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ABSTRACT 

FUNCTIONALLY GRADED FIBER-REINFORCED CEMENTITIOUS COMPOSITES 

– MANUFACTURING AND EXTRACTION OF COHESIVE FRACTURE 

PROPERTIES USING FINITE ELEMENTS AND DIGITAL IMAGE CORRELATION 

 
Bin Shen 

Department of Civil and Environmental Engineering 

University of Illinois at Urbana Champaign 

 

Glaucio. H. Paulino, Adviser 

 

A novel four-layer functionally graded fiber-reinforced cementitious composite 

(FGFRCC) as a beam component has been fabricated using extrusion and pressing 

techniques. The FGFRCC features a linear gradation of fiber volume fraction through the 

beam depth. The bending test shows the enhanced bending strength of the FGFRCC 

without delamination at layer interface. Microstructure investigation verifies the fiber 

gradation and the smooth transition between homogeneous layers. The remaining part of 

the study is the development of a hybrid technique for the extraction of mode I cohesive 

zone model (CZM). First, a full-field digital image correlation (DIC) technique has been 

adopted to compute the two-dimensional displacement fields. Such displacement fields 

are used as the input to the finite element (FE) formulation of an inverse problem for 

computing the CZM. The CZM is parameterized using flexible splines without 

assumption of the model shape. The Nelder-Mead optimization method is used to solve 

the ill-posed nonlinear inverse problem. Barrier and regularization terms are incorporated 

in the objective function for the inverse problem to assist optimization. Numerical tests 

show the robustness of the technique and the tolerance to experimental noise. The 

techniques are then applied to plastics and homogeneous FRCCs to demonstrate its 

broader application. 
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1 Chapter 1 Introduction 

CHAPTER 1 - INTRODUCTION 

CHAPTER 1 – INTRODUCTION 

Cementitious materials, including cement paste, mortar, concrete, etc. are the 

fundamental construction materials that our modern infrastructure is built upon. The three 

primary reasons that make cement-based materials the most popular engineering 

materials are: excellent resistance to water, ease of forming a variety of shapes and sizes, 

and being inexpensive and most readily available on the job [1]. Primarily applied as a 

structural building material, the most important requirement of cement-based materials is 

the mechanical property. Although cementitious materials are rigid and strong in 

compression, they are usually regarded as brittle materials when they are used as 

structural materials. Over the years, the researchers and engineers have been constantly 

trying to improve the tensile strength and ductility of cementitious materials. The most 

effective solution to date is the incorporation of fibers. Such fiber-cement matrix system 

is known as the fiber reinforced cementitious composites (FRCC). Strong in tension, the 

fibers act as crack bridging agents for the brittle matrix, thus preserving the structural 

integrity of the material system. On the other hand, the rigid matrix provides anchorage 

for the fibers so that the strength of fibers can be utilized. Such synergistic effect shows 

great potential in the application to new and challenging construction applications. 

A new functionally graded FRCC (FGFRCC) has been explored in the current 

research. It is realized that the cohesive properties shall be more accurately obtained 

through new experimental techniques for the purpose of accurate fracture simulation of 

FGFRCC. In the remaining of this introductory chapter, some background material is 

provided first. Then the need of a new type of FRCC, which makes efficient use of fibers, 

therefore reducing cost, is elaborated upon. Afterwards, the functionally-graded materials 

(FGM) concept is explained and related to the current research. A review of CZM follows 

and then available techniques for measuring or computing the CZM are presented. Lastly, 

after all the literature review, the research objectives and thesis organization are 

introduced.  
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1.1 BACKGROUND 

In the past few decades, great improvement has been achieved in FRCC. Ductile 

fiber reinforced cementitious composite (DFRCC), which exhibits multiple cracking and 

deflection hardening in bending, and high performance fiber reinforced cementitious 

composite (HPFRCC), which exhibits multiple cracking and tensile strain hardening, can 

now be routinely and reliably produced and some have also been commercialized [2]. 

Figure 1.1 shows the mechanical response of brittle cement-based matrix, conventional 

FRCC, DFRCC and HPFRCC. Figure 1.2 shows the relation between these cement-based 

materials, especially for FRCC, based on the mechanical properties. Such performance 

improvement relies on materials selection, mix design and processing solutions that 

ensures a homogeneous dispersion of fibers in the FRCC. The enhancement in 

homogeneity reduces the size and number of potentially weak regions, thus improves the 

overall performance. 

 

    

Figure 1.1: Relation between brittle cement-based matrix, conventional FRCC, DFRCC 

and HPFRCC (only schematic tensile coupon is shown) 
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Figure 1.2: Classification of cementitious material based on mechanical performance 

 

When the desired mechanical properties are achieved with improved technique based 

on a new scientific theory, the next step is to apply the materials to engineering 

applications. A very important factor is associated with the cost, due to the high fraction 

of the overall material cost taken by the fibers. Great effort has been taken to reduce the 

volume fraction of fibers in FRCC while maintaining the desired performance. Such 

material optimization is at material microstructure level. Another potential optimal use of 

fibers lies between material microstructure level and structural component level, where 

the concept and idea of functionally graded materials are utilized. The basic idea is to 

distribute materials microstructure to achieve the optimized performance for a particular 

application. At such level, material mechanical property design becomes more 

complicated, requiring, first, the accurate measurement of constitutive properties for the 

different microstructures. For FRCC, the measurement of fracture properties, especially 

the constitutive description, e.g., the cohesive fracture properties, is usually challenging. 

The state-of-the-art experimental and numerical techniques have exhibited great potential 

in the measurement of complex material properties that used to be extremely difficult and 

sometimes even impossible. 

HPFRCC
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1.2 FIBER-REINFORCED CEMENTITIOUS-COMPOSITES 

Various kinds of FRCC have been developed, and applied in construction in the past 

few decades. A few proceedings and books provide comprehensive information about 

FRCC [2-7]. Many kinds of micro-fibers have been commercially developed and are now 

being used in FRCC. A properly designed FRCC offers enhanced mechanical behavior, 

higher strength and higher toughness [6].  

As already mentioned, high cost is one important issue associated with the practical 

use of FRCC [8]. Thus, there is a need for new technology to make more effective and 

efficient use of costly fibers. Conventionally, the FRCC is homogeneous in a bulk scale, 

i.e., the fiber volume fraction is uniform, apart from the potential unintended variations 

caused by the production processes (settlement, segregation, etc). For certain FRCC 

components, a significant fraction of the fibers is not utilized to its full potential. One 

typical example is the case of FRCC beams or panels under bending. In ordinary service 

situations without considering substantial cracking, near half of the volume of the beam is 

under compression, where the fibers usually do not contribute much to strength, and the 

compressive strength of the cementitious matrix itself is normally sufficient to carry the 

load. In the tensile region, as stress varies from zero at neutral axis to maximum tensile 

stress through beam depth, fibers near neutral axis carry smaller portion of the tensile 

loading than those fibers that are away from the neutral axis. In this sense, many of the 

fibers are not used efficiently. In such a case, an efficient use of the fibers is achieved if 

fibers are distributed according to the amount of load to be carried and if they are placed 

where they are needed the most. One solution for more efficient use of the fibers is to 

build sandwich panels from thin fiber reinforced faces and a lightweight core (pp 143-

151, [7]). This is also similar to the case of repairing damaged beams or strengthening in-

service beams, where carbon fiber sheets are usually bonded to the bottom of the beam. 

While this procedure can be effective, significantly different properties between the fiber 

sheets and the host concrete may cause potential delamination problems. This deficiency 

can be addressed by utilizing the concept of FGM [9] - i.e., by distributing a fixed 

amount of fibers according to the proportion of the load to carry; the graded composite 

may provide better performance than the homogeneous composite. Recently, preliminary 

investigations of a new functionally-graded fiber-reinforced cement composite 
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were presented at the Multiscale and Functionally Graded Materials (M&FGM2006) 

conference and the reader is referred to the proceedings of the event [10-13].  

1.3 FUNCTIONALLY GRADED MATERIALS 

Conventionally, composites are homogeneous mixtures of two or more material 

components. Therefore, they feature uniform bulk properties, which are the compromise 

between the desired properties of the compositional materials. In contrast, FGMs are a 

new generation of composite, which are engineered to vary spatially the microstructures 

through a compositional gradient from one material component to the other [14]. The 

compositional gradient can be obtained through nonuniform distribution of one phase, 

usually the reinforcement materials, with different volume fractions, sizes, or shapes. In 

an FGM, the roles of the materials as either reinforcement or matrix can interchange, and 

the transition of such role change is in a continuous and smooth manner. As significant 

fractions of an FGM can be the pure form of each compositional material, the desired 

properties from each of the component can be maximized without compromise. A binary 

materials system contains pure form of each material, but without the smooth material 

transition. Such system, although may be structurally efficient, has unavoidable interface 

problems due to sharp change of materials and properties.  

Figure 1.3 shows schematically the material distribution and property profile for 

continuously graded FGMs, piecewise graded FGMs, binary material system and 

homogeneous composites. In all cases, the material components and volume fraction are 

the same. In both FGMs and in the binary system, pure form of each material on each 

side provides the entire property of that material. However, significant property mismatch 

concentrates at the interface of the binary system. While the piecewise graded FGMs 

alleviate the mismatch by distributing it to several interfaces, and it approximates the 

property profile of the continuously graded FGM. 

The original form of FGM was developed in Japan in 1984 during the aerospace 

project, motivated by the need of an improved thermal barrier coating (TBC). The 

requirement for the TBC is to withstand a temperature of above 2000 K and a 

temperature gradient of 1000K across the coating thickness of less than 10 mm. 
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Traditional TBCs are a binary system consisting of one layer of metallic and one layer of 

ceramic. The ceramic layer provides thermal insulation, while the metallic layer bonds 

the ceramic layer to the substrate and at the same time provides protection to the 

However, the significant mismatch of thermomechanical properties between the ceramic 

and metal makes the TBC susceptible to interface cracking, delamination or debonding 

[15-18]. The concept of FGMs [19] is then proposed to alleviate these problems. The 

volume fractions of the ceramic phase decrease continuously from the thermo-resisting 

side to the metallic bonding side generating a gradual transition of the thermomechanical 

properties. Advantages of both materials are maintained, while the residual and thermal 

stresses are reduced.  

 

 

Figure 1.3: Schematic illustrations of material distribution and property profile for 

continuously graded FGM, piecewise graded FGM, binary material system and 

homogeneous composite 
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The FGM concept subsequently attracts a great many research interests, and its 

applications in different areas have been investigated [9]. One popular application 

involves the blast or ballistic protection for critical structure or armors for military 

applications [20,21]. In microelectronics, metal-semiconductor FGM have been applied 

in actuators and transducers [22]. High-performance cutting tools can be made of FGM 

[23]. Wide application can be also found in energy conversion, where heat exchangers, 

combustion systems and fusion reactors, solar energy generators can use FGM 

components [24]. In biomedical area, graded bone and dental implants have shown better 

performance than monolithic implants [25]. Filters with porosity gradient show improved 

efficiency over those with uniform porosity [26]. Other applications include optical 

materials with refractive indices, piezoelectric and thermoelectric devices, vehicle and 

spaceflight structures [9,14]. New applications will be continuously discovered with the 

advancement of materials science and technology. 

It is extremely hard to manufacture FGMs with truly continuous gradient. No 

commercially viable process has yet been developed to make continuously graded FGMs. 

However, for practical applications, multilayer FGMs with properties varying in a 

piecewise fashion approximates the performance of ideal FGMs, and they can be reliably 

manufactured through a variety of techniques. A few techniques are listed here: powder 

metallurgical processing [27], laser melt injection (LMI) [28], thermal spraying [29,30] 

and chemical vapor deposition (CVD) [31,32]. A new laboratory method to produce a 

model polymer FGMs have been explored extensively recently [33,34]. 

1.4 COHESIVE ZONE MODELS (CZM) 

Quasi-brittle materials such as plastics, concrete, asphalt, or adhesives, usually show 

nonlinear load - deformation behavior and a gradual decrease of load capacity (softening 

behavior) after peak load. The relatively ductile behavior of quasi-brittle materials is due 

to the development of a fracture process zone (size of which may be comparable to the 

size of the specimen) in front of the macroscopic cracks. For example, Figure 1.4 

illustrates a fracture process zone formed due to fiber bridging and micro-cracking. 
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Linear elastic fracture mechanics (LEFM) is inadequate to take account of the nonlinear 

characteristic of such fracture process zone.  

A popular fracture mechanics model that accounts for the process zone behavior is 

the cohesive zone model (CZM) [35,36], which has also been referred to as fictitious 

crack model [37]. In the finite element context, the elastic deformation is represented by 

the bulk elements, while the cohesive fracture behavior is described by cohesive surface 

elements. Both “intrinsic” models [38,39] and “extrinsic” models [40-42] have been 

developed. Moreover, the CZM concept has also been implemented in conjunction with 

extended and generalized finite element method (X-FEM and GFEM) [43,44]. The 

method has been successfully applied to various types of materials including polymers 

[45,46], concrete [47], functionally graded materials [48] and asphalt [49,50].  Here, the 

CZM concept is explored with emphasis on the application to quasi-brittle material 

systems.  

 

 

Figure 1.4: Illustration of the fracture process zone in a typical fiber reinforced composite 

 

A popular fracture mechanics model that accounts for the process zone behavior is 
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elements. Both “intrinsic” models [38,39] and “extrinsic” models [40-42] have been 

developed. Moreover, the CZM concept has also been implemented in conjunction with 

extended and generalized finite element method (X-FEM and GFEM) [43,44]. The 

method has been successfully applied to various types of materials including polymers 

[45,46], concrete [47], functionally graded materials [48] and asphalt [49,50].  Here, the 

CZM concept is explored with emphasis on the application to quasi-brittle material 

systems.  

Commonly used in the simulation of mode I and/or combined fracture modes, the 

CZM describes a material level constitutive relation for the idealized damage process 

zone, which applies only to the fracture surface, while the undamaged bulk material 

remains elastic. For mode I fracture, the CZM assumes a unique relation between normal 

traction and crack opening displacement (COD) (Figure 1.5), while for pure mode II, the 

relation is between shear traction and sliding displacement. In Figure 1.5, n∆  denotes 

COD, σ  denotes the cohesive traction/stress, nc∆  and cσ  are the critical values of n∆  

and σ , respectively, and ( )nσ ∆  describes the traction-separation relation. The CZM 

may be obtained through experiments, either directly or indirectly. 

 

 

Figure 1.5: Extrinsic crack surface traction-separation model (mode I) 
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Physically, fracture/damage process is a time-dependent process due to the 

viscoelasticity of material behavior and/or the rate process of the breakage of bonds [51]. 

For rate-toughening brittle materials, the effect of phenomenological rate-dependent 

CZMs has been numerically investigated by means of the finite element method [52]. 

Although rate effect on the fracture process is present in real materials, for a wide of 

range materials under normal condition, the rate effect is negligible and the rate-

independent CZM has been shown to provide reasonable prediction.  

1.5 EXPERIMENTAL DETERMINATION OF CZMS 

Many approaches have been proposed to obtain the traction-separation relation

( )nσ ∆ . Experimentally, the direct tension test may be considered as the fundamental 

method to determine ( )nσ ∆ [53,54]. However, this approach is very difficult [53,55], 

which led researchers to seek indirect methods. One common way relies on assuming a 

simple shape of ( )nσ ∆  with a few model parameters. Independent investigations by 

Song et al. [50] and Volokh [56] demonstrate that the assumed CZM shape can 

significantly affect the results of fracture analysis. Moreover, Shah et al. [55] reviewed 

various shapes of ( )nσ ∆  that have been proposed, which include linear, bilinear, 

trilinear, exponential and power functions, and concluded that the local fracture behavior 

is sensitive to the selection of the shape ( )nσ ∆ . These models include a few parameters 

that are computed either directly from experimental measurements or indirectly by 

inverse analysis. Van Mier [57] summarized the common procedure of inverse analysis: 

model parameters are adjusted at each iteration by comparing the difference between the 

computational and experimental outcomes of global response. This method is not 

computationally efficient since a complete simulation must be carried out at each 

iteration.  

Recently, Elices et al. [58] summarized the main streams of the indirect methods 

used to determine ( )nσ ∆ . These indirect methods have common characteristics: they all 

use the global response of the experimental results, load (P) and displacement (δ ) or 
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crack mouth opening displacement (CMOD), from popular notched beams or compact 

specimens, as the basis of the inverse parametric fitting analysis. This is simply because 

the global responses are usually the only obtainable outcomes of the experiments. 

Therefore, the limitations are manifested: these methods are semi-empirical in that the 

CZMs are assumed, a priori, and they cannot be validated confidently at the local level. 

However, the obtained CZM from these methods still yields satisfactory predictive 

capability in finite element (FE) simulation of fracture [47,59,60]. 

1.6 RESEARCH OBJECTIVES 

There are two objectives in current study. The first objective is to fabricate a novel 

FGFRCC using combined extrusion and pressing technique. Specifically, this task 

includes the processing of a novel four-layer FGFRCC, the microstructure examination to 

verify the fiber gradation, and the understanding of the basic mechanical behavior. 

The second objective will then be on the inverse computation of mode I cohesive 

fracture properties, specifically the mode I CZM, using a hybrid DIC-FEM method. The 

rate effect of the fracture process is not investigated in the current scope of study. This 

second objective includes several tasks: 

(1) To make use of a recent DIC with an advanced algorithm; such advanced 

algorithm provides smoother kinematic field than traditional DIC algorithm [61]. 

(2) To implement the DIC-FEM inverse procedure for the extraction of mode I 

cohesive properties; and to verify and evaluate the procedure through numerical 

examples. 

(3) To validate the proposed inverse procedure using homogeneous plastic 

materials; the plastics must clearly show quasi-brittle fracture behavior and at 

the same time yield accurate experimental measurement. 

(4) To extract the CZM of FRCC and to evaluate the accuracy of the computed 

CZM by direct fracture simulation. 

An integrated approach, which combines material processing, microstructure 

characterization, mechanical testing and numerical simulation, is adopted to achieve the 
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objectives. Figure 1.6 illustrates the approach and gives an idea of how different aspects 

of the study are closely related to each other. The underlying philosophy is to form a 

research loop, which progresses in a spiral way, such that material science (for 

manufacturing), engineering mechanics (for characterization and analysis) and 

computational mechanics (for simulation) can be synergistically integrated for the 

advancement of technology, both in theory and in practice.  

 

 

Figure 1.6: Integrated approach adopted in current study 
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Chapter 2 presents the processing method for the fabrication of a four-layer FGFRCC. 

The material selection, the extrusion and pressing techniques, and the mix proportions are 

described in detail. The fiber gradation is shown through scanning electron microscopy 

and digital image processing. The bending behavior of FGFRCC and FRCCs are 
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full-field method, are reviewed. Then the accuracies of these two DIC methods are 

compared by using numerically transformed speckle pattern image. The transformation 

that features total non-homogeneity is also presented. Chapter 4 presents the theory of the 

hybrid FEM-DIC inverse procedure. Residual-based and displacement-based approaches 

are presented separately along with representative numerical examples. The shape 

representation and parameterization of the CZM are illustrated. The numerical examples 

for the residual-based method focus on parametric study, while those for the 

displacement-based method focus on evaluation of error tolerance. Chapter 5 

demonstrates the FEM-DIC procedure through two plastics, one ductile adhesive with 

PMMA as substrate, and one homogeneous composite, Garolite. Use of DIC to measure 

directly the Young’s modulus and Poisson’s ratio is also highlighted. Chapter 6 first 

presents the fracture testing results of FRCCs and FGFRCCs. The displacement fields 

measured by the full-field DIC for the homogeneous FRCCs are presented. The 

computed CZMs through the inverse procedure are analyzed. Comparison between the 

experimental response and the direct simulation using measured CZMs is then presented. 

Finally, Chapter 7 gives a summary of the major contributions of the present investigation 

and a series of future extension based on current work. 
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2 Chapter 2 Processing, Microstructure, and Properties of FGFRCC 

CHAPTER 2 - PROCESSING, MICROSTRUCTURE, AND PROPERTIES OF FGFRCC 

CHAPTER 2 - PROCESSING, MICROSTRUCTURE, AND PROPERTIES OF 

FGFRCC 

The focus of the present work is on the processing procedure of a novel FGFRCC, its 

microstructural verification and preliminary mechanical testing. A ram extruder was 

fabricated to manufacture thin FRCC layers with different fiber volume fractions. Then, 

extruded beams with increasing fiber volume fraction were stacked and pressed in a mold 

to integrate them into an FGFRCC. The stacking procedure is chosen because it is a 

straightforward way to generate functional gradation before subsequent processing is 

taken to integrate the stacked layers to form FGMs [62,63]. The critical issue of the 

fabrication process, the matching of paste plasticity properties between different layers, 

will be discussed later. For comparison, beams with a single global fiber volume fraction 

were also stacked and pressed. The cross-section of the FGFRCC was observed in a 

scanning electron microscope (SEM) using backscattered electron image (BEI). Through 

image processing of the SEM image, fibers were segmented from the matrix and voids to 

be examined. Three point bending tests were carried out to observe the bending behavior 

for both graded and homogeneous specimens. Interface conditions were examined in the 

fractured specimens. The bending response was compared between graded and 

homogeneous beams. 

2.1 INTRODUCTION 

In general, dense cementitious matrix and strong fiber-matrix bond are desired for a 

FRCC so that not only high toughness, but also high strength can be achieved. This is 

also desired for the fabricated FGFRCC. Extrusion has been an effective way to produce 

FRCC [64-68]. Essentially, extrusion involves forcing a plastic material through a small 

die (Figure 2.1). When this technique is applied to the manufacturing of cementitious 

materials, very low water to cement ratio can be utilized [64], which contributes to the 

high strength of the matrix. A major advantage of using extrusion for FRCC is that the 

high shearing action developed during the forming process forces the short fibers to be 

aligned in the extrusion direction (Figure 2.1). Such fiber alignment improves the 
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mechanical performance of FRCC in the extrusion direction [65,66], which is beneficial 

for components that may carry tensile load only in one direction. Fiber alignment by 

extrusion has been studied quantitatively [67,68]. A recent study has shown that 

compared with casting, can further enhance fiber-matrix interfacial bonding [69]. 

However, improvement in bonding may not be beneficial for the toughness of a FRCC 

[67,69,70], as demonstrated by studies in which interfacial bonding was tailored by either 

modifying fiber surface chemistry [70] or by modifying binder composition [69].  

 

     

Figure 2.1: Left: a laboratory scale ram extruder; Right: schematic illustration of the 

principle of an extruder, and the alignment of fibers 
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studied [71]. The main reason for adding fly ash in the mix was to improve the plastic 

properties of the fresh paste so that it is more extrudable, and to reduce the strength of the 

bond between paste and fiber. The spherical morphology of fly ash particles is 

particularly beneficial to workability [72]. In addition, when substantial amount of fly ash 

replaces cement, the overall heat of hydration and rate of heat generation reduces, which 

prolongs the plastic properties required for pressing. The fly ash used in this study is 

Class F type. 

The PVA fibers used in this study are from Kuraray Co. Ltd, Japan
1
. Its type is 

with an available cut length of 6 mm and a diameter of 27 µm. The properties of PVA 

fibers are shown in Table 2.1. We used PVA fibers because their special hydrophilic 

surface chemistry and the fibers produce a workable mixture. PVA fibers have been 

successfully used in the manufacturing of FRCC [69]. The surface chemistry of PVA 

fibers is hydrophilic so that a strong chemical bond can be developed with the hardened 

cementitious matrix [73]. The PVA fibers are soft so that they will not clog the die 

entrance, and pliant so that they will not be broken during extrusion. 

 

Table 2.1: Properties of PVA fiber (Provided by Kuraray Co. Ltd) 

Cut length 

(mm) 

Diameter 

(µm) 

Density 

(g/cm3) 

Tensile 

strength 

(MPa) 

Elongation 

(%) 

Tensile 

modulus 

(GPa) 

6 27 1.3 1600 6 37 

 

Superplasticizer was added to reduce the ratio of water to cementitious materials, and 

to enhance the fluidity of the fresh paste. The superplasticizer used in this study is Grace 

ADVA
®

 100 Superplasticizer. It is an aqueous solution and has a solid content of 35% by 

mass.  

Rheological modifier was added to improve cohesion in the fresh paste to make it 

dough-like and to prevent separation of water during extrusion, in order for the FRCC 

extrudate to retain its shape under its own weight. The rheological modifier used in this 

                                                 

1
 http://www.kuraray.co.jp/en/business/fibers.html 
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study was METHOCEL F4M, a hydroxypropyl methylcellulose (HPMC) manufactured 

by the Dow Chemical Company, U.S.A. Its liquid solution shows shear thinning 

properties that facilitates the paste flow in the extruder during extrusion [74]. The use of 

cellulose has been popular in formulating cementitious mixtures for enhancing 

extrudability, whether or not they contain fibers. 

2.3 EXPERIMENTS 

2.3.1 Mix Proportions 

For the FGFRCC, linear gradation of fiber volume fraction is considered. The fiber 

volume fractions for the four layers were selected as 0%, 0.67%, 1.33% and 2%, 

respectively. Therefore, the total fiber volume fraction of the FGFRCC is 1%. The basic 

mix proportions of different layers are shown in Table 2.2. The specific four mix 

proportions for FGFRCC were chosen based on many trial mixes and extrusions. The 

primary goal was to minimize the paste plasticity difference between layers so that 

pressing would produce uniform FGFRCC beam components. The selection of mix 

proportions for FGFRCC fabrication is discussed in a later section. 

 

Table 2.2: Mix proportions of FGFRCC layers 

Cement 

(wt.) 

Fly ash 

Class F 

(wt.) 

Water 

(wt.) 

Fiber 

(vol.) 

Superplasticizer* 

(wt.) 

HPMC/water 

(wt.) 

0.7 0.3 0.23 

0% 

0.002 0.04 
0.67% 

1.33% 

2% 

* Effective weight of superplasticizer (Grace Advance Flow) 

 

2.3.2 Mixing Procedure 

A rotary planetary-type mortar mixer was used for mixing. The dry ingredients were 

first mixed for at least one minute. Water was then added slowly, after which mixing was 

continued for 5 to 10 minutes to reach a dough-like state with no obvious fiber bundles. 

The mixing time needed to reach this state was found to depend on the dosage of HPMC, 
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the fiber volume fraction and the water to binder ratio. Usually a dosage of HPMC was 

selected such that all formulations could be mixed to a dough-like state in 5-10 minutes 

irrespective of fiber fraction. 

2.3.3 Extrusion 

The fabricated extruder is shown schematically in Figure 2.2. The extruder was 

designed to be assembled and disassembled quickly so that each extrusion could be 

finished promptly. The ram speed was fixed at 20 mm/min for an extrudate speed of 255 

mm/min.  

The extrudate was cut to the desired length (a cut length of 120 mm was used in this 

study) for subsequent pressing. Immediately after each extruded layer was cut, it was 

covered with a wet cloth to prevent drying, which would cause hardening of the extrudate 

surface and make subsequent pressing difficult.  

2.3.4 Stacking and Pressing 

After all four layers were extruded, they were stacked as shown in Figure 2.3, with 

the fiber volume fraction increased from 0% at the top to 2% at the bottom. The total 

thickness before pressing was 16 mm. The same procedure was used to make 

homogeneous FRCC with uniform fiber volume fraction by stacking four layers with the 

same fiber volume fraction to make one homogeneous FRCC beam. Five fiber volume 

factions were selected: 0%, 0.67%, 1%, 1.33%, and 2%. To reduce friction, the stacked 

layers were put in a rigid steel mold lined with smooth plastic sheet (Figure 2.4).  

The length of the stacked layers was three-fourths the length of the mold, which is 

160 mm, so that pressing caused the FGFRCC to extend in length and correspondingly 

reduce in thickness. Through this deformation process, the stacked layers bonded to each 

other and formed a continuous beam. A strong inter-layer bond developed later through 

cement hydration, which is essential to obtain integral FGMs. Greater thickness reduction 

made it more likely that layers would be wavy. We found that 25% thickness reduction 

applied was sufficient to produce interlayer bonding strong enough to avoid delamination 

while producing layers of uniform thickness. 
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Figure 2.2: Schematic illustration of a cross-section of the actual extruder developed in 

the present research 

 

 

 

Figure 2.3: Stacked extruded layers with varying fiber volume fraction 
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Figure 2.4: Mold for pressing the stacked layers to produce FGFRCC 

 

Pressing was carried out on an Instron 4500 electro-mechanical testing machine 

using displacement control. Displacement rate of 5 mm/min was used, and pressing of the 

FGFRCC was finished in about one minute. The pressing force increased sharply when 

the pressed layers filled the volume of the mold. Pressing was stopped when the force 

caused an average pressure of about 1.80 MPa. 

After each pressing operation, the FGFRCC with its plastic sheet was removed for 

curing. The plastic sheet mold served to prevent drying and gave support to the soft 

FGFRCC.  

2.3.5 Curing 

After extrusion and pressing, all extrudates with plastic mold were covered by a 

plastic sheet for one day. Then the plastic molds were removed and the specimens were 

fast cured at 90
o
C in a water bath for another two days. After this high temperature 

curing, the specimens were kept at ordinary laboratory conditions for 48 hours. Before 

flexural testing, the specimens were oven dried at 105 
o
C for one day and kept at 

laboratory condition for another 24 hours. The timing of the flexural testing was 7 days 

after the specimens were fabricated. The curing scheme is the same as that used by Shah 

and colleagues [68,69]. It was adopted here to reduce the time to subsequent testing. 

Plastic sheet mold enclosing 

the stacked layers
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2.3.6 Scanning Electron Microscopy Observation 

Cross-sectional surfaces of FGFRCC were directly cut and polished to observe the 

fiber distribution and the interface between layers. The surfaces were examined using 

SEM backscattered electrons (SEM/BEI). In order to cover an observation field 

containing all layers, several consecutive images were taken in the gradation direction. 

The images were then combined into a panorama and analyzed using an image 

processing software, ImageJ
2
, to show fiber gradation. 

2.3.7 Flexural Testing 

Three-point bending tests were carried out using an Instron testing machine to 

characterize the deflection behavior of the homogeneous and graded specimens. The 

FGFRCC and homogeneous FRCC beams have a nominal dimension of: width 25 mm, 

depth 12 mm and length 160 mm. The span was set to 120 mm so that no further cutting 

was needed. Displacement was controlled at a cross-head speed of 0.3 mm/min.  

2.4 MECHANICAL PROPERTIES 

2.4.1 FRCC Properties 

The computed equivalent elastic flexural stress is plotted versus stroke displacement 

in Figure 2.5. The first cracking stress, fcf , the maximum flexural stress, maxf , the 

corresponding displacement, maxd , and the work of fracture measured from this figure are 

summarized in Table 2.3. The first cracking stress, fcf , is defined as the stress at the end 

of the stress-displacement linearity, sometimes called bend-over-point (BOP). The 

estimated work of fracture is defined here as the area under the flexural stress versus 

displacement curve. Each value is an average test result of 3 specimens. All FRCCs show 

deflection hardening response [75]. The effect of fiber volume ratio on strength and the 

work of fracture are self-evident from Figure 2.5, both increased with fiber volume ratio.  

 

                                                 

2 
http://rsb.info.nih.gov/ij/
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Figure 2.5: Flexural response of homogenous beams with varying fiber volume fractions, 

and of FGFRCC with 1% overall net fiber volume fraction 

 

Table 2.3: Summary of bending tests of homogeneous FRCC and FGFRCC 

 0% 0.67% 1% 1.33% 2% FGFRCC 

fc
f  (MPa) 5.72 11.46 10.56 9.870 12.12 11.14 

maxf  (MPa) 5.72 11.83 12.73 14.65 22.94 18.45 

maxd  (mm) 0.18 0.545 1.01 0.97 2.06 1.19 

Work of 

fracture 

(MPa-mm) 

0.573 5.719 16.64 15.71 46.15 17.45 

 

As shown in Figure 2.6, with addition of fibers, the FRCC and FGFRCC beams have 

a fcf , or BOP, about two times of the fcf  of the beam without fibers. Moreover, it is 

observed that all FRCCs and FGFRCC have a similar value of fcf , which is about 10-12 

MPa. The stress for FRCC with 2% fiber increased much more after the BOP, compared 

to FRCCs with smaller fiber volume fraction.  
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Figure 2.6: First cracking stress and maximum flexural stress of homogeneous FRCC and 

FGFRCC 

 

 

Figure 2.7: Comparison between homogeneous FRCC and FGFRCC 
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2.4.2 FGFRCC Properties 

Figure 2.5 through Figure 2.7 also show the flexural response of the FGFRCC. 

Compared to homogeneous FRCC, after the BOP, the increase of flexural stress with 

displacement most closely resembles that of 2% FRCC, up to the mid-point of the 

hardening part of the 2% FRCC. This can be expected because the response of the 

FGFRCC is predominantly controlled by its bottom layer, which contained 2% fibers. 

However, the descending part of the curve dropped more sharply in the FGFRCC because 

of the relatively low fracture toughness of the upper layers. The softening curves 

observed in the homogeneous FRCC were not observed for the FGFRCC. This 

demonstrates that failure of the middle two layers was no later than the bottom layer.  

The fact that FGFRCC demonstrates deflection hardening behavior can be 

appreciated by comparing it to a recent investigation by Shin et al. [76]. In their 

experiments, they tested the flexural behavior of a binary system of plain concrete and 

ductile fiber reinforced cementitious composite (DFRCC) with the DFRCC on the 

tension side. Their results show that the relative lack of toughness of the plain concrete 

above the DFRCC layer leads to the abrupt loss of beam strength when the DFRCC layer 

fails, which is similar to what is seen of the FGFRCC in Figure 2.5. However, their 

material system does not show hardening behavior beyond BOP. Moreover, the brittle 

failure of the plain concrete is prior to the failure of the DFRCC layer. This contrast, 

apparently, indicates that the FGM solution is able to address such drawbacks typically 

seen in the binary systems. 

The strength and work of fracture were greater for the homogeneous 2% FRCC than 

for the FGFRCC. This is ascribed to the fact that the former has four 2% FRCC “layers” 

while the latter has only one 2% FRCC layer at the bottom. However, the FGFRCC has 

an overall fiber volume fraction of 1%. Compared with homogeneous FRCC, FGFRCC 

with 1% total fiber volume fraction has higher strength than and comparable work of 

fracture values as those of 1.33% FRCC. The maxf  of FGFRCC is about 50% and 30% 

higher than that of 1% and 1.33% FRCC, respectively. With 25% less fiber, the FGFRCC 

beam was able to sustain higher loads than the 1.33% FRCC beam before failure. A 
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simple gradation allows the fibers to be used more efficiently. This result demonstrates 

that the idea of FGM for efficient use of fiber in FRCC is promising. 

2.4.3 Reverse Bending of FGFRCC 

For the fabricated FGFRCC, the usual loading condition is that the 2% fiber layer is 

under tension. Tests were also performed to investigate the reverse situation when the 2% 

fiber layer is under compression. Figure 2.8 shows a typical result. For comparison, the 

results of the normally loaded FGFRCC and the 1% homogeneous FRCC are also shown. 

As expected, the reversely loaded FGFRCC had a much lower first cracking stress. Only 

one crack is indicated by the single sharp drop in stress after the BOP. Its post-cracking 

maximum flexural stress is even lower than the first cracking stress, though for the 

second peak, the neutral axis moved up so that some of the fibers began to carry tensile 

load. In the normally loaded FGFRCC, the reduction of flexural stiffness is not as drastic 

due to the bridging effect from the fibers. Though it had low load carrying capacity, the 

reversely loaded specimen showed a long softening tail. The plateau of the tail developed 

as a result of bending of the ductile upper layers that have more fibers than the lower 

layers.  

 

Figure 2.8: Flexural response of FGFRCC with normal and reverse loading, and of 

homogeneous FRCC, all with the same net fiber volume fraction (1%) 
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2.5 MICROSTRUCTURE 

Figure 2.9 shows a fracture surface of a hardened FRCC. The fracture surface is 

normal to the extrusion direction. The image clearly shows the high degree of fiber 

alignment along extrusion direction. Figure 2.10(a) shows the SEM/BEI image of the 

polished cross-section of the FGFRCC normal to the extrusion direction. From top to 

bottom is the direction of increasing fiber volume fraction. The small black circles are 

fibers, while the big, irregular gray and black patches are air voids. The continuous and 

more homogeneous gray area is the cementitious matrix. Figure 2.10(b) is the segmented 

binary image of Figure 2.10(a) using image analysis software, showing fibers only. The 

layer with 0% fiber volume fraction is not analyzed by ImageJ. The criteria for the 

segmentation are based on pre-defined thresholds of intensity, area size and circularity. 

Some air voids may be indistinguishable by the criteria. However, it is expected only a 

negligible number of air voids are counted as fibers. The image clearly shows an increase 

of the number of fibers from the top to the bottom. The fibers appear to be distributed 

randomly within each layer. Close-up views show that the cross-sections of fibers are 

quite circular, demonstrating parallel alignment of fibers along the extrusion direction; 

otherwise, inclined fibers would show an elliptical cross-sectional shape [67,68]. The 

random distribution and parallel alignment demonstrates the effectiveness of the mixing 

and extrusion procedure. In Figure 2.10(a), no distinctive boundaries can be found 

between layers, showing seamless material transition from one layer to the other. 

Many randomly distributed and disconnected air voids are observed, mostly in the 

range of 100 - 250 µm. Similar voids were also reported by Shao et al. [77] who 

attributed them to the use of HPMC but concluded that extruded FRCC still has higher 

strength than FRCC fabricated by casting.  
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Figure 2.9: Close-up optical image showing the fiber alignment in a broken specimen. 

Photo obtained with a Konika Minolta Dimage Z3 digital camera 

 

2.6 REMARKS ON PROCESSING 

The scheme used to obtain mix proportions that produce good extrudate and make 

pressing of FGFRCC successful is outlined in Figure 2.11. We started formulating the 

mix proportion for the FRCC with the highest fiber volume fraction, since the presence of 

more fibers makes the FRCC more difficult to extrude successfully. The next step 

consisting of the adjustment of other layers was relatively easy. In this way, the range of 

mix proportions that produced satisfactory extrudates was found through trial and error.  

 

1mm

Extrusion 

Direction



28 

 

(a)    (b) 

Figure 2.10: FGFRCC cross-section, (a) SEM/BEI image and (b) corresponding binary 

image showing fiber distribution 
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Matching the paste plasticity between layers during pressing is the key for FGFRCC 

fabrication. Here the term “plasticity” is not used in a strict sense, but rather refers to the 

deformability of fresh FRCC layers under compression. As a result, when the plasticity 

was different, wavy interfaces resulted. One example is shown in Figure 2.12, in which 

different amounts of white cement were added in three different layers for a clear visible 

view of the layers. The wavy interfaces between layers were due to the use of different 

cements, which produced different plasticity between layers. Mixes with higher fiber 

amounts were stiffer. The presence of fibers made the bulk fresh paste more cohesive 

than paste without fiber. When more fibers were added, it became more difficult to tear 

apart the fresh FRCC, which shows that the bulk cohesiveness increased. However, there 

were some tolerances for the rheological difference between layers for pressing. One 

simple and effective way to control this aspect was through monitoring the total extrusion 

force during extrusion for each layer. Currently this is also the only parameter we could 

measure with accuracy. The extrusion forces for the four different layers should be 

similar, otherwise apparent difference of the stiffness between layers and nonuniform 

deformation of the layers can be observed. In the four layers we used to successfully 

fabricate the FGFRCC, we found the extrusion forces for the four layers were between 

1,300 N to 1,500 N without necessarily adjusting the water to binder ratio. 

The FRCC layer with lower fiber volume fraction was extruded first. Before 

pressing, the first extruded layer had been extruded for more than half an hour. During 

this period, the agglomeration of particles and increasing action of HMPC changed the 

paste plasticity property, making it stiffer. This effect was utilized to help match the 

plasticity of later extruded layers, which were stiffer. In other words, the waiting time 

after extrusion of different layers was used to compensate for plasticity differences 

between layers. This is why the four FRCC mix proportions with different fiber volume 

fractions can have the same water to binder ratio, yet still produce the similar plasticity 

for pressing. 
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Figure 2.11: Sequence of mix proportion adjustment 
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3 Chapter 3 Digital Image Correlation 

CHAPTER 3 – DIGITAL IMAGE CORRELATION 

CHAPTER 3 - DIGITAL IMAGE CORRELATION 

Digital image correlation (DIC) is a non-contact optical technique that is capable of 

measuring full-field two-dimensional or three-dimensional surface deformations [78-82]. 

Over the years, with the rapid advancement of computer vision technology, and with the 

availability of cheaper and more powerful digital image acquisition devices, DIC has 

gained increasing popularity among researchers in different fields. The rich information 

from DIC shows great potential in solving inverse identification problems [83,84], and in 

experimental fracture analysis [33,85-89]. 

In this chapter, the DIC techniques employed in this work are described in detail. 

This includes both the subset and full-field DIC algorithms, the latter one being the 

algorithm of choice in the present research. The presentation of the DIC algorithms is 

followed by an assessment of the full-field DIC. 

3.1 INTRODUCTION 

Choi et al. [87] used DIC to measure the deformation data of concrete under fracture. 

Their measurement obtained accuracy within the micron range. Sokhwan and Shah [88] 

studied the fracture of quasi-brittle cement paste using DIC under compression. Corr et 

[89] used DIC to examine the bond between carbon fiber reinforced polymers (CFRP) 

and concrete substrates and measured the softening and fracture behavior at interfacial 

transition zone of plain concrete. These investigations have demonstrated that DIC is an 

effective tool for the study of fracture behavior of cementitious materials.  

A recent comprehensive review [90] indicates that DIC in fact is a subset of the 

research area of image registration. Essentially, DIC compares two digital images, one 

the target image (image of specimen in a reference state) and the other the source image 

(image of specimen after deformation). The DIC algorithm searches for the one-to-one 

correspondence of the points (pixels) in both images by matching all the pixel intensities 

in an area with a unique image pattern. Such correspondence can be displacements only, 

or a combination of displacements and their gradients. The single most popular type of 
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image used in DIC is gray-scale image with random speckles. The gray-scale image can 

be 8-bit, 12-bit, 16-bit or 32-bit depending on the image acquisition device. The size of 

random speckles is usually very fine, on the scale of 1-100 microns. It can be black 

speckles in a white background or vice versa. Figure 3.1 shows a typical speckle pattern 

where the speckles are black. Usually the speckle pattern is generated by spraying either 

black or white paint using a refined airbrush. 

The general set-up of the DIC technique is illustrated in Figure 3.2. The non-contact 

DIC set-up is independent of the set-up of the experiment investigated, which does not 

need to be a mechanical testing. The primary components of the set-up are light source, a 

digital camera with either CCD (charge-coupled device) or CMOS (Complementary 

metal–oxide–semiconductor) sensor and a computer that stores the images. The lens of 

the digital camera is critical in that its quality determines the sharpness of the image 

taken. The lens must not have the barrel distortion normally associated with high optical 

magnification. The resolving power of the DIC system depends on the resolution of the 

CCD or CMOS sensor and the magnification factor. The magnification factor is the ratio 

of the physical size of the sensor to the size of the specimen area taken. For example, 

when a 2 mm by 3 mm sensor takes an image of an area of 1mm by 1.5 mm, the 

magnification factor is two. 

 

 

Figure 3.1: A typical speckle pattern used in DIC 



Figure 3.2: Typical arrangement of a 

3.2 SUBSET DIC ALGORITHM

In the subset DIC algorithm, a grid of points (nodes) is first selected on the reference 

image. A subset is the set of pixels with 

Usually the subset is a square consisting (2

The moving subset is to be correlated from the reference image to the deformed image by 

a mapping function 

 

where ( ),x y  and ( ),x yɶ ɶ  are the same point before and after deformation, 

are displacement components defined by a set of mapping parameters. With the 

prerequisite that the displacement field within the subset is conti

displacement field is usually approximated by Taylor

body motion) up to second
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: Typical arrangement of a 2D deformation measurement with DIC

SUBSET DIC ALGORITHM 

In the subset DIC algorithm, a grid of points (nodes) is first selected on the reference 

image. A subset is the set of pixels with a pre-selected node as its center (

Usually the subset is a square consisting (2m+1) × (2m+1) pixels, where 

The moving subset is to be correlated from the reference image to the deformed image by 

( )
( )

,

,

x x u x y

y y v x y

= +

= +

ɶ

ɶ
 

,ɶ ɶ are the same point before and after deformation, 

are displacement components defined by a set of mapping parameters. With the 

prerequisite that the displacement field within the subset is continuous and smooth, the 

field is usually approximated by Taylor’s expansion from zero

body motion) up to second-order (arbitrary deformation).  

 

deformation measurement with DIC 

In the subset DIC algorithm, a grid of points (nodes) is first selected on the reference 

selected node as its center (Figure 3.3). 

+1) pixels, where m is an integer. 

The moving subset is to be correlated from the reference image to the deformed image by 

(3.1) 

are the same point before and after deformation, and u  and v  

are displacement components defined by a set of mapping parameters. With the 

nuous and smooth, the 

from zero-order (rigid-



Figure 3.3: Subset DIC algorithm wher
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: Subset DIC algorithm where each image subset is correlated independently

With the prerequisite that the displacement field within the subset is continuous and 

smooth, the displacement field can be approximated by different order Taylor expansion

Correlation that only searches for rigid body translation, which is actually 

Taylor expansion of the displacement function, is commonly seen in image processing 

Matlab, ImageJ and ImagePro. Although correlation for rigid body 

translation can obtain sub-pixel displacement, first or second-order Taylor series may be 

employed to achieve greater accuracy. The zero-order mapping functions are 

0 0

0 0  ,

x x u

y y v

= +

= +

ɶ

ɶ
 

is the node location, 0u  and 0v  are the components of rigid body 

order mapping functions are  

0 0

0 0  ,

x y

x y

x x u u x u y

y y v v x v y
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y
v  are the first-order displacement gradients, and  

0

0  .

x x x

y y y

∆ = −

∆ = −
 

-order mapping functions are  

 

e each image subset is correlated independently 

With the prerequisite that the displacement field within the subset is continuous and 

smooth, the displacement field can be approximated by different order Taylor expansions. 

or rigid body translation, which is actually a zero-order 

Taylor expansion of the displacement function, is commonly seen in image processing 

Matlab, ImageJ and ImagePro. Although correlation for rigid body 

order Taylor series may be 

order mapping functions are  

(3.2) 

are the components of rigid body 

(3.3) 
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where xxu , yy
u , xy

u , xxv , yy
v  and xy

v  are the second-order displacement gradients. From 

Equations (3.2)-(3.4), the number of mapping parameters for zero-, first- and second-

order approximations are 2, 6 and 12 respectively. In general, the increased number of 

parameters results in higher accuracy of the correlated displacement. 

We use ( ),rI x y  and ( ),dI x y  to denote the intensity of the reference and the source 

images, respectively. One assumption in DIC is that the relative light intensity of the 

specimen surface either does not change or changes uniformly during deformation. Under 

this assumption, if the mapping functions are correct, then 

 ( ) ( ) ( )( ) ( ), , , , ,d d rI x y I x u x y y v x y I x y= + + =ɶ ɶ . (3.5) 

Both ( ),rI x y  and ( ),dI x y  are discrete digital intensity arrays representing the 

continuously specimen surface image. Figure 3.4 demonstrates the discrete intensity 

arrays, which show abrupt changes of intensity between adjacent pixels. If ( ),x yɶ ɶ  is at a 

pixel location, which is rarely the case, its intensity can be directly read from image 

( ),dI x y . However, if ( ),x yɶ ɶ  is at a sub-pixel location (Figure 3.5), its intensity value in 

the deformed image has to be interpolated from adjacent pixels. Bilinear interpolation 

and bicubic interpolation are two popular interpolation schemes. 

3.2.1 Bilinear Interpolation 

Bilinear interpolation uses the intensity values of the nearest four pixels: 

 ( ) 00 10 01 11,  ,dI x y h t htα α α α= + + +ɶ ɶ  (3.6) 

where 
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and h  and t  (Figure 3.5) are the relative distances to pixel 

interpolation has the advantage of ease of implementation and low computational cost. 

However, for greater accuracy, higher order bicubic interpolation is used. 

 

Figure 3.4: Illustration of the discrete nature of a digital image (8

pixel cell indicates the intensity of that pixel

 

Figure 3.5: Computational cell for bilinear and bicubic interpolation

36 

) ( )
) ( ) ( )

) ( )
) ( ) ( ) ( )

00 10

' ,  ' ,

, ,  1, , ,

, 1 , ,

1, 1 , 1, , 1 ,

d d d

d d

d d d d

h x i t y j

I i j I i j I i j

I i j I i j

I i j I i j I i j I i j

α α

= − = −

= = + −

= + −

= + + + − + − +
 

) are the relative distances to pixel ( ),i j . As can be seen, bilinear 

interpolation has the advantage of ease of implementation and low computational cost. 

eater accuracy, higher order bicubic interpolation is used. 
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3.2.2 Bicubic Interpolation 

The expression for bicubic interpolation is:  

 ( )
3 3

0 0

,  ,m n

d mn

m n

I x y h tα
= =

=∑∑ɶ ɶ  (3.7) 

where mnα  are the fitting coefficients determined from I , xI , 
yI  and 

xyI  at the four 

nearest pixel locations. The xI , 
yI  and 

xyI  are the x -direction, y -direction and cross 

gradients of the intensity. The computation of xI , 
yI  and 

xyI  is not well documented in 

published papers about DIC. Thus we describe a complete procedure for determining xI , 

yI  and 
xyI , as well as for computing mnα  in Appendix A. 

A modified version of Equation (3.7) is 

 ( )
3 3

0 0

,  ,m n

d mn

m n

I x y h tα χ
= =

= +∑∑ɶ ɶ  (3.8) 

where χ  is an additional parameter taking into account differences of the intensity of 

reference and deformed images due to two different exposures [91]. 

The mapping parameters for a subset are determined through minimizing a 

correlation coefficient, of which there are two popular forms: 
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where 
pR  represents any single pixel point in subset domain 

P
Ω  in the reference image 

that centers node “ P ”, and λ  represents the vector of the mapping parameters. In both 

Equations (3.9) and (3.10), the summation shall be carried out for all points in 
P

Ω . In 

ideal situation, the best computed mapping parameters would yield the correlation 

coefficient C → 0.  

Minimization of equations (3.9) or (3.10) is a nonlinear optimization problem where 

different optimization solvers can be applied, among which the Newton-Raphson method 

is usually used. In the following, the Newton-Raphson procedure for the case of 

minimizing correlation coefficient defined by Equation (3.9) using second-order mapping 

functions and using bicubic interpolation is given. 

Minimizing C  means that C∇  converges to zero, or  

 
( ) ( ) ( ) ( )

2
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,2
,  ,

p p

p p

d p

r p d p

R ir p
i

R

I R
C I R I R

I R λ∈Ω
=

∈Ω

 ∂−   ∇ = − =   ∂  
∑∑

λ
λ 0  (3.11) 

where { }0 0
, , , , , , , , , , ,

x y xx yy xy y xx yy xy
u u u u u u v v v v v χ=λ . Applying the standard Newton-

Raphson procedure, Equation (3.11) becomes an iteration loop 

 ( ) ( ) ( )0 0 0C C∇∇ − = −∇λ λ λ λ , (3.12) 

where 0λ  is an initial guess of the solution and λ  is the next approximate solution of 

Equation (3.11); C∇∇  is the Hessian matrix of C . Equation (3.12) iterates until either λ

, or C∇  converges. The Hessian matrix C∇∇  can be derived as 
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When λ  is close to the final solution, ( ) ( ),
r p d p

I R I R≈ λ . Therefore, Equation (3.13) 

can be approximated as 
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 (3.14) 

The derivatives of ( ),
d p

I R λ  with respect to iλ  can be evaluated using the chain rule, 

i.e.,  

 
( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,
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i i i i
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ɶ ɶ
 (3.15) 

where ( ), ,dI x y x∂ ∂λɶ ɶ ɶ  and ( ), ,dI x y y∂ ∂λɶ ɶ ɶ  are the gradients of the bicubic spline 

interpolated intensity of the deformed image. With Equation (3.8), we have 
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and 

 

( ) 2 3

01 11 21 31

2 3

02 12 22 32

2 2 2 2 3 2

03 13 23 33

, ,

2 2 2 2

3 3 3 3  .

dI x y
h h h

y

t ht h t h t

t ht h t h t

α α α α

α α α α

α α α α

∂
= + + +

∂

+ + + +

+ + + +

λɶ ɶ

ɶ

 (3.17) 



40 

Since ( )p i
x R λ∂ ∂ɶ  and ( )p i

y R λ∂ ∂ɶ  can be easily derived from Equation (3.4), together 

with Equation (3.16) and (3.17), explicit forms for Equation (3.15) are as follows: 

 

0 0

2 2

2 2

1 1

2 2

1 1

2 2

1 1

2 2

d d d d

d d d d

x x

d d d d

y y

d d d d

xx xx

d d d d

yy yy

d d d d

xy xy

I I I I

u x v y

I I I I
x x

u x v y

I I I I
y y

u x v y

I I I I
x x

u x v y

I I I I
y y

u x v y

I I I I
x y x

u x v y

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= ∆ = ∆

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= ∆ = ∆

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= ∆ = ∆

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= ∆ = ∆

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= ∆ ∆ = ∆

∂ ∂ ∂ ∂

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

1d

y

I

χ

∆

∂
=

∂ ,

 (3.18) 

where ( ), ,d dI I x y= λɶ ɶ . 

Lu and Cary reported that the subset algorithm can obtain a displacement field with 

accuracy within ±0.005 pixels and the displacement gradients within ±0.0002 [92]. In 

their tests, they used 8-bit gray scale images with the subset size 41 × 41pixels and they 

tested both first and second order deformations. 

3.3 FULL-FIELD DIC ALGORITHM 

Although the subset DIC algorithm is able to obtain a high degree of accuracy in the 

measurement of the displacement field and/or the strain field, there are errors associated 

with the lack of consideration of the displacement compatibility between adjacent 

As can be seen from the subset DIC procedure, each subset has its own converged 

deformation field, which is independent of the deformation fields of surrounding subsets. 

Such discrete fields degrade the accuracy in that the subset DIC measured displacement 

field is not very smooth over the whole correlated domain. The gradient of the 



displacement field computed using subset DIC is very noisy

from subset DIC, the discrete displacements at the centers of all subset

Taking derivatives of the smoothed displ

field can be obtained. However, such remedy negates the effort of directly obtaining the 

gradient during the subset DIC process. Another disadvantage of the subset DIC 

algorithm is that the algorithm is very

Also the selection of the optimal size of the subset 

for a particular speckle pattern 

 

Figure 3.6: Full-field DIC algorithm where the whole image is correlated

 

Contrary to the subset DIC algorithm, the entire images are correlated in the full

field DIC algorithm (Figure 

seeks to minimize the dissimilarity between the reference image and the correlated 

deformed image 

 imgC I R I R

where 
imgC  is the objective correlation function, 

interest (ROI) on the image, and 

the only set of parameters that determines the deformation field for
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computed using subset DIC is very noisy. To improve the accuracy 

from subset DIC, the discrete displacements at the centers of all subsets can be smoothed. 

Taking derivatives of the smoothed displacement field, better estimation of the gradient 

field can be obtained. However, such remedy negates the effort of directly obtaining the 

gradient during the subset DIC process. Another disadvantage of the subset DIC 

algorithm is that the algorithm is very sensitive to the quality of the speckle pattern 

Also the selection of the optimal size of the subset more or less depends on trial and error 

for a particular speckle pattern [94].  

field DIC algorithm where the whole image is correlated

o the subset DIC algorithm, the entire images are correlated in the full

Figure 3.6). Similar to Equation (3.9), the full-field DIC algorithm 

seeks to minimize the dissimilarity between the reference image and the correlated 

( ) ( ){ }
mg

2

img

img

1
,

#
p i

r p d p

R

C I R I R
∈Ω

= −
Ω ∑ λ , 

is the objective correlation function, 
imgΩ  is the domain of the region of 

interest (ROI) on the image, and 
img#Ω  is the total number of pixels in Ω

the only set of parameters that determines the deformation field for the whole ROI. 

. To improve the accuracy 

can be smoothed. 

acement field, better estimation of the gradient 

field can be obtained. However, such remedy negates the effort of directly obtaining the 

gradient during the subset DIC process. Another disadvantage of the subset DIC 

sensitive to the quality of the speckle pattern [93]. 

depends on trial and error 

 

field DIC algorithm where the whole image is correlated 

o the subset DIC algorithm, the entire images are correlated in the full-

field DIC algorithm 

seeks to minimize the dissimilarity between the reference image and the correlated 

(3.19) 

is the domain of the region of 

imgΩ . Here λ  is 

the whole ROI.  
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As the ROI on the image may have inhomogeneous deformation field, e.g., near a 

crack tip, the approximation of the deformation field using a truncated Taylor series is 

apparently inadequate. For the case of continuous elastic deformation, a smooth 

parametric function must be employed to be able to represent the inhomogeneous field. 

B-spline (basis spline) surface representation appears to be very attractive in that it is 

smooth (C
2
 continuous), flexible and requires a relatively small number of unknown 

parameters. Figure 3.7 shows a single bicubic B-spline surface described by  

 ( ) ( ) ( )3 3,f x y x yβ β= ⋅ , (3.20) 

where ( )3 xβ  is the B-spline of degree 3 with the expression 
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 (3.21) 

Similar expressions can be developed for ( )3 yβ . 

A uniform grid is first applied to the ROI on the specimen surface image (Figure 

3.6). The spacing between the grid points can be arbitrary and need not be the same in x - 

and y -directions. The smaller the spacing between grid points, the more detail of the 

displacement field can be represented. Each grid point is associated with a bicubic B-

spline surface with a certain height. The complete representation of the displacement field 

is a linear combination of all the bicubic B-splines expressed by  

 ( )
( )
( )

( ) ( ), , 3 3

0 0 , ,

,

,

m n
x i j

x y

i j y i j

cu x y
x h i y h j

cv x y
β β

= =

  
= = − −  
  

∑∑u x , (3.22) 

where m  and n  are the number of grid points in x - and y -directions, xh  and 
yh  are the 

grid spacing, and 
, ,x i jc  and 

, ,y i jc  are the coefficients associated with the two bicubic B-
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spline surfaces at grid point (i, j) for displacement u  and v  respectively. Equation (3.19) 

can be rewritten as  

 ( ) ( )( ){ }
mg

2

img

img

1

#
i

r dC I I
∈Ω

= − +
Ω ∑

x

x x u x , (3.23) 

where the optimal unknowns 
, ,x i jc  and 

, ,y i jc  yield the best estimate of ( )u x , therefore 

the minimum 
imgC .  

 

 

Figure 3.7: Bicubic B-spline basis function 

 

In Equation (3.23), the deformation parameters to be correlated only includes 

displacement, while for the subset DIC algorithm, the deformation parameters may 

include derivatives of the displacement. However, the B-spline form of ( )u x  (Equation 

(3.22)) allows one to compute a smooth and continuous gradient field efficiently. The 

smoothness of the computed gradient field is not to the same level of the displacement 

field. This is due to the fact that the gradient of ( )u x  is more sensitive than ( )u x  itself 
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to the change of the unknown parameters 
, ,x i jc  and 

, ,y i jc .  This issue can be resolved by 

minimizing an additional regularization term [95] 

 ( ) ( )
mg mg

2 2
2 2

img

img

1

#
i i

G D u D v
∈Ω ∈Ω

 
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∑ ∑
x x
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where 
2 2 2

2

2 2
,  2 ,  D

x x y y

 ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

 is the second-order total differential operator, and ⋅  

is the Euclidean norm. Combining Equations (3.19) and (3.24) and assigning different 

weights to the two terms, the new objective function to be minimized becomes 

 
img imgc gw C w GΨ = + , (3.25) 

where cw  and 
gw  are the scalar-valued weights. 

The Newton-Raphson procedure to minimize the correlation coefficient C  can be 

used to minimize Ψ . Cheng et al. [61] and Sorzano et al. [95] have proposed using the 

Levenberg-Marquardt optimization method as the solver to improve the computational 

efficiency. 

3.4 ASSESSMENT OF THE FULL-FIELD DIC 

In this section, the performance of the full-field DIC is evaluated by comparing it to 

the subset DIC with the second order mapping function. Assessment of the accuracy of 

DIC needs at least one pair of images with known displacement transformation between 

them. Usually, numerically transformed images are used [61,84,92] or transformation can 

be made by experimental means [96]. In the latter case, the transformations are usually 

limited to be uniform one degree-of-freedom deformation, e.g. translation, uniaxial 

stretching or compression, or rigid body rotation. In the former case, much more 

complicated transformations can be applied, e.g., the transformation can be a 

combination of translation, stretching and rotation. In this study, a more complicated 

numerical transformation is used to generate the deformed image from a reference image, 

which is a real speckle image. It is anticipated that such transformation simulates the 
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more general cases of inhomogeneous deformation. Equation (3.26) shows the 

displacement functions, horizontal and vertical, for the image transformation: 

 ( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( ) ( )( )

0 0 0 0

0 0 0 0

, sin - cos 3 - cos - sin 3 -

, cos - sin 3 - sin - cos 3 -  ,

u x y x x W x x W y y H y y H

v x y x x W x x W y y H y y H

π π π π

π π π π

   = + +   

   = + +   

 (3.26) 

where ( )0 0,  x y  are the coordinate of the origin of the reference image, W  and H  are the 

width and height of the reference image in pixels. The image transformation involves 

evaluation of subpixel intensity from the reference image, which is done through cubic 

interpolation (Appendix A). The image used for the assessment of the in-house DIC is 

shown in Figure 3.8, which also shows the deformed image. The vector plot of the 

displacement field by equation (3.26) is shown in Figure 3.9, which clearly illustrates the 

heterogeneous deformation imposed by transformation. 

 

   

Figure 3.8: Left: reference image 300 x 300 pixels, black background; Right: deformed 

image using the transformation functions 

 

The gradient of the displacement field, i.e., the strain of the deformation, for 

horizontal and vertical direction, can be easily derived from equation (3.26) and is not 

provided here. Only the components of the gradient of the horizontal displacement, xu  

and 
yu , are shown in Figure 3.10 and Figure 3.11, respectively. 

(x0, y0)
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Figure 3.9: Vector plot of displacement field by the transformation 

 

 

Figure 3.10: Surface plot of the field xu  

 

 

Figure 3.11: Surface plot of the field 
yu  
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3.4.1 Displacement Field 

A uniform grid of 21x21 points over the entire reference image is used for the 

evaluation. The measured displacements by subset DIC (subset size: 31×31 pixels) and 

full-field DIC are compared with the displacements calculated from equation (3.26). The 

displacement errors, i.e., difference between DIC measurement and the analytical values, 

at the grid points for u  and v  are plotted in Figure 3.12 and Figure 3.13, respectively. 

Larger errors can be seen from both DIC measurements near the image boundary, but the 

errors of the subset DIC are more significant. While away from the image boundary, both 

DIC’s seems to have consistent small errors.  

 

 

Figure 3.12: Errors of displacement component, u , for subset DIC and full-field DIC 

 

The errors of displacement are plotted against the displacement in Figure 3.14, in 
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transformation function, 
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and 
DIC

fulu  and 
DIC

fulv  denote the displacement measured by full-field DIC. As the figure 

shows, in average, the full-field DIC yields better measurement than the subset DIC. 

Notice that the error level does not depend on the displacement value. This is contrary to 
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what was observed in simple transformation: the mean errors are small when the 

displacement is close to a whole pixel number [84]. 

 

 

Figure 3.13: Errors of displacement component, v , for subset DIC and full-field DIC 

 

  

Figure 3.14: Displacement error versus displacement for subset and full-field DIC’s, left: 

errors for u , right: errors for v  

 

Figure 3.15 clearly shows that those problematic points having higher errors by both 

the subset and the full-field DIC measurements are located at the image boundary. Away 

from the boundary, both DICs seems to have similar level of accuracy. The reason that 

the subset DIC is prone to errors near the boundary can be explained by the fact that only 

a partial subset for the boundary grid points can be used for the correlation, while for the 
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full-field DIC there is no such issue. The imperfect interpolation near the image boundary 

for the transformation may be the reason that relatively larger errors at the boundary also 

occur for full-field DIC.  

 

  

Figure 3.15: Displacement errors plotted against distance from grid point to image 

boundary, left: errors for u , right: errors for v  

 

The accuracy of the boundary displacement measurement may be important for 

certain problems, e.g., the fracture problems investigated in current study. In this sense, 

the full-field DIC seems to be superior to the subset DIC.  
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3.17, the subset DIC gives better measurement in normal strain than in shear strain, while 

the full-field DIC gives accurate measurement for both normal and shear strains. 

 

 

Figure 3.16: Normal strain errors plotted against distance from grid point to image 

boundary, left: for subset DIC, right: for full-field DIC 

 

 

Figure 3.17: Shear strain errors plotted against distance from grid point to image 

boundary, left: for subset DIC, right: for full-field DIC 
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u  are shown here in Figure 3.18. Again, full-field DIC 

gives better results at boundary grid points for xxu . However, for xy
u , both methods show 
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Figure 3.18: Errors of second-order displacement gradient plotted against distance from 

grid point to image boundary, left: for subset DIC, right: for full-field DIC 

 

3.4.3 Statistics of the DIC Measurement 
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not take for granted that the high DIC precision claimed in other studies can be also 

obtained for specific complicated deformations/configurations. Each material and each 

DIC setup have their own particular features. 

Besides improved average accuracy, the major advantage of full-field DIC over 

subfield DIC, as has been demonstrated in this chapter, is that the errors measured by 

full-field DIC near the image boundary are much smaller. As will be presented in later 

chapters, the inverse fracture problem requires accurate measurement of the displacement 

field on the crack vicinity.  

 

Table 3.1: Mean displacement error and the standard deviation of the displacement error, 

α  denotes a particular kinematic term, e.g. u , v , ..., etc. 

 
Mean error:  

DIC anaα α
µ

−
 

Mean absolute error: 

DIC anaα α
µ

−
 

Standard deviation of 

the error: DIC anaα α
σ

−
 

DIC type Subset Full-field Subset Full-field Subset Full-field 

u  -0.00023 -0.00182 0.0243 0.0127 0.0699 0.0219 

v  -0.00703 -0.00352 0.0244 0.0142 0.0774 0.0251 

xu  -0.002277 0.000699 0.00474 0.00146 0.01227 0.00319 

y
u  0.000130 0.000191 0.00217 0.00137 0.00382 0.00332 

xv  0.000089 -0.000587 0.00236 0.00174 0.00477 0.00422 

y
v  -0.001419 0.000506 0.00465 0.00124 0.01294 0.00264 

xxu  0.000045 -0.000010 0.000351 0.000195 0.000981 0.000395 

xy
u  0.000024 0.000004 0.000093 0.000071 0.000179 0.000132 

yy
u  -0.000032 -0.000080 0.000136 0.000180 0.000283 0.000467 

xxv  -0.000008 -0.000114 0.000141 0.000222 0.000357 0.000452 

xy
v  0.000016 0.000006 0.000109 0.000066 0.000222 0.000117 

yy
v  -0.000142 -0.000040 0.000343 0.000166 0.000980 0.000408 
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4 Chapter 4 Inverse Computation of Cohesive Fracture Properties 

CHAPTER 4 - INVERSE COMPUTATION OF COHESIVE FRACTURE PROPERTIES 

CHAPTER 4 - INVERSE COMPUTATION OF COHESIVE FRACTURE 

PROPERTIES 

The investigation of the proposed scheme is conducted through a 2D FE model of 

single edge-notched beam (SENB) specimen. The SENB specimen is commonly used in 

experiments for the measurements of mode I fracture behavior and properties. In this 

study, only one crack along the symmetry line of the specimen is considered. The CZM is 

implemented along this line. In the direct problem, a known CZM is assumed. An 

intrinsic CZM implementation is then carried out to solve the nonlinear fracture process, 

results of which include global load (P) versus CMOD and the displacement field at each 

loading step. The inverse problem uses the displacement field corresponding to certain 

post-peak load levels in the P versus CMOD curve, where the full cohesive zone is 

formed. In the inverse problem, the CZM is the unknown while the displacement data, 

recorded at every node, from the direct problem is treated as synthetic experimental data. 

Synthetic errors of different levels are added to the displacement data before it is used in 

the inverse analysis. The inverse problem is formulated as an unconstrained optimization 

problem in which a flexible CZM shape representation defined by a set of unconstrained 

parameters is to be obtained. Both residual and displacement based optimization 

approaches are presented and discussed. 

4.1 INTRODUCTION 

Fundamentally, stress can only be measured indirectly, while displacement or strain 

is traditionally measured at limited number of discrete points. Recent developments in 

experimental stress analysis techniques, such as photoelasticity, laser interferometry and 

digital image correlation (DIC), enable measurements of whole deformation field [78]. 

The rich experimental data has attracted the attention of researchers who work on inverse 

identification problems [83]. Among these techniques, DIC shows great potential in 

experimental fracture analysis [33,85,86].  
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Recent hardware and software development of DIC technique enable researchers to 

obtain sub-micron measurement of 2D whole displacement field on a flat specimen 

surface. Such accurate measurement of the displacement field allows one to take 

numerical derivatives to obtain the strain field, though it may introduce errors in the 

process of differentiating discrete experimental data. The stress is then obtained using the 

known elastic properties. In such a way, stress near the crack surface can be obtained to 

approximate the cohesive stress. By statistically correlating the crack opening 

displacement (COD), which is a part of the DIC measured displacement field, with the 

cohesive stress, one can obtain the cohesive zone model from the local level [86]. This 

scheme correlates cohesive stress with COD in a discrete fashion without considering the 

possible influence from adjacent materials, which may degrade the accuracy. In addition, 

for stiff, brittle materials, the failure stress of the material is normally very low and thus, 

the associated strain level in the bulk material is also  low, which leads to high error/noise 

to signal ratio. This can lead to extreme difficulty in obtaining accurately derived strain.   

Motivated by the access to the full displacement field obtainable from DIC and by 

the power of FE simulations of fracture phenomena, the idea of combining DIC with the 

FEM is explained in this investigation. The key idea is to utilize the full displacement 

field in an FEM frame. Avoiding the computation of the stress from the derived strain 

field (a potentially significant source of errors) is the major advantage of using FEM. The 

proposed scheme is described in the next section. 

4.2 DIRECT PROBLEM  

In a general fracture mechanics problem, the geometry of the solids, the constitutive 

parameters for the bulk materials and its cohesive properties, and a set of well-posed 

boundary conditions are known or given. The solution of the problem consists of the 

displacement, strain and stress fields. Such fracture problems are referred to as direct 

problems. The FEM formulation of these direct problems, based upon the principle of 

virtual work, can be expressed as [39]: 

 : 0
ext coh

ext ext coh coh
d d dδ δ δ

Ω Γ Γ
Ω − ⋅ Γ − ⋅ ∆ Γ =∫ ∫ ∫σ E T u T u , (4.1) 
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where Ω  represents the specimen domain, extΓ  represents the boundary on which the 

surface traction extT  is applied, cohΓ  represents the cohesive surface where the cohesive 

traction cohT  and the crack opening displacement ∆u  are present, σ  is the Cauchy stress 

tensor, E  is the Green strain tensor, and u  is the displacement vector. Applying the 

Galerkin discretization procedure that uses FEM shape functions leads to the set of 

standard FEM system of equations 

 ( );  ,ext=K u λ u F  (4.2) 

where K  is the stiffness matrix which is a function of the given constitutive parameters 

λ  and the displacement u , and extF  is the generalized external force vector. Note that the 

dependence of K  on u  implies a nonlinear response, as this is the usual case in nonlinear 

fracture mechanics problems.  

In an FEM context, the CZM can be implemented through a special intrinsic 

cohesive element [38,59], or be treated as a special nonlinear surface traction that acts on 

the cohesive surfaces. For the fracture problems presented in this thesis, a plain-stress 

single-edge notched beam (SENB) specimen is used. The specimen is idealized by a 2D 

FEM model discretized using Q4 element. The latter approach of implementing CZM is 

found to be convenient and is therefore adopted. Figure 4.1 shows one bulk Q4 element 

aligned to the cohesive surface on the SENB specimen, where σ  denotes the mode I 

cohesive stress. 

For this Q4 element 

 b

e e =K u r ,  (4.3) 

where b

e
K  is the bulk element stiffness matrix, e

u  is the element nodal displacement, and 

r  is the element nodal force. When the cohesive stress is the only stress contributing to 

r , we have 

 ( )( ) ( )( ) ( )n s c n n s c

0 0

l l

e

xs t ds k s s t dsσ= ∆ = ∆ ∆ = −∫ ∫r N N K u , (4.4) 
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where s  is the local natural coordinate shown in Figure 4.1, l  is the size of the Q4 

element, t  is beam thickness, c nk σ= ∆ ,  ( ){ }s ,  
T

l s l s l= −N  is the shape function in 

natural coordinate system, and ( ) ( )n 2 2 T

x ss u s∆ = − = − u N . The vector { }1 2,  
T

x x xu u=u  

denotes the nodal displacement in the x direction, and  ( )( )c c s s

0

2 2

l

e Tk u s tds= −∫K N N  

denotes the cohesive element stiffness matrix. As 
( ) ( )

2 1

e el y y= − , ( )1 2s l η= + , c

e
K  can 

be simplified: 

 ( )
1

c c

1

2e T T

xk tdη
−

= −∫K u N NN , (4.5) 

where ( ) ( ){ }1 2, 1 2
T

η η= − +N  is the shape function in the isoparametric coordinate 

system. 

 

 

Figure 4.1: A bulk Q4 element along the cohesive surface 

 

Equations (4.3)  and (4.4) give the contributions of each element to the cohesive and 

bulk stiffness, and the global system of equations becomes 

 ( )( ) ext

b c+ =K K u u F , (4.6) 

Q4 Bulk 

Element

Cohesive 

Surface

u2x Symmetry line

( )( )n sσ σ= ∆

l

s

u1x

P

SENB Specimen
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where bK  is the global stiffness matrix of the bulk material, cK  is the global cohesive 

stiffness matrix, u  is the global displacement vector, and extF  is the generalized global 

external force vector. With the realistic assumption that no damage occurs on the bulk 

materials during a fracture process, bK  remains essentially a constant matrix. One can 

see that equation (4.6) is a particular case of the equation (4.2). 

The sequence of iterations for the displacement field u  at a specified load can be 

obtained through 

 
( )( )( ) ( ), , 1 ext

b c

n m n m++ =K K u u F , (4.7) 

where n  is the n
th

 loading step and m  is the m
th

 iteration for the current loading step. 

The loading in the FE analysis is displacement controlled and is defined by the 

generalized external force vector extF . For the cases when the loading response 

shows a snap-back behavior in the post-peak load versus load-line displacement 

curve, a more advanced arc-length solution scheme is applied. Details of the 

algorithm of the nonlinear arc-length procedure can found in references [97,98]. 

4.3 INVERSE PROBLEM 

The current problem belongs to the particular type of inverse problem that involves 

constitutive parameter identification through a set of given or measured kinematic 

measurements [83]. In this study, a full-field displacement data is the basis for the inverse 

problem. The parameters defining the cohesive traction-separation relation, denoted 

exclusively as λ  hereafter, are the constitutive parameters to be identified. The basic 

equation (4.2) remains identical except in that u  is now assumed to be known while λ  

becomes the unknown to be solved. Numerically, one can see that the inverse problem is 

in fact an overdetermined system with respect to λ , as the number of constitutive 

parameters is always less than the total number of equations. To estimate the constitutive 

parameters in an average sense, an optimization approach is usually adopted which 

consists of minimizing a least-square functional with respect to residual, displacement, or 
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strain fields [84]. In this study, the residual-based (section 4.3.2) and displacement-based 

(section 4.3.3) optimization approaches are compared.  

The description of a CZM requires a well-defined traction-separation relation. The 

shape of the curve of this traction-separation relation is, in general, unknown, and must 

be identified in the inverse problem. The identification of a constitutive curve rather than 

of a set of independent scalar constitutive parameters commonly seen in typical inverse 

problems is the unique characteristic of current inverse problem. The effective 

parameterization of a CZM shape becomes one of the key elements in a successful 

inverse analysis. It is therefore natural to introduce the proposed shape representation, 

i.e., parameterization, of the CZM before presenting the optimization formulations for the 

inverse problem. 

4.3.1 Shape Representation of CZMs 

It is desired to extract the CZM without making any assumption about its shape 

because in practice, only limited or no knowledge of the cohesive property of new 

materials or material systems are available. 

 

 

Figure 4.2: Illustration of various interpolation schemes 
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Splines are selected to describe the CZM, i.e., the relation traction-separation. The 

reasons to use splines are the flexibility to construct arbitrary curves, and the 

mathematical conciseness and simplicity. Three common spline interpolations are used: 

linear spline (LS) interpolation, piecewise cubic Hermite (PCH) interpolation and cubic 

B-spline (CBS) interpolation. Detailed information on these interpolation options can be 

found in references [99,100]. A brief description of the CBS interpolation with the 

explicit expression of the 4
th

 order (cubic) B-spline non-uniformly spaced knots is 

provided in Appendix B. These three types of splines provide different levels of 

smoothness, as illustrated in Figure 4.2, thus they offer choices on the type of description, 

e.g., polylinear or smooth.  

 

 

Figure 4.3: Parameterization for splines 

 

The use of splines allows for a shape representation based on an arbitrary number of 

control points. Let us define the coordinates of the 2µ +  control points according to 

Figure 4.3, i.e., 

 
{ }

{ }
n n,1 n, nc

c 1

0,  ,  ,  ,  

,  ,  ,  ,  0        ,

µ

µσ σ σ

 = ∆ ∆ ∆


=

∆

σ

⋯

⋯
 (4.8) 

which leads to the unknown physical CZM parameters as 

1µσ −

cσ

µσ

⋯

nc∆ n∆n, 1µ−∆ n,µ∆0

σ

1Pµ+

Pµ

0P
1P

1Pµ−

n,1∆

1σ
Control 

points

Traction-separation 

CZM curve
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 { }nc 1 n,1 n,,  ,  ,  ,  , ,   .c µ µσ σ σ= ∆ ∆ ∆λ ⋯  (4.9) 

4.3.2 Residual-based Optimization Approach  

Denote by u  the displacement vector representing the whole displacement field 

already available, either from the direct problem, or from experimental measurement. 

Equation (4.6) can be rewritten to reflect the inverse problem 

 ( )( ) ext

b c+ =K K λ u F . (4.10) 

The { }n n,1 n, nc
0,  ,  ,  ,  µ= ∆ ∆ ∆∆ ⋯  for the control points in (4.8) is a subset of the 

continuous COD , which in turn is also a subset of u . Therefore, λ  in the inverse 

problem is a function of u , and equation (4.10) can be rewritten as 

 ( )( )( ) ext

b c  .+ =K K λ u u F  (4.11) 

cK  can only be evaluated when values of λ  are known or given. Gauss quadrature is 

used to evaluate cK  since an explicit expression of cK  as function of λ  is not available. 

Subsequently, nonlinear solvers must be used to obtain the estimate of λ  so that, as one 

may immediately recognize, the average difference between LHS and RHS of equation 

(4.11), i.e., the residual of equation (4.11) 

 ( ) ( )( )( ) ext

b c= + −R λ K K λ u u F , (4.12) 

can be minimized. In an optimization format, the inverse problem can be expressed as 

 ( ) ( ) ( )T

2

min  , subject to 0,  1R R ic i LΦ = ⋅ ≥ =
λ

λ R λ w λ … , (4.13) 

where M is the number of input parameters, 
M:RΦ →R R  is the non constrained 

objective function, Rw  is the vector of weighting factors, ( )ic λ  are the constraint 

functions, L  is the number of constraint functions, and 
2

⋅  is the Euclidean norm of a 

vector.  
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4.3.3 Displacement-based Optimization Approach 

Equation (4.13) defines the straightforward formulation for the inverse problem. 

However, bK  as an operator being applied to u  filters out the rigid-body-motion part of 

u , and bK  significantly magnifies the errors existing in u  since bK u  implicitly 

compute the gradients of u . To avoid any possible degradation of u , it may be more 

desirable to directly match the difference between u  and a computed displacement field, 

*
u , which is based on an assumed λ . To compute 

*
u , first rearrange equation (4.10) as 

 ( )ext

b
ˆ ;=K u F u λ , (4.14) 

where  

 ( ) ( )( )ext ext

c
ˆ ; = −F u λ F K λ u u . (4.15) 

Now the cohesive stress is included as boundary stress and is accounted for in the new 

global external force vector ( )extˆ ;F u λ . From equation (4.14), 
*

u  can be computed by  

 ( ) ( )* 1 ext

b
ˆ ;−=u λ K F u λ . (4.16) 

Nest the optimization formulation of the inverse problem based on minimizing 

displacement difference is written as 

 ( ) ( )( ) ( )
M

T
*

2

min ,  subject to 0,  1u u ic i L
∈

Φ = − ⋅ ≥ =
λ

λ u λ u w λ
ℝ

… , (4.17) 

where ( )uΦ λ  is the objective function, and uw  is the vector of weighting factors. 

The external force vector extF̂  can be computed in the following manner. First from 

u , the crack opening displacement vector n∆ for all nodes at crack surface can be 

extracted directly. With an estimated λ , the CZM function ( )n;σ σ= ∆ λ  is defined. The 

first part of Equation (4.4) is used to compute the equivalent element nodal force vector 

of the cohesive stress.  By assembling all the element nodal force vectors, extF̂  can be 
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obtained. Equation (4.14) can be computed efficiently by first factorizing the constant 

matrix bK . 

4.3.4 The Nelder-Mead Solver 

The Nelder-Mead (N-M) optimization method [101-103], an unconstrained and 

derivative-free optimization method, is utilized to solve equations (4.13) and (4.17). An 

initial guess of the CZM parameters, λ , is provided to the N-M solver, which carries out 

the procedure described below. The stop criterion of the N-M algorithm can be set by 

comparing the best simplex vertex (explained in the next paragraph) or the value of 

( )Φ λ  between adjacent iterations, or be set by when value of ( )Φ λ  is sufficiently small. 

For an objective function ( ) M:  Φ →λ R R  to be minimized, a simplex of M 1+  

vertices is first formed. A simplex in 1
R  is a line segment, in 2

R  is a triangle, in 3
R  is a 

tetrahedron, and so on. Let 
( )0

0 =λ λ  be the initial guess/point, which is also a vertex of 

the simplex to be formed. The other vertices can be selected by making 0i −λ λ  parallel 

to the i
th

 M-dimensional unit vector { }0,...,1,0...
T

, in which “1” appears as the value of 

the i
th

 component. The length of the vector 0 2i −λ λ  can be a typical length scale in i
th

 

dimension. This way, 1 0−λ λ , 1 0−λ λ , …, M 0−λ λ  are mutually normal to each other, 

i.e., points 0λ , 1λ , …, Mλ  are not co-planar in the M
R  Euclidian space.  

At any stage, the N-M method aims to remove the vertex with the largest function 

value and to replace it with a new vertex with a smaller function value. This procedure 

guarantees that the average objective function value at each step is non-increasing.  

Figure 4.4 demonstrates the algorithm of N-M method for one step. Vertices 1λ , ..., 

4λ  are ordered such that ( ) ( ) ( )1 2 4Φ <Φ < <Φλ λ λ⋯ . We say point iλ  is better than 

point j
λ  if ( ) ( )i jΦ <Φλ λ . The centroid of the best 3 points is ( ) ( )1 2 30 3= + +λ λ λ λ . 

Any point along the line joining points 4λ  and ( )0λ  can be defined by 

( ) ( ) ( )( )40 0s s= + −λ λ λ λ . One commonly used scheme is to replace 4λ  with one of 
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the four points along the line: expansion point ( )2−λ , reflection point ( )1−λ , outside 

contraction point ( )1 2−λ , or inside contraction point ( )1 2λ . The details of which point 

to replace could be found in reference [103]. If all those four points are still worse than 

4λ , shrinking of points 2λ  to 4λ  towards the best point 1λ  is performed. Either the 

replacement of the worst point or the shrinking finishes one step in the N-M method. 

 

 

Figure 4.4: Schematic demonstration of the N-M method (three unknowns). 

 

The N-M method is chosen because: (1) it is a derivative-free optimization method, 

it eliminates the derivation and computation of the gradient or the Hessian of the 

objective function; (2) inclusion of various constraint functions, if needed, as part of the 

objective function is easy; (3) it is more robust than common Newton-like solvers. One 

must note that the N-M method is not as computationally efficient as other optimization 

methods. However, the computational cost of optimization algorithms is beyond the 

scope of this work. 
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4.3.5 Parametric Mapping for Residual-based Formulation 

The CZM parameters λ  defined previously have physical bounds. For example, the 

critical COD, nc∆ , can be neither negative nor larger than the specimen size. However, in 

its standard form, the N-M method does not accept any direct constraint imposed on the 

input parameters. During the N-M iteration, if one or a few parameters become negative, 

unphysical solutions for the CZM are obtained with compressive cohesive stress. The 

erroneous CZM either may lead to difficulty in computing the objective functions or may 

lead to convergence to another local minimum causing the failure of the solution process. 

A novel parametric mapping is proposed so that the standard procedure of N-M method 

can be used, which is applied to residual-based formulation. A trigonometric function is 

selected which effectively maps the physically bounded λ  to the unbounded parameters 

*λ  appropriate for use as variables in the N-M method.   

The mapping function 

 
( ) ( ) ( ) ( )

1 *

*
tan 1

 ,   inf,  inf ,  
2

i

i i i i i i i i

λ
λ λ λ λ λ λ λ λ

π

− 
 = + − + ∈ − → ∈
 
 

, (4.18) 

where ( ),  i iλ λ  is the physical bound for parameter iλ , ensures that CZM parameters iλ  

are always physical. However, the independence of the parameters still enables the points 

to move freely within their own bounds, which can also produce an erroneous CZM. 

Figure 4.5 illustrates two erroneous cases:  

• the ck  at point iP  is smaller than the ck  at point 1iP+ ,  

• ( ) ( )n 2 n 1i iP P+ +∆ < ∆  causing snap-back which is unphysical for CZM. 

Such erroneous CZM curve can be regularized through further refinement of the 

mapping by considering the inter-constraint between the control points from the physical 

meaning of CZM. By looking at ck  defined in Figure 4.5, it is assumed that for a 

legitimate CZM, ck  must be monotonically decreasing as n∆  increases. In addition, to 
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avoid snap-back, the condition n1 n nc0 l< ∆ < < ∆ < ∆⋯  must be satisfied for each 

optimization iteration. The following mapping scheme (Figure 4.6) is therefore proposed. 

 

 

Figure 4.5: Erroneous CZM description due to independence of the control points: 

increasing ck  and snapback 

 

 

Figure 4.6: Mapping scheme that considers relative relation between control points 
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within two adjacent half-lines, except control points 0p  and 1
pµ+ , which can only move 

along cσ σ  and n nc∆ ∆  axes, respectively. Therefore, the angle iθ  satisfies 

 ( )1 ii iα β θ α β+ − < < + . (4.19) 

This constraint basically ensures the monotone decrease of ck , with the possible 

exception of the extreme case of the CBS interpolation, which will be discussed later 

(Section 4.4.2.2). In the numerical examples given in section 4.4, / 32α π=  and 

( )2 32β π π µ= −  are used. 

The condition that n,i∆  is non-decreasing is equivalent to 1
0 1x xµ< < < <⋯ (Figure 

4.6), i.e., ix  is a fraction of 1ix +  for all i . Defining a set of *λ  indirectly by 
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  = + + + − =    


  = + − + = 
 =

⋯

⋯

 (4.20) 

where ( )* ,  jλ ∈ −∞ ∞ , 1, ,2 2j µ= +⋯ , 
( )0

nc∆  and 
( )0

cσ  are initial guesses of nc∆  and cσ , 

respectively, 1h  and 2h  are parameters controlling the ratio of 
( )0

c cσ σ  and 
( )0

nc nc∆ ∆ , 

respectively, x  and x  are the upper and lower bounds for 1i ix x + . In the examples, 

values of 1 2 8h h π= = , 0.4x =  and 0.99x =  are used. For these parameters, the bounds 

are 
( ) ( )0 04 4

nc nc nce e− ∆ < ∆ < ∆ , 
( ) ( )0 04 4

c c ce eσ σ σ− < <  and 1 10.4 0.99i i ix x x+ +< < , 1,...,i µ=  

Equation (4.19) is also satisfied. The coordinates of the control points can be computed as 

{ } ( )
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1 1 c
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⋯

⋯
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To compute ( )* 0
λ , an initial guess of ( )0

λ  is first made so that X  and Y  can be 

computed and then Equation (4.20) is solved for *λ  
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  = ∆ ∆
 

  =  

   − + −  = − =       
   −  = − =  

−     

⋯

⋯

 (4.21) 

which can be used to compute ( )* 0
λ . 

Pseudo-code: N-M solver (with parametric mapping): 

• Set 0= > Tε ε ε , where ε  is the error, and Tε  is the convergence measure 

• ( ) ( ) ( )0 0 0
,⇒λ X Y , ( ) ( )0

,  ∈λ λ λ  

• Apply Equation (14): 
( ) ( ) ( )0 0 * 0

, ⇒X Y λ  

• while Tε ε> , do 

• Apply Equation (13): 
* ⇒λ λ  

• Use λ  to construct CZM using LS, PCH or CBS interpolation 

• Compute ( )*Φ λ  at simplex vertices 

• Compute new *λ  (standard N-M algorithm) 

• ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ){ }* * 1 * 1 * * 1 * 1 *

2 2 2 2

,  ,  
n n n n n n nε − − − −← − Φ −Φ Φ Φλ λ λ λ λ λ λ  

• end while 

• Apply Equation (13): * ⇒λ λ , and construct the converged CZM 

 

Finally, the pseudo-code illustrates the use of the mapping scheme in the N-M solver. 

4.3.6 Barrier Functions and Regularization for Displacement-based Formulation 

The particular shape regularization introduced in section 4.3.5 is implemented 

through parametric mapping, which avoids the explicit use of any constraint function or 

additional regularization terms in the objective function. However, the disadvantage of 

such implementation of the regularization is that it imposes too strong a (regularization) 
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condition on the parameter space such that the CZM shape at each iteration is strictly 

conforming to the desired condition. Moreover, such shape regularization through 

mapping is non-adaptive that it may totally fail in situations where the traditional 

regularization methods may succeed. While it may be effective for ideal input data, as 

will be illustrated in section 4.4, it may be too sensitive to perturbed data, i.e., noisy data, 

resulting in the instability of the method. The high sensitivity of the parametric mapping 

to noisy data will restrict its general application. The displacement-based formulation is 

more robust than the residual-based formulation [104]. Therefore, the widely used barrier 

functions and regularization techniques, which directly modify the objective function, are 

applied to the displacement-based formulation. 

4.3.6.1 Barrier functions 

The computation of the force vector ext
F̂  relies on a valid ( )n;σ ∆ λ  curve. The base-

line requirements are 0iσ >  and n,1 n,1 n, 1
0 ... µ+< ∆ < ∆ < < ∆  for the control points as 

mentioned in section 4.3.5. The former condition requires the cohesive stress to be a 

tensile (positive) stress. The latter condition is to avoid invalid snapback. 

There is no direct mechanism in the N-M method to handle constraints. The 

parametric mapping is one technique to address the issue. Traditionally, barrier functions 

can be added to enable one to solve a constrained optimization problem using an 

unconstraint optimization method [105]. However, the commonly used barrier functions, 

while providing the option of applying a penalty as it approaches the infeasible domain, 

cannot prevent the N-M method from selecting a point in the infeasible domain. The 

barrier function must be extended to the complete infeasible domain. The non-increasing 

nature and the particular point-selection procedure of the N-M approach provide a 

possible implementation. To ensure the computed λ  at each N-M iteration satisfies the 

condition 0iσ > , consider the barrier function in the form 

 ( ) ( )
1 10 b b i bN

i

θ σ θβ −=∑λ

,

 (4.22) 
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where 0 1,bθ< <<  and 1bN >> . Apparently, ( )1β λ  is negligible when i bσ θ>  but 

becomes a sharply increasing barrier when i bσ θ< . To satisfy the condition

n,1 n,1 n, 1
0 ... µ+< ∆ < ∆ < < ∆ , the barrier function in a similar form to Equation (4.22) can be 

used 

 ( ) ( ){ }1

2 10 b i b bN

i

ξ θ θβ
 − − =∑λ

,

 (4.23) 

where  

 
( )

( )
n, n, 1 n, 1

n, 1 n, 1

/ 2

/ 2

i i i

i

i i

ξ − +

+ −

∆ − ∆ + ∆
=

∆ − ∆
 (4.24) 

is the normalized horizontal distance of point i  from the midpoint of the adjacent two 

points 1i − and 1i + . When 1iξ < , condition n, -1 n, n, 1i i i+∆ < ∆ < ∆  is satisfied. Again, ( )2β λ  

is negligible when 0 1i bξ θ≤ < −  but becomes a barrier when 1i bξ θ> − . Incorporating 

barrier functions (4.22) and (4.23), the objective function is finally augmented to be 

 ( ) ( )( ) ( ) ( )
1 2

T
*

1 2
2

u w wβ ββ βΦ = − + +λ u λ u λ λ
 
, (4.25) 

where 
1

wβ  and 2
wβ  are the weighting factors. Now the constraints are embedded in the 

objective function. Notice that during any N-M iteration, infeasible points may still be 

evaluated. This is allowed by evaluating only the barrier functions in the objective 

function for the infeasible points, which will yield a very large objective function value. 

The parameters bθ , bN , 
1

wβ  and 2
wβ  are set so that the following condition is 

guaranteed 

 ( ) ( )infeasible feasibleΦ > Φλ λ . 

If the initial guess of λ  is feasible, the non-increasing nature of N-M method will always 

discard the infeasible points if encountered but select feasible points only. 
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The advantage of using barrier functions (4.22) and (4.23) lies in that they are 

continuous but they do not alter the feasible domain, as their values are very small in 

comparison to the original objective function in the feasible domain. Furthermore, due to 

the discrete nature of the N-M method for computation of the objective function value, 

penalty can be applied to the objective function by directly adding a relatively large 

number to the objective function for an infeasible point. The effect of using penalty 

technique is somehow equivalent to using the barrier function, but the difference is that 

when penalty value is directly added, the objective function loses continuity at the 

boundary between infeasible and feasible domains. 

4.3.6.2 Shape regularization for CZM curve 

It is well-known that most inverse problems are ill-posed, and therefore the 

uniqueness and stability of the solutions are not guaranteed [106]. The complexity of the 

parameter space is directly related to the number of control points used. Intuitively, the 

higher the dimension of the parameter space, the higher the possibility that more local 

minimum may be generated. The current inverse problem is further aggravated by the use 

of the spline constructed from control points. While the spline has the total flexibility in 

constructing any possible shape, the negative side of such flexibility is that the 

independent, freely moving control points may generate CZM curve without physical 

meanings. The possible situations that may hinder or fail the optimization are the 

formation of cluster, spike or tail points (Figure 4.7(a)). In either of these situations, one 

or more control points are trapped and become ineffective for the CZM shape 

construction. Numerical tests have shown the cluster and tail points are more frequently 

formed during the optimization process and many times the curve is locked to an 

apparently incorrect CZM representation.  

If a polynomial functional is used to define CZM, such issue may not exist but the 

generality is also lost [107]. To overcome the ill-posedness due to such parameterization, 

regularization must be applied. Regularization involves introducing prior or additional 

information in order to solve an ill-posed problem effectively or efficiently. We notice the 

iterative nature of the nonlinear inverse problem. Therefore, simple algorithms with pre-

defined criteria can be implemented to monitor the control points of the CZM curve 
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computed before each restarting of the N-M solver and detect if any of the adverse 

situation appears. The number of iterations is commonly selected from 50 to 150, which 

is based on the number of control points used. Usually more iterations are needed for 

more unknowns. The cluster points can be redistributed uniformly along the currently 

computed CZM curve, while the spike or tail points can be removed and additional 

control points can be added to other locations in the curve (see Figure 4.7(b)). After the 

control points are adjusted, the optimization is then restarted with a set of better-

estimated and well-conditioned initial guess. Sometimes there is a jump in the objective 

function, which is associated to the restart operation. Numerical examples shown in 

reference [108] have demonstrated the efficient performance of such “ad hoc” 

regularization for various cases. The major advantage of this approach is that it does not 

need explicit regularization terms, therefore there is no difficult issue as how to choose 

the appropriate regularization weights. However, as current hybrid inverse technique may 

be extended to solve other inverse problems in fracture, the “ad hoc” method may not be 

applicable and the more general regularization methods, such as the most widely used 

Tikhonov regularization method, may have to be used. The investigation of the 

regularization effects is the immediate topic extending current study. The Tikhonov 

regularization is presented briefly here. 

 

 

Figure 4.7: (a) Schematic illustrations of the cluster, spike and “tail” points possibly 

formed during the iterative optimization; (b) After the ill-positioned control points are 

redistributed 
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The Tikhonov regularization method in its general form is expressed as [109-112] 

 ( ) ( )( ) ( )
2

2
T

* 2

2
2

i

u

i

γ
 

Φ = − +  
 
∑λ u λ u L λ , (4.26) 

where γ  is the positive Tikhonov parameter, and 
( )i

L  is a matrix represents the thi  order 

derivative operator. Notice the square of the residual norm is used. The zero-order term 

tends to minimize the norm of the solution, the first-order term tends to reduce the 

fluctuation of the data and thus smooth the solution, higher-order terms impose further 

smoothing on the parameter space. Physically, a CZM curve shall be a smooth curve, 

which leads to the selection of the first and the second Tikhonov terms. However, the 

form shall be adapted as the CZM has two different physical quantities, the cohesive 

traction and the COD. Written explicitly, the first order smoothing term is 

 ( )
2

1
1

n, 1 n,

,  1... 1i i

i i i

i
σ σ

ψ µ+

+

 −
= = + 

∆ − ∆  
∑λ , (4.27) 

and the second order term is 

 ( )
2

2 1 1
2

n, 2 n, 1 n, 1 n,

,  1...i i i i

i i i i i

i
σ σ σ σ

ψ µ+ + +

+ + +

 − −
= − = 

∆ − ∆ ∆ − ∆  
∑λ . (4.28) 

One additional term is included to penalize the forming of clustering points 

 ( )
( )

2

3 ,  1... 1
min

i

i i

l
i

l
ψ µ

 
= = + 

  
∑λ  (4.29) 

where il  is the length between points ( )n, ,i iσ∆  and ( )n, 1 1,i iσ+ +∆ . The complete form of the 

objective function becomes 

 ( ) ( )( ) ( ) ( ) ( )
32

T
*

1 2
2 1

i i

i

wβ β ψ
=

Φ = − + + +∑λ u λ u λ λ λ  (4.30) 

where iw  is the weighting factor for the regularization term.  
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The amount of regularization depends on the values of iw [105,111]. The optimal 

value of iw  is usually determined by certain ad hoc methods in practical problems. One 

of the widely used approaches is the so-called L-curve method [111,113]: the computed 

( )
2

T
*

2

−u u  can be plotted against ( )iψ λ  as a curve parameterized by different values of 

iw , which usually shows a characteristic L-shaped curve. The optimal value of iw  is then 

chosen at the corner of the L-curve. Since there are three regularization parameters to be 

optimized, significant numerical evaluation needs to be carried out before employing the 

routine application. Preliminary tests have shown the effectiveness of the regularization 

terms adopted. However, alternatively, a shortcut approach for the CZM curve 

regularization is adopted for the current investigation in order to verify the practical 

usefulness of the current hybrid inverse scheme. 

4.4 NUMERICAL EXAMPLES: RESIDUAL-BASED OPTIMIZATION APPROACH 

Figure 4.8 shows the geometry of the SENB specimen used in the numerical 

examples presented in this section. As synthetic data is used for the inverse problem, 

special attention is paid to the potential inverse crime [114], which has also been 

addressed by previous researchers [115-118]. Different discretization (meshes) for the 

direct and the inverse problems are used (Figure 4.9 and Figure 4.10). In addition, 

different solution methods are used for the forward problem (quasi-explicit solution 

scheme) and the inverse problem (optimization method). These two precautions conform 

to the suggestions provided in the book by Colton and Kress [114] and thus avoid the 

inverse crime. 

4.4.1 Direct Problem 

In the following examples, we consider the case of a linear elastic and isotropic 

material for the bulk with modulus of elasticity 30 GPaE =  and Poisson’s ratio 0.3ν = . 

Figure 4.11 shows the specific power law CZM and hardening CZM used in the direct 

problem. For the power-law CZM, regular mesh (Figure 4.9) is used in the direct problem 

while irregular (i.e., unstructured) mesh (Figure 4.10) is used in the inverse problem. For 



the hardening CZM, the irregular mesh is used in the direct problem while the regular 

mesh is used in the inverse problem.

 

Figure 

 

Figure 4.9: (a) FEM mesh (regular) for the entire geometry; (b) 

mesh detail in the central region 
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the hardening CZM, the irregular mesh is used in the direct problem while the regular 

mesh is used in the inverse problem. 

Figure 4.8: Geometry of the SENB and the test set-up 
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mesh (regular) for the entire geometry; (b) Close-

sh detail in the central region - CZM is implemented along the centerline
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the hardening CZM, the irregular mesh is used in the direct problem while the regular 
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Figure 4.10: (a) FEM mesh (irregular) for the entire geometry; (b) 

mesh detail in the central region

 

Figure 4.11: Power law and hardening CZMs used in the 
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divided by the area of crack surface can be used to estimate the fracture energy f
G , i.e. 

the area under the σ  versus n∆  curve. A value comparable to the maximum measured 

CMOD can also be used as an estimate of nc∆ . If linear softening CZM (same as the 

power-law CZM with 1γ = ) is used, then the critical stress is given by 

 c

nc

2 fG
σ =

∆
. 

 An initial guess of CZM is thereby obtained. 

 

 

Figure 4.12: P versus CMOD curves for power law and hardening CZMs 
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LS interpolation with 3, 4 and 5 control points, PCH interpolation with 5 control points, 

and CBS interpolation with 5 control points. The initial guesses along with the computed 

CZMs for each case are presented in Figure 4.14 to Figure 4.19. 

 

 

Figure 4.13: Three different initial guesses used in inverse computing both the power law 

and the hardening CZMs 
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Figure 4.14: Computed power -law CZM with initial guess above the correct CZM: (a) 

three control points using LS interpolation; (b) 4 control points using LS interpolation; 

(c) 5 control points using LS, PCH and CBS interpolations 
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Figure 4.15: Computed power-law CZM with initial guess below the correct CZM: (a) 

three control points using LS interpolation; (b) 4 control points using LS interpolation; 

(c) 5 control points using LS, PCH and CBS interpolations 
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Figure 4.16: Computed power-law CZM with initial guess intersects the correct CZM: (a) 

three control points using LS interpolation; (b) 4 control points using LS interpolation; 

(c) 5 control points using LS, PCH and CBS interpolations 
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Figure 4.17: Computed hardening CZM with initial guess above the correct CZM: (a) 

three control points using LS interpolation; (b) 4 control points using LS interpolation; 

(c) 5 control points using LS, PCH and CBS interpolations 
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Figure 4.18: Computed hardening CZM with initial guess below the correct CZM: (a) 

three control points using LS interpolation; (b) 4 control points using LS interpolation; 

(c) 5 control points using LS, PCH and CBS interpolations 
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Figure 4.19: Computed hardening CZM with initial guess intersects the correct CZM: (a) 

three control points using LS interpolation; (b) 4 control points using LS interpolation; 

(c) 5 control points using LS, PCH and CBS interpolations 
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not exactly the same. In fact, as long as the additional points are on the exact curves, the 

solution is the same, leading to numerous solutions but the same interpolated CZM shape. 

 

 

Figure 4.20: Evolution of objective function values for computing hardening CZM using 

linear spline interpolation but various number of control points and initial guesses 
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 Figure 4.21 to Figure 4.23 shows a sequence of snapshots for the evolution of CZM 

using LS interpolation with 3, 4 and 5 control points. It can be seen that the mapping 

scheme constrains the relative location of control points effectively, which is especially 

apparent in the snapshots at point “2”, “3” and “4” of plot (b). Here we can see that the 

trend of snap-back of the curve is effectively suppressed. 

 

 

Figure 4.21: Evolution of computed CZM for computing hardening CZM using LS 

interpolations with 3 control points 

 

 

Figure 4.22: Evolution of computed CZM for computing hardening CZM using LS 

interpolations with 4 control points 
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Figure 4.23: Evolution of computed CZM for computing hardening CZM using LS 

interpolations with 5 control points 
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Figure 4.23 (a)-(c) and Figure 4.27 (a)). This indicates that the residual may have a local 

minimum in the domain obtained by the current mapping and constraining scheme. 

Fortunately, the algorithm will not be trapped in this local minimum for most of the 

Furthermore, the major part of these two computed erroneous CZMs still capture the 

correct CZM except the “tailing”. As all these cases all converge to the same CZM with a 

small objective function value, ( )Φ λ , it is confident that within the parameter space 

investigated, there is probably one global minimum of ( )Φ λ . However, before a 

mathematical proof can be provided, this statement is only a phenomenological 

conclusion.  
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Figure 4.24: Evolution of objective function values for computing hardening CZM with 5 

control points but various interpolations and initial guesses 
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Figure 4.25: Evolution of computed CZM for computing hardening CZM using LS 

interpolation 

 

 

Figure 4.26: Evolution of computed CZM for computing hardening CZM using PCH 

interpolation 
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Figure 4.27: Evolution of computed CZM for computing hardening CZM using CBS 

interpolation 

 

4.4.2.3 Systematic way of obtaining CZM in practice 

Based on observations from numerical examples, a strategy is proposed for the 
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2D plane-stress condition. The bulk material is kept isotropic and linear elastic. Since the 

relative accuracy of the DIC measurement also depends on the stiffness of the bulk 

material, three modulus of elasticity are considered for current examples: E = 10 GPa, 30 

GPa and 100 GPa. The Poisson’s ratio is fixed as 0.2. 

 

 

Figure 4.28: Geometry of the SENB and the test set-up 

 

The subsequent analysis uses a two-dimensional (2D) FE model. Fine meshes are 

used to simulate the level of detail for the displacement field that could be obtained by 

the DIC technique. Figure 4.29 shows the mesh used for both the direct and inverse 

problems, where Q4 elements are utilized for the bulk material and the cohesive zone 

model is implemented for mode I fracture only. The size of the element (bulk material) 

along the crack surface is 0.0425 mm, which is fine enough to yield accurate crack 

propagation simulation.  

 

 

Figure 4.29: FEM mesh for the half of the geometry (due to symmetry) 
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4.5.2 Idealized CZMs 

Idealized CZMs describing three representative behaviors are used (Figure 4.30): one 

with a linear softening behavior, one with a hardening then followed by a linear softening 

behavior and one with a power-law softening behavior. The linear CZM is appropriate for 

the high explosives [86], the power-law CZM is effective to simulate the fracture process 

of quasi-brittle concrete [119], while the hardening CZM may be used for some strong 

fiber reinforced composites [54,120].  

 

 

Figure 4.30: The mode I CZMs used in this study 

 

4.5.3 Direct Problem 

Five cases are simulated (Table 4.1), combinations of a particular modulus of 

elasticity of the bulk material and a CZM (Figure 4.30). Cases I, II and III compare the 

effect of different CZM shapes. Cases I, IV and V compare the effect of the bulk material 
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Table 4.1: Five direct problem cases, combinations of CZM and modulus of elasticity  

 Case I Case II Case III Case IV Case V 

CZM Linear Hardening Power-law Linear Linear 

E of bulk 

material, GPa 
30 30 30 10 100 

 

4.5.3.1 Global responses 

In the simulation, the loading is displacement controlled. The global responses, P 

versus CMOD and P versus load-line displacement δ, for cases I, II and III are shown in 

Figure 4.31 and Figure 4.32, respectively. One can see that the CZM shape affect the 

global response apparently around the peak load, while for the rest of the softening 

curves the curves are similar. An important implication is that numerical simulation that 

matches the initial and softening parts of the experimental global response curve does not 

prove that the right shape of CZM is obtained. 

 

  

Figure 4.31: Load, P, versus CMOD curve for different (linear, power-law and hardening) 

CZMs, but the same bulk elastic modulus E = 30 GPa 
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Figure 4.32: Load, P, versus load-line displacement, δ, curve for different (linear, power-

law and hardening) CZMs, but the same bulk elastic modulus E = 30 GPa 

 

  

Figure 4.33: Load, P, versus CMOD curve for different bulk elastic moduli (E = 10, 30 

and 100 GPa), but the same linear CZM 
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Figure 4.34: Load, P, versus load-line displacement, δ, curve for different bulk elastic 

moduli (E = 10, 30 and 100 GPa), but the same linear CZM 
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the mode I fracture of concrete. To estimate the critical load levels where the complete 

cohesive zone forms for the examples in this study, the cohesive stress distribution can be 

plotted along the crack path and direct inspection can provide the estimation. In the 

following, qualitative estimations for the threshold load levels are made for Case I and 

Case II, which refer to the linear CZM and the hardening CZM, respectively, as shown in 

Table 4.1. 

Figure 4.35 illustrates the formation of cohesive zone for Case I. In the figure, the 

cohesive stress profiles are plotted along the crack at pre-peak load, peak load, and post-

peak load levels. The crack is located from x = 5.5 mm to x = 25.5 mm. Figure 4.36 

illustrates the formation of cohesive zone for Case II. When the COD at initial crack tip 

reaches the crack separation, nc∆ , the corresponding traction at initial crack tip drops to 

zero. At this moment, a complete cohesive zone first forms behind the initial crack tip. 

From both figures, it can be seen only at load level “C” does the complete cohesive zone 

forms. For linear CZM, this point corresponds to 70% of the post-peak load level, while 

for hardening CZM, the threshold is at about 80% of the post-peak load level. Therefore, 

displacement data at a post-peak load level shall be used in the inverse analysis. 

 

 

Figure 4.35: Illustration of the formation of cohesive zone for Case I (linear CZM of 

Table 4.1) at different points: at pre-peak load level “A”, at peak load level “B”, and at 

post-peak load level “C” 
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Figure 4.36: Illustration of the formation of cohesive zone for Case II (hardening CZM of 

Table 4.1) at different points: at pre-peak load level “A”, at peak load level “B”, and at 

post-peak load level “C” 
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software is measured as a fraction of pixels. It has been reported [92] that DIC can obtain 

a sub-pixel precision of 0.005 pixel or even higher [61]. The combined resolving power 

of high image resolution and high precision DIC algorithm can reach 10
-2

-10
0
 

microns/pixel. The most popular DIC algorithm is based on subset cross correlation; the 

displacements measured at all points are independent of each other. The errors can be 

assumed to be randomly and normally distributed. 

For the current inverse procedure, we introduce errors by only considering the DIC 

resolution since the displacement error from digital image itself never exceeds one pixel. 

Assume a moderate image resolution of 1000 pixels along the specimen height, which 

corresponds to 0.0254 mm/pixel. We then introduce three levels of errors by specifying 

different maximum error magnitude (Table 4.2).  

 

Table 4.2: Different levels of errors added to the synthetic displacement field 

Image 

resolution, 

mm/pixel 

 

DIC 

resolution, 

pixel 

 

Maximum 

absolute error, 

mm 

Estimated standard 

deviation or errors, 

mm 

Comments 

on the 

errors 

0.0255 × No error = 0 0 ideal 

0.0255 × 0.005 = 1.28 × 10
-4

 7.2 – 7.4  × 10
-5

 accurate 

0.0255 × 0.05 = 1.28 × 10
-3

 7.2 – 7.4  × 10
-4

 moderate 

0.0255 × 0.2 = 5.1 × 10
-3

 2.9 – 3.0 × 10
-3

 coarse 

 

In Table 4.2, the case with no errors serves as the control case. The standard 

deviation of the introduced errors is estimated based on a population of 5,000 random 

data. The errors added are all between the interval of negative and positive maximum 

error. The mean value of the errors is zero. The comments on the errors are our subjective 

judgment based on reported accuracy of DIC. The moderate error level is reasonable and 

can be easily achieved for well-control experiments. 

4.5.5 Results of Inverse Analysis 

The specified errors in Table 4.2 are added to the displacement field taken at 60% of 

the peak load for all five cases listed in Table 4.1. The weights in Equation (4.25), 
1

wβ  

and 
2

wβ , are taken as unit for all the examples. Due to the random nature of the errors, 
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each case with a specified level of noise has been repeated two more times to see the 

variance. In all cases, four control points are used to construct the CZM. 

there are six unknown parameters to determine in the optimization procedure. Four 

control points are sufficient for “imaginable” CZM shape. The initial guess of the CZM is 

estimated from the method described in section 4.4.1. Linear spline interpolation is used 

for the CZM.  

 

 

Figure 4.37: Computed CZMs for the Case I with different error levels applied. Each case 

is repeated three times. The solid circle with solid line is the computed CZM for the ideal 

case (without errors) 

 

 

Figure 4.38: Computed CZMs for the Case II with different error levels applied. Each 

case is repeated three times. The solid circle with solid line is the computed CZM for the 

ideal case (without errors) 
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Figure 4.39: Computed CZMs for the Case III with different error levels applied. Each 

case is repeated three times. The solid circle with solid line is the computed CZM for the 

ideal case (without errors) 

 

 

Figure 4.40: Computed CZMs for the Case IV with different error levels applied. Each 

case is repeated three times. The solid circle with solid line is the computed CZM for the 

ideal case (without errors) 

 

 

Figure 4.41: Computed CZMs for the Case V with different error levels applied. Each 

case is repeated three times. The solid circle with solid line is the computed CZM for the 

ideal case (without errors) 
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For the case of bulk material E = 30 GPa, the computed CZMs of all three types (linear, 

hardening and power-law) are satisfactory up to an error level = 0.05 pixel. At error level 

= 0.2 pixel, the computed CZMs are significantly off the exact solution. When the bulk 

material is E = 10 GPa, the computed CZMs are acceptable up to 0.2 pixel error level. In 

fact, the relative error level with respect to the absolute displacement measurement for 

the case of E = 10 GPa with error level = 0.2 pixel is similar to that obtained the case of E 

= 30 GPa with error level = 0.05 pixel. For a bulk material E = 100 GPa, apparently, the 

relative error is about 3.3 times of that for E = 30 GPa for the same absolute error. 

Therefore, the bulk material with E = 100 GPa is much less tolerable to errors, as can be 

seen for the significant deviation of computed CZMs from the exact one when error level 

= 0.05 pixel. 

Table 4.3 shows the initial and final values of objective functions and the number of 

iterations. For those cases with errors, the data are the averages of three repetitions. The 

table shows that as the error level increases, both the initial and the final values of 

objective function increase. The final objective function value does not indicate whether 

the computed CZM converges to the correct solution or not. For example, for the case of 

a bulk material with E = 10 GPa at error level = 0.2 pixel, the average final objective 

function value is 297.3, which is the largest among all cases, yet it still yield the correct 

CZM. While for the case of bulk material E = 100 GPa at error level = 0.05 pixel, the 

average final objective function value is 55.6, which is moderate among all cases, but the 

computed CZMs are not close to the correct solution. 
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Table 4.3: Initial and final values of objective function and number of iterations for all 

cases. The data for all cases with errors are the averages of three repetitions. 

Bulk material 

elastic modulus 

Target 

CZM 

Peak error level 

(DIC resolution) 
( )( )0Φ λ  ( )( )nΦ λ  

# of 

iterations 

30 GPa Linear 

0 1562.0 1.0 408 

0.005 1647.4 34.5 307 

0.05 1656.6 55.2 342 

0.2 1732.8 149.0 250 

30 GPa Hardening 

0 1139.4 1.6 826 

0.005 1245.3 42.1 590 

0.05 1288.2 70.1 435 

0.2 1331.2 147.3 390 

30 GPa 
Power-

law 

0 2413.9 5.5 522 

0.005 2535.1 31.1 349 

0.05 2546.6 47.1 293 

0.2 2601.8 154.0 242 

10 GPa Linear 

0 2340.8 0.8 261 

0.005 2425.1 82.7 365 

0.05 2461.5 99.5 364 

0.2 2685.4 297.3 240 

100 GPa Linear 

0 926.4 0.7 422 

0.005 988.9 19.8 346 

0.05 1054.1 55.6 283 

0.2 1009.2 170.3 214 

Note: 
( )0

λ  is initial guess and 
( )n

λ  is the converged result. The convergent criteria is 

set as ( )( ) ( )( )( ) ( )( )100 100
  0.01

n n n− −Φ −Φ Φ <λ λ λ . 

 

4.5.5.1 Displacement data at different load levels 

At high error levels, each individual inverse analysis converges to an inaccurate 

CZM. Using a few data sets of the same case enhances the estimation of the computed 

CZM. For example, one would naturally choose to estimate the CZM using all three 

repetitions for cases of bulk material E = 30 GPa at error level = 0.2 pixel or bulk 

material E = 100 GPa at error level > 0.05 pixel shown in Figure 4.39. In practice, this 

can be done by taking several DIC measurements at the same loading and using the 

average of the computed CZM from each measurement. Another way, which may be 

more preferable and may give more confidence, is to use the DIC measurement at several 

loadings. As a demonstration, we use the displacement field taken at 40%, 60% and 80% 
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of the peak load at post-peak regime. All five cases (Table 4.1) are applied an error level 

= 0.1 pixel. Figure 4.42 shows the result. 

 

 

 

Figure 4.42: CZMs computed using displacement field taken at different post-peak 

loadings. An error level = 0.1 pixel is applied to all cases 
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GPa.  

4.5.5.2 Other numerical aspects 

Some other features of the proposed optimization scheme are: (1) the initial guess of 

CZM for the optimization; (2) the number of control points defining the CZM; (3) the 

interpolation used for constructing the CZM; (4) the aid to optimization. In previous 

sections, the presented results are all determined by using four control points and linear 

splines as interpolant, the initial guesses of the CZM are all estimated by using P versus δ 

curve, which is not far from the exact solution. For a further demonstration of the 

effectiveness of the proposed inverse procedure, four cases are presented (corresponding 

to different initial guesses) as outlined in Table 4.4. For these four cases, we use six 

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

∆∆∆∆
n
, mm

σσ σσ
n
, 
M
P
a

 

 

0.6 P
max

, no error

0.8 P
max

0.6 P
max

0.4 P
max

E = 30 GPa

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

∆∆∆∆
n
, mm

σσ σσ
n
, 
M
P
a

 

 

0.6 P
max
, no error

0.8 P
max

0.6 P
max

0.4 P
max

E = 30 GPa

0 0.1 0.2 0.3 0.4
0

10

20

30

40

∆∆∆∆
n
, mm

σσ σσ
n
, 
M
P
a

 

 

0.6 P
max

, no error

0.8 P
max

0.6 P
max

0.4 P
max

E = 30 GPa

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

∆∆∆∆
n
, mm

σσ σσ
n
, 
M
P
a

 

 

0.6 P
max

, no error

0.8 P
max

0.6 P
max

0.4 P
max

E = 10 GPa

0 0.1 0.2 0.3 0.4
0

10

20

30

40

∆∆∆∆
n
, mm

σσ σσ
n
, 
M
P
a

 

 

0.6 P
max

, no error

0.8 P
max

0.6 P
max

0.4 P
max

E = 100 GPa



104 

control points to illustrate the more flexible shape representation, although this is more 

than enough for the current need. There are only three relative relations of CZM curves 

between the initial guess and the exact solution: (1) intersecting, which is the case for all 

previously presented cases; (2) below (Figure 4.44 left); and (3) above (Figure 4.44 

right). The initial guesses and the computed converged CZMs for these four cases are 

shown in Figure 4.44. 

 

Table 4.4: Effect of the initial guess (six control points), and use of different interpolants. 

Cases Target CZM 
Bulk material 

E 

Number of 

control points 

Initial 

guess 
Interpolant 

I Hardening (HD) 30 GPa 6 Below LS 

II Hardening (HD) 30 GPa 6 Below PCH 

III Power-law (PL) 30 GPa 6 Above LS 

IV Power-law (PL) 30 GPa 6 Above PCH 

 

 

Figure 4.43: Optimization result with initial guess below the solution using six control 

points linear and cubic spline interpolations for the hardening CZM 
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Figure 4.44: Optimization result with initial guess above the solution using six control 

points linear and cubic spline interpolations for the power-law CZM 

 

Notice that in Figure 4.43, the computed hardening CZM using linear spline 

interpolations is not exact due to a small “tail” present in the solution, which is not 

removed during optimization. However, as can be seen, the computed hardening CZMs 

using both interpolants are accurate. For the power-law CZM, both interpolants yield 

accurate CZMs. A close examination of the curve confirms the expectation that the cubic 

spline interpolations provide smoother and more accurate results. The evolution of the 

objective function value for these four cases is presented in Figure 4.45 and Figure 4.46. 

In each plot shown in the figures, the locations where clustering or “tail” forms, as 

described in section 4.3.6.2, are marked in one of the two curves. The initial objective 

function values for these four cases are much larger than those shown in Table 4.3. In 

addition, the number of iterations to convergence is much larger. The objective function 

values steadily decrease except at “tail” points when the CZM parameters are 

recalculated. Although the cohesive stress contributed by the “tail” is small, it is located 

away from the beam neutral axis. With a long moment arm, the influence of the “tail” to 

the deformation of the specimen is apparent. The treatment of the clustered points may 

only influence the objective function negligibly, as seen closely at point “C” on the right 

plot of Figure 4.46.  

0 0.5 1 1.5
0

50

100

150

200

∆∆∆∆
n
, mm

σσ σσ
n
, 
M
P
a

 

 

0 0.1 0.2 0.3 0.4
0

10

20

30

40

 

 

Converged CZMs

Linear spline

Cubic spline

Initial guess, above



106 

 

Figure 4.45: Evolution of the objective function value for the two cases (Figure 4.43) 

 

 

Figure 4.46: Evolution of the objective function value for the two cases (Figure 4.44) 
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The treatment of the clustering, as illustrated, does not change the CZM curve 

significantly, therefore does not influence the objective function value much. A 

comparison between cases with and without cluster removal shows that the cluster 

treatment reduces the number of iterations significantly.  

 

Point “A”: 

 

Point “B”: 

 

Point “C”: 

 

Figure 4.47: Demonstration of the removal of “tail” or cluster formed in the CZM 

representation. Points “A”, “B” and “C” correspond to the points shown in Figure 4.46 
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4.5.6 Remarks on the Uniqueness of the Inverse Solutions 

In general, inverse problems do not have unique solutions in a feasible domain. In 

optimization description, this means there may be a finite or infinite number of local 

minimums in the feasible domain. The solution is usually one of these local minimums 

and may not be the global minimum. Therefore, it is important to identify the local 

minimum that is physically representative. In the current application, it seems that the 

unwanted local minimums are mostly induced by the CZM “tail”. Point “B” in Figure 

4.47 in fact leads to a local minimum if the tail is not removed, as removal of the “tail” 

cause an increase of the objective function value (Figure 4.46). As one can imagine, if the 

“tail” is totally to the right of the actual maximum COD, the cohesive stress due to the 

“tail” will not contribute to the deformation of the specimen, i.e., the existence of the 

will not affect the objective function value. Apparently, one does not expect a CZM to 

have a “tail” like the ones shown in Figure 4.47. In practice, this probably is not an issue 

as the CZM will be computed from different sets of experimental data, e.g., at different 

load levels (Figure 4.42), or from specimens with different geometries (either numerical 

or actual experimental specimens).  
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5 Chapter 5 Extraction of Cohesive Properties of Plastics Using a Hybrid Inverse Technique 

CHAPTER 5 – EXTRACTION OF COHESIVE PROPERTIES OF PLASTICS USING A HYBRID INVERSE TECHNIQUE 

CHAPTER 5 – EXTRACTION OF COHESIVE PROPERTIES OF PLASTICS 

USING A HYBRID INVERSE TECHNIQUE 

The primary purpose of this chapter is to verify the proposed inverse technique 

through “well-behaved” materials. The first requirement for the materials is that they 

have quasi-brittle fracture behavior, and during fracture process, the bulk material 

remains linear elastic. For the current investigation, it is also desired that the materials be 

homogeneous and isotropic at the scale of observation. Another important requirement 

relating to the ease of success and accuracy of results of the procedure is the ratio of 

cohesive strength to bulk material elastic modulus. The higher the ratio, the smaller the 

relative errors in DIC measurement are and the more consistent the computed CZM is. 

The cohesive properties are extracted by means of a hybrid inverse technique using both 

experimental and numerical approaches. The fracture experiments are based on digital 

image correlation (DIC). An inverse numerical procedure is used to determine the 

cohesive properties by minimizing the difference between experimental and computed 

displacements in a least squares sense. 

5.1 INTRODUCTION 

Based on the above requirements, two plastics, Devcon
®

 Plastic Welder
TM

 II and 

Garolite G-10/FR4 are selected. Devcon
®

 Plastic Welder
TM

 II is a toughened structural 

acrylic adhesive formulated for bonding difficult-to-bond substrates, e.g., the PMMA 

used in this study. It has high shear strength and high resistance to peeling. Its tensile 

peeling stress is higher than 24 MPa. The effectiveness of this adhesive in bonding 

PMMA and its ductility resulted in the desired cohesive failure of the adhesive. PMMA is 

an amorphous glassy polymer. The reason to select PMMA as substrate is that it behaves 

elastically up to a substantial percentage of its ultimate strength under room temperature 

and it has a low modulus of elasticity. Garolite is a high performance type of fiberglass, 

composed of woven glass cloth in an epoxy resin media. The Garolite has high strength 

and high toughness.  
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In the numerical examples presented in Chapter 4, the elastic properties of the bulk 

materials are assumed known. In reality, these properties may be known, usually from the 

manufacturer, or be measured through experiments. It is well known that plastics have a 

wider variability of mechanical properties. Therefore, the elastic properties of PMMA and 

Garolite G-10/FR4 used in this study must be measured. In current study, as both PMMA 

and Garolite are considered homogeneous, linear elastic materials, only elastic modulus 

and Poisson’s ratio need to be measured. Uniaxial tension or compression test can be 

used to measure these two properties. However, to demonstrate the usefulness of DIC 

technique, the elastic properties are also measured through DIC.  

Section 5.2 presents the procedure to measure the elastic properties of PMMA and 

Garolite G-10/FR4. The average value of the elastic properties will be used directly in the 

inverse procedure presented in Section 5.3, which presents the detailed fracture tests 

result measured by DIC. Section 5.4 provides verification of the computed cohesive 

properties.  

5.2 MEASUREMENT OF ELASTIC PROPERTIES 

Compression tests and four-point bending tests are carried out to measure the elastic 

properties of PMMA, while only four-point bending tests are used for the measurement 

of Garolite G-10/FR4. Inverse procedures can also be used for the measurement of bulk 

elastic properties [84,104,122]. However, for isotropic case, such advanced 

computational technique is not necessary. Instead, the DIC measured displacement field 

will be used directly to compute the modulus of elasticity and Poisson’s ratio. This 

simple, direct method, as will be demonstrated, yields accurate measurements. 

The mechanical properties of these two plastics vary and the available ranges of their 

common mechanical properties are listed in Table 5.1. Notice that the Poisson’s ratio for 

Garolite G-10/FR4 is not available in literatures or from the manufacturer’s material 

datasheet.  
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Table 5.1: Mechanical properties of PMMA and Garolite G-10/FR4 

Material 
Tensile strength, 

MPa 
Young’s modulus, GPa Poisson’s ratio 

PMMA 48.3 – 72.4 2.24 – 3.24 0.4 

Garolite G-10/FR4 262 - 345 15.2 – 22.8 N/A 

 

5.2.1 Experimental Setup 

Two compressive prisms of PMMA with a nominal dimension 11.5mm × 23mm × 75 

mm, two 4-point bend PMMA specimens of 11.5mm × 24mm × 120mm, and two 4-point 

bend GL specimens of 10mm × 25.5mm × 160mm are prepared. The test set-up is shown 

in Figure 5.1.  

 

 

Figure 5.1: Compression and bending test set-up, the rectangles are the ROI analyzed by 

DIC 

 

Black and white enamel-based paints are used to prepare the speckle pattern. A 

Paasche
®

 Single Action – External Mix – Siphon Feed Airbrushes is used to first spray 

the white paint on the specimen as background. The amount of white paint sprayed is just 

enough to uniformly and fully cover the specimen. Then black paint is sprayed to 

generate the random speckle pattern. Figure 5.1 also shows the ROIs that are analyzed 
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using DIC. For the PMMA compression prisms, a ROI away from both ends is used to 

avoid end effects. For the bending specimens, the ROI is selected in the pure bending 

region away from the loading points. The digital image resolutions for the test specimens 

are listed in Table 5.2.  

 

Table 5.2: Digital image resolutions for the test specimens 

Specimen 
PMMA compression 

specimens 

PMMA bend 

specimens 

GL bend 

specimens 

Image resolution, 

µm/pixel 
11.05 16.67 11.53 

 

5.2.2 Uniaxial Compression 

The PMMA prisms are loaded within elastic range. Figure 5.2 shows the load versus 

crosshead displacement for the compression test for both specimens. The surface speckle 

images are taken for each loading point. The reference image for DIC is the image taken 

at zero loading. The correlated displacement fields, xu  and yu , for load P = 1900 N are 

shown in Figure 5.3. Notice that displacement is measured in pixels. The corresponding 

strain fields xε  and yε  are shown in Figure 5.4. The displacement yu  is due to the 

compressive loading, while the displacement xu  is due to the Poisson’s effect. Notice the 

origin of y-axis in the field plots is at the top and the y-axis direction is reversed. This is 

to conform to the image processing convention that the origin of an image is usually 

designated at the upper-left corner. 

The strain fields xε  and yε  shown in Figure 5.3 are uniform. The compressive stress, 

justified as uniformly distributed in accordance to the strain, can be calculated through 

the measured load. Average value of xε  and yε  are used to compute the Poisson’s ratio 

directly. The measured Young’s modulus and Poisson’s ratio are summarized in Table 5.3, 

which shows consistently measured properties.  
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Figure 5.2: Load versus crosshead displacement for the PMMA under compression 

 

 

Figure 5.3: Displacement field ux and uy by DIC for PMMA compression specimens at P 

= 1900 N 

 

 

Figure 5.4: Strain field εx and εy by DIC for PMMA compression specimens at P = 1900 
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Table 5.3: The measured Young’s modulus and Poisson’s ratio for PMMA and GL from 

DIC 

 Young’s Modulus, GPa Poisson’s ratio 

PMMA Com-1 3.12 ± 0.17 0.372 ± 0.02 

PMMA Com-2 3.36 ± 0.15 0.401 ± 0.01 

PMMA Bend-1 3.57 ± 0.20 0.381 ± 0.03 

PMMA Bend-2 3.49 ± 0.23 0.389 ± 0.03 

GL Bend-1 17.4 ± 0.09 0.209 ± 0.01 

GL Bend-2 16.8 ± 0.11 0.198 ± 0.01 

 

5.2.3 Four-Point Bending 

Figure 5.5 shows the loading points when the DIC images are recorded. Apparently, 

the loading is within the elastic range. A typical displacement plots, xu  and yu , at P = 

1500 N is shown in Figure 5.6 (2D contour plot) and Figure 5.7 (3D surface plot). It can 

be seen that the displacement field conforms to beam theory result. The mean 

displacements in both the x- and y-directions have been subtracted to eliminate the rigid-

body motion recorded and to have better visualization of the fields. The rigid body 

motion is unavoidable during actual experiments. However, it does not affect the 

as the relative displacements are the only ones of interest to obtain E and ν. The zero ux 

isoline in the plots shows the symmetry plan (vertical) and the beam neutral axis 

(horizontal). The compression above and the tension below the neutral axis can be readily 

inferred from the relative movement of pixels. The vertical displacement field for the 

beam under pure bending can be rarely seen in literatures, because usually it is of little or 

no interest. However, DIC does reveal such significant difference between the vertical 

and horizontal displacement pattern of a beam.  

Figure 5.8 shows the strain field εx and εy corresponding to the displacements 

presented in Figure 5.6. Notice the symmetry of the compression (negative εx) and 

tension (positive εy) regions about the neutral axis indicated by the zero-strain isoline. As 

presumably no vertical stress exists in pure bending, εy is due to Poisson’s effect only. 

This is confirmed with the following observations: (1) εy has the opposite sign of εx; (2) εy 

is proportional to εx; (3) εy plots reveal the same location of neutral axis.  
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Again, with the presumption that the bending stress distribution through the beam 

depth is linear, the correlation between stress and DIC measured strain can be obtained to 

estimate the Young’s modulus. The Poisson’s ratio is better estimated by comparing the 

average gradient of εy to the average gradient of εx both in y-direction. The estimated 

Young’s modulus and Poisson’s ratio for PMMA from the two bending specimens are 

listed in Table 5.3. They are consistent with the measurements from compression tests.  

 

Figure 5.5: Load versus cross-head displacement for the PMMA under bending 

 

 

Figure 5.6: Contour plot of displacement field ux and uy by DIC for PMMA bending 

specimen at P = 1500 N 
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Figure 5.7: Surface plot of displacement field ux and uy by DIC for PMMA bending 

specimens at P = 1500 N 

 

 

Figure 5.8: Contour plot of strain field εx and εy by DIC for PMMA bending specimen at 

P = 1500 N 
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less than one-third of the two materials tested. Therefore, it is first expected that the 

inverse procedure would yield accurate estimation of the cohesive properties. 

SENB specimens of PMMA bonded by adhesive and G10/FR4 Garolite are prepared 

for fracture testing. The specimen geometry is shown in Figure 5.9. The actual 

dimensions of the test specimens are listed in Table 5.4. 

 

Table 5.4: Dimension of PMMA and G10/FR4 Garolite SENB specimens 

 Specimen ID Height, H (mm) Width, t (mm) 
Notch length, a0 

(mm) 

PMMA 
PWII-1 25.5 11.7 6.83 

PWII-3 30.5 9.13 6.13 

G10/FR4 

Garolite 

GL-2 25.5 10.1 5.51 

GL-3 25.5 10.1 5.87 

 

 

Figure 5.9: PMMA and G10/FR4 Garolite SENB specimen geometry and fracture test 

set-up 
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assembled, firm pressure is applied to the adhesive layer before setting to eliminate gaps 

and enhance contact. The final widths of the PW-II layer for both specimens are 0.6 ± 
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The notches of both the 

cut before the desired length by an ordinary band saw, and then a teeth

band saw is used to produce the final sharp notch tip (

estimated to be less than 50 µm by using an optical microscope.

 

Figure 5.10: Image area taken during fracture testing and a room
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is set to 0.1 mm/min before peak load and increased to 0.2 to 0.5 mm/min during the 

softening part. Figure 5.11

G10/FR4 Garolite SENB specimens. The locations where images are taken for DIC 

analysis are also shown. The testing is paused and held when the DIC images are to be 

taken. The period of the test hol

during that period, even for PWII adhesive

under sustained loading. This observation 

current rate of loading may not be affected by possible rate

the CZM to be computed can be regarded as rate
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the PMMA and the G10/FR4 Garolite SENB specimens 

cut before the desired length by an ordinary band saw, and then a teeth-sharpened thin 

band saw is used to produce the final sharp notch tip (Figure 5.10). The notch tip radius is 

estimated to be less than 50 µm by using an optical microscope. 

Image area taken during fracture testing and a room-in image of the initial 

notch 

is conducted on a servo-hydraulic Instron testing frame. A clip 

gage is installed on the bottom of the SENB specimen to measure the crack mouth 

opening displacement (CMOD) (Figure 5.10). The loading rate is CMOD controlled and 

is set to 0.1 mm/min before peak load and increased to 0.2 to 0.5 mm/min during the 

11 shows the load versus CMOD curves for both PMMA and 

G10/FR4 Garolite SENB specimens. The locations where images are taken for DIC 

The testing is paused and held when the DIC images are to be 

taken. The period of the test holding is around 10 seconds. No load changes are observed

during that period, even for PWII adhesive, which is expected to show a creep behavior 

under sustained loading. This observation indicates that the fracture process under the 

ay not be affected by possible rate-dependent effect. 

the CZM to be computed can be regarded as rate-independent for the testing rate used. 

G10/FR4 Garolite SENB specimens are first 

sharpened thin 

he notch tip radius is 

 

in image of the initial 

hydraulic Instron testing frame. A clip 

gage is installed on the bottom of the SENB specimen to measure the crack mouth 

). The loading rate is CMOD controlled and 

is set to 0.1 mm/min before peak load and increased to 0.2 to 0.5 mm/min during the 

shows the load versus CMOD curves for both PMMA and 

G10/FR4 Garolite SENB specimens. The locations where images are taken for DIC 

The testing is paused and held when the DIC images are to be 

seconds. No load changes are observed 

which is expected to show a creep behavior 

that the fracture process under the 

dependent effect. Therefore, 

independent for the testing rate used.  
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(a)      (b)  

Figure 5.11: Load P versus CMOD curves for (a) PWII bonded PMMA, and (b) G10/FR4 

Garolite SENB specimens 

 

Figure 5.12 shows the fracture surfaces. The cohesive failure through the PW-II 

adhesive can be clearly seen. The rough fracture surface of G10/FR4 Garolite shows 

rupture of the fine fibers. 

5.3.1 Deformation Field 

Using the image at P = 0N as reference, two ROIs right above the initial notch tip on 

either side of the crack path are selected as the reference images (Figure 5.9). After the 

image correlation, the displacement fields on the two ROIs are combined for each 

recorded image. Figure 5.13 and Figure 5.14 show the xu  deformation at different loads 

for one PW-II bonded PMMA and one G10/FR4 Garolite SENB specimen, respectively. 

The pixel resolution for PWII-3 is 9.93 µm/pixel and for GL-3 is 8.32 µm/pixel. On both 

figures, the left side is the surface plots showing crack profiles, the right side is the 

corresponding contour plots showing the xu  values. This full displacement field enables 

the calculation of the crack opening displacement. 
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Figure 5.12: Fracture surfaces of (a) PWII bonded PMMA, an

 

The crack length and the crack tip location can be easily seen on either the surface 

plot or the contour plot in 

location depends on the combined resolving power of the image system and the DIC 

algorithm. For our system, the estima

= 0.15 µm.  

5.3.2 Inverse Analysis 

A 2D FE model represents the left half of the beam is used for the inverse analysis. 

The Q4 element is used to model the bulk material. The elastic properties used in the 

model are based on Table 

10/FR4, E  = 18 GPa, ν  

equivalent to a cohesive element size of 42.5 µm. The displacements at the nodal 

locations are the average of the DIC measured displacements on the left and rig

the crack. Figure 5.15 shows the Q4 mesh with zoom

Based on the investigations from the numerical examples 

the curve of the CZM that is 

optimization iterations) to the exact CZM. Based on the measured DIC COD profile and 

the estimated tensile strength, the initial guesses of the CZM curves for both materials are 

used (Figure 5.16) for the inverse analysis. Five control points and cubic Hermite 
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Fracture surfaces of (a) PWII bonded PMMA, and (b) G10/FR4 Garolite 

SENB specimens 

The crack length and the crack tip location can be easily seen on either the surface 

plot or the contour plot in Figure 5.13 and Figure 5.14. The accuracy of the crack tip 

location depends on the combined resolving power of the image system and the DIC 

algorithm. For our system, the estimated error is in an order of 10 µm/pixel × 0.015pixel 

A 2D FE model represents the left half of the beam is used for the inverse analysis. 

The Q4 element is used to model the bulk material. The elastic properties used in the 

Table 5.3: for PMMA, E  = 3.4 GPa, ν  = 0.38 and for Garolite G

ν  = 0.20. The number of Q4 elements along the crack line is 600, 

equivalent to a cohesive element size of 42.5 µm. The displacements at the nodal 

locations are the average of the DIC measured displacements on the left and rig

shows the Q4 mesh with zoom-in detail. 

Based on the investigations from the numerical examples [108], an initial guess of 

the curve of the CZM that is below the exact CZM curve will converge faster (less 

optimization iterations) to the exact CZM. Based on the measured DIC COD profile and 

the estimated tensile strength, the initial guesses of the CZM curves for both materials are 

) for the inverse analysis. Five control points and cubic Hermite 

 

d (b) G10/FR4 Garolite 

The crack length and the crack tip location can be easily seen on either the surface 

. The accuracy of the crack tip 

location depends on the combined resolving power of the image system and the DIC 

ted error is in an order of 10 µm/pixel × 0.015pixel 

A 2D FE model represents the left half of the beam is used for the inverse analysis. 

The Q4 element is used to model the bulk material. The elastic properties used in the 

= 0.38 and for Garolite G-

= 0.20. The number of Q4 elements along the crack line is 600, 

equivalent to a cohesive element size of 42.5 µm. The displacements at the nodal 

locations are the average of the DIC measured displacements on the left and right sides of 

, an initial guess of 

below the exact CZM curve will converge faster (less 

optimization iterations) to the exact CZM. Based on the measured DIC COD profile and 

the estimated tensile strength, the initial guesses of the CZM curves for both materials are 

) for the inverse analysis. Five control points and cubic Hermite 
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interpolation are used to construct the CZM. For both materials, the inverse analyses are 

carried out for all displacement data measured at the different post-peak loadings (Figure 

5.11). This is because the complete formation of the cohesive fracture process zone can 

only happen after peak load has reached (section 4.5.3.2). Furthermore, an example of the 

evolution of the objective function value is shown in Figure 5.17. The three curves are for 

images of the PWII-3 taken after peak loading.  

The computed CZMs (three inverse analysis results for each material) for PW-II and 

Garolite G-10/FR4 are shown in Figure 5.18. The computed CZMs of both PWII and 

Garolite G-10/FR4 show a softening behavior. More variations are seen on the computed 

CZMs of PWII while for Garolite, the computed CZMs are more consistent. This may be 

due to the fact that PMMA SENB specimens are bonded manually using PWII in our 

in which case variations of bond strength may be significant. While the Garolite is a 

continuous manufactured piece, the cohesive properties along the crack are expected to 

be more uniform. The computed PWII CZMs have a critical cohesive strength about 15 

MPa, in comparison to the manufacturer provided peel strength of 24 MPa. The 

maximum computed critical cohesive stress for Garolite G-10/FR4 is 250 MPa, which is 

close to the lower bound of its tensile stress, 262 MPa. Surprisingly, the critical 

separations of the CZMs do not vary as seen in [86]. This may be due to the enhanced 

smoothness of DIC measurement using the full-field correlation algorithm. 
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Figure 5.13: Displacement ux fields for PWII-3 at different loads (from top to bottom): 

800 N, post-peak 450 N, and post-peak 290 N. 
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Figure 5.14: Displacement ux fields for GL-3 at different post-peak loads (from top to 

bottom): 4000 N, 2800 N and 1250 N. 
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Figure 5.15: FEM mesh for inverse analysis to compute the CZM

 

Figure 5.16: Initial guesses used for PMMA

 

Figure 5.17: Evolution of the objective function during optimization for PWII
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FEM mesh for inverse analysis to compute the CZM

Initial guesses used for PMMA-PWII and Garolite G

 

Evolution of the objective function during optimization for PWII

three post-peak images shown in Figure 5.11 

0 50 100 150 200 250 300

# of iterations

 

 

For image at P = 595 N

For image at P = 450 N

For image at P = 290 N

 

FEM mesh for inverse analysis to compute the CZM 

 

PWII and Garolite G-10/FR4 

 

Evolution of the objective function during optimization for PWII-3 for the 
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Figure 5.18: The computed CZMs for PW-II and G-10/FR4 Garolite 

 

5.4 VERIFICATION OF THE EXTRACTED CZMS 

We verify the computed CZMs by examining the fracture energies and by comparing 

the FEM simulation using the computed CZMs to the experiments. Taking the average of 

the CZMs, we abstract the computed CZMs with a simple curve for convenience. For 

PWII, the computed CZMs are banded and vaguely show a “kink” point, therefore we use 

a bilinear softening curve to abstract the computed curves (Figure 5.18). While for the 

Garolite G-10/FR4, we found a power-law curve with power index = 1.92 that fits well 

the computed CZMs. The fracture energy can then be directly computed from these 

abstracted CZMs by 

 ( )
0

 ,
nc

f n nG dσ
∆

= ∆ ∆∫  (5.1) 

where fG  is the fracture energy. The fracture energy can also be estimated from the area 

under the curve of load versus load-line displacement. The fracture energies computed 

from equation (5.1) using the exacted CZMs and from the experimental load versus load-

line displacement curves are compared in Table 5.5, and demonstrate good agreement. 
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Table 5.5: Comparison of fracture energies (N/mm) between experiments and inverse 

computation 

 PWII-1 PWII-3 GL-2 GL-3 

Experiments 1.36 1.41 10.31 10.57 

DIC-FEM 

inverse analysis 
1.33 ± 0.12 10.27 ± 0.35 

 

The extracted CZMs for both materials are then used as the input to the FEM model 

to compute the global response, i.e. P versus CMOD curve. The FEM simulated P versus 

CMOD curves are compared with experimental results and are shown in Figure 5.19. 

 

 

Figure 5.19: Comparison of the P versus CMOD curves between experiments and FEM 

simulation 

 

Notice that globally the simulated results have good agreement with experiments 

both in elastic range and the softening. The agreement in the initial slope of the P versus 

CMOD curves illustrates the accurate measurement of the Young’s modulus. Moreover, 

the good fit around the peak load and for the softening part of P versus CMOD may 

imply that the shapes of the computed CZMs are accurately estimated.  
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6 Chapter 6 Fracture Behavior of Functionally Graded Fiber-Reinforced Cementitious Composites (FGFRCC) 

CHAPTER 6 – FRACTURE BEHAVIOR OF FUNCTIONALLY GRADED FIBER-REINFORCED CEMENTITIOUS COMPOSITES (FGFRCC) 

CHAPTER 6 – FRACTURE BEHAVIOR OF FUNCTIONALLY GRADED 

FIBER-REINFORCED CEMENTITIOUS COMPOSITES 

(FGFRCC) 

This chapter investigates mode I cohesive properties of FRCCs and both mode I and 

mixed-mode fracture behavior of FGFRCCs. Both FRCCs and FGFRCCs were 

manufactured by means of the extrusion technique described in Chapter 2. The procedure 

described in Chapter 5 is used to prepare FRCC specimens for bending and fracture tests, 

as well as for DIC measurements. The cohesive properties of FRCCs are obtained by 

means of the hybrid (experimental/numerical) technique developed in this work (see 

Chapter 5). 

The fracture experiments of FGFRCC specimens concentrate on mixed-mode 

fracture behavior. It addresses crack initiation and propagation as the crack is offset from 

the middle of the SENB specimen. It also addresses the so-called crack competition 

phenomenon, i.e., what is crack-offset that nucleates a crack in the middle of the 

specimen. In this case, the offset crack does not propagate, damage is generated in the 

middle of the specimen, which leads to microcracking and finally a macrocrack that 

propagates.  

6.1 EXPERIMENTS 

The nominal specimen dimensions for both the bending and fracture test specimens 

are 26 × 13 × 140 mm (height × width × length). For the single edge-notched beam 

(SENB) specimen for fracture testing, the nominal notch size is 6 mm. Four different 

fiber volume fractions are used: 0.5%, 1%, 2% and 3%. The matrix mix proportion is 

kept the same, except water amount is slightly adjusted for ease of extrusion for different 

fiber amount.  
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Table 6.1: Mix proportions of FRCCs with different fiber volume fraction 

Cement 

(wt.) 

Fly ash 

Class F (wt.) 

Water 

(wt.) 

Fiber 

(vol.) 

Superplasticizer* 

(wt.) 

HPMC/water 

(wt.) 

0.573 0.427 

0.210 0.5% 

0.002 0.04 
0.215 1% 

0.220 2% 

0.225 3% 

 

The speckle preparation procedure is the same as for the plastics, except that a little 

thicker back paint is needed due to the dark color of the FRCC. Similar to the DIC bend 

test for the plastics, the specimen setup is shown in Figure 6.1.  

Unlike the Garolite and bonded PMMA SENB specimens, the FRCC SENB 

specimens do not show straight crack paths. A shallow straight groove on both sides of 

the specimens is introduced to confine the crack path within the groove (Figure 6.2). The 

grooves are made by a specially tailored thin band saw. It is hard to produce the grooves 

and even harder to control the desired cut depth. It is estimated that all grooves are 

between 1 to 1.5 mm. 

 

 

Figure 6.1: Bending test set-up, the rectangle is the region of interest that DIC 

displacement is computed 
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Figure 6.2: Fracture test set-up, the rectangle is the region of interest that DIC 

displacement is computed, notice the profile of the groove and notch 

6.2 MEASUREMENT OF BULK ELASTIC PROPERTIES 

Compared to the PMMA and Garolite described in Chapter 5, the FRCC has a much 

lower elastic tensile strength to modulus of elasticity ratio. This means that only very 

small tensile elastic strain can be generated before the specimens crack. Therefore, direct 

computation of the strain field using the measured displacement field from DIC will be 

inaccurate, as the noise to signal ratio now for the FRCC is expected to be high. Instead, 

an inverse procedure similar to the one presented in Chapter 4 for computing the cohesive 

properties is used for the identification of the elastic properties of FRCCs. In the 

following, the numerical procedure is first described, and then the experimental results 

and inverse analyses are presented. 

6.2.1 Linearization of Stress-Strain Constitutive Matrix 

In elasticity, identification of material constants is done through inverse 

determination of the Hooke’s tensor, Η . Denote the N constitutive parameters as a 

vector { }1,..., Nθ θ=θ , thus ( )=Η Η θ . Usually the Hooke’s tensor is decomposed as a 

linear combination of all the independent scalar moduli 

 
1

N

i i

i

θ
=

=∑Η Η

.

 (6.1) 
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For homogeneous, isotropic materials, the elastic properties can be described in 

terms of the Lamé constants λ  and µ , which are two independent scalar moduli. The 

stress-strain constitutive relations, or Hooke’s Law, can be written as 

 2ij ij ij kkσ µε λδ ε= + , (6.2) 

where i, j = 1, 2, 3 satisfying 3D relations. The Lamé’s first parameter, λ , has no 

physical meaning but to simplify the Hooke’s stiffness matrix, and it can be converted by 

 
( )( )1 1 2

Eν
λ

ν ν
=

+ −
. (6.3) 

The Lamé’s second parameter, µ , is the shear modulus. The linearized form of Hooke’s 

law, Equation (6.2), can only be directly applied in 3D problems. For plane stress 

condition, the form is different, which is derived as the following. 

For plane stress condition, there is 23 31 33 0σ σ σ= = = . From 33 0σ =  and equation 

(6.2), one obtains 

 
( )11 22

33
2

λ ε ε
ε

λ µ

+
= −

+
. (6.4) 

Substituting (6.4) into 11σ  and 22σ  in equations (6.2), one obtains 

 

( )

( )

11 11 22

22 11 22

4 2

2 2

4 2

2 2

µ λ µ µλ
σ ε ε

λ µ λ µ

µ λ µ µλ
σ ε ε

λ µ λ µ

+
= +

+ +

+
= +

+ +

. (6.5) 

Rearranging (6.5) leads to 

 

2 2

11 11 11 22 22

2 2

22 11 11 22 22

4 4
4 2

2 2

4 4
2 4

2 2

µ µ
σ µε ε µε ε

λ µ λ µ

µ µ
σ µε ε µε ε

λ µ λ µ

= − + −
+ +

= − + −
+ + .

 (6.6) 
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Together with 12 21 122σ σ µε= = , the Hooke’s law for isotropic material in plane stress 

condition can be written explicitly as 

 
11 112

22 22

12 12

2 1 0 1 1 0
4

2 1 2 0 1 1 0
2

0 0 1 0 0 0

σ ε
µ

σ µ ε
λ µ

σ ε

        
       = −       +                .

 (6.7) 

According to equation (6.1), one can define 1 2θ µ= , ( )2

2 4 / 2θ µ λ µ= − + , and  

 
1

2 1 0

1 2 0

0 0 1

 
 =  
  

Η , 
2

1 1 0

1 1 0

0 0 0

 
 =  
  

Η . 

For orthotropic materials under plane stress condition, the Hooke’s Law is written as 

 
11 11 12 11

22 12 22 22

12 66 12

0

0

0 0 2

Q Q

Q Q

Q

σ ε
σ ε
σ ε

     
    =    
         

, (6.8) 

where ( )11 1 12 21/ 1Q E ν ν= − , ( )12 12 2 12 21/ 1Q Eν ν ν= − , ( )22 2 12 21/ 1Q E ν ν= − , and 66 12Q G= . 

Similarly, one can define 1 11Qθ = , 2 12Qθ = , 3 22Qθ = , 4 662Qθ = , and 

 1 2 3 4

1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 ,  1 0 0 ,  0 1 0 ,  0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

       
       = = = =       
              

Η Η Η Η . 

The standard FEM system of equations for elastic problems can be expressed as 

 ( )( ) ext=K H θ u F . (6.9) 

With the decomposed Hooke’s tensor, the global stiffness matrix can be set in the form 

 ( )( ) ( ) ( )i i i i
θ θ= =∑K H θ K H K Ηɶ . (6.10) 

Apparently,  
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 ( )i

i
θ
∂

=
∂

K
K Ηɶ , (6.11) 

which is the sensitivity of K  with regard to iθ . The convenient form of (6.10) will 

facilitate the inverse identification procedure. 

6.2.2 Solution Procedure 

Using the displacement-based optimization approach introduced in Chapter 4, an 

objective function is defined as 

 ( ) ( ) ( )* *1

2

T

Φ = − −θ u u u u . (6.12) 

where 
*

u  is the displacement vector computed from equation (6.9), and u  is the 

displacement measured from DIC. With the linearized form (6.10), the gradient and 

Hessian of ( )Φ θ  can be derived analytically: 

 ( )* *∇Φ = ∇ −u u u , (6.13) 

 ( )( ) ( )( )2 2 * * * *
T

∇ Φ = ∇ − + ∇ ∇u u u u u . (6.14) 

where each component of 
*∇u , 

*

iθ
∂

∂

u
, can be derived using (6.9) and (6.10): 

 

* 1

1 1

1 *

ext

i i

ext

i

i

θ θ

−

− −

−

∂ ∂
=

∂ ∂

= −

= −

u K F

K K K F

K K u

. (6.15) 

Furthermore, each component of 
2 *∇ u , explicitly as 

2 *

i j
θ θ
∂
∂ ∂

u
, can also be derived 

 
2 *

1 1 * 1 1 *

j i i j

i j
θ θ

− − − −∂
= +

∂ ∂
u

K K K K u K K K K u . (6.16) 
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Efficient Newton-Raphson algorithm can be applied with the availability of ∇Φ  and 

2∇ Φ : 

 
( )( ) ( ) ( )( ) ( )( )12 m m m m+∇ Φ − = −∇Φθ θ θ θ , (6.17) 

where m denotes the m
th

 iteration. In fact, the Newton-Raphson algorithm is preferred 

over the Nelder-Mead method. This is because although for both methods, the global 

stiffness matrix, ( )K θ , needs to be recalculated using the updated θ  and then be 

inverted to compute 
*

u , however, convergence rate of the Newton-Raphson method is 

much faster than the Nelder-Mead method. 

6.2.3 Displacement Field by DIC 

The loading of the FRCC 4-point bending test is displacement (crosshead) controlled 

at a rate of 0.2 mm/min. The load versus crosshead displacement curves for the four 

FRCCs are shown in Figure 6.3. Notice for 2% and 3% FRCCs, the ratios of the limit of 

proportion to the ultimate strength are relatively small. Multiple images are taken for 

each specimen for DIC measurement. However, only those images taken at not too low a 

load level, but before the specimens start to crack are suitable for inverse analysis to 

exact the elastic properties. In addition to the reference image taken at zero loading, two 

deformed images are used for each specimen.  

 

Table 6.2: Loadings when specimen images are taken for DIC, in N (note: FRCC-0.5 

means the FRCC has 0.5% fiber volume fraction, same for the rest specimen IDs) 

 Reference point Deform 1 Deform 2 

FRCC-0.5 0 440 585 

FRCC-1 0 480 723 

FRCC-2 0 597 866 

FRCC-3 0 596 992 

 

The full-field DIC is used to measure the displacement field within the region of 

interest (Figure 6.1). A typical displacement field is shown in Figure 6.4, with DIC 

resolution equals 17.6 μm/pixel. Notice the very small displacement variation over the 
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region of interest: 1.9 pixels over a width of 3414 pixels for xu  and 1.3 over a height of 

1480 pixels. The corresponding maximum compression or tension strain at top or bottom 

fibers is 0.56 × 10
-3

. Comparing to the typical strain measured for DIC (Figure 5.8), 

which is close to 4 × 10
-3

. This is expected, as the Young’s modulus of FRCC is about an 

order of magnitude larger than that of PMMAs. Although for such small displacement 

level the measurement is prone to noise, the smooth field shown in Figure 6.4 indicate 

that the full-field DIC can is not very sensitive to local noise but maintain the global 

feature of the displacement field. As said, however, the relative accuracy is still 

controlled by the displacement level due to the finite resolution of DIC. Using the 

conservative resolution of the full-field DIC, 0.05 pixel, which is three times of the 

resolution evaluated in Chapter 3 and summarized in Table 3.1, the estimated relative 

error for the strain measurement will be ±0.05/1.9 = ± 2.6% for xε , and ±0.05/1.3 = ± 

3.8% for yε . This bound of relative error estimates will be translated to the final error of 

the computed elastic properties.  

 

 

Figure 6.3: Load versus displacement curves for FRCCs with different fiber volume 

fractions 
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Figure 6.4: Surface plot of displacement field ux and uy by DIC for FRCC-3 bending 

specimens at P = 992 N 

 

6.2.4 Computed Bulk Elastic Properties 

Assuming the FRCC is isotropic and homogeneous, starting with an initial guess of 

E = 10 GPa and ν = 0.2 for the Newton-Raphson procedure described previously, the 

inversely computed properties can be obtained in few iterations. The computed 

as well as the initial and final values of the cost function, and the number of iterations 

reaching convergence are summarized in Table 6.3. The computed Young’s moduli and 

Poisson’s ratios are also shown in Figure 6.5. For each specimen, the computed E and ν 

are accurate: the difference computed at the two different loads for the same specimen is 

less than 7% for E and 6% for ν. The Poisson’s ratios computed from higher load data are 

consistently lower than those computed from lower load data. The lower Poisson’s ratio 

may be more accurate due to higher deformation at higher loads reduce the relative DIC 

measurement errors. The presence of PVA fibers does not affect the bulk elastic 

properties, which is expected. The PVA fiber has a Young’s modulus of 37 GPa, which is 

not significant higher than that of ordinary cement paste, which is in the range of 10-20 

GPa.  In addition, rule of mixture for composite also indicates that for small volume 

fraction of one component, less than 3% PVA fiber for current FRCC, the bulk elastic 

properties are determined by the prevalent component.  

Reference [66] has reported a 2% PVA FRCC with a 20.3 GPa Young’s modulus and  

reference [123] has reported 18.7 GPa for a 2.8% PVA ECC. However, both references do 

not provide the measurement for Poisson’s ratio. It has been generally accepted that 
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concrete has a Poisson’s ratio between 0.15 and 0.2 [1,124], depending on the mix 

proportion. The FRCC is primarily composed of cementitious matrix, thus the lower-end 

Poisson’s ratio, 0.15, shall be expected for FRCC. This correlates very well with the 

computed Poisson’s ratios.  

 

Table 6.3: The inverse computed isotropic elastic properties 

 
Initial guess Load 

level 

Converged results ( )( )0Φ θ
 

( )( )nΦ θ
 

# of 

iterations E, GPa ν E, GPa ν 

FRCC-0.5 

10.0 0.2 

440 N 17.9 0.150 0.0015 0.000212 11 

585 N 18.1 0.141 0.0033 0.000376 16 

FRCC-1 
480 N 17.6 0.148 0.0019 0.000293 10 

723 N 17.7 0.142 0.0043 0.000540 15 

FRCC-2 
597 N 18.5 0.149 0.0029 0.000411 9 

866 N 18.3 0.144 0.0068 0.000798 14 

FRCC-3 
596 N 19.0 0.147 0.0032 0.000446 8 

992 N 20.4 0.141 0.0106 0.000825 12 

 

 

Figure 6.5: The computed Young’s modulus and Poisson’s ratio versus fiber volume 

fraction 
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horizontal displacement is almost solely sensitive to E while the variation of vertical 

displacement is sensitive only to ν. For the particular experimental setup, it may be easier 

for ν to converge. 

 

 

Figure 6.6: Evolution of the computation of Young’s modulus and Poisson’s ratio for 

FRCC-3 with DIC taken at load = 992 N 
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rate controlled, the P versus CMOD curves are smoother than the P versus d curves. The 

short load drops are due to the readjustment of the fractured specimens. The DIC images 

are taken when the load reading is stable, which corresponds to the lower point of the 

drops. The corresponding load level when the images are taken are recorded and used in 

the FEM-DIC inverse analysis as the key force boundary conditions. 

As have been discussed in Chapter 4, only the deformation fields measured at post-

peak range are appropriate for the inverse analysis. Therefore, three points are used at 

different load levels for each specimen, as indicated by the black circles in Figure 6.7.  

 

 

Figure 6.7: Load versus CMOD for FRCC with different fiber volume fractions 
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Figure 6.8: Load versus load-line displacement for FRCC with different fiber volume 

fractions 

 

Table 6.4: FRCC fracture energies estimated from load versus load-line curves 

 FRCC-0.5 FRCC-1 FRCC-2 FRCC-3 

Gf, N/mm 0.44 0.87 1.90 3.58 

 

6.3.1 Displacement Fields 

The procedure outlined in Chapter 5 is used for the measurement of the displacement 

field of the FRCC SENB specimens. A typical post-peak DIC image is shown in Figure 

6.9. The distance between the two loading point is 60 mm, or 3400 pixels. This 

corresponds to a camera resolution of 17.7 µm/pixel. Notice that it is hard to see any 

elastic deformation of the specimen visually due to the very low cohesive strength to 

elastic modulus ratio of the FRCC specimen. One can see the effectiveness of the groove 

in constraining the crack path. 
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Figure 6.9: Typical DIC image of the FRCC SENB taken at a post-peak point 

 

An illustration of the displacement fields measured by DIC for the FRCC-1 

specimen at the three load levels indicated in Figure 6.7 is shown in Figure 6.10. As seen, 

the parallelism of the field isolines to the direction of the displacement to be measured 

shows that displacement field is dominated by the rigid-body components of the 

displacement field. As FRCC matrix is very brittle, the post-peak crack tip location does 

not change significantly, at least not indicated from the measurement.  

6.3.2 Inverse Computation of the CZM 

The initial guess of the CZM for the inverse computation is constructed using the 

same procedure as presented in Chapter 4. The displacement field measured at each load 

level is used as an individual set to compute the CZM, thus there are three sets of 

computed CZMs corresponding to the three displacement field measurements. The 

computed CZMs are shown in Figure 6.11 to Figure 6.14 for the FRCC with 0.5%, 1%, 

2% and 3% PVA fibers, respectively. 

From the computed CZM curves, first, the CZMs corresponding to the two higher 

loads are more consistent in the computed shape while the one corresponding the lowest 

load deviates from the former two. The computed critical stress (at ∆n = 0) decreases with 

decreasing load level. All computed FRCC CZMs show bi-linear characteristic, with an 
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initial hardening curve, followed by a linear softening cohesive stress. The kink points are 

all around one-sixth of the critical separation. The critical stress and critical separation of 

the CZMs increase with increasing fiber volume fractions. 

 

  

  

  

Figure 6.10: Displacement field measured by DIC for the FRCC-1 specimen at three 

post-peak load levels; left: horizontal displacement, right: vertical displacement; 

measurement unit: pixel 
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Figure 6.11: Inverse computed CZMs for FRCC with 0.5% PVA fiber 

 

 

Figure 6.12: Inverse computed CZMs for FRCC with 1% PVA fiber 
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Figure 6.13: Inverse computed CZMs for FRCC with 2% PVA fiber 

 

 

Figure 6.14: Inverse computed CZMs for FRCC with 3% PVA fiber 
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Figure 6.15: Comparison of the computed CZMs of FRCC with different fiber volume 

fractions 

 

Averaging all three computed CZMs for each specimen and applying a bilinear least 
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CZMs is made as shown in Figure 6.15. All the CZMs show similar slope for the initial 
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observation reported from [54,120].  
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a linear relation with respect to fiber volume fraction (Figure 6.16). This is expected as 
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computed from global response curve, P versus d. The fracture energies computed from 

two very different methods are close (Figure 6.17), except for FRCC-0.5. It has been 

explained that the fracture energy from computed CZM shall be higher than the one 

computed from P versus d curve. If only the CZM computed from the highest load is 

used to compute the fracture energy, the value will be slightly higher and may be more 

reasonable. At the current stage, this is not of the major interest and there is no sufficient 

amount of experiments to quantify the exact difference. The fracture energy is also 

proportional to the fiber volume fraction, which is expected as the cement matrix has 

negligible fracture energy in comparison to the fracture of PVA fibers. 

 

Table 6.5: Critical cohesive stress, critical separation and fracture energy computed CZM, 

also listed is the fracture energy computed from global curve 

 FRCC-0.5 FRCC-1 FRCC-2 FRCC-3 

σcr, MPa 1.277 1.970 3.102 4.421 

σmax, MPa 2.137 3.840 5.834 8.117 

∆np, mm 0.033 0.069 0.134 0.146 

∆nc, mm 0.247 0.408 0.580 0.800 

Gf, N/mm 

(from CZM) 
0.261 0.860 1.834 3.563 

Gf, N/mm 

(from P-d curves) 
0.274 0.87 1.90 3.58 

 

  

Figure 6.16: FRCC critical stress versus fiber volume fraction 

 

0 1 2 3 4
0

2

4

6

8

10

Fiber vol%

σσ σσ
c
r,
 σσ σσ
m
a
x

 

 

σσσσ
cr

σσσσ
max



146 

 

Figure 6.17: Fracture energy versus fiber volume fraction 

6.4 VERIFICATION OF THE COMPUTED CZM 

The approach for the verification of the computed CZMs is to use it in the direct 

simulation to obtain the global response and compare with the experimental 

Since only a few snapshots of the experimental points are used, but not the global 

response, e.g., P versus CMOD, in the computation of the CZMs, thus verification by 

comparing to the global response is somewhat justified. The FEM simulated P versus 

CMOD curves are plotted together and shown in Figure 6.18. 

 

  

Figure 6.18: Comparison experiment and FEM simulation of the P versus CMOD curves 

(FEM simulation use the inverse computed CZMs) 
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It can be seen from Figure 6.18 that the computed results match very well to the 

experimental results. This is consistent with the study carried out for plastics, which is 

presented in Chapter 5. Notice the particular good match of the curves for the softening 

part of the curves. The initial portion of the curves is only elastic, and the FEM 

simulations match well with the experiments, which indicate that the measured Young’s 

modulus and Poisson’s ratio are accurate. However, the FEM simulation of the onset of 

cracking is lower than the experiments. This is expected, because the CZM is not able to 

capture the very high stress concentration presents at the sharp crack tip. 

6.5 MIXED-MODE FRACTURE OF FGFRCC: EXPLORATORY INVESTIGATION 

In this section, preliminary investigation on the fracture behavior of FGFRCC under 

mode I and mixed-mode loadings is presented using SENB fracture specimens. The 

specimens are made from uniform FRCCs with four different fiber volume fractions: 

0.5%, 1%, 2% and 3%. The configuration of the FGFRCC is that the fiber volume 

fraction is graded monotonically through the beam depth (see Figure 6.19). The nominal 

dimensions of the FGFRCC specimen are the same as the fracture specimen shown in 

Figure 6.2. Three-point bending is used for fracture testing. A notch size of about 3mm, 

which is about half of the thickness of a single FRCC layer, is introduced at different 

configurations, as shown in Figure 6.19. The FGFRCC SENB specimens are loaded in 

both normal and reverse loading directions. For mode I fracture, 0x = ; while for mixed-

mode fracture, notches at 0.5x L=  and 0.7x L=  are introduced. A similar investigation 

considering pavement materials was conducted by Song [125]. 

 

 

Figure 6.19: Normally and reverse loaded SENB specimens for mode I ( 0x = ) and 

mixed-mode, ( 0x > ) 
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Figure 6.20: Load versus load line displacement for mode I fracture of FGFRCC under 

normal loading condition 

 

  

Figure 6.21: Load versus load line displacement for mixed-mode fracture ( 0.5x L= ) of 

FGFRCC under normal loading condition 
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Figure 6.22: Load versus load line displacement for mixed-mode fracture ( 0.7x L= ) of 

FGFRCC under normal loading condition 

 

 

Figure 6.23: Load versus load line displacement for mode I fracture of FGFRCC under 

reverse loading condition 
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Figure 6.24: Load versus load line displacement for mixed-mode fracture ( 0.5x L= ) of 

FGFRCC under reverse loading condition 

 

 

Figure 6.25: Load versus load line displacement for mixed-mode fracture ( 0.7x L= ) of 

FGFRCC under reverse loading condition 
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Figure 6.20 to Figure 6.22 show the load, P , versus load line displacement, d , 

curves for normally loaded FGFRCC at notch offset 0x =  (i.e., no offset), 0.5x L=  and 

0.7x L= , respectively. The peak load increases from 601N to 763N to 908N with the 

increase of the offset of the notch location, x , from 0 to 0.5L to 0.7L, respectively. All 

curves ( P  versus d ) feature relatively high load carrying capacity with a deflection-

hardening plateau followed by sharp drop of the load right after the peak load has been 

reached.  

Figure 6.23 to Figure 6.25 show P  versus d  curves for reverse loaded FGFRCC at 

notch offset 0x = , 0.5x L=  and 0.7x L= , respectively. The peak load increases from 

301N to 428N to 526N with the increase of the offset of the notch location, x , from 0 to 

0.5L to 0.7L, respectively. All responses for reverse loading cases feature low peak loads 

in comparison to normal loading cases. No apparent deflection-hardening plateau but 

long post-peak softening is observed. The observed characteristics of the global response, 

P  versus d , due to direction of loading are similar to those of FGFRCC beams 

presented in section 2.4.3. 

As for the fracture initiation location, for normal loading FGFRCC cases, crack 

initiates at mid-span for mode-I configuration and for notch offset 0.7x L= . For notch 

offset 0.5x L= , the crack initiates from the crack tip, resulting in mixed-mode fracture. 

For reverse loading FGFRCC cases, the crack initiates at mid-span location, which is 

probably due to the low tensile strength of the 0.5% FRCC layer. 

The above discussion is essentially qualitative and is based on phenomenological 

observation. Replication of the tests is needed in order to obtain quantitative and definite 

conclusions. 

6.6 REMARKS 

It has been shown that inverse analysis is particularly useful for measuring the elastic 

properties simultaneous (Young’s modulus and Poisson’s ratio in current study). The 

computed results are quite accurate. Although the DIC resolution is still two to three 

orders lower than precision laboratory length or strain gages, it uses the whole field data 

to compute the properties, which counterbalance its relatively low resolution.  However, 
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the advantage is apparent. Tensile testing for brittle composite like FRCC is extremely 

difficult and can be costly. The use of DIC and FEM inverse technique allows simple 

bending test setup. No gages are necessary, and a reasonably good camera is sufficient for 

the precision desired. Furthermore, for orthotropic materials, or even inhomogeneous 

materials, the DIC and FEM inverse technique shows even greater advantage over 

traditional methods for the measurement of the multiple elastic properties [122]. 

The power of this hybrid technique is further illustrated through the extraction of the 

nonlinear CZMs from FRCCs. The FRCC is a “difficult” material for DIC in that DIC 

measurement has a low signal-to-noise ratio. However, with proper inverse scheme, it has 

been shown that good results are still possible. Lastly, the computed CZMs are verified 

through the same set of experimental test results. It would be more convincing if different 

experimental tests could be used for the DIC measurements and the computations of 

CZMs. For example, Figure 6.26 shows the two configurations for mode I fracture tests, 

where (a) is SENB specimen, and (b) is double edge-notched tension (DENT) specimen. 

If the CZM is computed from SENB configuration with the DIC-FEM technique, the 

computed CZM can then be used in the FE simulation for the DENT configuration to 

obtain the computed global response for DENT configuration. If the computed global 

response of DENT configuration agrees well with the experimentally measured global 

response, more confidence is achieved for the computed CZM. The reverse procedure can 

be used as well, i.e. DENT configuration can be used for the computation of CZM and 

SENB configuration can be used for the verification. 

 

 

Figure 6.26: Configuration for mode I fracture test, (a) SENB specimen, (b) double edge 

notched tension specimen 

P d
P d
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In Figure 6.7, when tests are paused for taking DIC images, specimen self-unloading 

was observed. This behavior may be due to rate-dependence of the actual cohesive 

behavior. However, as the self-unloading seem to have little effect on the load level, it 

may be justifiable to use the rate-independent assumption for the CZMs of the FRCCs. 

An investigation of rate dependant behavior associated to the CZM can be found in the 

thesis by Zhang [52].
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7 Chapter 7 Conclusions and Future Work 

CHAPTER 7 – CONCLUSIONS AND FUTURE WORK 

CHAPTER 7 - CONCLUSIONS AND FUTURE WORK 

Three major tasks have carried out in this study: (1) fabrication of a novel 

functionally graded fiber-reinforced cementitious composites; (2) development of a 

hybrid DIC-FEM inverse technique for extracting the mode I cohesive fracture 

properties; and (3) application of the hybrid technique to plastics and FRCCs. In addition, 

an exploratory investigation of mixed-mode fracture of FGFRCCs has also been 

conducted. The primary goals are to explore the functionally graded material concept for 

potential application in FRCC, and to develop a state-of-the-art hybrid experimental-

numerical framework for the extraction of the constitutive material properties associated 

with the nonlinear material behavior. In the concluding chapter, some major conclusions 

and contributions are presented, followed by a few suggestions for the future work.  

7.1 CONCLUSIONS 

7.1.1 Fabrication of the FGFRCC 

A novel four-layer FGFRCC has been successfully fabricated. A small laboratory-

scale extruder was fabricated for the manufacturing of the homogeneous FRCCs with 

aligned fibers and low water-to-binder ratio. FRCCs with different fiber volume fractions 

are stacked and pressed to produce an integrated FGFRCC beam with fiber gradation of 

0%, 0.67%, 1.33% and 2% through the beam depth. The FGFRCC with 1% overall fiber 

volume fraction shows higher flexural strength and work of fracture compared to the 

homogeneous FRCC with similar fiber content. The enhancement is anticipated, yet the 

significance is in the successful distribution of fibers. The FGM system avoids the 

potential interface problem commonly seen in binary material systems. No interface 

delamination and cracking has been observed for the FGFRCC during bending tests.  

Microstructure verification of this new FGFRCC needs proper facilities such as the 

SEM used in current study. The SEM images show seamless transition between adjacent 

FRCC layers. In addition, image processing is important in the quantification of the 

microstructure of FGFRCC.  
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The successful fabrication of FGFRCC lies in the proper matching of plasticity 

between layers. This is particularly difficult due to the many material ingredients in the 

FRCC layers, and the significant change of plasticity when fiber content varies. It has 

been shown that incompatible layers result in an FGFRCC with wavy inter-layer 

boundaries and uneven layer thickness. For pressing of extruded FRCCs, it was found 

that extrusion pressure is a good index to find plasticity-matched FRCC layers.  

7.1.2 Adoption of a Full-Field DIC  

A new full-field DIC program, which is available in the area of biological research, 

is adopted for the current study. It assumes a continuous, smooth elastic displacement 

field for the whole region, which is correlated simultaneously. This is in contrast to the 

traditional DIC algorithm, which is subset based with the assumption of a uniform 

Taylor’s approximation of the kinematic field for each sub-region that is correlated 

independently.  

A MATLAB program has been implemented to post-process the output from the full-

field DIC program. An in-house subset DIC was also implemented for the purpose of 

verification of the full-field DIC and benchmark comparison with the full-field algorithm. 

For the latter purpose, an image transformation algorithm was implemented to generate 

an arbitrary displacement field.  

The benchmark is carried out through a heterogeneous displacement field. The 

measurement errors of full-field DIC is about half of those by subset DIC. Near the image 

boundaries, the full-field DIC has much higher accuracy than the subset DIC. A relevant 

conclusion of the study is that the DIC accuracy depends not just on the algorithm, but 

also on the actual deformation investigated. 

7.1.3 Hybrid Inverse Technique 

The DIC-FEM inverse procedure has been implemented in MATLAB based on both 

displacement-based and residual-based formulations. The key contribution in this inverse 

procedure is that no “a priori” assumption is made on the shape of the CZM. Flexible 

splines are used to construct the CZM, and the ordinates of the control points become the 

unknown to be optimized in the inverse problem. The Nelder-Mead (N-M) method is 
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employed for the optimization procedure. The derivative-free feature of the N-M method 

enables the implementation of: (1) the parametric mapping used in the residual-based 

formulation; (2) barrier and regularization functions used in the displacement-based 

formulation. 

In the numerical examples, SENB specimens are used and the synthetic displacement 

fields are obtained from the direct problem. The residual-based procedure demonstrates 

the verification of the solution within the valid parametric space. The displacement-based 

procedure focuses on the evaluation of the error tolerance. The results demonstrate that 

the error tolerance heavily depends on the ratio between the cohesive strength to the bulk 

modulus of elasticity. The higher this ratio, the more tolerant the inverse procedure is for 

the satisfactory estimation of the CZMs.  

7.1.4 Extraction of CZMs of Plastics and FRCCs 

The DIC-FEM inverse procedure is applied to two plastics, an adhesive: Devcon
®

 

Plastic Welder
TM

 II (PW-II) and a high-strength and high-toughness composite: Garolite 

G-10/FR4. The substrate, or bulk, material for the adhesive is PMMA. The displacement-

based approach is used for both the plastics and the FRCCs. 

For the plastics, the DIC measured displacement field can be used directly for 

accurate estimation of the Young’s modulus and Poisson’s ratio. Both plastics show high 

ratios of cohesive strength to bulk modulus of elasticity, which result in the particularly 

consistent measurement between different data sets. The computed CZM of the PW-II 

shows a bilinear softening curve, while for Garolite the computed CZM shows a power-

law softening behavior. 

For the FRCCs, the ratio of cohesive strength to bulk modulus of elasticity is much 

lower than that of the plastics. Direct estimation of the Young’s modulus and Poisson’s 

ratio from the DIC measured displacement field is inaccurate. Instead, an inverse 

procedure is applied using pure bending tests to extract the Young’s modulus and 

Poisson’s ratio of the FRCCs. The results are consistent between FRCCs with different 

fiber content. The Young’s modulus increases slightly with increasing volume fraction of 

PVA fibers, while the Poisson’s ratio remains constant. The computed CZMs for FRCCs 
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all show an initially hardening curve followed by an almost linear softening curve. Four 

parameters can be used to describe the CZMs of FRCC, namely, the critical stress, the 

peak cohesive stress and associated crack opening displacement, and the critical 

separation. All four parameters increase with increasing fiber volume fraction. The 

characteristic CZM curves of FRCCs conform to recent experimental observations.  

The computed CZMs are used in the direct problems. The computed global 

responses are compared with experimental ones, which show very good agreement.  

7.1.5 Contributions 

In a summary, the primary contributions are listed as follows: 

• Successful fabrication of a novel FGFRCC, including development of a novel 

tailored extrusion and pressing system; 

• Utilization of a full-field DIC program in the mechanics of elasticity with 

enhanced accuracy of measurement; 

• Implementation of a universal image transformation algorithm for the 

benchmark test of DIC; 

• Development and implementation of a hybrid DIC-FEM inverse procedure 

using Newton-Raphson solver for the extraction of material elastic properties; 

• Development and implementation of a hybrid DIC-FEM inverse procedure for 

the extraction of the local mode I cohesive properties; 

• Demonstration of the practical effectiveness of the inverse procedure for two 

plastics and FRCCs. 

7.2 FUTURE WORK 

This work offers room for further investigation. A few potential research areas are 

highlighted below. Two suggestions are related to the FGFRCC, while the remaining ones 

are related to the DIC and FEM. 
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7.2.1 New Fabrication Method of FGFRCC 

There is no limit in the processing method of FGFRCC. In fact, exploration of 

effective, efficient and stable techniques is the most important topic in the list of future 

works because only realization of a useful product would make the associated research 

meaningful. Besides the extrusion and pressing techniques, two other relatively simple 

techniques, precast of self-consolidating FRCC and shotcrete, have the potential, as 

described below.  

Self-consolidating concrete, or SCC, has been widely used in construction industry. 

The self-consolidating FRCC has been an active research area. The ease of forming of the 

self-consolidating FRCC will enable the manufacturing of directionally graded FGFRCC 

with arbitrary configuration. The biggest challenge, however, is to obtain the desired 

rheological property of each layer. Thus, this research work is material science oriented.  

Shotcrete has been an effective method to produce medium size cement-based 

components. If the feeding rates of the paste and fibers can be controlled dynamically and 

precisely, an FGFRCC with almost smooth gradation of fibers can be manufactured. The 

practical challenge, however, is that expensive facilities are needed.   

7.2.2 Optimal Design of FGFRCC 

For a fixed fiber volume fraction, the mechanical performance of an FGFRCC 

depends on the profile of the fiber gradation. In addition, different applications may have 

different optimal gradation profile. For example: monotonic gradation of fibers is 

appropriate for an FGFRCC beam that carries only positive moment, while a gradation 

with decreasing fiber content towards the beam neutral axis is more suitable for FGFRCC 

beam that carries both negative and positive moments. Therefore, the design of FGFRCC 

cannot be solely based on experimental trial and error. Appropriate model, either 

analytical or numerical must be adopted to compute the optimal configuration that 

satisfies a certain requirements. For the integrated design of FGFRCC that also involves 

the determination of component dimension, materials usage, material costs, etc., 

numerical optimization technique might be the most versatile tool.  
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7.2.3 Development of DIC for Multiple Cracks 

So far, the DIC techniques used in kinematic field measurement are primarily for the 

continuous field. While the subset DIC can be used to find the crack location 

approximately, it lacks the ability to correlate the subset accurately (that covers part of a 

crack) representing a disruption of the kinematic field. When the crack path is known, as 

is the case in current study, the full-field DIC can still be used on each side of the crack. 

There are many situations where accurate information of multiple cracks needs to be 

extracted. The complete information about the cracks includes the crack path and crack 

opening displacement. At the same time, when there are tractions on the crack surface, 

the deformation field of the base material near the crack may also need to be accurately 

measured. Traditional DIC is incapable of these requirements. A new algorithm of DIC 

may need to be developed with the capability to measure such non-continuous fields 

capturing crack interaction phenomenon. 

One immediate application of the anticipated new DIC algorithm is related to the 

future work mentioned in the next section. For mixed-mode cracking, there may be only 

one crack, but the crack path is not smooth and fully known. The new DIC algorithm 

shall be able to measure accurately the crack tip location, the complete crack path, and 

COD profile for the non-straight crack path.  

7.2.4 Mixed-mode Cracking: cohesive and non-cohesive 

The natural extension of the inverse computation of mode I CZM is the computation 

of mode II CZM, and furthermore, the mixed-mode CZM. The mode I and mode II 

CZMs may be computed separately using two different test configurations. However, 

when the two modes are coupled, the mixed-mode cracking becomes complicated 

because the parameters related to both modes must be simultaneously computed. This 

case becomes very challenging in that, first, it is unclear how in reality the two modes are 

coupled, and secondly, one does not know whether a test that shows mix-mode crack 

contains sufficient information for the inverse computation. In such case, the more 

advanced potential-based CZMs, which is mentioned in section 7.2.6, may be used as the 

basis for the inverse problem.  
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7.2.5 Improvement of Efficiency of the Inverse Procedure 

The current optimization solver is the Nelder-Mead method. Although it is robust for 

practical usage, it is not an efficient solver. A good candidate is the Levenberg–Marquardt 

algorithm, which is a nonlinear optimization method that has reasonably good 

combination of robustness and efficiency. The challenge in employing this algorithm is to 

implement the constraints and to derive the gradient of the objective function. Another 

improvement can be achieved by using higher-order elements in the FE model, e.g. T6 

and Q8/Q9 elements. Thus the total number of degrees of freedom of the system can be 

reduced significantly and computation cost can be reduced. 

7.2.6 Potential-Based CZM 

In the potential-based CZM, the constitutive parameters are derived from a unified 

potential [126]. With only a few parameters, such potential function provides full 

description of the coupled properties of the mode I and mode II CZMs. This is the 

primary advantage of employing the potential-based CZMs in the inverse procedure. The 

challenges of using the potential-based CZM in the inverse analysis are: (1) the 

sensitivity analysis of the fracture to the model parameters; (2) the design of feasible test 

configurations of both specimen geometry and loading condition. The use of a potential 

theory based CZM, in conjunction with a hybrid inverse technique (see Chapter 4 and 5), 

offers a solid basis for further development and integration of the underlying 

experimental theoretical, and computational approaches.
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Appendix A - Bicubic Interpolation 

APPENDIX A - BICUBIC INTERPOLATION 

APPENDIX A - BICUBIC INTERPOLATION 

The bicubic interpolation of a unit cell (Figure A.1) 
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consists of determining its 16 coefficients, mnα .  

 

 

Figure A.1: Unit cell to be interpolated by a bicubic function, ( ),f h t  
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at the four cell nodes provides a system of 16 equations 
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The sixteen coefficients can now be easily solved. 

From equation (A.4), one notes that the bicubic coefficients depends on the value of 

( ),f h t  and its first and cross-derivatives at the cell nodes. For a discrete image intensity 

data, the derivatives at each grid point have to be computed numerically, and their 

approximation depends on whether the grid point are on the boundary, adjacent to the 

boundary, or inside the image. Suppose the image size is N M× , any pixel location 

( ),i j  satisfies: 
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The derivatives can be computed, for xf , 
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for yf , 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1, 2, 1,

, , 1,

2, 3, 1, 2

1, , 1, 2

, 2, 8 1, 8 1, 2, 12  ,

y

y

y

y

y

f i f i f i

f N i f N i f N i

f i f i f i

f N i f N i f N i

f j i f j i f j i f j i f j i

= −

= − −

= −

− = − −

= − − − + + + +

 (A.6) 

and for xyf , 
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where coefficient matrix 
,r s

c    is 
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APPENDIX B - COMPUTATION OF CUBIC B-SPLINE INTERPOLATION 

APPENDIX B - COMPUTATION OF CUBIC B-SPLINE INTERPOLATION 

Define the B-spline sequence of knots as 
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Now the spline can be constructed 
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where id  is the de Boor point and ,4iB  is the 4th order B-spline associated with knots  
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non-uniformly spaced τ  is  
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where τ  is the same as n∆ . 

To solve for id
 
in Equation (B.2), 4l +  number of equations are needed.  With 

( )ni iσ σ∆ = , there are 2l +  number of equations. Applying a natural boundary condition 

for ( )σ τ  
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( ) ( )

n n nc

2 2

n n

2 2

n n0

0
σ σ

∆ = ∆ =∆

∂ ∆ ∂ ∆
= =

∂∆ ∂∆
 (B.4) 

adds two more equations so that id  can be solved to obtain the explicit expression of 

CZM in B-spline form.  
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Appendix C - Nomenclature 

APPENDIX C - NOMENCLATURE 

APPENDIX C – NOMENCLATURE 

, , , ,,x i j y i jc c  Coefficients of a bicubic B-spline surface 

C  Correlation coefficient 

imgC  Objective function for full-field DIC 

maxd  Displacement corresponding to maxf  

E Young’s modulus 

fcf  First cracking stress 

maxf  Maximum flexural stress 

E  Green Strain tensor 

ext extˆ,F F  Global external force 

fG  Fracture energy 

imgG  Regularization term for full-field DIC 

,h t  Local ordinates within a bilinear computational cell 

H  Height of an image in pixel 

Η  Hooke’s tensor 

rI  Intensity of the reference image 

dI  Intensity of the source (i.e., deformed) image 

ck  Defined as nσ ∆  

b

e
K  Bulk element stiffness matrix 

c

e
K  Element cohesive stiffness matrix 

bK  Global stiffness matrix of the bulk material 

cK  Global cohesive stiffness matrix 

l  Size of Q4 element along crack surface 

( )i
L  ith order linear differential operator 

M  Number of unknown parameters of the CZM 

sN  Shape function in natural coordinate system 

N   Shape function in isoparametric coordinate system 

s Local natural coordinate along a Q4 

0 0,u v  Components of rigid body translation 

, , ,x y x yu u v v  First-order displacement gradients 
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, , , , ,xx xy yy xx xy yyu u u v v v  Second-order displacement gradients 

r  Element nodal force 

R  Residual of the FE system of equations 

pR  Single pixel point in subset domain PΩ  

extT  Surface traction 

cohT  Cohesive traction 

e
u  Element nodal displacement 

u  Displacement field, also global displacement vector 

u  Known displacement field from direct problem or from 

experimental measurement 
*

u  Computed displacement field during inverse procedure 

xu   Element nodal displacement vector in x direction 

1 2
,w wβ β  Weighting factors for the barrier functions 

cw  Weighting factor for 
imgC  

gw  Weighting factor for 
imgG  

uw  Vector of weighting factors for displacement-based 

formulation 

Rw  Vector of weighting factors for residual-based formulation 

W  Width of an image in pixel 

( ),x y  Coordinates of point before deformation 

( ),x yɶ ɶ  Coordinates of point after deformation 

( )0 0,x y  Nodal coordinates 

,X Y  Mapped CZM parameters 

mnα  Fitting coefficients for bilinear or bicubic interpolation 

1 2,β β  Barrier functions 

( )3 xβ  Fourth-order B-spline basis function 

γ  Power-law softening index, also Tikhonov parameter 

extΓ  Specimen boundary 

cohΓ  Cohesive surface 

n∆  Crack opening displacement 

nc∆   Critical crack opening displacement 

n∆  Coordinates of the control points 
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ε  Error defined for optimization 

Tε  Convergence measure 

bθ , bN  Parameters that define the barrier functions 

θ  Hooke’s parameters 

λ  Lame’s first parameter 

λ  CZM parameters 

µ  Lame’s second parameter 

µ  Number of internal control points 

ν  Poisson’s ratio 

iξ  Normalized horizontal distance measure between control 

points 

σ  Cohesive stress/traction 

cσ   Critical cohesive stress 

σ  Cauchy stress tensor 

( )Φ λ  Objective function 

χ  Differences of the intensity between reference and deformed 

images 

ψ  Regularization terms 

Ψ  Objective function for full-field DIC including regularization 

term 

PΩ  Subset domain 

imgΩ  Domain of the region of interest 

Ω  Specimen domain 
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