System Reliability-Based Design and Multiresolution Topology Optimization

Tam H. Nguyen

07/16/2010

Advisors: Glaucio H. Paulino & Junho Song

Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign

- Introduction
- Multiresolution Topology Optimization (MTOP)
- Improving Multiresolution Topology Optimization (iMTOP)
- System Reliability-based Design Optimization (SRBDO)
- System Reliability-based Topology Optimization (SRBTO)
- Summary and Conclusions

Classical structural design optimization: the optimal sizes or shapes for a given layout and connectivity

Topology optimization: the best topology, shape, size under a given domain and boundary conditions

In	tro.						SRBDO		SRBTO			sions	
ТОР	RBDO	MTOP	improving	Examples		MSR	SRBDO//M	Existing		Examples	Summary	Future	

3

Topology Optimization Applications

In	tro.				iMT			SRBDO		SRBTO	Conclu	sions	
TOP	RBDO	Reviews	Examples	improving		Adaptive	Examples	SRBDO//M	Examples		Summary	Future	

4

Large-scale Topology Optimization

Question 1: How to obtain high resolution with affordable computational cost?

5	In	tro.					SRBDO		SRBTO	Conclu	sions	
Ŭ	ТОР											

Reliability-Based Design Optimization

2	
Ο	

Intro

								SRBDO		SRBTO			sions	
BDO	Reviews	MTOP	Examples	improving	Examples	Adaptive	MSR	SRBDO//M	Examples	Improved	Examples	Summary	Future	

System Reliability-Based Design Optimization

$$\min_{\mathbf{d}, \mathbf{\mu}_{\mathbf{X}}} f(\mathbf{d}, \mathbf{\mu}_{\mathbf{X}})$$
s.t.
$$P \ g_{i}(\mathbf{d}, \mathbf{X}) \leq 0 \leq P_{i}^{t} \quad i=1,...,n$$

$$\mathbf{d}^{L} \leq \mathbf{d} \leq \mathbf{d}^{U}, \qquad \mathbf{\mu}_{\mathbf{X}}^{L} \leq \mathbf{\mu}_{\mathbf{X}} \leq \mathbf{\mu}_{\mathbf{X}}^{U}$$

System RBDO

Question 2: How to handle system probability in RBDO?

7	Int	tro.					SRBDO		SRBTO	Conclu	sions	
•	ТОР	RBDO										

- 1. To obtain high resolution with affordable computational cost in topology optimization.
- 2. To handle system probability in Reliability-Based Design Optimization (RBDO).
- 3. To apply RBDO framework in topology optimization (RBTO).

8	In	tro.							SRBDO		SRBTO		sions
0	TOP	RBDO	MTOP	Examples	Examples	Adaptive	Examples	MSR		Examples	Improved	Summary	Future

Multiresolution Topology Optimization

9	Int		МТОР		iMT	OP		SRBDO			SRBTO		Conclu	sions	
5	ТОР			improving	Examples		MSR	SRBDO//M	Examples	Existing		Examples	Summary	Future	

Topology Optimization Procedure

Problem formulation

- $\min_{\rho} \quad C(\rho, \mathbf{u}_d) = \mathbf{f}^{\mathrm{T}} \mathbf{u}_d$ s.t.: $\mathbf{K}(\rho) \mathbf{u}_d = \mathbf{f}$ $V(\rho) = \int_{\Omega} \rho(\mathbf{\psi}) dV \leq V_s$ $0 < \rho_{\min} \leq \rho(\mathbf{\psi}) \leq 1$
- Solid and Isotropic Material with Penalization (SIMP)
 - $E(\mathbf{\psi}) = \rho(\mathbf{\psi})^p E^0$

Optimizers

Optimality Criteria (OC)

MTOP

 Method of Moving Asymptotes (MMA)

High Resolution Topology Optimization

- Large-scale (high resolution) TOP
 - Large number of finite elements
 - Computationally expensive

Existing high resolution TOP

- Parallel computing (Borrvall and Petersson, 2000)
- Fast solvers (Wang et al. 2007)
- Approximate reanalysis (Amir et al. 2009)
- Adaptive mesh refinement (de Stuler et al. 2008)

11	In	tro.		МТОР				SRBDO		SRBTO	Conclu	sions	
••			Reviews										

TOP (1): Parallel Computing

Parallel computing:

Borrvall and Petersson, (2000), IJNME

A cross-shaped section (320,000 B8/U)

A stool (884,736 B8/U)

12	tro.	МТОР				SRBDO		SRBTO	Conclu	sions	G
-	RBDO										

TOP (2): Fast Solvers

Fast iterative solvers

Wang, de Stuler, and Paulino, (2007), IJNME

- Use precondition Krylov subspace methods with recycling
- Reduce computational time for FEA

Configuration

Coarse mesh: 32x12x12

Fine mesh: 180x60x60

Solution on a PC with approx. 1 million unknowns

13			МТОР				SRBDO		SRBTO	Conclu	sions	1
		Reviews										

TOP (3): Approximate Reanalysis

TOP (4): Adaptive Mesh Refinement

AMR TOP

de Stuler, Wang, and Paulino, (2008), IASS-IACM

- Refine the solid and surface regions
- Reduce the total number of FEs
- Obtain resolution as fine uniform mesh (efficiency factor 3)

5	tro.		МТОР		iMT		SRBDO		SRBTO	Conclu	sions	1
U		Reviews										

Remarks on High Resolution TOP

Large-scale TOP

- > Fine mesh: \rightarrow Large number of finite elements
- FEA cost increases

Existing approaches:

- Powerful computing resources: many processors
- Reduce cost associated with FEA:
 - Fast solvers
 - Approximate reanalysis
 - Adaptive mesh refinement

Same discretization for analysis and design

16	tro.		МТОР				SRBDO		SRBTO	Conclu	sions	
		Reviews									Future	

Proposed Multiresolution TOP (MTOP)

Conventional element-based approach (Q4/U)

Same discretization for displacement and density

Proposed MTOP approach (Q4/n25)

17

Different discretizations for displacement and density/design variables

\mathbf{O} $\mathbf{K}_{e} \simeq \sum_{i=1}^{n} \mathbf{B}^{T} \mathbf{D} \mathbf{B} \Big|_{i} A_{i}$ Q4/n25

MTOP: Integration of Stiffness Matrix

SIMP model

Sensitivity

$$\mathbf{K}_{e} \simeq \sum_{i=1}^{N_{n}} (\boldsymbol{\rho}_{i})^{p} \begin{bmatrix} \mathbf{B}_{e}^{\mathrm{T}} \Big|_{i} \mathbf{D}_{0} \mathbf{B}_{e} \Big|_{i} A_{i} \end{bmatrix} = \sum_{i=1}^{N_{n}} (\boldsymbol{\rho}_{i})^{p} \mathbf{I}_{i}$$

B8/n125

Stiffness matrix

$$\mathbf{K}_{e} = \int_{\Omega_{e}} \mathbf{B}^{T} \mathbf{D} \mathbf{B} d\Omega$$

MTOP

Existing	Improved	Summary

Compute density from design variables

> Minimum length-scale (Guest et al. 2004, Almeida et al. 2009)

$$\frac{\partial \rho_i}{\partial d_n} = \frac{w(r_{ni})}{\sum_{m \in S_i} w(r_{mi})}$$

19			ΜΤΟΡ						SRBDO		SRBTO		Conclu	isions	1
15		Reviews	MTOP	Examples	improving	Examples	Examples	MSR		Examples	Improved	Examples	Summary	Future	

MTOP Examples: 2D Cantilever Beam

Objective: minimum compliance

Constraint: volfrac = 0.5

Nguyen, Paulino, Song, and Le, (2010), JSMO

Length scale: $r_{min} = 1.2$

20	tro.		MTOP					SRBDO			SRBTO	Conclu	sions	
20	RBDO	Reviews	MTOP	Examples	Examples	Examples	MSR		Examples	Existing	Improved		Future	

MTOP Examples: 2D Michell Truss

21		ΜΤΟΡ				SRBDO		SRBTO	Conclu	sions	
21			Examples								

MTOP: 3D Cross-shaped Section

22	In	tro.	ΜΤΟΡ					SRBDO		SRBTO		Conclu	sions	
	ТОР	RBDO		Examples		Adaptive			Examples		Examples	Summary	Future	

MTOP: 3D Bridge Design

(http://www.sellwoodbridge.org)

22		tro.	МТОР					SRBDO		SRBTO		Conclu	sions	
-0	ТОР			Examples	improving		Examples		Examples		Examples		Future	

Can MTOP's efficiency be improved?

- Density/design variable: same fine mesh
- FE mesh: coarse
- > Reduce cost $\mathbf{K}(\rho)\mathbf{u}_d = \mathbf{f}$

Improving MTOP efficiency?

Different discretizations for density & design variable?

4				іМТ	ΌΡ		SRBDO		SRBTO	Conclu	sions	Ĩ
-												

Improving Multiresolution Topology Optimization (iMTOP)

MTOP approach (Q4/n25) or (Q4/n25/d25)

Proposed iMTOP approach (Q4/n25/d9) and (Q4/n25/d16)

■ Displacement

```
O Density
```

Design variable

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Q4/n25/d9

Q4/n25/d16

5		tro.			іМТ	ОР		SRBDO		SRBTO		Conclu	sions	Ĩ
	TOP	RBDO	MTOP	improving	Examples	Adaptive	Examples		Examples		Examples			

Improving Multiresolution Topology Optimization (iMTOP)

96	tro.				iMT	ОР		SRBDO		SRBTO		Conclu	sions	Ĩ
.0		Reviews	Examples	improving	Examples	Adaptive					Examples	Summary	Future	

iMTOP: Projection (Q4/n25/d9)

Compute density from design variables

> Minimum length-scale (Guest et al. 2004, Almeida et al. 2009)

In				iMT	ΌΡ			SRBDO		SRBTO	Conclu	isions	Ĩ
ТОР		Examples	improving	Examples	Adaptive	Examples	MSR	SRBDO//M				Future	

iMTOP: MBB Beam

300x100 Q4/U

60x20 Q4/n25/d25

60x20 Q4/n25/d9

60x20 Q4/U

60x20 Q4/n25/d16

60x20 Q4/n25/d4

convergence

R	tro.			iMT	ОР		SRBDO		SRBTO	Conclu	sions	
				Examples								

iMTOP: A Cube with Concentrated Load

a		tro.				iMT	OP			SRBDO		SRBTO		Conclu	sions	
3	TOP	RBDO	MTOP	Examples	improving	Examples		Examples	MSR		Existing	Improved	Examples	Summary		

- Why Adaptive MTOP?
 - Further improve the efficiency
 - Reduce the number of density elements and design variables during optimization process?
- Adaptive MTOP (e.g. Q4/U & Q4/n25/d4)
 - Q4/n25/d4 requires more computational cost than Q4/U
 - Q4/n25/d4 provides higher resolution
 - Use Q4/n25/d4 where and when needed only, otherwise Q4/U
 - Unchanged the Finite Element Mesh during optimization process

30	tro.			iMT	ΌΡ		SRBDO		SRBTO		Conclu	sions	Ĩ
50	RBDO	MTOP	improving		Adaptive	Examples	SRBDO//M		Improved	Examples		Future	

Adaptive MTOP Procedure

31

rv Future

Optimal topologies by iMTOP and adaptive MTOP

Q4/n25/d4 & Q4/U

Adaptive MTOP optimization process

2				iMT	ΌΡ		SRBDO		SRBTO	Conclu	sions	G
					Adaptive							

Adaptive MTOP: 3D Cantilever Beam

(FE mesh : 24x12x12 unchanged)

System Reliability-Based Design/Topology Optimization

	tro.					SRBDO		SRBTO	Conclu	sions	T
-											

RBDO Formulation

System RBDO

$$\min_{\mathbf{d},\mathbf{\mu}_{\mathbf{X}}} f(\mathbf{d},\mathbf{\mu}_{\mathbf{X}})$$

$$s.t. \quad P(E_{sys}) = P\left[\bigcup_{k} \bigcap_{i \in C_{k}} g_{i}(\mathbf{d},\mathbf{X}) \leq 0\right] \leq P_{sys}^{t}$$

$$\mathbf{d}^{L} \leq \mathbf{d} \leq \mathbf{d}^{U}, \quad \mathbf{\mu}_{\mathbf{X}}^{L} \leq \mathbf{\mu}_{\mathbf{X}} \leq \mathbf{\mu}_{\mathbf{X}}^{U}$$

25		tro.							SRBDO		SRBTO		Conclu	sions	Ĩ
	TOP		Reviews	Examples	improving		Examples	MSR	SRBDO//M	Existing		Examples	Summary	Future	

Matrix-based System Reliability (MSR) Method

- Convenient: matrix-based procedures for c and p; easy SRA calculation (inner product)
- General: uniform application to series, parallel, and any general systems
- Flexible: inequality-type information; incomplete information ("LP bounds" method)
- Efficient: no need to re-compute "p"; replace "c" for SRA of a new event
- Common Source Effect: can account for statistical dependence between components
- Decision Support: parameter sensitivities, component importance measure; inferences

36							SRBDO		SRBTO		Conclu	sions	
00		MTOP	Examples	Examples	Examples	MSR		Examples		Examples	Summary	Future	

Proposed approach: SRBDO using MSR

Adopt a single-loop RBDO (Liang et al. 2007)

Reliability eval.

nth constraint

Reliability eval.

1st constraint

Use MSR method to compute P_{sys} and its gradients

				~			
$\min_{\mathbf{d},\mathbf{\mu}_{\mathbf{X}},P_{1}^{t},\ldots}$	f($(\mathbf{d}, \mathbf{\mu}_{\mathbf{X}})$					
<i>s.t</i> .	$g_i(\mathbf{d}, \mathbf{z})$	$\mathbf{X}(\mathbf{U}_i^t)) \ge 0 i=1,$,n			Single-loop	РМА
	P =	$\int_{\mathbf{s}} \mathbf{c}^{\mathrm{T}} \mathbf{p}(\mathbf{s}) f_{\mathbf{s}}(\mathbf{s}) d\mathbf{s}$	$\leq P_{sys}^t$	depende	nt		
	- sys	$\mathbf{c}^{\mathrm{T}}\mathbf{p} \leq P_{sys}^{t}$		indepder	ndent	MSR me	ethod
MTO	P			SRBDO		SRBTO	
Reviews MTOP				MSR SRBDO//M			

Proposed approach: SRBDO using MSR (contd.)

Sensitivity w.r.t. design variables $\theta = \{d, \mu_x\}$

$$\frac{\partial P_{\text{sys}}}{\partial \theta} = \int_{\mathbf{s}} \mathbf{c}^{\mathrm{T}} \frac{\partial \mathbf{p}(\mathbf{s})}{\partial \theta} f_{\mathbf{s}}(\mathbf{s}) d\mathbf{s}$$
$$\frac{\partial \mathbf{p}(\mathbf{s})}{\partial \theta} = \left[\mathbf{p}(\mathbf{s})^{\langle 1 \rangle} \mathbf{p}(\mathbf{s})^{\langle 2 \rangle} \dots \mathbf{p}(\mathbf{s})^{\langle n \rangle} \right] \frac{\partial \mathbf{P}(\mathbf{s})}{\partial \theta} = \hat{\mathbf{P}}(\mathbf{s}) \frac{\partial \mathbf{P}(\mathbf{s})}{\partial \theta}$$
$$\mathbf{P}(\mathbf{s}) = \left[P_{1}(\mathbf{s}) P_{2}(\mathbf{s}) \dots P_{n}(\mathbf{s}) \right]^{\mathrm{T}}$$

 \rightarrow Use probabilities and sensitivities by component reliability analysis (FORM)

Sensitivity w.r.t. component failure probability P^t_i

$$\frac{\partial P_i(\mathbf{s})}{\partial P_i} = \frac{\partial P_i(\mathbf{s})}{\partial \beta_i} \cdot \frac{\partial \beta_i}{\partial P_i} = -\frac{\partial P_i(\mathbf{s})}{\partial \beta_i} \cdot \frac{1}{\varphi(-\beta_i)}$$

38	Int	tro.						SRBDO		SRBTO		Conclu	sions	9
00	TOP	RBDO	MTOP	improving	Examples		MSR		Examples	Improved	Examples		Future	

SRBDO of Truss System

$$\min_{\mathbf{d}=\{A_{1},...,A_{6}\}} f(\mathbf{d}) = \sqrt{2}(A_{1} + A_{2}) + A_{3} + A_{4} + A_{5} + A_{6}$$
s.t. $P_{sys} = P\left[\bigcup_{k=1}^{15} \bigcap_{i \in C_{k}} g_{i}(\mathbf{d}, \mathbf{X}) \le 0\right] \le P_{sys}^{t} = 0.001$
 $g_{i}(\mathbf{d}, \mathbf{X}) = A_{i}F_{i} - 0.707F_{A} \quad i = 1, 2$
 $A_{i}F_{i} - 0.500F_{A} \quad i = 3, ..., 6$
 $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6} \ge 0$

Minimize total weight of the system

Definition of system failure: at least two members fail (cut-set systems): effects of load redistributions NOT considered

Random Variables (Gaussian distribution)	Mean	Std Dev
Member strength F_i , $i=1,6$ (Mpa)	745	62
Applied load F_A (kN)	4450	45

20						SRBDO		SRBTO		Conclu	isions	
55	RBDO			Examples	Examples		Examples	Improved	Examples	Summary	Future	

SRBDO of Truss System (contd.)

	Area: A _i (>	×10^{−3} mm²)	Reliabilit	ry Index: β _i	
Members	McDonald & Mahadevan	SRBDO/MSR	McDonald & Mahadevan	SRBDO/MSR	-
1	18.43	17.89	2.89	2.67	6
2	18.27	17.89	2.83	2.67	
3	13.51	13.20	3.16	2.99	3 5
4	13.44	13.20	3.12	2.99	4
5	13.33	13.20	3.06	2.99	Δ
6	13.09	13.20	2.92	2.99	
$f(\mathbf{x})$	105.24	> 103.36			_

- Better optimal design (i.e. less total weight) and symmetric results
- Monte Carlo simulations (c.o.v. = 0.03, 10⁶ times) on the system failure probability: P_{sys} = 0.00107 (cf. MSR gives 0.001)

40	tro.					SRBDO		SRBTO		sions	
τv							Examples				<u> </u>

SRBDO of Truss System (contd.)

Conditional probability Importance Measure (CIM)

$$\operatorname{CIM}_{i} = P(E_{i}|E_{sys}) = \frac{P(E_{i}E_{sys})}{P(E_{sys})} = \frac{\mathbf{c'}^{\mathrm{T}}\mathbf{p}}{\mathbf{c'}^{\mathrm{T}}\mathbf{p}}$$

Relative contribution of components to the system failure probability (can be computed efficiently by MSR method)

1 1	In							SRBDO			SRBTO		Conclu	sions	Ĩ
		RBDO	Reviews		improving	Examples	Examples		Examples	Existing		Examples	Summary	Future	

SRBDO of Truss System (contd.)

Effects of load re-distributions (sequential failures)

Effects of correlation between random variables and between components

42	Int	ro.						SRBDO		SRBTO		Conclu	sions	1
74	TOP	RBDO	MTOP	Examples	improving		MSR	SRBDO//M	Examples		Examples	Summary	Future	

Existing SRBTO Approaches

Discrete structures

- Mogami et al. (2006)
- Truss examples

Ground structure

Optimal structure

Mogami et al. (2006), JSMO

Continuum structures

- Silvia et al. (2010)
- Limit-states: statistically independent

$$P(E_{sys}) = P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(E_{i}E_{j}) + \dots + (-1)^{n-1} P(E_{1}E_{2}\cdots E_{n})$$

 $P(E_1E_2E_3) = P(E_1)P(E_2)P(E_3)$

) DTO SRBTO Silvia *et al.* (2010), JSMO

Objective: SRBTO for continuum structures with dependent limit-states?

43	tro.						SRBDO			SRBTO	Conclu	sions	1
τv	RBDO		improving	Examples	Adaptive	Examples	SRBDO//M	Examples	Existing		Summary	Future	

Proposed Approach: SORM-based RBTO

Enhance the accuracy in RBTO

- ➢ First-Order Reliability Method (FORM) → inaccurate for nonlinear limit-states
- Propose to use Second-Order Reliability Method (SORM) to improve the accuracy

SRBTO of a Stool

- **Objective: minimize volume** *V*(ρ)
- Limit-states: $g_i(\mathbf{\rho}, \overline{\mathbf{F}}_i) = 120 C_i(\mathbf{\rho}, \overline{\mathbf{F}}_i), i = 1, 2$
- Random loads: : F ~ (F₁, F₂, F₃) ~
 N(100,10), N(0,30), N(0,40)

Load cases: $\overline{\mathbf{F}}_1 = (F_1, F_2), \quad \overline{\mathbf{F}}_2 = (F_1, F_3)$

- **Constraints**
 - Deterministic TO (DTO):
 - Component RBTO (CRBTO):
 - System RBTO (SRBTO):

 $g_i(\mathbf{\rho}, \mathbf{f}) > 0, \quad i = 1, 2$ $P(g_i(\mathbf{\rho}, \overline{\mathbf{F}}_i) \le 0) \le P_i^t, \quad i = 1, 2$ $P(\bigcup \cap g_i(\mathbf{\rho}, \overline{\mathbf{F}}_i) \le 0) \le P_{sys}^t$

5				iMT		SRBDO		SRBTO		Conclu	sions	
									Examples			

Optimal Topologies

46						SRBDO		SRBTO		Conclu	isions	
τv									Examples			

Improve Accuracy by Second-Order Reliability Method

SRBTO of a Building Core

- **Objective:** minimize volume V(ρ)
- **Limit-states:** $g_i(\mathbf{\rho}, \overline{\mathbf{F}}_i) = C_i^0 C_i(\mathbf{\rho}, \overline{\mathbf{F}}_i)$
- **Random loads:** $F \sim (P_1, P_2, P_3, q_1, q_2, q_3)$
- Load cases: $\overline{\mathbf{F}}_i = (P_i, q_i)$

Load	F)	q (at	top)	C^{t}
Cases	mean	C.O.V	mean	C.O.V	\mathbf{C}_{i}
Case 1	70.71	0.30	2.82	0.15	250
Case 2	50.00	0.15	2.00	0.30	125
Case 3	50.00	0.20	2.00	0.15	125

18	tro.							SRBDO		SRBTO		Conclu	sions	G
10		Reviews	MTOP	improving	Examples	Examples	MSR			Improved	Examples		Future	

Optimal Topologies of the Building Core

19								SRBDO		SRBTO		Conclu	sions	Ĩ
TJ		Reviews		improving	Examples	Examples	MSR	SRBDO//M	Examples		Examples	Summary	Future	

Building Core with Pattern Repetition

50							SRBDO		SRBTO		Conclu	sions	
50	TOP			improving	Examples	Examples		Examples	Improved	Examples	Summary	Future	

Summary & Conclusions

MTOP & iMTOP:

- Use three distinct displacement, density, and design variable fields
- > Improve efficiency, apply to large-scale problems
- Adaptive MTOP:
 - Use MTOP and iMTOP elements where and when needed
 - Reduce the number of density elements and design variables

SRBDO/MSR:

- Apply to general system including link-set, cut-set
- Address dependence between limit-states, provide sensitivity

SRBTO

- Propose accurate single-loop SORM-based CRBTO & SRBTO approaches
- Include pattern repetition constraints

In								SRBDO		SRBTO	Conclu	sions	Ĩ
	Reviews		improving	Examples	Adaptive	Examples	MSR	SRBDO//M	Examples		Summary	Future	

- Optimal locations of design variables in MTOP
- MTOP approach in nonlinear and stress-based problems
- MTOP using Krylov subspace methods and recycling
- SRBDO with multi-scale MSR approach

SRBDO with mixed continuous-discrete random variables

52							SRBDO			SRBTO		Conclu	sions	
52	RBDO		improving		Examples	MSR		Examples	Existing		Examples		Future	

Contributions

- Nguyen, T. H., Paulino, G. H., Song, J., Le, C. H., (2010). "A computational paradigm for multiresolution topology optimization (MTOP)." *Structural and Multidisciplinary Optimization* 41(4): 525-539.
- Nguyen, T. H., Song, J., Paulino, G. H., (2010). "Single-loop system reliability-based design optimization using matrix-based system reliability method: theory and applications." *Journal* of Mechanical Design 132(1): 011005.
- Sutradhar, A., Paulino, G. H., Miller, M. J., Nguyen, T. H., (2010). "Topological optimization for designing patient-specific large craniofacial segmental bone replacements." *Proceedings* of the National Academy of Sciences 107(30) 13222-13227.
- Nguyen, T. H., Paulino, G. H., Song, J., Le, C. H., "Improving multiresolution topology optimization via multiple discretizations." *International Journal for Numerical Methods in Engineering* (submitted).
- Nguyen, T. H., Song, J., Paulino, G. H., "Single-loop system reliability-based topology optimization considering statistical dependence between limit states." *Structural and Multidisciplinary Optimization* (submitted).

Intro.					іМТОР				SRBDO			SRBTO			Conclusions		1
		Reviews	MTOP	Examples	improving			Examples	MSR	SRBDO//M	Examples	Existing	Improved	Examples	Summary	Future	

Advisors:

Glaucio H. Paulino & Junho Song

Committee:

Glaucio H. Paulino, Junho Song, Jerome F. Hajjar, C. Armando Duarte, Ravi C. Penmetsa, William F. Baker, Alessandro Beghini, Alok Sutradhar

Financial Support:

- Vietnam Education Foundation
- National Science Foundation
- Computational Mechanics Group, Structural System Reliability Group and colleagues at UIUC
- Special thanks to my family

Thank you for your attention !

