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Abstract

The characterization of nonlinear constitutive relationships along fracture surfaces

is a fundamental issue in mixed-mode cohesive fracture simulations. A generalized

potential-based constitutive theory of mixed-mode fracture is proposed in conjunc-

tion with physical quantities such as fracture energy, cohesive strength and shape of

cohesive interactions. The potential-based model is verified and validated by inves-

tigating quasi-static fracture, dynamic fracture, branching and fragmentation. For

quasi-static fracture problems, intrinsic cohesive surface element approaches are uti-

lized to investigate microstructural particle/debonding process within a multiscale

approach. Macroscopic constitutive relationship of materials with microstructure is

estimated by means of an integrated approach involving micromechanics and the

computational model. For dynamic fracture, branching and fragmentation problems,

extrinsic cohesive surface element approaches are employed, which allow adaptive in-

sertion of cohesive surface elements whenever and wherever they are needed. Nodal

perturbation and edge-swap operators are used to reduce mesh bias and to improve

crack path geometry represented by a finite element mesh. Adaptive mesh refinement

and coarsening schemes are systematically developed in conjunction with edge-split

and vertex-removal operators to reduce computational cost. Computational results

demonstrate that the potential-based constitutive model with such adaptive opera-

tors leads to an effective and efficient computational framework to simulate physical

phenomena associated with fracture. In addition, the virtual internal bond model

is utilized for the investigation of quasi-brittle material fracture behavior. All the

computational models have been developed in conjunction with verification and/or

validation procedures.

ii



To my family

iii



Acknowledgments

I would like to express my sincere gratitude to my advisor Professor Glaucio H.

Paulino. This thesis would not have been possible without his direction, support and

enthusiasm. I am also indebted to my co-advisor Professor Jeffery R. Roesler for his

invaluable suggestions and encouragement.

I am grateful to Professor Yonggang Huang for his kind advice and insightful

comments, and he has been a source of inspiration. Our collaboration resulted in

Chapter 5 of this thesis and a joint paper. I would like to thank to committee

members, C. Armando Duarte, Robert B. Haber, Karel Matous and Spandan Maiti

for their constructive remarks and suggestions. In addition, I owe many thanks to

Professor Waldemar Celes for his feedback and hands-on help.

I benefited from discussions with my colleagues, Duc Ngo and Rodrigo Espinha,

about micromechanics and topological data structure. I am beholden to my group

members, Matthew C. Walters, Alok Sutradhar, Zhengyu Zhang, Seong-Hyeok Song,

Eshan V. Dave, Bin Shen, Huiming Yin, Shun Wang, Chau H. Le, Tam Nguyen,

Cameron Talischi, Lauren Stromberg, Arun L. Gain, Sofie Leon and Tomas Zegard.

The discussions that we had were enjoyable and valuable.

I can not express enough appreciation to my parents and wonderful sister for their

perpetual support and trust. Finally, I would like to express my deepest thanks to

my lovely wife, Younhee Ko. She has alway been supportive of me, and I treasure

the time that she and I have spent together.

iv



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Cohesive Fracture Model . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cohesive Constitutive Relationships . . . . . . . . . . . . . . . . . . . 3

1.2.1 Non-Potential-Based Models . . . . . . . . . . . . . . . . . . . 3
1.2.2 Potential-Based Models . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Intrinsic versus Extrinsic Cohesive Models . . . . . . . . . . . 6
1.3.2 Enrichment Function Based Approach: GFEM/X-FEM . . . . 8
1.3.3 Finite Elements with Embedded Discontinuities . . . . . . . . 9
1.3.4 Microplane Model . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.5 Atomistic/Continuum Coupling . . . . . . . . . . . . . . . . . 10
1.3.6 Virtual Internal Bond Model . . . . . . . . . . . . . . . . . . . 10
1.3.7 Peridynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.8 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.9 Present Approach . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Research Objective and Thesis Organization . . . . . . . . . . . . . . 12

Chapter 2 Virtual Internal Pair-Bond Model for Quasi-Brittle Ma-
terials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Virtual Internal Bond (VIB) Model Formulation . . . . . . . . . . . . 15

2.2.1 Strain Energy Function in the VIB Model . . . . . . . . . . . 16
2.2.2 Constitutive Relation . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Virtual Bond Density Potential . . . . . . . . . . . . . . . . . 18
2.2.4 Computational Implementation . . . . . . . . . . . . . . . . . 19

2.3 Virtual Internal Pair-Bond (VIPB) Model . . . . . . . . . . . . . . . 19
2.4 Determination of Material Properties . . . . . . . . . . . . . . . . . . 22

2.4.1 Elastic Properties at Infinitesimal Strains . . . . . . . . . . . . 22
2.4.2 Fracture Properties and Mesh Size Dependences . . . . . . . . 23

2.5 Verification – Fracture Properties and Element-Size Dependence . . . 25
2.5.1 Pure Tension Test . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



2.5.2 Double Cantilever Beam (DCB) Test . . . . . . . . . . . . . . 27
2.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Three-Point Bending (TPB) Tests of Plain Concrete . . . . . 31
2.6.2 On Size Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.3 TPB Test of Fiber Reinforced Concrete (FRC) . . . . . . . . . 34

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3 PPR: Unified Potential-Based Cohesive Model of Mixed-
Mode Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Previous Potentials for Cohesive Fracture . . . . . . . . . . . . . . . . 37

3.1.1 Needleman, 1987 . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Needleman, 1990 . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Beltz and Rice, 1991 . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 Xu and Needleman, 1993 . . . . . . . . . . . . . . . . . . . . . 44
3.1.5 Limitations of the Exponential Potential . . . . . . . . . . . . 46

3.2 PPR: Unified Potential-Based Constitutive Model . . . . . . . . . . . 48
3.2.1 Definition of the Unified Potential for Mixed-Mode Fracture . 48
3.2.2 Cohesive Interaction (Softening) Region . . . . . . . . . . . . 53
3.2.3 Extension to the Extrinsic Cohesive Zone Model . . . . . . . . 54
3.2.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Path Dependence of Work-of-Separation . . . . . . . . . . . . . . . . 58
3.3.1 Proportional Separation . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 Non-Proportional Separation . . . . . . . . . . . . . . . . . . . 62

3.4 Mixed-Mode Fracture Verification . . . . . . . . . . . . . . . . . . . . 66
3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 4 Implementation of the PPR Potential-Based Cohesive
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Topological Data Structure . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Client-Server Approach . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 API and Callback functions . . . . . . . . . . . . . . . . . . . 76

4.4 Unloading and Reloading Relationships . . . . . . . . . . . . . . . . . 77
4.4.1 Coupled Unloading/Reloading Model . . . . . . . . . . . . . . 78
4.4.2 Uncoupled Unloading/Reloading Model . . . . . . . . . . . . . 80
4.4.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Constitutive Relationships . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Determination of Cohesive Interaction Region . . . . . . . . . 84
4.5.2 Cohesive Traction Vector and Tangent Matrix . . . . . . . . . 84

4.6 Verification of Cohesive Elements . . . . . . . . . . . . . . . . . . . . 88

vi



Chapter 5 Microstructural Particle/Matrix Debonding Process by
the PPR Potential-Based Model . . . . . . . . . . . . . . . . . . . . 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Constitutive Behavior of Composites with Particle/Matrix Interface

Debonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.1 Hydrostatic Tension Stress State . . . . . . . . . . . . . . . . 94
5.2.2 Extended Mori-Tanaka Method under Hydrostatic Tension . . 95
5.2.3 Extended Mori-Tanaka Method under Equi-biaxial Tension . . 97

5.3 PPR: Potential-Based Cohesive Model for Interface Debonding . . . . 97
5.4 Micromechanics Investigation of the PPR Model . . . . . . . . . . . . 99

5.4.1 Effect of Particle Size . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2 Effect of Particle Volume Fraction . . . . . . . . . . . . . . . . 101
5.4.3 Effect of Cohesive Energy . . . . . . . . . . . . . . . . . . . . 102
5.4.4 Effect of Cohesive Strength . . . . . . . . . . . . . . . . . . . 103

5.5 Theoretical and Computational Investigation of Materials with Mi-
crostructure Accounting for Particle/Matrix Interface Debonding . . . 104
5.5.1 Particle/Matrix Debonding Process . . . . . . . . . . . . . . . 106
5.5.2 Effect of Microstructure Size . . . . . . . . . . . . . . . . . . . 110
5.5.3 Effect of Particle Elastic Modulus . . . . . . . . . . . . . . . . 111
5.5.4 Effect of Fracture Energy and Particle Size . . . . . . . . . . . 112
5.5.5 Effect of Cohesive Strength and Particle Size . . . . . . . . . . 113
5.5.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Case Study: Determination of the PPR Cohesive Relation . . . . . . 114
5.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 6 Adaptive Dynamic Cohesive Fracture Simulation Using
Nodal Perturbation and Edge-Swap Operators . . . . . . . . . . . 119
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Toward Unstructured Geometry – Nodal Perturbation (NP) . . . . . 124

6.2.1 Crack Length Convergence . . . . . . . . . . . . . . . . . . . . 126
6.2.2 Crack Angle Convergence . . . . . . . . . . . . . . . . . . . . 129

6.3 Toward Unstructured Topology – Edge Swap (ES) . . . . . . . . . . . 131
6.3.1 Crack Length Convergence . . . . . . . . . . . . . . . . . . . . 131
6.3.2 Crack Angle Convergence . . . . . . . . . . . . . . . . . . . . 133

6.4 Computational Quantification of Isoperimetric Property . . . . . . . . 134
6.5 Nodal Perturbation and Edge Swap Algorithm . . . . . . . . . . . . . 138
6.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.6.1 Compact Compression Specimen (CCS) Test . . . . . . . . . . 140
6.6.2 Microbranching Experiments . . . . . . . . . . . . . . . . . . . 143
6.6.3 Fragmentation Simulations . . . . . . . . . . . . . . . . . . . . 150

6.7 Some Remarks on 4k and Pinwheel Meshes . . . . . . . . . . . . . . 154
6.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

vii



Chapter 7 Adaptive Mesh Refinement and Coarsening for Cohesive
Dynamic Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.2 Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.1 Mesh Refinement Schemes . . . . . . . . . . . . . . . . . . . . 159
7.2.2 Refinement Criterion and Interpolation of New Nodes . . . . . 162

7.3 Adaptive Mesh Coarsening . . . . . . . . . . . . . . . . . . . . . . . . 165
7.3.1 Mesh Coarsening Schemes . . . . . . . . . . . . . . . . . . . . 166
7.3.2 Coarsening Criterion and Local Update . . . . . . . . . . . . . 168

7.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.4.1 Predefined Crack Path Problem: Mode I Fracture . . . . . . . 170
7.4.2 Mixed-Mode Crack Propagation . . . . . . . . . . . . . . . . . 180
7.4.3 Crack Branching Problem . . . . . . . . . . . . . . . . . . . . 188

7.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Chapter 8 Conclusions and Future Work . . . . . . . . . . . . . . . . 195
8.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 198

Appendix A User-defined element (UEL) subroutine of ABAQUS
for the PPR potential-based cohesive zone model . . . . . . . . . . 201

Appendix B User-defined material (UMAT) subroutine of ABAQUS
for the virtual internal pair-bond (VIPB) model . . . . . . . . . . 210

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

viii



List of Tables

2.1 Relationship between the VIB element size and the fracture energy. . 26
2.2 Elastic and fracture parameters of concrete beam experiments by Roesler

et al. (2007b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Material properties and the constants in the bond density potential for

each size of beam in the VIB (single-bond) model with the localization
zone size of 0.5 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 The constants in each bond density potential for the VIPB (pair-bond)
model with the localization zone size of 0.5 mm. . . . . . . . . . . . . 33

2.5 Elastic and fracture parameters of plain concrete (Roesler et al., 2007a). 35

3.1 Potentials for cohesive fracture. . . . . . . . . . . . . . . . . . . . . . 38
3.2 Fracture parameters for the unified potential-based model (PPR). . . 58
3.3 Fracture parameters for the model by Xu and Needleman (1993). . . 58
3.4 Geometry of the MMB test specimen. . . . . . . . . . . . . . . . . . . 67

4.1 Comparison between the coupled unloading/reloading and the uncou-
pled unloading/reloading. . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Properties of high explosive material PBX9501. . . . . . . . . . . . . 118

6.1 Geometrical and topological considerations for cohesive zone model
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 ρ-path deviation ratio (devρ) and Hausdorff distance (H(p, q)) with
respect to the number of elements. . . . . . . . . . . . . . . . . . . . 136

7.1 Numbers of nodes and elements, and relative error of the total energy
with respect to the coarsening error levels (e4k). . . . . . . . . . . . . 179

7.2 Computational cost comparison for the mixed-mode crack propagation. 184
7.3 Computational cost comparison for the crack branching problem. . . 189

ix



List of Figures

1.1 Types of fracture process behavior (Bazant and Planas, 1998). . . . . 2
1.2 Schematics of the cohesive zone model. . . . . . . . . . . . . . . . . . 3
1.3 (a) Shape of a general atomistic potential (Ψ) and (b) its derivative (Ψ′). 5
1.4 Schematics of the intrinsic cohesive zone model. . . . . . . . . . . . . 7
1.5 Schematics of the extrinsic cohesive zone model. . . . . . . . . . . . . 8

2.1 Schematic illustration of the original VIB model. . . . . . . . . . . . . 16
2.2 Schematic illustration of the VIPB model: (a) the relationship between

stress and bond length from the pair-bond potential (Ψ = Ψ1 + Ψ2);
(b) the relationship from the steep short-range potential (Ψ1) and (c)
the relationship from the shallow long-range potential (Ψ2). . . . . . . 20

2.3 Bilinear Softening model for concrete where f ′
t is the tensile strength,

Gf is the initial fracture energy, GF is the total fracture energy, βk is
the strength ratio at the kink point, w1 is the horizontal axis intercept
of the initial descending line, wk is the crack opening width at the kink
point, and wf is the final crack opening width − see Park (2005); Park
et al. (2008a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 J-integral contours (a) for an arbitrary path and (b) for a path of the
localization zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Numerical simulation result of a pure tension test using the VIB model
with different domain sizes (W = 1 m and 0.5 m). The loading is
performed with displacement control (δ). . . . . . . . . . . . . . . . . 26

2.6 Comparison between the VIB (single-bond) model and the VIPB (pair-
bond) model with the localization zone size of W = hL = 0.5 mm. The
loading is performed with displacement control (δ). . . . . . . . . . . 27

2.7 (a) The geometry of the DCB test; (b) mesh detail around initial notch
with the element size varying from 0.5 mm (localization zone) to 2 mm
(outer region); (c) normal stress, σyy, distribution under the deformed
shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Numerical simulation results of the DCB test using the VIB and the
VIPB models with the localization zone size of, (a) hL = 0.5 mm and
(b) hL = 0.25 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Specimen geometry of a three-point bending (TPB) tests. . . . . . . . 30

x



2.10 Comparison of load-CMOD curves with experimental results: (a) spec-
imen sizeD = 63 mm, (b) specimen sizeD = 150 mm and (c) specimen
size D = 250 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 Size effect for three-point bending (TPB) fracture test configuration. 34
2.12 Prediction of load-CMOD curves of FRC beam tests compared with

experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Needleman (1987) potential (Ψ) and its gradients (Tn, Tt) with respect
to separations (Δn, Δt); φn = 100 N/m, σmax = 30 MPa, and αs = 10. 39

3.2 Needleman (1990) potential and its gradients; φn = 100 N/m, and
σmax = 30 MPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Beltz and Rice (1991) generalized exponential-periodic potential and
its gradients; φn = 2γs = 100 N/m, φt = γus = 200 N/m, σmax = 30
MPa, τmax = 40 MPa, and r = 0. . . . . . . . . . . . . . . . . . . . . 43

3.4 Xu and Needleman (1993) exponential potential and its gradients;
φn = 100 N/m, φt = 200 N/m, σmax = 30 MPa, τmax = 40 MPa,
and r = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Xu and Needleman (1993) exponential potential and its gradients;
φn = 200 N/m, φt = 100 N/m, σmax = 30 MPa, τmax = 40 MPa,
and r = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Fracture boundary conditions for the unified mixed-mode potential. . 49
3.7 Unified mixed-mode potential (PPR) and its gradients for the intrinsic

cohesive zone model with φn = 100 N/m, φt = 200 N/m, σmax = 40
MPa, τmax = 30 MPa, α = 5, β = 1.3, λn = 0.1, and λt = 0.2. . . . . . 52

3.8 Description of each cohesive interaction (Tn, Tt) region defined by the
final crack opening widths (δn, δt) and the conjugate final crack opening
widths (δ̄n, δ̄t); (a) Tn versus (δn, δ̄t) space; (b) Tt versus (δ̄n, δt) space. 53

3.9 Proposed potential and its gradients for the extrinsic cohesive zone
model with φn = 100 N/m, φt = 200 N/m, σmax = 40 MPa, τmax = 30
MPa, α = 5, and β = 1.3. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Proportional separation path (Δr) with the separation angle (θ). . . . 59
3.11 The PPR potential-based model: (a) work-of-separation, (b) work

done by the normal traction, and (c) work done by the tangential
traction with respect to the change of the proportional angle, θ. . . . 60

3.12 Xu and Needleman (1993) exponential potential: (a) work-of-separation,
(b) work done by the normal traction, and (c) work done by the tan-
gential traction with respect to the change of the proportional angle,
θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.13 Two arbitrary separation paths for the material debonding process; (a)
non-proportional Path 1; (b) non-proportional Path 2. . . . . . . . 62

3.14 The PPR potential-based model: variation of the work-of-separation
for the case of φn < φt (φn = 100 N/m, φt = 200 N/m); (a) non-
proportional Path 1; (b) non-proportional Path 2. . . . . . . . . . . 63

xi



3.15 The PPR potential-based model: variation of the work-of-separation
for the case of φn > φt (φn = 200 N/m, φt = 100 N/m); (a) non-
proportional Path 1; (b) non-proportional Path 2. . . . . . . . . . . 64

3.16 Xu and Needleman (1993) exponential potential: variation of the work-
of-separation for the case of φn < φt (φn = 100 N/m, φt = 200 N/m
and r = 0.5); (a) non-proportional Path 1; (b) non-proportional Path
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.17 Xu and Needleman (1993) exponential potential: variation of the work-
of-separation for the case of φn > φt (φn = 200 N/m, φt = 100 N/m
and r = 0.5); (a) non-proportional Path 1; (b) non-proportional Path
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.18 Mixed-mode bending test. . . . . . . . . . . . . . . . . . . . . . . . . 66
3.19 Comparison between the analytical solutions and the numerical simu-

lation results considering the same fracture energy (φn = φt = 1 N/mm). 68
3.20 Comparison between the analytical solutions and the numerical sim-

ulation results considering different fracture energies (φn = 1 N/mm,
φt = 2 N/mm) (a) σmax = 10 MPa and (b)σmax = 20 MPa. . . . . . . 69

4.1 Client-server architecture. . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 One-dimensional cohesive law and its unloading/reloading paths. . . . 77
4.3 Schematics of the coupled unloading/reloading model: (a) normal in-

teraction and (b) tangential interaction. . . . . . . . . . . . . . . . . 79
4.4 Comparison between the softening relationships obtained by the po-

tential and the coupled unloading/reloading relationship with the max-

imum loading history index of ηmax =
√
0.3δn

2 + 0.2δt
2. . . . . . . . . 80

4.5 Schematics of the uncoupled unloading/reloading model: (a) normal
interaction and (b) tangential interaction. . . . . . . . . . . . . . . . 81

4.6 Comparison between the softening relationships obtained by the po-
tential and the coupled unloading/reloading relationship with the max-
imum loading history indices of ηnmax = 0.3δn and ηtmax = 0.2δt. . . . . 82

4.7 Cohesive fracture separations along the local coordinate system (a)
two-dimensions (Δ1, Δ2) and (b) three-dimensions (Δ1, Δ2, Δ3). . . . 88

4.8 Geometry of (a) pure mode I, and (b) pure mode II simulation. . . . 89
4.9 Computational result of the pure mode I test. . . . . . . . . . . . . . 89
4.10 Computational result of the pure mode II test. . . . . . . . . . . . . . 90

5.1 (a) Spherical particle under hydrostatic tension stress state, and (b)
cylindrical particle under equi-biaxial tension stress state. . . . . . . . 96

5.2 Illustrative intrinsic cohesive relation of normal interface debonding. . 98
5.3 Stress versus strain curve of the material (a = 100μm). . . . . . . . . 100
5.4 Effect of particle size (a) on the constitutive relation (f = 0.6). . . . 100
5.5 Effect of particle volume fraction (f) on the constitutive relation in

the case of fine particles (a = 100 μm). . . . . . . . . . . . . . . . . . 101
5.6 Effect of particle volume fraction (f) on the constitutive relation in

the case of coarse particles (a = 2 mm). . . . . . . . . . . . . . . . . 101

xii



5.7 Effect of cohesive energy (φn) on the constitutive relation with volume
fraction f = 0.6: (a) a = 100 μm, and (b) a = 2 mm. . . . . . . . . . 102

5.8 Effect of cohesive strength (σmax) on the constitutive relation with
volume fraction f = 0.6: (a) a = 100 μm, and (b) a = 2 mm. . . . . 103

5.9 (a) Geometry of the square unit cell (size b) with particle of radius a,
and (b) boundary conditions for the computational modeling. . . . . 104

5.10 (a) Finite element mesh of the unit cell, and (b) zoom of the mesh
along the interface between particle (a = 2 mm) and matrix. . . . . . 105

5.11 Computational results displaying macroscopic strain versus strain along
the horizontal and vertical directions with cohesive strength of (a) 15
MPa, and (b) 25 MPa. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.12 Particle/matrix debonding process for softening behavior (Figure 5.11(a))
at the stage of (a) point A, (b) point B, (c) point C, and (d) point D. 108

5.13 Particle/matrix debonding process for snap-back behavior (Figure 5.11(b))
at the stage of (a) point A, (b) point B, (c) point C, (d) point D, (e)
point E, and (f) point F. . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.14 Effect of the particle size (a) on the constitutive relationship. . . . . . 110
5.15 Effect of the ratio of elastic modulus on the constitutive relationship. 111
5.16 Effect of the fracture energy (φn) on the constitutive relationship with

particle size of (a) 100 μm, and (b) 2 mm. . . . . . . . . . . . . . . . 112
5.17 Effect of the cohesive strength (σmax) on the constitutive relationship

with particle size of (a) 100 μm, and (b) 2 mm. . . . . . . . . . . . . 113
5.18 Case study: macroscopic cohesive relation of the high explosive mate-

rial PBX 9501 (Tan et al., 2005b). . . . . . . . . . . . . . . . . . . . . 115

6.1 Discrepancy between a mathematical path (thick dashed line) and a
discrete path (thick solid line). The aspect ratio of the rectangular
domain is 1 : 2.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 (a) Crack path test, and (b) error between the mathematical length
(OP ) and the discrete length represented by the 4k structured mesh.
The maximum error occurs at x =

√
2− 1 (angle ∠COP = 67.5◦). . . 122

6.3 Schematic description of a potential zigzag pattern. . . . . . . . . . . 123
6.4 Effect of the nodal perturbation (NP) factor on a finite element mesh:

(a) NP = 0.0 (unperturbed), (b) NP = 0.1, (c) NP = 0.2, and (d) NP
= 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Mesh quality estimation: (a) histogram and (b) Lo’s parameter for
each element considering NP = 0.3. Notice that all 6400 elements in
the unperturbed mesh (NP = 0.0) have Lo’s parameter of 0.866. . . . 125

6.6 Error with respect to (a) nodal perturbation (NP) factor considering
10×24 mesh grid, and (b) element size considering the nodal pertur-
bation factor of 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Error with respect to the nodal perturbation (NP) factor along the 45◦

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xiii



6.8 Representative results of crack angle convergence for (a) nodal pertur-
bation factor of 0.0 (NP = 0.0), and (b) nodal perturbation factor of
0.3 (NP = 0.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.9 Number of appearances of geometrically obtained angles (θFE) for
given nodal perturbation (NP) factors. . . . . . . . . . . . . . . . . . 130

6.10 Three successive mesh instances showing a schematic description of
the edge-swap (ES) operator. . . . . . . . . . . . . . . . . . . . . . . 131

6.11 Error with respect to (a) the nodal perturbation factor and (b) element
size in conjunction with the edge-swap operator. . . . . . . . . . . . . 132

6.12 Number of appearances of geometrically obtained angles (θFE) with
respect to the nodal perturbation (NP) factor in conjunction with the
edge-swap (ES) operator. . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.13 Examples of each mesh type: (a) Type I, (b) Type II, (c) Type III,
and (d) Type IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.14 (a) Illustration of the parameter ρ in the rectangular domain, and (b)
constraint for the set of vertices (p, q) related to the parameter ρ. . . 135

6.15 Quantification of the isoperimetric property in conjunction with (a)
the ρ-path deviation ratio, and (b) the Hausdorff distance. . . . . . . 137

6.16 Location of the mid-point in the edge-swap operator: (a) 4k structured
mesh, and (b) 4k perturbed mesh. . . . . . . . . . . . . . . . . . . . 139

6.17 Geometry of compact compression specimen tests and its boundary
condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.18 Finite element mesh of the compact compression specimen. . . . . . . 141
6.19 Crack path of CCS simulation results. . . . . . . . . . . . . . . . . . . 142
6.20 Observation of microbranching experiment: (a) crack velocity (v), (b)

fractured surface, and (c) crack patterns with respect to different crack
speeds (v ∼ 300m/s < vc, v ∼ 400m/s ∼ vc, v ∼ 600m/s > vc).
Figure is reproduced from Figure 4 of Sharon and Fineberg (1996). . 144

6.21 Schematics of geometry and boundary conditions for the microbranch-
ing experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.22 Branching patterns with respect to different initial strains: (a) ε0 =
0.01, (b) ε0 = 0.012, and (c) ε0 = 0.015 for the 4k mesh grid of 192×48.145

6.23 Microbranching evolution with respect to time: (a) 2μs, (b) 8μs, (c)
14μs, and (d) 20μs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.24 Crack velocity versus time and averaged velocity for initial strains (ε0)
of 0.01, 0.012 and 0.015 with the 4k mesh grid of 192×48. . . . . . . 147

6.25 Branching patterns with respect to different initial strains: (a) ε0 =
0.01, (b) ε0 = 0.012, and (c) ε0 = 0.015 for the 4k mesh grid of 256 ×
64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.26 Crack velocity versus time and averaged velocity for initial strains (ε0)
of 0.010, 0.012 and 0.015 with the 4k mesh grid of 256×64. . . . . . . 148

6.27 Three consecutive simulations for the initial strain of 0.015 with the
edge-swap operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xiv



6.28 Three consecutive simulations for the initial strain of 0.015 without
the edge-swap operator. . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.29 Energy evolution with respect to the time for ε0 = 0.015. . . . . . . . 150
6.30 (a) Geometry of a thick cylinder, and (b) applied impact pressure with

respect to time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.31 Fragmentation patterns of three consecutive computational results with

the nodal perturbation factor of 0.3. . . . . . . . . . . . . . . . . . . . 152
6.32 Fragmentation procedure with respect to time: (a) 26 μs, (b) 37 μs,

(c) 39 μs, (d) 47 μs, (e) 54 μs, and (f) 64 μs. . . . . . . . . . . . . . 153
6.33 Comparison by mapping edges of pinwheel-based mesh into edges of

4k structured mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.34 Comparison between a set of pinwheel tiles and a 4k mesh. . . . . . . 154
6.35 Comparison by mapping edges of 4k structured mesh into edges of

pinwheel-based mesh with additional dashed-red edges. . . . . . . . . 155

7.1 (a) Sample initial non-deformed mesh, and (b) local nodal incidences
of triangles of a region of the mesh. . . . . . . . . . . . . . . . . . . . 159

7.2 Local mesh patterns for which edge splits are allowed: (a) mesh around
an interior edge (b) boundary edge. . . . . . . . . . . . . . . . . . . . 160

7.3 Recursive edge split procedure; (a) request for an edge-split along the
edge with a dashed line, (b) split edges to create an allowable pattern,
and (c) split edge along the dashed edge. . . . . . . . . . . . . . . . . 160

7.4 Edge split along a cohesive surface element. . . . . . . . . . . . . . . 161
7.5 Example of the edge-split operation and computed edge depth. . . . . 161
7.6 Sequence of edge-split operations along the dashed edges. . . . . . . . 162
7.7 Three refinement steps executed inside a circular region: (a) level 1,

(b) level 2, and (c) level 3. . . . . . . . . . . . . . . . . . . . . . . . . 163
7.8 Example of the edge-split operations. . . . . . . . . . . . . . . . . . . 163
7.9 Interpolation scheme for new nodes. . . . . . . . . . . . . . . . . . . . 164
7.10 (a) Physical coordinate system, and (b) mapped coordinate system. . 165
7.11 Vertex-removal operator for mesh coarsening: (a) interior vertex-removal

and (b) boundary vertex-removal. . . . . . . . . . . . . . . . . . . . . 166
7.12 Sequence of vertex-removal operations in shaded 4k patches. . . . . . 167
7.13 (a) Original 4k patch, and (b) coarsened 4k patch. . . . . . . . . . . 168
7.14 Schematics of geometry and boundary condition. . . . . . . . . . . . . 170
7.15 Mode I fracture problem: (a) Extrinsic cohesive zone model with pre-

defined path, and (b) intrinsic cohesive zone model with predefined
cohesive surface elements. . . . . . . . . . . . . . . . . . . . . . . . . 171

7.16 Convergence of crack tip location with respect to the time increment:
(a) element size of 20 μm, and (b) element size of 10 μm. . . . . . . . 172

7.17 The contribution of Δt2/8(ün+1 − ün)
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Chapter 1

Introduction

The collapse and failure of infrastructure, for example bridges, aircraft, oil tankers

and nuclear power plants, result in significant casualties and property damage, and

adversely influence the local economy. In order to prevent such disasters, it is nec-

essary to understand and predict deformation and failure mechanisms of structures.

To this end, not only are appropriate physical theories and robust computational

techniques needed, but they should also be verified and validated. This thesis focuses

on the characterization of cohesive fracture behavior derived from a potential-based

model and on the computational simulation of failure phenomenon including quasi-

static fracture, dynamic fracture, microbranching and fragmentation. In this chapter,

fracture process of materials is briefly described in conjunction with the size of the

nonlinear zone, and the concept of the cohesive zone model is explained. Next, two

types of the constitutive relationships for the cohesive zone model are presented,

i.e. non-potential-based models and potential-based models. Several computational

methods representing the cohesive zone model are reviewed. Finally, the scope of the

current work and the thesis organization are described.

1.1 Cohesive Fracture Model

Fracture process behavior is generally classified on the basis of the size of the nonlinear

fracture process zone (Bazant and Planas, 1998). In front of a crack tip, the fracture

process zone, or the nonlinear softening zone, characterizes the progressive softening

behavior (the gray area in Figure 1.1). The outer region of this zone (the black area

in Figure 1.1) is named the nonlinear hardening zone which represents inelasticity.

For the first behavior type (Figure 1.1(a)), both the fracture process zone and the

nonlinear hardening zone are relatively small. Brittle materials such as glass, PMMA,

brittle ceramics and brittle metal, show this type of fracture process behavior. The

next type of behavior (Figure 1.1(b)) possesses the large nonlinear hardening zone

and the small fracture process zone due to the plastic yielding. For instance, elasto-
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plastic fracture mechanics can be utilized in this case. Ductile materials (e.g. ductile

metals) fall into the second behavior type. The third type of behavior (Figure 1.1(c))

illustrates the progressive damage with material softening along the fracture process

zone. While the nonlinear hardening zone might be negligible for this type, the

relatively large fracture process zone significantly influences the stress redistribution.

Because of the relatively large fracture process zone, the strength of a structure

depends not only on the strength of a material but also on the size of a structure,

which is associated to the size effect (Bazant, 1999). This behavior, called quasi-

brittle, is found in concrete, rock, ice, paper, stiff clay, etc.

x

y

xxx

σσσ

(a) (b) (c)

Figure 1.1: Types of fracture process behavior (Bazant and Planas, 1998).

Nonlinear fracture process behavior such as void growth and microcrack formation

can be approximated by the cohesive zone model (e.g. Barenblatt, 1959; Dugdale,

1960). The fracture process of the cohesive zone model generally consists of four

stages (Figure 1.2). The first stage (Stage I) represents general continuum material

behavior without fracture. The next stage (Stage II) is the initiation of a crack

when a certain criterion is met, for example, maximum hoop stress (Ergodan and

Sih, 1963), maximum hoop strain (Anderson et al., 1971), minimum strain energy

density (Sih, 1974), or loss of ellipticity (Hill, 1962). The third stage describes the

evolution of the failure, which is governed by the nonlinear cohesive relationship or

the softening curve, i.e. the relation between the cohesive tractions (Tn, Tt) and crack

opening widths (Δn, Δt) across the fracture surface (Stage III). Because the cohesive

relationship defines the characteristic of the fracture process zone, the shape of the

softening curve depends on the material fracture process behavior. For example, a
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linear softening model is utilized for brittle materials (Camacho and Ortiz, 1996),

while a trapezoidal shape is employed to describe an elastic-plastic solid (Tvergaard

and Hutchinson, 1992). For quasi-brittle materials like concrete, a bilinear softening

model is widely utilized (Bazant and Planas, 1998; Park et al., 2008a). The final

stage (Stage IV) defines failure when the crack opening width reaches the final crack

opening width (e.g. δn). Stage IV represents the new surfaces created by the fracture

process, which have no traction (no load bearing capacity).

I
II

IIIIV

σmax

δn

Tn

Voids and micro-cracks

Macro-crack tip

Macro-crack tip

Figure 1.2: Schematics of the cohesive zone model.

1.2 Cohesive Constitutive Relationships

In the cohesive zone model, the fundamental issue for simulation of failure mecha-

nisms is the characterization of cohesive interactions along the fracture surface. The

cohesive constitutive relationship can be classified by either non-potential-based mod-

els (e.g. Geubelle and Baylor, 1998; Yang and Thouless, 2001; Camanho and Davila,

2002; Zhang and Paulino, 2005; van den Bosch et al., 2006) or potential-based models

(e.g. Needleman, 1987; Beltz and Rice, 1991; Tvergaard and Hutchinson, 1993; Xu

and Needleman, 1993).

1.2.1 Non-Potential-Based Models

Non-potential-based models are relatively simple to develop cohesive interactions be-

cause a symmetric system is not required. For instance, Yang and Thouless (2001)

utilized trapezoidal shaped traction-separation relationships to simulate mixed-mode

fracture of plastically deforming adhesive joints. Zhang and Paulino (2005) utilized

a traction-based bilinear cohesive zone model for the analysis of homogeneous and
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functionally graded materials (FGMs) undergoing dynamic failure. Shim et al. (2006)

extended the traction-based model to the displacement-based bilinear cohesive zone

model in order to investigate J resistant behavior of TiB/Ti FGM in conjunction with

the domain integral. In addition, van den Bosch et al. (2006) proposed an alternative

exponential cohesive relationship, and assessed the work-of-separation under mixed-

mode conditions. However, the main limitation of a non-potential-based model is that

one does not account for all possible separation or loading paths of crack growth in

a domain. Therefore, non-potential-based models may provide non-physical cohesive

interactions (e.g. positive stiffness in a softening region) under certain mixed-mode

fracture conditions, although they can capture physical fracture behavior for known

crack path problems (e.g. mode I fracture or inter-layer delamination). Thus, such

models may converge to a wrong solution. Moreover, the tangential stiffness leads

to the unsymmetric condition, which increases computational cost when solving the

underlying linear system of governing equations.

1.2.2 Potential-Based Models

A potential function is associated with physical field quantities as a function of posi-

tion at the continuum or atomistic level (e.g. gravity, strain energy, magnetic energy,

electric energy). In a continuum setting, strain-energy functions allow the determi-

nation of stresses and the stiffness distributions in a solid. For isotropic and incom-

pressible materials, the general strain-energy function can be deduced from the linear

relationship between shear and traction (Mooney, 1940). At the atomistic level, pair

potentials are mostly utilized to represent the particle debonding process as a function

of an atomic distance (�) such as the Lennard-Jones potential. The general shape of

atomistic potentials (Girifalco and Weizer, 1959) is shown in Figure 1.3(a). A poten-

tial function must have a minimum at some point because the interaction force, i.e.

the derivative of the potential, must be attractive at large distances, and repulsive at

smaller distances. The work to complete dissociation (Ψ0) of an interaction should

be finite, which corresponds to the area under the interaction force curve (Figure

1.3(b)). When the distance between particles becomes critical (�cr), the interaction

reaches a limit point. The potential (Ψ) has a convex shape (Ψ′′ > 0) before the

limit, and a concave shape (Ψ′′ < 0) after the limit point.

Due to the physical nature of a potential, the first derivative of the fracture energy

potential (Ψ) provides the traction (cohesive interactions) over fracture surfaces, and

its second derivative provides the constitutive relationship (material tangential mod-
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Figure 1.3: (a) Shape of a general atomistic potential (Ψ) and (b) its derivative (Ψ′).

ulus). A single potential function, therefore, characterizes the physical fracture be-

havior. Previously, Tvergaard and Hutchinson (1993) developed the one-dimensional

traction potential,

Ψ = δn

∫ λ

0

σ(λ′) dλ′ , (1.1)

which has been utilized to simulate interfacial fracture. The mode-mixity is consid-

ered by an effective displacement (λ) expressed as

λ =
√
(Δn/δn)2 + (Δt/δt)2 (1.2)

where Δn and Δt are normal and tangential separations over the fracture surface,

respectively, and δn and δt are characteristic length scales which are related to the

fracture energy and the cohesive strength. The function σ(λ) represents a traction-

separation relationship.

Although the one-dimensional potential model captures fracture behavior by chang-

ing the shape of the softening curve, the model can not have different fracture energies

in modes I and II (Tvergaard and Hutchinson, 1993). However, most materials have

different fracture energies with respect to the loading mode (Anderson, 1995). Several

researchers have demonstrated the variation of the fracture energy from mode I frac-

ture to mode II fracture through mixed-mode fracture specimen testing (Banks-Sills

and Bortman, 1986) and delamination testing (Reeder and Crews Jr., 1990; Benzeg-

gagh and Kenane, 1996). Carpinteri et al. (1989) demonstrated that mixed-mode

fracture energy increased by about 30% over the mode I fracture energy for concrete.

Zhu et al. (2009) obtained traction-separation relationships for mode I and mode II

fracture of adhesive, and illustrated that the mode II fracture energy is approximately

two times greater than the mode I fracture energy. Due to the relatively high frac-

ture energy in mode II, a structure may have higher loading capacity under certain
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loading conditions. Therefore, a potential function, which captures different fracture

energies, is necessary for the simulation of the mixed-mode fracture. This is one of

the contributions of the present work.

There are several potential functions that describe different fracture modes for

cohesive fracture. Needleman (1987) proposed a polynomial function-based potential

to simulate void nucleation by debonding. In order to account for large shear dis-

placements, Needleman (1990) developed the exponential-periodic potential. Later,

the exponential-periodic potential was generalized by Beltz and Rice (1991). The

normal interaction is described by the exponential expression based on the atomistic

potential by Rose et al. (1981), while the tangential interaction employs a periodic

function due to the periodic dependence of the underlying material lattice (Rice,

1992). In order to consider shear failure relation, Xu and Needleman (1993) pro-

posed the exponential potential for both normal and tangential cohesive interactions.

The limitations of these potentials are discussed in detail in Chapter 3.

1.3 Computational Methods

Based on the concept of the cohesive zone model, the nonlinear fracture process

zone has been approximated by various computational methods. For example, Hiller-

borg et al. (1976) combined the cohesive zone model with the finite element method

(FEM) for the analysis of quasi-brittle materials (e.g. concrete) through an equivalent

nodal force that corresponds to the linear traction-separation relationship. Ingraf-

fea et al. (1984) introduced tension softening elements to consider the bond-slip in

reinforced concrete. In this section, several computational methods such as intrin-

sic cohesive surface element approach, extrinsic cohesive surface element approach,

enrichment function-based approach, embedded discontinuities, microplane model,

atomistic/continuum coupling model, virtual internal bond model, peridynamics, and

other methods are briefly reviewed.

1.3.1 Intrinsic versus Extrinsic Cohesive Models

In the cohesive surface element approach, the nonlinear cohesive traction separation

relationship is represented by cohesive surface elements, while continuum deformation

is described by volumetric (or bulk) elements. Cohesive surface elements are inserted

between two volumetric elements, which result in the discontinuity of displacement

field, and represent the constitutive relationship of cohesive fracture. Cohesive surface
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elements can be inserted either before or during computational simulation. The

former approach requires a cohesive surface network within the potential crack path

domain (Xu and Needleman, 1994), as shown in Figure 1.4. This approach leads to the

intrinsic cohesive zone model. The traction-separation relationship (e.g. Tn −Δn) of

the intrinsic cohesive zone model includes an initial elastic range in which separation

is between zero and critical (e.g. δnc in Figure 1.4). When separation is critical

(e.g. Δn = δnc), the cohesive traction reaches the cohesive strength (σmax) which

corresponds to the onset of a crack initiation. In this case, a crack propagation

criterion is incorporated with the constitutive relation. The initial elastic range can

provide significant artificial compliance, especially when cohesive surface elements

are inserted in a large domain (Klein et al., 2001). However, the main advantage of

the intrinsic cohesive zone model is that the model can be easily integrated with a

standard finite element analysis software. Because of its simplicity, intrinsic cohesive

zone models have been utilized for a wide range of materials such as FGMs (Zhang

and Paulino, 2005), plain concrete (Park, 2005; Roesler et al., 2007b), and asphalt

concrete (Song et al., 2006).

Intrinsic cohesive element

Potential crack path

Bulk element

(continuum behavior)

0

Tn

Δn

σmax

δnc δn

Figure 1.4: Schematics of the intrinsic cohesive zone model.

On the other hand, cohesive surface elements can be adaptively inserted during

computational simulation whenever and wherever they are necessary (Camacho and

Ortiz, 1996), as shown in Figure 1.5. This approach leads to the extrinsic cohesive

zone model. The insertion of cohesive elements results in the duplication of nodes

and the change of local element connectivity. Because of such modifications during

computation, an efficient and robust topological data structure is generally necessary

in the extrinsic cohesive zone model (Celes et al., 2005a; Paulino et al., 2008). The

constitutive relationship of the extrinsic cohesive zone model excludes the elastic

range (i.e. no artificial compliance), and thus provides a finite traction value at
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the zero separation. This model requires an external criterion for the insertion of

cohesive surface elements. Camacho and Ortiz (1996) introduced the initially rigid

linear cohesive relation, and Ortiz and Pandolfi (1999) extended the linear cohesive

relationship to finite-deformation irreversible cohesive interaction in three dimensions.

Based on the linear cohesive interaction, Zhou et al. (2005) investigated fragmentation

process in conjunction with strain rate and initial defects distribution, and Zhang

et al. (2007) simulated microbranching instability experiments. In addition, Falk

et al. (2001) demonstrated that computational results with the extrinsic cohesive

zone model can be different from the results with the intrinsic cohesive zone model.

Papoulia et al. (2003, 2006) addressed time continuity at the time of cohesive surface

element activation, and error in representing cracks with finite element meshes.

Extrinsic cohesive element

Potential crack path

0

Tn

Δn

σmax

δn

Figure 1.5: Schematics of the extrinsic cohesive zone model.

1.3.2 Enrichment Function Based Approach:
GFEM/X-FEM

A crack in a domain is represented by a set of shape functions in the FEM. Then,

the standard finite element shape functions are generalized/extended by introducing

custom-built enrichment functions using the partition of unity methodology (Babuska

and Melenk, 1997; Duarte and Oden, 1996). Accordingly, the resulting method is

named either generalized FEM (GFEM) (Duarte et al., 2000) or extended FEM (X-

FEM) (Daux et al., 2000) in the technical literature. Wells and Sluys (2001) and

Moes and Belytschko (2002) utilized a Heaviside function to represent cohesive crack

growth. Note that a node whose support (or cloud) has a crack is enriched by a

Heaviside function. Duarte et al. (2007) represented through-the-thickness three-

dimensional Y-shaped branch cracks for arbitrary background finite element meshes

with high-order enrichment functions. However, non-polynomial enrichment func-

tions lead to additional computational costs in numerical integration (Park et al.,
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2009b). In addition, calculations based on a level-set discontinuity tracking method

(Belytschko et al., 2003) have difficulties in representing complicated crack patterns,

for example, micro-crack branching that exists around a major crack in dynamic frac-

ture problems (Song and Belytschko, 2009). According to Bishop (2009), computa-

tional modeling of arbitrary three-dimensional intersecting cracks becomes untenable

when crack branching and crack coalescence occurs.

1.3.3 Finite Elements with Embedded Discontinuities

Discontinuity is introduced at the element level, which leads to either a weak discon-

tinuity or a strong discontinuity. A weak discontinuity provides discontinuous strain

fields and continuous displacement fields, while a strong discontinuity results in both

strain and displacement discontinuity within the element level. A weak discontinuity

like strain localization is introduced, for instance, by enriching strain fields (Ortiz

et al., 1987) or by imposing traction continuity and compatibility within an element

(Belytschko et al., 1988). A strong discontinuity is considered by continuum type con-

stitutive relationships in conjunction with the Dirac distribution (Simo et al., 1993).

Discontinuities introduced in finite elements lead to additional parameters (or degrees

of freedom), and these additional degrees of freedom are eliminated by condensation

on the element level (Jirasek, 2000). Linder and Armero (2007, 2009) utilized finite

elements with embedded strong discontinuities for simulation of quasi-static fracture,

and extended the embedded discontinuities to so-called “T-shaped� discontinuities

for dynamic branching problems. Maiti et al. (2009) replaced an element with an

internal discontinuity due to cohesive fracture by two superimposed elements with a

combination of original and imaginary nodes.

1.3.4 Microplane Model

A microplane model integrates elastic and fracture (or softening) behaviors in the

constitutive relation. The constitutive relationships of the microplane model are

characterized by stresses and strains on planes of various orientations within a ma-

terial, called the microplanes (Bazant, 1984; Jirasek and Bazant, 1995). This idea is

originated from the slip theory of plasticity (Taylor, 1938; Batdorf and Budiansky,

1949), which is used for capturing strain hardening behavior. For the investigation

of tensile softening material behavior like concrete, Bazant and Oh (1985) considered

normal microplane stress, which was a function of normal strain on a microplane,
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and obtained a tangent stiffness by using the principle of virtual work. In order to

represent wide range of Poisson’s ratio, normal deviatoric and volumetric strains and

shear strain on microplanes were introduced by Bazant and Prat (1988). Because the

microplane model by Bazant and Prat (1988) can lead to large lateral strains under

large tensile strains, Bazant et al. (1996) incorporated the concept of stress-strain

boundaries. Carol and Bazant (1997) demonstrated the relationship between mi-

croplane elasto-plasticity and a classical macroscopic elasto plastic formulation. The

microplane model is further improved in conjunction with work-conjugate deviatoric

stress (Bazant et al., 2000) and traction-separation relationships of cohesive fracture

(Bazant and Caner, 2005).

1.3.5 Atomistic/Continuum Coupling

Continuum deformation and failure are analyzed in conjunction with atomic-scale

models. In order to couple atomistic and continuum deformation, Tadmor et al.

(1996) proposed the quasi-continuum method by adopting the Cauchy-Born rule.

Miller et al. (1998) utilized the quasi-continuum method to investigate the competi-

tion between simple cleavage and crack-tip dislocation emission. Shilkrot et al. (2002)

combined the quasi-continuum method with continuum defect models like the dis-

crete dislocation method. Alternatively, Liu et al. (2008) modified the Cauchy-Born

rule to account for kinematics of surface separation by introducing a discontinuous

Cauch-Born rule, which resulted in the estimation of the cohesive traction-separation

relationships based on atomistic information. Li et al. (2008) used the generalized

mathematical homogenization theory to obtain continuum descriptions from molec-

ular dynamics equations.

1.3.6 Virtual Internal Bond Model

Macroscopic cohesive fracture is represented by connecting an atomistic potential to

a macroscopic continuum potential through multi-scaling techniques. Gao and Klein

(1998) developed the virtual internal bond (VIB) model, which integrates the macro-

scopic view of cohesive surfaces and the atomistic view of cohesive bonding between

discrete particles. While the cohesive zone model separates fracture and elastic be-

haviors into cohesive surface elements and volumetric (or bulk) elements, respectively;

the VIB model represents both elastic and fracture behavior within the framework of

continuum mechanics via the Cauchy-Born rule (Born, 1940; Klein et al., 2001). Gao
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and Ji (2003) implemented the VIB modeling in nanomaterials demonstrating transi-

tion of fracture mechanisms from classical linear elastic fracture mechanics (LEFM)

to homogeneous failure near the theoretical strength of solids. Thiagarajan et al.

(2004) have investigated dynamic fracture behavior for a brittle material under im-

pact loading using the VIB model. Moreover, the model was modified by Volokh and

Gao (2005) to account for two independent linear elastic constants. The VIB model

is further extended to consider two different fracture energies in this study.

1.3.7 Peridynamics

The peridynamics theory (Silling, 2000) is developed to represent discontinuities (e.g.

a crack) as a result of deformation. In peridynamics, damage is associated with a

pairwise force function that allows bonds to break. Computational implementation

of peridynamics incorporates existing computational methods such as the meshless

method (Silling and Askari, 2005), the FEM (Macek and Silling, 2007), and molecular

dynamics (Parks et al., 2008). Gerstle et al. (2007) generalized the peridynamic model

by adding pairwise peridynamic moments, named as the micropolar peridynamic

model, because the original peridynamic model suffered from representing a Poisson’s

ratio other than 0.25 (Silling, 1998). Bobaru (2007) utilized the peridynamic method

to analyze the effect of van der Waals forces on mechanical properties of nanofiber

networks, and Kilic et al. (2009) investigated damage progression of center-cracked

composite laminates with different fiber orientations.

1.3.8 Other Methods

The space-time FEM is developed on the basis of the discontinuous Galerkin method

(Hughes and Hulbert, 1988). The method is applied to fracture problems, for exam-

ple, oxidation-driven fracture (Carranza et al., 1998), and elasto-dynamic cohesive

fracture (Huang and Costanzo, 2004). Furthermore, the concept of the space-time

FEM is extended to the space-time discontinuous Galerkin method, which supports

fully unstructured space-time meshes and discontinuous basis functions across inter-

element boundaries (Abedi et al., 2006). Alternatively, Abraham et al. (1994) em-

ployed molecular dynamic simulations with parallel computing to investigate the dy-

namic instability of a crack tip. Fago et al. (2004) integrated the density functional

theory with macroscopic finite element calculation by using the Cauchy-Born hypoth-

esis. Fan and Fish (2008) introduced a refined local patch to describe failure mode,
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and embedded the local patch into the coarse grid by using the partition of unity

method, named as the rs-method. Matous et al. (2008) developed a multiscale co-

hesive failure model of heterogeneous adhesives in conjunction with a computational

homogenization scheme, and Kulkarni et al. (2009) used the multiscale cohesive failure

model to examine macroscopic failure response of heterogeneous adhesives. Song and

Belytschko (2009) introduced a set of discrete crack segment to represent complicated

two-dimensional dynamic fracture patterns.

1.3.9 Present Approach

In this study, potential-based cohesive zone and virtual internal bond models are

utilized. For the computational investigation of dynamic fracture, branching and

fragmentation, the extrinsic cohesive zone model is implemented in conjunction with

a topological data structure, nodal perturbation and edge-swap operator. In order to

achieve efficient computation, adaptive mesh refinement and coarsening schemes are

introduced in dynamic fracture and branching problems. Notice that the extrinsic

cohesive zone model is capable of representing spontaneous crack initiation, propaga-

tion, branching and fragmentation within a framework of the FEM. For quasi-static

crack propagation problems, the intrinsic cohesive zone model is implemented in com-

mercial software as a user element subroutine, while the virtual internal bond model

is also implemented as a user material subroutine.

1.4 Research Objective and Thesis Organization

The objective of this thesis is to investigate crack propagation phenomena through

the development of a novel potential-based constitutive model in conjunction with

robust and efficient computational methods. A unified potential-based cohesive model

of mixed-mode fracture is proposed for the constitutive relationship of the fracture

surface. The proposed model is verified and validated through investigations of quasi-

static fracture, dynamic fracture, microbranching and fragmentation. In addition,

the virtual internal bond model is employed to investigate fracture behavior of quasi-

brittle materials including the size effect.

The thesis is organized as follows. In the subsequent chapter, the original virtual

internal bond model is extended to the virtual internal pair bond (VIPB) model in or-

der to represent a relatively large fracture process zone in quasi-brittle materials like

concrete. The VIPB model accounts for two different fracture energies associating
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a short range potential and a long range potential. Next, a potential-based cohe-

sive zone model, named as the PPR (Park-Paulino-Roesler) model, is developed in

Chapter 3. The PPR model is based on physical fracture parameters such as fracture

energy, cohesive strength and shape of softening curve in order to be applicable to

a wide range of material softening behavior. Chapter 4 explains the implementation

of the PPR potential-based model including the unloading/reloading relationships.

Then, the PPR model is utilized for the investigation of both quasi-static fracture

(Chapter 5) and dynamic fracture (Chapters 6 and 7) phenomena. Chapter 5 fo-

cuses on particle/matrix interfacial fracture, i.e quasi-static, to obtain macroscopic

constitutive relationships of materials with microstructure. This multiscale investi-

gation is integrated with micromechanics and a finite element-based cohesive zone

model. Chapters 6 and 7 explore dynamic fracture, microbranching and fragmenta-

tion problems associating with adaptive topological operators. Chapter 6 proposes

the use of nodal perturbation and/or edge-swap operators in dynamic fracture sim-

ulation in order to obtain realistic crack patterns. Adaptive mesh refinement and

coarsening (AMR & C) schemes for cohesive fracture are developed in Chapter 7,

which significantly reduce computational cost. Adaptive mesh refinement is based

on a sequence of edge-split operators, while adaptive mesh coarsening is performed

by utilizing edge-collapse (or vertex-removal) operators. The convergence and consis-

tency of computational results are addressed. Finally, Chapter 8 summarizes major

contribution of this thesis, and provides possible research areas for future work.
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Chapter 2

Virtual Internal Pair-Bond Model
for Quasi-Brittle Materials

The present multiscale investigation employs the initial and total fracture energy

through a virtual internal pair-bond (VIPB) model. The proposed VIPB model is an

extension of the traditional virtual internal bond (VIB) model. Two different types

of potentials, a steep short-range potential and a shallow long-range potential, are

employed to describe the initial and the total fracture energies, respectively. The

Morse potential function is modified for the virtual bond potential so that it is inde-

pendent of specific length scales associated with the lattice geometry. This feature

is incorporated in the VIPB model, which uses both fracture energies and cohesive

strength. With respect to the discretization by finite elements, the element size de-

pendence is addressed in conjunction with the J-integral. Parameters in the VIPB

model are evaluated by computational simulations of a pure tension test in conjunc-

tion with measured fracture parameters. The VIPB model is validated by predicting

load versus crack mouth opening displacement curves for geometrically similar spec-

imens, and the measured size effect. Finally, an example involving fiber-reinforced

concrete is provided, which demonstrates the advantage of the VIPB model over the

usual VIB model.

2.1 Introduction

Interpreting structural behavior such as maximum load-bearing capacity is a relevant

issue for structures containing quasi-brittle materials, especially concrete, because of

their relatively large fracture process zone. The relatively large fracture process zone

present in concrete results in the strength of a concrete beam in a laboratory-sized

specimen being different from the strength of a concrete beam in an actual structure.

This behavior is typically associated to the size effect (Bazant and Planas, 1998;

Bazant, 1999, 2000). In order to characterize the relatively large fracture process

zone in quasi-brittle materials, two different fracture energies, the initial fracture en-

ergy and the total fracture energy, are introduced by employing the concept of the
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equivalent elastic crack model (Bazant and Planas, 1998; Shah et al., 1995). Roesler

et al. (2007b) and Park (2005) have shown that both energies are essential to charac-

terize concrete fracture behavior. For computational simulation of fracture behavior

for quasi-brittle materials, the virtual internal bond (VIB) model is employed, among

several computational methods discussed in Chapter 1. The VIB model integrates

the macroscopic view of cohesive surfaces and the atomistic view of cohesive bonding

between discrete particles (Gao and Klein, 1998).

In order to consider two fracture energies, a virtual internal pair-bond (VIPB)

model is proposed, which accounts for the relatively large fracture process zone and

the size effect for quasi-brittle materials. Additionally, a modified Morse potential

is utilized so that it is independent of any lattice parameter. The VIPB model thus

characterizes essential macroscopic fracture parameters, i.e. fracture energies (initial

and total) and cohesive strength of the material.

This chapter is organized as follows. In the following section, the traditional VIB

model formulation and a modified Morse potential function are presented for quasi-

brittle materials. Next, the concept of the VIPB model is described in conjunction

with two distinct fracture energies. Section 2.4 explains the determination of mate-

rial properties including element size dependences, and Sections 2.5 and 2.6 address

verification and validation, respectively. Finally, the key findings of the present work

are summarized.

2.2 Virtual Internal Bond (VIB) Model
Formulation

The VIB model (Gao and Klein, 1998; Klein and Gao, 1998) describes the continuum

behavior based on the microscopic interactions between particles within the concept

of homogenization, as shown in Figure 2.1. The microscopic behavior is connected

to the macroscopic behavior by the Cauchy-Born rule, which results in the strain

energy function (Tadmor et al., 1996). The VIB model represents both elastic and

fracture behavior within the framework of continuum mechanics by using the macro-

scopic strain energy function. In this section, the VIB model formulation is reviewed,

and a modified Morse bonding potential function, which represents the microscopic

interactions between particles, is proposed.
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〈Continuum behavior〉

Figure 2.1: Schematic illustration of the original VIB model.

2.2.1 Strain Energy Function in the VIB Model

The strain energy function in the VIB model is characterized by the bonding potential

function via the Cauchy-Born rule. The Cauchy-Born rule is essentially a multiscaling

assumption to connect atomistic behavior in the micro length scale with continuum

behavior in the macro length scale. Under this assumption, continuum behavior can

be described by a single mapping function (i.e. deformation gradient F),

F =
∂x

∂X
, (2.1)

from the undeformed configuration (Lagrangian coordinates, X = XI) to the de-

formed configuration (Eulerian coordinates, x = xi). Therefore, the bonding po-

tential U(�) is defined by a deformed virtual bond length � along a bond direction

ξ,

� = �0
√

ξ · FTFξ , (2.2)

where �0 is an undeformed virtual bond length. Based on the bonding potential, the

strain energy function (Φ) is represented by the summation of the bonding potential
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with a bond density DΩ over domain Ω,

Φ =

∫
U(�(F))DΩ dΩ . (2.3)

If the bond direction ξ is specified by a three dimensional spherical coordinate

system, the strain energy function (2.3) is expressed by

Φ = 〈U(�)〉 , (2.4)

where

〈· · ·〉 =
∫ 2π

0

∫ π

0

∫ �0

0

· · · DΩ(φ, θ, �0) sin θ d�0dθdφ , (2.5)

and the bond direction vector is given as ξ = (sin θ cosφ, sin θ sinφ, cos θ).

For a two dimensional plane stress problem, the strain energy function is expressed

by

Φ = 〈U(�)〉 =
∫ 2π

0

∫ �0

0

U(�)DΩ(φ, �0)d�0dφ (2.6)

and the bond direction vector is selected as ξ = (cosφ, sinφ).

In this study, a two dimensional constant bond density function, DΩ = D0, is

considered, which illustrates an isotropic solid, and has the same initial bond length

(�0) over the domain. The constant bond density function simplifies the strain energy

function to

Φ = 〈U(�)〉 = D0

∫ 2π

0

U(�)dφ , (2.7)

which is also suitable for numerical investigation of fracture properties.

2.2.2 Constitutive Relation

From the determination of the strain energy function (2.7), the constitutive relation

is formulated on the basis of continuum mechanics. The Lagrangian strain E and the

2nd Piola-Kirchhoff stress tensor S are used for computing the stress and the material

modulus. The derivative of the strain energy with respect to the Lagrangian strain

provides the second Piola-Kirchhoff stress,

SIJ =
∂Φ

∂EIJ

=

〈
�20
U ′(�)
�

ξIξJ

〉
. (2.8)
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Similarly, the material tangent modulus is obtained by the second derivative of

the strain energy function with respect to the Lagrangian strain,

CIJKL =
∂2Φ

∂EIJ∂EKL

=

〈
�40

(
U ′′(�)
�2

− U ′(�)
�3

)
ξIξJξKξL

〉
, (2.9)

which satisfies the Cauchy symmetry,

CIJKL = CIKJL , (2.10)

in addition to the usual major and minor symmetries of elasticity. Because of these

symmetries, only one elastic property is necessary. Therefore, the Cauchy symmetry

is satisfied by the fourth order isotropic elasticity tensor whose Lame parameters (μ,

λ) are the same (Thiagarajan et al., 2004). Additionally, the VIB (or VIPB) model

is hyperelastic and does not account for dissipation (unloading path is the same as

the loading path).

2.2.3 Virtual Bond Density Potential

The focus of the VIB model is the determination of the virtual bond potential (U(�))

and the bond density function (D0), which describe both elastic behavior and fracture

behavior. The bond density potential Ψ is defined as the bond potential multiplied

by a bond density function,

Ψ(�) = D0U(�) . (2.11)

Previous researchers (e.g. Gao and Klein, 1998; Klein and Gao, 1998; Zhang et al.,

2002; Klein et al., 2001; Nguyen et al., 2004; Thiagarajan et al., 2004) have employed

a two-parameter (A, B) phenomenological cohesive law,

Ψ′(�) = D0U
′(�) = A(�− �0)e

−(�−�0)/B , (2.12)

for the bond density potential in the VIB model implementation. The constant A is

related to the initial Young’s modulus while the constant B can be determined by the

cohesive strength or by the fracture energy. Thus, this potential function can only

characterize two material parameters: the initial elastic property and one fracture

property.

In this study, the generalized Morse function (Morse, 1929; Girifalco and Weizer,

1959; Milstein, 1973) is modified to represent the bond density potential and to char-
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acterize three macroscopic material parameters, specifically initial elastic modulus,

fracture energy and cohesive strength. The modified Morse potential function is

proposed herein as

Ψ(�) = D0U(�) =
D

m− 1

[
e−mα(�/�0−1) −me−α(�/�0−1)

]
. (2.13)

The two exponents (m, α) in the potential function can characterize two fracture

parameters: the cohesive strength and the fracture energy. The parameter D is as-

sociated with one elastic property, i.e. Young’s modulus. Furthermore, the potential

function is independent of the lattice parameter (�0) because the particle distance (�)

is normalized with respect to the lattice parameter (�0), which is not the case in the

original Morse potential.

2.2.4 Computational Implementation

Numerical simulations of the VIB (or VIPB) model can be implemented by using

a commercial software, e.g. ABAQUS, with the application of the user material

(UMAT) subroutine (see Appendix B). If the software uses the Cauchy stress (σ)

rather than the 2nd Piola-Kirchhoff stress (S) for the stress update scheme, then one

must transform the 2nd Piola-Kirchhoff stress into the Cauchy stress with the known

relationship (see, for example, Belytschko et al. (2000)),

σ =
1

det(F)
FSFT . (2.14)

2.3 Virtual Internal Pair-Bond (VIPB) Model

The fracture energy and the cohesive strength are basic quantities to describe material

fracture behavior. For quasi-brittle materials, especially concrete, two different ener-

gies are necessary for explaining the size effect (Bazant and Becq-Giraudon, 2002).

The initial fracture energy (Gf ) is size independent and is based primarily on the peak

load. The other quantity is the total fracture energy (GF ), which is specimen size

dependent. The proposed virtual internal pair-bond (VIPB) model considers both

fracture energies in order to capture the measured size effect (Park et al., 2008b).

In the VIPB model, two bonding density potentials are connected between two

particles, as shown in Figure 2.2(a). One steep short-range potential, Ψ1(�), Figure
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Figure 2.2: Schematic illustration of the VIPB model: (a) the relationship between
stress and bond length from the pair-bond potential (Ψ = Ψ1 + Ψ2); (b) the rela-
tionship from the steep short-range potential (Ψ1) and (c) the relationship from the
shallow long-range potential (Ψ2).

2.2(b), is related to the initial fracture energy, and a longer-range shallower potential,

Ψ2(�), Figure 2.2(c), is associated with the difference between the initial fracture

energy and the total fracture energy. The summation of each potential represents the

bond density potential function of the VIPB model as illustrated in Figure 2.2(a),

Ψ(�) = Ψ1(�) + Ψ2(�) , (2.15)

where

Ψi(�) =
Di

mi − 1

[
e−miαi(�/�0−1) −mie

−αi(�/�0−1)
]

(i = 1, 2) . (2.16)

In this model, one bond density potential (Ψ1), represented by Gf , is independent of

the size so that the VIPB model characterizes the size effect. Another bond density

potential (Ψ2), described by (GF −Gf ), depends on the specimen size to satisfy the

size dependence of the total fracture energy.

Each potential function contains three unknown constants (Di, mi and αi) which

can be determined by an elastic property (elastic modulus), and fracture properties

(fracture energy and cohesive strength). The elastic and fracture properties are de-

fined in each of the respective bond density potential function (Ψ1 and Ψ2). The

fracture energy is separated into Gf and (GF −Gf ), as previously discussed.

The cohesive strength of the steep short-range potential is assumed then to be

(1− βk)ft
′, while that of the longer-range shallower potential is assumed to be βkft

′,

as shown in Figure 2.2(b) and (c). The strength ratio (βk) of the two potentials can

be defined as the kink point stress ratio in the bilinear softening model described
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Figure 2.3: Bilinear Softening model for concrete where f ′
t is the tensile strength, Gf

is the initial fracture energy, GF is the total fracture energy, βk is the strength ratio
at the kink point, w1 is the horizontal axis intercept of the initial descending line, wk

is the crack opening width at the kink point, and wf is the final crack opening width
− see Park (2005); Park et al. (2008a).

in Figure 2.3 (Park, 2005; Park et al., 2008a). Because the kink point in the bilin-

ear softening model is related to a post-peak load behavior, the long-range potential

characterizes a post-peak load behavior in the VIPB model. The initial elastic mod-

ulus of each potential is determined under the assumption of linear elasticity at small

strain. The elastic modulus of the pair-bond potential model is the summation of

each potential, E = E1 + E2, because the bonds are connected in parallel. Each

elastic modulus can, therefore, be defined by the same ratio as the cohesive strength

for each potential.

The concept of the VIPB model is extended to characterize material responses

of fiber reinforced concrete (FRC). Fracture mechanisms of FRC generally consist

of aggregate bridging and fiber bridging zones (Anderson, 1995; van Mier, 1996).

The aggregate bridging zone describes the crack branching and interlocking which

result from the weak interface between the aggregates and cement matrix. The fiber

bridging zone represents the effect of fibers on the stress transfer at larger opening

displacements. The aggregate bridging zone is illustrated by the steep short-range

potential while the fiber bridging zone is described by the shallow long-range poten-

tial. The steep short-range potential (Ψ1) is associated with the total fracture energy

of plain concrete, and the shallow long-range potential (Ψ2) is related to the differ-

ence between the total fracture energy of plain concrete (GF ) and the total fracture

energy of FRC (GFRC).
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2.4 Determination of Material Properties

Since the proposed VIPB model is based on the same framework of continuum me-

chanics as the VIB model, elastic and fracture properties are investigated in con-

junction with the traditional VIB model. In the VIB model, elastic properties are

examined at the state of infinitesimal strain while fracture properties are evaluated

with respect to element size dependences (Klein and Gao, 1998). Therefore, previous

studies provide the basis for the material properties to be used in both the VIB model

and the VIPB model.

2.4.1 Elastic Properties at Infinitesimal Strains

Elastic material properties of the VIB (or VIPB) model can be evaluated at the state

of small strain by defining the material tangent modulus in two different ways (Gao

and Klein, 1998). Either the strain energy function of the VIB (or VIPB) model

or the linear elastic strain energy function represents the material tangent modulus.

For the calculation of the material tangent modulus, the linearized strain is utilized

because strain at the elastic range is infinitesimal.

First, the material tangent modulus is calculated by the strain energy function

(2.4) of the VIB (or VIPB) model. Assuming infinitesimal strain, and taking a Taylor

series expansion of the strain energy function and its second derivative with respect

to the linearized strain, one obtains the material tangent modulus,

Cijkl =
4π

15
�20Ψ

′′(�0)(δijδkl + δikδjl + δilδkj) , (2.17)

described by a bond density potential function, Ψ(�), of the VIB (or VIPB) model.

Alternatively, the elastic modulus can be also obtained by the theory of linear

elasticity. Since the strain is assumed to be linear, the strain energy function is

quadratic. Taking the second derivative with respect to the linearized strain, one

obtains the material tangent modulus, as expected

Cijkl = λδijδkl + μ(δikδjl + δilδkj) . (2.18)

From the Cauchy symmetry relation (2.10), the two Lame parameters are assumed

to be the same (λ = μ) in the material tangent modulus. As a result, equating (2.17)

and (2.18) results in the relationship between the shear modulus and the bond density
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potential function,

μ =
4π

15
�20Ψ

′′(�0) , (2.19)

for a three dimensional problem. The elastic properties are also represented by the

Poisson’s ratio (ν) and Young’s modulus (E) whose relationships are

ν =
1

4
and E =

2π

3
�20Ψ

′′(�0) . (2.20)

Moreover, for two dimensional plane stress problems, the relationship between the

shear modulus and the bond density potential energy function is

μ =
π

4
�20Ψ

′′(�0) , (2.21)

and Hooke’s law leads to

ν =
1

3
and E =

2π

3
�20Ψ

′′(�0) . (2.22)

The initial Young’s modulus has been formed to correlate with the bond density

potential (2.11), under the Cauchy symmetry condition (λ = μ). Therefore, a con-

stant Di (i = 1, 2), in the bond density potential is determined from the relationship

between the Young’s modulus and the bond density potential function (2.20 and 2.22)

of the VIPB model. Substitution of (2.16) into (2.22) leads to

Di =
3Ei

2πmiα2
i

(i = 1, 2) , (2.23)

which provides the closed form of the bond density function in terms of the elastic

modulus and the two exponents (mi, αi) in the bond density potential. The exponents

(mi, αi) can be associated with two fracture properties of materials, i.e. the fracture

energy and the cohesive strength.

2.4.2 Fracture Properties and Mesh Size Dependences

The essential fracture parameters for mode I fracture are cohesive strength and frac-

ture energy. These experimental fracture properties are utilized to estimate the two

exponents (mi, αi) in the bond density potential through numerical simulations, e.g.,

the pure tension test (as discussed in the next section). In the simulation of a pure

tension example, the numerical cohesive strength is assumed to be the peak stress in

the pure tension test, while the numerical fracture energy is obtained from the area
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under the stress-displacement curve in the simulation. The two exponents (mi, αi) in

the bond potential can then be determined by curve fitting; the two numerical frac-

ture parameters (strength and fracture energy) obtained by a pure tension simulation

coincide with known material properties from experiments.

X1
X1

X2X2

Γ

Γ+

Γ−

hL

N

(a) (b)

Figure 2.4: J-integral contours (a) for an arbitrary path and (b) for a path of the
localization zone.

In the VIB (or VIPB) model, the fracture energy depends on the element size

(Klein et al., 2001), which can be explained by the path independent J-integral (Rice,

1968b),

J =

∫
Γ

(U0δIJ − PiJFiI))NJdΓ , (2.24)

where Γ is a contour in the undeformed configuration surrounding the crack tip, U0

is the strain energy density, P is the 1st Piola-Kirchhoff stress, and N is the outward

normal to the contour, as shown in Figure 2.4(a). Because of path independence, a

contour is selected along the upper and lower bound (Γ+ and Γ−) of the localization

zone (hL) where stress softening occurs (Figure 2.4(b)) for a mode I loading (Klein

and Gao, 1998). The contour results in the symmetric stress and displacement field,

and then one obtains J for mode I,

J = hL

∫ ∞

1

P22dλ2 = GI , (2.25)

where λ2 is stretch along the X2 direction. Therefore, the J-integral introduces a

length scale (hL) which is proportional to the fracture energy in the VIB (or VIPB)

model. Because of this relationship, one should consider a length scale (e.g. lo-

calization zone size) for the simulation of the VIB (or VIPB) model. Furthermore,

the relationship provides guidance for verification studies and for determination of

fracture parameters, discussed in the next section.

In summary, cohesive strength and fracture energy are considered in conjunction

with the localization zone size to determine the exponents (αi, mi) in the bond

density potential. First, one selects the localization zone size. Next, the exponents
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are calibrated by numerical simulation, e.g. the pure tension test, which provides

two numerical fracture parameters (cohesive strength and fracture energy) which are

consistent with expected values of experiments.

2.5 Verification – Fracture Properties and
Element-Size Dependence

The fracture behavior of the VIB (or VIPB) model is analyzed by performing both

the pure tension and the double cantilever beam (DCB) tests. Because numerical

simulations of the pure tension example are associated with the measured cohesive

strength and the fracture energy, the simulations lead to determine the two exponents

(mi and αi) with respect to the localization zone size (hL). Additionally, the DCB

test verifies the relationship between the fracture energy and the size of the localiza-

tion zone, hL, derived from the J-integral. Moreover, in order to illustrate that the

localization zone size is proportional to the fracture energy obtained by the numerical

simulations of the DCB example, each numerical test has two different FEA mesh

sizes for the localization zone where the VIB (or VIPB) element is defined. The main

difference between the pure tension and the DCB examples is that the localization

zone is taken as the entire domain in the former example, while it is taken as a (single

element) strip in the latter example.

The determination of the bond density potential for the VIB model correlates

with three measured concrete material properties: the Young’s modulus (E = 32

GPa), the cohesive strength (ft
′ = 4.15 MPa), and the reference fracture energy

(GF0 = 164 N/m). The bond density potentials for the VIPB model are associated

with additional measured fracture parameters, i.e. initial fracture energy (Gf = 56.6

N/m), and the strength ratio (βk = 0.34).

Since the fracture energy (GF ) depends on the localization zone size (hL) related

to the VIB (or VIPB) element size, the reference fracture energy (GF0) is defined

at a reference localization zone size (hL0 = 0.5 mm). As shown in Table 2.1, if the

size of the localization zone (hL) grows in the FEA mesh, the numerical result of the

fracture energy (GF ) also increases with the same ratio as that of the localization

zone,

GF = GF0
hL

hL0
. (2.26)

This relationship follows from expression (2.25), derived for the J-integral.
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Table 2.1: Relationship between the VIB element size and the fracture energy.

VIB element Total fracture energy
size (hL) GF -hL relation (2.26) Computational results

(m) (N/m) (N/m)

Pure tension 1 328000 328302
0.5 164000 164311

DCB hL0 = 0.0005 GF0 = 164 164
0.00025 82 82

2.5.1 Pure Tension Test

The pure tension numerical simulation has a square (W by W ) domain, elongated at

the top under displacement control. The numerical results for two different plate sizes

(W = 1 m and 0.5 m) are provided in Figure 2.5. The peak stress of the plate corre-

sponds to the cohesive strength of 4.15 MPa. For the evaluation of the macroscopic

numerical fracture energy, one calculates the area under the stress-displacement curve

up to 40% elongation (chosen arbitrarily) of the virtual bond length (�) with respect

to the undeformed virtual bond length (�0). The calculated numerical fracture energy

almost coincides with the analytical expression in (2.26), as shown in Table 2.1. Nu-
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Figure 2.5: Numerical simulation result of a pure tension test using the VIB model
with different domain sizes (W = 1 m and 0.5 m). The loading is performed with
displacement control (δ).
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merically, the area under the curve of the 1 m by 1 m plate is nearly twice that of the

0.5 m by 0.5 m plate. The bigger plate has twice the localization length of the smaller

one. These numerical results illustrate that the fracture energy is proportional to the

localization zone size in the VIB (or VIPB) model.

In addition, the VIPB (pair-bond potential) model is compared to the VIB (single

bond potential) model in Figure 2.6, displaying results of the pure tension test with

a localization zone size of 0.5 mm. The VIPB model results are indicated by a solid

line for the stress-displacement curve, while the VIB model results are given by a

dotted line. Each potential (Ψ1, Ψ2) for the VIPB model is represented by dashed

lines. Both the VIB and the VIPB model have the same fracture energy and cohesive

strength, but exhibit different post-peak load behavior. The different post-peak load

behavior influences the maximum load capacity of structures containing quasi-brittle

materials.
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Figure 2.6: Comparison between the VIB (single-bond) model and the VIPB (pair-
bond) model with the localization zone size of W = hL = 0.5 mm. The loading is
performed with displacement control (δ).

2.5.2 Double Cantilever Beam (DCB) Test

The geometry of the DCB test is described in Figure 2.7(a). It has initial notch

(a0) of 0.1 m, height (2h) of 0.1 m, and length (L) of 1 m. The DCB mesh detail

around the crack tip (boxed area in Figure 2.7(a)) is shown in Figure 2.7(b), and
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the localization zone is defined by the VIB (or VIPB) element along the direction of

crack propagation. Material properties are also the same as in the pure tension test

P

P

Δ

Δ
2

a0 a

h

L = 1m

thickness : t = 0.1m

2h = 0.1m

(a)

X

Y

Z XX

Y

Z

Number of nodes: 71808
Number of elements: 71335

(b)

(c)

Figure 2.7: (a) The geometry of the DCB test; (b) mesh detail around initial notch
with the element size varying from 0.5 mm (localization zone) to 2 mm (outer region);
(c) normal stress, σyy, distribution under the deformed shape.
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in order to relate the fracture energy to the localization zone size. Elements outside

the localization zone are defined as linear elastic.

The numerical simulation of the DCB is implemented with two different VIB (or

VIPB) element sizes (hL = 0.5 mm, 0.25 mm), with the same original geometry

and with the same constants in the bond density potential function. Figure 2.7(c)
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Figure 2.8: Numerical simulation results of the DCB test using the VIB and the
VIPB models with the localization zone size of, (a) hL = 0.5 mm and (b) hL = 0.25
mm.
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demonstrates the vertical stress (σyy) distribution under the deformed shape. The

maximum stress corresponds to the cohesive strength (4.15 MPa), and the fracture

behavior is localized with the large deformation where the VIB (or VIPB) element is

defined.

Figure 2.8 illustrates the agreement of the numerical results and the analytical

solution of linear elastic fracture mechanics (LEFM). For the size of 0.5 mm, the

numerical results of the VIB model and the VIPB model are plotted in Figure 2.8(a)

with the LEFM analytical solution whose fracture energy is 164 N/m. Similarly, the

localization zone size is 0.25 mm for the numerical simulation (Figure 2.8(b)), and

the fracture energy is 82 N/m for the analytical solution of LEFM. Additionally, the

peak load of the VIPB model is lower than that of the VIB model because of the the

different softening behavior as discussed previously (Figure 2.6).

2.6 Validation

In order to validate the VIPB model for quasi-brittle materials, numerical simulation

results are compared with previous experimental results from three-point bending

(TPB) tests of plain concrete (Roesler et al., 2007b) and FRC (Roesler et al., 2007a).

For the plain concrete experiments, three sizes (D =63, 150, 250 mm) of notched

beam were designed with a constant thickness (t =80 mm), notch to depth ratio

(a0/D = 1/3) and span to depth ratio (S/D = 4) (see Figure 2.9). For the FRC

experiments, the beam depth was 150 mm with the thickness of 80 mm, notch to

depth ratio of 1/3, and span to depth ratio of 4.
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Figure 2.9: Specimen geometry of a three-point bending (TPB) tests.
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Table 2.2: Elastic and fracture parameters of concrete beam experiments by Roesler
et al. (2007b).

Specimen Elastic Tensile Initial fracture Strength ratio Total fracture
size modulus strength energy at the kink point energy
(mm) (GPa) (MPa) (N/m) (βk) (N/m)

63 32 4.15 56.6 0.34 119
150 32 4.15 56.6 0.34 164
250 32 4.15 56.6 0.34 167

2.6.1 Three-Point Bending (TPB) Tests of Plain Concrete

Experimental elastic and fracture parameters of concrete are presented in Table 2.2.

The tensile strength of 4.15 MPa was measured by the splitting test (Brazilian test).

The total fracture energy was obtained by the work-of-fracture method (Hillerborg,

1985), and the initial fracture energy was estimated by the Two-Parameter Fracture

Model (TPFM) (Jenq and Shah, 1985). Finally, the strength ratio (βk = 0.34) in the

pair-bond potential was calculated by using the critical crack tip opening displacement

(CTODc) obtained from the TPFM (Park, 2005).

Based on the concrete properties in Table 2.2, the constants in the modified Morse

potential are evaluated by expression (2.23) in conjunction with the numerical sim-

ulation of the pure tension test at a localization zone size of 0.5 mm. Table 2.3

illustrates the calculated constants in the bond density potential for the VIB (single-

bond) model, and Table 2.4 provides those for the VIPB (pair-bond) model. The

exponents in the bond density potential are calibrated by simulating the pure tension

test so that the numerical fracture parameters corresponds to the material fracture

parameters. In the VIPB model, the constants (α1, m1, D1) in the steep short-range

potential (Ψ1) are the same for all specimen sizes, since the potential represents the

size independent initial fracture energy (Gf ). However, in the shallow long-range

potential (Ψ2), the constants (α2, m2, D2) are different with respect to size, due to

the size dependence of the total fracture energy (GF ), as shown in Table 2.4. The

exponent m2 of the long-range potential is not only greater than the exponent m1 of

the short-range potential, but the exponentm2 also increases with size. The increased

specimen size produces a larger total fracture energy for a fixed cohesive strength,

resulting in a shallow long-range potential. This feature corresponds well to the char-

acteristics of the Morse potential, the larger value of m, the longer the range, and

the shallower the potential (Milstein, 1973).
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Figure 2.10: Comparison of load-CMOD curves with experimental results: (a) speci-
men size D = 63 mm, (b) specimen size D = 150 mm and (c) specimen size D = 250
mm.
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Table 2.3: Material properties and the constants in the bond density potential for
each size of beam in the VIB (single-bond) model with the localization zone size of
0.5 mm.

Size D (mm) E (GPa) ft
′ (MPa) GF (N/m) α m D (N-m/m3)

63 32 4.15 119 34 315 41960
150 32 4.15 164 23 480 60170
250 32 4.15 167 22 510 61900

Table 2.4: The constants in each bond density potential for the VIPB (pair-bond)
model with the localization zone size of 0.5 mm.

Size (1− βk)E , (1− βk)ft
′ , Gf βkE , βkft

′ , GF −Gf

D (mm) α1 m1 D1 (N-m/m3) α2 m2 D2 (N-m/m3)

63 50 215 18760 19 630 25450
150 50 215 18760 9 1260 50900
250 50 215 18760 8 1480 54660

Figures 2.10(a),(b) and (c) illustrate the correspondence between the numeri-

cal predictions of the VIPB model and the experimental results for each specimen

size with respect to the normalized load versus crack mouth opening displacement

(CMOD) curves (P/tDf ′
t - CMOD f ′

t/GF ). The VIB model slightly overestimates

the peak load, due to the VIB model consisting of a single-bond potential related to

the total fracture energy, while the VIPB model employs two different potentials, i.e.

the steep short-range and the shallow long-range potential, associated with the initial

fracture energy and the total fracture energy.

2.6.2 On Size Effect

In general, the size effect due to the scaling of geometrically similar structures, can

be characterized by the nominal strength of the structure, the maximum deflection

and the maximum strain (Bazant, 1999). In this study, the size effect is examined by

plotting the structural size (D) versus the nominal strength (σNu) which is calculated

as the peak load divided by the beam size (D) and thickness (t), as shown in Figure

2.11. The solid and dashed lines are calculated respectively by the size effect method

(SEM) (Bazant and Planas, 1998) and the TPFM (Jenq and Shah, 1985) through
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the size effect expression (Bazant and Kazemi, 1990),

σNu =
Bft

′√
1 +D/D0

, (2.27)

where the non-dimensional constant, B, and the length dimensional constant, D0, are

determined by the three-point bending tests in Table 2.2. The numerical prediction

of the VIPB model trends with the size effect expression (2.27), and is bounded

by the SEM and the TPFM curves, as shown in Figure 2.11. The single potential

(VIP) model, demonstrates overestimation of the strength with respect to the increase

in structural size (D) for this specific example. Moreover, the strength differences

between the VIB model and the VIPB model grow with respect to the increase of

specimen size.
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Figure 2.11: Size effect for three-point bending (TPB) fracture test configuration.

2.6.3 TPB Test of Fiber Reinforced Concrete (FRC)

FRC beams were cast with ordinary plain concrete and fiber volume fraction of 0.78%.

Elastic and fracture parameters of the ordinary plain concrete are provided in Table

2.5. The total fracture energies of plain concrete and FRC are 120 N/m and 3531

N/m, respectively, which are obtained by the work-of-fracture method (Hillerborg,

1985). Based on these experimental elastic and fracture parameters, load versus

CMOD curves of the FRC beams are predicted by simulating the VIPB model and

34



the VIB model. The simulation results are compared with the experimental data, as

shown in Figure 2.12. The VIPB model demonstrates a similar load-CMOD curve to

experimental data, while the VIB model overestimates the peak load and post-peak

behavior in this example.

Table 2.5: Elastic and fracture parameters of plain concrete (Roesler et al., 2007a).

Elastic Tensile Total fracture Strength ratio at
modulus (GPa) strength (MPa) energy (N/m) the kink point (βk)

26.9 3.4 120 0.28
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Figure 2.12: Prediction of load-CMOD curves of FRC beam tests compared with
experimental data.

2.7 Conclusions

A virtual internal pair-bond (VIPB) model is proposed to consider two fracture en-

ergies, the initial fracture energy (Gf ) and the total fracture energy (GF ), which

are essential fracture parameters to represent the fracture behavior and size effect

of quasi-brittle materials, such as concrete. The initial fracture energy is related to

the steep short-range bond density potential, while the difference between the initial

fracture energy and the total fracture energy is associated with the shallow long-

range bond density potential. Furthermore, the VIPB model is extended to simulate
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fracture behavior of fiber reinforced concrete (FRC) in conjunction with two fracture

energies, the total fracture energy of plain concrete (GF ) and the total fracture energy

of FRC (GFRC).

A modified Morse function (atomistic potential) is proposed for the bond density

potential in the VIPB model so that the potential function is independent of the

discrete lattice parameter (�0). The elastic modulus, cohesive strength and fracture

energy, which can be obtained by means of macroscopic experiments, determine the

three constants in each modified Morse function (mi, αi, Di).

The model parameters in the bond density potential are estimated from the ex-

perimental fracture parameters and a pure tension simulation. The DCB simulations

are conducted simply to verify the relationship between the fracture energy (GF )

and the localization zone size (hL). The VIPB model is validated by predicting the

load-CMOD curves of three-point bending tests for both plain concrete and FRC.

The later example involving FRC clearly demonstrates the advantage of the VIPB

model over the usual VIB model (cf. Figure 2.12).

Furthermore, the present conceptual framework, i.e. the superposition of the two

potential, can be extended to account for other physical behaviors. For instance,

the VIPB model can be changed to a virtual internal multiple-bond potential model,

which can represent other interactions between fractured surfaces, e.g., friction.
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Chapter 3

PPR: Unified Potential-Based
Cohesive Model of Mixed-Mode
Fracture

A generalized potential-based constitutive model for mixed-mode cohesive fracture

is proposed in conjunction with physical parameters such as fracture energy, cohe-

sive strength and shape of cohesive interactions. It characterizes different fracture

energies in each fracture mode, and can be applied to various material failure be-

havior (e.g. quasi-brittle). The unified potential leads to both intrinsic (with initial

slope indicators to control elastic behavior) and extrinsic cohesive zone models. Path

dependence of work-of-separation is investigated with respect to proportional and

non-proportional paths – this investigation demonstrates consistency of the cohesive

constitutive model. The potential-based model is verified by simulating a mixed-

mode bending test. The actual potential is named PPR (Park–Paulino–Roesler).

The chapter is organized as follows. Section 3.1 chronologically reviews the develop-

ment of previous potential-based models. The unified potential-based model (PPR)

for mixed-mode cohesive fracture is developed in Section 3.2. Section 3.3 discusses

path dependence of the work-of-separation in the unified potential-based model for

mixed-mode fracture. Section 3.4 verifies the proposed model. Finally, Section 3.5

concludes the present work.

3.1 Previous Potentials for Cohesive Fracture

There are several potential-based models, which describe different fracture modes for

cohesive fracture, as summarized in Table 3.1 (including the proposed one). Needle-

man (1987) proposed a polynomial function-based potential to investigate void nu-

cleation. Needleman (1990) also developed the exponential-periodic potential based

on the universal atomistic potential by Rose et al. (1981). Later, Beltz and Rice

(1991) obtained a generalized form of the exponential-periodic potential. Analo-

gously to the exponential-periodic potential, Xu and Needleman (1993) proposed the

exponential-exponential potential to improve the shear failure behavior. Such previ-
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ous potential-based models listed in Table 3.1 are reviewed in detail including their

limitations.

Table 3.1: Potentials for cohesive fracture.

Potential model Normal interaction Tangential interaction

Needleman (1987) Polynomial Linear
Needleman (1990) Exponential Periodic

Beltz and Rice (1991) Exponential Periodic
Xu and Needleman (1993) Exponential Exponential

Park et al. (2009a) Polynomial Polynomial

3.1.1 Needleman, 1987

A fracture energy potential, which defines the constitutive relationship along fracture

interfaces, was proposed by Needleman (1987). The potential consists of a polynomial

function expressed in terms of a normal separation (Δn) and a tangential separation

(Δt) along the interface,

Ψ(Δn,Δt) =
27

4
σmaxδn

{
1

2

(
Δn

δn

)2
[
1− 4

3

(
Δn

δn

)
+

1

2

(
Δn

δn

)2
]

+
1

2
αs

(
Δt

δn

)2
[
1− 2

(
Δn

δn

)
+

(
Δn

δn

)2
]}

, (3.1)

where σmax is the maximum traction carried by the interface under the mode I frac-

ture, δn is a characteristic length, and αs is a shear stiffness parameter. The first

derivatives of the potential with respect to the normal and tangential separations

provide the interfacial normal traction (Tn) and tangential traction (Tt) respectively,

also called the cohesive interactions:

Tn =
∂Ψ

∂Δn
=

27

4
σmax

{(
Δn

δn

)[
1− 2

(
Δn

δn

)
+

(
Δn

δn

)2
]
+ αs

(
Δt

δn

)2 [(Δn

δn

)
− 1

]}
,

Tt =
∂Ψ

∂Δt
=

27

4
σmax

{
αs

(
Δt

δn

)[
1− 2

(
Δn

δn

)
+

(
Δn

δn

)2
]}

. (3.2)

The above potential describes only mode I fracture properties, i.e. fracture energy

and cohesive strength, in conjunction with a characteristic length scale (δn). The

interfacial normal traction reaches the cohesive strength when Δn = δn/3 and Δt = 0.
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The characteristic length is associated with the mode I fracture energy (φn) through

the expression

φn = 9σmaxδn/16 , (3.3)

the area under a traction-separation curve for mode I. Figure 3.1 illustrates the po-

tential and its gradient with respect to the separations (Δn, Δt). The normal traction

demonstrates elastic behavior from Δn = 0 to Δn = δn/3, the maximum strength

(σmax = 30 MPa) at Δn = δn/3, and softening behavior from Δn = δn/3 to Δn = δn.

The tangential traction increases linearly with respect to the increase in tangential

separation, although large shear separation should eventually result in the material

weakening behavior. Therefore, the potential has the limitation for relatively large

shear displacement jump (Needleman, 1990).
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Figure 3.1: Needleman (1987) potential (Ψ) and its gradients (Tn, Tt) with respect
to separations (Δn, Δt); φn = 100 N/m, σmax = 30 MPa, and αs = 10.
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3.1.2 Needleman, 1990

To accomodate large shear displacement, the exponential and periodic potential was

proposed by Needleman (1990). An exponential expression was utilized for the normal

traction-separation relationship, in order to represent the binding energy of metallic

and bi-metallic interfaces (Rose et al., 1981). A periodic expression was employed for

the tangential traction-separation relationship because of the periodic dependence of

the underlying lattice. The exponential and periodic potential is expressed as

Ψ(Δn,Δt) =
σmaxeδn

z

{
1−
[
1 +

zΔn

δn
− βsz

2

[
1− cos

(
2πΔt

δt

)]]
exp

(
−zΔn

δn

)}
, (3.4)
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Figure 3.2: Needleman (1990) potential and its gradients; φn = 100 N/m, and σmax =
30 MPa.
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where z = 16e/9 and e = exp(1). The scalar parameters σmax, δn, δt and βs charac-

terize the interfacial cohesive responses, i.e.

Tn = σmaxe

{
zΔn

δn
− βsz

2

[
1− cos

(
2πΔt

δt

)]}
exp

(
−zΔn

δn

)
,

Tt = σmaxe

{
2πβsz

(
δn
δt

)
sin

(
2πΔt

δt

)}
exp

(
−zΔn

δn

)
. (3.5)

The cohesive strength, σmax, is attained when Δn = δn/z and Δt = 0. Additionally,

the characteristic length, δn, is evaluated by its association with the mode I fracture

energy,

φn = σmaxeδn/z . (3.6)

The other characteristic length, δt, is assumed to be the same as δn, and the nondi-

mensional scalar parameter, βs, is calibrated so that the maximum value of Tt with

Δn = 0 is the same as σmax.

The potential and the traction-separation relationships are plotted in Figure 3.2.

The normal traction demonstrates exponential softening behavior, while the tangen-

tial traction illustrates the periodic function. However, the imposed fracture prop-

erties for the potential are based solely on the mode I fracture parameters, i.e., the

energy (φn) and the cohesive strength (σmax), even though the potential considers

mixed-mode cohesive fracture interaction. Therefore, this potential has limitation in

appropriately characterizing macroscopic mixed-mode fracture behavior.

3.1.3 Beltz and Rice, 1991

Beltz and Rice generalized the exponential and periodic potential proposed by Needle-

man (1990) by considering mode II fracture parameters: the cohesive strength (τmax)

and fracture energy (φt). Similarly to the potential proposed by Needleman (1990),

the normal traction Tn(Δn,Δt) is expressed as an exponential function,

Tn = [B(Δt)Δn − C(Δt)] exp(−Δn/δn) , (3.7)

while the tangential traction Tt(Δn,Δt) is defined as a periodic function, based on

the Peierls concept (Rice, 1992),

Tt = A(Δn) sin

(
2πΔt

δt

)
, (3.8)
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where δn and δt are characteristic length scale parameters, and A(Δn), B(Δt) and

C(Δt) are the functions to satisfy the following boundary conditions. First, a poten-

tial is an exact differential which satisfies the symmetry condition,

∂Tn

∂Δt

=
∂Tt

∂Δn

. (3.9)

Second, because the normal traction (3.7) is zero when normal and tangential dis-

placements are zero (i.e. initial condition), C(0) is equal to zero,

C(0) = 0 . (3.10)

As the area under a cohesive interaction represents the fracture energy, the normal

traction of a cleavage fracture is associated with the surface energy, γs,∫ ∞

0

Tn(Δn, 0) dΔn = 2γs = φn , (3.11)

and the tangential traction of a dislocation nucleation procedure is related to the

unstable stacking energy, γus,∫ δt/2

0

Tt(0,Δt)dΔt = γus = φt (3.12)

which is equivalent to the mode II fracture energy in the macroscopic fracture case.

In addition, the tangential and the normal traction (Tn and Tt) satisfy the boundary

condition at complete separation, i.e.

Tn(∞,Δt) = 0 , Tt(∞,Δt) = 0 , (3.13)

because fracture surfaces cannot transfer tractions when complete separation occurs

along the normal direction (Δn = ∞). However, the potential function does not

introduce the boundary condition for the complete shear separation. In other words,

although the tangential traction is set to be zero when Δt = δt/2, i.e. Tt(Δn, δt/2) =

0, the normal traction is not necessarily zero, i.e. Tn(Δn, δt/2) �= 0. Because of

this fact, Beltz and Rice (1991) introduced an additional length scale parameter, Δ∗
n,

which satisfies Tn(Δ
∗
n, δt/2) = 0.
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From equations (3.9), (3.10), (3.11), (3.12) and (3.13), the general expression for

A(Δn), B(Δt) and C(Δt) are

A(Δn) =
πγus
δt

− 2πγs
δt

{
q

[
1− exp

(
−Δn

δn

)]
−
(
q − r

1− r

)
Δn

δn
exp

(
−Δn

δn

)}
B(Δt) =

2γs
δ2n

{
1−
(
q − r

1− r

)
sin2

(
2πΔt

δt

)}
C(Δt) =

2γs
δn

r(1− q)

1− r
sin2

(
2πΔt

δt

)
(3.14)

with

q = γus/(2γs) , r = Δ∗
n/δn , (3.15)

where δn, δt and Δ∗
n are length scale parameters. Substitution of (3.14) into (3.7)

and (3.8), and integration of (3.7) and (3.8) lead to the generalized exponential and
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Figure 3.3: Beltz and Rice (1991) generalized exponential-periodic potential and its
gradients; φn = 2γs = 100 N/m, φt = γus = 200 N/m, σmax = 30 MPa, τmax = 40
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periodic potential of Beltz and Rice (1991):

Ψ = 2γs + 2γs exp

(
−Δn

δn

){[
q +

(
q − r

1− r

)
Δn

δn

]
sin2

(
2πΔt

δt

)
−
[
1 +

Δn

δn

]}
. (3.16)

The characteristic length parameters (δn, δt) are determined through their association

with the cohesive strengths (σmax, τmax) and the fracture energies (φn, φt),

δn = φn/(eσmax) , δt = πφt/τmax . (3.17)

The other length scale parameter Δ∗
n is defined by Beltz and Rice (1991) as follows:

“Δ∗
n is the value of Δn after shearing to the state Δt = δt/2 under conditions of zero

tension, Tn = 0, (i.e., relaxed shearing).�

Figure 3.3 demonstrates the potential function and the traction-separation rela-

tionships. The generalized exponential and periodic potential characterizes different

fracture behaviors in mode I and mode II. However, the potential contains a length

scale fracture parameter Δ∗
n, which is difficult to be evaluated. Furthermore, the

potential cannot represent complete interfacial shear failure because of the periodic

function employed along the tangential direction.

3.1.4 Xu and Needleman, 1993

In order to characterize complete interfacial shear failure, the exponential expression

is employed for the tangential traction rather than the periodic function (Xu and

Needleman, 1993). The exponential potential is expressed as

Ψ(Δn,Δt) = φn + φn exp

(−Δn

δn

)
{[

1− r +
Δn

δn

]
(1− q)

(r − 1)
−
[
q +

(r − q)

(r − 1)

Δn

δn

]
exp

(
−Δt

2

δt
2

)}
. (3.18)

The first derivative of the exponential potential results in the interfacial cohesive

tractions,

Tn =
φn

δn
exp

(−Δn

δn

){
Δn

δn
exp

(
−Δt

2

δt
2

)
+

(1− q)

(r − 1)

[
1− exp

(
−Δt

2

δt
2

)][
r − Δn

δn

]}
,

Tt =
φn

δn

2δn
δt

Δt

δt

[
q +

(r − q)

(r − 1)

Δn

δn

]
exp

(−Δn

δn

)
exp

(
−Δt

2

δt
2

)
. (3.19)

where δn and δt are length scale parameters. Similarly to the generalized exponential

and periodic potential (Beltz and Rice, 1991), the two length scale parameters are
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evaluated by relating the fracture energies (φn, φt) to the cohesive strength (σmax,

τmax),

φn = σmaxeδn , φt =
√
e/2τmaxδt . (3.20)

The nondimensional parameter q is the ratio of the mode II fracture energy (φt) to

the mode I fracture energy (φn). The nondimensional parameter r is also defined as

r = Δ∗
n/δn , (3.21)

where Δ∗
n is the value of Δn after complete shear separation under the condition of

zero normal tension, i.e. Tn(Δ
∗
n,∞) = 0.

The exponential potential and its interfacial cohesive responses are plotted in Fig-

ure 3.4. The normal and tangential tractions not only demonstrate the exponentially

decreasing softening but represent the different fracture parameters, i.e. fracture en-
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Figure 3.4: Xu and Needleman (1993) exponential potential and its gradients; φn =
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45



ergy and cohesive strength, in mode I and mode II. The limitations of this potential

are described next.

3.1.5 Limitations of the Exponential Potential

Although the exponential potential by Xu and Needleman (1993) has been extensively

utilized, there are several limitations because of the fracture boundary conditions and

the exponential expression. First, non-symmetric boundary conditions introduce the

additional length scale parameter (Δ∗
n), and result in non-physical cohesive interac-

tions for several cases (i.e. r �= 0, q �= 0). The exponential potential is derived by

applying the same boundary conditions as the exponential-periodic potential derived

by Beltz and Rice (1991). The boundary conditions for the cohesive zone model are

summarized as follows:

• Mode I fracture energy:
∫∞
0

Tn(Δn, 0) dΔn = φn

• Mode II fracture energy:
∫∞
0

Tt(0,Δt)dΔt = φt

• Complete normal failure for the infinite normal separation: Tn(∞,Δt) = 0

• Complete tangential failure for the infinite normal separation: Tt(∞,Δt) = 0

• Complete tangential failure for the infinite shear separation: Tt(Δn,∞) = 0

The main difference between the exponential-periodic potential of Beltz and Rice

(1991) and the exponential potential of Xu and Needleman (1993) is that Δt =

δt/2 in the exponential-periodic potential is the necessary condition for complete

failure along the normal direction, while the infinite tangential separation (Δt =

∞) in the exponential potential is the sufficient condition for the complete failure

along the normal and tangential directions. When shear separation reaches infinity

(Δt = ∞), therefore, the boundary condition for the complete normal failure, i.e.

Tn(Δn,∞) = 0, should be introduced in the exponential potential, which results in the

symmetric boundary conditions. Instead of the boundary condition, Tn(Δn,∞) = 0,

the alternative boundary condition, Tn(Δ
∗
n,∞) = 0, is utilized by introducing the

additional length scale parameter Δ∗
n, as discussed previously. Both the length scale

parameter Δ∗
n and the nondimensional parameter r are difficult to be evaluated on

the basis of either physical experiments or explanations.

Because of the deficiency in the boundary condition of complete normal failure

(the non-symmetric boundary condition), when the mode I fracture energy is greater
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than mode II fracture energy, the cohesive interactions do not correspond to physi-

cal fracture behavior. Figure 3.5 illustrates that the potential provides unacceptably

high normal traction around (Δn ≈ 5μm, Δt 
 0) although almost complete tan-

gential failure occurred around that region. The normal traction does not decrease

with respect to increasing the tangential separation, Tn(Δn,∞) �= 0, although the

increase of the tangential separation physically weakens the material and results in

the decrease of normal traction.
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Figure 3.5: Xu and Needleman (1993) exponential potential and its gradients; φn =
200 N/m, φt = 100 N/m, σmax = 30 MPa, τmax = 40 MPa, and r = 0.

Additionally, the exponential potential originates from an atomistic potential

which includes elastic behavior. When cohesive surface elements are inserted in a

large domain, numerical simulations of the cohesive zone models lead to large arti-

ficial compliance (Klein et al., 2001; Song et al., 2006). Ideally, the elastic behavior

should be generally eliminated in numerical implementation of cohesive surface ele-

ments. Moreover, because of the exponential expression, the traction free condition
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occurs when separation is infinite, although a final crack opening width is finite in

macroscopic scale fracture.

The limitations of the exponential potential are summarized as follows:

• It contains an ill-defined fracture parameter, Δ∗
n, which is difficult to determine

experimentally.

• It is not applicable when the mode I fracture energy is greater than the mode

II fracture energy.

• It provides large artificial compliance for numerical simulation of cohesive sur-

face elements because it does not allow any control of the elastic behavior.

• Due to the exponential function, the final crack opening width is infinite, which

does not resemble macroscopic fracture behavior.

3.2 PPR: Unified Potential-Based Constitutive
Model

In this section, the polynomial-based potential is proposed in conjunction with sym-

metric fracture boundary conditions and macroscopic fracture parameters. The pro-

posed potential is defined in the cohesive interaction (softening) region where frac-

tured surfaces transfer cohesive tractions. Both intrinsic and extrinsic cohesive zone

constitutive models are derived from the unified potential.

3.2.1 Definition of the Unified Potential for Mixed-Mode
Fracture

The unified PPR potential for cohesive fracture is proposed to describe physical

macroscopic fracture, including explicit control of elastic behavior for intrinsic mod-

els. Physical macroscopic behavior is represented by the following fracture boundary

conditions (Figure 3.6):

• Complete normal failure occurs (Tn = 0) when the normal or tangential separa-

tion reaches a certain length scale (δn, δ̄t), called the normal final crack opening

width and the tangential conjugate final crack opening width, respectively,

Tn(δn,Δt) = 0 , Tn(Δn, δ̄t) = 0 . (3.22)
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Figure 3.6: Fracture boundary conditions for the unified mixed-mode potential.

• Similarly, complete tangential failure occurs (Tt = 0) either when the normal

separation reaches the normal conjugate final crack opening width (δ̄n) or when

the tangential separation reaches the tangential final crack opening width (δt),

Tt(δ̄n,Δt) = 0 , Tt(Δn, δt) = 0 . (3.23)

• The area under the cohesive interactions corresponds to the fracture energy.

Therefore (φn, φt) are given by

φn =

∫ δn

0

Tn(Δn, 0)dΔn , φt =

∫ δt

0

Tt(0,Δt)dΔt . (3.24)

• The normal and tangential tractions are maximum when the separations reach

the critical opening displacements (δnc, δtc),

∂Tn

∂Δn

⏐⏐⏐
Δn=δnc

= 0 ,
∂Tt

∂Δt

⏐⏐⏐
Δt=δtc

= 0 . (3.25)

• The maximum tractions correspond to the cohesive strengths (σmax, τmax),

Tn(δnc, 0) = σmax , Tt(0, δtc) = τmax . (3.26)

• The shape parameter indices (α, β) are introduced to characterize material

softening responses, e.g. brittle, plateau and quasi-brittle.

Based on these physical macroscopic fracture parameters, the potential for mixed-
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mode fracture, called the PPR potential, is expressed as

Ψ(Δn,Δt) = min(φn, φt) +

[
Γn

(
1− Δn

δn

)α(
m

α
+

Δn

δn

)m

+ 〈φn − φt〉
]

[
Γt

(
1− |Δt|

δt

)β (
n

β
+

|Δt|
δt

)n

+ 〈φt − φn〉
]

. (3.27)

The gradients of the PPR potential lead directly to the traction vector,

Tn(Δn,Δt) =
Γn

δn

[
m

(
1− Δn

δn

)α(
m

α
+

Δn

δn

)m−1

− α

(
1− Δn

δn

)α−1(
m

α
+

Δn

δn

)m
]

[
Γt

(
1− |Δt|

δt

)β (
n

β
+

|Δt|
δt

)n

+ 〈φt − φn〉
]

,

Tt(Δn,Δt) =
Γt

δt

[
n

(
1− |Δt|

δt

)β (
n

β
+

|Δt|
δt

)n−1

− β

(
1− |Δt|

δt

)β−1(
n

β
+

|Δt|
δt

)n
]

[
Γn

(
1− Δn

δn

)α(
m

α
+

Δn

δn

)m

+ 〈φn − φt〉
]

Δt

|Δt| (3.28)

where 〈·〉 is the Macaulay bracket, i.e.

〈x〉 =
{
0, (x < 0)

x, (x ≥ 0)
. (3.29)

The normal and tangential tractions satisfy basic symmetry and anti-symmetry re-

quirements (with respect to Δt), i.e.

Tn(Δn,Δt) = Tn(Δn,−Δt) , Tt(Δn,Δt) = −Tt(Δn,−Δt) , (3.30)

respectively. Notice that the value of Tt(Δn,Δt) at Δt = 0 exists in the limit sense,

i.e.

lim
Δt→0+

Tt(Δn,Δt) = 0 , lim
Δt→0−

Tt(Δn,Δt) = 0 . (3.31)

The eight characteristic parameters (Γn, Γt; m, n; δn, δt; α, β) in the poten-

tial function are determined by satisfying the boundary conditions of macroscopic

fracture. The energy constants, Γn and Γt, are related to the mode I and mode

II fracture energies, which satisfy the boundary conditions of the fracture energies

(3.24). When the mode I and mode II fracture energies are different, one obtains the

energy constants

Γn = (−φn)
〈φn−φt〉
φn−φt

( α
m

)m
, Γt = (−φt)

〈φt−φn〉
φt−φn

(
β

n

)n

for (φn �= φt) . (3.32)
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If the mode I and mode II fracture energies are the same, the energy constants are

simplified as

Γn = −φn

( α
m

)m
, Γt =

(
β

n

)n

for (φn = φt) . (3.33)

The nondimensional exponents, m and n, are evaluated by the boundary condi-

tions of the critical separations (3.25) and the initial slope indicators (λn, λt),

m =
α(α− 1)λn

2

(1− αλn
2)

, n =
β(β − 1)λt

2

(1− βλt
2)

. (3.34)

The initial slope indicators are defined as the ratio of the critical crack opening

width to final crack opening width, i.e.,

λn = δnc/δn , λt = δtc/δt . (3.35)

The initial slope indicators are introduced to control elastic behavior, which is elim-

inated in a constitutive model of the extrinsic cohesive zone model. Smaller values

of λn, λt (or δnc, δtc) result in the higher initial slope, and decrease artificial elastic

deformation. Therefore, λn and λt are generally selected to be “small� values within

the range of numerical stability for the intrinsic cohesive zone model.

The length scale parameters (δn and δt) are the final normal and tangential crack

opening widths whose boundary conditions (3.22, 3.23) are already satisfied by the

potential function itself. The values of the final crack opening widths are determined

by considering the boundary conditions of fracture energy (3.24) and of the cohesive

strength (3.26),

δn =
φn

σmax
αλn (1− λn)

α−1
( α
m

+ 1
)( α

m
λn + 1

)m−1

,

δt =
φt

τmax
βλt (1− λt)

β−1

(
β

n
+ 1

)(
β

n
λt + 1

)n−1

. (3.36)

The non-dimensional shape parameter indices (α, β) are introduced because the

specific shape of the cohesive zone model can significantly affect results of the frac-

ture analysis (see, for example, Volokh, 2004; Alfano, 2006; Song et al., 2008). If

the shape parameter indices are equal to two, the order of the potential function is

approximately two. Then, the resulting gradient of the potential represents almost a

linearly decreasing cohesive relationship. When the shape parameters are less than
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two, the gradient of the potential demonstrates a concave softening shape, which can

represent a plateau-type function. If the shape parameter indices are chosen as larger

values, the cohesive interaction has a convex shape.
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Figure 3.7: Unified mixed-mode potential (PPR) and its gradients for the intrinsic
cohesive zone model with φn = 100 N/m, φt = 200 N/m, σmax = 40 MPa, τmax = 30
MPa, α = 5, β = 1.3, λn = 0.1, and λt = 0.2.

In summary, the potential function for mixed-mode cohesive fracture is developed

by satisfying the boundary conditions of macroscopic fracture. The unified potential

and its gradients are plotted in Figure 3.7. The plotted potential represents differ-

ent fracture energies (e.g. φn = 100 N/m, φt = 200 N/m), cohesive strengths (e.g.

σmax = 40 MPa, τmax = 30 MPa), cohesive interactions (e.g. α = 5, β = 1.3) and

initial slope indicators (e.g. λn = 0.1, λt = 0.2). The mode I cohesive relationship

illustrates fracture behavior of a typical quasi-brittle material, while the mode II co-

hesive relationship describes a plateau-type behavior. The potential is also applicable

when the mode I fracture energy is greater than mode II fracture energy because the
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potential is explicitly derived by using the symmetric boundary conditions for modes

I and II.

3.2.2 Cohesive Interaction (Softening) Region

The proposed potential is a continuous polynomial function. Exponential potentials

result in an infinite final crack opening width, while the polynomial-based potential

provides a finite final crack opening width. Because of this fact, the polynomial

potential is only valid in the defined softening region. For example, mathematically

the unbounded polynomial potential provides non-zero traction even after a physical

separation is greater than a final crack opening width. Therefore, one must define

a region for each cohesive interaction (Tn, Tt) in terms of a set of material-derived

final crack opening widths (e.g. δn, δt) and calculated conjugate final crack opening

widths (e.g. δ̄n, δ̄t).

δn
δ̄t

δ̄n δt

Δn Δn
ΔtΔt

Tn(Δn,Δt) Tt(Δn,Δt)

(a) (b)

Figure 3.8: Description of each cohesive interaction (Tn, Tt) region defined by the
final crack opening widths (δn, δt) and the conjugate final crack opening widths (δ̄n,
δ̄t); (a) Tn versus (δn, δ̄t) space; (b) Tt versus (δ̄n, δt) space.

The cohesive interaction region is defined as a rectangular region for each cohe-

sive interaction in conjunction with the final crack opening widths (δn, δt) and the

conjugate final crack opening widths (δ̄n, δ̄t) as shown in Figure 3.8. For the normal

cohesive interaction (Tn), one border of the softening region is the normal final crack

opening width (δn). If the normal separation is greater than the normal final crack

opening width (Δn > δn), the normal traction (Tn) is set to zero. The other border

of the softening region is the tangential conjugate final crack opening width (δ̄t). If

the tangential separation is greater than the tangential conjugate final crack opening

width (Δt > δ̄t), the normal traction is also set to be zero. The value of the tangential

conjugate final crack opening width (δ̄t) is obtained by satisfying the boundary condi-

tion of Tn(Δn, δ̄t) = 0. Since Δn is an arbitrary separation, the tangential conjugate
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final crack opening width (Δt = δ̄t) is the solution of the nonlinear function

ft(Δt) = Γt

(
1− |Δt|

δt

)β (
n

β
+

|Δt|
δt

)n

+ 〈φt − φn〉 = 0 . (3.37)

The uniqueness of the solution between 0 and δt is proved in the following way.

When the mode II fracture energy (φt) is greater than the mode I fracture energy

(φn), ft(0) = −φn < 0 and ft(δt) = φt − φn > 0. Because ft
′(Δt) is always positive

within the range of 0 ≤ Δt ≤ δt, the function ft(Δt) has a single solution between 0

and δt. Additionally, when φt is not greater than φn, the solution of a function ft(Δt)

is the same as the tangential final crack opening width, i.e. δ̄t = δt.

Accordingly, the cohesive interaction region for the tangential traction is defined

by the tangential final crack opening width (δt) and the normal conjugate final crack

opening width (δ̄n). The normal conjugate final crack opening width (Δn = δ̄n) is

the solution of the nonlinear function

fn(Δn) = Γn

(
1− Δn

δn

)α(
m

α
+

Δn

δn

)m

+ 〈φn − φt〉 = 0 . (3.38)

The derivative of fn(Δn) is positive within the rage of 0 ≤ Δn ≤ δn when φn is greater

than φt. Then, because fn(0) < 0 and fn(δn) > 0, the function fn(Δn) has a single

solution between 0 and δn. When φn is not greater than φt, the solution of a function

fn(Δn) is the normal final crack opening width, i.e. δ̄n = δn.

In summary, the normal cohesive interaction (Tn) is defined within the normal

final crack opening with (δn) and the tangential conjugate final crack opening width

(δ̄t) space (Figure 3.8(a)). The tangential cohesive interaction (Tt) is defined within

the tangential final crack opening width (δt) and the normal conjugate final crack

opening with (δ̄n) space (Figure 3.8(b)). The introduction of the conjugate final

crack opening widths (δ̄n, δ̄t) guarantees that a non-zero traction will not occur when

load bearing capacity is lost.

3.2.3 Extension to the Extrinsic Cohesive Zone Model

The PPR potential function is extended for the case of the extrinsic cohesive zone

models. In this case, the potential function excludes the elastic behavior (or initial

slope) in the cohesive interactions. The limit of initial slope indicators in the PPR

potential function (λn → 0 and λt → 0) eliminates the initial slope indicators (λn,

λt) and the exponents (m, n) from the resulting expression. Thus one obtains the
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potential function for the extrinsic cohesive zone model expressed as

Ψ(Δn,Δt) = min(φn, φt) +

[
Γn

(
1− Δn

δn

)α

+ 〈φn − φt〉
] [

Γt

(
1− |Δt|

δt

)β

+ 〈φt − φn〉
]

.

(3.39)

The gradient of the potential leads to the normal and tangential tractions along the

fracture surface,

Tn(Δn,Δt) = −α
Γn

δn

(
1− Δn

δn

)α−1
[
Γt

(
1− |Δt|

δt

)β

+ 〈φt − φn〉
]

,

Tt(Δn,Δt) = −β
Γt

δt

(
1− |Δt|

δt

)β−1 [
Γn

(
1− Δn

δn

)α

+ 〈φn − φt〉
]

Δt

|Δt| . (3.40)

The normal and tangential tractions satisfy the symmetry and anti-symmetry re-

quirements, respectively, according to Eq. (3.30). The tangential traction provides a

finite value at the initiation point (Δt = 0), and therefore introduces the discontinuity,

i.e.

lim
Δt→0+

Tt(Δn,Δt) = −β
Γt

δt

[
Γn

(
1− Δn

δn

)α

+ 〈φn − φt〉
]

,

lim
Δt→0−

Tt(Δn,Δt) = β
Γt

δt

[
Γn

(
1− Δn

δn

)α

+ 〈φn − φt〉
]

, (3.41)

which corresponds to a feature of the extrinsic cohesive zone models.

The normal and tangential tractions are defined in a softening region associated

with the final crack opening width (δn, δt) and the conjugate final crack opening

width (δ̄n, δ̄t). The final crack opening widths are expressed as

δn = αφn/σmax , δt = βφt/τmax , (3.42)

which are associated with the fracture boundary conditions, such as the fracture

energies and the cohesive strengths. The conjugate final crack opening widths (δ̄n,

δ̄t) are given by

δ̄n = δn − δn

(〈φn − φt〉
φn

)1/α

, δ̄t = δt − δt

(〈φt − φn〉
φt

)1/β

, (3.43)

which satisfy the conditions of Tt(δ̄n,Δt) = 0 and Tn(Δn, δ̄t) = 0, respectively. The
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energy constants are expressed as

Γn = (−φn)
〈φn−φt〉
φn−φt , Γt = (−φt)

〈φt−φn〉
φt−φn (φn �= φt) , (3.44)

for the different fracture energies. If the fracture energies are the same, one obtains

the energy constants,

Γn = −φn , Γt = 1 (φn = φt) . (3.45)

With the same fracture parameters as illustrated in Figure 3.7, the potential for

the extrinsic cohesive zone model is plotted in Figure 3.9. The initial slope is excluded,

and the traction discontinuity is introduced at zero separation. The shape of the

potential is concave because the potential is only associated to behaviors which occur
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Figure 3.9: Proposed potential and its gradients for the extrinsic cohesive zone model
with φn = 100 N/m, φt = 200 N/m, σmax = 40 MPa, τmax = 30 MPa, α = 5, and
β = 1.3.
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after the limit point (c.f. Figure 1.3). In summary, rather than providing infinite

slope, the cohesive interactions for the extrinsic cohesive zone model are derived by

taking the limit from the potential function. Thus, the discontinuities are naturally

introduced at crack initiation.

3.2.4 Remarks

The PPR potential for mixed-mode cohesive fracture is associated with physical

macroscopic fracture parameters, i.e., fracture energies (φn, φt), cohesive strengths

(σmax, τmax), softening curves shape (α, β) and the initial slope indicators (λn, λt).

In addition, the potential-based model for the extrinsic cohesive zone model is within

the same framework as for the intrinsic cohesive zone model. The characteristics of

the proposed potential are summarized as follows:

• Differentiates fracture energies (φn, φt) and cohesive strengths (σmax, τmax) in

fracture modes I and II.

• Suitable for various material softening responses, e.g. “ductile� (plateau), brit-

tle, and quasi-brittle, because of the shape parameters (α, β).

• The normal and tangential tractions (Tn, Tt) are defined in a rectangular region

associated with the final crack opening widths (δn, δt) and the conjugate final

crack opening widths (δ̄n, δ̄t).

• The initial slope indicators (λn, λt) control the artificial elastic behavior in the

intrinsic cohesive zone model.

• The limit of the initial slope indicators results in the potential function for the

extrinsic cohesive zone model.

• Obeys the symmetry condition, i.e. an exact differential (∂Tn/∂Δt = ∂Tt/∂Δn).

The values of the differential at Δt = 0 exists in the limit sense.

• The normal negative displacements are penalized to prevent material self pen-

etration. Alternative approaches, involving contact mechanics, may also be

used.

• Unloading and reloading are handled independently of the potential (see Chap-

ter 4).
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• Utilizes polynomial function to avoid the infinite final crack opening width of

the exponential potential.

3.3 Path Dependence of Work-of-Separation

Energy dissipated due to the fracture depends on separation paths when the mode I

fracture energy (φn) is different from the mode II fracture energy (φt). In order to

evaluate the energy variation with respect to a path, the work-of-separation (Wsep)

is defined as follows:

Wsep =

∫
Γ

Tn(Δn,Δt) dΔn︸ ︷︷ ︸
Wn

+

∫
Γ

Tt(Δn,Δt) dΔt︸ ︷︷ ︸
Wt

, (3.46)

where Γ is a separation path. The first term in the work-of-separation expression is

the work done by the normal traction (Wn), while the second term in the expression

is the work done by the tangential traction (Wt). This study compares energy vari-

ations of the unified potential-based model (PPR) with those of the model by Xu

and Needleman (1993) for proportional separation paths and non-proportional paths.

Tables 3.2 and 3.3 illustrate the fracture parameters utilized in this investigation.

The mode I fracture energy (φn) is arbitrarily selected as 100 N/m, and the mode II

fracture energy (φt) as 200 N/m.

Table 3.2: Fracture parameters for the unified potential-based model (PPR).

φn φt σmax τmax α β λn λt

100 N/m 200 N/m 3 MPa 12 MPa 3 3 0.01 0.01

Table 3.3: Fracture parameters for the model by Xu and Needleman (1993).

φn φt σmax τmax r

100 N/m 200 N/m 3 MPa 12 MPa 0.5

3.3.1 Proportional Separation

The proportional separation path is associated with the separation angle (θ), as

shown in Figure 3.10. The work-of-separation for the unified potential-based model
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is expressed in terms of Δr and θ,

Wsep =

∫ δr

0

Tn(Δr sin θ,Δr cos θ) sin θ dΔr +

∫ δr

0

Tt(Δr sin θ,Δr cos θ) cos θ dΔr ,

(3.47)

where δr =
√
δn

2 + δt
2. When the separation angle is 90◦, the material experiences

mode I fracture for which the work-of-separation is equal to the mode I fracture

energy. When θ = 0◦, the material experiences mode II fracture for which the work-

of-separation is the same as the mode II fracture energy. For the intermediate angles

(0◦ < θ < 90◦), i.e. mixed-mode fracture, the work-of-separation is between the mode

I and the mode II fracture energies.

0

Δn

Δt

Δn = Δr

(θ = 90◦)

Δt = Δr (θ = 0◦)

Δn = Δr sin θ

Δt = Δr cos θ

Δr

θ

Figure 3.10: Proportional separation path (Δr) with the separation angle (θ).

Figures 3.11(a), (b) and (c) demonstrate the analytical variation of the work-of

separation (Wsep), the work done by the normal traction (Wn), and the work done by

the tangential traction (Wt) with respect to the changes of the proportional angles,

respectively. When the separation angle is 90◦, i.e. mode I fracture, Wsep and Wn

increase from 0 to the mode I fracture energy (100 N/m) with the increase of Δr,

while Wt remains zero. When θ is equal to 0◦, i.e. mode II fracture, Wsep and Wt

change from 0 to the mode II fracture energy (200 N/m) with the increase of Δr,

while Wn remains zero. For the intermediate angles (0◦ < θ < 90◦), i.e. mixed-mode

fracture, Wsep, Wn and Wt vary monotonically including both the mode I and mode

II fracture behavior.

Accordingly, for the cohesive fracture model by Xu and Needleman (1993), the

work-of-separation expression is given as (cf. Eq. (3.47))

Wsep =

∫ ∞

0

Tn(Δr sin θ,Δr cos θ) sin θ dΔr +

∫ ∞

0

Tt(Δr sin θ,Δr cos θ) cos θ dΔr .

(3.48)

Figure 3.12 illustrates the variation ofWsep, Wn andWt with respect to the separation

angles. When the separation angle is 0◦, Wsep and Wt reach the mode II fracture
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Figure 3.11: The PPR potential-based model: (a) work-of-separation, (b) work done
by the normal traction, and (c) work done by the tangential traction with respect to
the change of the proportional angle, θ.
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Figure 3.12: Xu and Needleman (1993) exponential potential: (a) work-of-separation,
(b) work done by the normal traction, and (c) work done by the tangential traction
with respect to the change of the proportional angle, θ.
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energy (200 N/m), and Wn keeps zero. Increasing the separation angle results in the

increase of the work done by the normal traction, and the decrease of Wsep and Wt.

However, both Wsep and Wt increase monotonically with respect to the increase of

the separation angle from 0◦ to 15◦ (see Figure 3.12(a) and (c)), but not with respect

to 30◦ in this example. The work-of-separation does not change monotonically under

mixed-mode fracture condition, and thus the exponential potential model does not

guarantee the consistency of the cohesive constitutive model.

3.3.2 Non-Proportional Separation

For non-proportional separation paths, one could assume that material particles ex-

perience normal separation until Δn = Δn,max and then the complete tangential

separation occurs, i.e. Path 1 in Figure 3.13(a). The other path is that material

separates along the tangential direction first until Δt = Δt,max and then the failure

occurs along the normal direction, i.e. Path 2 in Figure 3.13(b). For the first path,

the work-of-separation of the PPR model is evaluated by the following expression:

Wsep =

∫ Δn,max

0

Tn(Δn, 0) dΔn +

∫ δt

0

Tt(Δn,max,Δt) dΔt . (3.49)

Accordingly, the work-of-separation for the second path is expressed as

Wsep =

∫ Δt,max

0

Tt(0,Δt) dΔt +

∫ δn

0

Tn(Δn,Δt,max) dΔn . (3.50)

Δn
Δn

Δt

Δt

Δn,max

Δn,max

Δt,max

Δt,max

Complete failure

Complete failure

Δn = Δt = 0

Δn = Δt = 0

Path 1

Path 2

(a) (b)

Figure 3.13: Two arbitrary separation paths for the material debonding process; (a)
non-proportional Path 1; (b) non-proportional Path 2.

Figure 3.14 demonstrates the variation of the work-of-separation with respect to

the two arbitrary separation paths. The mode I fracture energy is selected as 100

N/m and the mode II fracture energy as 200 N/m. The work done by the normal
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separation is indicated as a thin solid line while the work done by the tangential

separation is given as a dashed line. For the first non-proportional path (Figure

3.13(a)), Δn,max = 0 represents the mode II failure while Δn,max = δn describes the

mode I failure. Then, the change of Δn,max from 0 to δn demonstrates the gradual

change of the mode mixity from the mode II fracture to the mode I fracture. The

work done (Wt) by the tangential traction, therefore, monotonically decreases from φt

to 0, while the work done (Wn) by the normal traction gradually increases from 0 to

φn, as shown in Figure 3.14(a). The work-of-separation (Wsep) monotonically varies

from the value of φt to the value of φn by increasing Δn,max from 0 to δn. In the path

2 (Figure 3.13(b)), when Δt,max is zero, the separation path illustrates the mode I

failure while Δt,max = δt represents the mode II failure. The work-of-separation (Wsep)

monotonically changes from the mode I fracture energy to the mode II fracture energy

although there is a kink point as shown in Figure 3.14(b).

The separation at the kink point corresponds to the tangential conjugate final

crack opening width (Δt,max = δ̄t). When Δt is smaller than δ̄t, the normal cohesive

interaction is obtained by the derivative of the PPR potential with respect to the

normal separation. When Δt is greater than δ̄t, the normal cohesive interaction is set

to zero. The normal cohesive interaction is then not smooth but piece-wise continuous

at Δt,max = δ̄t in this example. The integration of the normal cohesive interaction

is also piece-wise continuous at the same point. Therefore, the work done (Wn) by

the normal separation changes from φn to zero between Δt,max = 0 (mode I) and

Δt,max = δ̄t (mode II), and demonstrates piece-wise continuity at Δt,max = δ̄t. As a
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Figure 3.14: The PPR potential-based model: variation of the work-of-separation for
the case of φn < φt (φn = 100 N/m, φt = 200 N/m); (a) non-proportional Path 1;
(b) non-proportional Path 2.
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result, the work-of-separation (Wsep = Wn+Wt) also have the kink point at the same

location.

Additionally, similar energy variation is expected when the mode I fracture energy

is greater than the mode II fracture energy (e.g. φn = 200 N/m, φt = 100 N/m), as

shown in Figure 3.15. This is because the potential function is based on the symmetric

boundary conditions of fracture. The work-of-separation curve monotonically changes

from one fracture mode to the other fracture mode. The kink point occurs in the

first separation path because the tangential cohesive interaction (Tt) is piece-wise

continuous at Δn,max = δ̄n.
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Figure 3.15: The PPR potential-based model: variation of the work-of-separation for
the case of φn > φt (φn = 200 N/m, φt = 100 N/m); (a) non-proportional Path 1;
(b) non-proportional Path 2.

For the model by Xu and Needleman (1993), a similar investigation was imple-

mented by van den Bosch et al. (2006). The work-of-separation for the first non-

proportional path in Figure 3.13(a) is expressed as

Wsep =

∫ Δn,max

0

Tn(Δn, 0) dΔn +

∫ ∞

0

Tt(Δn,max,Δt) dΔt . (3.51)

The work-of-separation for the second path (Figure 3.13(b)) is expressed as

Wsep =

∫ Δt,max

0

Tt(0,Δt) dΔt +

∫ ∞

0

Tn(Δn,Δt,max) dΔn . (3.52)

The work-of-separations for the two arbitrary separation paths are plotted in Figures

3.16 and 3.17. Figure 3.16 is the case when the mode II fracture energy is greater

than the mode I fracture energy (e.g. φn = 100 N/m, φt = 200 N/m), and Figure
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3.17 is the case of φn > φt (e.g. φn = 200 N/m, φt = 100 N/m). With respect to

increasing the maximum normal separation (Δn,max), the work-of-separation for the

path 1 (Figure 3.16(a) and Figure 3.17(a)) does not monotonically vary from the mode

I fracture energy to the mode II fracture energy. The second path in Figure 3.16(b)

demonstrates the monotonic variation of the work-of-separation with the change in

the maximum tangential separation (Δt,max). The kink point in Figure 3.16(b) results

from cutting off the negative normal traction region. In this example, when the

tangential separation is greater than a certain value, the exponential potential leads to
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Figure 3.16: Xu and Needleman (1993) exponential potential: variation of the work-
of-separation for the case of φn < φt (φn = 100 N/m, φt = 200 N/m and r = 0.5);
(a) non-proportional Path 1; (b) non-proportional Path 2.
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Figure 3.17: Xu and Needleman (1993) exponential potential: variation of the work-
of-separation for the case of φn > φt (φn = 200 N/m, φt = 100 N/m and r = 0.5);
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negative normal traction. Since the work done should always be positive, one assumes

that the normal cohesive interaction set to be zero within the negative traction range.

Therefore, Wn and Wsep are not smooth but piece-wise continuous as shown in Figure

3.16(b). Additionally, for the path 2 in Figure 3.17(b), the work done by normal

separation does not decrease to zero although material particles experience large

shear separation.

3.4 Mixed-Mode Fracture Verification

The PPR potential-based model for cohesive fracture is verified by simulating a

mixed-mode fracture problem, i.e. the mixed-mode bending (MMB) test. The MMB

test was developed by Reeder and Crews Jr. (1990) in order to investigate the fracture

toughness variation with respect to the mode mixity. The test has been standardized

by ASTM (2006). The configuration of an MMB test is the combination of the double

cantilever beam test (mode I loading) and the end-notch flexure test (mode II load-

ing) as shown in Figure 3.18. Numerical simulations of the mixed-mode fracture are

implemented by using the commercial software ABAQUS with a user-defined element

(UEL) subroutine (see Chapter 4 and Appendix A). The formulation of cohesive sur-

face elements is derived by the virtual work formulation with the updated Lagrangian

finite element discretization.

Δ

h

a
a0

c P

P
(
c
L

)
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(
c+L
L

)
LL

B: Thickness

Rigid lever

Figure 3.18: Mixed-mode bending test.

In this numerical verification, two hypothetical cases are simulated: one with

the same fracture energy (φn = φt = 1 N/mm) and another with different fracture

energies (φn = 1 N/mm, φt = 2 N/mm). The elastic modulus is 122 GPa, and

Poisson’s ratio is 0.25. The shape parameters are fixed to be equal to three (α = β =
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3), while the initial slope indicators are selected as a small value within numerical

stability limits, e.g. (λn, λt) ∈ [0.005, 0.025]. The specimen size is provided in Table

3.4.

Table 3.4: Geometry of the MMB test specimen.

L(mm) h(mm) a0(mm) c(mm) B(mm)

51 1.56 33.7 60 25.4

The analytical solution for the MMB test consists of three parts based on the linear

elastic beam theory (one part) and linear elastic fracture mechanics (two parts) (Mi

et al., 1998). The beam theory provides the linear analytical solution,

Δ =
2

3

(
3c− L

4L

)
Pa0

3

EI
, (3.53)

where I is the second moment of area and E is the elastic modulus. Next, the concept

of the fracture energy based on linear elastic fracture mechanics (LEFM) provides the

following load (P ) versus displacement relationship (Δ),

Δ =
2PI

3EI

(
8BEI

8PI
2/φn + 3PII

2/(8φt)

)3/2

(3.54)

where

PI = (3c− L)P/(4L), PII = (c+ L)P/L . (3.55)

This expression is valid when a crack length (a) is smaller than the half length (L)

of a beam (a < L). When a is greater than L, one obtains another expression:

Δ =
2

3

(
3c− L

4L

)
Pa3

EI
, (3.56)

for the relationship between load (P ) and displacement (Δ). For a given load and

displacement, the a can be evaluated by solving following expression,(
8PI

2

φn

+
3PII

2

8φt

− 8PIPII

φt

)
a2 −

(
3PII

2L

2φt

− 8PIPIIL

φt

)
a+

3PII
2L2

2φt

− 8BEI = 0 .

(3.57)
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Figure 3.19 compares the analytical solutions to the numerical results for the same

fracture energy. The numerical simulation results converge to the analytical solutions

with respect to the increase in the material cohesive strength. This is because the

higher cohesive strength decreases the fracture process zone, and result in a more

brittle failure.
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Figure 3.19: Comparison between the analytical solutions and the numerical simula-
tion results considering the same fracture energy (φn = φt = 1 N/mm).

Next, Figure 3.20 illustrates the agreement of the analytical solutions and the

numerical simulation results for the different fracture energies in mode I and mode

II. Mode I fracture energy is 1 N/mm and the mode II fracture energy increased to 2

N/mm. Due to the increase of the mode II fracture energy, the analytical solution of

LEFM shifts upward (with respect to Figure 3.19) which represents a higher structural

load capacity locally. In the simulations, the shear strength is increased from 100 MPa

to 500 MPa with a fixed normal strength of 10 MPa (Figure 3.20(a)) and 20 MPa

(Figure 3.20(b)). The increase of the normal and shear strength demonstrates the

convergence to the analytical solutions of the beam theory and the LEFM.
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Figure 3.20: Comparison between the analytical solutions and the numerical simula-
tion results considering different fracture energies (φn = 1 N/mm, φt = 2 N/mm) (a)
σmax = 10 MPa and (b)σmax = 20 MPa.
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3.5 Concluding Remarks

The unified potential-based constitutive model (PPR) is proposed for cohesive frac-

ture to characterize different fracture energies (φn, φt) and cohesive strengths (σmax,

τmax). The potential-based model is applicable to various material softening re-

sponses, i.e. plateau-type (e.g. ductile), brittle and quasi-brittle, due to controllable

softening given by the shape parameters (α, β). The PPR model also includes initial

slope indicators (λn, λt) to control elastic behavior, which can be selected as small

values within numerical stability limits. The zero limit of the initial slope indicators

leads to the potential function for extrinsic cohesive zone models. The cohesive in-

teractions (Tn, Tt) are defined in a rectangular region associated with the final crack

opening widths (δn, δt) and the conjugate final crack opening widths (δ̄n, δ̄t). The

PPR potential-based model demonstrates that the work-of-separation depends on

the separation paths, i.e. proportional and non-proportional paths, and monotoni-

cally changes from the mode I fracture energy to the mode II fracture energy with

respect to the separation paths. The monotonic change of the work-of-separation

demonstrates the consistency of the cohesive constitutive model. The numerical in-

vestigation of the mixed-mode bending test not only verifies the effect of different

fracture energies (in modes I and II), but also demonstrates the convergence to the

corresponding analytical solutions of beam theory and LEFM.
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Chapter 4

Implementation of the PPR
Potential-Based Cohesive Model

The PPR potential-based model is implemented within the framework of the Galerkin

finite element method in conjunction with the intrinsic and extrinsic cohesive surface

element approaches. For quasi-static fracture problems, the intrinsic cohesive zone

model is employed through a user-defined element (UEL) subroutine of a commercial

software, i.e. ABAQUS. For dynamic fracture problems, the extrinsic cohesive zone

model is implemented by using a topological data structure TopS. The client-server

approach of TopS is introduced in order to efficiently maintain consistent topology of a

finite element mesh during adaptive mesh modification events. The central difference

method (i.e. explicit) is utilized for time integration. The constitutive relationship of

the PPR potential-based model is incorporated with unloading/reloading relations.

Two unloading/reloading relationships are developed by introducing loading history

indices. The chapter is organized as follows. Finite element formulation and time

integration schemes are explained in Sections 4.1 and 4.2, respectively, for dynamic

fracture simulation. Next, the client-server approach of TopS is presented in con-

junction with application programing interface and callback functions in Section 4.3.

Section 4.4 develops both coupled and uncoupled unloading/reloading relationships.

Section 4.5 describes the systematic evaluation procedure of the cohesive traction

vector and tangent matrix. Finally, simple mode I and II examples are provided for

the verification of computational implementation.

4.1 Finite Element Formulation

Governing equations of fracture problems are solved by the Galerkin finite element

method. A strong form is converted to a weak form through the principle of virtual

work. The summation of the virtual strain energy and the virtual kinetic energy is

equal to the sum of the virtual work done by external traction (Text) and by cohesive
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traction (Tcoh),∫
Ω0

(δE : S+ δu · ρ0ü)dΩ0 =

∫
Γ0

δu ·TextdΓ0 +

∫
Γ0

δΔ ·TcohdΓ0 , (4.1)

where Ω0 and Γ0 are domain and boundary in the reference configuration, respectively.

The 2nd Piola-Kirchhoff stress (S) and the Green deformation strain (E) are utilized.

The superposed dots in ü denotes the second time derivatives, u is displacement

vector, Δ is displacement jump (or separation) across fracture surfaces, and ρ0 is the

material density. The weak form is discretized on the basis of the initial configuration,

i.e. the total Lagrangian formulation.

4.2 Time Integration

The equation of motion without a damping term is expressed as

Mü+Ku = Rext (4.2)

whereM andK are the mass matrix and the stiffness matrix, respectively, andRext is

the external force vector. For cohesive fracture problems, K consists of a continuum

part (i.e. bulk element contribution) and a cohesive fracture part (i.e. cohesive surface

element contribution). The stiffness matrix is decomposed as K = Kb + Kc where

Kb is the stiffness matrix of bulk elements and Kc is the stiffness matrix of cohesive

surface elements.

This equation of motion is solved by the Newmark algorithm (Newmark, 1959).

The Newmark algorithm evaluates the displacement (un+1) and velocity ( �un+1) at

time n+ 1 on the basis of the displacement (un), velocity ( �un) and acceleration (ün)

at time n with the acceleration (ün+1) at time n+ 1, which are expressed as

un+1 = un +Δt �un +

(
1

2
− β

)
Δt2ün + βΔt2ün+1 (4.3)

�un+1 = �un + (1− γ)Δtün + γΔtün+1

where parameters β and γ are associated with stability and accuracy of algorithm.

The acceleration at time n+ 1 is obtained from the equation of motion

(M+ βΔt2K)ün+1 = Rext
n+1 −K

(
un +Δt �un +

(
1

2
− β

)
Δt2ün

)
. (4.4)
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In the Newmark algorithm, the kinetic energy (Ekin) and the strain energy (Eint)

evolution between tn and tn+1 is expressed (Krenk, 2006) as

1

2

[
�uTM�u+ uTKbu

]n+1

n
= ( �un+1+ �un)

TM( �un+1− �un)+(un+1+un)
TKb(un+1−un) .

(4.5)
The substitution of Eq (4.3) into the energy evolution expression (4.5) leads to

1

2

[
�uTM�u+ uTKbu

]n+1

n
= ( �un+1 + �un)

TM

{
Δt

2
(ün+1 + ün) +

(
γ − 1

2

)
Δt(ün+1 − ün)

}
+(un+1 + un)

TKb

{
Δt

2
( �un+1 + �un) +

(
β − 1

2
γ

)
Δt2(ün+1 − ün)

}
(4.6)

Finally, one obtains the following energy variation expression

1

2

[
�uTM�u+ uTKbu

]n+1

n
=

1

2
(un+1 − un)

T (Rext
n+1 +Rext

n )− 1

2
(un+1 − un)

T (Kcun+1 +Kcun)

+
Δt

2

(
γ − 1

2

)
( �un+1 + �un)

TM(ün+1 − ün)− Δt2

2

(
β − 1

2
γ

)
(ün+1 − ün)

TM(ün+1 + ün)(4.7)

by substituting the equation of motion (4.2) and the Eq (4.3) into the Eq (4.6).

The first term on the right hand side is the external work (Eext) between the time

steps, and the second term is associated to the fracture energy (Efra). The remaining

two terms are zero for the case of γ = 1/2 and β = 1/4, which leads to the energy

conservation in the time incrementation from n to n + 1. For the central difference

method (i.e. γ = 1/2 and β = 0), the last term contributes to the total energy.

However, this contribution is not significant if one selects smaller time step, which is

discussed in Chapter 7.

In this study, the central difference method is employed for time integration of

elasto-dynamic fracture problems, i.e. explicit method (Belytschko et al., 2000).

The outline of the explicit time integration for the extrinsic cohesive zone model is

described in Algorithm 4.1. First, the displacement (u), velocity ( �u) and acceleration

(ü) vectors are initialized, and the current displacement vector is obtained from the

previous time step information. Then, one checks the insertion of cohesive elements

based on an external criterion. For instance, Ortiz and Pandolfi (1999) inserted

cohesive elements when an effective traction is greater than the cohesive strength, and

Belytschko et al. (2003) employed the loss of hyperbolicity for an initiation criterion.

In the current study, cohesive elements are adaptively inserted when the averaged

normal traction is greater than the cohesive strength (σmax).

After the insertion of cohesive elements, the external nodal force vector (Rext
n+1) and

the internal nodal force vector (Rint
n+1) are evaluated. The constitutive relationship
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Algorithm 4.1 Explicit time integration for the extrinsic cohesive zone model.

Initialization: displacements (u0), velocity ( �u0), acceleration (ü0)
for n = 0 to nmax do
Update displacement: un+1 = un +Δt �un +Δt2/2ün

Check the insertion of cohesive elements
Update acceleration: ün+1 = M−1(Rext

n+1 +Rcoh
n+1 −Rint

n+1)
Update velocity: �un+1 = �un +Δt/2(ün + ün+1)
Update boundary conditions

end for

of volumetric elements is assumed to be elastic. The cohesive force vector (Rcoh
n+1) is

obtained by integrating the traction along cohesive surface elements. The traction is

first set to be equivalent to the traction along the edge at the time of the cohesive

element insertion. In the following time steps, the cohesive traction is evaluated

on the basis of the PPR potential-based constitutive model. Alternatively, one can

enforce Rcoh
n+1 at the time of activation so that the acceleration of a duplicated node is

equal to an original node (Papoulia et al., 2003). However, this approach can result

in the violation of the conditions of sgn(Tn) = sgn(Δn) and sgn(Tt) = sgn(Δt), called

traction locking (Papoulia et al., 2003). The lumped mass matrix (M) is obtained by

considering diagonal terms of the consistent mass matrix and scaling them to preserve

the total mass (Hughes, 2000), which produces positive lumped masses. Finally, the

nodal acceleration, velocity and boundary conditions are updated for the current time

step.

4.3 Topological Data Structure

For an adaptive analysis environment, especially for the extrinsic cohesive zone model,

classical finite element mesh representation, which consists of node table and element

incidence, is not adequate because of the limited topological information available

to handle adjacency relationship (Beall and Shephard, 1997; Celes et al., 2005a).

In order to obtain efficient handling of adjacency relationship, this study utilizes a

topology-based data structure, called TopS (Celes et al., 2005a,b). TopS is based on

topological entities, i.e. node, element, vertex, edge and facet. Nodes and elements

are explicit entities which are directly stored, while facets, edges and vertices are

implicit entities which are derived on the basis of element templates. TopS is able

to obtain adjacency information and to manage a consistent data structure in time

proportional to the number of retrieved entities (Paulino et al., 2008). Furthermore,

74



in order to maintain a consistent data structure when modification events occur, the

client-server approach is employed.

4.3.1 Client-Server Approach

TopS is a topological data structure for finite element mesh representation. It pro-

vides the geometric and topological support needed by numerical analysis applica-

tions, including adaptive simulations such as the insertion of a cohesive element, and

edge-swap, edge-split and vertex-removal operators. One of the main advantages of

using TopS to support an analysis application consists of decoupling a computational

mechanics code from data representation and management codes. As a consequence,

developers of analysis applications can focus uniquely on the mechanics, relying on

an external library for mesh representation.

In this way, TopS is seen as a service provider: it provides all the functionality

needed by the analysis application for mesh representation and management. The

analysis application represents the client that uses the services provided by TopS.

This scheme is illustrated in Figure 4.1. The client application invokes TopS using

the TopS application programming interface (API). The TopS API consists of a large

set of functions that the analysis code uses to set up the model, to attach the necessary

attributes, and to query/update the stored information. TopS eventually needs to

invoke functions, named callbacks, of the client side in order to notify the occurrence

of events related to mesh modification.

In summary, TopS is responsible for managing the geometry and topology in-

formation. When the client application modifies the mesh, TopS ensures geometry

and topology consistency. However, TopS has no knowledge regarding the proper-

ties attached to the model. The client application is responsible for maintaining the

Callback functions

Analysis code TopS

API functions

Client Server

Figure 4.1: Client-server architecture.
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consistency of property information. The properties are represented by attributes

attached to the topological entities. Whenever the mesh is modified, the client appli-

cation has to update the attributes accordingly.

4.3.2 API and Callback functions

The client application creates a model, and then modifies it by calling the functions

provided by the TopS API. The TopS API is composed by a large set of functions

that allow the client to create, destroy, or modify the model and its topological

entities. Whenever creating, destroying or modifying a mesh, the client application

has to consistently manage the attributes attached to the affected entities. The TopS

API provides functions that directly modify the mesh. When using these functions,

the client can update the attributes associated with the affected topological entities

directly, just after invoking the function. For example, let us consider a function to

insert a new node in the model. Let us also consider that a node attribute (e.g.,

NodeAttrib type) has to be associated with each node of the model. After inserting

a new node, the client application is responsible for updating the node attribute

accordingly. A typical excerpt of the client code in such a situation is (using the C

API):

TopNode node;

NodeAttrib nAtt;

. . .

node = topModel_InsertNode (x, y, z);

nAtt = (NodeAttrib*) malloc (sizeof (NodeAttrib));

topNode_SetAttrib (model, node, nAtt);

. . .

In this case, managing the attributes is simple because the topModel_InsertNode

function modifies a single entity in the mesh, the newly created node, and returns a

reference to it. Thus, the client gets the returned reference and attaches the corre-

sponding attribute.

However, in a few situations, the attribute managing cannot be done so straight-

forwardly because some API functions, when invoked, affect a variable number of

topological entities. Let us consider the function that inserts a cohesive element in

the mesh. The insertion of a cohesive element may require the duplication of nodes.

Whether a node has to be duplicated or not depends on the topological classification

of the fractured facet (Paulino et al., 2008). The client application cannot know in
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advance how many and which nodes will be duplicated. In such cases, the callback

mechanism is very handy, while executing the function that inserts a new cohesive

element, whenever a node is duplicated, TopS calls back a function in the client appli-

cation side. This client function, named callback function, is responsible for managing

the attributes associated to the affected entities (in this case, the old and the new

created nodes).

4.4 Unloading and Reloading Relationships

The unloading/reloading relationship is an important issue for mixed-mode fracture

problems because a crack may close depending on a loading path. If one does not

consider the unloading/reloading relationships, for example, the cohesive traction

(Tn) would increase with respect to closing a crack opening width (Δn), as illustrated

in Figure 4.2 (Path 1©). Thus, there is no permanent dissipation if one does not

consider the unloading/reloading relationships in the potential-based model. Because

of such non-physical behavior, computational simulation may provide non-convergent

results, or misleading simulation results. In this section, two unloading/reloading

models (coupled and uncoupled) for the PPR potential-based model are developed in

order to represent permanent dissipation, i.e. the non-conservative energy of fracture.

Tn

Δn

1©

2©

3©
4©

Figure 4.2: One-dimensional cohesive law and its unloading/reloading paths.

Previously, Camacho and Ortiz (1996) proposed a cohesive zone model with

linear to origin unloading/reloading relationships (Path 2© in Figure 4.2). An un-

loading/reloading function is defined by using an effective displacement. Ortiz and

Pandolfi (1999) utilized the linear to origin unloading/reloading model for three-

dimensional crack propagation analysis, and de Andres et al. (1999) extended the

linear to origin model to the one-dimensional exponential cohesive zone model for fa-

tigue crack growth analysis. The early work in Ortiz’s group was revisited by Nguyen
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et al. (2001) who presented a linear to origin unloading and a nonlinear reloading

model (Path 3© in Figure 4.2). Deshpande et al. (2001, 2002) employed unload-

ing/reloading paths, which were linear but not towards the origin (Path 4© in Figure

4.2), for mode I fatigue crack propagation. Roe and Siegmund (2003) extended the

model to investigate mixed-mode crack growth behavior.

4.4.1 Coupled Unloading/Reloading Model

The coupled unloading/reloading model is developed by introducing a coupled loading

history index,

η(Δn,Δt) =
√

Δn
2 +Δt

2 . (4.8)

Based on the loading history index (η), the unloading/reloading criterion is evaluated

in conjunction with the maximum loading history index, defined as

ηmax =

√
Δnmax

2 + |Δt|max
2 , (4.9)

where Δnmax and |Δt|max are the maximum normal and tangential separations, re-

spectively, in loading history. When the maximum loading history index (ηmax) is

smaller than the (current) loading history index (i.e. η > ηmax), the current state

of separations represents the loading condition, i.e. softening occurs. If ηmax is

greater than η (η < ηmax), material locally experiences unloading/reloading condi-

tion. Since the unloading/reloading condition is governed by the loading history

index, the unloading/reloading region is designated within a circle whose radius is

ηmax (η =
√
Δn

2 +Δt
2 < ηmax).

Within the unloading/reloading region, the traction-separation relationships are

defined as

T υ
n (Δn,Δt) = Tn(Δ

υ
n,Δ

υ
t )

(
η

ηmax

)αυ

, T υ
t (Δn,Δt) = Tt(Δ

υ
n,Δ

υ
t )

(
η

ηmax

)βυ

(4.10)

where

Δυ
n = Δn

ηmax

η
, Δυ

t = Δt
ηmax

η
. (4.11)

Notice that the variables Δυ
n and Δυ

t satisfy the condition of
√
Δυ

n
2 +Δυ

n
2 = ηmax,

and thus Δυ
n and Δυ

t correspond to the separations on the boundary of the unload-

ing/reloading region. The values of Tn(Δ
υ
n,Δ

υ
t ) and Tt(Δ

υ
n,Δ

υ
t ) (e.g. gray solids in

Figure 4.3) represent the tractions on the boundary of the unloading/reloading region.

78



The normal and tangential unloading/reloading relations (Eq. 4.10) are obtained

from the multiplication (η/ηmax)
αυ and (η/ηmax)

βυ of Tn(Δ
υ
n,Δ

υ
t ) and Tt(Δ

υ
n,Δ

υ
t ), re-

spectively, which interpolates between the unloading/reloading boundaries and the

origin (e.g. black solids in Figure 4.3). Because of 0 ≤ (η/ηmax) ≤ 1, the normal

cohesive traction (T υ
n ) is monotonic and bounded between 0 and Tn(Δ

υ
n,Δ

υ
t ), and

the tangential cohesive traction (T υ
t ) is also monotonic and bounded between 0 and

Tt(Δ
υ
n,Δ

υ
t ). The cohesive tractions of the coupled unloading/reloading model (T υ

n ,

T υ
t ) are the same as the traction obtained by the PPR model (Tn, Tt) when the

loading history index equals the maximum loading history index (η = ηmax). This

fact satisfies the continuity condition along the boundary of the unloading/reloading

region, i.e. T υ
n = Tn and T υ

n = Tt. In addition, the exponents αυ and βυ describe the

shape of unloading/reloading surface along the radial direction. When an exponent

value is equal to one, the unloading/reloading function is linear along the radial di-

rection (e.g. Figure 4.3(a)). If an exponent is greater or smaller than one, the shape

is convex or concave, respectively.

Δn Δn

ΔtΔt

δn
δt

δ̄n
δ̄t

ηmaxηmax
ηmax =

√
Δnmax

2 +Δtmax
2ηmax =

√
Δnmax

2 +Δtmax
2

Tn(Δ
υ
n,Δ

υ
t )

Tt(Δ
υ
n,Δ

υ
t )

T υ
n (Δn,Δt)

T υ
n (Δn,Δt) T υ

t (Δn,Δt)

T υ
t (Δn,Δt)

(a) (b)

Figure 4.3: Schematics of the coupled unloading/reloading model: (a) normal inter-
action and (b) tangential interaction.

Figure 4.4 compares the cohesive interactions calculated from the intrinsic PPR

potential with the cohesive interactions obtained from the coupled unloading/reloading

model. The PPR potential-based model is plotted with φn = 100 N/m, φt = 200

N/m, σmax = 40 MPa, τmax = 30 MPa, α = 5, β = 1.3, λn = 0.1, and λt = 0.15.

In the coupled unloading/reloading model, the maximum normal separation (Δnmax)

and the maximum tangential separation (|Δt|max) are arbitrarily selected as 0.3δn

and 0.2δt, respectively. The unloading/reloading shape parameters αυ and βυ are

chosen as 0.4 and 4. The normal unloading/reloading interactions demonstrate the

concave shape (e.g. αυ = 0.4) while the unloading/reloading tangential relation

illustrates the convex shape (e.g. βυ = 4). Both normal and tangential unload-
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ing/reloading tractions are defined within the same unloading/reloading region (e.g.√
Δn

2 +Δt
2 ≤
√
0.3δn

2 + 0.2δt
2 = ηmax).
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Figure 4.4: Comparison between the softening relationships obtained by the potential
and the coupled unloading/reloading relationship with the maximum loading history

index of ηmax =
√
0.3δn

2 + 0.2δt
2.

4.4.2 Uncoupled Unloading/Reloading Model

The uncoupled unloading/reloading model is based on two independent uncoupled

loading history indices: one associated with the normal cohesive traction, and the

other related to the tangential cohesive traction. For the normal cohesive interaction,

a normal loading history index (ηn) is defined as the normal separation (Δn), and

the normal maximum loading history index is given as ηnmax = Δnmax . If the current

normal loading history index is greater than the normal maximum loading history

index (ηn > ηnmax), the current separation state represents the softening condition.

When ηn < ηnmax , the normal cohesive interactions are evaluated by the uncoupled
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unloading/reloading model. Therefore, the normal unloading/reloading model is de-

fined within a rectangular domain (0 ≤ Δn ≤ ηnmax and |Δt| ≤ δ̄t), called the normal

unloading/reloading region.

Similarly, the tangential unloading/reloading criterion is evaluated by introducing

the tangential loading history index (ηt = |Δt|) and the tangential maximum loading

history index (ηtmax = |Δt|max). If the current separation is larger than the tangential

maximum loading history index (ηt > ηtmax), one expects the softening behavior. On

the other hand, ηt < ηtmax represents the unloading/reloading condition. The tangen-

tial unloading/reloading model is defined within a rectangular region (0 ≤ Δn ≤ δ̄n

and |Δt| ≤ ηtmax), called the tangential unloading/reloading region. As a result, the

normal and tangential unloading/reloading criteria and regions are independently

evaluated in the uncoupled unloading/reloading model.

The normal and tangential tractions of the uncoupled unloading/reloading model

are defined as

T υ
n (Δn,Δt) = Tn(ηnmax ,Δt)

(
ηn

ηnmax

)αυ

, T υ
t (Δn,Δt) = Tt(Δn, ηtmax)

(
ηt

ηtmax

)βυ

.

(4.12)

Notice that Tn(ηnmax ,Δt) and Tt(Δn, ηtmax) correspond to the normal and tangen-

tial tractions along the boundary of the unloading/reloading regions, respectively

(e.g. gray solids in Figure 4.5). The cohesive interactions of the uncoupled unload-

ing/reloading model (e.g. black solids in Figure 4.5) are obtained by multiplying

Tn(ηnmax ,Δt) and Tt(Δn, ηtmax) by (ηn/ηnmax)
αυ and (ηt/ηtmax)

βυ , respectively. As a

result, the normal and tangential cohesive interactions vary monotonically from zero

to Tn(ηnmax ,Δt) and Tt(Δn, ηtmax), respectively, which satisfy the continuity condition.

ΔnΔn

Δt Δt
δn

δt
δ̄n

δ̄tΔn = Δnmax
Δt = Δtmax

Tn(Δnmax ,Δt)
Tt(Δn,Δtmax)

T υ
n (Δn,Δt)

T υ
n (Δn,Δt)

T υ
t (Δn,Δt)

T υ
t (Δn,Δt)

(a) (b)

Figure 4.5: Schematics of the uncoupled unloading/reloading model: (a) normal
interaction and (b) tangential interaction.
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Figure 4.6 demonstrates the comparison between the softening behavior and the

uncoupled unloading/reloading behavior. The fracture parameters are the same as the

parameters in Figure 4.4. The normal unloading/reloading region is defined within

0 ≤ Δn ≤ 0.3δn and 0 ≤ Δt ≤ δ̄t, and the tangential unloading/reloading region is

assigned within 0 ≤ Δn ≤ δ̄n and 0 ≤ Δt ≤ 0.2δt. Within the unloading/reloading

regions, the normal unloading/reloading cohesive interaction illustrates concave shape

while the tangential unloading/reloading cohesive interaction demonstrates convex

shape.
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Figure 4.6: Comparison between the softening relationships obtained by the potential
and the coupled unloading/reloading relationship with the maximum loading history
indices of ηnmax = 0.3δn and ηtmax = 0.2δt.

4.4.3 Remarks

The two unloading/reloading models (coupled and uncoupled) are proposed by intro-

ducing the loading history index and the maximum loading history index. Table 4.1
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summarizes the two unloading/reloading models. The coupled loading history index

is similar to the effective displacement (Eq. (1.2)) in the one-dimensional potential-

based model (Tvergaard and Hutchinson, 1993). The uncoupled loading history in-

dices are conceptually the same as the unloading/reloading model by Deshpande

et al. (2001) and Roe and Siegmund (2003). Both coupled and uncoupled models

provide the same unloading/reloading criteria. When the (current) loading history

index is smaller than the maximum loading history index, the cohesive interaction

follows the unloading/reloading model. The unloading/reloading constitutive rela-

tions are obtained by interpolating the normal and tangential cohesive tractions from

the unloading/reloading boundary to the origin. The coupled unloading/reloading

model provides the same unloading/reloading region for both normal and tangen-

tial tractions, while the uncoupled unloading/reloading model results in the different

unloading/reloading regions for the normal and tangential tractions.

Table 4.1: Comparison between the coupled unloading/reloading and the uncoupled
unloading/reloading.

Loading history index

Max. loading history index

Criterion

Constitutive relationship

Normal region

Tangential region

Coupled Unloading/Reloading Uncoupled Unloading/Reloading

η(Δn,Δt) =
√
Δn

2 +Δt
2

ηmax =
√
Δnmax

2 +Δtmax
2

η < ηmax

T υ
n (Δn,Δt) = Tn(Δ

υ
n,Δ

υ
t )
(

η
ηmax

)αυ

T υ
t (Δn,Δt) = Tt(Δ

υ
n,Δ

υ
t )
(

η
ηmax

)βυ

ηn = Δn

ηnmax = Δnmax

ηn < ηnmax

ηt = |Δt|

ηtmax = |Δt|max

ηt < ηtmax

T υ
n (Δn,Δt) = Tn(ηnmax ,Δt)

(
ηn

ηnmax

)αυ

T υ
t (Δn,Δt) = Tt(Δn, ηtmax)

(
ηt

ηtmax

)βυ

0

0

0

0

δnδn

δtδt−δt −δt

δ̄n δ̄n

δ̄tδ̄t−δ̄t −δ̄tηmax

ηmax−ηmax

−ηmax Δnmax−Δnmax

Δtmax
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4.5 Constitutive Relationships

The constitutive relationship of the PPR potential-based model is evaluated by con-

sidering four conditions: softening, unloading/reloading, contact and complete failure.

These conditions are determined on the basis of the softening region and the loading

history index.

4.5.1 Determination of Cohesive Interaction Region

The cohesive interaction (softening) region is associated with the length scales: the

final crack opening widths (δn, δt) and the conjugate final crack opening widths (δ̄n,

δ̄t), as discussed in Chapter 3. The softening region of the normal cohesive traction

is defined as 0 ≤ Δn ≤ δn and −δ̄t ≤ Δt ≤ δ̄t while the softening region of the

tangential cohesive traction is defined as 0 ≤ Δn ≤ δ̄n and −δt ≤ Δt ≤ δt. For the

intrinsic cohesive zone model, the normal and tangential final crack opening widths

are determined by the closed form (Eq. (3.36)), while the conjugate final crack

opening widths are calculated by solving the nonlinear equations (Eqs. (3.37) and

(3.38)).

The nonlinear equations can be solved by a root-finding algorithm, such as the

Bisection method and the Newton-Raphson method. Alternatively, the softening re-

gion is defined without solving the nonlinear equation. The necessary and sufficient

conditions of (−δ̄t ≤ Δt ≤ δ̄t), which is associated with the normal softening re-

gion, are ((−δt ≤ Δt ≤ δt) & (Tn(Δn,Δt) ≥ 0 )). This is because the tangential

conjugate final crack opening width is unique between zero and the tangential final

crack opening width and because the normal cohesive traction is positive within the

normal softening region. Similarly, one replaces (0 ≤ Δn ≤ δ̄n) by ((0 ≤ Δn ≤ δn) &

(Tt(Δn, |Δt|) ≥ 0 )) because δ̄n is unique between 0 and δn, and because the tangen-

tial traction is positive within the tangential softening region. Notice that, for the

extrinsic cohesive zone model, both final crack opening widths (δn, δt) and conjugate

final crack opening widths (δ̄n, δ̄t) are calculated by the closed forms, i.e. Eqs. (3.42)

and (3.43), respectively.

4.5.2 Cohesive Traction Vector and Tangent Matrix

The cohesive traction vector and the material tangent stiffness matrix are evaluated

by accounting for four cases: softening, unloading/reloading, contact and complete

failure conditions. Algorithm 4.2 outlines the constitutive relationships with respect
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to the four cases. Notice that the normal and tangential cohesive interactions are

evaluated independently.

First, when separations are within the softening region and when the current

loading history index is greater than the maximum loading history index, called the

softening condition, the cohesive relationships are derived from the PPR potential. If

both normal and tangential separations are in the softening condition, the cohesive

tractions are evaluated by the expression (3.28) for the intrinsic cohesive zone model or

by the expression (3.40) for the extrinsic cohesive zone model. The second derivative

of the PPR potential leads to the material tangent stiffness matrix,

D(Δn,Δt) =

[
Dnn Dnt

Dtn Dtt

]
=

[
∂2Ψ/∂Δn

2 ∂2Ψ/∂Δn∂Δt

∂2Ψ/∂Δt∂Δn ∂2Ψ/∂Δt
2

]
, (4.13)

Algorithm 4.2 Outline of the constitutive relationship for the four conditions: soft-
ening, unloading/reloading, contact and complete failure.

// Normal cohesive interaction:
if (Δn ≤ 0) then // Contact
Tn = DnnΔn , Dnn = αp , Dnt = αp

else if ((0 ≤ Δn ≤ δn) & (|Δt| ≤ δ̄t) & (η ≥ ηmax)) then // Softening

Tn = ∂Ψ(Δn,Δt)
∂Δn

, Dnt =
∂2Ψ(Δn,Δt)

∂Δn
2 , Dnt =

∂2Ψ(Δn,Δt)
∂Δn∂Δt

else if ((0 ≤ Δn ≤ δn) & (|Δt| ≤ δ̄t) & (η < ηmax)) then // Unloading/reloading

Tn = T υ
n (Δn,Δt) , Dnn = ∂Tυ

n (Δn,Δt)
∂Δn

, Dnt =
∂Tυ

n (Δn,Δt)
∂Δt

else if ((Δn > δn) | (|Δt| > δ̄t)) then // Complete failure
Tn = 0 , Dnn = 0 , Dnt = 0

end if

// Tangential cohesive interaction:
if (Δn ≤ 0)) then // Contact
Δn = 0

end if
if ((0 ≤ Δn ≤ δ̄n) & (|Δt| ≤ δt) & (η ≥ ηmax)) then // Softening

Tt =
∂Ψ(Δn,Δt)

∂Δt
, Dtn = ∂2Ψ(Δn,Δt)

∂ΔtΔn
, Dtt =

∂2Ψ(Δn,Δt)

∂Δt
2

else if ((0 ≤ Δn ≤ δ̄n) & (|Δt| ≤ δt) & (η < ηmax)) then // Unloading/reloading

Tt = T υ
t (Δn,Δt) , Dtn = ∂Tυ

t (Δn,Δt)
∂Δn

, Dtt =
∂Tυ

t (Δn,Δt)
∂Δt

else if ((Δn > δ̄n) | (|Δt| > δt)) then // Complete failure
Tt = 0 , Dtn = 0 , Dtt = 0

end if
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where the components of the matrix are given as

Dnn =
Γn

δn
2

[
(m2 −m)

(
1− Δn

δn

)α(
m

α
+

Δn

δn

)m−2

+ (α2 − α)

(
1− Δn

δn

)α−2(
m

α
+

Δn

δn

)m

−2αm

(
1− Δn

δn

)α−1(
m

α
+

Δn

δn

)m−1
][

Γt

(
1− Δt

δt

)β (
n

β
+

Δt

δt

)n

+ 〈φt − φn〉
]

,

Dnt =
ΓnΓt

δnδt

[
m

(
1− Δn

δn

)α(
m

α
+

Δn

δn

)m−1

− α

(
1− Δn

δn

)α−1(
m

α
+

Δn

δn

)m
]

[
n

(
1− Δt

δt

)β (
n

β
+

Δt

δt

)n−1

− β

(
1− Δt

δt

)β−1(
n

β
+

Δt

δt

)n
]

,

Dtn = Dnt ,

Dtt =
Γt

δt
2

[
(n2 − n)

(
1− Δt

δt

)β (
n

β
+

Δt

δt

)n−2

+ (β2 − β)

(
1− Δt

δt

)β−2(
n

β
+

Δt

δt

)n

−2βn

(
1− Δt

δt

)β−1(
n

β
+

Δt

δt

)n−1
] [

Γn

(
1− Δn

δn

)α(
m

α
+

Δn

δn

)m

+ 〈φn − φt〉
]
(4.14)

for the intrinsic cohesive zone model. In this case, one obtains the symmetric tangent

stiffness matrix. Notice that the tangent stiffness matrix is not necessary for the

explicit time integration scheme that is utilized for the extrinsic cohesive zone model

in this study.

Next, when separations are within the softening region and when the current

loading history index is smaller than the maximum loading history index, called

the unloading/reloading condition, the cohesive relationships are obtained from the

unloading/reloading models. One can utilize either the coupled unloading/reloading

model or the uncoupled unloading/reloading model to evaluate the cohesive traction

vector and the material tangent stiffness matrix. For the coupled unloading/reloading

model, the Jacobian matrix entries are expressed as

Dυ
nn =

[
Dnn(Δ

υ
n,Δ

υ
t )

(
1− Δn

2

η2

)
−Dnt(Δ

υ
n,Δ

υ
t )

ΔnΔt

η2
+ Tn(Δ

υ
n,Δ

υ
t )

αυΔn

ηmaxη

](
η

ηmax

)αυ−1

Dυ
nt =

[
Dnt(Δ

υ
n,Δ

υ
t )

(
1− Δt

2

η2

)
−Dnn(Δ

υ
n,Δ

υ
t )

ΔnΔt

η2
+ Tn(Δ

υ
n,Δ

υ
t )

αυΔt

ηmaxη

](
η

ηmax

)αυ−1

Dυ
tn =

[
Dtn(Δ

υ
n,Δ

υ
t )

(
1− Δn

2

η2

)
−Dtt(Δ

υ
n,Δ

υ
t )

ΔnΔt

η2
+ Tt(Δ

υ
n,Δ

υ
t )

βυΔn

ηmaxη

](
η

ηmax

)βυ−1

Dυ
tt =

[
Dtt(Δ

υ
n,Δ

υ
t )

(
1− Δn

2

η2

)
−Dtn(Δ

υ
n,Δ

υ
t )

ΔnΔt

η2
+ Tt(Δ

υ
n,Δ

υ
t )

βυΔt

ηmaxη

](
η

ηmax

)βυ−1

(4.15)

where

Dυ(Δn,Δt) =

[
Dυ

nn Dυ
nt

Dυ
tn Dυ

tt

]
=

[
∂T υ

n /∂Δn ∂T υ
n /∂Δt

∂T υ
t /∂Δn ∂T υ

t /∂Δt

]
. (4.16)
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For the uncoupled unloading/reloading model, the Jacobian matrix entries are given

as

Dυ
nn = Tn(Δnmax ,Δt)

αυ

Δnmax

(
Δn

Δnmax

)αυ−1

Dυ
nt = Dnt(Δnmax ,Δt)

(
Δn

Δnmax

)αυ

Dυ
tn = Dtn(Δn,Δtmax)

( |Δt|
Δtmax

)βυ

Dυ
tt = Tt(Δn,Δtmax)

βυ

Δtmax

( |Δt|
Δtmax

)βυ−1
Δt

|Δt| (4.17)

In this case, the symmetric system is not guaranteed because the unloading/reloading

model is not derived from a potential.

The contact condition occurs when the normal separation is negative. In this

case, the normal negative separation can be penalized to prevent from material self-

penetration. For example, the normal cohesive interaction is calibrated by using the

penalty stiffness (αp), i.e. Tn = αpΔn. The tangential cohesive interaction is eval-

uated by penalizing Δn = 0 (see Algorithm 4.2). Alternative approaches, involving

contact mechanics, may also be possible.

Finally, material locally experiences complete failure when separations are outside

of the softening region. The normal cohesive traction and normal stiffness matrix

entries are set to be zero either when normal separation is greater than the normal

final crack opening width (Δn > δn), or when absolute value of tangential separation

is greater than the tangential conjugate final crack opening width (|Δt| > δ̄t). Notice

that the normal cohesive interaction is continuous (i.e. no truncation) along the

boundary of the normal softening region (i.e. Δn = δn and Δt = δ̄t), because the

normal cohesive interaction satisfies the boundary conditions of (Tn(δn,Δt) = 0 and

Tn(Δn, δ̄t) = 0). Similarly, the tangential cohesive interaction and tangential stiffness

matrix entries are equal to zero when either Δn > δ̄n or |Δt| > δt. The tangential

cohesive interaction is continuous along the boundary of the tangential softening

region (i.e. Δn = δ̄n and Δt = δt), because the tangential cohesive interaction

satisfies the boundary conditions of (Tt(δ̄n,Δt) = 0 and Tt(Δn, δt) = 0).

Furthermore, the constitutive model is applicable for both two- and three-dimensional

problems. In two-dimensional problems, the normal separation corresponds to the

surface normal local coordinate (Δ1) while the tangential separation agrees with the

surface tangential local coordinate (Δ2), shown in Figure 4.7(a). In three-dimensional
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problems, the out-of-plane separation (Δ1) matches the normal separation (Δn). The

in-plane separations (Δ2, Δ3) are related to the tangential separation (Δt) by intro-

ducing an effective quantity, i.e. Δt =
√
Δ2

2 +Δ3
2 (Figure 4.7(b)). The substitution

of the effective quantity into the PPR potential expression, and the gradient of the

potential lead to a cohesive traction vector

T =

⎧⎪⎨⎪⎩
∂Ψ/∂Δ1

∂Ψ/∂Δ2

∂Ψ/∂Δ3

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
T1

T2

T3

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
Tn

TtΔ2/Δt

TtΔ3/Δt

⎫⎪⎬⎪⎭ (4.18)

where T1, T2 and T3 are cohesive tractions along the separation directions of Δ1, Δ2

and Δ3, respectively. The second derivatives of the PPR potential with respect to

the separations in local coordinates result in the material tangent matrix,

D =

⎡⎢⎣ Dnn DntΔ2/Δt DntΔ3/Δt

DtnΔ2/Δt DttΔ2
2/Δt

2 + TtΔ3
2/Δt

3 DttΔ2Δ3/Δt
2 − TtΔ2Δ3/Δt

3

DtnΔ3/Δt DttΔ2Δ3/Δt
2 − TtΔ2Δ3/Δt

3 DttΔ3
2/Δt

2 + TtΔ2
2/Δt

3

⎤⎥⎦ .

(4.19)
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Figure 4.7: Cohesive fracture separations along the local coordinate system (a) two-
dimensions (Δ1, Δ2) and (b) three-dimensions (Δ1, Δ2, Δ3).

4.6 Verification of Cohesive Elements

In order to verify computational implementation of the cohesive zone model, basic

mode I and mode II problems are introduced. The geometry of mode I and II problems

is described in Figure 4.8. The elastic modulus is 32 GPa, and the Poisson’s ratio is

0.2. The fracture parameters of the PPR model are given as φn = 100 N/m, φt = 200
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(a) (b)

Figure 4.8: Geometry of (a) pure mode I, and (b) pure mode II simulation.

N/m, σmax = 4 MPa, τmax = 3 MPa, α = 7, β = 2, λn = 0.005, and λt = 0.005. The

unloading/reloading shape parameters (αυ, βυ) are equal to one.

For mode I simulation, a square plate (0.1 m × 0.1 m) is elongated at the top un-

der the displacement control up to 0.05 mm. Next, the plate is compressed until the

displacement at the top is -0.02 mm, and is elongated again to demonstrate complete

failure condition. The plate is discretized by a bilinear quadrilateral element (Q4),

and a cohesive element is inserted at the bottom of the plate. Stress versus displace-

ment curve is plotted in Figures 4.9. While the plate is elongated, stress initially

increases up to the cohesive strength (σmax), and then the plate demonstrates soften-

ing behavior. The softening curve is convex because the mode I shape parameter (α)

is selected as 7. When the plate is unloaded, the constitutive relationship of the cohe-
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Figure 4.9: Computational result of the pure mode I test.
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sive zone model evaluated on the basis of the unloading/reloading relationship. Since

the unloading/reloading shape parameters equals to one, the unloading/reloading

relationship is linear.

For a mode II problem, a 0.1 m by 0.1 m plate is elongated and compressed at the

top and right hand sides, respectively, under the displacement control up to 0.04 mm.

Next, the displacement directions are reversed until the complete failure. In this case,

the principal stresses are along the horizontal and vertical directions. The maximum

shear stress occurs along the 45◦, and the magnitude of the maximum shear stress

is equal to the magnitude of the principal stresses. The plate is discretized by two

linear triangular elements (T3), and a cohesive element is inserted along the diagonal

direction (see Figure 4.8(b)). Figure 4.10 illustrates that the maximum shear stress

reaches the cohesive strength, and it decreases almost linearly because the mode II

shape parameter (β) is two. Then, the plate is linearly unloaded and reloaded, while

the applied displacement changes from 0.04 mm to −0.04 mm. The increase of the

applied displacement leads to softening and complete failure conditions.
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Figure 4.10: Computational result of the pure mode II test.
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Chapter 5

Microstructural Particle/Matrix
Debonding Process by the PPR
Potential-Based Model

Macroscopic constitutive relationship is estimated by considering the microscopic par-

ticle/matrix interfacial debonding. For the interfacial debonding, the PPR potential-

based cohesive model is utilized. The extended Mori-Tanaka model is employed for

micromechanics, while a finite element-based cohesive zone model is used for the

computational model. Both models (theoretical and computational) agree well with

each other in representing the macroscopic constitutive relationship on the basis of

the PPR model. The microscopic interfacial cohesive parameters of the PPR model

are estimated from macroscopic composite material behavior. In addition, different

microscopic debonding processes are observed with respect to different macroscopic

constitutive relationships (e.g. hardening, softening, and snap-back).

5.1 Introduction

The development of the connections between different length scales, for example

macroscopic behavior and microscopic behavior, is essential in understanding phys-

ical material behavior. Micromechanics models have been utilized to estimate the

effective macroscopic elastic response of composite materials (Mura, 1987; Nemat-

Nasser and Hori, 1999). For instance, the self-consistent method (Budiansky, 1965;

Hill, 1965) approximates the effective elastic properties by embedding a particle in the

infinite medium of unknown effective properties. The generalization of this method,

called the generalized self-consistent method (Christensen and Lo, 1979), consists of

introducing the matrix layer with the prescribed volume fraction between a parti-

cle and the effective infinite medium. The Mori-Tanaka method (Mori and Tanaka,

1973) is developed to calculate the average internal stress in the matrix of a material

containing inclusions with transformation strain. The extension of the Mori-Tanaka

model describes constitutive behavior of composites with interface debonding (Tan

et al., 2007).
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Several researchers have linked microscopic matrix/particle behavior with macro-

scopic continuum and fracture including either non-cohesive or cohesive behavior. Yin

et al. (2004) developed micromechanics-based elastic constitutive model for function-

ally graded materials (FGMs) with particle interactions. The model was extended to

represent effective thermo-elastic behavior of FGMs (Yin et al., 2007). Paulino et al.

(2006) developed a micromechanical damage model for two-phase FGMs, considering

the interfacial debonding of particles and pair-wise interactions between particles.

Levy (1994) theoretically investigated separation of the matrix/particle interface un-

der biaxial load. Siegmund and Brocks (1999) employed the modified Gurson rela-

tionship (Needleman and Tvergaard, 1984) to consider void nucleation and growth of

materials, and to calibrate fracture parameters of the exponential traction-separation

relationship. Allen and Searcy (2001) idealized the representative volume element

(RVE) as fibrils that are surrounded by air, and obtained homogenized traction-

separation relationships. Tan et al. (2005b) utilized digital image correlation tech-

nique to obtain macroscopic cohesive parameters. Based on these cohesive parame-

ters, the extended Mori-Tanaka method was applied to obtain a microscale cohesive

relationship for particle/matrix interface.

Micromechanical particle/matrix behaviors can be investigated by means of com-

putational methods. Shen et al. (1994, 1995) studied the effect of particle shape and

distribution on the effective elastic and plastic responses under perfect bonding be-

tween matrix and particle within the finite element analysis framework. In order to

represent the matrix/particle debonding process, cohesive elements are incorporated

with the finite element analysis (e.g. Xu and Needleman, 1993; Finot et al., 1994). Xu

and Needleman (1993) investigated void nucleation along the interface in conjunction

with an interfacial cohesive relationship, and Finot et al. (1994) demonstrated the

influence of crack size, in addition to shape, spatial distribution, and volume fraction

of the particles. Mogilevskaya and Crouch (2002) employed a Galerkin boundary

integral method to study an infinite elastic plane containing randomly distributed

circular elastic inclusions with homogeneously imperfect interfaces. Carpinteri et al.

(2005) investigated snap-back instability in micro-structured composites under uni-

axial displacement boundary conditions.

In this chapter, the constitutive relationship of materials with microstructures

is investigated by using the PPR potential-based cohesive model for the interface

relationship. This investigation is integrated with a theoretical micromechanics model

and a finite element-based cohesive zone model. In addition, the fracture parameters

of the PPR model are estimated in conjunction with a micromechanics model.

92



The chapter is organized as follows. Section 5.2 presents a theoretical microme-

chanics model that accounts for particle/matrix interface debonding. Next, the

potential-based constitutive model for the interface between particle and matrix is

explained in Section 5.3. Afterwards, Section 5.4 investigates the influence of cohe-

sive fracture parameters, particle size and volume fraction on the constitutive relation

under hydrostatic tension loading. Section 5.5 integrates the theoretical model with

the computational model through investigation of particle/matrix debonding under

equi-biaxial tension loading. The cohesive parameters of the PPR model are deter-

mined using macroscopic cohesive behavior in Section 5.6. Finally, the key findings

of the chapter are summarized in Section 5.7.

5.2 Constitutive Behavior of Composites with
Particle/Matrix Interface Debonding

This study considers a RVE with volume Ω of the composite material of N different

particle sizes embedded in the matrix. The particles and matrix materials are assumed

as linearly elastic. The matrix volume and particle volume of the k-th particle size

are denoted by Ωm and Ωp
k, respectively (k = 1, . . . , N). The particle volume fraction

fk of the k-th particle size is given by Ωp
k/Ω. The average stresses in the matrix (σ̄m)

and in the k-th particle (σ̄p
k) are defined as

σ̄m =
1

Ωm

∫
Ωm

σdV , σ̄p
k =

1

Ωp
k

∫
Ωp

k

σdV (5.1)

respectively. The average stress in the RVE or macroscopic stress (σ̄) is given in

terms of σ̄m and σ̄p
k (Taya and Chou, 1981; Benveniste, 1987; Weng, 1990) by

σ̄ = (1− f)σ̄m +
N∑
k=1

fkσ̄
p
k (5.2)

where f =
∑N

k=1 fk.

The average strains in the matrix (ε̄m) and in the particles (ε̄pk) are defined as

ε̄m =
1

Ωm

∫
Ωm

εdV , ε̄pk =
1

Ωp
k

∫
Ωp

k

εdV (5.3)

respectively. The average strain in the RVE or macroscopic strain ε̄ is given in terms
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of ε̄m and ε̄pk (Tan et al., 2005a) by

ε̄ = (1− f)ε̄m +
N∑
k=1

fk
(
ε̄pk + ε̄intk

)
(5.4)

where ε̄intk is the average strain which is contributed from the debonding interface Sint
k

between particles of k-th size and matrix. In fact, ε̄intk is related to the displacement

separation

Δk = [u]k = um − up
k (5.5)

at the k-th particle/matrix interface by

ε̄intk =
1

2Ωp
k

∫
Sint
k

(Δk ⊗ n+ n⊗Δk) dA (5.6)

where um and up
k are the displacements on the interface of the matrix and the k-th

particle, respectively, and n is the unit normal vector on the interface pointing into

the matrix (positive sign convention).

The average strains in the matrix and k-th particle are related to the correspondent

average stresses by

ε̄m =MMMm : σ̄m , ε̄pk =MMMp
k : σ̄

p
k (5.7)

where MMMm and MMMp
k are the elastic compliance tensors of matrix and particle mate-

rials, respectively. Then, the averaged strain in the RVE (5.4) is rewritten as

ε̄ =MMMm : σ̄ +
N∑
k=1

fk
{
(MMMp

k −MMMm) : σ̄p
k + ε̄intk

}
(5.8)

Expression (5.8) shows that, in order to obtain the constitutive relation of macro-

scopic strain and macroscopic stress, the average stresses in particles (σ̄p
k) and the

average strains from interface debonding (ε̄intk ) need to be determined in terms of

macroscopic stress (σ̄) or macroscopic strain (ε̄).

5.2.1 Hydrostatic Tension Stress State

In this section, for simplicity in evaluating σ̄p
k and ε̄intk , a case of identical spherical

particles embedded in an isotropic matrix subjected to hydrostatic tension stress state

σ̄ = σ̄I (Tan et al., 2005a) is considered, where I is the second-order identity tensor.

All the particles are assumed to be isotropic and have the same elastic modulus and
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radius a. From the tensorial equations of macroscopic stress and strain, one obtains

σ̄ii = (1− f)σ̄m
ii + f σ̄p

ii (5.9)

ε̄ii =
(1− 2νm)

Em
σ̄ii + f

{(
1− 2νp

Ep
− 1− 2νm

Em

)
σ̄p

ii + ε̄intii

}
(5.10)

where (Em, νm) and (Ep, νp) are the elastic moduli and Poisson’s ratios of the matrix

and particles, respectively. The macroscopic stress (σ̄), the average mean stresses in

the matrix (σ̄m), and the average mean stress in the particles (σ̄p) are defined as

σ̄ = σ̄ii/3 , σ̄m = σ̄m
ii /3 , σ̄p = σ̄p

ii/3 (5.11)

Hence, Eq. (5.9) is written as

σ̄ = (1− f)σ̄m + fσ̄p (5.12)

The average strain contribution from the interface debonding contribution ε̄intii is

determined from Eq. (5.6) as

ε̄intii =
1

Ωp

∫
Sint

ΔndA =
3Δn

a
(5.13)

where Δn = [un] is the average displacement discontinuity (separation) in the normal

direction (or radial direction in this case) on the interfaces between particles and

matrix. Therefore, from Eq. (5.10), the macroscopic strain ε̄ can be obtained as

ε̄ =
ε̄ii
3

=
1− 2νm

Em
σ̄ + f

{(
1− 2νp

Ep
− 1− 2νm

Em

)
σ̄p +

Δn

a

}
(5.14)

5.2.2 Extended Mori-Tanaka Method under Hydrostatic
Tension

To determine the relation of σ̄p and Δn in terms of macroscopic stress σ̄, following

the approach by Tan et al. (2005a), the Mori-Tanaka method (Mori and Tanaka,

1973) is extended, which is widely used for composite materials with high particle

volume fraction. In the Mori-Tanaka method, the average stress in particles (σ̄p) is

related to the average stress in the matrix (σ̄m) instead of the macroscopic stress

(σ̄). Therefore, a single spherical particle of radius a in an infinite matrix subject to
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the remote hydrostatic tensile stress state σ̄mI is considered, shown in Figure 5.1(a).

The average particle stress σ̄p is uniform and equals the normal stress, σint, at the

particle/matrix interface. Due to interface debonding, the normal displacement (or

displacement in the radial direction) has a jump at the particle/matrix interface. At

the outside boundary of the particle, the normal displacement is given as a
Ep (1 −

2νp)σint, while at the inner boundary of the matrix, the normal displacement is given

as a
2Em

[
3(1− νm)σ̄m − (1 + νm)σint

]
. The normal displacement separation, or the

displacement separation in the radial direction, at the particle/matrix interface can

be obtained as

Δn = [un] =

{
3(1− νm)σ̄m − (1 + νm)σint

2Em
− 1− 2νp

Ep
σint

}
a (5.15)

The average stress in the matrix σ̄m can be expressed in terms of Δn and σint as

σ̄m =
2Em

3(1− νm)

{
σint

(
1− 2νp

Ep
+

1 + νm

2Em

)
+

Δn

a

}
(5.16)

Substituting Eq. (5.16) into the Eq. (5.12), one obtains the macroscopic stress σ̄ in

terms of Δn and σint as

σ̄ = (1− f)
2Em

3(1− νm)

{
σint

(
1− 2νp

Ep
+

1 + νm

2Em

)
+

Δn

a

}
+ fσint (5.17)

The macroscopic strain ε̄ in this case can be written as

ε̄ =
(1− 2νm)

Em
σ̄ + f

{(
1− 2νp

Ep
− 1− 2νm

Em

)
σint +

Δn

a

}
(5.18)

(a) (b)

Figure 5.1: (a) Spherical particle under hydrostatic tension stress state, and (b)
cylindrical particle under equi-biaxial tension stress state.
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In order to obtain the constitutive relation between the macroscopic stress σ̄ and

macroscopic strain ε̄ from Eqs. (5.17) and (5.18), a relation of the normal stress σint

and the normal displacement separation Δn at the particle/matrix interface is needed.

The PPR potential-based cohesive model, presented in Chapter 3, for particle/matrix

interface debonding is employed to establish the relation between the normal stress

and the normal displacement separation at the interface.

5.2.3 Extended Mori-Tanaka Method under Equi-biaxial
Tension

For equi-biaxial tension loading (σ̄) under plane strain condition, this study considers

the case that all the particles are isotropic, have the same elastic modulus and are

cylindrical with radius a, as shown in Figure 5.1(b). Once again, the extended Mori-

Tanaka method is employed, in which the macroscopic stress σ̄ can be obtained from

Eq. (5.12) and and the macroscopic strain ε̄ can be obtained as

ε̄ =
(1 + νm)(1− 2νm)

Em
σ̄ + f

{(
(1 + νp)(1− 2νp)

Ep
− (1 + νm)(1− 2νm)

Em

)
σ̄p +

Δn

a

}
(5.19)

where the average stress in the particle σ̄p is uniform and equals the normal stress

at the particle/matrix interface (σint), which is related to the normal displacement

separation Δn by the cohesive relation of the PPR model. Accordingly, the average

stress in the matrix σ̄m is given by

σ̄m =
Em

2(1− νm)(1 + νm)

{
σint

(
(1− 2νp)(1 + νp)

Ep
+

1 + νm

Em

)
+

Δn

a

}
(5.20)

Notice that Eqs. (5.12), (5.19) and (5.20) provide the constitutive relation between

macroscopic stress and macroscopic strain of composite materials accounting for in-

terface debonding under equi-biaxial loading with plane strain conditions.

5.3 PPR: Potential-Based Cohesive Model for
Interface Debonding

For tensile opening (mode I) fracture, McMeeking and Parks (1979) showed that

in modified compact tension tests, the stress state ahead of the crack tip is nearly

hydrostatic. Tan et al. (2005b) also showed that, in two-dimensional mode I fracture,

the stress state is equi-biaxial within the cohesive zone ahead of the crack tip. For
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those special cases of loadings, the tangential cohesive stress vanishes and the normal

cohesive traction in Eq. (3.28) can be simplified by taking the tangential separation

Δt = 0 Thus, one obtains the following intrinsic cohesive zone model for normal

cohesive stress σint in terms of normal separation Δn as

σint =
φn

δn

( α
m

)m(
1− Δn

δn

)α−1(
m

α
+

Δn

δn

)m−1

(m+ α)
Δn

δn
(5.21)

This relation between the normal cohesive stress and the normal separation provides

the cohesive relationship of the interface debonding along the normal direction and

is illustrated in Figure 5.2. For the sake of illustration, in this example, the tension

cohesive strength (σmax) is chosen to be 10 MPa and the fracture energy for mode

I (φn) is 1 N/m. The shape parameter index (α) is set to 3, while the initial slope

indicator (λn) is selected as 0.005.
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Figure 5.2: Illustrative intrinsic cohesive relation of normal interface debonding.

In the case of hydrostatic tension loading, the cohesive relation of σint in terms

of Δn in Eq. (5.21), together with Eqs. (5.17) and (5.18), which represent the

relation of macroscopic stress and strain in terms of σint and Δn, provide a system of

parametric equations in terms of the normal displacement separation Δn. Based on

these equations, the constitutive relation between the macroscopic stress and strain

of the composite material can be determined.
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5.4 Micromechanics Investigation of the PPR
Model

The previous sections have shown that macroscopic constitutive behavior of composite

materials accounting for particle/matrix debonding can be obtained by incorporating

the PPR cohesive relation into the micromechanics model. This section investigates

the effect of relevant PPR cohesive parameters, e.g. particle size and volume frac-

tion, on the macroscopic constitutive behavior of the material. For simplicity, the

micromechanics model in the hydrostatic tension loading case, presented in Section

5.2, is applied to the limit when the material is homogenous. Hence, both matrix

and particle now have the same material properties. At this time, the particles have

the role as microstructures in the material and the volume fraction (f) represents the

amount of interface between the microstructure and the material. All the microstruc-

tures are assumed to be isotropic and have the same spherical shape with the radius

a (see Figure 5.1(a)). Thus, the macroscopic stress and strain in Eqs. (5.17) and

(5.18) are simplified to

σ̄ = (1− f)
2E

3(1− ν)

Δn

a
+ σint , (5.22)

ε̄ =
1

3K
σ̄ + f

Δn

a
, (5.23)

where K is the elastic bulk modulus of the material and σint is described in terms of

normal separation Δn as shown in Eq. (5.21).

From the two parametric equations in terms of normal separation, i.e. Eqs. (5.22)

and (5.23), the macroscopic constitutive relation of the material can be determined

as illustrated in Figure 5.3 for particle size a = 100 μm. In Figure 5.3, the values of

elastic modulus and Poisson’s ratio for both matrix and particle are chosen as E =

122 GPa and ν = 0.25, respectively. The PPR cohesive parameters are the same as

the ones used in Figure 5.2, where cohesive strength σmax = 10 MPa, fracture energy

φn = 1 N/m, shape parameter index α = 3 and initial slope indicator λn = 0.005.

Notice that the geometrical and material parameters, in this section and also in the

next section, are illustrative quantities chosen to investigate the overall behavior of

composites accounting for particle/matrix debonding with the PPR cohesive relation.

The investigation of an actual material is provided later in this chapter (Section 5.6).
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Figure 5.3: Stress versus strain curve of the material (a = 100μm).

5.4.1 Effect of Particle Size

The effect of particle size is investigated. Figure 5.4 illustrates the macroscopic stress-

strain curves of the material for different particle sizes. Notice that all other parame-

ters are fixed. The material tends to display hardening behavior when the size of the

particles is small, while softening behavior appears in the case of large particles.
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Figure 5.4: Effect of particle size (a) on the constitutive relation (f = 0.6).
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5.4.2 Effect of Particle Volume Fraction

To examine the effect of particle volume fraction on the macroscopic constitutive

relation, the value of the particle volume fraction changes, but all other parameters

are fixed. In the case of fine particles (a = 100 μm), Figure 5.5 illustrates how

the macroscopic stress-strain relation is influenced by the particle volume fraction. A

higher volume fraction of particle gives a smaller slope of the stress-strain curve of the

material in the hardening region. For the case of coarse particles (a = 2 mm), Figure

5.6 shows that the softening effect increases when the volume fraction increases.
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Figure 5.5: Effect of particle volume fraction (f) on the constitutive relation in the
case of fine particles (a = 100 μm).
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Figure 5.6: Effect of particle volume fraction (f) on the constitutive relation in the
case of coarse particles (a = 2 mm).
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5.4.3 Effect of Cohesive Energy

The influence of cohesive energy on the macroscopic constitutive relation is examined

and shown in Figure 5.7. When the cohesive energy increases, more energy is needed

to separate the particle and the matrix; therefore, the stress-strain curve displays

increased hardening effect.
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Figure 5.7: Effect of cohesive energy (φn) on the constitutive relation with volume
fraction f = 0.6: (a) a = 100 μm, and (b) a = 2 mm.
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5.4.4 Effect of Cohesive Strength

The increase of the cohesive strength of the interface debonding relation provides

higher stress before the macroscopic constitutive relation reaches the hardening-

softening region. However, because the cohesive energy is fixed, the higher cohesive

strength gives a smaller final normal separation. Hence, the complete debonding

occurs earlier, which is shown clearly in the case of a large particle in Figure 5.8.
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Figure 5.8: Effect of cohesive strength (σmax) on the constitutive relation with volume
fraction f = 0.6: (a) a = 100 μm, and (b) a = 2 mm.
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5.5 Theoretical and Computational Investigation
of Materials with Microstructure Accounting
for Particle/Matrix Interface Debonding

Particle/matrix debonding process and macroscopic constitutive relationships of com-

posite material are investigated by utilizing both micromechanics and finite element

method by means of an integrated approach. The geometry of the unit cell for compu-

tational investigation is illustrated in Figure 5.9(a) (cf. Figure 5.1(b)). As indicated

before, the particle sizes (a) are 100 μm, 1 mm and 2 mm, while the size of the RVE

(b) is calculated on the basis of the particle volume fraction of the microstructures.

The elastic modulus of both matrix and particle is 122 GPa, the Poisson’s ratio is

0.25, and the particle volume fraction of 0.6 are used in this study. In addition, in the

computational model, the mode II fracture parameters (φt, τmax, β, λt) are assumed

to be the same as the mode I fracture parameters (φn, σmax, α, λn) in the PPR model.

b

a

(a) (b)

Figure 5.9: (a) Geometry of the square unit cell (size b) with particle of radius a, and
(b) boundary conditions for the computational modeling.

In the theoretical model, the extended Mori-Tanaka method under equi-biaxial

loading with plane strain condition is employed. The expressions of the macroscopic

strain (5.19), the average stress in the matrix (5.20), and the cohesive relationship

of the PPR model (5.21) lead to the constitutive relationship between macroscopic

stress and macroscopic strain, as discussed in Section 5.2.3.

In the computational simulation, a two-dimensional plane strain condition is em-

ployed, and a quarter of the unit cell is analyzed because of symmetry along the
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horizontal and vertical directions (see Figure 5.9). Both the matrix and particle are

represented by volumetric (or bulk) elements, while the interface debonding between

particle and matrix is characterized by cohesive surface elements using the PPR model

in conjunction with the coupled unloading/reloading relationship. The finite element

(a)

Cohesive elementsCohesive elements

(b)

Figure 5.10: (a) Finite element mesh of the unit cell, and (b) zoom of the mesh along
the interface between particle (a = 2 mm) and matrix.
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mesh is illustrated in Figure 5.10(a), and cohesive surface elements are inserted a

priori along the particle/matrix interface, as indicated by a thick solid line. The

number of bulk elements is 6826 (Q4), the number of cohesive elements is 200, and

the total number of nodes is 7128. The size of cohesive elements is 16 μm for the

particle size of 2 mm, which is small enough to capture the nonlinear particle/matrix

debonding process. The computational results using the cohesive element size of 32

μm are almost the same as the results using the size of 16 μm. A zoomed-in region

of the mesh around the interface is shown in Figure 5.10(b), and the mesh in this

region is uniform.

Displacement boundary conditions are applied to the unit cell. The left and

bottom edges in the finite element mesh are fixed along the horizontal and verti-

cal directions (Figure 5.9(b)), respectively, due to the symmetry of the unit cell.

Along the right and top edges, uniform displacement is applied. In order to improve

convergence of computational simulation in the matrix/particle debonding process,

especially for a case of snap-back instability, slightly higher displacement (e.g. 1%) is

applied along the horizontal direction. The averaged macroscopic strain is evaluated

by dividing the corresponding displacement along the edge by half of the RVE size

(b/2), while averaged macroscopic stress is calculated by dividing the summation of

reaction forces along the edge by half of the RVE size (b/2).

In the following subsection, the particle/matrix debonding process is observed

for different types of macroscopic constitutive relationships. Next, the effect of mi-

crostructural size and material parameters on the macroscopic stress-strain relation-

ship is theoretically and numerically investigated.

5.5.1 Particle/Matrix Debonding Process

Different types of the particle/matrix debonding process are observed with respect

to different types of the macroscopic constitutive relationships, which result from the

change of microstructural size or material properties. In this study, for the configu-

ration (Figure 5.9(b)) with the particle size a = 2 mm, the fracture energy and the

shape parameter are fixed as φn = 5 N/m and α = 3, respectively. The initial slope

indicator is selected as a small value (e.g. λn ∈ [0.002, 0.01]) within numerical sta-

bility limits. With the cohesive strengths of σmax = 15 MPa and 25 MPa, averaged

macroscopic stress-strain relationships along the horizontal and vertical directions

are plotted in Figure 5.11. When the cohesive strength is 15 MPa, the macroscopic

stress-strain relationship illustrates softening behavior (Figure 5.11(a)). On the other
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hand, if the cohesive strength is 25 MPa, the macroscopic stress-strain relationship

demonstrates snap-back instability behavior, as shown in Figure 5.11(b).

For the case of softening behavior (Figure 5.11(a)), the particle/matrix debonding

process is observed at the four points: elastic range (point A), peak point (point B),

softening range (point C), and complete separation (point D). Accordingly, Figure
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Figure 5.11: Computational results displaying macroscopic strain versus strain along
the horizontal and vertical directions with cohesive strength of (a) 15 MPa, and (b)
25 MPa.
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5.12 illustrates the deformed shape and von Mises stress distribution at each point.

Before reaching the peak point (Point B), the von Mises stress distribution is uniform,

i.e. elastic stage (Figure 5.12(a)). After the peak point (Figure 5.12(b)), stress in

the particle decreases while stress in matrix increases due to the particle/matrix

debonding (Figure 5.12(c)). In this softening stage (e.g. point C), the separation

along the particle/matrix interface is uniform. Finally, the stress in the particle

reaches zero, and the complete debonding occurs, as shown in Figure 5.12(d). In this

case, the debonding process is stable, and thus the separation is uniform along the

interface.

When the macroscopic stress-strain relationship exhibits snap-back instability

(Figure 5.11(b)), the particle/matrix debonding process is different from the pre-

(a) (b)

(c) (d)

Figure 5.12: Particle/matrix debonding process for softening behavior (Figure
5.11(a)) at the stage of (a) point A, (b) point B, (c) point C, and (d) point D.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Particle/matrix debonding process for snap-back behavior (Figure
5.11(b)) at the stage of (a) point A, (b) point B, (c) point C, (d) point D, (e) point
E, and (f) point F.
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vious case. Until the microstructure reaches peak stress (Point B), the von Mises

stress is generally uniform (Figure 5.13(a) and (b)), and almost no debonding occurs.

At the onset of the snap-back instability, particle and matrix start to debond from

each other. Because of the snap-back instability, unstable debonding process is ex-

pected. Thus the separation along the particle/matrix interface may not be uniform.

In this numerical investigation, for example, the debonding occurs along the horizon-

tal direction first, which corresponds to the stage from point B (Figure 5.13(b)) to

point C (Figure 5.13(c)). The initiated crack propagates along the interface between

matrix and particle, which corresponds to the stage from point C (Figure 5.13(d))

to point D (Figure 5.13(e)). The crack propagation in this stage is stable in the

sense that the increase of separation along the interface leads to the decrease of the

macroscopic stress, i.e. softening behavior. Next, a secondary snap-back instability

is observed, which leads to the debonding along the vertical direction, i.e. the stage

from point D to point E. In the end, the complete separation occurs at point F, as

shown in Figure 5.13(e). The von Mises stress in the particle becomes zero, and stress

concentration is observed in the matrix.

5.5.2 Effect of Microstructure Size

The macroscopic constitutive relationship varies with respect to the change of the

microstructure size, elastic modulus, fracture energy and cohesive strength. First,

the effect of microstructure size on macroscopic behavior is investigated. The parti-

cle sizes are 2 mm, 1 mm, and 100 μm; with particle volume fraction f = 0.6. The
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Figure 5.14: Effect of the particle size (a) on the constitutive relationship.
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fracture energy is φn = 1 N/m, the cohesive strength is σmax = 10 MPa, and the shape

parameter is α = 3. For the given fracture parameters, the constitutive relationships

for each particle size demonstrate similar elastic behavior (i.e. almost linear) until

the macroscopic stress reaches 10 MPa, which corresponds to the adopted cohesive

strength. After the elastic limit is reached, the fine particle (a = 100 μm) material

demonstrates hardening behavior while the coarse particle (a = 2 mm) material dis-

plays softening behavior, as shown in Figure 5.14.

5.5.3 Effect of Particle Elastic Modulus

Next, the effect of the particle elastic modulus is studied. The elastic modulus of the

matrix is fixed (Em = 122 MPa), while the elastic modulus of particle (Ep) is selected

as 61 MPa, 122 MPa, and 244 MPa, which leads to the ratio of the particle elastic

modulus to the matrix elastic modulus of 0.5, 1, and 2, respectively. The selected size

of particle is 2 mm with the volume fraction f = 0.6. The fracture energy is φn = 5

N/m with cohesive strength σmax = 10 MPa, and shape parameter α = 3. The higher

elastic modulus of particles results in stiffer elastic behavior and shorter elastic range.

The lower elastic modulus of particles leads to the slightly higher macroscopic stress

of the elastic limit, as shown in Figure 5.15. At larger macroscopic strain, complete

debonding occurs, and thus the elastic modulus of particle does not influence the

macroscopic stress-strain relationship.
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Figure 5.15: Effect of the ratio of elastic modulus on the constitutive relationship.
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5.5.4 Effect of Fracture Energy and Particle Size

The change of cohesive fracture parameters also leads to different macroscopic consti-

tutive relationships. Two particle sizes (a = 2 mm and 100 μm) are investigated with

respect to the fracture energies of φn = 1 N/m and 5 N/m. The cohesive strength

is σmax = 10 MPa, and the shape parameter is α = 3. For each particle size, elastic

behavior is almost the same, as shown in Figure 5.16. After the averaged macroscopic

stress reaches the elastic limit, which almost corresponds to the cohesive strength (10

MPa), the larger fracture energy provides higher load capacity for both coarse and fine
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Figure 5.16: Effect of the fracture energy (φn) on the constitutive relationship with
particle size of (a) 100 μm, and (b) 2 mm.
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particle sizes. The increase of fracture energy changes the macroscopic stress-strain

relationship from softening behavior to hardening behavior for the coarse particle (a

= 2mm).

5.5.5 Effect of Cohesive Strength and Particle Size

The effect of the cohesive strength is also investigated. The particle sizes are a = 2

mm and 100 μm; the cohesive strengths are σmax = 10 MPa, 15 MPa, and 25 MPa.

The fracture energy and the shape parameters are fixed as φn = 5 N/m and α =
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Figure 5.17: Effect of the cohesive strength (σmax) on the constitutive relationship
with particle size of (a) 100 μm, and (b) 2 mm.
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3, respectively. In this simulation, the coarse particle configuration demonstrates

hardening behavior, while the fine particle illustrates various post-peak behaviors

such as hardening, softening and snap-back, with respect to the change of cohesive

strength (Figure 5.17). The higher cohesive strength leads to higher macroscopic

stress of the elastic limit. At the larger macroscopic strain, complete separation

occurs along the interface between particle and matrix, and thus the macroscopic

constitutive relationships become the same for the different cohesive strengths.

5.5.6 Remarks

The results from the finite element analysis (FEA) are described by a solid line with

markers, and the results from the micromechanics model are illustrated by a dashed,

dotted or dashed-dotted line. Both theoretical and computational results agree well

each other (see Figures 5.14-5.17), especially when the strain is small. While the

macroscopic strain increases, the finite element results with the cohesive zone model

do not exactly match the micromechanics results. The difference may result from the

fact that the finite element formulation considers geometrical nonlinearity with finite

strains while the micromechanics model is based on small strain theory.

5.6 Case Study: Determination of the PPR
Cohesive Relation

Macroscopic cohesive behavior of composite material might provide some important

information to determine the PPR cohesive relation (Eq. (5.21)) for the parti-

cle/matrix interfaces. To illustrate the method that is used to estimate the key

parameters in the PPR cohesive relation, the macroscopic cohesive behavior of PBX

9501 (Tan et al., 2005b) is used, as an example. The material PBX 9501 is a high

explosive, which consists of polymeric binder matrix with elastic modulus Em = 1

MPa, Poisson’s ratio νm = 0.499 and energetic HMX particles with bulk modulus Kp

= 12.5 GPa. The size distribution of HMX particles can be considered as a bimodal

distribution with the large particles having radii a1 = 125μm, and the small particles

having radii a2 = 4μm, and their volume fractions of f1 = 69.5% and f2 = 23.2%, re-

spectively. The macroscopic cohesive relation of PBX 9501 between the macroscopic

stress σ̄ (normalized by the elastic modulus Ē of PBX 9501, which is 1 GPa (Gray III

et al., 1998)) and the opening displacement can be obtained from mode I fracture

test of the modified compact tension specimen, as shown in Figure 5.18. In stage I,
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the macroscopic cohesive stress (σ̄) increases linearly from zero to the macroscopic

cohesive strength with a very high slope. In stage II, the macroscopic cohesive stress

reaches the macroscopic cohesive strength σ̄max = 1.66 MPa. Next, stage III is the

softening stage, where the cohesive stress decreases approximately linearly from σ̄max

to zero when the separation reaches the final crack opening width. If separation is

greater than the final crack opening width of 0.11 mm, the macroscopic cohesive

relation is in stage IV, where the interface is completely debonded, and hence the

macroscopic cohesive stress is always zero. The macroscopic cohesive fracture energy,

or the total area below the cohesive stress-displacement curve in Figure 5.18, is mea-

sured as 89 N/m. The initial bulk modulus K̄ of PBX 9501 is reported as 1.11 GPa

(Gray III et al., 1998).

The important data from the modified compact tension test of PBX 9501, such

as the shape of macroscopic cohesive relation, the macroscopic fracture energy, the

macroscopic cohesive strength and the initial bulk modulus, can be used to deter-

mine the four cohesive parameters: cohesive strength σmax, cohesive fracture energy

φn, shape parameter α, and initial slope indicator λn in the PPR cohesive relation.

It is important to note that the stress state ahead the crack tip in the mode I frac-

ture test of the modified specimen can be approximated as a hydrostatic stress state

because of large stress triaxiality (McMeeking and Parks, 1979). This approximation

helps to apply micromechanics model in hydrostatic tension loading, as presented
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Figure 5.18: Case study: macroscopic cohesive relation of the high explosive material
PBX 9501 (Tan et al., 2005b).
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in the previous sections, to find the relation of these microscopic cohesive relation

parameters to the properties of macroscopic behavior of the material, which are pre-

sented next.

Shape of macroscopic cohesive relation: In Figure 5.18, the macroscopic cohe-

sive relation of PBX 9501 shows a linear softening stage after the peak stress. The

microscopic cohesive relation is assumed to have a similar linear softening shape.

Therefore, the shape parameter α could be estimated as 2.

Macroscopic fracture energy: To obtain the fracture energy of the microscopic

cohesive relation, Tan et al. (2005b) proposed using energy balance along the “path

of interface debonding� between the total macroscopic fracture energy release and

the total microscopic energy release, which accounts for both microscopic fracture

energy release from particle/matrix debonding and energy release due to tearing of

the matrix. They estimated the fracture energy (φn) of particle/matrix interface in

PBX 9501 as φn = 81 N/m.

Initial bulk modulus: At the initial stage of loading the specimen, the normal

displacement separation, Δn, of the particle/matrix interface is very small, hence the

cohesive relation in Eq. (5.21) can be linearized in terms of Δn as

σint = kintΔn (5.24)

where kint = φn

δn
2

(
α
m

)m (m
α

)m−1
(m + α) is a function of σmax and λn. For the case

of a linear relation between microscopic cohesive stress and the normal displacement

separation under the hydrostatic tension loading, using Mori-Tanaka method, Tan

et al. (2005a) derived a formula to determine initial bulk modulus K̄ for a composite

with two different particle sizes that is given as

K̄ =
1

3

dσ̄

dε̄
=

⎡⎢⎢⎣ 1

Km
+

9(1− νm)

2Em

f −
2∑

k=1

fkαk

1− f +
2∑

k=1

fkαk

⎤⎥⎥⎦
−1

, (5.25)

where αk =
3(1−νm)

2Em

(
1

kintak
+ 1+νm

2Em + 1
3Kp

) , and Km and Kp are the elastic bulk moduli of the

matrix and particle, respectively. With the value of initial bulk modulus K̄ = 1.11
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GPa, Eq. (5.25) provides a nonlinear equation in terms of σmax and λn.

Macroscopic cohesive strength: Rae et al. (2002) observed that debonding be-

tween particle and matrix appears first for the large particles in PBX 9501. There-

fore when the macroscopic cohesive stress σ̄ reaches its peak (macroscopic cohesive

strength), the microscopic cohesive stress of the large particle σint
1 reaches the cohe-

sive strength σmax, while the microscopic cohesive stress of the small particle σint
2 is

lower than the cohesive strength (σint
2 < σmax). The relation between the macroscopic

cohesive stress and the microscopic cohesive stresses for composite material with two

particle sizes is given as

σ̄ = (1− f)σ̄m + f1σ
int
1 + f2σ

int
2 . (5.26)

The normal displacement separations for each particle size can be obtained by the

Mori-Tanaka method as

(Δn)k = ak

{
3(1− νm)

2Em
σ̄m −

(
1 + νm

2Em
+

1− 2νp

Ep

)
σint
k

}
, k = 1, 2 . (5.27)

Cohesive relations for each particle size are given as

σint
k =

φn

δn

( α
m

)m(
1− (Δn)k

δn

)α−1(
m

α
+

(Δn)k
δn

)m−1

(m+ α)
(Δn)k
δn

, k = 1, 2 .

(5.28)

By substituting Eqs. (5.26) and (5.27) into Eq. (5.28), when σ̄ reaches σ̄max = 1.66

MPa, one can obtain two nonlinear equations in terms of σmax, σ
int
2 and λn as

σmax = h(σmax, σ
int
2 , λn) , (5.29)

σint
2 = g(σmax, σ

int
2 , λn) . (5.30)

The cohesive strength σmax and the initial slope indicator λn of the PPR cohesive

relation can be determined simultaneously from the initial bulk modulus of PBX 9501

and the maximum macroscopic stress. Thus Eqs. (5.29) and (5.30), together with

Eq. (5.25) when K̄ = 1.11 GPa, provide a system of three nonlinear equations with

three unknowns σmax, σ
int
2 and λn. This system can be solved by using a nonlinear

equations solver and the solutions for σmax, σ
int
2 and λn are obtained as 1.6672 MPa,

1.6355 MPa and 0.006, respectively. The results are summarized in Table 5.1.
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Table 5.1: Properties of high explosive material PBX9501.

Definition Symbol Value

PPR shape parameter α 2
PPR cohesive fracture energy φn 81 N/m
PPR initial slope indicator λn 0.006
PPR cohesive strength σmax 1.6672 MPa

Initial effective bulk modulus K̄ 1.11 GPa
Polymeric binder matrix elastic modulus Em 1 MPa
Polymeric binder matrix Poisson’s ratio νm 0.499

HMX particle bulk modulus Kp 12.5 GPa
Large particle radius a1 125 μm
Small particle radius a2 4 μm

Large particle volume fraction f1 69.5 %
Small particle volume fraction f2 23.2 %
Effective cohesive strength σ̄max 1.66 MPa

Microscopic cohesive stress of the large particle σint
1 1.6672 MPa (≈ σmax)

Microscopic cohesive stress of the small particle σint
2 1.6355 MPa

5.7 Concluding Remarks

Effective macroscopic behavior is investigated by means of an integrated approach

involving micromechanics and a computational model. For the micromechanics inves-

tigation, the extended Mori-Tanaka model is incorporated with the PPR potential-

based cohesive zone model. The computational analysis is performed by utilizing

the finite element-based cohesive zone model in two-dimensions (plane strain). The

effects of the PPR cohesive parameters, particle size and volume fraction on the

constitutive relationship of material with microstructures are investigated for hy-

drostatic tensile stress state and equi-biaxial tension state. In general, the overall

behavior observed considering hydrostatic tensile stress state (Figures 5.3 to 5.8) is

qualitatively similar to the behavior observed considering equi-biaxial tension state

(Figures 5.14 to 5.17). In addition, the microstructural debonding process is uniform

when the macroscopic stress-strain relationship demonstrates hardening or softening

behavior (cf. Figures 5.11(a) and 5.12). On the other hand, non-uniform microstruc-

tural debonding process is observed when the macroscopic stress-strain relationship

provides snap-back instability (cf. Figures 5.11(b) and 5.13). The results of the mi-

cromechanics model demonstrate agreement with the results from the computational

model. Finally, through multiscale arguments, the cohesive parameters of the PPR

model are estimated using macroscopic cohesive behavior of composite material in

conjunction with micromechanics theory.
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Chapter 6

Adaptive Dynamic Cohesive
Fracture Simulation Using Nodal
Perturbation and Edge-Swap
Operators

Dependence on mesh orientation impacts adversely the quality of computational so-

lutions generated by cohesive zone models. For instance, when considering crack

propagation along interfaces between finite elements of 4k structured meshes, both

extension of crack length and crack angle are biased according to the mesh configura-

tion. To address mesh orientation dependence in 4k structured meshes, and to avoid

undesirable crack patterns, the use of nodal perturbation and edge-swap topological

operation is proposed. From a fracture mechanics perspective, the PPR potential-

based model is employed for the constitutive relationship of cohesive fracture. Three

representative dynamic fracture examples using edge-swap and nodal perturbation

operators are provided: crack propagation in the compact compression specimen, lo-

cal branching instability, and fragmentation. These examples illustrate the features

of the present computational framework in simulating a range of physical phenomena

associated to cracking.

6.1 Introduction

In finite element analysis, 4k structured meshes are widely utilized while possessing

several features of interest. They are easily generated, even for irregular domains,

and are convenient to perform mesh refinement with high quality discretization. As

illustrated by Table 6.1, a regular 4k mesh is structured both in the topology sense

and in the geometry sense. In fact, being topologically structured is one of the major

advantages of 4k meshes. The mesh can be represented by a hierarchical topological

subdivision, which is suitable for mesh refinement and coarsening (see Chapter 7).

Simple, efficient and effective topological operators can be applied in order to locally

adapt the mesh (Velho and Gomes, 2000; Celes et al., 2005b).
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Table 6.1: Geometrical and topological considerations for cohesive zone model simu-
lations.

Finite element mesh Geometrically Topologically

4k structured structured
Nodal perturbation unstructured structured

Edge swap structured unstructured
Nodal perturbation & edge swap unstructured unstructured

On the other hand, structured meshes may represent a drawback. For instance,

the structured geometry may impose mesh bias in the case of crack propagation

simulation, even for highly refined meshes. To address this problem, Papoulia et al.

(2006) have proposed the use of pinwheel-based meshes for dynamic crack propagation

problems. Because the pinwheel tiling possesses the “isoperimetric property�, any

curve in the two-dimensional domain can be represented by edges of the pinwheel-

based mesh, as the element size tends to zero (i.e. in the limit sense). However,

elements used in numerical analysis are of finite size, generation of pinwheel mesh

is non-standard, and the aspect ratio of the resulting mesh, although bounded, still

needs improvements (Ganguly et al., 2006).

The discrepancy between the mathematical path of a crack and the path repre-

sented by a set of mesh edges can be measured by comparing the associated path

lengths. Convergence of path length is meaningful because the energy needed to

create a crack is related to its length (Papoulia et al., 2006).

However, besides length convergence, one should also analyze crack path deviation,

especially for regular meshes. In quantitative terms, path deviation can be estimated

by the Hausdorff distance. Given two arbitrary curves P and Q, with p and q denoting

points on those curves, the Hausdorff distance is defined as (Huttenlocher et al., 1993):

H(P,Q) = max (h(P,Q), h(Q,P )) (6.1)

where

h(P,Q) = max
p∈P

[
min
q∈Q

[dist(p, q)]

]
. (6.2)

By considering P the discretized path, where p are the vertices along that path, and

Q the mathematical path, represented by a line segment, and considering that the

endpoints are coincident in both discretized and mathematical paths, the Hausdorff
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distance to compute crack path deviation reduces to:

H(P,Q) = h(P,Q) . (6.3)

Figure 6.1 illustrates the importance of analysing both length convergence and

crack path deviation. Figure 6.1(a), obtained from reference (Papoulia et al., 2006),

illustrates the discrepancy between a mathematical path and a path represented by a

4k structured mesh. With the same mesh discretization, the Hausdorff distance can

be reduced even further by selecting another discretized shortest path, as shown in

Figure 6.1(b). Moreover, Figure 6.1(c) demonstrates that the mesh refinement of the

4k structured mesh leads to the reduction of the Hausdorff distance.

(a) (b) (c)

Figure 6.1: Discrepancy between a mathematical path (thick dashed line) and a
discrete path (thick solid line). The aspect ratio of the rectangular domain is 1 : 2.11.

However, there is always a finite error between the mathematical length and the

length represented by a 4k structured mesh. For instance, Papoulia et al. (2006)

stated that “no matter how much the mesh is refined, the jagged path will always

be approximately 8% longer than the mathematical path� for standard 4k structured

meshes. To further illustrate, a simple geometric problem is constructed within the 1

by 1 square domain (OABC), shown in Figure 6.2(a). The point P is located between

the upper left corner (point A) and the upper right corner (point B). The exact
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distance (�exact) from the origin (point O) to the point P is
√
1 + x2, i.e. mathematical

length, where x is a distance between the point A and the point P . Similarly, the path

(OP ) can be also represented by a finite element mesh under the assumption that

the path is only described by element boundaries (i.e. the path cannot go through

the elements). If one utilizes 4k structured meshes, the path (OP ) consists of piece-

wise linear lines with angles of 45◦ and 90◦. Therefore, the length represented by a

4k structured finite element mesh (�FE) is the summation of the length OD (
√
2x)

and the length DP (1 − x) (see Figure 6.2(a)), i.e. discrete length. Figure 6.2(b)

demonstrates the relative error (|�FE−�exact|/�exact) of the discrete length represented

by the 4k structured finite element mesh with respect to the location of the point P

(AP (x)). The 4k structured mesh is able to represent the exact path when x = 0 or

x = 1, while it provides error up to 8.24 % for the intermediate range. The maximum

error occurs when the distance AP (x) is equal to x =
√
2− 1 and the angle (∠COP )

of 67.5◦ which is the mean value of 45◦ and 90◦.
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Figure 6.2: (a) Crack path test, and (b) error between the mathematical length (OP )
and the discrete length represented by the 4k structured mesh. The maximum error
occurs at x =

√
2− 1 (angle ∠COP = 67.5◦).

Another feature of 4k structured meshes is that some internal nodes have eight

adjacent edges while others have four adjacent edges, as shown in Figure 6.3(a). In

other words, when cohesive crack propagation is considered, some nodes have eight

potential directions at 45◦ increments, while others have four potential directions at

90◦ increments, as illustrated by Figure 6.3(a). A node that has eight potential di-
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rections can have maximum error of 22.5◦ for the selection of a crack propagation

direction, whereas a node that has four potential directions can have maximum error

of 45◦. Consequently, computational simulations using a 4k structured mesh with co-

hesive elements may lead to undesirable (e.g. zigzag) crack patterns. For example, let

us assume the potential crack path, as illustrated by the dashed line in Figure 6.3(b).

Because the 4k mesh is not able to represent the potential crack path, computational

simulation may provide a zigzag crack pattern, as shown in Figure 6.3(c).

(a) (b) (c)

Figure 6.3: Schematic description of a potential zigzag pattern.

In order to reduce the error between the mathematical length and a length rep-

resented by edges of a 4k mesh, and to alleviate zigzag crack patterns, this chapter

proposes the use of nodal perturbation (NP) and/or edge-swap (ES) topological op-

erator. The original 4k meshes are geometrically and topologically structured. The

nodal perturbation leads to geometrically unstructured meshes, while the edge swap

provides locally unstructured meshes (topologically). Thus, both the nodal pertur-

bation and the edge-swap operator result in geometrically and topologically unstruc-

tured meshes, as summarized in Table 6.1. As proof-of-concept, the effects of nodal

perturbation factor and edge-swap operator on representation of crack length, angle,

and path deviation are investigated in this work. Computational experiments demon-

strate that, for practical levels of mesh refinement, discrepancy between mathematical

and discretized paths reduces more rapidly for modified 4k meshes, as proposed in this

chapter, than for pinwheel-based meshes.

This chapter investigates dynamic mixed-mode crack propagation, microbranch-

ing, and fragmentation by means of 4k meshes with nodal perturbation and/or

edge-swap operator. The PPR potential-based model with the coupled unload-

ing/reloading relation is used for the constitutive relationship of mixed-mode fracture.

The topological data structure TopS (Celes et al., 2005a,b) is employed to maintain

adjacency relationships under adaptive insertion of cohesive elements and edge-swap

operation. This chapter is organized as follows. First, geometrical improvement of 4k

meshes is addressed by introducing nodal perturbation (Section 6.2), while topolog-

ical improvement is achieved by employing edge-swap operator (Section 6.3). Path
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convergence is quantified by comparing 4k meshes with pinwheel-based meshes in

Section 6.4. Section 6.5 explains algorithms of the nodal perturbation and the edge

swap. Section 6.6 presents three numerical examples: compact compression specimen

tests, microbranching experiments, and fragmentation. Some remarks on topology of

4k meshes and pinwheel-based meshes are given in Section 6.7. Finally, Section 6.8

summarizes the key findings of this study.

6.2 Toward Unstructured Geometry – Nodal
Perturbation (NP)

In order to reduce the maximum error of the discrete length that exists in the 4k

structured mesh, the internal nodes of a mesh are randomly perturbed (or shaken),

with respect to a nodal perturbation (NP) factor and a given mesh quality metric.

The algorithm for the nodal perturbation is explained in Section 6.5, and the effect

(a) (b)

(c) (d)

Figure 6.4: Effect of the nodal perturbation (NP) factor on a finite element mesh:
(a) NP = 0.0 (unperturbed), (b) NP = 0.1, (c) NP = 0.2, and (d) NP = 0.3.
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Figure 6.5: Mesh quality estimation: (a) histogram and (b) Lo’s parameter for each
element considering NP = 0.3. Notice that all 6400 elements in the unperturbed
mesh (NP = 0.0) have Lo’s parameter of 0.866.
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of the nodal perturbation factors on a 4k structured mesh is illustrated in Figure

6.4. The NP factors used in this study are 0.0 (unperturbed), 0.1, 0.2 and 0.3 with a

fixed mesh quality parameter (e.g. Lo’s parameter (Lo, 1989)). The higher the nodal

perturbation factor, the more randomness in the finite element mesh.

The mesh quality is estimated by the Lo’s parameter (Lo, 1989), which is defined

as 4
√
3A/

3∑
i=1

�i
2 where A is the area of a triangle and �i represents the length of

edges. The parameter varies from 0 to 1. The Lo’s parameter is zero when the area

of a triangle is equal to zero, and one for an equilateral triangle. Within a square

domain of (1 : 1), a 4k mesh grid of 40 by 40 is constructed, resulting in 6400

triangular elements, with the NP factors of 0.0 (unperturbed), 0.1, 0.2 and 0.3. The

minimum mesh quality parameter is selected as 0.7, which is generally acceptable

for finite element simulations. The histogram of the mesh quality with respect to

the NP factors is illustrated in Figure 6.5(a). The Lo’s parameter of all elements is

0.866 for the zero nodal perturbation factor (NP = 0.0). The increase of the nodal

perturbation factor leads to a broader distribution of the Lo’s parameter. Figure

6.5(b) demonstrates the spacial distribution of the Lo’s parameter for each element

in the 40 by 40 4k mesh with NP = 0.3.

In the following subsections, the effects of the nodal perturbation factor are inves-

tigated by two examples: crack length convergence and crack angle convergence. The

crack length convergence investigation compares a mathematical length to a length

represented by edges of a finite element mesh, while the crack angle convergence in-

vestigation compares an arbitrarily given angle to a geometrically averaged angle.

6.2.1 Crack Length Convergence

For the crack length convergence investigation, the exact distance (�exact) between

two points is compared to the shortest length along edges of finite element meshes

(�FE). One can find the shortest geometrical crack length between two arbitrary

points by using, for instance, the Dijkstra’s algorithm (Dijkstra, 1959). This study

employs two cases: the worst and the best cases in a structured 4k mesh for the

representation of a crack geometry. The worst case uses a 1 by 2.4 rectangular

domain so that a given problem provides approximately the maximum error of a

crack length in the 4k structured mesh. The exact crack length from the lower left

corner (x, y) = (0, 0) to the top right corner (x, y) = (1, 2.4) is 2.6, and the angle of

the path is tan−1(2.4) = 67.38◦ which is close to the mean value of 45◦ and 90◦. The

rectangular region is discretized into 5×12, 10×24, 20×48 and 40×96 finite element
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meshes whose element sizes (i.e. the longest edge in an element) are 0.2, 0.1, 0.05

and 0.025, respectively. The internal nodes of each mesh are perturbed with NP =

0.0 (unperturbed) 0.1, 0.2 and 0.3.

The effect of the NP factors on the discrete crack length is investigated with the

mesh grid of 10×24 (element size = 0.1). One hundred meshes are generated and
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Figure 6.6: Error with respect to (a) nodal perturbation (NP) factor considering
10×24 mesh grid, and (b) element size considering the nodal perturbation factor of
0.3.
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tested for each of the nodal perturbation factors, and all the results are plotted using

white circles, as shown in Figure 6.6(a). The mean and standard deviation of error are

plotted in solid line and dashed-dot lines, respectively. When the nodal perturbation

factor is equal to zero (NP = 0.0), the shortest length in the finite element mesh is

always 2.814 and its error is 8.24%. However, the increase of the NP factor results in

a broader distribution of error level and lower averaged error. Next, with the same

nodal perturbation factor of 0.3 (NP = 0.3), the influence of element sizes on the

discrete crack length is investigated and the results are plotted in Figure 6.6(b). The

larger the element size used, the wider is the range of error level. Moreover, notice

that the mesh refinement reduces both maximum and averaged error level.

For the best case scenario, a 4k structured mesh is able to represent the mathe-

matical length along the 0◦, 45◦ and 90◦ directions. Thus, a 2.4 by 2.4 square domain

is discretized into a 24×24 4k mesh. The mathematical length between the lower left

corner (0, 0) and the upper right corner (2.4, 2.4) is compared to the shortest length

represented by edges of a 4k mesh with the NP factors of 0.0 (unperturbed), 0.1,

0.2 and 0.3. Similarly, one hundred meshes are generated for each NP factor. All

the results are plotted using white circles, and the averaged error and the standard

deviation are described with solid line and dashed-dot lines, respectively, as shown

in Figure 6.7. The increase of NP leads to the increase of the error in crack length

because a 4k structured mesh (i.e. no nodal perturbation) is able to precisely repre-
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Figure 6.7: Error with respect to the nodal perturbation (NP) factor along the 45◦

direction.
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sent a straight line along the 45◦ direction. However, the additional error along the

45◦ direction, introduced by the nodal perturbation, is less than the error reduction

along the 67.38◦ direction due to the nodal perturbation (cf. Figure 6.6(a)).

6.2.2 Crack Angle Convergence

For the crack angle convergence study, an arbitrarily given angle (θ) is compared to

a geometrically obtained angle (θFE). An averaged geometric angle (θFE) is obtained

as follows. First, from a source point, one locally searches the closest edge direction

with respect to a given angle (θ). Next, along the edge direction, one moves the

source point to the adjacent point. One repeats the previous procedure until the

source point reaches the domain boundary. Then, an averaged geometric angle is

approximated by connecting the first source point to the last source point.

In this study, the arbitrarily angle (θ) is first selected as 67.38◦ within the 2.4 by

2.4 square domain (e.g. dashed line in Figure 6.8), which is the same as the angle in

the previous length investigation. The domain is discretized into the 24 by 24 mesh

grid, which leads to the element size of 0.1. With the nodal perturbation factors of

0.0 (unperturbed), 0.1, 0.2 and 0.3, two hundred meshes are generated for each nodal

perturbation factor. When the nodal perturbation factor is equal to zero, the geomet-

rically obtained angle is always 45◦, as shown in Figure 6.8(a). This is because 45◦

is always the closest direction for the target angle (θ = 67.38◦). However, the nodal

(a) (b)

Figure 6.8: Representative results of crack angle convergence for (a) nodal pertur-
bation factor of 0.0 (NP = 0.0), and (b) nodal perturbation factor of 0.3 (NP =
0.3).
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perturbation factor improves the results of crack angle convergence. For example,

Figure 6.8(b) shows the result of crack angle convergence using nodal perturbation

factor of 0.3 (NP = 0.3), and the resulting averaged geometric angle of 59.7◦. The

histogram of the geometrically obtained angles (θFE) is plotted in Figure 6.9 with

respect to the NP factors. The Gaussian curves are fitted to the histogram for each

nodal perturbation factor. The nodal perturbation factor of 0.1 (NP = 0.1) results in

the most number of appearance of θFE around 61.6◦, and the nodal perturbation fac-

tors of 0.2 (NP = 0.2) and 0.3 (NP = 0.3) lead to the highest number of appearances

around 59.7◦. The distribution of the number of appearances demonstrates similar

pattern (e.g. a bell-shape) across the nodal perturbation factors. Thus, the nodal

perturbation factors ranging from 0.1, to 0.3 provide a similar degree of error level in

this crack angle convergence example.

When the arbitrary angle (θ) is selected as 45◦, the geometrically obtained angle

(θFE) is always 45◦ for all NP factors (0.1, 0.2 and 0.3). Therefore, the nodal per-

turbation improves the results of crack angle convergence for the arbitrarily angle of

67.38◦ without introducing error in the geometrically obtained angle for the arbitrary

angle of 45◦.
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Figure 6.9: Number of appearances of geometrically obtained angles (θFE) for given
nodal perturbation (NP) factors.
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6.3 Toward Unstructured Topology – Edge Swap
(ES)

In order to reduce undesirable crack patterns (e.g. zigzag) and to further improve the

crack angle and length convergence, the edge-swap topological operator is introduced.

This operator requires local change of connectivity information. However, it does not

introduce additional nodes, and therefore, the original geometry, with respect to nodal

location, remains the same.

Due to the edge-swap operator, all the internal nodes have the same number of

potential directions. In 4k structured meshes with the edge-swap operator, the angle

between two potential adjacent edges is initially 45◦, and thus the maximum error of

the crack direction is locally 22.5◦. The edge-swap operator in 4k meshes, therefore,

can lead to smoother crack patterns in computational simulations than without the

edge-swap operator. For example, if physics dictates a crack growth along the hori-

zontal direction (Figure 6.10(a)), one can activate the edge-swap topological operator

(Figure 6.10(b)), and the crack patterns become smoother (e.g. Figure 6.10(c)). The

edge-swap operator has also been utilized in a randomized incremental algorithm for

the construction of planar Voronoi diagrams and Delaunay triangulations (Guibas

et al., 1992).

(a) (b) (c)

Figure 6.10: Three successive mesh instances showing a schematic description of the
edge-swap (ES) operator.

In order to further investigate the influence of the edge-swap operator, the crack

length convergence and the crack angle convergence examples are also utilized in this

section. For comparison purposes, the two examples are the same as the ones in

Section 6.2.

6.3.1 Crack Length Convergence

The 1 by 2.4 domain is discretized into a 10×24 grid. With the nodal perturbation

factors of 0.0, 0.1, 0.2 and 0.3, one hundred meshes are generated for each nodal
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perturbation factor. The shortest discrete length is obtained in conjunction with the

edge-swap operator. The results are described by white circles and the averaged er-

ror is plotted with solid line (Figure 6.11(a)). For comparison purposes, the averaged

error without the edge-swap operator (shown in Figure 6.6(a)) is plotted with dashed-

dot line. According to Figure 6.11(a), the increase of the NP factor results in the

decrease of the averaged error and a wider distribution of the shortest discrete length.
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Figure 6.11: Error with respect to (a) the nodal perturbation factor and (b) element
size in conjunction with the edge-swap operator.
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The use of the edge-swap operator reduces the averaged error (Figure 6.11(a)) com-

pared to without the edge-swap case (Figure 6.6(a)). Additionally, within the same

domain, the effect of element size (0.2, 0.1, 0.05, 0.025) on a discrete crack length is

observed in conjunction with the edge-swap operator and NP = 0.3. Figure 6.11(b)

illustrates the error of discrete length with respect to element size. The mesh refine-

ment leads to the decrease of the averaged error and a narrower distribution of the

shortest discrete length. The edge-swap operator further reduces the error compared

to the case without the edge swap (Figure 6.6(b)).

6.3.2 Crack Angle Convergence

The 2.4 by 2.4 domain is discretized into 24 by 24 finite element mesh grid, and

nodal perturbation factors of 0, 0.1, 0.2 and 0.3 are applied to the finite element

mesh. Similarly, for a given angle (θ = 67.38◦), an averaged geometrical angle (θFE)

is obtained by searching locally for a direction, which is the closest angle of an edge

to the given angle. When a node has four original possible directions, four additional

directions, which are associated with the edge swap, are also considered for potential

search directions. Figure 6.12 illustrates the number of appearances of the geometri-

cally obtained angles (θFE) from the finite element meshes, considering the edge-swap
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Figure 6.12: Number of appearances of geometrically obtained angles (θFE) with
respect to the nodal perturbation (NP) factor in conjunction with the edge-swap
(ES) operator.
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operator. The Gaussian distribution is fitted to the histogram, as shown in Figure

6.12. The highest number of appearance occurs at the angle of 71.6◦ for the nodal

perturbation factors of 0.1 and 0.2, while the highest number of appearance is at the

angle of 69.4◦ for the nodal perturbation factor of 0.3. These angles (with the edge

swap) are closer to the target angle than the previous investigation (without the edge

swap, shown in Figure 6.9). Moreover, the distribution of the geometrically averaged

angles with the edge-swap operator is narrower than the distribution without the

edge-swap operator (compare Figures 6.12 and 6.9).

6.4 Computational Quantification of
Isoperimetric Property

Path convergence of 4k meshes with nodal perturbation and edge swap is quantified

in conjunction with a computational experiment. First, the isoperimetric property

is estimated by assessing length convergence of paths that connect pairs of vertices

in the meshes to the corresponding straight lines. The results are compared with

pinwheel-based meshes, which are known to possess the isoperimetric property in

the limit sense (Radin and Sadun, 1996; Papoulia et al., 2006). Then, the Hausdorff

distance of the shortest path in each mesh, with respect to a straight line, is computed

and compared.

A sample rectangular domain (Ω) with dimensions 2 by 1 is discretized by four

types of finite element mesh (ΩFE). The first mesh type (Type I) is obtained from

a pinwheel tiling by splitting triangles that have a hanging node (Ganguly et al.,

2006) (e.g. Figure 6.13(a)). Pinwheel tiles are described by thick solid lines, while

additional edges, which eliminate hanging nodes in pinwheel tiles, are illustrated

by thin solid lines in Figure 6.13(a). The second type (Type II) is generated from a

pinwheel tiling (thick solid line in Figure 6.13(b)) by applying a triangular subdivision

(thin solid line in Figure 6.13(b)). Notice that Figures 6.13(a) and (b) have the same

pinwheel tiling (i.e. same thick solid lines) but different ways to handle hanging

nodes (i.e. different thin solid lines). Next, 4k meshes are generated by using the

nodal perturbation factor of 0.3 without the edge-swap operator (Type III), as shown

in Figure 6.13(c). Finally, 4k meshes with the nodal perturbation (NP = 0.3) and

the edge-swap operator are employed (Type IV). Available edge-swap operations in

a 4k mesh, for example, are described by the thick dashed line used for crack path

representation (Figure 6.13(d)).
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(a) (b)

(c) (d)

Figure 6.13: Examples of each mesh type: (a) Type I, (b) Type II, (c) Type III, and
(d) Type IV.
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Figure 6.14: (a) Illustration of the parameter ρ in the rectangular domain, and (b)
constraint for the set of vertices (p, q) related to the parameter ρ.

In order to quantify the isoperimetric property of these four mesh types, the ρ-path

deviation ratio (Ganguly et al., 2006) is defined as

devρ(ΩFE) = max

(
�FE(p, q)

‖p− q‖ : p, q ∈ V (ΩFE) and ‖p− q‖ � ρ

)
(6.4)

where V (ΩFE) is the set of all vertices of a finite element mesh (ΩFE), and ‖p− q‖
is the distance from p to q. In addition, �FE(p, q) is the shortest path represented by

edges of a finite element mesh (see Sections 6.2 and 6.3). A positive parameter ρ is
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selected as 1 so that the 2 by 1 domain contains a disk of diameter ρ, shown in Figure

6.14(a). The parameter ρ limits the range of the considered pairs of vertices (p, q) to

the ones whose distance to each other is greater than or equal to ρ (Figure 6.14(b)).

The ρ-path deviation ratio (devρ(ΩFE)) is the maximum relative error in representing

a straight line by utilizing a finite element mesh (ΩFE). Notice that Ganguly et al.

(2006) performed the same computational experiment to quantify the isoperimetric

property of a mesh based on a pinwheel-tiling.

For a 4k mesh with the nodal perturbation factor of 0.3, twelve 4k mesh grids

are utilized. For each grid, five randomly perturbed meshes are tested, and the

averaged deviation ratio (devρ(ΩFE)) among the five meshes is taken. Then, the ρ-

path deviation ratio of the 4k mesh with the nodal perturbation (Types III and IV) is

compared with the other two mesh types which are based on a pinwheel tiling (Types

Table 6.2: ρ-path deviation ratio (devρ) and Hausdorff distance (H(p, q)) with respect
to the number of elements.

Mesh type I Mesh type II

# of elem devρ H(p, q) # of elem devρ H(p, q)

16 1.3416 0.4 6 1.1441 0.3536
68 1.1948 0.3123 30 1.1749 0.2481
360 1.1843 0.0917 150 1.1755 0.12
1764 1.1264 0.0675 750 1.1156 0.1136
8880 1.0831 0.0552 3750 1.0827 0.0333
44292 1.0595 0.0414 18750 1.0606 0.0442
221640 1.0441 0.0291 93750 1.0456 0.0602

468750 1.037 0.0309

Mesh type III Mesh type IV

# of elem mesh grid devρ H(p, q) devρ H(p, q)

8 2×1 1.1700 0.3986 1.0964 0.4158
32 4×2 1.2143 0.2511 1.1115 0.2123
128 8×4 1.1523 0.1926 1.0887 0.1672
648 18×9 1.1062 0.1386 1.0700 0.0996
1568 28×14 1.0904 0.1031 1.0650 0.0958
3528 42×21 1.0817 0.0858 1.0581 0.0880
8712 66×33 1.0739 0.0459 1.0537 0.0509
18432 96×48 1.0674 0.0519 1.0512 0.0501
43808 148×74 1.0619 0.0482 1.0476 0.0342
93312 216×108 1.0591 0.0427 1.0460 0.0323
220448 332×166 1.0557 0.0413 1.0438 0.0274
468512 484×242 1.0537 0.0242 1.0425 0.0276
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I and II). The ρ-path deviation ratio versus the number of elements is provided in

Table 6.2, and is plotted in Figure 6.15(a) on semi-logarithmic scale. The 4k meshes

with the nodal perturbation and the edge swap (Type IV) perform better than the

pinwheel-based meshes in representing a straight line with approximately up to 0.1

million elements. In addition, in order to obtain the deviation ratio of 1.1, the required
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Figure 6.15: Quantification of the isoperimetric property in conjunction with (a) the
ρ-path deviation ratio, and (b) the Hausdorff distance.
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number of elements is approximately 100 for the 4k meshes (Type IV), while it is

1000 for the pinwheel-based meshes (Types I and II), i.e. one order difference, in this

example.

The Hausdorff distance between the shortest path in each mesh grid and the

corresponding straight line is estimated based on the results above. For each 4k

mesh grid, the average Hausdorff distance of the shortest paths of the five perturbed

meshes is taken. Then, it is compared with the Hausdorff distances of the shortest

paths in the two other mesh types (Types I and II). The Hausdorff distance versus

number of elements is presented in Table 6.2 and plotted in Figure 6.15(b). A general

decreasing trend is observed for Hausdorff distance values as the number of elements

increases for all the four mesh types.

The achieved results show that 4k mesh with nodal perturbation and edge swap

can perform either similarly or better than pinwheel-based mesh for some practical

grid sizes. Although the pinwheel-based mesh has the isoperimetric property (in the

limit sense), the exact path cannot be represented in numerical analysis (based on

discretization). This is because the isoperimetric property assures spatial convergence

only in the limit, and, in finite element analysis, the number of elements is finite.

6.5 Nodal Perturbation and Edge Swap
Algorithm

The nodal perturbations and edge-swap operator are implemented within the

framework of TopS. The nodal perturbation algorithm works as follows. First, the

internal nodes of the mesh are traversed randomly. For each of them, one computes its

minimum distance to the corresponding opposite edges in the incident elements. The

node is then displaced by the computed distance multiplied by a fixed perturbation

factor, along a randomly chosen direction. After applying the nodal perturbation, a

simple Laplacian smoothing technique (Field, 1988) is utilized in order to improve

the overall mesh quality. It is done by interactively averaging the coordinates of

internal nodes. A mesh quality metric (e.g. Lo’s parameter (Lo, 1989)) is used to

check whether minimum quality parameters are achieved and thus determine the

convergence of the algorithm. At each iteration step, all the elements of the mesh

are visited. For each element that does not meet the required quality standards,

the positions of its nodes are displaced by the average of the distance vectors to the

corresponding neighbors on the incident edges. The displacement is computed with a

simple arithmetic mean scaled by a fixed relaxation parameter set (φ) in the interval
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[0, 1]. This is given by the following expression:

pt+1
0 = pt

0 +
φ

n

n∑
i=1

(pt
i − pt

0) (6.5)

where pt
0 is the position of the current node at step t, pt

i is the position of its corre-

sponding ith neighbor node, and n is the number of adjacent edges.

The edge-swap algorithm works by simply removing the two triangles adjacent

to a given edge and inserting two new other triangles with the appropriate nodal

incidence. The callback mechanism of TopS, explained in Section 4.3, is used to

notify the application of the changed entities, such that the attached attributes can

be correctly transferred.

In computational simulation, if the edge swap is applied to a 4k structured mesh,

a mid-node of the swapped edge remains at the same location for six-node triangular

elements (Figure 6.16(a)). When the edge-swap operator is utilized in a perturbed

mesh, the mid-node of the swapped edge is relocated so that the edge becomes a

straight line (Figure 6.16(b)). Due to the modification of the nodal coordinates,

nodal quantities of the relocated node are updated through the interpolation of nodal

quantities. The original 4k path (e.g. shaded quadrilateral) is mapped into a 2 by 2

square domain (e.g. ξ − η coordinates) by using the nine Lagrange shape functions

with the nine gray solid nodes, i.e. x =
∑9

i=1 Ni(ξ, η)xi (see Figure 6.16(b)). Then,

the relocated nodal point in ξ− η coordinates is calculated, and the nodal quantities,

such as displacement, velocity and acceleration, are interpolated from the nine gray

nodes by using the nine Lagrange shape functions.

(a) (b)

Figure 6.16: Location of the mid-point in the edge-swap operator: (a) 4k structured
mesh, and (b) 4k perturbed mesh.
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6.6 Numerical Examples

The nodal perturbation and the edge-swap operators are employed for dynamic frac-

ture simulations. The nodal perturbation is applied to a finite element mesh before

computational simulation, while the edge-swap operator is adaptively requested dur-

ing computation. The computational implementation such as time integration, the

topology based data structure TopS, and the unloading/reloading relationship, are

presented in Chapter 4. This section provides three examples: compact compression

specimen tests, microbranching experiments and fragmentation simulations.

6.6.1 Compact Compression Specimen (CCS) Test

The compact compression specimen (CCS) test was developed by Rittel and Maigre

(1996) to investigate mixed-mode dynamic crack initiation in PMMA. The CCS is

fractured by applying the impact with a Hopkinson bar. The geometry and the

boundary conditions of the CCS is shown in Figure 6.17. The incident pulse is

applied on the left side of the specimen by an incident bar whose diameter is 16.5

mm. The magnitude of the pulse is approximately 2.2 kN, and the pulse lasts about

350 μs. They observed that a crack initiated by forming angle at a kink of about

45◦, and the dynamic stress intensity factor reached an experimental value of the

fracture toughness at time t = 96 ∼ 126 (μs). Previously, Papoulia et al. (2006)

utilized cohesive surface elements with reduced dimension to investigate convergence

of a crack initiation angle. Menouillard et al. (2008) simulated the CCS test with the

60

35

70

20

16

16.5
16.5 [mm]

Figure 6.17: Geometry of compact compression specimen tests and its boundary
condition.
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Heaviside enrichment in conjunction with linear elastic fracture mechanics (LEFM)

approach.

In this computational simulation, the plane strain condition is employed, and the

impact pulse is applied as an acceleration on the traction boundary along the lower

left segment 16.5 mm long. The elastic modulus of PMMA is 5.76 GPa, and the Pois-

(a)

(b) (c)

Figure 6.18: Finite element mesh of the compact compression specimen.
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son’s ratio is 0.42 (Rittel and Maigre, 1996). The mode I fracture energy (φn) and

the normal cohesive strength (σmax) are 352.3 N/m and 129.6 MPa, respectively. The

(a)

(b)

Figure 6.19: Crack path of CCS simulation results.
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mode II fracture parameters are assumed to be the same as the mode I parameters.

The shape parameters (α, β) are two so that the softening model provides a linear

softening relationship. Figure 6.18(a) illustrates the finite element mesh of the speci-

men. The mesh around a crack tip is generated by utilizing the curvilinear coordinate

transformation and the conformal mapping (Papoulia et al., 2006) so that the mesh

provides many crack initiation directions. Figure 6.18(b) shows the zoom of the mesh

around a crack tip, and Figure 6.18(c) demonstrates the perturbed mesh with the

nodal perturbation factor of 0.3. The number of nodes is 10908 and the number of

elements is 5345 at the initial discretization. A cohesive element is inserted at 80 μs,

and the cohesive element experiences complete failure at 90 μs. The crack path of the

computational simulation is illustrated in Figure 6.19. During simulation, nineteen

edge-swap operations are requested, and the crack path is generally smooth because

of the use of the edge-swap operator. Additionally, the crack initiation angle is close

to 45◦, which corresponds to the experimental observation. After the initiation, the

crack propagation direction changes along the vertical direction, which is similar to

the previous computation by Menouillard et al. (2008).

6.6.2 Microbranching Experiments

Microbranching experiments were performed by Sharon et al. (1995), and Sharon

and Fineberg (1996) to investigate microbranching instability. Specimens are PMMA

sheets having a thickness of either 0.8 mm or 3 mm, a width of 50 ∼ 200 mm and

a length of 200 ∼ 400 mm. The initial stress of σ0 = 10 ∼ 18 MPa is applied by

clamping the top and the bottom of a PMMA sheet. When a sharp crack is created

by a razor blade, a crack initiates and propagates. The higher energy input results

in the higher crack velocity (v) and the more microbranching along the major crack,

shown in Figure 6.20. The fracture surfaces are smooth when a crack velocity is lower

than a critical velocity (vc). When a crack velocity is greater than a critical value

(v > vc), one can observe that fracture surfaces are rough and more microbranching

occurs. These physical phenomena are quantitatively investigated by Miller et al.

(1999) and Zhang et al. (2007) in conjunction with cohesive surface elements. In

addition, Ganguly (2006) observed that unstructured mesh probably performs even

better than the pinwheel mesh in replicating the branching pattern for high initial

strain.
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Figure 6.20: Observation of microbranching experiment: (a) crack velocity (v), (b)
fractured surface, and (c) crack patterns with respect to different crack speeds (v ∼
300m/s < vc, v ∼ 400m/s ∼ vc, v ∼ 600m/s > vc). Figure is reproduced from Figure
4 of Sharon and Fineberg (1996).

The geometry and boundary conditions for computational simulations are de-

scribed in Figure 6.21. The domain size is reduced as 16 mm by 4 mm, and the plane

stress condition is employed with the unit thickness. The two-dimensional domain is

initially discretized by the 4k mesh grid of 192 by 48, and then the nodal perturba-

tion factor of 0.3 is applied. The edge-swap operator is activated when it is necessary

during computational simulation. The number of nodes is 74257 and the number

of elements is 36864 at the initial discretization. The time step (Δt) is 0.002 (μs),

4 mm

1 mm

16 mm

2 mm

ε0 = 0.010 ∼ 0.015

Figure 6.21: Schematics of geometry and boundary conditions for the microbranching
experiments.

144



which is approximately one order lower than the characteristic time step (Pandolfi

et al., 1999; Zhang et al., 2007). The initial strain (ε0 = 0.010 ∼ 0.015) is applied by

imposing an initial displacement boundary condition within the domain. The mate-

rial properties of PMMA are based on the properties listed in the reference (Xu and

Needleman, 1994). The elastic modulus of PMMA was 3.24 GPa, the Poisson’s ratio

was 0.35, and the density was 1190 kg/m3. The fracture parameters of PMMA were

selected as the same as those in the CCS simulation.

Figure 6.22 compares microbranching patterns with respect to different initial

strains (ε0 = 0.01, 0.012 and 0.015). The higher initial strain represents the more

energy input, and thus one can expect the more microbranching, which is captured

in the experimental results. The simulation results also demonstrate that the overall

length of microbranching increases with respect to the increase of the initial strain.

The major crack propagates along the horizontal direction, although it demonstrates

a little deviation from the center line for the initial strain of 0.012 (Figure 6.22(b)).

(a)

(b)

(c)

Figure 6.22: Branching patterns with respect to different initial strains: (a) ε0 = 0.01,
(b) ε0 = 0.012, and (c) ε0 = 0.015 for the 4k mesh grid of 192×48.
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The microbranching evolution with respect to time for the initial strain of 0.015 is

illustrated in Figure 6.23. In addition, the crack velocity is estimated through the

linear regression of time and crack tip position. Crack tip position is defined when

the constitutive relationship of a cohesive element provides complete separation at all

integration points. Figure 6.24 illustrates the crack velocity versus time with respect

to the different initial strains. The higher initial strain leads to the higher averaged

crack velocity and more fluctuation in the velocity, which qualitatively corresponds

(a)

(b)

(c)

(d)

Figure 6.23: Microbranching evolution with respect to time: (a) 2μs, (b) 8μs, (c)
14μs, and (d) 20μs.
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Figure 6.24: Crack velocity versus time and averaged velocity for initial strains (ε0)
of 0.01, 0.012 and 0.015 with the 4k mesh grid of 192×48.

to experimental results.

Mesh refinement is performed with the 4k mesh grid of 256×64, which leads to

131777 nodes and 65536 elements at the initial discretization. Figure 6.25 illustrates

branching patterns with respect to different initial strains (a) ε0 = 0.01, (b) ε0 =

0.012 and (c) ε0 = 0.015. These microbranching patterns well correspond to the

results with the 4k mesh grid of 192×48. The crack velocities versus time and the

averaged velocities are plotted in Figure 6.26 for each initial strain. The averaged

velocities obtained from the 256×64 mesh grid are similar to the velocities obtain

from the 192×48 mesh grid. Thus, the computational results are consistent under

mesh refinement regarding crack patterns and velocities.

In order to investigate the effect of randomness and the edge-swap operator on

computational results, three finite element meshes are consecutively generated with

the nodal perturbation factor of 0.3, and all the nodal locations are stored. For

each finite element mesh, the microbranching problem with the initial strain of 0.015

is simulated with the edge-swap operator (Figure 6.27) and without the edge-swap

operator (Figure 6.28). Although the detailed microbranching patterns are different

from each other because of the different discretizations, the overall crack patterns are

all similar to each other. In addition, Figures 6.27 and 6.28 illustrate that one can

obtain more consistent results with the edge-swap operator than without the edge-

swap operator because the edge-swap operator provides more number of potential

crack propagation directions. Notice that 66, 70 and 70 edge-swap operations are

adaptively employed in Figures 6.27(a), (b) and (c), respectively. Moreover, the
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(a)

(b)

(c)

Figure 6.25: Branching patterns with respect to different initial strains: (a) ε0 = 0.01,
(b) ε0 = 0.012, and (c) ε0 = 0.015 for the 4k mesh grid of 256 × 64.
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Figure 6.26: Crack velocity versus time and averaged velocity for initial strains (ε0)
of 0.010, 0.012 and 0.015 with the 4k mesh grid of 256×64.
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(a)

(b)

(c)

Figure 6.27: Three consecutive simulations for the initial strain of 0.015 with the
edge-swap operator.

(a)

(b)

(c)

Figure 6.28: Three consecutive simulations for the initial strain of 0.015 without the
edge-swap operator.
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maximum deviation of the major crack from the straight center line is approximately

0.4 mm for the three results with the edge-swap (Figure 6.27), while the maximum

deviations are 0.4 mm, 0.6 mm and 1.1 mm for the results without the edge-swap

(Figure 6.28).

The energy balance is a necessary condition to ensure the numerical stability

(Belytschko et al., 2000). Figure 6.29 illustrates the energy conservation with respect

to time for the initial strain of 0.015. The total energy (Etot) consists of the external

work (Eext), strain energy (Eint), kinetic energy (Ekin) and work done by fracture

(Efra). In this simulation, the total energy is a constant, which corresponds to the

initial strain energy, i.e. no external work (Eext = 0). After a crack initiates and

propagates, the strain energy decreases while the kinetic energy and the fracture

energy increase. The computational result of energy evolution demonstrates the total

energy conservation, as shown in Figure 6.29.
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Figure 6.29: Energy evolution with respect to the time for ε0 = 0.015.

6.6.3 Fragmentation Simulations

Fragmentation of a thick cylinder due to an impact load is investigated. The geom-

etry of the cylinder is shown in Figure 6.30(a). The inner radius is 80 mm, while

the outer radius is 150 mm. Impact pressure is applied along the inner rim, and

the impact pressure with respect to time is shown in Figure 6.30(b). The elastic

modulus is 210 GPa, and the Poisson’s ratio is 0.3 with a density of 7850 kg/m3.
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The fracture energy is 2000 N/m and the cohesive strength is 850 MPa. Previously,

Rabczuk and Belytschko (2004) investigated the fragmentation problem by using a

mesh-free method with cracking particles. Zhou and Molinari (2004) addressed mesh

dependency in fragmentation problems, and Song and Belytschko (2009) solved this

problem by using the cracking node method.

The cylindrical domain is discretized into a 4k mesh grid of 20×160 with a trans-

formation. The number of nodes is 25920 and the number of element is 12800 at

the initial discretization. Three finite element meshes are generated with the nodal

perturbation factors of 0.3, and the edge-swap operators are adaptively employed

during computation. A crack nucleation in the middle of the domain is prevented.

Fragmentation patterns of three consecutive computational results are demonstrated

in Figure 6.31. The numbers of the edge-swap operations used in Figures 6.31(a),

(b) and (c) are 116, 139 and 149, respectively. The numbers of major fragments for

each result are 24, 20 and 23, which correspond to the results by Song and Belytschko

(2009). Figure 6.32 illustrates the fragmentation process with strain energy density at

different time. Stress and strain are concentrated along the inner rim (Figure 6.32(a))

due to the internal pressure. Multiple cracks are initiated from the inner rim, and

propagate along the radial direction (Figures 6.32(b) and (c)). Some of cracks are ar-

rested during the fragmentation process while others propagate up to outer rim with

the formation of crack branching (Figures 6.32(d) and (e)). The number of major

fragments is 24, as shown in Figure 6.32(f).
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Figure 6.30: (a) Geometry of a thick cylinder, and (b) applied impact pressure with
respect to time.
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(a)

(b)

(c)

Figure 6.31: Fragmentation patterns of three consecutive computational results with
the nodal perturbation factor of 0.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.32: Fragmentation procedure with respect to time: (a) 26 μs, (b) 37 μs, (c)
39 μs, (d) 47 μs, (e) 54 μs, and (f) 64 μs.
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6.7 Some Remarks on 4k and Pinwheel Meshes

A 4k structured mesh is compared with a pinwheel-based mesh (i.e. 1 level). The

pinwheel-based mesh consists of the pinwheel tiling and triangles of the subdivision

shown in Figure 6.33(a). The solid line in the pinwheel-based mesh is the original

pinwheel tiling, while the dashed line provides additional sub-triangles to eliminate

hanging nodes in the pinwheel tiling. Then, both the solid and the dashed lines are

mapped into the 4k structured mesh (Figure 6.33(b)). The edges of an individual

pinwheel tiling and its subdivision can be represented by a subset of the edges of

a 4k mesh, although a 4k structured mesh has a different aspect ratio of triangles

compared to a pinwheel-based mesh. However, notice that a set of pinwheel tiles (e.g.

2 level) is not equivalent to a 4k mesh, as illustrated in Figure 6.34. The topology

between the pinwheel tiles and the 4k mesh are different along the line that has solid

circles.

Pinwheel tiling
Triangle subdivision

1

2

√
5

(a) (b)

Figure 6.33: Comparison by mapping edges of pinwheel-based mesh into edges of 4k
structured mesh.

Figure 6.34: Comparison between a set of pinwheel tiles and a 4k mesh.
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Reversely, edges of a 4kmesh (Figure 6.35(a)) are mapped into edges of a pinwheel-

based mesh (Figure 6.35(b)). In this case, one has to create additional edges (dashed-

red lines) in a pinwheel-based mesh because a 4k mesh has more edges (or directions)

at a node than a pinwheel-based mesh, which implies that 4k meshes have rich topol-

ogy. Notice that a finite element mesh whose internal nodes have more adjacent edges

is always preferable for crack propagation simulation with cohesive surface elements.

As discussed previously, 4k meshes with the edge-swap operator provide 8 potential

directions for all internal nodes. On the other hand, some internal nodes of pinwheel-

based meshes have 4, 5 or 6 directions, as shown in Figure 6.13(b). Therefore, 4k

meshes with the edge-swap provide more (or the same) number of potential directions

than pinwheel-based meshes for any internal nodes.

(a) (b)

Figure 6.35: Comparison by mapping edges of 4k structured mesh into edges of
pinwheel-based mesh with additional dashed-red edges.

6.8 Concluding Remarks

The use of the nodal perturbation and the edge-swap operator are proposed in cohe-

sive fracture simulations. The nodal perturbation leads to the geometrically unstruc-

tured 4k mesh while the edge-swap operator provides the topologically unstructured

4k mesh. These two operators reduce mesh bias, which exists in finite element anal-

ysis of fracture problems. Geometrical representation of a crack length and angle is

addressed in conjunction with mathematical and probabilistic arguments. Moreover,

both the nodal perturbation and the edge-swap operator reduce discrepancy between

mathematical and discretized paths more rapidly than pinwheel-based meshes, for

practical levels of mesh refinement.

The potential-based PPR cohesive zone modeling with TopS leads to an effective

computational framework to simulate physical phenomena associated with dynamic
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fracture, branching and fragmentation. Compact compression specimen (CCS) tests,

microbranching experiments and fragmentation problems are investigated by using

the nodal perturbation and the edge-swap operator. Simulation of the CCS tests illus-

trates a smoother crack pattern with the edge-swap operator. In the microbranching

experiments, computational simulation provides consistent results in terms of micro-

branching patterns and crack velocity. The use of the edge-swap operator reduces

the maximum deviation of the major crack from a straight center line. In addi-

tion, the total energy is conserved during adaptive insertion of cohesive elements and

the edge-swap operators. Finally, fragmentation of a thick cylinder is investigated.

The fragmentation patterns and the number of fragments obtained from this study

illustrate agreement with previous computational results.
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Chapter 7

Adaptive Mesh Refinement and
Coarsening for Cohesive Dynamic
Fracture

Adaptive mesh refinement and coarsening schemes are developed for the simulation of

dynamic fracture and branching problems while reducing computational cost signif-

icantly. The adaptive mesh refinement consists of a sequence of edge-split operators

while the adaptive mesh coarsening is based on a sequence of vertex-removal (or

edge-collapse) operators. Nodal perturbation and edge-swap operators are also em-

ployed around a crack tip region, and cohesive surface elements are adaptively inserted

whenever and wherever they are needed, i.e. the extrinsic cohesive zone model. Such

adaptive mesh modification events are maintained in conjunction with the topologi-

cal data structure TopS. The PPR potential-based cohesive model is utilized for the

constitutive relationship of the cohesive zone model. Mode I fracture, mixed-mode

fracture and branching problems are investigated. The computational results with

the adaptive mesh refinement and coarsening are consistent to the results with the

uniform mesh refinements.

7.1 Introduction

Adaptive mesh refinement schemes were utilized to control and minimize error in the

finite element analysis (Babuska and Rheinboldt, 1978; Zienkiewicz and Zhu, 1987;

Ainsworth and Oden, 1997; Paulino et al., 1999). Since then, researchers have applied

mesh adaptation schemes to several engineering problems while reducing computa-

tional cost. For linear elastic problems, mesh around a crack tip region is regener-

ated by a recursive spatial decomposition algorithm (Swenson and Ingraffea, 1988;

Wawrzynek and Ingraffea, 1991; Kim and Paulino, 2004), while the crack propa-

gates. Belytschko and Tabbara (1993) adaptively refined finite element meshes, i.e.

an h-adaptive technique, through subdividing a rectangular element into four, and

introduced the L2 projection of strains for error estimation in solving elasto-dynamic

problems. Molinari and Ortiz (2002) performed adaptive mesh refinement and coars-

157



ening for dynamic-plastic problems. The mesh refinement scheme is implemented

by using Rivara’s longest-edge propagation path bisection algorithm (Rivara, 1997)

while the coarsening scheme is based on the elimination of elements by edge-collapse.

Furthermore, adaptive mesh refinement techniques can be a good candidate for

multiscale numerical methods. For example, Bryan (1999) utilized the adaptive mesh

refinement technique in cosmology in order to represent the evolution of a cluster of

galaxies in high-resolution. Trangenstein (2002) investigated multi-component flow in

porous media in conjunction with adaptive mesh refinement. Other multiscale numer-

ical methods have been developed in conjunction with various techniques, for instance,

variational multiscale method (Hughes, 1995), multi-scale enrichment method (Fish

and Yuan, 2005), and multi-scale finite element method (Hou and Wu, 1997). Notice

that Hou and Wu (1997) emphasized the importance of boundary conditions for the

accuracy of numerical methods. The adaptive mesh refinement techniques do not

suffer from the accuracy of boundary conditions between coarse and fine scales be-

cause the finite element mesh can be fully compatible between coarse and fine meshes.

However, the major challenge in adaptive finite element analysis is to transfer field

variables between two discretizations, and to maintain a data structure to retrieve

adjacency relationships efficiently.

In this chapter, for dynamic cohesive fracture problems, a fine mesh is utilized

to capture micro-cracks and nonlinear crack tip behavior, while a coarse mesh is

employed in a far field from a crack tip region in conjunction with adaptive mesh

refinement and coarsening schemes. The mesh refinement and coarsening are per-

formed systematically by keeping the topology of a 4k mesh with edge-split and

vertex-removal operators. The mesh adaptation is incorporated with TopS (Celes

et al., 2005a,b), which provides compact and efficient topological representation. The

nonlinear cohesive zone is represented by extrinsic cohesive surface elements, and the

PPR potential-based model is utilized for the constitutive model of the cohesive zone.

In addition, the nodal perturbation and edge-swap operators are utilized to reduce

a mesh bias and to improve crack patterns in a 4k mesh, as discussed in Chapter 6.

The computational framework is verified and validated by solving a predefined crack

path, mixed-mode crack propagation, and branching problems.

The chapter is organized as follows. Section 7.2 presents the adaptive mesh re-

finement schemes and the interpolation of new nodes, while Section 7.3 explains the

adaptive mesh coarsening schemes and coarsening criterion. Computational results

of mode I fracture, mixed-mode fracture and branching problems are provided in

Section 7.4. Finally, Section 7.5 summarizes the key findings of this study.
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7.2 Adaptive Mesh Refinement

Adaptive mesh refinement requires an efficient and robust data structure in order to

retrieve adjacency relationships. In this study, the topological data structure TopS

(Celes et al., 2005a,b) is used for representing 4kmeshes. This data structure provides

efficient element-to-element adjacency and representation of vertices and edges, which

are convenient for the implementation of refinement and coarsening operations. A

sample initial non-deformed mesh and the convention used for the local incidences of

elements are shown in Figure 7.1. The mesh is composed of a uniform set of right

isosceles triangles and internal vertices with valence 4 or 8. Element incidence is

defined such that the third local vertex (v3) of each triangle is associated to the right

angle and corresponds to a global vertex of valence 4. The first local edge (e1) is

opposite to the third vertex (v3).

(a) (b)

e1

e1

e1

e1

e2

e2

e2

e2

e3

e3

e3

e3

v1

v1

v1

v1

v2

v2

v2

v2

v3

v3

v3

v3

Figure 7.1: (a) Sample initial non-deformed mesh, and (b) local nodal incidences of
triangles of a region of the mesh.

In the following subsection, mesh refinement schemes of 4k meshes are explained

in conjunction with edge-split operators. Next, adaptive mesh refinement criterion

and the interpolation schemes of new nodal quantities are presented.

7.2.1 Mesh Refinement Schemes

Mesh refinement is implemented by using an edge-split operator. The operator sub-

divides an edge into two new other edges. In order to maintain the 4k structure,

internal edge splits are defined on specific clusters of two triangles, as in the litera-

ture (Velho and Gomes, 2000), and boundary edges. Figure 7.2 illustrates the two

possible cases of the edge split. An interior edge split replaces the two adjacent trian-

gles with four triangles (Figure 7.2(a)) while a boundary edge split replaces a triangle
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with two triangles (Figure 7.2(b)).

(a) (b)

Figure 7.2: Local mesh patterns for which edge splits are allowed: (a) mesh around
an interior edge (b) boundary edge.

In a 4k mesh, the split-edge is the first local edge (e1), described in Figure 7.1(b),

of the adjacent triangles. When the edge-split operator is applied to other edges (e2

or e3), a recursive procedure is introduced in order to transform the local sub-mesh

into one of the patterns in Figure 7.2. The procedure works by splitting edges of

neighboring triangles until an allowable pattern is achieved, i.e. recursive edge-split

procedure, as illustrated in Figure 7.3. When the dashed edge in Figure 7.3(a) is to

be split, the edge does not fit in any of the patterns in Figure 7.2. Then, other edges

are split (Figure 7.3(b)) in order to create an allowable pattern for the edge’s split

(Figure 7.3(c)). Therefore, one can select any edge in a 4k mesh for the edge-split

operator.

(a) (b) (c)

Figure 7.3: Recursive edge split procedure; (a) request for an edge-split along the
edge with a dashed line, (b) split edges to create an allowable pattern, and (c) split
edge along the dashed edge.
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In addition, edge splits are allowed when a cohesive element exists in between the

two triangles of the patterns of Figure 7.2(a). When one of the edges of cohesive

elements is split, the other edge is also split by the edge-split operator in order to

keep mesh topology consistent. As a consequence, the cohesive element is divided

into two new elements (Figure 7.4(b)). However, the edge-split operator on cohesive

elements is not employed in computational simulation, because a finite element mesh

is refined before inserting cohesive elements.

(a) (b)

Figure 7.4: Edge split along a cohesive surface element.

During the edge-split operations, edge depths are computed. The initial depth of

all the edges of an unmodified mesh is zero. The value assigned to the newly created

edges is equal to the maximum depth of all the edges of the triangles adjacent to

the split edge, plus one (MaxDepth(edges) + 1). For example, when the horizontal

dashed edge on the left is split, the two vertical edges are created, as shown in

Figure 7.5. The depth value assigned to the vertical edges is 3©, which is equal to the

maximum depth of the edges ( 2©) of the adjacent triangles plus one. The depth of the

two new horizontal edges ( 1©) is the same as the original edge. In addition, Figure 7.6

shows a sequence of edge splits executed on a sample mesh. At each step, the dashed

edges are split, and depth values are assigned to the newly created ones, shown in

Figures 7.6(a), (b) and (c). The depth values are illustrated by the numbered labels

111 111

0

0

0

0

0

0

0

0

2

2

2

2
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2

2

3

3

3

3

Figure 7.5: Example of the edge-split operation and computed edge depth.
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on them. Notice that labels of edges with zero-depth value (initial value) are omitted.

The depth value is associated with a relative local ordering for edge splits, which is

utilized for the adaptive mesh coarsening schemes, discussed in Section 7.3.

1
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1 1

1
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1 1

1
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1 1
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2
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2

2

2

2

2

3

3

(a)

(b)

(c)

Figure 7.6: Sequence of edge-split operations along the dashed edges.

7.2.2 Refinement Criterion and Interpolation of New Nodes

In computational simulation of cohesive fracture problems, the adaptive mesh re-

finement is performed by employing a priori knowledge that a fine mesh is usually

utilized around a crack tip region in order to capture high stress and strain gradients.
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In order to have a uniformly refined mesh around crack tip regions, the edge-split

operator is used non-recursively. The mesh refinement procedure is to split all the

allowable edges located within a circular region around the crack tip. This is done

in several steps until a maximum level of refinement is reached. Figure 7.7 illustrates

the refinement procedure on a sample mesh for three levels of refinement. However,

the edge-split operator along a cohesive element is not allowed in computational sim-

ulation, as mentioned previously.

(a) (b) (c)

Figure 7.7: Three refinement steps executed inside a circular region: (a) level 1, (b)
level 2, and (c) level 3.

The adaptive mesh refinement with the edge-split operations leads to new nodes

whose quantities should be interpolated from adjacent nodes in the nonlinear finite

element analysis. For example, in the 4k mesh with quadratic triangular elements

of 6 nodes each (Figure 7.8(a)), two red-dashed edges are split: one edge is on the

boundary and the other is on the interior. The boundary edge-split operation provides

three new nodes, while the interior edge-split operation leads to four new nodes, as

shown in Figure 7.8(b). One can further split the blue-dashed interior edge (Figure

(a) (b) (c)

Figure 7.8: Example of the edge-split operations.
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7.8(b)), and this operation provides four additional blue nodes, as shown in Figure

7.8(c). Notice that these new nodes can be locally relocated (or perturbed) at the

time of the insertion of new nodes, if one utilize the nodal perturbation. In addition,

nodal quantities (e.g. displacement, velocity and acceleration) of new nodes should

be interpolated from neighboring nodes for the explicit time integration in elasto-

dynamic problems.

For the interpolation of new nodes, the choices of sampling nodes and interpolation

functions are essential. First, sampling nodes are selected in a recursive procedure.

For example, the three new red nodes, which are resulted from the boundary edge-

split operation, are interpolated from six nodes, which correspond to the members

of a triangular element that shares the boundary edge (see Figure 7.9(a)). Next, the

four new red nodes, which are resulted from the interior edge-split operation, are

interpolated from nine nodes, which are the members of the adjacent elements that

share the interior edge (see Figure 7.9(a)). Similarly, the four blue nodes are inter-

polated from nine nodes, which are the members of the adjacent elements that share

the interior edge, as shown in Figure 7.9(b). Because the blue nodes are interpolated

from four black nodes and four red nodes, the red nodes are interpolated before the

blue nodes are interpolated. In other words, new nodes, which are inserted first,

should be interpolated first. Therefore, the sequence of the interpolations is the same

as the sequence of the edge-split operations.

(a) (b)

Figure 7.9: Interpolation scheme for new nodes.

For interpolation functions, the quadratic Lagrange basis functions (i.e. shape

functions) are utilized. The nine node quadratic interpolation functions are used

for the interior edge-split, while the six node quadratic interpolation functions are

utilized for the boundary edge-split. The approximated nodal quantities of a new
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node (e.g. displacement, ũi) are obtained by

ũi =
n∑

j=1

Nj(ξi, ηi)uj (7.1)

where n is the number of interpolation functions, Nj are the Lagrange basis functions,

and ξi and ηi are nodal locations in the mapped coordinate system (e.g. Figure

7.10(b)).

x

y

ξ

η

(a) (b)

Figure 7.10: (a) Physical coordinate system, and (b) mapped coordinate system.

The nodal locations of new nodes are mapped from the physical coordinate (x−y)

system to the mapped coordinate (ξ − η) systems. For example, the transforma-

tion of a quadrilateral from the mapped coordinate system (Figure 7.10(b)) to the

physical coordinate system (Figure 7.10(a)) is given as T : (ξ, η) −→ (x, y) where

x =
∑n

i=1 Ni(ξ, η)xi and y =
∑n

i=1 Ni(ξ, η)yi. Then, the inverse mapping (T−1 :

(x, y) −→ (ξ, η)) is performed by utilizing Newton’s algorithm to evaluate the nodal

locations of new nodes in the mapped coordinate system. Notice that the size of

nonlinear system for the inverse mapping in two-dimensions is two, and thus the

computational cost of this inverse mapping is not significant.

7.3 Adaptive Mesh Coarsening

The coarsening procedure reverses a sequence of edge-splits by utilizing a vertex-

removal (or edge-collapse) operator. This operator works by removing a vertex and

merging adjacent elements in order to restore a previous level of refinement. In this

section, mesh coarsening schemes and coarsening criterion are presented.
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7.3.1 Mesh Coarsening Schemes

Mesh coarsening consists of a sequence of vertex-removal operators. Mesh struc-

ture is maintained by constraining internal vertex removals to vertices of valence 4

(Velho and Gomes, 2000; Velho, 2001), and boundary vertex removals to vertices of

valence 2. This corresponds to the four-face and two-face triangle clusters presented

respectively in Figures 7.11(a) and (b). Because the local sub-mesh in Figure 7.11(a)

can be originated from two distinct cases (see Figure 7.2), the refinement procedure

must record historical data so that ambiguities can be consistently handled. The

pattern in Figure 7.11(b) occurs on mesh boundaries, and does not require handling

of ambiguous cases.

(a) (b)

Figure 7.11: Vertex-removal operator for mesh coarsening: (a) interior vertex-removal
and (b) boundary vertex-removal.

In order to reverse a sequence of mesh refinements in a consistent way, the vertex-

removal operator needs to determine from which pattern the current local sub-mesh

originated. To accomplish this, we record the history of edge-split operations exe-

cuted so far. However, instead of keeping a direct acyclic graph (DAG) of edge splits

explicitly, a single integer value is assigned to each edge in order to identify its cor-

responding depth in the graph. Edge depth values are stored during the edge-split

operations, as discussed in the previous section. This is sufficient for the purpose of

the adaptive procedures used in this work and allows the reduction of the memory

required by them.

The execution of the vertex-removal operator is illustrated in Figure 7.12. For

each removed vertex, the incident edges with the greatest depth are deleted, and the

corresponding adjacent elements merged. For example, the vertex-removal operator

is applied in a shaded 4k patch. The maximum edge depths in the 4k patches in

Figures 7.12(a) and (b) are 3© and 2© along the green and red lines, respectively.
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Then, the two edges, which possess higher edge depth, are deleted, and the other two

edges are merged from the each mesh.

In order to preserve attributes and geometry of crack paths and mesh boundary, we

impose some additional constraints to the coarsening procedure. The vertex-removal

operator is neither applied to vertices of cohesive elements nor on mesh boundary.

Edge-swaps can occur as cracks propagate (see Chapter 6), and undoing edge swaps

is not necessary because vertices of cohesive elements are not removed.
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(a)

(b)

(c)

Figure 7.12: Sequence of vertex-removal operations in shaded 4k patches.
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7.3.2 Coarsening Criterion and Local Update

The adaptive mesh coarsening is performed on the basis of a posteriori coarsening

criterion, i.e. the root mean square of strain error, which is convenient to use because

it is non-dimensional. The strain error indicator for volume of ith element (Ωi) is

expressed as

ei =

[∫
Ωi
(εexact − ε)T (εexact − ε)dΩ

Ωi

]1/2
(7.2)

where εexact is exact strain, and ε is the finite element solution for the strain. In

this study, because an original 4k patch (Figure 7.13(a)) generally provides better

approximation in displacement field than a coarsened 4k patch (Figure 7.13(b)), the

strain of the original 4k patch (εf) is used for εexact while the strain of the coarsened

4k patch (εc) is utilized for ε. Then, the strain error indicator for the 4k patch is

expressed as

e4k =

[
4∑

i=1

∫
Ωi
(εf − εc)

T (εf − εc)dΩ

Ωi

]1/2
(7.3)

where the integration is performed numerically in four elements (Ωi) of the original 4k

patch. When the approximated error is smaller than a specified value (e.g. 2%), an

original 4k patch is coarsened. In addition, mesh coarsening is not performed around

a crack tip region in order to avoid consecutive mesh coarsening and refinement.

Notice that Belytschko and Tabbara (1993) introduced a strain-projection criterion

by replacing εexact with the strain obtained from the L2 projection of the finite element

strain. In addition, the root mean square of strain error, the L2 norm of strain, and

the energy norm in terms of strain have a similar structure, and thus these can be

similarly approximated (Zienkiewicz et al., 2005).

Adaptive mesh coarsening leads to removing shape functions while adaptive mesh

refinement results in adding shape functions. The reduction of a solution space (i.e.

u1u1 u2u2

u3u3 u4u4

u5u5

u6u6

u7u7

u8u8 u9
u9 → ũ9

u10

u11

u12

u13

Figure 7.13: (a) Original 4k patch, and (b) coarsened 4k patch.
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mesh coarsening) does not guarantee the conservation of the strain energy between

the original 4k patch (Figure 7.13(a)) and the coarsened 4k patch (Figure 7.13(b)).

In order to minimize the difference of the strain energies, the nodal displacement

of a center node (u9) is locally modified by matching the strain energy between two

different discretizations. Notice that this modification does not influence the adjacent

elements of the 4k patch. The updated displacement (ũ9) is utilized to evaluate the

velocity and acceleration in a coarsened 4k patch.

The nodal displacement of the center node can be updated by two approaches.

First, one can optimize the displacement through minimizing the difference between

the original displacement (u9) and the updated displacement (ũ9),

min ‖u9 − ũ9‖2 (7.4)

under the condition such that

g(ũ9) = Eint − Ẽint(ũ9) = 0 (7.5)

where Eint is the strain energy in the original 4k patch, and Ẽint is the strain energy

in the coarsened 4k patch, which is a function of the updated displacement (ũ9). The

constraint function can be expressed in a closed form, and the optimization problem

is solved by introducing the Lagrange multiplier. The computational cost in solving

this optimization problem is not expensive because the number of unknown is two

and because the objective function and the constraint function is quadratic which

leads to a constant Hessian matrix of the objective function.

The second approach is that the nodal displacement (u9) is updated by equating

the strain energy of the original 4k patch to the strain energy in the coarsened 4k

patch along horizontal and vertical directions. For two-dimensional problems, the

strain energy of the original 4k path is decomposed into the strain energy associated

with the horizontal direction (Eint(x)) and the energy related to the vertical direction

(Eint(y)), i.e. Eint = Eint(x) + Eint(y). Similarly, the strain energy of the coarsened 4k

patch is also divided into the two component, i.e. Ẽint(ũ9) = Ẽint(x)(ũ9)+ Ẽint(y)(ũ9).

Each directional strain energy is set to be the same, which provides two equations

for two unknowns. Then, these nonlinear equations are solved by using the Newton’s

algorithm.
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7.4 Numerical Examples

The adaptive mesh refinement and coarsening schemes are employed for computa-

tional simulation of dynamic crack propagation. A finite element mesh is adaptively

refined after inserting cohesive elements and updating displacement, velocity, accel-

eration and boundary conditions in time step. The new nodes resulted from the

adaptive mesh refinement are relocated (or perturbed) on the basis of a given nodal

perturbation factor (e.g. 0.2). After the perturbation of the new nodes, new nodal

quantities are interpolated in the recursive order. The adaptive mesh coarsening is

performed on the basis of the coarsening criterion, for example, in every 200 time

steps before evaluating acceleration and velocity. When a 4k patch is coarsened, the

displacement of the center node is updated, and the updated displacement is uti-

lized for the calculation of the internal force vector, acceleration and velocity. Notice

that the nodal perturbation and the edge-swap operators are adaptively employed

for mixed-mode fracture and branching problems in order to obtain realistic crack

patterns, as discussed in Chapter 6. In this section, mode I predefined crack path,

mixed-mode crack propagation and branching problems are investigated.

7.4.1 Predefined Crack Path Problem: Mode I Fracture

The geometry of a single end notched specimen is described in Figure 7.14, and

the initial strain (ε0) of 0.036 is applied on a specimen. A potential crack path is

predefined along the horizontal direction, which provides mode I fracture, in this

study. The elastic modulus is 3.24 GPa, the Poisson’s ratio is 0.35, and the density is

1190 kg/m3. For the cohesive fracture parameters, the mode I fracture energy (GI),

the cohesive strength (σmax) , the shape parameters (α) are 352 N/m, 324 MPa, and

2, respectively. The mode II fracture parameters are assumed to be the same as the

0.2 mm

unit thickness

2 mm

0.2 mm

ε0 = 0.036

Figure 7.14: Schematics of geometry and boundary condition.
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mode I fracture parameters.

The extrinsic cohesive zone model is employed with a predefined crack path, and

finite element meshes are generated by a 4k structured mesh, shown in Figure 7.15(a).

Notice that Zhang and Paulino (2005) investigated the predefined crack path problem

with the intrinsic cohesive zone model (Figure 7.15(b)). Because of the discontinuous

nature of the extrinsic cohesive zone model, convergence analysis are firstly performed

for uniformly refined meshes. Then, the computational results with the adaptive mesh

refinement & coarsening are compared to the results with a uniformly refined mesh.

Predefined path

Predefined cohesive elements

(a)

(b)

Figure 7.15: Mode I fracture problem: (a) Extrinsic cohesive zone model with pre-
defined path, and (b) intrinsic cohesive zone model with predefined cohesive surface
elements.

Convergence Analysis

Convergence of computational results with respect to the time increments and element

sizes is investigated. For convergence analysis of time increments (Δt), two finite

element meshes are generated within the domain. One mesh has the 100×10 mesh

grid with element size of 20μm, and the other has the 200×20 mesh grid with element

size of 10μm. Four time increments (Δt = 1 × 10−3μs, 0.4 × 10−3μs, 0.2 × 10−3μs

and 0.1× 10−3μs) are tested for each mesh. The normalized crack tip location versus

time is plotted for the element size of 20μm (Figure 7.16(a)) and the element size of

10μm (Figure 7.16(b)). The decrease of the time increment results in the decrease of

the slope of the crack tip location versus time curve, i.e. velocity. The computational

result with Δt = 0.2×10−3μs is almost the same as the result with Δt = 0.1×10−3μs

for both finite element meshes. This fact demonstrates that the smaller time step

leads to converged results in this problem. Additionally, the element size of 20 μm
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provides more sensitive results than the element size of 10 μm with respect to the

change of the time increments.

In addition, the contribution of the last term in the energy variation expression

(4.7), i.e. Δt2

2

(
β − 1

2
γ
)
(ün+1 − ün)

TM(ün+1 + ün), is estimated with respect to

different time increments. Five time increments (Δt = 1 × 10−3μs, 0.8 × 10−3μs,

0.4 × 10−3μs, 0.2 × 10−3μs and 0.1 × 10−3μs) are tested with the 200×20 4k mesh
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Figure 7.16: Convergence of crack tip location with respect to the time increment:
(a) element size of 20 μm, and (b) element size of 10 μm.
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grid. Figure 7.17 illustrates that the contribution is not significant when one selects

small time step in the time integration.

For convergence analysis of element sizes, five 4k structured meshes are generated

with the mesh grid of 80×8, 100×10, 140×14, 200×20 and 400×40 whose element

sizes (hel) are 25μm, 20μm, 14μm, 10μm and 5μm, respectively. Time increment
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(ü

n
+
1
−
ü
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Figure 7.17: The contribution of Δt2/8(ün+1 − ün)
TM(ün+1 + ün) with respect to

the time increments.
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Figure 7.18: Convergence of crack tip location with respect to the element size.
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(Δt) is 0.2 × 10−3μs for all five meshes, which is small enough to obtain converged

results. The crack tip location versus time is plotted in Figure 7.18 for each element

size. The decrease of element sizes leads to the increase of the velocity (or slope).

When element size is smaller than 14μm, the change of crack tip velocity is less

significant. Notice that this study focuses on the convergence of crack path and crack

velocity with respect to mesh refinement.

The cohesive element size should be selected with great care. Previous researchers

suggested that size of cohesive elements be at least two to three times smaller than size

of the cohesive process zone so that cohesive elements represents nonlinear traction-

separation relationships (Klein et al., 2001; Zhang, 2007). The size of the process

zone is theoretically estimated (Rice, 1968a), which is proportional to Eφn/σmax
2 for

quasi-static problems. Yang and Ravi-Chandar (1996) demonstrated that the process

zone size also depends on loading rate for mode III dynamic fracture problems. Zhang

(2007) investigated the effect of material properties and loading rate on the process

zone size in conjunction with a rate-dependent constitutive model for mode I dynamic

fracture problems. Figure 7.19 illustrates the convergence of the process zone size

under mesh refinement for the predefined crack path problem with the initial strain

of 0.025. Alternatively, cohesive element size can be determined on the basis of a

posteriori error estimation. One can, for example, compare the traction obtained

from a displacement jump (i.e. constitutive model) with the traction resulted from
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Figure 7.19: Cohesive process zone size versus time with respect to mesh refinement.
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bulk elements (i.e. computational results), and determine whether to refine a finite

element mesh around a crack tip or not (Haber, 2009).

Adaptive Mesh Refinement (AMR)

In order to demonstrate the accuracy of the adaptive mesh refinement (AMR) in

the extrinsic cohesive zone model, the computational results with adaptive mesh

refinement are compared with the results with a uniformly refined mesh. A finite

element mesh with uniform element size of 5μm is generated by the 400×40 mesh

grid, which provides 64000 elements and 128881 nodes. The zoom of the uniform mesh

around the crack tip is shown in Figure 7.20(a). Finite element mesh for adaptive

mesh refinement simulation is initially generated by the 100×10 mesh grid with the

refined element in a crack tip region. The coarse mesh grid has element size of 20μm,

while element size at the crack tip region is 5μm, which corresponds to the element

size of a uniform mesh. The zoom of the mesh around the crack tip is illustrated

in Figure 7.20(b). The number of elements is 4448, and the number of nodes 9147

is at the initial discretization. Since the adaptive local mesh refinement significantly

(a)

(b)

Figure 7.20: (a) Finite element mesh with uniform element size of 5μm, and (b) finite
element mesh with local refinement around crack tip and the size of 5μm.
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(a)

(b)

Figure 7.21: Deformed shape with finite element mesh at t = 0.2μs (a) uniform
400×40 mesh grid, and (b) 100×10 mesh grid with adaptive local mesh refinement.

(a)

(b)

Figure 7.22: Strain energy at t = 0.2μs (a) 400×40 mesh grid, and (b) 100×10 mesh
grid with the AMR.
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reduce the number of nodes and the number of elements, the computational cost with

the AMR technique is considerably cheaper than standard computational simulations

with a uniformly refined mesh.

While a crack propagates, the crack tip position is updated, and finite element

mesh around a crack tip is adaptively refined, as shown in Figure 7.21(b). Deformed

shapes for both finite element meshes at the time (t) 0.2 μs are illustrated in Figure

7.21. The crack tip position and shape obtained from the AMR technique are almost

identical to those resulted from a uniformly refined mesh. Figure 7.22 (a) and (b)

illustrate the strain energy at 0.2 μs for the uniform 400×40 mesh grid and the 100×10

mesh grid with the AMR, respectively. Both meshes demonstrate the high strain

energy around the crack tip, and globally similar strain energy variation. However,

the 400×40 mesh grid provides more detailed description of the strain energy, like

the expanding wave from the crack tip, than the 100×10 mesh grid with the AMR,

as expected.

The energy balance is a necessary condition to ensure the numerical stability (Be-

lytschko et al., 2000). The total energy (Etot) consists of the external work (Eext),

strain energy (Eint), kinetic energy (Ekin) and work done by fracture (Efra). In this

simulation, the total energy is a constant, which corresponds to the initial strain

0 0.5 1 1.5 2
0

0.4

0.8

1.2

1.6

 

 

Time (μs)

E
n
er
gy

ev
ol
u
ti
on

(N
-m

)

Strain energy (Eint)
Kinetic energy (Ekin)
Fracture energy (Efra)
Total energy (Etot)
AMR: Strain energy
AMR: Kinetic energy
AMR: Fracture energy
AMR: Total energy

Figure 7.23: Energy evolution with respect to the time for the uniform mesh refine-
ment (black lines) and the AMR (red lines).
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energy, i.e. no external work (Eext = 0). After a crack initiates and propagates, the

strain energy decreases while the kinetic energy and the fracture energy increase. Fig-

ure 7.23 illustrates the energy conservation with respect to time for both the uniform

mesh refinement (black dashed line) and the adaptive mesh refinement (red dashed

line). The energy evolutions of strain energy, kinetic energy and fracture energy

for the uniform mesh refinement (black lines) are almost the same as the evolutions

for the adaptive mesh refinement (red lines). Therefore, the AMR technique in the

extrinsic cohesive zone model provides equivalently accurate computational results

compared to the results with the uniformly refined mesh in this example.

Adaptive Mesh Coarsening

Adaptive mesh coarsening reduces a solution space, and thus leads to numerical error

in finite element analysis. The error due to the adaptive coarsening is investigated

on the basis of the energy evolution. Element size is 20μm and 5μm for the coarse

and fine mesh grids, respectively. While a crack propagates, the crack tip region is

adaptively refined, and the outside of the crack tip region is coarsened on the basis of

the coarsening criterion, as discussed previously. Two sets of finite element analysis

are preformed with the initial strain of 0.036 and 0.028. Four error levels (0.01, 0.02,
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Figure 7.24: Total energy variation with respect to time for different coarsening error
level of e4k.
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Table 7.1: Numbers of nodes and elements, and relative error of the total energy with
respect to the coarsening error levels (e4k).

ε0 = 0.036 ε0 = 0.028
# of nodes # of elem ΔEtot/Etot # of nodes # of elem ΔEtot/Etot

e4k < 0.01 37530 18274 0.0282 33974 16496 0.0188
e4k < 0.02 28250 13634 0.0423 19098 9058 0.0424
e4k < 0.05 19622 9320 0.0845 17546 8282 0.0518
e4k < 0.1 18904 8556 0.1056 17542 8280 0.0565

0.05 and 0.1) are tested for the coarsening criterion. Figure 7.24 illustrates the total

energy evolution with respect to time for different coarsening error levels of e4k. The

lower value of the coarsening criterion, which corresponds to more tighter criterion

for the coarsening, results in less deviation for the constant total energy. Table 7.1

demonstrates the numbers of elements and nodes, and the relative error of the total

energy (ΔEtot/Etot) at the final discretization with respect to different coarsening

error levels. A loose mesh coarsening criterion yields fewer nodes and elements (i.e.

coarser mesh), which results in a higher relative error at the final discretization.
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Figure 7.25: Energy evolution with respect to the time for the uniform mesh re-
finement (black lines) and the adaptive mesh refinement & coarsening (AMRC) (red
lines).

179



In addition, the energy evolution with the adaptive mesh refinement and coars-

ening is compared to the energy evolution with the uniform mesh refinement. The

initial strain is 0.036, and 4k patches are coarsened when the root mean square of

strain error (e4k) is less than 0.02. Figure 7.25 illustrates the well agreement of the

energy evolution between the uniform mesh refinement (black lines) and the adap-

tive mesh refinement and coarsening (red lines). Although the total energy slightly

decreases for the case of the adaptive mesh refinement and coarsening, the fracture

energy (Efra) evolutions are almost identical to each other.

7.4.2 Mixed-Mode Crack Propagation

For a mixed-mode fracture problem, a doubly notched specimen under impact load

is investigated. The geometry of the specimen is shown in Figure 7.26(a), and the

impact loading is applied by a projectile. Kalthoff and Winkler (1987) tested the

specimen to investigate failure mode transition with respect to the loading rates.

They observed that relatively lower loading rate resulted in brittle failure with a

crack propagation angle of about 70◦ while higher loading rate generated a shear

band ahead of the initial notch with a negative angle of about −10◦. This study

mainly focuses on brittle fracture behavior.
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(a) (b)

Figure 7.26: (a) Geometry and boundary condition of a doubly notched specimen,
and (b) its symmetry domain for finite element analysis.
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In the computational simulation, the symmetry condition is utilized, and thus

fixed displacement along the vertical direction is imposed at the bottom of the spec-

imen, shown in Figure 7.26(b). The projectile is assumed to have the same elastic

impedance as the doubly notched specimen, and thus one-half of the projectile speed

is applied as the impact velocity (Lee and Freund, 1990). The impact velocity (v0) of

16.54 m/s is applied at the lower left region. Maraging steel 18Ni(300) is used as a

representative material property of the doubly notched specimen (Belytschko et al.,

2003; Zhang and Paulino, 2005). The elastic modulus is 190 GPa, the Poisson’s ratio

is 0.3, and the density is 8000 kg/m3, which lead to the Rayleigh wave speed of 2800

m/s. For mode I fracture parameters, fracture energy and cohesive strength are 22.2

kJ/m2 and 1.733 GPa, respectively. The shape parameter is selected as two, which

leads to an almost linear softening behavior. The mode II fracture parameters are

assumed to be the same as the mode I fracture parameters.

In the analysis of the adaptive mesh refinement and coarsening, the finite ele-

ment mesh is initially discretized as shown in Figure 7.27(a). The mesh has 20× 20

coarse mesh grid with element size of 5mm, and is refined around a crack tip with

element size of 1.25mm. The numbers of elements and nodes are 4191 and 5351,

respectively. A cohesive surface element is first inserted at time 25.4μs, and the com-

plete separation of the cohesive element occurs at time 26.5μs. The finite element

mesh discretization at time 55μs and 77.5μs are illustrated in Figures 7.27(b) and

(c), respectively. The crack tip region is adaptively refined, and the far field from the

crack tip is coarsened. During this dynamic crack propagation, the nodal perturba-

tion (NP = 0.2) is adaptively employed around crack tip region, and 28 edge-swap

operations are performed when and where they are needed. More 4k patches on the

left hand side of the main crack are coarsened than 4k patches on the right hand

side because the right hand side of the crack provides more complicated displace-

ment field. The strain energy density at time 77.5μs is shown in Figure 7.27(d), and

it clearly illustrates that the right hand side has higher strain energy than the left

hand side. The initiation angle is approximately 62◦, which is obtained by the linear

regression. These computational results well agree with the previous computational

results by Belytschko et al. (2003); Zhang and Paulino (2005); Song and Belytschko

(2009). Belytschko et al. (2003) simulated the brittle fracture behavior based on loss

of hyperbolicity criterion in conjunction with a discontinuous enrichment functions

(i.e. X-FEM). Zhang and Paulino (2005) utilized an intrinsic cohesive zone model for

dynamic crack propagation, and further investigated the effect of material gradation.

Song and Belytschko (2009) introduced a cracking node method for this problem.

181



(a) (b)

(c) (d)

Figure 7.27: Finite element discretization for the adaptive mesh refinement and coars-
ening (a) at the initial time step, (b) at time t = 55μs and (c) at time t = 77.5μs,
and (d) strain energy density at time t = 77.5μs.

In addition, the entire doubly notched specimen is analyzed without employing

the symmetric boundary condition for the comparison purpose. The problem is not

fully symmetric after a crack propagates because of the nodal perturbation around two

crack tip regions. Since the interaction between two crack tip regions is not significant,

the computational results with the symmetric boundary condition is consistent with

the results without the symmetric boundary condition, as illustrated in Figure 7.28.
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(a) (b)

Figure 7.28: Finite element discretization without employing the symmetry boundary
conditions (a) at the initial time step, and (b) at time t = 77.5μs.

The finite element analysis of the adaptive mesh refinement & coarsening (AMR

& C) is compared to the analysis with the uniform mesh refinement and the adaptive

mesh refinement (AMR). Finite element meshes for the uniform mesh refinement and

the adaptive mesh refinement at time t = 77.5μs are shown in Figure 7.29 (a) and

(b), respectively. The uniform 4k mesh has 80×80 mesh grid, and element size is 1.25

mm. The numbers of elements and nodes are initially 51601 and 25600, respectively,

which are almost ten times higher than the numbers for the adaptive mesh refinement

and coarsening. The analysis of the adaptive mesh refinement has the same initial

discretization as the analysis of the adaptive mesh refinement & coarsening. The
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Table 7.2: Computational cost comparison for the mixed-mode crack propagation.

Uniform mesh AMR AMR & C

Computational time 256 min 36 min 25 min

computational time is listed in Table 7.2. Computation with the adaptive mesh

refinement and coarsening is approximately ten times faster than computation with

the uniform mesh, while computation with the adaptive mesh refinement is almost

seven times faster than computation with the uniform mesh. The crack path for

each analysis is described in Figure 7.30(a), and the overall crack path corresponds

well with each other. The crack velocity is estimated by the linear fitting of three

adjacent crack tip points with respect to time. The crack velocities for the uniform

mesh refinement, the adaptive mesh refinement, and the adaptive mesh refinement &

coarsening illustrate similar trends, as shown in Figure 7.30(b). The crack velocity

steeply increases at the crack initiation, and gradually decreases around time t =

50μs. The average crack velocity is about 2000 m/s, which is 71% of the Rayleigh

wave speed.

Two different element sizes are compared in the analysis of the adaptive mesh

refinement & coarsening. One finite element mesh has 20×20 coarse mesh grid with

element size of 5mm, and is locally refined around the crack tip with element size of

(a) (b)

Figure 7.29: Finite element discretization at time t = 77.5μs for (a) the uniform mesh
refinement, and (b) the adaptive mesh refinement.
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1.25mm. The other has 40×40 coarse mesh grid with element size of 2.5mm, and

is locally refined around the crack tip with element size of 0.625mm. Figure 7.31

demonstrates the agreement of the crack path and velocity for the two sizes of the

coarse mesh grid. In the evaluation of the crack velocity, three adjacent points are

used for the 20×20 coarse mesh grid while six adjacent points are utilized for the
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Figure 7.30: (a) Crack path, and (b) crack velocity for the uniform mesh refinement,
the adaptive mesh refinement, and the adaptive mesh refinement & coarsening.
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40×40 coarse mesh grid.

The energy evolutions are estimated for adaptive mesh refinement and adaptive

mesh refinement & coarsening during computational simulation, as shown in Figures

7.32(a) and (b), respectively. The external energy (Eext) is resulted from the impact

velocity, and is converted into the strain energy (Eint), the kinetic energy (Ekin) and
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Figure 7.31: (a) Crack path, and (b) crack velocity for different sizes of the coarse
mesh grid.
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the fracture energy (Efra). The strain energy initially increases because of the impact,

and slightly decreases while a crack propagates. Both kinetic and fracture energies

increase with respect to time. The summation of Eint, Ekin and Efra is almost the same

as the external energy for the case of adaptive mesh refinement (Figure 7.32(a)), i.e.

energy conservation. On the other hand, the adaptive mesh coarsening leads to a little
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Figure 7.32: Energy evolution with respect to time for (a) adaptive mesh refinement,
and (b) adaptive mesh refinement and coarsening.
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energy dissipation, as shown in Figure 7.32(b). Notice that such energy dissipation

is also observed in the previous mode I problem (see Figure 7.25).

7.4.3 Crack Branching Problem

For a crack branching problem, the geometry of a specimen is illustrated in Figure

7.33, and the uniform traction of 1.5 MPa is applied at the top and bottom edges

of the specimen. For elastic properties, the elastic modulus and the Poisson’s ratio

are 32 GPa and 0.2, respectively, and the density is 2450 kg/m3, which provide the

Rayleigh wave speed of 2125 m/s. For mode I fracture parameters, the fracture energy

(φn) is 3 N/m, the cohesive strength (σmax) is 12 MPa, and the shape parameter (α)

is selected as two. The mode II parameters are assumed to be the same as the mode I

parameters. Notice that Belytschko et al. (2003) studied this problem in conjunction

with a discontinuous shape function (X-FEM), while Song and Belytschko (2009)

simulated this problem by using the cracking node method.

σ0 = 1.5MPa

100 mm

50 mm

40
m
m

20
m
m

Figure 7.33: Geometry of a branching problem.

The branching problem is computed by utilizing three different approaches: uni-

form mesh refinement, adaptive mesh refinement, and adaptive mesh refinement &

coarsening. For the uniform mesh refinement, the domain is discretized with the

160×64 mesh grid which leads to element size of 0.625 mm. The number of nodes

is 82529, and the number of elements is 40960 at the initial discretization. For the

adaptive mesh refinement, the domain is discretized with a coarse mesh grid of 40×16

with element size of 2.5 mm. The crack tip region is refined with element size of 0.625

mm, which is the same size as the uniformly refined mesh. For the adaptive mesh

coarsening, 4k patches are coarsened when the root mean square of strain error is

less than 0.02 for the outside of crack tip regions.
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Table 7.3: Computational cost comparison for the crack branching problem.

Uniform mesh AMR AMR & C

Computational time 397 min 62 min 55 min

For the three different approaches, the crack patterns at the time 60μs are illus-

trated in Figure 7.34, and the overall crack patterns are similar to each other. The

crack initiation time is 11 μs for all cases. After a crack propagates about 15∼18

mm, the major branching occurs at the corresponding time of 27∼30 μs. In addition,

the numbers of nodes in Figures 7.34(a), (b) and (c) are 83191, 24559 and 16867, and

the numbers of volumetric elements are 40960, 11845 and 7988, respectively. The

computational time for each simulation is provided in Table 7.3. Computation with

the adaptive mesh refinement & coarsening is approximately seven times faster then

(a)

(b)

(c)

Figure 7.34: Comparison of crack patterns and finite element meshes (a) uniformly
refined mesh, (b) adaptive mesh refinement, and (c) adaptive mesh refinement and
coarsening.
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computation with the uniform mesh. Therefore, the adaptive mesh refinement &

coarsening technique is able to significantly reduce the number of degrees of freedom

and the computational cost, while providing almost equivalent computational results

to the use of the uniformly refined mesh.

In addition, Figure 7.35 plots the crack velocity for the three approaches, and

all three results agree with each other. The crack velocity initially increases up to

1500 m/s (60% of the Rayleigh wave speed) until 15 μs. Then, the velocity decreases

from 1500 m/s to 500 m/s, and increases to 1600 m/s (65% of the Rayleigh wave

speed) until 27 μs, which corresponds to the time of the major branching initiation.

Such velocity change is correlated with vertical stress wave propagation. Vertical

stress with respect to time is illustrated in Figure 7.36 for the computation with the

adaptive mesh refinement & coarsening. Because of the applied traction (σ0), the

tension wave propagates along the vertical direction, and stress is concentrated at

the crack tip before the crack initiation (Figure 7.36(a)). While a crack propagates,

vertical stress is released from the top and bottom edges of the specimen (Figure

7.36(b)). Then, vertical stress ahead of the crack tip region decreases, as shown

in Figures 7.36(c) and (d), which correspond to the time when the crack velocity

decreases. Vertical stress ahead of the crack tip region increases (Figures 7.36(e), (f)

and (g)) with respect to the increase of the crack velocity, and the major branching

occurs, as shown in Figure 7.36(h).
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Figure 7.35: Crack velocity for the uniform mesh refinement, the adaptive mesh
refinement, and the adaptive mesh refinement & coarsening.
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Figure 7.36: Vertical stress distribution with respect to time: (a) 10 μs, (b) 13 μs,
(c) 16 μs, (d) 19 μs, (e) 22 μs, (f) 25 μs, (g) 28 μs and (h) 31 μs.
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(a)

(b)

(c)

Figure 7.37: Crack branching at different time steps: (a) time = 20μs, (b) time =
40μs, and (c) time = 60μs.
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Figure 7.37 illustrates crack patterns at different time (20μs, 40μs and 60μs)

with finite element mesh. While a crack propagates, crack tip regions are adaptively

refined (Figure 7.37(a)). When branching occurs, two crack tip regions are refined and

the outside of the two crack tip regions are coarsened on the basis of the coarsening

criterion. Figure 7.38 demonstrates the zoom of the finite element mesh at time 60μs.

One can observe that local nodes are perturbed with the perturbation factor of 0.2,

and that the edge-swap operators are utilized when they are needed.

Figure 7.38: Zoom of the finite element mesh at time 60μs.

7.5 Concluding Remarks

Adaptive mesh refinement and coarsening schemes are systematically developed in

solving dynamic cohesive fracture problems. The adaptive mesh refinement is based

on a sequence of edge-split operators while the adaptive mesh coarsening consists of

a sequence of vertex-removal (or edge-collapse) operators in a 4k mesh. A sequence

of edge-splits leads to new nodes, and nodal quantities of new nodes are interpolated

using Lagrange basis shape functions. The mesh coarsening is performed on the basis

of a posteriori coarsening criterion, i.e. the root mean square of strain error.

Three numerical examples are investigated: a mode I predefined crack path,

mixed-mode crack propagation, and branching problems. The computational results

of the adaptive mesh refinement and coarsening are consistent with the results of the

uniform mesh refinement regarding overall crack patterns, crack velocities and energy

evolutions. In a mode I dynamic fracture problem, the results demonstrate not only
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convergence of extrinsic cohesive zone models but also accuracy of adaptive mesh

refinement and coarsening schemes. The total energy is conserved for the adaptive

mesh refinement, while it slightly decreases for the adaptive mesh coarsening because

the mesh coarsening reduces a solution space. However, when the coarsening is per-

formed outside of a crack tip region in conjunction with the coarsening criterion, the

coarsening does not significantly influence the crack tip behavior. In addition, the

adaptive mesh refinement and coarsening significantly reduces computational cost

while capturing both global macro-crack and local micro-cracks. Furthermore, this

techniques can be utilized for multiscale computation by introducing several levels of

refinement.
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Chapter 8

Conclusions and Future Work

Nonlinear fracture process behavior is investigated on the basis of potential-based

fracture mechanics by using cohesive zone and virtual internal bond modeling. The

potential-based cohesive model of mixed-mode fracture is proposed, implemented,

verified and validated for quasi-static and dynamic fracture problems. For compu-

tational simulation, both intrinsic and extrinsic cohesive surface element approaches

are employed in conjunction with nodal perturbation and adaptive topological op-

erators (i.e. edge-swap, edge-split, and vertex-removal). Such operators not only

improve crack patterns but also significantly reduce computational cost. In addition,

the virtual internal bond model is utilized for the investigation of quasi-brittle mate-

rial fracture behavior. This chapter summarizes the thesis and its contributions, and

provides suggestions for the future work.

8.1 Concluding Remarks

The concept of the cohesive zone model is explained in the first chapter. Constitutive

relationships of cohesive fracture (i.e. potential-based and non-potential-based mod-

els) and several computational methods (e.g. intrinsic cohesive zone model, extrinsic

cohesive zone model, generalized/extended finite element methods, embedded dis-

continuities, microplane model, atomistic/continuum coupling, virtual internal bond

model, peridynamics, etc.) are reviewed.

In Chapter 2, the original virtual internal bond model is extended to account for

a relatively large fracture process zone of quasi-brittle materials, named the virtual

internal pair-bond (VIPB) model. The concept of the VIPB model is that two par-

ticles are connected by two types of potentials, i.e. a steep short-range potential

and a shallow long-range potential, in order to consider two fracture energies. The

Morse potential function is modified for the virtual internal bond potential so that

the potential is independent of a discrete lattice parameter. The VIPB model is

able to capture load versus crack mouth opening displacement curves of three-point
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bending tests for both plain concrete and fiber reinforced concrete. In addition, the

relationship between the fracture energy and the localization zone size is addressed

by using the path independent J-integral and computational simulation.

The PPR potential-based cohesive model is proposed in Chapter 3. Limitations

of previous potentials are first summarized, and the PPR model is presented in con-

junction with physical fracture parameters such as fracture energy, cohesive strength

and shape parameters. The PPR model provides a consistent constitutive relation-

ship for both proportional and non-proportional separation paths, and is verified by

simulating the mixed-mode bending tests. The computational implementation of the

PPR model is explained in Chapter 4, including the finite element formulation, time

integration, topological data structure, and unloading/reloading relationships. Two

unloading/reloading relationships (coupled and uncoupled) are developed in conjunc-

tion with loading history indices.

The PPR model is validated through investigations of quasi-static and dynamic

fracture phenomena. For quasi-static fracture behavior, Chapter 5 studies microstruc-

tural particle/matrix debonding process. In order to obtain effective macroscopic

constitutive relationships with microstructure, the extended Mori-Tanaka model is

employed for micromechanics while the intrinsic cohesive zone model is utilized for

the computational model. Both theoretical and computational models agree with

each other in representing the macroscopic constitutive relationships for the change

of volume fraction, particle sizes, and the PPR cohesive parameters. Different mi-

croscopic particle/matrix debonding processes are observed with respect to different

macroscopic constitutive relationships (e.g. hardening, softening and snap-back).

Dynamic fracture, branching and fragmentation problems are investigated in Chap-

ters 6 and 7. Chapter 6 proposes the use of nodal perturbation and edge-swap oper-

ators in conjunction with a topology-based data structure TopS. Geometrical studies

demonstrate that the nodal perturbation and the edge-swap operators reduce error in

crack length and angle represented by 4k finite element meshes. Three representative

dynamic fracture problems are investigated: compact compression specimen tests,

local branching instability, and cylindrical fragmentation. The computational results

illustrate that the potential-based PPR model with TopS leads to an effective com-

putational framework to simulate dynamic fracture, branching and fragmentation.

In Chapter 7, adaptive mesh refinement and coarsening schemes are developed by

using adaptive topological operators, i.e. edge-split and vertex-removal. The adaptive

mesh refinement is performed on the basis of a priori knowledge that mesh around

a crack tip should be refined, while the adaptive mesh coarsening is performed on
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the basis of a posteriori coarsening criterion, i.e. the root mean square of strain

error. Computational simulation illustrates that the total energy is conserved for the

adaptive mesh refinement while it slightly decreases for the adaptive mesh coarsening.

For mixed-mode fracture and branching problems, the computational results (e.g.

crack patterns and crack velocities) with the adaptive mesh refinement and coarsening

are consistent with the results obtained from a uniformly refined mesh.

The major contributions of this study are summarized as follows:

• A unified potential-based model (PPR) of mixed-mode fracture is proposed,

which characterizes different fracture energies and cohesive strength in each

distinct fracture mode, and can be applied to various material softening re-

sponses, e.g. brittle, quasi-brittle and ductile (plateau).

• The PPR model is verified by investigating the consistency of the constitutive

model and simulating mixed-mode bending tests.

• Two unloading/reloading relationships (coupled and uncoupled) are developed

in order to represent the non-conservative energy of fracture.

• The macroscopic constitutive relationship of materials with microstructure is

investigated by means of the PPR potential-based cohesive model for micro-

scopic particle/matrix interfacial debonding, which integrates micromechanics

(i.e. extended Mori-Tanaka method) and a computational model (i.e. finite

element-based cohesive zone model).

• Dynamic crack propagation, microbranching and fragmentation phenomena are

simulated utilizing the PPR potential-based cohesive zone model in conjunction

with the extrinsic cohesive zone model.

• The use of nodal perturbation and edge-swap operators are proposed in order

to reduce the error between the mathematical length and a length represented

by edges of a finite element mesh in cohesive fracture simulation.

• Adaptive mesh refinement and coarsening schemes are developed, which pro-

vide consistent results in comparison to the uniform mesh refinement case, and

reduce computational cost significantly.

• The virtual internal pair-bond model is proposed in order to represent the

relatively large fracture process zone of concrete and fiber reinforced concrete

in conjunction with two fracture energy quantities.
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8.2 Suggestions for Future Work

Some open problems are identified below. The solution of these problems may rely on

the present theoretical and computational contributions, and thus they are suggested

as natural extensions of this work.

Extraction of the cohesive parameters: The PPR potential-based model con-

tains eight fracture parameters for the intrinsic cohesive zone model and six fracture

parameters for the extrinsic cohesive zone model. These fracture parameters can be

estimated through the association with micromechanics and digital image correla-

tion (DIC) techniques. For example, displacement field can be measured from DIC

techniques (Sutton et al., 1983), and fracture parameters can be extracted by solving

an inverse problem of a finite element model with the measured displacement field

(Shen, 2009). Furthermore, microscopic fracture parameters can be estimated by

using micromechanics (see Chapter 5). Notice that most previous researches have

been focused on mode I fracture parameters, and that the estimation of mode II

fracture parameters would be challenging. Nevertheless, Zhu et al. (2009) estimated

rate-dependent traction-separation relationships in modes I and II for polyurea/steel

interfaces.

Extension of the potential-based model for fatigue fracture behavior: Tra-

ditional fatigue fracture investigations have been based on linear elastic fracture me-

chanics using, for example, the Paris equation (Paris and Erdogan, 1963). However,

materials, which demonstrate relatively large nonlinear fracture process zone, cannot

be accurately analyzed by using linear elastic fracture mechanics. Thus, the PPR

potential-based cohesive model can be extended to account for the nonlinear fracture

process zone of fatigue cracks. The constitutive relationship of the cohesive zone can

be associated with internal damage variables that describe dissipation under cyclic

loadings. For instance, Nguyen et al. (2001) decreased reloading stiffness in the un-

loading/reloading relations with respect to the number of loading cycles. Maiti and

Geubelle (2005) introduced two additional parameters for the degradation of reload-

ing stiffness, which are calibrated by using the slope and intercept of the Paris fatigue

failure curve. However, a general fatigue crack model is necessary, which accounts for

arbitrary external cyclic loadings and temperature dependence.
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Extension of the potential-based model for friction: The PPR potential-based

model can further incorporate with frictional relationships. One can simply exploit

the Coulomb friction, which is proportional to the normal force between surfaces.

However, experimental observation demonstrates that friction also depends on slip

rate and evolving properties of the contact of frictional surfaces (Dieterich, 1979).

Therefore, friction (τf ) on surfaces can be defined as a function of slip rate (Vf ) and

state variables (θf ) (Rice and Ruina, 1983), and the constitutive equation of friction,

for example, is given as

τf = τc + A ln(Vf/Vc)− θf , (8.1)

where a state variable (θf ) is obtained from solving a partial differential equation,

dθf
dt

= −Vf

dc
[θf −B ln(Vf/Vc)] . (8.2)

Notice that τc, dc, Vc, A and B are constants. The above frictional constitutive rela-

tionship can be integrated with the PPR potential-based model.

Parallel computation for large scale problems: Realistic three-dimensional dy-

namic fracture and fragmentation investigation is limited because of computational

resources. In order to tackle such large-scale problems, parallel computation can be

employed. As a proof of concept, a preliminary parallel computation is performed by

integrating TopS (Celes et al., 2005a) and ParFUM (Parallel framework for unstruc-
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Figure 8.1: Parallel runtime performance.
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tured meshes) (Lawlor et al., 2006). Intel 64 cluster Abe is utilized, located at the

National Center for Supercomputing Applications (NCSA). A three-dimensional wave

propagation problem is simulated. A bar is fixed at one end, and a sinusoidal load

is applied on the other end. The number of elements is approximately 0.4 million,

and Figure 8.1 illustrates the parallel runtime versus the number of processors. The

result demonstrates promising potential for parallel computation of dynamic fracture

and fragmentation. Furthermore, one can employ the parallel version of a topological

data structure (ParTopS) to maintain adjacency information (Espinha et al., 2009)

for simulation of dynamic crack propagation, branching and fragmentation.
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Appendix A

User-defined element (UEL)
subroutine of ABAQUS for the
PPR potential-based cohesive zone
model

c =======================================================================

c User-defined element (UEL) subroutine of ABAQUS

c Intrinsic cohesive element for the PPR potential-based cohesive zone

c model of mixed-mode fracture

c

c References

c K. Park, 2009, Potential-based fracture mechanics using cohesive zone

c and virtual internal bond modeling, PhD Thesis, University of Illinois

c at Urbana-Champaign.

c K. Park, G.H. Paulino, and J.R. Roesler, 2009, A unified potential-based

c cohesive model of mixed-mode fracture, Journal of the Mechanics and

c Physics of Solids 57 (6), 891-908.

c

c PPR Potential-based model

c Psi := min(GI,GII)+(Gam_n*(1-y/q)^alph*(y/q+p_m/alph)^p_m+GdI)

c *(Gam_t*(1-x/p)^beta*(x/p+p_n/beta)^p_n+GdII)

c Input type: Fracture energy, cohesive strength, shape, initial slope

c =======================================================================

SUBROUTINE UEL (RHS, AMATRX, SVARS, ENERGY, NDOFEL, NRHS, NSVARS,

& PROPS, NPROPS, COORDS, MCRD, NNODE, U, DU, V, A, JTYPE, TIME,

& DTIME, KSTEP, KINC, JELEM, PARAMS, NDLOAD, JDLTYP, ADLMAG,

& PREDEF, NPREDF, LFLAGS, MLVARX, DDLMAG, MDLOAD, PNEWDT, JPROPS,

& NJPRO, PERIOD)

c

INCLUDE ’ABA_PARAM.INC’

c

DIMENSION RHS(MLVARX,*), AMATRX(NDOFEL,NDOFEL), PROPS(*),

& SVARS(*), ENERGY(8), COORDS(MCRD, NNODE), U(NDOFEL),

& DU(MLVARX,*), V(NDOFEL), A(NDOFEL), TIME(2), PARAMS(*),

& JDLTYP(MDLOAD,*), ADLMAG(MDLOAD,*), DDLMAG(MDLOAD,*),

& PREDEF(2, NPREDF, NNODE), LFLAGS(*), JPROPS(*)

c

DIMENSION T(mcrd,nrhs),T_d(mcrd,mcrd),w(mcrd),P_l(ndofel,nrhs),

& P_g(ndofel,nrhs),S_l(ndofel,ndofel),S_g(ndofel,ndofel),
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& R(ndofel,ndofel),R_t(ndofel,ndofel),Shape_N(mcrd,ndofel),

& Shape_Nt(ndofel,mcrd),coord_l(mcrd,nnode),GP(2),GP_w(2),

& coords_m(2,mcrd), u1(mcrd), u2(mcrd),

& store_1(ndofel,mcrd), store_2(ndofel,ndofel)

c =======================================================================

c Variables to be defined in the UEL subroutine

c RHS : Right-Hand-Side vector

c AMATRX : Stiffness (Jacobian) matrix

c Variables available in the UEL subroutine

c U : Displacement

c COORDS : Original coordinates of the node

c MCRD : Largest active degree of freedom (Coordinates parameter)

c NNODE : Number of nodes

c Variables updated in the UEL subroutine

c SVARS : Maximum separation in the element

c Constants from the ABAQUS input file: PROPS(*)

c G_I : Mode I fracture energy

c G_II : Mode II fracture energy

c T_my : Mode I cohesive strength

c T_mx : Mode II cohesive strength

c alph : Mode I cohesive shape parameter

c beta : Mode II cohesive shape parameter

c ry : Mode I initial slope indicator

c rx : Mode II initial slope indicator

c th : Thickness of the element for 2D

c Variables during calculation

c T : Cohesive force vector

c T_d : Derivative of the cohesive force vector

c w : Crack opening width vector

c P_l : Load vector in local coordinate

c P_g : Load vector in global coordinate

c S_l : Stiffness matrix in local coordinate

c S_g : Stiffness matrix in global coordinate

c R : Coordinate transformation matrix

c coord_l : Deformed configuration in local coordinate system

c Shape_N : Displacement-separation relation matrix

c Constants during calculation

c Gam_n: Energy constant in the PPR model (Gamma_n)

c Gam_t: Energy constant in the PPR model (Gamma_t)

c p_m : Exponent in the PPR model (m)

c p_n : Exponent in the PPR model (n)

c q : Characteristic length scale (delta_n)

c p : Characteristic length scale (delta_t)

c n_GP : Number of the Gauss Points

c GP : Gauss points

c GP_W : Weights at the Gauss points

c External Functions
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c x1, x2 : Shape functions

c External Subroutines

c K_COHESIVE_PPR : Calculate T & T_d

c K_LOCAL_COORDINATE : Calculate R & coord_l

c K_MATRIX_ZERO : Matrix operation (A = 0)

c K_MATRIX_TRANSPOSE : Matrix operation (B = A_t)

c K_MATRIX_PLUS_SCALAR : Matrix operation (A = A + c * B)

c K_MATRIX_MULTIPLY : Matrix operation (C = A * B)

c =======================================================================

c Input DATA ------------------------------------------------------------

G_I = props (1)

G_II = props (2)

T_my = props (3)

T_mx = props (4)

alph = props (5)

beta = props (6)

ry = props (7)

rx = props (8)

th = props (9)

c Initialize ------------------------------------------------------------

n_GP = 2

data GP / 0.5773502691896 , -0.5773502691896 /

data GP_W / 1.0 , 1.0 /

call k_matrix_zero (rhs,ndofel,nrhs)

call k_matrix_zero (amatrx,ndofel,ndofel)

call k_matrix_zero (T,mcrd,nrhs)

call k_matrix_zero (T_d,mcrd,mcrd)

call k_matrix_zero (R,ndofel,ndofel)

call k_matrix_zero (Shape_N,mcrd,ndofel)

c Calculate constants in the PPR model ----------------------------------

p_m = (alph-1)*alph*ry**2/(1-alph*ry**2)

p_n = (beta-1)*beta*rx**2/(1-beta*rx**2)

q = alph*G_I /(p_m*T_my)*(1-ry)**(alph-1)

& * (alph/p_m*ry+1)**(p_m-1)*(alph+p_m)*ry

p = beta*G_II/(p_n*T_mx)*(1-rx)**(beta-1)

& * (beta/p_n*rx+1)**(p_n-1)*(beta+p_n)*rx

c

if (G_II .GE. G_I) then

GdI = 0

GdII = G_II - G_I

elseif (G_II .LT. G_I) then

GdI = G_I - G_II

GdII = 0

end if

if (G_I .EQ. G_II) then

Gam_n = -G_II**(1)*(alph/p_m)**(p_m)

Gam_t = (beta/p_n)**(p_n)
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else

Gam_n = (-G_I )**(GdI /(G_I-G_II))*(alph/p_m)**(p_m)

Gam_t = (-G_II)**(GdII/(G_II-G_I))*(beta/p_n)**(p_n)

end if

c Change global coordinate into local coordinate ------------------------

call k_local_coordinate (R,coords,coord_l,U,ndofel,nnode,mcrd)

call k_matrix_transpose (R, R_t, ndofel, ndofel)

c Element length : el_length --------------------------------------------

do i = 1, mcrd

coords_m(i,1) = (coord_l(i,1)+coord_l(i,4))*0.5d0

coords_m(i,2) = (coord_l(i,2)+coord_l(i,3))*0.5d0

end do

el_x = coords_m(1,2) - coords_m(1,1)

el_y = coords_m(2,2) - coords_m(2,1)

el_length = (el_x**2 + el_y**2)**0.5

c Opening displacement at the left and right hand side node : u1, u2

do i = 1, mcrd

u1(i) = coord_l(i,4) - coord_l(i,1)

u2(i) = coord_l(i,3) - coord_l(i,2)

end do

c Numerical Integration at the Gauss points

do i = 1, n_GP

c Crack opening width in tangental and normal direction : w

do j = 1, mcrd

w(j) = x1(GP(i))*u1(j) + x2(GP(i))*u2(j)

end do

c Update the state variable for unloading/reloading: Svars

if ((Svars(n_GP*(i-1)+1) .LT. abs(w(1))) .AND.

& (abs(w(1)) .GT. rx*p)) then

Svars(n_GP*(i-1)+1) = abs(w(1))

end if

if ((Svars(n_GP*(i-1)+2) .LT. w(2)) .AND. (w(2) .GT. ry*p)) then

Svars(n_GP*(i-1)+2) = w(2)

end if

x_max = Svars(n_GP*(i-1)+1)

y_max = Svars(n_GP*(i-1)+2)

c Displacement-separation relation matrix

do j = 1, mcrd

Shape_N(j,j) = x1(GP(i))

Shape_N(j,j+2) = x2(GP(i))

Shape_N(j,j+4) = -x2(GP(i))

Shape_N(j,j+6) = -x1(GP(i))

end do

call k_matrix_transpose (Shape_N,Shape_Nt,mcrd,ndofel)

c Stiffness matrix & Load vector in local coordinate

call k_Cohesive_PPR (T, T_d, beta, alph, Gam_t, Gam_n, p_n, p_m,

& p, q, GdI, GdII, w, mcrd, nrhs, x_max, y_max)
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call k_matrix_multiply (Shape_Nt,T_d,store_1,ndofel,mcrd,mcrd)

call k_matrix_multiply (store_1,Shape_N,S_l,ndofel,mcrd,ndofel)

call k_matrix_multiply (Shape_Nt,T,P_l,ndofel,mcrd,nrhs)

c Stiffness matrix & Load vector in global coordinate

call k_matrix_multiply (R_t,S_l,store_2,ndofel,ndofel,ndofel)

call k_matrix_multiply (store_2,R,S_g,ndofel,ndofel,ndofel)

call k_matrix_multiply (R_t,P_l,P_g,ndofel,ndofel,nrhs)

c Multiply element length, weight and thickness

thick = 0.5 * el_length * GP_w(i) * th

call k_matrix_plus_scalar (amatrx,S_g,thick,ndofel,ndofel)

call k_matrix_plus_scalar (rhs,P_g,thick,ndofel,nrhs)

end do

return

end

c =======================================================================

c = Shape Functions =====================================================

function x1(xi)

INCLUDE ’ABA_PARAM.INC’

x1 = 0.5*(1 - xi)

end

function x2(xi)

INCLUDE ’ABA_PARAM.INC’

x2 = 0.5*(1 + xi)

end

c = Traction and Jacobian Matrix =======================================

subroutine K_COHESIVE_PPR (T, T_d, beta, alph, Gam_t, Gam_n,

& p_n, p_m, p, q, GdI, GdII, w, mcrd, nrhs, x_max, y_max)

INCLUDE ’ABA_PARAM.INC’

dimension T(mcrd,nrhs), T_d(mcrd,mcrd), w(mcrd)

x = abs(w(1))

y = abs(w(2))

c Tangential component -------------------------------------

if (x .GE. x_max) then

T_t = (Gam_t/p)*(-(1-x/p)**(beta-1)*beta*(x/p+p_n/beta)**p_n +

& (1-x/p)**beta*(x/p+p_n/beta)**(p_n-1)*p_n) *

& (Gam_n*(1-y/q)**alph*(y/q+p_m/alph)**p_m+GdI)

else

T_t = (Gam_t/p)*(-(1-x_max/p)**(beta-1)*beta

& *(x_max/p+p_n/beta)**p_n +

& (1-x_max/p)**beta*(x_max/p+p_n/beta)**(p_n-1)*p_n) *

& (Gam_n*(1-y/q)**alph*(y/q+p_m/alph)**p_m+GdI) * x / x_max

end if

c Normal component -----------------------------------------

if (y .GE. y_max) then

T_n = (Gam_t*(1-x/p)**beta*(x/p+p_n/beta)**p_n+GdII) *

& Gam_n/q*(-(1-y/q)**(alph-1)*alph*(y/q+p_m/alph)**p_m +

& (1-y/q)**alph*(y/q+p_m/alph)**(p_m-1)*p_m)
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else

T_n = (Gam_t*(1-x/p)**beta*(x/p+p_n/beta)**p_n+GdII) *

& Gam_n/q*(-(1-y_max/q)**(alph-1)*alph*(y_max/q+p_m/alph)**p_m +

& (1-y_max/q)**alph*(y_max/q+p_m/alph)**(p_m-1)*p_m) * y / y_max

end if

c Tangential Component -------------------------------------

c Within the tangential softening region

if ( (x .LT. p) .AND. (w(2) .LT. q) .AND. (T_t .GE. -1.0E-5)) then

if (w(1) .GE. 0) then

T(1,1) = T_t

elseif (w(1) .LT. 0) then

T(1,1) = -T_t

end if

c Softening condition

if (x .GE. x_max) then

T_d(1,1) =

& Gam_t/p**2*((1-x/p)**(beta-2)*(beta-1)*beta*(x/p+p_n/beta)**p_n -

& 2*(1-x/p)**(beta-1)*beta*(x/p+p_n/beta)**(p_n-1)*p_n +

& (1-x/p)**beta*(x/p+p_n/beta)**(p_n-2)*(p_n-1)*p_n) *

& (Gam_n*(1-y/q)**alph*(y/q+p_m/alph)**p_m+GdI)

T_d(1,2) =

& Gam_t/p*(-(1-x/p)**(beta-1)*beta*(x/p+p_n/beta)**p_n +

& (1-x/p)**beta*(x/p+p_n/beta)**(p_n-1)*p_n) *

& Gam_n/q*(-(1-y/q)**(alph-1)*alph*(y/q+p_m/alph)**p_m +

& (1-y/q)**alph*(y/q+p_m/alph)**(p_m-1)*p_m)

T_d(2,1) = T_d(1,2)

c Unloading/reloading condition: Uncoupled model and linear to origin

else

T_d(1,1) =

& (Gam_t/p)*(-(1-x_max/p)**(beta-1)*beta*(x_max/p+p_n/beta)**p_n +

& (1-x_max/p)**beta*(x_max/p+p_n/beta)**(p_n-1)*p_n) *

& (Gam_n*(1-y/q)**alph*(y/q+p_m/alph)**p_m+GdI) / x_max

T_d(1,2) =

& Gam_t/p*(-(1-x_max/p)**(beta-1)*beta*(x_max/p+p_n/beta)**p_n +

& (1-x_max/p)**beta*(x_max/p+p_n/beta)**(p_n-1)*p_n) *

& Gam_n/q*(-(1-y/q)**(alph-1)*alph*(y/q+p_m/alph)**p_m +

& (1-y/q)**alph*(y/q+p_m/alph)**(p_m-1)*p_m) * x / x_max

end if

c Outside the tangential softening region

c Complete separation

else

T(1,1) = 0

T_d(1,1) = 0

T_d(1,2) = 0

end if

c Normal Component -----------------------------------------

if (w(2) .GE. 0) then
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c Within the tangential softening region

if ((x .LT. p).AND.(w(2) .LT. q).AND.(T_n .GE. -1.0E-5)) then

T(2,1) = T_n

c Softening condition

if (y .GE. y_max) then

T_d(2,2) =

& (Gam_t*(1-x/p)**beta*(x/p+p_n/beta)**p_n+GdII) *

& Gam_n/q**2*((1-y/q)**(alph-2)*(alph-1)*alph*(y/q+p_m/alph)**p_m -

& 2*(1-y/q)**(alph-1)*alph*(y/q+p_m/alph)**(p_m-1)*p_m +

& (1-y/q)**alph*(y/q+p_m/alph)**(p_m-2)*(p_m-1)*p_m)

T_d(2,1) =

& Gam_t/p*(-(1-x/p)**(beta-1)*beta*(x/p+p_n/beta)**p_n +

& (1-x/p)**beta*(x/p+p_n/beta)**(p_n-1)*p_n) *

& Gam_n/q*(-(1-y/q)**(alph-1)*alph*(y/q+p_m/alph)**p_m +

& (1-y/q)**alph*(y/q+p_m/alph)**(p_m-1)*p_m)

c Unloading/reloading condition: Uncoupled model and linear to origin

else

T_d(2,2) =

& (Gam_t*(1-x/p)**beta*(x/p+p_n/beta)**p_n+GdII) *

& Gam_n/q*(-(1-y_max/q)**(alph-1)*alph*(y_max/q+p_m/alph)**p_m +

& (1-y_max/q)**alph*(y_max/q+p_m/alph)**(p_m-1)*p_m) / y_max

T_d(2,1) =

& Gam_t/p*(-(1-x/p)**(beta-1)*beta*(x/p+p_n/beta)**p_n +

& (1-x/p)**beta*(x/p+p_n/beta)**(p_n-1)*p_n) *

& Gam_n/q*(-(1-y_max/q)**(alph-1)*alph*(y_max/q+p_m/alph)**p_m +

& (1-y_max/q)**alph*(y_max/q+p_m/alph)**(p_m-1)*p_m) * y / y_max

end if

c Outside the tangential softening region

c Complete separation

else

T(2,1) = 0

T_d(2,2) = 0

T_d(2,1) = 0

end if

c Contact condition

elseif (w(2) .LT. 0) then

T_d(2,2) = -Gam_n*alph*(p_m/alph)**p_m*

& (Gam_t*(p_n/beta)**p_n*p_m+a*(p_n/beta)**p_n*alph

& +GdII*p_m+GdII*alph)/q**2/p_m

T(2,1) = T_d(2,2)*w(2)

end if

return

end

c = Coordinate translation ==============================================

subroutine K_LOCAL_COORDINATE (R,coords,coord_l,U,ndofel,nnode,

& mcrd)

INCLUDE ’ABA_PARAM.INC’
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dimension R(ndofel,ndofel),coords(mcrd,nnode),coord_l(mcrd,nnode)

& , U(ndofel)

dimension co_de(mcrd,nnode), co_de_m(2,2)

c Deformed configuration coordinate ----------------------------

do i = 1, mcrd

do j = 1, nnode

co_de(i,j) = coords(i,j) + u(2*(j-1)+i)

end do

end do

c Mid point at the deformed configuration ----------------------

do i = 1, 2

co_de_m(i,1) = (co_de(i,1)+co_de(i,4))*0.5

co_de_m(i,2) = (co_de(i,2)+co_de(i,3))*0.5

end do

c Calculate the directional cosine -----------------------------

d_x = co_de_m(1,2) - co_de_m(1,1)

d_y = co_de_m(2,2) - co_de_m(2,1)

d_l = (d_x**2 + d_y**2)**0.5

cos_a = d_x / d_l

sin_a = d_y / d_l

c Translation(Rotational) Matrix -------------------------------

do i = 1, nnode

R(2*i-1,2*i-1) = cos_a

R(2*i-1,2*i) = sin_a

R(2*i,2*i-1) = -sin_a

R(2*i,2*i) = cos_a

end do

c Change global deformation into local deformation -------------

do i = 1, nnode

coord_l(1,i) = R(1,1)*co_de(1,i) + R(1,2)*co_de(2,i)

coord_l(2,i) = R(2,1)*co_de(1,i) + R(2,2)*co_de(2,i)

end do

return

end

c = Matrix operations ===================================================

subroutine K_MATRIX_ZERO (A,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(n,m)

do i = 1, n

do j = 1, m

A(i,j) = 0.d0

end do

end do

return

end

subroutine K_MATRIX_TRANSPOSE (A,B,n,m)

INCLUDE ’ABA_PARAM.INC’
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dimension A(n,m), B(m,n)

call k_Matrix_zero (B,m,n)

do i = 1, n

do j = 1, m

B(j,i) = A(i,j)

end do

end do

return

end

subroutine K_MATRIX_PLUS_SCALAR (A,B,c,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(n,m), B(n,m)

do i = 1, n

do j = 1, m

A(i,j) = A(i,j) + c*B(i,j)

end do

end do

return

end

subroutine K_MATRIX_MULTIPLY (A,B,C,l,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(l,n), B(n,m), C(l,m)

call k_Matrix_zero (C,l,m)

do i = 1, l

do j = 1, m

do k = 1, n

C(i,j) = C(i,j) + A(i,k) * B (k,j)

end do

end do

end do

return

end

c =======================================================================
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Appendix B

User-defined material (UMAT)
subroutine of ABAQUS for the
virtual internal pair-bond (VIPB)
model

c========================================================================

c User-defined material (UMAT) subroutine of ABAQUS

c Virtual internal pair-bond (VIPB) model

c Constraints: Lame parameters are the same (lambda = mu)

c Poisson’s ratio is 1/3

c

c References

c K. Park, 2009, Potential-based fracture mechanics using cohesive zone

c and virtual internal bond modeling, PhD Thesis, University of Illinois

c at Urbana-Champaign.

c K. Park, G.H. Paulino, and J.R. Roesler, 2008, Virtual internal pair-bond

c model for quasi-brittle materials, Journal of Engineering Mechanics -

c ASCE 134 (10), 856-866.

c========================================================================

SUBROUTINE UMAT (STRESS, STATEV, DDSDDE, DDE, SPD, SCD,

& RPL, DDSDDT, DRPLDE, DRPLDT,

& STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP, PREDEF, DPRED, CMNAME,

& NDI, NSHR, NTENS, NSTATV, PROPS, NPROPS, COORDS, DROT, PNEWDT,

& CELENT, DFGRD0, DFGRD1, NOEL, NPT, LAYER, KSPT, KSTEP, KINC)

c

INCLUDE ’ABA_PARAM.INC’

c

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS), STATEV(NSTATV),

& DDSDDE(NTENS, NTENS), DDSDDT(NTENS), DRPLDE(NTENS),

& STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(1), DPRED(1),

& PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRD0(3,3), DFGRD1(3,3)

c

DIMENSION F_df(2,2), F_df_t(2,2), C_gdf(2,2), E_gst(2,2),

& S_pk(2,2), S_ch(2,2), GP(10), GP_W(10), dummy(2,2)

c =======================================================================

c Variables to be defined in the UMAT subroutine

c DDSDDE : Jacobian matrix of the constitutive model

c STRESS : Stress tensor
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c Constants from the ABAQUS input file: PROPS(*)

c E : Elastic modulus

c stret_l0 : Undeformed virtual bond length (Unstretched length)

c D_ratio : Strength ratio of the two potential

c alph1 : parameter alpha_1 in the short-range potential

c beta1 : parameter m_1 in the short-range potential

c alph2 : parameter alpha_2 in the long-range potential

c beta2 : parameter m_2 in the short-range potential

c Variables - Tensor (Matrix form)

c F_df : Deformation gradient

c F_df_t: Transpose of deformation gradient

c C_gdf : Green deformation tensor

c E_gst : Green strain tensor

c S_pk : 2nd Piola-Kirchhoff tensor

c S_ch : Cauchy stress tensor

c Variables - Scalar

c det_F : Determinant of Deformation gradient matrix

c U1 : Derivative of bond potential energy : Cohesive force law

c U2 : Second derivative of bond potential energy

c stret : stretch

c stret_l : Stretched length = Unstretched length X stretch

c D_1, D_2: Bond density

c Constants during calculation

c po : Poisson’s ratio

c n_GP : Number of the Gauss points

c GP : Gauss points

c GP_w : weights at the Gauss points

c External Subroutines

c k_Morse_Potential : Calculate U1 & U2

c K_MATRIX_ZERO : Matrix operation (A = 0)

c K_MATRIX_TRANSPOSE : Matrix operation (B = A_t)

c K_MATRIX_MULTIPLY : Matrix operation (C = A * B)

c =======================================================================

c Input DATA ------------------------------------------------------------

E = props(1)

stret_l0 = props (2)

D_ratio = props (3)

alph1 = props (4)

beta1 = props (5)

alph2 = props (6)

beta2 = props (7)

c Initialize ------------------------------------------------------------

po = 0.33333333333

pi = 3.14159265369

n_GP = 10

data GP /0.14887434,0.43339539,0.67940957,0.86506337,0.97390653

& ,-0.14887434,-0.43339539,-0.67940957,-0.86506337,-0.97390653/
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data GP_W /0.29552422,0.26926672,0.21908636,0.14945135,0.06667134

& ,0.29552422,0.26926672,0.21908636,0.14945135,0.06667134/

call k_matrix_zero (S_pk, 2, 2)

call k_matrix_zero (DDSDDE, 3, 3)

c Calculate Bond density: D_1, D_2

D_1 = 3*E/(2*pi*alph1**2*beta1)*D_ratio

D_2 = 3*E/(2*pi*alph2**2*beta2)*(1-D_ratio)

c Calculate Deformation Gradient & Green strain tensor

F_df(1,1) = DFGRD1(1,1)

F_df(2,2) = DFGRD1(2,2)

F_df(1,2) = DFGRD1(1,2)

F_df(2,1) = DFGRD1(2,1)

call k_matrix_transpose (F_df, F_df_t, 2, 2)

call k_matrix_multiply (F_df, F_df_t, C_gdf, 2, 2, 2)

E_gst(1,1) = (C_gdf(1,1)-1)*0.5

E_gst(1,2) = C_gdf(1,2)*0.5

E_gst(2,1) = C_gdf(2,1)*0.5

E_gst(2,2) = (C_gdf(2,2)-1)*0.5

det_F = F_df(1,1)*F_df(2,2) - F_df(1,2)*F_df(2,1)

c Calculate 2nd Piola-Kirchhoff tensor & Material tangential matrix

do i = 1, n_GP

phi = -(1-GP(i))/2*pi + (1+GP(i))/2*pi

stret = (1+2*(E_gst(1,1)*(cos(phi))**2+E_gst(2,2)*(sin(phi))**2

& + 2*E_gst(1,2)*cos(phi)*sin(phi)))**0.5

stret_l = stret_l0 * stret

call k_Morse_Potential (U1, U2, stret_l, stret_l0,

& alph1, beta1, D_1, alph2, beta2, D_2)

s0 = stret_l0/stret*U1

c0 = U2*stret_l0**2/stret**2-U1*stret_l0/stret**3

S_pk(1,1) = S_pk(1,1) + s0*(cos(phi))**2*GP_W(i)*pi

S_pk(2,2) = S_pk(2,2) + s0*(sin(phi))**2*GP_W(i)*pi

S_pk(1,2) = S_pk(1,2) + s0*cos(phi)*sin(phi)*GP_W(i)*pi

DDSDDE(1,1)=DDSDDE(1,1)+c0*(cos(phi))**4*GP_W(i)*pi

DDSDDE(1,2)=DDSDDE(1,2)+c0*(cos(phi))**2*(sin(phi))**2*GP_W(i)*pi

DDSDDE(1,3)=DDSDDE(1,3)+c0*(cos(phi))**3*sin(phi)*GP_W(i)*pi

DDSDDE(2,2)=DDSDDE(2,2)+c0*(sin(phi))**4*GP_W(i)*pi

DDSDDE(2,3)=DDSDDE(2,3)+c0*cos(phi)*(sin(phi))**3*GP_W(i)*pi

end do

S_pk(2,1) = S_pk(1,2)

DDSDDE(2,1) = DDSDDE(1,2)

DDSDDE(3,1) = DDSDDE(1,3)

DDSDDE(3,2) = DDSDDE(2,3)

DDSDDE(3,3) = DDSDDE(1,2)

c Calculate Cauchy stress tensor

call k_matrix_multiply (F_df, S_pk, dummy, 2, 2, 2)

call k_matrix_multiply (dummy, F_df_t, S_ch, 2, 2, 2)

stress(1) = S_ch(1,1)/det_F
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stress(2) = S_ch(2,2)/det_F

stress(3) = S_ch(1,2)/det_F

return

end

c =======================================================================

c = Bond Potential energy function ======================================

subroutine k_Morse_Potential (U1, U2, stret_l, stret_l0,

& alph1, beta1, D_1, alph2, beta2, D_2)

INCLUDE ’ABA_PARAM.INC’

P11 = D_1*alph1*beta1/(beta1-1)/stret_l0

& *(exp(alph1*(1-stret_l/stret_l0))

& -exp(alph1*beta1*(1-stret_l/stret_l0)))

P12 = D_2*alph2*beta2/(beta2-1)/stret_l0

& *(exp(alph2*(1-stret_l/stret_l0))

& -exp(alph2*beta2*(1-stret_l/stret_l0)))

P21 = D_1*alph1**2*beta1/(beta1-1)/stret_l0**2

& *(beta1*exp(alph1*beta1*(1-stret_l/stret_l0))

& -exp(alph1*(1-stret_l/stret_l0)))

P22 = D_2*alph2**2*beta2/(beta2-1)/stret_l0**2

& *(beta2*exp(alph2*beta2*(1-stret_l/stret_l0))

& -exp(alph2*(1-stret_l/stret_l0)))

U1 = P11 + P12

U2 = P21 + P22

return

end

c = Matrix operations ===================================================

subroutine K_MATRIX_ZERO (A,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(n,m)

do i = 1, n

do j = 1, m

A(i,j) = 0.d0

end do

end do

return

end

subroutine K_MATRIX_TRANSPOSE (A,B,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(n,m), B(m,n)

call k_Matrix_zero (B,m,n)

do i = 1, n

do j = 1, m

B(j,i) = A(i,j)

end do

end do

return

end
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subroutine K_MATRIX_MULTIPLY (A,B,C,l,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(l,n), B(n,m), C(l,m)

call k_Matrix_zero (C,l,m)

do i = 1, l

do j = 1, m

do k = 1, n

C(i,j) = C(i,j) + A(i,k) * B (k,j)

end do

end do

end do

return

end

c =======================================================================
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