," Highway Research Record, 457:60-71.  

[76] J. Uzan, M. Livneh, and I. Ishai, (1980) "Thickness Design of Flexible Pavements 

with Different Layer Structures," Australian Road Research, 10:8-20.  

[77] J. Uzan, (2004) "Permanent deformation in flexible pavements," Journal of 

Transportation Engineering, 130:6-13.  

[78] C.D. Whiteoak, (1990) "Analytical pavement design using programs for personal 

computers," Highways and Transportation, 37:31-35.  

[79] L. Khazanovich, and Q. Wang, (2007) "MnLayer: High-performance layered elastic 

analysis program," Transportation Research Record, 2037:63-75.  

[80] W. Alkasawneh, E. Pan, F. Han, R. Zhu, and R. Green, (2007) "Effect of 

temperature variation on pavement responses using 3D multilayered elastic analysis," 

International Journal of Pavement Engineering, 8:203-212.  



 

139 

[81] R.P. Elliott, and M.R. Thompson, "Mechanistic Design Concepts for Conventional 

Flexible Pavements," Illinois State Dept. of Transportation, Springfield, IL, UILU-ENG-

85-2001, United States, 1985.  

[82] H.I. Ling, and H. Liu, (2003) "Finite element studies of asphalt concrete pavement 

reinforced with geogrid," Journal of Engineering Mechanics, 129:801-811.  

[83] S. Mun, M.N. Guddati, and Y. Kim, (2004) "Fatigue cracking mechanisms in asphalt 

pavements with viscoelastic continuum damage finite-element program," Transportation 

Research Record, 1896:96-106.  

[84] M. Novak, B. Birgisson, and R. Roque, (2003) "Tire Contact Stresses and Their 

Effects on Instability Rutting of Asphalt Mixture Pavements: Three-Dimensional Finite 

Element Analysis," Transportation Research Record, 1853:150-156.  

[85] W.G. Buttlar, B.J. Dempsey, and D. Bozkurt, "Evaluation of Reflective Crack 

Control Policy," Illinois Transportation Research Center, ITRC-IA-H1, United States, 

1999.  

[86] L.A. Myers, R. Roque, and B. Birgisson, (2001) "Propagation mechanisms for 

surface-initiated longitudinal wheelpath cracks," Transportation Research Record, 

1778:113-121.  

[87] S.H. Song,"Fracture of Asphalt Concrete: A Cohesive Zone Modeling Approach 

Considering Viscoelastic Effects," Doctorate Thesis, University of Illinois at Urbana-

Champaign, Urbana, IL, 2006.  

[88] Q.Z. Wang, X.M. Jia, S.Q. Kou, Z.X. Zhang, and P.A. Lindqvist, (2004) "The 

flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and 

fracture toughness of brittle rocks: Analytical and numerical results," International 

Journal of Rock Mechanics and Mining Sciences, 41:245-253.  

[89] Q.Z. Wang, and L.Z. Wu, (2004) "The flattened Brazilian disc specimen used for 

determining elastic modulus, tensile strength and fracture toughness of brittle rocks: 

Experimental results," International Journal of Rock Mechanics and Mining Sciences, 

41:1A 05 1-5.  

[90] E.V. Dave, A.F. Braham, W.G. Buttlar, and G.H. Paulino, (2007) "Development of a 

flattened indirect tension test for asphalt concrete," SEM Annual Conference and 

Exposition on Experimental and Applied Mechanics 2007, Vol. 2 1088-1097.  

[91] H.H. Hilton, (2001) "Implications and constraints of time-independent Poisson ratios 

in linear isotropic and anisotropic viscoelasticity," Journal of Elasticity, 63:221-251.  

[92] H.R. Hertz, (1881) "Ueber die Berührung fester elastischer Körper," Journal Für 

Die Reine Und Angewandte Mathematik (Crelle's Journal), 92:1.  



 

140 

[93] G. Hondros, (1959) "The evaluation of poisson's ratio and the modulus of materials 

of a low tensile resistance by the brazilian (indirect tensile) test with particular reference 

to concrete," Australian Journal of Applied Science, 10:243-268.  

[94] G.D. Airey, and B. Rahimzadeh, (2004) "Combined bituminous binder and mixture 

linear rheological properties," Construction and Building Materials, 18:535-548.  

[95] E. Masad, and A. Papagiannakis, "Pavement Design and Materials," John Wiley and 

Sons, Inc., Hoboken, NJ, 2008.  

[96] E.V. Dave, A.F. Braham, W.G. Buttlar, and G.H. Paulino, (2009) "Development of a 

Flattened Indirect Tension Test for Asphalt Concrete," To be Submitted for Journal 

Publication.  

[97] H.H. Hilton, "Viscoelastic Analysis," Engineering Design for Plastics, Reinhold, 

New York, 1964, pp. 199.  

[98] R.M. Christensen, "Theory of Viscoelasticity," Dover Publications, Inc., Mineola, 

New York, 1982.  

[99] W.T. Read Jr., (1950) "Stress analysis for compressible viscoelastic materials," 

Journal of Applied Physics, 21:671-674.  

[100] H.H. Hilton, and S. Yi, (1993) "Anisotropic viscoelastic finite element analysis of 

mechanically and hygrothermally loaded composites," Composites Engineering, 3:123-

35.  

[101] H.H. Hilton, Personal Communication, "Limitations on use of correspondence 

principle".  

[102] R.D. Cook, D.S. Malkus, M.E. Plesha, "Concepts and applications of finite element 

analysis," Fourth Edition, John Wiley & Sons, Inc., New York, 2001.  

[103] J.N. Reddy, "An introduction to finite element method," Third Edition, McGraw 

Hill, New York, 2005.  

[104] M.E. Gurtin, (1963) "Variational Principles in the Linear Theory of 

Viscoelasticity," Archives of Rational Mechanics and Analysis, 36:179-185.  

[105] R.L. Taylor, K.S. Pister, and G.L. Goudreau, (1970) "Thermomechanical Analysis 

of Viscoelastic Solids," International Journal of Numerical Methods in Engineering, 

2:45-59.  

[106] G.V. Narayanan, and D.E. Beskos, (1982) "Numerical operational methods for 

time-dependent linear problems," International Journal for Numerical Methods in 

Engineering, 18:1829-1854.  



 

141 

[107] D.E. Beskos, and G.V. Narayanan, (1983) "Dynamic response of frameworks by 

numerical Laplace transform," Computer Methods in Applied Mechanics and 

Engineering, 37:289-307.  

[108] H. Stehfest, (1970) "Numerical inversion of Laplace transforms," Communications 

of the ACM, 13:47-9.  

[109] A. Sutradhar, G.H. Paulino, and L.J. Gray, (2002) "Transient heat conduction in 

homogeneous and non-homogeneous materials by the Laplace transform Galerkin 

boundary element method," Engineering Analysis with Boundary Elements, 26:119-132.  

[110] F. Durbin, (1974) "Numerical inversion of Laplace transforms: an efficient 

improvement to Dubner and Abate's method," Computer Journal, 17:371-6.  

[111] W.T. Weeks, (1966) "Numerical inversion of Laplace transforms using Laguerre 

functions," Journal of the ACM, 33:419-429.  

[112] B.S. Garbow, G. Giunta, J.N. Lyness, and A. Murli, (1988) "Software for an 

implementation of Weeks' method for the inverse Laplace transform problem," ACM 

Transactions on Mathematical Software, 14:163-70.  

[113] R.A. Schapery, (1965) "Method of viscoelastic stress analysis using elastic 

solutions," Franklin Institute Journal, 279:268-289.  

[114] R.A. Schapery, and S.W. Park, (1999) "Methods of interconversion between linear 

viscoelastic material functions. Part II - an approximate analytical method," International 

Journal of Solids and Structures, 36:1677-1699.  

[115] S. Yi,"Finite Element Analysis of Anisotropic Viscoelastic Composite Structures 

and Analytical Determination of Optimum Viscoelastic Material Properties," Doctorate 

Thesis, University of Illinois, Urbana, IL, 1992.  

[116] T.L. Cost, and E.B. Becker, (1970) "A multidata method of approximate Laplace 

transform inversion," International Journal for Numerical Methods in Engineering, 

2:207-19.  

[117] R.A. Schapery, "A Note on Approximate Methods Pertinent to Thermo-

Viscoelastic Stress Analysis," U.S. Department of Commerce, Report: GALCIT-SM-62-

40, United States, 1962.  

[118] I.L. Hopkins, and R.W. Hamming, (1957) "On creep and relaxation," Journal of 

Applied Physics, 28:906-909.  

[119] E.H. Lee, and T.G. Rogers, (1962) "Solution of viscoelastic stress analysis 

problems using measured creep or relaxation functions," Proceedings of the ASME 

Annual Meeting.  



 

142 

[120] N.M. Newmark, (1959) "Method of computation for structural dynamics," Journal 

of the Engineering Mechanics (ASCE), 85:67-94.  

[121] F. Dubois, C. Chazal, and C. Petit, (2002) "Viscoelastic crack growth process in 

wood timbers: an approach by the finite element method for mode I fracture," 

International Journal of Fracture, 113:367.  

[122] P. Ellsiepen, and S. Hartmann, (2001) "Remarks on the interpretation of current 

non-linear finite element analyses as differential-algebraic equations," International 

Journal for Numerical Methods in Engineering, 51:679.  

[123] S. Hartmann, (2002) "Computation in finite-strain viscoelasticity: finite elements 

based on the interpretation as differential-algebraic equations," Computer Methods in 

Applied Mechanics and Engineering, 191:1439.  

[124] S. Hartmann, and J. Wensch, (2007) "Finite element analysis of viscoelastic 

structures using Rosenbrock-type methods," Computational Mechanics, 40:383.  

[125] A.D. Mesquita, and H.B. Coda, (2002) "Alternative Kelvin viscoelastic procedure 

for finite elements," Applied Mathematical Modelling, 26:501.  

[126] A.R. Zak, (1968) "Structural analysis of realistic solid-propellant materials," 

Journal of Spacecraft and Rockets, 5:270-275.  

[127] O.C. Zienkiewicz, M. Watson, and I.P. King, (1968) "A numerical method of 

visco-elastic stress analysis," International Journal of Mechanical Sciences, 10:807-27.  

[128] S. Yi, and H.H. Hilton, (1994) "Dynamic finite element analysis of viscoelastic 

composite plates in the time domain," International Journal for Numerical Methods in 

Engineering, 37:4081-96.  

[129] S. Yi, H.H. Hilton, and M.F. Ahmad, (1997) "A finite element approach for cure 

simulation of thermosetting matrix composites," Computers and Structures, 64:383-8.  

[130] M.A. Zocher, S.E. Groves, and D.H. Allen, (1997) "A three-dimensional finite 

element formulation for thermoviscoelastic orthotropic media," International Journal for 

Numerical Methods in Engineering, 40:2267-88.  

[131] H. Poon, and M.F. Ahmad, (1998) "Material point time integration procedure for 

anisotropic, thermo rheologically simple, viscoelastic solids," Computational Mechanics, 

21:236-242.  

[132] H. Yang, and Z. Han, (2004) "Solving non-linear viscoelastic problems via a self-

adaptive precise algorithm in time domain," International Journal of Solids and 

Structures, 41:5483.  



 

143 

[133] R.M. Haj-Ali, and A.H. Muliana, (2004) "Numerical finite element formulation of 

the Schapery non-linear viscoelastic material model," International Journal for 

Numerical Methods in Engineering, 59:25.  

[134] A. Muliana, and K.A. Khan, (2008) "A time-integration algorithm for thermo-

rheologically complex polymers," Computational Materials Science, 41:576.  

[135] S. Sawant, and A. Muliana, (2008) "A thermo-mechanical viscoelastic analysis of 

orthotropic materials," Composite Structures, 83:61.  

[136] A.M. Freudenthal, and M. Shinozuka, "Shrinkage Stresses in Case-Bonded 

Viscoelastic Hollow Cylinder of Infinite Length," TR-1 CU-1-61-ONR 266(78), United 

States, 1961.  

[137] A.M. Freudenthal, and M. Shinozuka, (1963) "Shrinkage stresses in a thick-walled 

viscoelastic cylinder bonded to a rigid case," AIAA Journal, 1:107-115.  

[138] M.L. Williams, (1957) "On stress distribution at base of stationary crack," Journal 

of Applied Mechanics, 24:109-114.  

[139] J.W. Eischen, (1987) "Fracture of nonhomogeneous materials," International 

Journal of Fracture, 34:3-22.  

[140] P.R. Marur, and H.V. Tippur, (2000) "Numerical analysis of crack-tip fields in 

functionally graded materials with a crack normal to the elastic gradient," International 

Journal of Solids and Structures, 37:5353-5370.  

[141] J.H. Kim,"Mixed-Mode Crack Propagation in Functionally Graded Materials," 

Doctorate Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2003.  

[142] J. Eftis, N. Subramonian, and H. Liebowitz, (1977) "Biaxial load effects on the 

crack border elastic strain energy and strain energy rate," Engineering Fracture 

Mechanics, 9:753-764.  

[143] A.K. Apeagyei, W.G. Buttlar, and B.J. Dempsey, (2008) "Investigation of Cracking 

Behavior of Antioxidant-Modified Asphalt Mixtures," Journal of Asphalt Paving 

Technologists, Proceedings of the Annual Meeting, Association of Asphalt Paving 

Technologists, Vol. 77.  

[144] H.M. Yin, G.H. Paulino, W.G. Buttlar, and L.Z. Sun, (2007) "Micromechanics-

based thermoelastic model for functionally graded particulate materials with particle 

interactions," Journal of the Mechanics and Physics of Solids, 55:132-160.  

[145] A.F. Braham, W.G. Buttlar, T. Clyne, M.O. Marasteanu, and M. Turos, (2009) 

"The Effect of Long Term Laboratory Aging on Asphalt Concrete Fracture Energy," 



 

144 

Journal of Asphalt Paving Technologists, Proceedings of the Annual Meeting, 

Association of Asphalt Paving Technologists, Vol. 78.  

[146] S.W. Park, and Y.R. Kim, (2001) "Fitting prony-series viscoelastic models with 

power-law pre-smoothing," Journal of Materials in Civil Engineering, 13:26-32.  

[147] J.H. Kim, and G.H. Paulino, (2003) "An accurate scheme for mixed-mode fracture 

analysis of functionally graded materials using the interaction integral and 

micromechanics models," International Journal for Numerical Methods in Engineering, 

58:1457-1497.  

[148] H.M. Yin, W.G. Buttlar, G.H. Paulino, and H. Di Benedetto, (2008) "Assessment 

of existing micro-mechanical models for asphalt mastics considering viscoelastic 

effects," Road Materials and Pavement Design, 9:31-57.  

[149] S. Krenk, (2006) "Energy conservation in Newmark based time integration 

algorithms," Computer Methods in Applied Mechanics and Engineering, 195:6110-6124.  

[150] M. Exline, (2009) "Thin Bonded Overlay Systems for Flexible and Rigid Pavement 

Rehabilitation," Transportation and Highway Engineering Conference, Technical 

Presentation, Session: Local Roads and Streets.  

[151] D.P.V. Bang, H. Di Benedetto, A. Duttine, and A. Ezaoui, (2007) "Viscous 

behaviour of dry sand," International Journal for Numerical and Analytical Methods in 

Geomechanics, 31:1631-58.  

[152] V. Sanchez-Giron, E. Andreu, and J.L. Hernanz, (2001) "Stress relaxation of five 

different soil samples when uniaxially compacted at different water contents," Soil and 

Tillage Research, 62:85-99.  

[153] C. Wei, and K.K. Muraleetharan, (2007) "Linear viscoelastic behavior of porous 

media with non-uniform saturation," International Journal of Engineering Science, 

45:698-715.  

[154] A.M. Vinogradov, (1985) "Generalized approach to the structure-soil interaction 

analysis with time and temperature effects," POAC 85: The 8th International Conference 

on Port and Ocean Engineering under Actic Conditions. Vol. 1 468-477.  

[155] W. Dong Guo, (2000) "Visco-elastic consolidation subsequent to pile installation," 

Computers and Geotechnics, 26:113-144.  

[156] Z.C. Grasley, and D.A. Lange, (2007) "Constitutive modeling of the aging 

viscoelastic properties of Portland cement paste," Mechanics of Time-Dependent 

Materials, 11:175-98.  



 

145 

[157] Z.P. Bazant, and G. Li, (2008) "Comprehensive database on concrete creep and 

shrinkage," ACI Materials Journal, 105:635-637.  

[158] Z.P. Bazant, G. Cusatis, and L. Cedolin, (2004) "Temperature effect on concrete 

creep modeled by microprestress- solidification theory," Journal of Engineering 

Mechanics, 130:691-699.  

[159] E. Garner, R. Lakes, T. Lee, C. Swan, and R. Brand, (2000) "Viscoelastic 

dissipation in compact bone: implications for stress-induced fluid flow in bone," Journal 

of Biomechanical Engineering, 122:166-72.  

[160] R. Schaller, S. Barrault, and P. Zysset, (2004) "Mechanical spectroscopy of bovine 

compact bone," Materials Science and Engineering: A, 13th International Conference on 

Internal Friction and Ultrasonic Attenuation in Solids, Vol. A370 569-74.  

[161] P.L. Chandran, and V.H. Barocas, (2004) "Microstructural mechanics of collagen 

gels in confined compression: poroelasticity, viscoelasticity, and collapse," Journal of 

Biomechanical Engineering, 126:152-66.  

[162] R. Subramanian, K. Muthukumarappan, and S. Gunasekaran, (2006) "Linear 

viscoelastic properties of regular- and reduced-fat pasteurized process cheese during 

heating and cooling," International Journal of Food Properties, 9:377-393.  

[163] I. Jackson, J.D. Fitz Gerald, and H. Kokkonen, (2000) "High-temperature 

viscoelastic relaxation in iron and its implications for the shear modulus and attenuation 

of the Earth's inner core," Journal of Geophysical Research, 105:23605.  

[164] S.A.R. Hashmi, and U.K. Dwivedi, (2009) "SiC dispersed polysulphide epoxy resin 

based functionally graded material," Polymer Composites, 30:162-168.  

 

 

 

  


