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ABSTRACT 

Structural optimization methods have been developed and applied to a variety of 

engineering practices. This study aims to overcome technical challenges in applying 

design and topology optimization techniques to large-scale structural systems with 

uncertainties. The specific goals of this dissertation are: (1) to develop an efficient 

scheme for topology optimization; (2) to introduce an efficient and accurate system 

reliability-based design optimization (SRBDO) procedure; and (3) to investigate the 

reliability-based topology optimization (RBTO) problem. First, it is noted that the 

material distribution method often requires a large number of design variables, especially 

in three-dimensional applications, which makes topology optimization computationally 

expensive. A multiresolution topology optimization (MTOP) scheme is thus developed to 

obtain high-resolution optimal topologies with relatively low computational cost by 

introducing distinct resolution levels to displacement, density and design variable fields: 

the finite element analysis is performed on a relatively coarse mesh; the optimization is 

performed on a moderately fine mesh for design variables; and the density is defined on a 

relatively fine mesh for material distribution. Second, it is challenging to deal with 

system events in reliability-based design optimization (RBDO) due to the complexity of 

system reliability analysis. A new single-loop system RBDO approach is developed by 

using the matrix-based system reliability (MSR) method. The SRBDO/MSR approach 

utilizes matrix calculations to evaluate the system failure probability and its parameter 

sensitivities accurately and efficiently. The approach is applicable to general system 

events consisting of statistically dependent component events. Third, existing RBDO 

approaches employing first-order reliability method (FORM) can induce significant error 

for highly nonlinear problems. To enhance the accuracy of component and system RBDO 

approaches, algorithms based on the second-order reliability method (SORM), termed as 

SORM-based RBDO, are proposed. These technical advances enable us to perform 

RBTO of large-scale structures efficiently. The proposed algorithms and approaches are 

tested and demonstrated by various numerical examples. The efficient and accurate 

approaches developed for design and topology optimization can be applied to large-scale 

problems in engineering design practices.     
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1 Chapter 1 Introduction 

CHAPTER 1 – INTRODUCTION 

 

CHAPTER 1 – INTRODUCTION  

 

Structural design optimization is often performed in a deterministic manner, despite the 

existence of various uncertainties such as loads and material properties. The response of optimal 

designs can be fairly sensitive to these uncertainties, which may lead to failures of structures. 

Reliability-based design optimization (RBDO) approach has been developed to account for the 

uncertainties in the design process through stochastic simulation and probability analysis that are 

integrated with design iterations. The goal of the RBDO approach is to design the structures with 

safety criteria governed by extreme events; therefore, the obtained designs are better than the 

designs by conventional deterministic design optimization. The safety criteria can be defined as 

component or system events. While a significant amount of work has been done on RBDO with 

component events, little attention has been paid to RBDO with system events because of 

challenges in system reliability analyses.  

This thesis investigates system reliability-based optimization and high-resolution topology 

optimization problems. These problems have not been well addressed in the literature yet despite 

their importance in practice of optimal design. In order to apply reliability-based design and 

topology optimization approaches to real engineering practices, the algorithms need to be 

improved in both accuracy and efficiency. This chapter first provides brief background 

information on topology optimization and reliability-based design optimization along with the 

limitations of existing approaches. Next, the objectives of the research and thesis organization 

are presented.     

1.1 TOPOLOGY OPTIMIZATION  

Topology optimization is a relatively new structural optimization approach that seeks for the 

optimal distribution of material in a specific domain under given design constraints. Different 



 

2 

from classical structural optimization methods, topology optimization finds the “layout” of 

structures that includes the information of optimal topology, shape and size of the structure 

(Bendsøe and Sigmund, 2003). Figure 1.1 illustrates the concepts of classical size and shape 

optimization in comparison to that of topology optimization approach. In a size optimization 

problem, the optimal thickness or section areas (sizes) of members are determined (Figure 1.1a). 

In a shape optimization problem, the optimal shapes of the pre-determined domains are 

determined (Figure 1.1b). By contrast, in a topology optimization problem (Figure 1.1c) of solid 

structures, the physical size, shape and connectivity are all to be determined optimally. These 

parameters are often expressed through the pixels/voxels of material in the domain. Therefore, a 

large number of material points in the domain are often employed to achieve well-defined 

optimal topology.  

 

Figure 1.1: Structural optimization: (a) size optimization; (b) shape optimization; and (c) 

topology optimization (Bendsøe and Sigmund, 2003). 

 

It is desirable to identify optimal distribution of solid or void regions in the given domain 

through topology optimization. However, it is often computationally intractable to solve such an 

integer optimization problem. Therefore, the material density is usually relaxed to have 

intermediate density between zero and full density of the material such that the objective 

function and the constraints become continuous and differentiable. There have been several 

approaches for solving topology optimization problems. In the earlier works, the homogenization 

method (Bendsøe and Kikuchi, 1988) used microstructures to derive the intermediate stiffness 

tensors. Later, an alternative approach so-called “power-law” or SIMP (Solid Isotropic Material 
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with Penalization) model was proposed (Bendsøe, 1989; Zhou and Rozvany, 1991; Rozvany et 

al., 1992; Mlejnek and Schirrmacher, 1993; Bendsøe and Sigmund, 1999). The SIMP model was 

criticized because of the artificial power material properties (Rozvany, 2009). However, it was 

later proved that the microstructures corresponding to the stiffness obtained from the SIMP 

model do exist as long as the penalization parameter is sufficiently large (Bendsøe and Sigmund, 

1999). 

Topology optimization has been applied to various engineering problems. For instance, the 

wing box ribs of the Airbus A380 was designed using topology optimization, which resulted in a 

significant weight reduction (Krog et al., 2004). In practical applications of the approach, a fine 

mesh is often employed in finite element simulations to obtain a well-defined design, which 

often makes the optimization computationally expensive or intractable. This study aims to 

develop an approach to obtain high-resolution optimal topology with affordable computational 

cost by introducing distinct levels of resolution to displacement, density and design variable 

fields (Chapters 2 and 3). The efficient topology optimization approach developed in this study 

can promote high-resolution topology optimization in various problems including biomedical 

problems, e.g. optimal design of craniofacial segmental bone replacements (Sutradhar et al., 

2010). 

1.2 RELIABILITY-BASED DESIGN OPTIMIZATION  

Most of the existing design optimization studies are deterministic in nature despite various 

uncertainties in material properties, loads and boundary conditions, and their significant impacts 

on the optimal design. These studies are referred to as deterministic design optimization (DDO) 

in this study. Ignoring these uncertainties might result in structural designs that fail to meet 

important specifications or constraints. Therefore, it is critical to ensure that the optimal design 

has a required level of reliability through systematic treatment of uncertainties during the design 

optimization process. In order to address this pressing need, various reliability-based design 

optimization (RBDO) methods have been developed and used as powerful tools for reliable and 

cost-effective design, for example, see a review by Fragonpol and Maute (2005). RBDO 

approaches take into account the uncertainties in the design process through stochastic 
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simulation and probability analysis. Figure 1.2 illustrates a design optimization problem with two 

constraints. While the optimal design by DDO (corresponding to point A) has a significant 

likelihood of violating design constraints, RBDO (corresponding to point B) achieves an optimal 

design with the failure probability lower than the target level. 

 

 Figure 1.2: Structural optimization with uncertainty. 

 

RBDO is a time-consuming procedure because numerical simulation of structural systems 

and reliability analysis are required at each step of design iterations. RBDO is particularly time-

consuming and complex when the design constraint is defined as a “system” event of multiple 

constraints, which is termed as system reliability-based design optimization (SRBDO) problem. 

As an example of SRBDO, consider optimization of a structure with a high level of redundancy. 

The system level failure, e.g., the structural collapse is described by a complex system event 
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consisting of several different component failure events. However, SRBDO has received little 

attention in the literature compared to RBDO dealing with individual component failure events 

(Aoues and Chateauneuf, 2008; Valdebenito and Schuëller, 2010) in spite of significant 

challenges in SRBDO applications. The main challenge is the difficulty in computing system 

probability and its parameter sensitivities when component events are statistically dependent or 

the system failure event is not series or parallel system event. Recently, Song and Kang (2009) 

developed a matrix-based system reliability (MSR) method that computes the system failure 

probability and its parameter sensitivities by convenient matrix-based calculations. The MSR 

method is applicable to general system events including series, parallel, cut-set and link-set 

systems with statistical dependence between component events considered, and provides 

parameter sensitivities of the system failure probability, which facilitates gradient-based 

optimization in RBDO. In this thesis, the MSR method is used for system reliability-based 

optimization of structural design (Chapter 4) and topology (Chapter 5) to advance the theory and 

applications of system reliability-based design/topology optimization.  

1.3 RESEARCH OBJECTIVES AND THESIS ORGANIZATION  

The main objective of this study is to develop efficient and accurate algorithms for 

component and system reliability-based design and topology optimization. First, a 

multiresolution topology optimization approach is developed to achieve high-resolution topology 

optimization for large-scale problems efficiently. Second, an accurate and efficient algorithm for 

system reliability-based design optimization (SRBDO) is introduced. Third, the SRBDO 

algorithm is applied to topology optimization problem, termed as system reliability-based 

topology optimization (SRBTO). Topology optimization is inherently complex and time-

consuming, which thus requires further improvement of SRBTO algorithms.  

The thesis is organized as follows. Chapter 2 presents the multiresolution topology 

optimization (MTOP) approach developed to obtain high-resolution designs with relatively low 

computational cost in comparison to the conventional approach. The efficiency of the approach 

is demonstrated by solving relatively large-scale problems with a standard PC. In Chapter 3, the 

efficiency of the MTOP approach is further improved by using three different levels of 
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discretization for displacement, design and density fields. An adaptive multiresolution topology 

optimization scheme is also introduced in Chapter 3. Chapter 4 presents the system reliability-

based design optimization algorithm using matrix-based system reliability method 

(SRBDO/MSR). The accuracy and efficiency of the SRBDO/MSR algorithm are demonstrated 

by numerical examples in the literature and by comparison with the results of Monte Carlo 

simulations. In Chapter 5, the component and system reliability-based topology optimization 

(CRBTO/SRBTO) problems are investigated. The accuracy and efficiency of the CRBTO and 

SRBTO are enhanced by using the proposed MTOP approach (Chapter 2) and RBDO algorithms 

that use the second-order reliability method. Finally, Chapter 6 summarizes the outcomes of the 

research and provides suggestions for future work.   
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2 Chapter 2 Multiresolution topology optimization 

CHAPTER 2 – MULTIRESOLUTION TOPOLOGY OPTIMIZATION 

CHAPTER 2 – MULTIRESOLUTION TOPOLOGY OPTIMIZATION 

 

This chapter presents a multiresolution topology optimization (MTOP) scheme to obtain 

high-resolution optimal topology with relatively low computational cost. The scheme employs a 

coarser discretization for finite elements and a finer discretization for both density elements and 

design variables. The proposed approach is demonstrated via various two- and three-dimensional 

numerical examples.  

2.1 INTRODUCTION 

Topology optimization using the material distribution method has been well developed and 

applied to a variety of structural systems such as civil, mechanical and material systems 

(Bendsøe and Kikuchi, 1988; Bendsøe, 1989; Rozvany, 2001). The method rasterizes the domain 

by defining the topology via the density of pixels/voxels, and thus a large number of design 

variables are usually required for a well-defined design, especially in three-dimensional (3D) 

applications. Several studies have been devoted to developing efficient procedures to solve large-

scale topology optimization problems using the material distribution method. Most of the efforts 

focus on the finite element analysis because the structural analysis constitutes the dominant 

computational cost in topology optimization. For example, Borrvall and Petersson (2001) solved 

3D realistic topology optimization designs with several hundreds of thousands of finite elements 

using parallel computing with domain decomposition. Wang et al. (2007) introduced fast 

iterative solvers to reduce the computational costs associated with the finite element analysis of 

3D topology optimization problems. Amir et al. (2009) proposed an approximate reanalysis 

procedure for the topology optimization of continuum structures. In this procedure, the finite 

element analysis is performed at an interval of several iterations only and approximate reanalysis 

is performed for other iterations to determine the displacement. The authors showed that this 
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rough approximation is acceptable in topology optimization. Another approach consists of using 

adaptive mesh refinement (AMR) to reduce the number of finite elements (Stainko, 2006; de 

Sturler et al., 2008). de Sturler et al. (2008) tailored the AMR method to represent void regions 

with fewer (coarser) elements and solid regions, especially in material surface regions, with more 

(finer) elements. In a topology optimization problem, where shape, size and position of the void 

and solid regions are unknown, the AMR method allows the finite element mesh to be refined 

during the optimization process. 

The abovementioned studies mainly focus on reducing computational cost of structural 

analyses to obtain high-resolution design for large-scale problems. However, it is noted that 

improved resolution can be achieved by changes in mesh representations as well. Consider the 

existing element-based and nodal-based approaches that can be interpreted by use of a design 

variable mesh and a displacement mesh. In the element-based approach, the uniform density of 

each displacement element is considered as a design variable. By contrast, the nodal-based 

approach (Guest et al., 2004; Matsui and Terada, 2004; Rahmatalla and Swan, 2004) considers 

the densities at nodes as the design variables. The element densities are then obtained from nodal 

values using projection. Because the projection scheme provides control over the local gradient 

of material density, it imposes a minimum length scale feature and alleviates the checkerboard 

issue. Recently, Paulino and Le (2009) proposed to locate nodal design variables at the midpoints 

of the four edges of the quadrilateral elements in order to obtain higher resolution. The authors 

showed that these locations of the design variables result in a higher resolution topology design 

without increasing mesh refinement. de Ruiter and van Keulen (2004) also introduced an idea of 

decoupling of topology definition and the finite element mesh by using topology definition 

function. Wavelets were also used to obtain high-resolution optimal topology (Kim and Yoon, 

2000; Poulsen, 2002a). 

In this thesis, a multiresolution topology optimization (MTOP) approach is proposed to 

achieve high-resolution optimal topologies for large-scale problems with relatively low 

computational costs. This approach uses meshes with different levels of resolutions for the three 

fields: finite elements, density elements, and design variables to improve the efficiency. As the 

first step of the development, in this chapter, the same mesh is used for density elements and 
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design variables while the structural analysis uses a coarser finite element mesh. This is to reduce 

the dominant computational cost of the structural analysis, which would increase unnecessarily 

in a traditional approach that uses fine meshes for all three fields for high-resolution topology. 

Since topology is defined on the fine density element mesh, a high-resolution design is obtained 

despite the relatively coarse finite element mesh. In the next chapter, the MTOP approach is fully 

extended by using distinct meshes for all three fields. 

This chapter is structured as follows: Section 2.2 provides an overview of the topology 

optimization formulation; Section 2.3 describes the concept and implementation of the proposed 

MTOP approach; Section 2.4 presents two-dimensional (2D) numerical examples, which explore 

conceptual aspects of the proposed approach; Section 2.5 shows 3D numerical examples, which 

illustrate the MTOP solution of relatively large-scale problems; and Section 2.6 provides 

concluding remarks. 

2.2 TOPOLOGY OPTIMIZATION FORMULATION 

This section reviews formulations of general topology optimization problems. The section 

also discusses the integration procedure of the stiffness matrix for the element-based approach, 

and one of the nodal-based approaches, Continuous Approximation of Material Distribution 

(CAMD) approach (Matsui and Terada, 2004). 

2.2.1 Problem statement and formulations 

For continuum structures, topology optimization aims to optimize the distribution of the 

material densities in a specific domain. This study considers “minimum compliance” problems in 

which the stiffness of the structure is maximized while satisfying a constraint given on the total 

volume. For a reference domain Ω in ℜ2
 or ℜ3

, consider the stiffness tensor ( )ijklE ψ  defined at 

the position vector ψ  defined over the domain. Let U  denote the space of kinematically 

admissible displacement fields, f  the body forces, and t  the tractions. The equilibrium equation 

is then written in the weak (or variational) form (Bendsøe and Sigmund, 2003). The energy 

bilinear form is then determined as ( , ) ( ) ( ) ( )
ijkl ij kl

a E dε ε
Ω

= Ω∫u v ψ u v  where the linearized strains are 
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determined as ( )( ) 0.5 / /
ij i j j i

u uε ψ ψ= ∂ ∂ + ∂ ∂u . The load linear form is given by 

( )
T

L d ds
Ω Γ

= Ω +∫ ∫u fu tu . The basic minimum compliance problem is then expressed as 

 

min    ( )

. . :   ( , ) ( ),  for all   

         volume constraint

L

s t a L U= ∈

u

u v v v  (2.1) 

Using the finite element method, the problem statement in (2.1) is discretized as follows: 

 

T

ρ
min    (ρ, )

. . :   (ρ)   

          (ρ) ρ( )

d d

d

s

C

s t

V dV V
Ω

=

=

= ≤∫

u f u

 K u f

ψ

 (2.2) 

where ρ ρ( )= ψ  is the density at position ψ , f  and d
u  are the global load and displacement 

vectors, respectively, K  is the global stiffness matrix, C is the compliance, and 
sV  is the 

prescribed volume constraint. The optimal solution specifies whether the density at any point in 

the domain should be either 0 (void) or 1 (solid). However, it is impractical or computationally 

intractable to solve such an integer optimization problem. Therefore, in a relaxed approach, the 

density variables are allowed to have any value between 0 and 1. For example, in a popular 

approach termed as Solid Isotropic Material with Penalization (SIMP) (Bendsøe, 1989; Rozvany 

et al., 1992; Bendsøe and Sigmund, 1999), Young’s modulus is parameterized using solid 

material density as follows. 

 
0( ) ρ( )p

E E=ψ ψ  (2.3) 

where 0E  is Young’s modulus of the material in the solid phase, corresponding to the density 

ρ 1= , and p is the penalization parameter. To prevent singularity of the stiffness matrix, a small 

positive lower bound, e.g. 
3

minρ 10 ,
−=  is placed on the density. Using the penalization parameter 

1,p >  the intermediate density approaches either 0 (void) or 1(solid).  

 min
0 ρ ρ( ) 1< ≤ ≤ψ  (2.4)
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In the element-based approach, the density of each element is represented by one value ρe
 

and the global stiffness matrix K  in Equation (2.2) is expressed as 

 
T

1 1

  (ρ )  (ρ )
el el

e

N N

e e e

e e

d
Ω

= =

= = Ω∑ ∑ ∫K K B D B  (2.5) 

where (ρ )
e e

K  is the stiffness matrix of the element e, B is the strain-displacement matrix of 

shape function derivatives, and (ρ )
e

D  is the constitutive matrix which depends on the material 

density. For example, the formulation of the constitutive matrix
 
for plane stress state is 

 
2

1 ν 0
(ρ )

(ρ ) ν 1 0
1 ν

0 0 (1 ν) / 2

e
e

E
 
 =  −
 − 

D  (2.6) 

The solution of the gradient-based optimization problem in Equation (2.2) requires the 

computation of the sensitivities of the objective function and the constraint. In the element-based 

approach, element density ρe
 is used as the design variable; therefore, these sensitivities can be 

obtained as follows. 

 

T 1 T 0 ρ
ρ ρ

  
ρ e

pe
e e e e e e

e e

e

C
p

V
dV

−

Ω

∂∂
= − = −

∂ ∂

∂
=

∂ ∫

K
u u u K u

 (2.7) 

where 0

eK  is the element stiffness matrix of the solid material. 

2.2.2 Integration of the stiffness matrix 

The stiffness matrix of each element in Equation (2.5) is computed by integrating the 

stiffness integrand contribution over the displacement element domain. Numerical quadrature, 

such as Gaussian quadrature, is commonly used to reduce the integration to the summation of the 

stiffness integrand at specific Gauss points (Cook et al., 2002). The material density is also 

evaluated at the Gauss points during computation of the material property matrices. 
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In the element-based approach, the element density is represented by one design variable at 

the centroid of the element and the material densities of all the Gauss points are equal to the 

element density. By contrast, in the CAMD approach (Matsui and Terada, 2004), the material 

densities at the Gauss points are computed from the nodal design variables and the stiffness 

matrices are evaluated at the Gauss points, i.e.   

 T 0 0

1 1 1

( )ρ ( )ρ
nod n nod

e

p p
N N N

e i i i i g

i g i

N d N
Ω

= = =

   
= Ω =   

   
∑ ∑ ∑∫K ψ B D B ψ K  (2.8) 

where nod
N  is the number of nodes per element (e.g., 4

nod
N =  for Q4 and 8

nod
N =  for B8 

element), n
N  is the number of Gauss points for integration, (.)

i
N  is the i-th shape function, 

1,..,
nod

i N= , 0

gK  is the stiffness integrand at the Gauss point g, and 
0

D  corresponds to the 

constitutive matrix of the solid material. 

2.3 MULTIRESOLUTION SCHEME IN TOPOLOGY OPTIMIZATION 

In this study, elements associated with the displacement mesh are called finite elements (or 

displacement elements) and elements associated with the density mesh are called density 

elements. In light of the present work, existing element-based and nodal-based approaches can be 

interpreted with a design variable mesh and a displacement mesh. For example, in the element-

based approach using Q4 elements, a uniform density of each displacement element is 

considered a design variable, which is termed as a Q4/U element. Figure 2.1 shows the element-

based approach using Q4/U elements with the displacement mesh, the design variable mesh, and 

the superposed meshes. In this section, the concept and implementation of the MTOP approach 

will be discussed. 
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Figure 2.1: Q4/U elements: (a) displacement mesh; (b) superposed meshes; and (c) density mesh. 

 

2.3.1 Multiresolution scheme and stiffness matrix integration 

Three meshes with distinct levels of resolutions for the topology optimization problem are 

employed: the displacement mesh to perform the analysis, the design variable mesh to perform 

the optimization, and the density mesh to represent material distribution. For example, design 

variables may be defined as the material densities at the center of the density elements. However, 

the design variable mesh and density mesh do not need to coincide because design variables are 

variables used in the optimization and do not have physical meaning on their own. The design 

variable concept in this study is similar to the nodal design variable in the study by Guest et al. 

(2004). However, in their study, the design variables are associated with the nodes of the finite 

element mesh, while in the proposed MTOP scheme; the design variable mesh can be different 

from the finite element mesh. In the proposed scheme, the element densities are computed from 

the design variables density by projection function. The topology optimization problem 

definition in (2.2) is then rewritten accordingly: 

 

Tmin    (ρ, )

. . :   ρ ( )

          (ρ)   

          (ρ) ρ

d d

p

d

s

C

s t f

V dV V
Ω

=

=

=

= ≤∫

d
u f u

 d

K u f
 (2.9) 

where d  is the vector of design variables and (.)pf  is the projection function. 

Displacement Density 

(a) (b) (c)
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To obtain high-resolution design, the MTOP approach employs a finer mesh for density 

distribution than the displacement field so that each displacement element consists of multiple 

density elements (sub-elements). Within each density element, the material density is assumed to 

be uniform. A new scheme is introduced to integrate the stiffness matrix, in which the 

displacement element consists of a number of different density elements. For example, Figure 

2.2a shows a Q4 displacement element, Figure 2.2b presents the multiple meshes, and Figure 

2.2c shows the density mesh with 25 density elements (also 25 design variables) per Q4 

displacement. In the MTOP approach, this element is denoted as Q4/n25 where “n25” indicates 

that the number of density elements “n” per Q4 is 25. Figure 2.3 illustrates the spatial variation 

of the density inside a conventional element Q4/U and an MTOP element Q4/n25. 

 

Figure 2.2: MTOP Q4/n25 element: (a) displacement mesh; (b) superposed meshes; and (c) 

design variable mesh. 

 

Displacement Density Design variable

(a) (b) (c)
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Figure 2.3: The spatial variation of the density inside a FE element: (a) Q4/U; and (b) MTOP 

Q4/n25. 

 

The stiffness matrix of an MTOP element is computed by summing up the stiffness 

integrands over the constituent density elements. The integration procedure is expressed as    

 ( )T T

1

n

i
e e

N
i

e e

i

d d
Ω Ω

=

= Ω = Ω∑∫ ∫K B DB B DB  (2.10) 

where 
i

eΩ  is the domain of the density element i (area i
A  for 2D, and volume i

V  for 3D) in the 

displacement element domain e
Ω , and n

N  is the number of the density elements in the 

displacement element domain, e.g. n
N n= . 

The SIMP interpolation model is employed to evaluate the stiffness matrix in Equation (2.10) 

as follows. 

 η  ξ

(a)

 η
 ξ

(b)
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 ( )T 0

1 1

(ρ ) = (ρ )
n n

i
e

N N
p i p

e i e i i

i i

d
Ω

= =

= Ω∑ ∑∫K B D B I  (2.11) 

where 
0

D  is the constitutive matrix corresponding to the solid phase, and Ii  is computed as 

 T 0

i
e

i

i e
d

Ω
= Ω∫I B D B  (2.12) 

When a large number of density elements are employed for each displacement element (e.g. 

n=25 for Q4 element, n=125 for B8 element), the integration of the stiffness matrix in (2.11) can 

be approximated by the summation of the integrand evaluated at the center of each density 

element. Thus, (2.12) can be simplified as    

 ( )T 0=
i i

i
AI B D B  (2.13) 

Figure 2.4a shows a case in which four Gauss points are used for each density element in a 

Q4/n25 element for exact integration in (2.12), while Figure 2.4b shows the integration points for 

approximated scheme in (2.13).  

In order to compute the sensitivity of the compliance, the derivative of the stiffness matrix 

with respect to the design variable is calculated as 

 
1 1

(ρ )
ρ ρ ρ

ρ
ρ ρ

nN
p

j j

j pe e i i i
i i

n i n i n n

p
d d d d

= −

 
∂  

∂ ∂ ∂ ∂ ∂ = = =
∂ ∂ ∂ ∂ ∂ ∂

∑ I
K K

I  (2.14) 

where 
nd  and ρ i

 are the design variable and element density, respectively. The sensitivity of the 

constraint in Equation (2.9) is calculated similarly to Equation (2.7) as follows 

 
ρ

ρ

i

n i n

V V

d d

∂∂ ∂
=

∂ ∂ ∂
 (2.15) 

Equation (2.14) and (2.15) imply the summation with respect to i. The sensitivity ρ /i nd∂ ∂  is 

presented in Section 2.3.3 on projection method.  
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Figure 2.4: Integration points for Q4/n25 element: (a) Gauss quadrature; and (b) approximation. 

 

2.3.2 General element types and isoparametric elements 

In addition to the quadrilateral element Q4/n25 discussed in Section 2.3.1, the MTOP 

approach can be applied to other element types. As 2D element examples, Figure 2.5a shows a 

Wachspress hexagonal element (Talischi et al., 2009) with 24 density elements per displacement 

element (denoted by H6/n24). Figure 2.5b shows a triangular element with 16 density elements 

per displacement element (T3/n16). As 3D element examples, Figure 2.5c shows a brick element 

with 125 density elements per B8 element (B8/n125) while Figure 2.5d shows a tetrahedral 

element with 64 density elements (TET4/n64). 

Integration point (Gauss point) Integration point

(b)(a)
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Figure 2.5: Examples of MTOP elements: (a) honeycomb Wachspress H6/n24; (b) T3/n16; (c) 

B8/n125; and (d) TET4/n64. 

 

The integration technique in Equations (2.11)-(2.13) can be used for isoparametric elements 

as well. For example, for a Q4 element with unit thickness in Figure 2.5, the formulation to 

compute the stiffness matrix in the reference (parent) domain is as follows (Cook et al., 2002). 

 
1 1

T T

1 1

= ξ η
e

e d Jd d
Ω

− −

= Ω∫ ∫ ∫K B DB B DB  (2.16) 

where (ξ , η )  denote the intrinsic coordinates in the interval [−1,1], J  is the Jacobian, and B  is 

the strain-displacement matrix in the reference (parent) domain. The standard formulation of 

matrix B  in the reference domain can be found in the literature (Cook et al., 2002). The 

integration of (2.16) in the reference domain can be computed as follows. 

(a)

r
i

iA

ρ
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 ( )
0 0

1 1

T T T 0

0 0

11 1

 ξ η (ρ )
n

i

N

p i

e i

i

Jd d Jd Jd
Ω Ω

=− −

= = Ω = Ω∑∫ ∫ ∫ ∫K B DB B DB B D B  (2.17) 

where 
0Ω  is the reference domain, 0

iΩ  is the reference domain of the density element i (
0

iA  is 

the area/volume of each density element i  in the reference domain as shown in Figure 2.6). 

 

Figure 2.6: Isoparametric element: (a) initial domain; and (b) reference domain. 

 

2.3.3 Projection method: a minimum length scale approach  

Without projection, the aforementioned MTOP scheme alone does not provide mesh 

independency, which might lead to numerical instability and checkerboard effects (Diaz and 

Sigmund, 1995). Note that high-resolution design has been the objective of various studies to 

alleviate the checkerboard patterns (Diaz and Sigmund, 1995; Sigmund and Petersson, 1998; 

Poulsen, 2002a; Poulsen, 2002b; Pomezanski et al., 2005). In this study, a variation of previously 

reported projection method (Guest et al., 2004; Almeida et al., 2009) is employed to achieve 

minimum length scale and mesh independency. In the literature, the approach is also referred to 

as density filter (Bendsøe and Sigmund, 2003; Sigmund, 2007). The projection method uses the 

design variables to compute the element densities. 
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Figure 2.7: Projection function from the design variables to the density element (Q4/n25). 

 

Here 
nd  denotes the design variable associated with the design variable mesh, while ρ i

 

represents the density of element i  associated with the density element mesh. Assume that the 

change of material density occurs over a minimum length of 
min ,r  as shown in Figure 2.7. The 

element density ρ i
 is obtained from the design variables 

nd  as follows. 

 ρ ( )
i p n

f d=  (2.18) 

where (.)pf  is the projection function. For example, if a linear projection is employed, the 

uniform density of a density element is computed as the weighted average of the design variables 

in the neighborhood as follows. 
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where 
iS  is the sub-domain corresponding to the density element i. The corresponding weight 

function is defined as 
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where 
nir  is the distance from the point associated with design variable 

nd  to the centroid of 

density element ,i  and the physical radius 
minr  (see Figure 2.7) is independent of the mesh.   

The sensitivities of the element density in Equation (2.19) with respect to design variables 

are derived as  
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Using the projection function with a minimum length scale, the mesh independent solution is 

obtained. 

 

Figure 2.8: Twenty five density elements of one displacement element (Q4/n25). 

 

2.3.4 Reduced number of integration points 

During the optimization process, there may exist regions with constant material distribution, 

e.g., void or solid regions. For these regions, the material distribution within elements is uniform, 

thus the regular integration for the element stiffness can be used to further reduce the 

computational cost. For example, instead of using 25 integration points in a Q4/n25 element, the 

integration with fewer integration points such as 4 or 9 Gauss points can be employed. The 

Integration point
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locations of the Gauss points and the corresponding weights in the integration can be found in 

the literature (Cook et al., 2002). Figure 2.8 shows densities inside a typical displacement 

element (Q4/n25) with smooth change of density. Since the stiffness matrix integrand is 

evaluated at the Gauss points, the densities at these Gauss points are directly computed from the 

design variables using projection function. 

2.3.5 Selection of displacement, density, and design variable meshes 

The proposed MTOP approach generalizes topology optimization methods such as the 

element-based approach and the super-element approach. For example, the element-based 

approach as shown in Figure 2.1b can be obtained using an MTOP approach with Q4/n1 

elements with each element density represented by one design variable. The Q4/n1 element 

requires Gauss quadrature for the stiffness matrix integration in (2.10). In addition, super-

element approach (Paulino et al., 2008) can be represented by the MTOP approach when special 

displacement, density element and design variable meshes as shown in Figure 2.9 are chosen. 

This mesh combination will result in the Q4/SE super-element which consists of several adjacent 

displacement elements having the same material density/design variable. The Q4/SE super-

element also requires Gauss quadrature for the stiffness matrix integration as well. 

 

Figure 2.9: The MTOP approach for the super-element: (a) FE mesh; and (b) density/design 

variable mesh. 

   

(a) (b)
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2.4 TWO-DIMENSIONAL NUMERICAL EXAMPLES 

This section demonstrates the MTOP approach with 2D applications. A cantilever beam and 

the Michell truss benchmark examples are investigated. In all examples, SIMP model is 

employed to interpolate the stiffness tensor of the intermediate material density. The method of 

moving asymptotes (MMA) (Svanberg, 1987) is used as the optimizer throughout this thesis. 

More details of the MMA algorithm are presented in Appendix A. For simplicity, all the 

quantities are given dimensionless, e.g. Young’s modulus is chosen as 1 and Poisson’s ratio as 

0.3 for all examples in the thesis. Instead of using prescribed volume 
sV  constraint in (2.2), 

volume fraction volfrac, which is defined as the ratio of the prescribed volume 
sV  and the total 

volume of the domain, is employed. 

2.4.1 Cantilever beam 

Figure 2.10 shows a 2D cantilever beam with a length of 48, a height of 16, and unit width. 

The beam is fixed at the left edge and a unit point load is applied downward at the midpoint of 

the right end. A volume fraction constraint volfrac is taken as 50%. The penalization parameter p 

is set equal to 4 and projection radius rmin of 1.2 is used for calculations. The element-based 

approach Matlab code (Sigmund, 2001; Bendsøe and Sigmund, 2003), modified to utilize the 

MMA optimizer and the projection method instead of the sensitivity filter, is used as a reference 

for the results of the MTOP approach. 

 

Figure 2.10: 2D cantilever beam. 

 

 

48

16

F=1



 

24 

(a) Two designs with the same displacement mesh size   

The cantilever domain is discretized into a mesh with 768 Q4 elements (48×16) as shown in 

Figure 2.11a. The results obtained from the element-based and MTOP approaches are shown in 

Figure 2.11b and Figure 2.11c, respectively. It is shown that for the same displacement mesh size, 

the topology obtained by MTOP approach has a much higher resolution than that of the element-

based approach.                

 

Figure 2.11: Topologies with the same FE mesh size 48×16 (volfrac=0.5, p=4, rmin=1.2): (a) FE 

mesh size 48×16 (for both approaches); (b) element-based approach using Q4/U elements 

(C=205.57); and (c) MTOP approach using Q4/n25 elements (C=208.23). 

 

(b) Two designs with the same resolution 

The finite element mesh requirement for the two abovementioned approaches to achieve 

topology designs with the same resolution is investigated. The element-based approach is 

performed on a displacement mesh of 240×80, as shown in Figure 2.12a, while the MTOP 

approach employs Q4/n25 elements with the coarse mesh size 48×16, as shown in Figure 2.12b. 

These results confirm that the topology obtained from the MTOP approach on this coarse 

displacement mesh has the same resolution with that obtained from the element-based approach 

on the fine mesh. 

(a)

(b) (c)
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Figure 2.12: Topologies with the same resolutions (volfrac=0.5, p=4, rmin=1.2): (a) FE mesh size 

240×80, element-based approach with Q4 elements (C=210.68); and (b) FE mesh size 48×16, 

MTOP Q4/n25 elements (C=208.23). 

 

(c) Accuracy of the approximated integration scheme 

The integration of the stiffness matrix in (2.11) by (2.13) is an approximated scheme. In this 

example, the optimal topology in Figure 2.11b is obtained using MTOP Q4/n25 with 25 

integration points and the corresponding optimal compliance is C=208.23. Finite element 

analysis using MTOP element is performed on the topology in Figure 2.11b using the exact 

integration in (2.12), four Gauss points for each density element, that is, each MTOP Q4/n25 

element employs 100 Gauss points. The compliance of 207.67 is obtained which is only 0.27% 

different from approximation scheme in (2.13). Although more tests are needed, these results 

indicate that the approximation scheme in (2.13) may be used in practice for simplicity and 

uniform applicability. 

(d) Convergence history and computational cost 

The convergence histories of the MTOP and the element-based approaches are compared in 

Figure 2.13. During the optimization process, compliance convergence histories from the MTOP 

and element-based approaches for both coarse finite element mesh and fine finite element 

meshes are fairly similar. After 100 iterations, MTOP with a coarse mesh obtained the 

compliance of 208.23 while the element-based approach obtained 205.57 and 210.68 for a coarse 

mesh and a fine mesh, respectively. 

(a) (b)
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Figure 2.13: Convergence history for 100 iterations. 

 

For optimal topologies of the same resolution, MTOP computation is much more efficient 

than the element-based approach. MTOP’s lower computational cost is mainly attributed to a 

much lower number of finite elements in a coarse mesh. For example, the number of finite 

elements of the MTOP coarse mesh in Figure 2.12b is 25 times less than that of the fine mesh in 

Figure 2.12a. The efficiency of MTOP over conventional topology optimization is demonstrated 

more clearly when 3D large-scale problems, in which the finite element analysis cost dominant 

the total computational cost, are considered.  

(e) Effect of number of density elements per displacement element on multiresolution design 

The influence of the number of density elements per displacement element in the resolution 

design is further investigated. Figure 2.14 shows that the increase of the number of density 

elements from 4 to 16 improves the resolution of the topology design. Therefore, multiresolution 

designs can be obtained with the same finite element mesh. However, if the number of density 

elements is too large, the computational cost for optimization may increase significantly resulting 

in high total computational cost. 
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Figure 2.14: Multiresolution designs using MTOP (volfrac=0.5, p=4, rmin=1.2): (a) MTOP 48×16 

Q4/n4 elements; (b) MTOP 48×16 Q4/n9 elements; and (c) MTOP 48×16 Q4/n16 elements. 

 

(f) Influence of the minimum length scale on resolution design 

To investigate the influence of length scale, the minimum length scale is varied from 1.5 to 

0.75 for both element-based and MTOP approaches while keeping the displacement mesh size of 

48×16. Figure 2.15 shows that for a length scale larger than the displacement element size (rmin > 

1.0), the topology obtained from MTOP has better resolution than that from the element-based 

approach. When the minimum length scale is equal to or smaller than the displacement element 

size, the element-based approach produces checkerboard solutions. However, for MTOP 

approach with Q4/n25 element, instability is observed for rmin<0.75 only. These results indicate 

that the MTOP approach can utilize a length scale smaller than the element size, while the 

element-based approach can only employ a length scale larger than the element size. 

(a)

(b)

(c)
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Figure 2.15: Element-based approach and MTOP with different minimum length scale: (a) 

rmin=1.5; and (b) rmin=0.75. 

 

(g) Discussion on the optimal topology of the cantilever beam 

The topology optimization in this example is performed in a domain of continuum. However, 

for practical design purposes, the optimal continuum topologies may need to be transformed to 

corresponding discrete structures. For example, suppose the truss structure in Figure 2.16a is 

proposed based on the optimal topology in Figure 2.11c. This type of structural system is 

referred to here as TOP-form truss. The TOP-form truss is compared with other truss systems 

such as the K-form system on Figure 2.16b and the bracing-form system in Figure 2.16c. The 

performances of these truss systems are investigated as an applied load P of 1 and Young’s 

modulus of 1000 are employed for all three systems. In each truss system, all members are 

assumed to have the same cross sectional areas.  

First, the case in which the members in all three systems have the same area of 1 is 

considered. The third and fourth columns of Table 2.1 show that the TOP-form has the least 

compliance even though it has the least volume among the three systems. These results indicate 

that the TOP-form truss system based on the topology optimization in a continuum is optimal 

discrete topology. 

Element-based (C=226.87)                                     MTOP (C=224.70)

(a)

Element-based (C=199.50) MTOP (C=188.54)

(b)
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Second, the cross sectional areas of the three truss systems are calibrated such that their total 

volumes are all equal to 100. As seen in the sixth column of Table 2.1, the TOP-form truss 

system results in the least compliance. This result indicates that for the same amount of material, 

the TOP-form truss system is more effective than other systems in minimizing the compliance of 

the structure.     

 

Figure 2.16: Topologies of the truss systems: (a) TOP-form; (b) K-form; and (c) bracing-form  

 

Table 2.1: Comparison of the three truss systems 
 

 Load P 
All members have area = 1 Same total volume = 100 

Total volume Compliance Member area Compliance 

TOP-form truss system 1 239.00 0.301 0.418 0.719 

K-form truss system 1 251.33 0.302 0.398 0.759 

Bracing-form truss system 1 279.76 0.348 0.357 0.973 
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2.4.2 Michell truss with circular support 

Michell truss has been used as a verification benchmark for topology optimization (Suzuki 

and Kikuchi, 1991; Sigmund, 2000) because the analytical solution is available. For example, a 

single load transferring to a circular support was investigated by Sigmund (2000), as shown in 

Figure 2.17a. The theoretical optimal solution and topology optimization solution in Sigmund 

(2000), consisting of orthogonal curve system, are shown in Figure 2.17b and Figure 2.17c, 

respectively. The MTOP approach is verified by use of a Michell truss example with the domain 

discretization of 180×120 Q4/n25 elements. The MTOP optimal topology shown in Figure 2.17d 

is fairly close to the theoretical solution in Figure 2.17b and Sigmund’s topology optimization 

solution in Figure 2.17c.  

 

Figure 2.17: Michell truss with a circular support: (a) domain (mesh size 180×120); (b) 

analytical solution (taken from Sigmund 2000); (c) Sigmund’s topology optimization solution 

(Sigmund 2000); and (d) MTOP optimal solution (volfrac=0.25, p=4, rmin=1.2). 

(a) (b)

(c) (d)
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2.5 THREE-DIMENSIONAL NUMERICAL EXAMPLES 

This section demonstrates the application of MTOP approach to 3D examples including a 

cross-shaped section, a cube, and a bridge design. The computations of these relatively large 

problems are performed on a single PC with an Intel®  Core(TM)2 Duo 2.00 GHz 32-bit 

processor, 3GB RAM of memory, Windows OS, and a code developed in Matlab. Similar to the 

2D examples, all quantities are dimensionless: Young’s modulus of 1 and Poisson’s ratio of 0.3 

are employed. 

2.5.1 Cross-shaped section 

This example is adapted from the study by Borrvall and Petersson (2001) in which a 3D 

large-scale problem was solved with parallel computing. A cross-shaped domain, which has fixed 

boundaries on the left and right ends, is subjected to two downward loads applied on its back and 

front ends, as shown in Figure 2.18. The dimension of the domain is 3 3L L L  with 10.L  

The topology optimization problem seeks for optimal design with the volume fraction constraint 

of 20%. Borrvall and Petersson (2001) discretized the domain into 40 120 120  B8 elements, 

which results in a total of 320,000 B8/U elements, and solved this problem with parallel 

computing. In this thesis, the domain is discretized into 10 30 30  elements resulting in a total 

of only 5,000 B8/n125 elements. Instead of using powerful computing resources, such as parallel 

computing, with a large number of finite elements, a single PC is used for topology optimization 

using MTOP approach with only 5,000 B8/n125 elements to obtain high-resolution solution, as 

shown in Figure 2.19a. This optimal topology is similar to the result by Borrvall and Petersson 

(2001) as shown in Figure 2.19b. It is noted that Borrvall and Petersson (2001) used the 

sensitivity filter which is different from the projection scheme (density filter) in MTOP approach. 

In this study, the use of a slightly different volume fraction from Borrvall and Petersson (2001) 

results in a similar topology.  
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Figure 2.18: Geometry of the 3D cross-shaped section. 

 

 

Figure 2.19: Topology optimization of the cross-shaped section: (a) MTOP using 5,000 B8/n125 

elements (volfrac=0.2, p=4, rmin=1.0); and (b) conventional element-based approach using 

320,000 B8/U elements (volfrac=0.25) and parallel computing (Borrvall and Petersson, 2001).     
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2.5.2 Cube with lateral loading  

Figure 2.20 shows a 3D cube fixed at the centers of the top and bottom faces. This cube is 

also subjected to four tangential unit loads at the centers of the side faces. The cube domain is 

discretized into 20 20 20  B8/n125 elements, which results in a total of 8,000 elements. The 

volume fraction constraint of 10%, minimum length scale 
min 1.0,r  and penalization 

parameter 3p  are employed. Figure 2.21 shows the optimal topology design. As shown in 

Figure 2.21, the topology consists of an orthogonal curve system to transfer the torsion load to 

the supports. It is noted that the solution of the Michell space-truss under torsion load also 

consists of orthogonal members as shown in Figure 2.22 (Rozvany, 1996). 

 

Figure 2.20: Geometry of the cube with lateral loading. 

 

 

Figure 2.21: Topology of the cube using MTOP 8,000 B8/n125 elements (volfrac=0.1, p=3, 

rmin=1.0). 
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Figure 2.22: Michell space-truss under torsion loading (Rozvany, 1996). 

 

2.5.3 Bridge design 

Figure 2.23 presents a 3D bridge topology optimization example with simple supports, 

cantilevers and a non-designable layer at the mid-section. A deterministic unit load q  is 

uniformly applied on the top of the non-designable layer of the bridge. The domain is discretized 

into 10 120 30× ×  B8/n125 elements. The non-designable layer has the unit thickness. The 

volume fraction constraint of 12.0%, the minimum length scale min 1.0,r =  and penalization 

parameter 3p =  are employed.  

 

Figure 2.23: Domain for topology optimization of the bridge.  
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Figure 2.24: Optimal topology of the bridge by MTOP. 

 

 

Figure 2.25: An existing bridge design (taken from http://www.sellwoodbridge.org).  

http://www.sellwoodbridge.org/
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The optimal topology in Figure 2.24 resembles an existing bridge design shown in Figure 

2.25. However, there is a slightly difference of the two designs. Instead of the arch and vertical 

members of the bridge design in Figure 2.25, the optimal structure in the Figure 2.24 has flat 

areas at the top and non-vertical members. This is because, during the evolution of the optimal 

design, the diagonal members are created and compete with the formation of the arch shape to 

search for the load transfer points in a restricted design domain.   

2.6 CONCLUDING REMARKS 

In this chapter, a computational paradigm for multiresolution topology optimization (MTOP) 

is proposed. It leads to high-resolution designs by employing different meshes for the 

displacement, the density, and the design variable fields. In this chapter, the MTOP approach is 

explored using the same mesh for density elements and design variables and different mesh for 

displacement field. By using the design variable/density element mesh from coarse to fine, 

multiresolution designs can be obtained with the same finite element mesh. Furthermore, a 

projection scheme is introduced to compute element densities from design variables and to 

control the length scale of the density. Specifically, a coarser displacement mesh and finer 

density/design variable mesh are employed to obtain high-resolution designs with relatively low 

computational costs. The proposed MTOP approach is demonstrated by various 2D and 3D 

numerical examples.  
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3 Chapter 3 Improving multiresolution topology optimization  

CHAPTER 3 – IMPROVING MULTIRESOLUTION TOPOLOGY OPTIMIZATION 

CHAPTER 3 – IMPROVING MULTIRESOLUTION TOPOLOGY OPTIMIZATION 

 

In Chapter 2, the MTOP approach is developed using the same mesh for density elements 

and design variables. In an attempt to improve the MTOP approach presented in Chapter 2, this 

chapter proposes a framework for improving multiresolution topology optimization (iMTOP) 

which employs fully distinct discretizations for: (1) finite elements, (2) design variables, and (3) 

density elements. This approach leads to high fidelity resolution with lower computational cost 

than the MTOP approach in Chapter 2. In addition, a heuristic adaptive multiresolution topology 

optimization procedure is introduced, which consists of selective adjustment and refinement of 

design variable and density fields.  

3.1 INTRODUCTION 

In general, computational cost of topology optimization mainly depends on those of the 

analysis and the optimization. The MTOP approach in Chapter 2 employs a coarser mesh for 

finite elements and a finer mesh for the density elements/design variables, therefore, the 

computational cost in the analysis is reduced. This chapter aims to improve the MTOP approach 

in Chapter 2 by further reducing the computational cost of both the analysis and the optimization 

while maintaining high-resolution designs. The development of this chapter includes two parts: 

reducing the number of design variables, and adaptively improving multiresolution topology 

optimization by using appropriate elements at suitable locations.  

In the first part of this development, an efficient scheme for improving multiresolution 

topology optimization (iMTOP) is proposed by using three distinct discretizations: a relatively 

coarse mesh for finite elements, a moderately fine mesh for design variables, and a relatively fine 

mesh for density elements. Compared to the MTOP approach presented in Chapter 2, the iMTOP 

approach in this chapter further reduces the computational cost while maintaining the resolution 
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by using a coarser mesh for design variables. The finite element, the density element, and the 

design variable meshes are fully distinct in the iMTOP approach while the same mesh is used for 

density elements and design variables in the MTOP approach. 

In the second part, an adaptive multiresolution topology optimization scheme is introduced 

to further increase computational efficiency. The adaptive mesh refinement approach (Costa Jr 

and Alves, 2003; Stainko, 2006; de Sturler et al., 2008) has been proposed to reduce the total 

number of finite elements by representing the void with fewer (coarser) elements and the solid 

with more (finer) elements. Lin and Chou (1999) proposed a two-stage approach in which the 

first-stage is performed with large finite elements and the optimal topology at the end of the first 

stage is used as the starting point for the second stage which uses a fine FE mesh. Costa and 

Alves (2003) employed a sequence of optimizations and mesh refinement, and used a converged 

solution on a coarse mesh to guide the refinement on the next refined mesh. Additionally, 

Stainko (2006) used a slightly different approach in which the mesh is refined only on the 

material boundary. Recently, de Stuler et al. (2008) refined the mesh in the solid regions and 

coarsened the mesh in the void regions dynamically, i.e. during the optimization process. Maute 

and Ramm (1995) proposed an adaptive scheme to separate the design optimization and analysis 

models. The authors performed shape and topology optimization separately and mapped the 

results to each other. They employed the adaptive mesh refinement strategy on the finite element 

mesh to change the design patch of the topology optimization. Kim and Yoon (2000) utilized 

wavelet space to perform the design optimization progressively from low to high-resolution 

while using the same finite element mesh. Additionally, Kim et al. (2003) developed a multiscale 

wavelet-Galerkin method and used it as an adaptive solver in topology optimization. The 

analysis and the design optimization are integrated in a multiresolution framework so that both 

the analysis resolution and the design resolution can be adaptively adjusted. In their approach, at 

all levels, the design resolution is similar or coarser than the analysis resolution. Recently, Guest 

and Genut (2009) used a separate design variable mesh and finite element mesh in topology 

optimization such that the density of the finite element is obtained by projection of the design 

variables. They utilized the same finite element mesh and an adaptive design variable field where 

the design variables can be activated and deactivated during the optimization process depending 
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on the structural regions. This approach provides an optimal design that has the same resolution 

as the finite element mesh (Guest and Genut, 2009). Essentially, the MTOP approach in Chapter 

2 is opposite to the approach by (Guest and Genut, 2009). The adaptive multiresolution topology 

optimization approach in this chapter is based on the iMTOP scheme described in the first part. 

The motivation for the adaptive approach is to use iMTOP elements where and when needed only, 

otherwise the conventional elements are used – the finite element mesh remains the same during 

the optimization process.   

The remainder of this chapter is structured as follows: Section 3.2 proposes an idea of using 

three distinct meshes for improving multiresolution approach; Section 3.3 presents the adaptive 

multiresolution topology optimization procedure; Section 3.4 provides two-dimensional 

examples; Section 3.5 provides three-dimensional examples; Section 3.6 discusses the 

computational cost and resolution; and Section 3.7 presents the concluding remarks. 

3.2 MULTIPLE DISCRETIZATIONS FOR TOPOLOGY OPTIMIZATION 

Existing topology optimization approaches such as the element-based and nodal-based 

approaches can be interpreted with a design variable mesh and a finite element (displacement) 

mesh. For example, the element-based approach considers a uniform density of each finite 

element as a design variable for optimization as shown in Figure 3.1a. By contrast, the nodal-

based approaches (Guest et al., 2004; Matsui and Terada, 2004; Paulino and Le, 2009) consider 

the densities at the finite element nodes as the design variables. Another option is to locate the 

nodal design variables at the midpoints of the four edges of the quadrilateral elements (Paulino 

and Le, 2009). The design variables can be independent of the finite element mesh and can be 

reduced adaptively during the topology optimization process (Guest and Genut, 2009). In the 

abovementioned approaches, the topology design is defined via the density of the finite element 

mesh. Therefore, the highest level of resolution that these approaches can achieve is the 

resolution of the finite element mesh.  

The MTOP approach in Chapter 2 uses three meshes: finite element mesh, design variable 

mesh, and density element mesh for multiresolution topology optimization. However, in the 
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MTOP approach in Chapter 2, the design variable mesh and the density mesh are coincident. For 

example, each Q4 element is divided into a number of density elements (e.g. n=25). The design 

variable is defined as the density at the center of the density element. Therefore, the number of 

design variables equals to the number of density elements as shown in Figure 3.1b. The uniform 

density of a density element is computed from the values of the design variables via a projection 

function. 

 

Figure 3.1: Element-based and MTOP elements (Q4/U and Q4/n25). 

 

3.2.1 Finite element, density element and design variable meshes 

This section presents an efficient procedure for improving multiresolution topology 

optimization (denoted as iMTOP). A relatively coarse mesh is employed for finite elements, a 

moderately fine mesh for design variables, and a relatively fine mesh for density elements. In 

comparison to the MTOP approach in Chapter 2, fewer design variables are employed, therefore, 

the computational cost can be further reduced in the optimization, sensitivity analysis and 

projection. For example, Figure 3.1a shows element-based approach with a Q4/U element and 

Figure 3.1b shows a MTOP Q4/n25 element where n=25 is the number of density 

elements/design variables per Q4 finite element. The proposed improvement employs fewer 

design variables per Q4 element than in Figure 3.1b. For instance, Figure 3.2a shows the 

proposed iMTOP element: Q4/n25/d9 where n=25 and d=9 are the number of density elements 

and design variables, respectively. The number of design variables in Q4/n25/d9 element (Figure 

3.2a) is relatively smaller than that in the original Q4/n25 element (Figure 3.1b). Additionally, 
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Density 
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Figure 3.2b and Figure 3.2c show other choices of density elements and design variables for Q4 

element (Q4/n16/d5, Q4/n25/d16). Figure 3.2d shows iMTOP Q4/n25/d13 element in which the 

locations of design variables are unstructured. These options for density elements and design 

variables indicate that the three meshes are fully distinct in the iMTOP approach. 

 

Figure 3.2: iMTOP elements: (a) Q4/n25/d9 element; (b) Q4/n16/d5 element; (c) Q4/n25/d16; 

and (d) Q4/n25/d13 with unstructured locations of design variables. 

(a)

(b)

(c)

(d)
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Figure 3.3: Two-dimensional iMTOP elements: (a) honeycomb Wachspress H6/n24/d7 and 

H6/n24/d6; (b) triangular T3/n16/d6 and T3/n16/d4; and (c) polygonal P5/n20/d6 and P5/n20/d5. 

 

id

id

iA

ρi

(b)

id

id
ρi

iA

(c)

jd

jd

(a)

ρi

ri

iA



 

43 

 

Figure 3.4: Three-dimensional iMTOP elements: (a) brick B8/n125/d8 and B8/n125/d15; and (b) 

tetrahedral TET4/n64/d8 and TET4/n64/d10. 

 

3.2.2 iMTOP elements for two- and three-dimensional topology optimization 

The concept of using three distinct meshes can be applied to other two- and three-

dimensional element types in which the number of design variables is less than the number of 

density elements. For two-dimensional problems, Figure 3.3a shows a Wachspress hexagonal 

element (Talischi et al., 2009) with 24 density elements per finite element. Instead of using 24 

design variables (H6/n24) as proposed in Chapter 2, the number of design variables can be 

further reduced using three distinct meshes. For example, 7 or 6 design variables can be used to 

create H6/n24/d7 or H6/n24/d6 elements, as shown in Figure 3.3a. Additionally, Figure 3.3b 

shows a triangular element with 16 density elements per finite element and 6 or 4 design 

variables to create T3/n16/d6 or T3/n16/d4 elements, respectively. The iMTOP approach can be 

applied to polygonal finite elements (Talischi et al., 2010) to improve the resolution design. For 

example, Figure 3.3c shows a polygonal element with 5 edges (P5) using n=20 density elements. 
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The P5/n20/d6 and P5/n20/d5 elements are introduced where 6 and 5 are the number of design 

variables per polygonal element, respectively. For three-dimensional problems, Figure 3.4a 

shows 125 density elements per B8 element with 8 and 15 design variables, denoted by 

B8/n125/d8 and B8/n125/d15; and Figure 3.4b shows a tetrahedral element with 64 density 

elements with 8 and 10 design variables, denoted as TET4/n64/d8 and TET4/n64/d10, 

respectively. It is noteworthy that the iMTOP elements in this study utilize the locations of 

design variables associated with the finite elements to develop systematic element types. It is 

actually the case that the design variables can be located at any locations in the design space, for 

example, as shown in Figure 3.2d. Thus, future work may seek for the optimal number and 

locations of the design variables. 

3.2.3 iMTOP formulations and projection from design variables to density elements  

The iMTOP’s formulations for integration of the stiffness matrix and sensitivity is referred 

to Section 2.3. A variation of the previously reported projection method (Guest et al., 2004; 

Almeida et al., 2009) is presented here as the iMTOP’s projection method to achieve minimum 

length scale and mesh independency. The projection method uses the design variables associated 

with the design variable mesh to compute the element densities which belong to the density 

element mesh. The formulations of projection are shown in Section 2.3.3. Figure 3.5 illustrates 

projection scheme of the iMTOP approach via Q4/n25/d9 elements. Using the projection 

function with a minimum length scale, one thus obtains a mesh independent solution for the 

iMTOP approach. 
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Figure 3.5: Projection function from the design variables to the density element (Q4/n25/d9). 

 

3.3 ON ADAPTIVE MULTIRESOLUTION TOPOLOGY OPTIMIZATION 

A heuristic adaptive scheme in conjunction with multiresolution topology optimization is 

presented. The motivation is to further reduce the number of design variables and/or density 

elements in the multiresolution framework. For more detailed accounts on adaptivity theory and 

approaches, the reader is referred to the literature (Maute and Ramm, 1995; Ainsworth and Oden; 

Costa Jr and Alves, 2003; Stainko, 2006; de Sturler et al., 2008). Here the proposed adaptive 

approach focuses on selective adjustment of the design space for topology optimization. 

3.3.1 Reducing design variable and density fields 

A simple and heuristic adaptive multiresolution topology optimization procedure, which is 

based on the scheme described in Section 3.2, is introduced. As demonstrated by numerical 

examples, the approach leads to high-resolution design with relatively low computational cost by 

using iMTOP elements (e.g. Q4/n25/d4) rather than conventional elements (e.g. Q4/U). However, 

iMTOP elements are used where and when needed only, otherwise conventional elements (e.g. 

Q4/U) are employed. During the optimization process, some regions may have uniform material 
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distribution such as void regions or solid regions. In the regions where material distribution is 

uniform, the iMTOP elements (e.g. Q4/n25/d4) are replaced by the conventional elements (e.g. 

Q4/U). On the other hand, the iMTOP elements are used in regions where the material density 

gradient is high. In these regions, structural boundaries are forming; therefore a higher resolution 

is needed to represent the material distribution.  

3.3.2 Design space adjustment 

The adaptive scheme consists of using iMTOP elements only in the regions where they are 

needed, otherwise conventional elements are used via a criterion based either on design variables 

or on density elements. The procedure is shown here in terms of density elements. For 

illustrative purpose, Q4/U and Q4/n25/d4 elements are used in the explanation, however more 

than one type of iMTOP elements can be used in a particular optimization problem. During the 

optimization process, element types are tracked using an “element index” array. Each finite 

element e is assigned an “element index” ei, where ei=1 indicates a conventional element (e.g. 

Q4/U), and ei=n (e.g. n=25) indicates an iMTOP element (e.g. Q4/n25/d4). 

Initially, when the material distribution is uniform, all elements are assigned as conventional 

ones (e.g. Q4/U). The optimization is performed until a relatively less stringent convergence 

criterion, namely the type updating convergence criterion, is satisfied. The iMTOP element type 

is determined to be used for each finite element based on element densities. An alternative 

approach consists of determining the element type based on the gradient of the material density. 

For example, iMTOP elements are used where the material density gradient is high and 

conventional elements are used where the material is relatively more uniform. However, in 

current implementation, an element e is changed from conventional to iMTOP when it is 

sufficiently “gray”, i.e. L < e < U, where L and U are predefined thresholds, e.g. L =0.015 

and U =0.99. On the other hand, an iMTOP element is changed to conventional when all of their 

densities are sufficiently “black” or “white”, i.e. i> U or i < L. The “element index” ei is then 

updated whenever the element is changed either from iMTOP to conventional or from 

conventional to iMTOP. The criteria for the above element type updating scheme to perform is 

based on the convergence of the objective function. For example, the element type is updated if 
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the relative change of the objective function is less than a threshold (e.g. 1%) after a certain 

number of optimization iterations (e.g. 20), The process of element type updating and 

optimization iterations are repeated until the convergence criteria on maximum number of 

iterations (e.g. 100 iterations) or the relative change in the objective function (e.g. 0.1%). The 

flow chart of the adaptive procedure is explained in Figure 3.6.  

In summary, an adaptive procedure is proposed to utilize the iMTOP elements only in the 

selected regions in the domain during the optimization process. The procedure is demonstrated 

via numerical examples in the subsequent sections.  

 

 Figure 3.6: Flow chart of the adaptive MTOP scheme (Q4/n25/d4 and Q4/U). 
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3.4 TWO-DIMENSIONAL NUMERICAL EXAMPLES 

In this section, the approaches proposed in this chapter are demonstrated with various two-

dimensional applications. First, the minimum compliance problem of a beam under a 

concentrated load is considered (Figure 3.7a). Second, the compliant mechanism design of a 

displacement inverter is investigated (Figure 3.7b). Third, a cantilever beam is investigated to 

demonstrate the adaptive procedure. In these examples, the SIMP model is employed to 

interpolate the stiffness tensor of the intermediate material density. The method of moving 

asymptotes (MMA) (Svanberg, 1987) is used as the optimizer. For simplicity, all the quantities 

are given dimensionless: Young’s modulus is chosen as 1 and Poisson’s ratio as 0.3 for all 

examples. Instead of using prescribed volume constraint ,sV  volume fraction volfrac, which is 

defined as the ratio of the prescribed volume 
sV  to the total volume of the domain, is used. 

3.4.1 Minimum compliance of an MBB beam 

This example presents the solution for minimum compliance problem of a beam subjected to 

a concentrated vertical load, so-called Messerschmitt-Bolkow-Blohm (MBB beam). Because of 

the symmetry, only half of the beam is taken into consideration with a length of 60, a height of 

20, and unit width, as shown in Figure 3.7a. The volume fraction constraint volfrac is taken as 

60%, the penalization parameter p is set equal to 3, and the projection radius rmin is set equal to 

1/10 of the height of the beam.  

 

Figure 3.7: Configurations: (a) MBB beam; and (b) displacement inverter. 
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Figure 3.8: Topologies of MBB beam: (a) element-based Q4 FE mesh 300×100 (C=187.71); (b) 

element-based Q4 FE mesh 60×20 (C=181.04); (c) MTOP Q4/n25 (C=181.90); (d) iMTOP 

Q4/n25/d16 (C=181.95); (e) iMTOP Q4/n25/d9 (C=181.99); and (f) iMTOP Q4/n25/d4 

(C=181.96) (b–f: FE mesh 60×20). 

 

 

Figure 3.9: Comparison of topology optimization approaches after 100 iterations: (a) 

convergence history; and (b) computational times. 
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First, the element-based topology optimization is performed on a fine FE mesh of 300 100 

and a coarse FE mesh of 60 20 Q4/U elements – the optimal topologies are shown in Figure 3.8a 

and Figure 3.8b, respectively. The topology obtained from the fine FE mesh has a higher 

resolution than that from the coarse mesh. Next, the MTOP approach in Chapter 2 using 60 20 

Q4/n25 elements is employed and the topology is obtained as shown in Figure 3.8c. It is noted 

that the topologies in Figure 3.8a and Figure 3.8c have higher resolution than the topology in 

Figure 3.8b obtained from a coarse FE mesh.  

Second, using the iMTOP approach, the number of design variables is varied for the same 

resolution (or the same number of density elements). Instead of using MTOP Q4/n25 elements 

where the number of design variables is equal to the number of density elements, the number of 

design variables per Q4 finite element is reduced to 16, 9 and 4. This leads to a coarse FE mesh 

of 60 20, a fine density element mesh of 300 100, and the design variable meshes of 240 80, 

180 60, and 120 40, respectively. The optimal topologies are shown in Figures 3.8d, e and f 

corresponding to iMTOP Q4/n25/d16, Q4/n25/d9, and Q4/n25/d4 elements, respectively. These 

topologies are similar to the optimal topology obtained with MTOP Q4/n25 elements in Figure 

3.8c. Moreover, fairly close values for the compliances of the optimal topologies are observed 

for the same number of density elements and different number of design variables. 

The convergence history of the iMTOP and the element-based approaches are compared in 

Figure 3.9a. During the optimization process, the compliance convergence history from the 

iMTOP and element-based approaches are fairly similar. The computational costs are compared 

in Figure 3.9b. As expected, the element-based approach on a fine mesh has the highest 

computational cost. The lower computational cost for the iMTOP approach is attributed to a 

lower number of finite elements, in comparison to element-based approach on a fine FE mesh, 

and to a lower number of design variables, in comparison to MTOP approach on the same FE 

mesh. Figure 3.9b shows that MTOP Q4/n25 is about three times less expensive than the 

element-based approach on a fine mesh. Moreover, the computational cost is further reduced for 

iMTOP Q4/n25/d16, Q4/n25/d9, and Q4/n25/d4. In this example, the computational cost of 

iMTOP Q4/n25/d4 is about 3.5 times less than that of MTOP Q4/n25 and about 10 times less 

than that of the element-based approach on a fine mesh. The computational cost saving in 
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iMTOP Q4/n25/d4 is attributed to a much lower number of design variables in comparison to 

that of MTOP Q4/n25. Therefore, the cost in the MMA optimization, the sensitivity analysis, and 

the projection is reduced.  

The MBB example is further investigated using a minimum length scale equal to 1/20 of the 

height of the beam. First, for the same coarse FE mesh, the element-based approach provides 

checkerboard result (Figure 3.10b) which is undesirable while the MTOP and iMTOP approaches 

(Figure 3.10b and Figure 3.10c) provide results comparable to the element-based approach on 

fine mesh (Figure 3.10a). This is because the element-based approach cannot utilize a length 

scale smaller than or equal to the element size. Whereas, the results in Figure 3.10 show that 

MTOP and iMTOP can utilize a length scale equal to the size of the finite element. Second, the 

optimal topology by iMTOP Q4/n25/d4 in Figure 3.10d is slightly different from the topology by 

MTOP Q4/n25. However, these two designs have close optimal objective function values. The 

difference of these two optimal objective functions is only 0.3%. These results indicate the 

advantages of the iMTOP and MTOP approaches over the element-based approach when the 

same coarse FE mesh is employed. 

 

Figure 3.10: Topologies of MBB beam with rmin= 5% of height of the beam: (a) element-based 

Q4 FE mesh 300×100 (C=177.30); (b) element-based Q4 FE mesh 60×20 (C=163.58); (c) 

MTOP Q4/n25 (C=170.48); and (d) iMTOP Q4/n25/d4 (C=171.07) (b–d: FE mesh 60×20). 
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In summary, by using iMTOP elements, e.g. Q4/n25/d4, high-resolution topology 

comparable to MTOP Q4/n25 and element-based approach on a fine mesh can be obtained. 

However, the computational cost of iMTOP is much lower. 

3.4.2 Compliant mechanism of a displacement inverter  

The second example presents a 2D compliant mechanism problem, a displacement inverter 

as shown in Figure 3.7b. The goal is to design a structure to convert the input displacement on 

the left edge to a displacement on the right edge. The topology optimization seeks for the 

solution of maximum output displacement with a certain volume fraction of the domain. In this 

example, a domain of the size 40 20, a volume fraction of 0.3, and a length scale of 1.2 are 

employed.  

 

Figure 3.11: Topologies of the displacement inverter: (a) element-based Q4 FE mesh 200×100; 

(b) element-based Q4 FE mesh 40×20; (c) MTOP Q4/n25; (d) iMTOP Q4/n25/d16; (e) iMTOP 

Q4/n25/d9; and (f) iMTOP Q4/n25/d4 (b–f: FE mesh 60×20). 

 

In a manner similar to the previous example, the element-based approach is performed on a 

fine mesh of 200 100 Q4 elements and on a coarse mesh of 40 20 Q4 elements. The optimal 

topologies from a fine mesh and a coarse mesh are shown in Figure 3.11a and Figure 3.11b, 

respectively. Next, the MTOP approach is performed using Q4/n25 elements, and the iMTOP 
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approach is performed using Q4/n25/d16, Q4/n25/d9 and Q4/n25/d4 elements – the optimal 

topologies are shown in Figures 3.11c, d, e and f, respectively. It can be seen that the topologies 

from the MTOP and the iMTOP approaches(Figures 3.11 c-f) using a coarse FE mesh are similar 

to the topology from the element-based approach using a fine FE mesh (Figure 3.11a), whereas 

the topology obtained from the element-based on coarse FE mesh (Figure 3.11b) is slightly 

different. This example illustrates that the proposed iMTOP approach can be applied to not only 

minimum compliance problems but also compliant mechanism problems. 

3.4.3 Minimum compliance of a cantilever beam 

This example demonstrates the adaptive multiresolution topology optimization procedure 

proposed in Section 3.3. A domain with a length of 32, a height of 16, and unit width is taken 

into consideration, as shown in Figure 3.12a. The beam is fixed at the left edge and a unit point 

load is applied downward at the midpoint of the right end. A volume fraction constraint volfrac is 

taken as 45%, the penalization parameter p is set equal to 4, and projection radius rmin is set equal 

to 1.2.  

 

Figure 3.12: Cantilever example considering adaptive topology optimization: (a) geometry; (b) 

element-based Q4/U FE mesh 160×80 (C=90.11); (c) element-based Q4/U FE mesh 32×16 

(C=87.41); (d) MTOP Q4/n25 (C=88.01); (e) iMTOP Q4/n25/d4 (C=88.03); (f) adaptive Q4/U 

and Q4/n25/d4 (C=88.71); and (c–f: FE mesh 32×16). 
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First, the topology optimization of the beam is performed by the element-based approach 

(Q4/U) on a fine FE mesh and also on a coarse FE mesh with the obtained topologies shown in 

Figure 3.12b and Figure 3.12c, respectively. The MTOP Q4/n25 and the iMTOP Q4/n25/d4 

approaches provide the topologies shown in Figure 3.12c and Figure 3.12d, respectively. Finally, 

the adaptive procedure is performed using Q4/U and Q4/n25/d4 elements and the results are 

shown in Figure 3.12f. It is noted that the topology obtained by the adaptive scheme is similar to 

the topologies obtained by MTOP, iMTOP and the element-based approach on a fine mesh.  

 

Figure 3.13: Adaptive topology optimization: (a) initial mesh (512 Q4/U); (b) intermediate mesh 

(244 Q4/U and 268 Q4/n25/d4); (c) final mesh (222 Q4/U and 290 Q4/n25/d4); and (d-e-f) initial, 

intermediate and final adaptive topologies, respectively. 

 

Figure 3.13 explains the adaptive optimization process. At the initial stage, the optimization 

problem begins with a uniform distribution of the density over the domain. Therefore, only Q4/U 

elements are employed (a total of 512 elements), as shown in Figure 3.13a. The corresponding 

topology is shown in Figure 3.13d. As the optimization progresses, Q4/U elements are used for 

regions with uniform density (void or solid). In the “gray” regions, i.e. where structural 

boundaries are forming and thus more information is thus required, the iMTOP Q4/n25/d4 

elements are used to increase the resolution. Figure 3.13b shows the mesh of an intermediate 
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iteration with 244 Q4/U and 268 Q4/n25/d4 elements while the corresponding topology is shown 

in Figure 3.13e. At the final iteration, the mesh is shown in Figure 3.13c with 222 Q4/U elements 

and 290 Q4/n25/d4 elements, and the corresponding topology is shown in Figure 3.13f. The 

adaptive procedure deciding where and when to use Q4/U or Q4/n25/d4 element is simple via the 

“element index” array described in Section 3.3. 

The iMTOP approach reduces the numbers of density elements and design variables in 

comparison to the element-based approach on a fine mesh. Employing the adaptive approach 

further reduces the numbers of density/design variables to improve efficiency. In this specific 

example, the computational time for adaptive approach using Q4/U and Q4/n25/d4 elements 

(Figure 3.12f) is about 70% of that using iMTOP with Q4/n25/d4 elements (Figure 3.12e).   

In summary, this example demonstrates that the adaptive procedure can further improve the 

efficiency of the iMTOP approach while maintaining the design resolution. In this example, 

Q4/U and Q4/n25/d4 elements are used in the adaptive procedure; however, it is noted that 

multiple iMTOP element types can be employed in the proposed approach (Nguyen et al., 2010d). 

3.5 THREE-DIMENSIONAL NUMERICAL EXAMPLES 

This section demonstrates the capability of the proposed schemes for handling relatively 

large-scale three-dimensional applications. First, a cube with a concentrated load at the bottom 

and a building subjected to a torsion load are presented to demonstrate the iMTOP scheme. 

Second, a three-dimensional cantilever beam is considered to demonstrate the adaptive procedure. 

Similarly to Section 3.4, all the quantities are dimensionless: Young’s modulus is chosen as 1, 

and Poisson’s ratio as 0.3.  

3.5.1 A cube with a concentrated load at the bottom center 

This example investigates a cube which is constrained at the four bottom corners in the 

vertical directions and subjected to a vertical load at the center of the bottom face as shown in 

Figure 3.14a. The cube domain has an edge length of L=48. The domain is divided into 

24×24×24 B8 elements which results in a total of 13,824 brick elements. Because of the 

symmetry condition, only one fourth of the cube is taken into consideration. A volume fraction 
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constraint of 10%, a minimum length scale of L/20, and penalization parameter p=4 are 

employed. 

First, the problem is solved using MTOP B8/n125 elements, which use 125 density elements 

and 125 design variables per a brick element. The optimal topology is shown in Figure 3.14b. 

Next, the iMTOP approach reduces the number of design variables by using B8/n125/d64, 

B8/n125/d27 and B8/n125/d8 elements. The corresponding topologies are shown in Figure 3.14c, 

Figure 3.14d, and Figure 3.14e, respectively. The resolutions of these designs are comparable to 

the design shown in Figure 3.14b using MTOP B8/n125 elements. Additionally, the values of the 

compliances of the optimal topologies obtained from MTOP and iMTOP, using the same number 

of density elements and a different number of design variables, are fairly close, as shown in the 

caption of Figure 3.14. 

 

Figure 3.14: Topology optimization of a cube (FE mesh 24×24×24): (a) geometry; (b) MTOP 

B8/n125 (C=29.04); (c) iMTOP B8/n125/d64 (C=29.06); (d) iMTOP B8/n125/d27 (C=29.08); 

and (e) iMTOP B8/n125/d8 (C=29.33). 
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The convergence histories of the optimization process are shown in Figure 3.15a. Similarly 

to the 2D example in Section 3.4.1, Figure 3.15a shows fairly close convergence history for 

different iMTOP element types. The computational cost comparison is shown in Figure 3.15b. It 

is seen that the computational times of B8/n125/d64, B8/n125/d27, and B8/n125/d8 elements are 

much less than that of the MTOP B8/n125 element. For example, the computational time of 

B8/n125/d8 element is only one tenth of the B8/n125 element. This is because the iMTOP 

B8/n125/d8 element utilizes about 15 times fewer design variables than the MTOP B8/n125 

element. 

 

Figure 3.15: Comparison of the results of cube optimization after 50 iterations: (a) convergence 

history; and (b) computational times. 

 

3.5.2 A building with torsion loading 

This example demonstrates the iMTOP scheme for the structure system of a building under 

torsion load. The domain is shown in Figure 3.16a with the dimension of L L 4L. Four unit 

loads are applied at the middle of the four top edges to create a torsion load. The domain is 

divided into 10×10×40 B8 elements which results in a total of 4,000 brick elements. The volume 

fraction constraint of 10%, the minimum length scale rmin=0.12L, and penalization parameter 

p=3 are employed. Topologies based on different MTOP and iMTOP elements are shown in 

Figure 3.16. Similarly to the previous example, iMTOP elements using a fewer number of design 
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variables than density elements can provide topology comparable to the MTOP element. 

Moreover, the structural member arrangement shown in Figure 3.16 indicates that such a solution 

is somewhat similar to the Michell type optimal solution for a space-truss subjected to torsion 

loading (Rozvany, 1996).  

 

Figure 3.16: Geometry and topologies of the building under torsion load: (a) geometry; (b) 

MTOP B8/n125; (c) iMTOP B8/n125/d27; and (d) iMTOP B8/n125/d8. 

 

3.5.3 Cantilever beam with concentrated load 

This example demonstrates the capability of the adaptive procedure for three-dimensional 

applications. A three-dimensional cantilever with the domain 2L L L shown in Figure 3.17a is 

considered. The domain is divided into 24×12×12 B8 elements which results in a total of 3,456 

brick elements. A volume fraction constraint of 30%, a minimum length scale of one tenth of the 

beam height rmin= L /10, and penalization parameter p=3 are employed. First, the problem is 

solved using B8/U elements, which provides the results shown in Figure 3.17b. Second, the 
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iMTOP approach using B8/n125/d8 leads to the topology shown in Figure 3.17c. Finally, the 

adaptive approach using B8/U and B8/n125/d8 provides the optimal design shown in Figure 

3.17d.  

 

Figure 3.17: Topologies from element-based, iMTOP, and adaptivity on FE mesh 24×12×12: (a) 

geometry of a cantilever beam 3D ( 2:1:1); (b) element-based B8/U (C=5.088); (c) iMTOP 

B8/n125/d8 (C=5.182); and (d) adaptivity B8/U and B8/n125/d8 (C=5.283). 

 

 

Figure 3.18: Adaptivity topology on FE mesh 24×12×12: (a) initial iteration 3,456 B8/U; (b) an 

intermediate iteration 2,288 B8/U and 1,168 B8/n125/d8; and (c) final iteration 2,072 B8/U and 

1,384 B8/n125/d8. 
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Similar to the 2D cantilever beam in Section 3.4.3, the adaptive optimization process is 

shown in Figure 3.18. At the initial iteration, 3,456 B8/U elements are employed and the 

corresponding topology is shown in Figure 3.18a. An intermediate iteration is shown in Figure 

3.18b with 2,288 B8/U and 1,168 B8/n125/d8 elements whereas the final iteration is shown in 

Figure 3.18c with 2,072 B8/U and 1,384 B8/n125/d8 elements. The adaptive procedure is 

successfully applied to this 3D example and the optimal topology is shown in Figure 3.17d. The 

result is comparable to the design using iMTOP B8/n125/d8 elements (Figure 3.17c). 

3.6 EFFICIENCY AND RESOLUTION LEVEL 

In this section, the computational cost and the achieved resolution for different iMTOP 

element types are discussed. Moreover, the computational costs in the above examples are 

compared.    

3.6.1 iMTOP ratio – efficiency and resolution measurement 

The efficiency and resolution of a topology optimization model can be measured in terms of 

the total numbers of finite elements, density elements, and design variables. Table 3.1 compares 

the iMTOP elements with the conventional element-based case, i.e. uniform density element and 

super-element (Paulino et al., 2008) as shown in Figure 3.19. First, the total number of finite 

elements is related to the total degrees of freedom in the linear equation of equilibrium. Second, 

the number of density elements determines the resolution of the design. In the element-based 

approach, each finite element contains one density element whereas in the super-element 

approach, each density element represents the densities of several neighboring finite elements. 

On the other hand, in the iMTOP approach, each finite element consists of a number of density 

elements. When the number of density elements increases, the resolution of the design increases. 

However, the computational cost related to stiffness matrix calculation, sensitivity analysis, and 

projection increases as well. Finally, the number of design variables determines the 

computational cost in optimization, sensitivity analysis and projection. A ratio is introduced to 

measure the efficiency and resolution of an iMTOP element type, termed as the “iMTOP ratio,” 

which is defined as follows 
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iMTOP ratio  k : n : d  (the number of finite elements) :

(the number of density elements) :  (the number of design variables) 
 (3.1) 

For models with the same number of finite elements (k), the larger the number of density 

elements (n) is, the higher resolution is obtained. On the other hand, a smaller number of density 

elements and design variables indicate higher efficiency. Therefore, when models are considered 

with the same number of finite elements (k), it is desirable to have a larger number of density 

elements (k) and a smaller number of design variables (d). 

 

Figure 3.19: Super-element approach: (a) Q4/SE (one density/design variable for 4 Q4 elements); 

and (b) B8/SE (one density/design variable for 8 B8 elements). 

 

It can be seen from Table 3.1 that the element-based approach has the ratio of k:n:d=1:1:1. 

The super-element approach, as shown in Figure 3.19, has the ratio k:n:d=4:1:1 for Q4 element 

or 8:1:1 for 3D brick element. The MTOP approach in Chapter 2 can provide higher resolution 

design, for example, the Q4/n25 element has the iMTOP ratio k:n:d=1:25:25. The proposed 

iMTOP approach in this study reduces the computational cost of the MTOP approach in Chapter 

2 by reducing the number of design variables. For example, the Q4/n25/d4 element has the 

iMTOP ratio k:n:d=1:25:4. In addition, for the three-dimensional case, the iMTOP B8/n125/d8 

element can improve the ratio significantly (k:n:d=1:125:8) in comparison to the MTOP B8/n125 

element (k:n:d=1:125:125). 

 

 

Density/design variable

Both

Displacement

(a) (b)
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Table 3.1: Summary of iMTOP ratios for Q4 and B8 elements. 

 Approaches Element types 

Number of 
iMTOP ratio 

k:n:d finite  

elements 

density 

elements 

design 

variables 

2
D

: 
Q

4
 

Super-element Q4/SE 4 1 1 4:1:1 

Element-based Q4/U 1 1 1 1:1:1 

MTOP Q4/n25 1 25 25 1:25:25 

iMTOP 
Q4/n25/d9 1 25 9 1:25:9 

Q4/n25/d4 1 25 4 1:25:4 

3
D

: 
B

8
 

Super-element B8/SE 8 1 1 8:1:1 

Element-based B8/U 1 1 1 1:1:1 

MTOP B8/n125 1 125 125 1:125:125 

iMTOP 
B8/n125/d15 1 125 15 1:125:15 

B8/n125/d8 1 125 8 1:125:8 

 

3.6.2 Comparison of the computational time costs 

In the numerical examples in Sections 3.4 and 3.5, the computational times in topology 

optimization using element-based approach, iMTOP approach, and adaptive approach are 

compared. For example, the normalized computational time is compared in Figure 3.9b and 

Figure 3.15b for 2D and 3D examples, respectively. The comparison has shown that the iMTOP 

approach is more efficient than the element-base approach to obtain a similar resolution design. 

However, the efficiency comparison shown in Figure 3.9b and Figure 3.15b may not reflect the 

same efficiency improvement in all cases. For example, one may employ a very fast solver, and 

then the computational cost of the element-based approach on fine mesh will get closer to the 

computational cost of the MTOP approach. Also, implementation of the code in different 

program languages may provide different efficiency improvement from the comparison in Figure 

3.9b and 3.15b. Thus, the computational efficiency is described and compared in terms of the 

number of finite elements, density elements and design variables, and the iMTOP ratio. 
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Table 3.2: Computational data for the MBB beam and cube examples. 
 

E
x

am
p

le
s 

Approaches 
Element 

types 

F
ig

u
re

s 

Number of 

iMTOP ratio 

k:n:d Finite 

elements 

Density 

elements 

Design 

variables 

M
B

B
 

Conv. fine mesh Q4/U 3.8a 30,000 30,000 30,000 25:25:25 

MTOP Q4/n25 3.8c 1,200 30,000 30,000 1:25:25 

iMTOP 

Q4/n25/d16 3.8d 1,200 30,000 19,200 1:25:16 

Q4/n25/d9 3.8e 1,200 30,000 10,800 1:25:9 

Q4/n25/d4 3.8f 1,200 30,000 4,800 1:25:4 

Conv. coarse mesh Q4/U 3.8b 1,200 1,200 1,200 1:1:1 

C
u

b
e 

Conv. fine mesh B8/U N/A 1,728,000 1,728,000 1,728,000 125:125:125 

MTOP B8/n125 3.14b 13,824 1,728,000 1,728,000 1:125:125 

iMTOP 

B8/n125/d64 3.14c 13,824 1,728,000 884,736 1:125:64 

B8/n125/d27 3.14d 13,824 1,728,000 373,248 1:125:27 

B8/n125/d8 3.14e 13,824 1,728,000 110,592 1:125:8 

N/A: Not available, Conv.: Conventional  

 

Table 3.2 shows the computational data for the 2D MBB beam example and the 3D cube 

example. It shows that the MTOP and iMTOP approaches require a smaller number of finite 

elements and design variables to achieve the same resolution designs as the conventional 

approach. For instance, in the cube example, in order to have the same resolution with the MTOP 

and iMTOP approaches using n=125 density elements per B8, the element-based approach has to 

utilize 1,728,000 finite elements. By contrast, the MTOP and iMTOP approaches employ only 

13,824 finite elements. Moreover, the iMTOP approach can reduce the number of design 

variables from 1,728,000 in the MTOP approach (for B8/n125) to only 110,592 (for B8/n125/d8) 

while maintaining the same resolution. The “iMTOP ratio” of the computational data in Table 3.2 

can serve as an indicator of the efficiency and resolution of a topology optimization model. 
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Table 3.3: Computational data of the cantilever examples. 
E

x
am

p
le

s 

Approaches 
Element 

types 
Figures 

Number of 
iMTOP 

ratio  

k:n:d Finite 

elements 

Density 

elements 

Design 

variables 

2
D

 c
an

ti
le

v
er

 

Conventional fine 

mesh 
Q4/U 3.12b 12,800 12,800 12,800 25:25:25 

MTOP Q4/n25 3.12d 512 12,800 12,800 1:25:25 

iMTOP Q4/n25/d4 3.12e 512 12,800 2,048 1:25:4 

Adaptive       

(initial iter.) 
Q4/U 3.13a,d 512 512 512 1:1:1 

Adaptive     

(intermediate iter.) 

Q4/U & 

Q4/n25/d4 
3.13b,e 512 6,944 1,316 1:13.6:2.6 

Adaptive         

(final iter.) 

Q4/U & 

Q4/n25/d4 
3.13c,f 512 7,472 1,382 1:14.6:2.7 

Conventional 

coarse mesh 
Q4/U 3.12c 512 512 512 1:1:1 

3
D

 c
an

ti
le

v
er

 

Conventional fine 

mesh 
B8/U N/A 432,000 432,000 432,000 125:125:125 

iMTOP B8/n125/d8 3.17c 3,456 432,000 27,648 1:125:8 

Adaptive       

(initial iter.) 
B8/U 3.18a 3,456 3,456 3,456 1:1:1 

Adaptive           

(intermediate iter.) 

B8/U & 

B8/n125/d8 
3.18b 3,456 148,288 11,632 1:42.9:3.4 

Adaptive         

(final iter.) 

B8/U & 

B8/n125/d8 
3.17d,18c 3,456 175,072 13,144 1:50.7:3.8 

Conventional 

coarse mesh 
B8/U 3.17b 3,456 3,456 3,456 1:1:1 

N/A: Not available, iter.: iteration  

 

Additionally, Table 3.3 shows the computational data for the adaptive approach of the 

cantilever beam for 2D and 3D. It can be seen that the use of the adaptive approach can further 
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reduce the number of density elements and the number of design variables while maintaining the 

resolution. In the adaptive approach, the same number of finite elements is considered in the 

optimization process and the final design has the similar resolution with the iMTOP approach. 

Therefore, the iMTOP ratio in the adaptive approach with a lower number of density elements (n) 

and design variables (d) means more efficient model in comparison to the iMTOP approach. For 

example in the 2D cantilever, the “iMTOP ratio” is 1:1:1 for element-based approach on a coarse 

mesh. This ratio can be improved to 1:25:25 for MTOP Q4/n25 elements and 1:25:4 for iMTOP 

Q4/n25/d4 elements. The adaptive approach can further improve the iMTOP ratio to 1:14.5:2.5 at 

the final adaptive iteration. In the 3D case, the iMTOP ratio is improved since the iMTOP ratio 

changes from 1:125:8 in B8/n125/d8 elements to 1:50.7:3.8 at the final adaptive iteration. This 

means that a large number of density elements and design variables are reduced by the adaptive 

approach in comparison to the iMTOP and element-based approaches while a design with similar 

resolution is achieved. 

3.7 CONCLUDING REMARKS 

In this chapter, the MTOP approach in Chapter 2 is further improved by allowing different 

level of resolution between the design variable and density fields. A computational paradigm for 

improving multiresolution topology optimization (iMTOP) is developed using three distinct 

meshes: the finite element mesh, the density mesh, and the design variable mesh. Using a 

relatively coarse mesh for analysis, a moderately fine mesh for design variables, and a relatively 

fine mesh for density elements, high fidelity designs are obtained with a relatively low 

computational cost. Furthermore, an adaptive multiresolution topology optimization procedure is 

proposed to further reduce the computational cost in the iMTOP approach above by using the 

iMTOP elements only where needed and when needed. Therefore, the total numbers of density 

elements and design variables are potentially less than in the original iMTOP approach. The 

techniques are verified by various two- and three-dimensional numerical examples.  
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4 Chapter 4 Single-loop System Reliability-based Design  
CHAPTER 4 – SINGLE-LOOP SYSTEM RELIABILITY-BASED DESIGN OPTIMIZATION USING 

MATRIX-BASED SYSTEM RELIABILITY METHOD 

CHAPTER 4 – SINGLE-LOOP SYSTEM RELIABILITY-BASED DESIGN 

OPTIMIZATION USING MATRIX-BASED SYSTEM RELIABILITY 

METHOD 

 

This chapter proposes a single-loop system reliability-based design optimization (SRBDO) 

approach using a matrix-based system reliability (MSR) method. A single-loop method is 

employed to eliminate the inner loop of SRBDO that evaluates probabilistic constraints. The 

MSR method enables us to compute the system failure probability and its parameter sensitivities 

efficiently and accurately through convenient matrix calculations. The SRBDO/MSR approach 

proposed in this thesis is applicable to general systems including series, parallel, cut-set and link-

set system events. After a brief overview on SRBDO algorithms and the MSR method, the 

SRBDO/MSR approach is introduced. Three numerical examples demonstrate the proposed 

approach. The results based on different optimization approaches are compared for further 

investigation. Monte Carlo simulation is performed on each example to confirm the accuracy of 

the system failure probability computed by the MSR method. 

4.1 INTRODUCTION 

The main objective of design optimization is to obtain the values of design variables that 

minimize or maximize the objective function(s) of interest while satisfying given design 

constraints. If design optimization is performed in a deterministic manner, that is, uncertainties 

are not taken into account during the optimization; the resultant optimal design may have 

unquantified risk of violating the given constraints. Various reliability-based design optimization 

(RBDO) methods have been developed to achieve optimal designs with acceptable failure 

probabilities (see Refs. (Frangopol and Maute, 2005) and (Tsompanakis et al., 2008) for a state-

of-the-art review of RBDO methods and recent applications to civil and aerospace structural 

systems). During RBDO, the probability of violating given constraint(s), namely, the failure 
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probability, is often computed by reliability analysis methods such as first-order reliability 

method (FORM), second-order reliability method (SORM) (see Ref. (Der Kiureghian, 2005) for 

a comprehensive review of FORM and SORM methods) or response surface methods. 

 

Figure 4.1: Double-loop and single-loop RBDOs. 

 

Traditionally, RBDO has been performed by use of a nested or “double loop” approach, in 

which each step of the iterations for design optimization involves another loop of iteration for 

reliability analysis as shown in Figure 4.1. For example, the reliability index approach (RIA: 

Enevoldsen and Sørensen, 1994) and performance measure approach (PMA; Tu et al., 1999) 

employ FORM to perform the reliability analysis, which requires nonlinear constrained 

optimization. If the constraints are active, the two approaches yield the same results. However, it 

is known that PMA is generally more efficient and stable than RIA (Tu et al., 1999; Youn et al., 

2003). These double loop computations can be prohibitive if the function evaluation cost is 

expensive because the inner-loop often involves iterative reliability analysis to search for the 

most probable point (MPP) (Yang et al., 2005; Youn et al., 2005; Shan and Wang, 2008). As an 

effort to overcome the computational burden of RBDO, many approximate RBDO approaches 

have been developed to decouple the double-loop (Thanedar and Kodiyalam, 1992; Wu and 
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Wang, 1998; Du and Chen, 2000; Kuschel and Rackwitz, 2000; Royset et al., 2001; Du and Chen, 

2004; Streicher and Rackwitz, 2004; Chan et al., 2007; Liang et al., 2008; Shan and Wang, 2008). 

For example, a single-loop approach (Liang et al., 2008) was proposed by using the Karush-

Kuhn-Tucker (KKT) optimality condition to approximate the solution of the inner-loop 

optimization as shown in Figure 4.1. As a result, the inner-loop is replaced by a deterministic 

procedure, which transforms a double-loop RBDO problem into an equivalent single-loop 

optimization problem. 

When multiple failure modes need to be considered as the constraints of a design 

optimization, RBDO is often formulated such that the optimal structure satisfies each failure 

mode with predetermined probabilities. This approach is termed as “component reliability-based 

design optimization (CRBDO)” in this study. In some cases, however, the failure event needs to 

be described by a system event, i.e. a logical (or Boolean) function of multiple failure modes. In 

this case, the probabilistic constraint should be given for the system event, not on individual 

component failure modes. This approach is called “system reliability-based design optimization 

(SRBDO).” The SRBDO requires system reliability analysis, which is not trivial especially for 

systems with statistically dependent component events, or for events that are not series or 

parallel systems. Theoretical bounding formulas are applicable to parallel and series systems 

only (see Ref. (Song and Der Kiureghian, 2003) for a review), and it is difficult to deal with 

probability bounds during RBDO. Various sampling methods are available, but they may render 

SRBDO inefficient in practice. Song and Kang (2009) recently developed a matrix-based system 

reliability (MSR) method that computes the system reliability by convenient matrix-based 

framework. The MSR method is applicable to general system events including series, parallel, 

cut-set and link-set systems while statistical dependence between component events are 

considered. It also provides parameter sensitivities of the failure probability for general system 

events, which are useful during RBDO. 

In this chapter, the single-loop SRBDO approach is integrated with the MSR method 

(SRBDO/MSR) to overcome aforementioned challenges in SRBDO. The remainder of this 

chapter is structured as follows: Section 4.2 describes an overview of existing RBDO 

formulations; Section 4.3 presents the MSR method and proposes the single-loop SRBDO/MSR 
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procedure; Section 4.4 demonstrates the proposed SRBDO/MSR approach by three numerical 

examples; and finally Section 4.5 provides concluding remarks of this chapter. 

4.2 SYSTEM RELIABILITY-BASED DESIGN OPTIMIZATION 

4.2.1 Component reliability-based design optimization 

In general, RBDO problems are formulated as follows: 

 [ ]
,

min    ( , )

. .      ( , ) 0 ,   =1,...,

          ,       

t

i i

L U L U

f

s t P g P i n≤ ≤

≤ ≤ ≤ ≤

X

X
d µ

X X X

d µ

d X

d d d µ µ µ

 (4.1) 

where 
k∈ℜd  is the vector of deterministic design variables; m∈ℜX  is the vector of random 

variables; 
X

µµµµ  is the vector of the means of ;X  (.)f  is the objective function; (.),  1, ,ig i n= …  is 

the i-th limit-state function indicating the occurrence of the failure by (.) 0;ig ≤
t

iP  is the 

constraint on the probability of the i-th limit-state; 
L

d  and 
U

d  are the lower/upper bounds on 

;  L

X
d µµµµ  and U

X
µµµµ  are the lower/upper bounds on 

X
µµµµ  (for simplicity, these boundary values will be 

omitted in the following RBDO formulations); and n, k, m are the number of constraints, 

deterministic design variables, and random variables, respectively. The probabilistic constraint in 

Equation (4.1) can be given alternatively by use of the cumulative distribution function (CDF) of 

the limit state function, that is, 

 [ ( , ) 0] (0) ( β )
i

t

i g iP g F≤ = ≤ Φ −d X  (4.2) 

where ( )
igF ⋅  denotes the CDF of ( );  ( )ig ⋅ Φ ⋅  is the CDF of the standard normal distribution; and 

β t

i
 is the target reliability index. First-order reliability method (FORM) (Der Kiureghian, 2005) 

is widely employed to compute failure probability in Equation (4.2) (Nguyen et al., 2006; Song 

et al., 2006). In all the numerical examples of this chapter, FORM is used for component-level 

reliability analysis. 

This RBDO problem has two nested optimization loops: the outer-loop for design 

optimization and the inner-loop for reliability analysis. One of the common double-loop 



 

70 

approaches available for RBDO is the reliability index approach (RIA; Enevoldsen and Sørensen, 

1994) which uses the formulation: 

 
( )

,

1

min    ( , )

. .      β 0 β    =1,...,
i

t
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f

s t F i n
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X
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where β i
 is the distance from the origin of the space of standard normal random variables 

( )=U U X  to the nearest point on the limit state surface ( , ) 0iG =d U  in which ( )iG ⋅  is the limit-

state function ( )ig ⋅  determined in terms of ,U  that is, ( , ) ( , ( )).i ig G=d X d U X  This distance β i
 

is termed as “reliability index.” The nearest point on the limit state surface, often termed as 

“design point” or “most probable failure point” (MPP) is identified by solving a nonlinear 

constrained optimization (Der Kiureghian, 2005): 
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=

U
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d U

 (4.4) 

where *

iU  is the MPP of the i-th limit state function, and “arg min” denotes the argument of the 

minimum of a function. 

The RIA formulation in Equation (4.3) can be inefficient if the constraints are inactive. 

Moreover, the algorithm may not provide an optimal design solution if the failure events 

( , ) 0iG ≤d U  never occur in the given feasible domain. To overcome these issues, Tu et al. (1999) 

proposed the performance measure approach (PMA) in which the probabilistic constraint is 

described in terms of “performance function,” which is defined as the quantile of the limit-state 

function ( )ig ⋅  at the target failure probability ( ).t

iΦ −β  It is thus formulated as 

 
,

1

min    ( , )

. .      ( β ) 0   =1,...,
i i

t

p g i

f

s t g F i n
−  = Φ − ≥ 
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 (4.5) 

where 
ipg  is the performance function. The constraint in Equation (4.5) implies that  

( ) ( )
i i

t

g p i
F g = Φ −β  is greater than (0) ( ),

ig i
F = Φ −β  so it is equivalent to the constraint in Equation 
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(4.3), .t

i iβ ≥ β  The performance function can be obtained by solving a constrained optimization 

problem (Tu et al., 1999; Du et al., 2004; Youn et al., 2005). 
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 (4.6) 

To improve the efficiency of these double-loop RBDOs, several single-loop RBDO 

approaches have been developed. For example, a sequential optimization and reliability 

assessment (SORA) method was recently proposed (Du and Chen, 2004). The idea is to decouple 

the outer-loop optimization from reliability analysis. Using the information from the previous 

design iteration, the boundaries of the constraints are shifted to the feasible direction and the 

design point is updated accordingly. Additionally, the safety-factor approach  (Wu and Wang, 

1998), one of the single-loop approaches, was developed by using the approximate equivalent 

deterministic constraint to convert the double-loop into single-loop problem. The efficiency of 

the double-loop approach can be enhanced by some efficiency strategies such as the enriched 

performance measure approach (PMA+) (Youn et al., 2005). It was reported that with such 

efficiency strategies, the double-loop approach can be significantly improved (Yang et al., 2005; 

Youn et al., 2005). 

Recently, Liang et al. (2008) proposed a single-loop RBDO by approximating the result of 

the nonlinear constrained optimization in Equation (4.6) by solving the system equation that 

describes the Karush-Kuhn-Tucker (KKT) condition: 
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in which λ denotes a Lagrange multiplier. Next, the “negative normalized gradient vector” (Der 

Kiureghian, 2005) of the limit-state function at the solution of Equation (4.6) is approximately 

obtained by evaluating it at the solution of Equation (4.7), ,i=U U�  that is 
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where ,X U
J  is the Jacobian of the ( )=X X U  transformation. The solution of Equation (4.6) is 

then approximated by scaling this unit vector by the target reliability index, i.e. 

 ˆβt t t

i i i≅U α  (4.9) 

The performance function is approximated by evaluating the limit-state function at .t

iU  As a 

result, the RBDO is formulated as 
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In summary, the inner-loop of the PMA RBDO is replaced by the approximate, non-iterative 

procedures shown in Equations (4.7)–(4.9). Figure 4.2 illustrates the approximation scheme of 

the single-loop RBDO algorithm. This single-loop approach was reported to have the accuracy 

comparable with the double-loop approach and the efficiency almost equivalent to deterministic 

optimization (Liang et al., 2008). This study aims to improve this single-loop RBDO approach 

when system reliability analysis is needed for failure probability calculations. 

 

Figure 4.2: Approximation scheme in the single-loop RBDO algorithm. 
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4.2.2 System reliability-based design optimization 

In the case when the failure event in the design constraint needs to be described by a system 

event, i.e. a logical (Boolean) function of multiple component events, the RBDO requires a 

system reliability analysis. This system reliability-based design optimization (SRBDO) can be 

formulated as 
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where 
sysP  is the system failure probability; 

sysE  is the system failure event; 
kC  is the index set 

of the components in the k-th cut-set; and t

sys
P  is the target system failure probability. Any type 

of system event may be used during SRBDO but, for illustration purpose, Equation (4.11) shows 

a cut-set system formulation that can represent series, parallel, and cut-set systems. Royset et al. 

(2001) proposed a decouple procedure for reliability and optimization calculations of the 

SRBDO problem (4.11) for series system. The target system reliability is satisfied by adjusting 

the target component reliabilities heuristically. 

An SRBDO approach was proposed for series system problems in (Ba-Abbad et al., 2006). 

In this approach, the failure probability of a series system is approximated as the sum of the 

component failure probabilities, i.e., 
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Then, SRBDO problems are formulated as 
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Note that the constraints on the component probabilities, t

iP ’s, are used as design variables. This 

approach can significantly overestimate the system risk because the approximation in Equation 

(4.12) provides a fairly conservative upper bound, see Ref. (Song and Der Kiureghian, 2003) for 

a review on system reliability bounding formulas. Moreover, this approach cannot account for 

the effect of the statistical dependence between component events, which is caused by common 

random variables or statistical correlation between random variables. 

A single-loop SRBDO approach was recently proposed for series systems by Liang et al. 

(2007). This approach also uses t

iP ’s as design variables. The inner loop is eliminated by 

approximating the design points by KKT conditions as explained above. The system failure 

probability is approximated by the upper bound in the bi-component theoretical bounding 

formula (Ditlevsen, 1979). As a result, the single-loop SRBDO is formulated as 

 

1, , ,...,

1 2

min    ( , )

. .       ( , ( )) 0   =1,...,

           max

t t
nP P

t

i i

n n
t t t

sys i ij sys
j i

i i

f

s t g i n

P P P P
<

= =

≥

≅ − ≤∑ ∑

X

X
d µ

d µ

d X U  (4.14) 

in which t

iU  is obtained by Equations (4.7)−(4.9); and t

ij
P  is the joint failure probability of the i-

th and j-th constraints, computed by a numerical integration based on t

iP , t

j
P  and the inner 

product of approximated negative normalized gradient vectors (Liang et al., 2007). Despite its 

improved accuracy in estimating the system failure probability by using a higher-order bounding 

formula, it still overestimates the system failure probability and is not applicable to non-series 

system events for which general theoretical bounding formulas are not available. 

The matrix-based system reliability (MSR) method is employed to compute 
sysP  in the 

single-loop SRBDO shown in Equation (4.14). The method enables us to compute 
sysP  of general 

system events including series, parallel, cut-set and link-set systems efficiently and accurately 

during SRBDO. The sensitivity of 
sysP  with respect to design variables further facilitates the use 

of gradient-based optimization algorithms. 
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4.3 SYSTEM RELIABILITY-BASED DESIGN OPTIMIZATION USING MSR METHOD 

4.3.1 Matrix-based system reliability (MSR) method 

Although system reliability analysis is a well established research area, it is still challenging 

to compute the probability of a general system event and its parameter sensitivity, especially 

when component events are statistically dependent. Song and Der Kiureghian (2003) introduced 

a method to compute the bounds on the probability of a general system event by linear 

programming (LP). This “LP bounds” method subdivides the sample space of component events 

into the mutually exclusive and collectively exhaustive events (termed as basic MECE events), 

and the probability of any event is described by use of vectors representing the probabilities of 

basic MECE events. Then, its upper and lower bounds are obtained by solving the LP problems 

subjected to the constraints derived from given information such as component probabilities and 

statistical dependence. This matrix-based framework of system reliability analysis enables 

obtaining the narrowest possible bounds on the probability of any general system, and the 

parameter sensitivities of the bounds (Song and Der Kiureghian, 2005) as well.  

Song and Kang (2009) recently proposed the matrix-based system reliability (MSR) method 

to compute the probability of general system events in a uniform manner by use of simple matrix 

calculation instead of solving LP. Consider a system event with n components each of which has 

two distinct states, e.g., “failure” and “safe.” Then, the sample space can be subdivided into 

2
n

N =  basic MECE events, denoted by ej, 1,..., .j N=  Then any system event can be presented 

by an “event” vector c whose j-th element is 1 if ej belongs to the system event and 0 otherwise. 

Let ( ),  1, ..., ,i jp P e j N= =  denote the probability of ej. Because ej’s are mutually exclusive to 

each other, the probability of system event, 
sysP  is simply the sum of the probability of ej’s that 

belong to the system event Esys. Therefore, the system probability is computed by the inner-

product of the two vectors. 

 T

sys

:

=
j sys

j

j e E

P p
⊆

=∑ c p  (4.15) 

where p is the “probability” vector that contains 
jp ’s, 1,...,j N= . Both c and p are column 

vectors in this study, and can be constructed efficiently using matrix-based procedures proposed 
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in (Song and Kang, 2009). The method has been further developed and successfully applied to 

various system reliability problems (Kang et al., 2008; Kang et al., 2010; Song and Ok, 2010; 

Lee et al., 2010b). 

When component events are statistically dependent, the construction of p requires numerous 

system reliability analyses for each element. This challenge can be overcome by achieving 

conditional independence between component events given outcomes of a few random variables 

representing the sources of “environment dependence” or “common source effects.” For example, 

during a risk analysis of a transportation network based on bridge failure probabilities, the 

uncertain magnitude of earthquake was considered as a random variable representing the 

common source effect (Kang et al., 2008). Let S denote the vector of such random variables, 

named “common source random variables” (CSRV). By the total probability theorem, the system 

failure probability can be then computed as 

 

( ) ( )

( )

sys

T

|

( )

sys
P P E f d

f d

=

=

∫

∫

S

s

S

s

s s s

c p s s s
 (4.16) 

where 
sys( | )P E s  is the conditional probability of the system event given an outcome of CSRV, 

=S s ; ( )f
S

s  is the joint probability density function (PDF) of S ; and ( )p s  is the conditional 

probability vector given =S s , which can be constructed efficiently by the proposed matrix-

based procedure employing conditional probabilities of component events given =S s , i.e.

( ) ( | )i iP P E= =s S s  instead of the marginal probabilities ( )i iP P E= . 

The approach in Equation (4.16) can be used even in the case when the CSRVs are not 

explicitly identified. One way to identify such implicit common source effect as CSRVs is to fit 

the correlation coefficient matrix of random variables representing component events such as 

safety margin (or factor) with a special correlation matrix model that allows such identification. 

For example, Song and Kang (2009) generalized Dunnett-Sobel (DS) class correlation matrix 

(Dunnett and Sobel, 1955) to identify CSRVs. Consider correlated standard normal random 

variables ,  1,..., .iZ i n=  Their correlation matrix can be fit with the following generalized DS 

model through an optimization: 
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 
∑ ∑  (4.17) 

in which 
iY , 1,...,i n=  and 

kS , 1,...,k m=  are uncorrelated standard normal random variables; 

and 
ikr ’s are the coefficients of the generalized DS model that determine the correlation 

coefficient between 
iZ  and 

jZ  as 1ρ ( . )m

ij k ik jkr r==∑  for .i j≠  Note 
iZ  and 

jZ  are conditionally 

independent of each other given the outcome of CSRVs 
kS , 1,...,k m= . The MSR method is 

demonstrated in an illustrative example in the Appendix B. 

4.3.2 Parameter sensitivity of system failure probability 

The MSR method enables us to compute the parameter sensitivity of the probability of a 

general system event. First, when the component events are statistically independent, the 

sensitivity of the system failure probability with respect to a parameter θ is computed as 

 
sys T=
θ θ

P∂ ∂

∂ ∂

p
c  (4.18) 

The separation of the system event description (c) and the probabilities (p) in the MSR 

framework allows us to compute the parameter sensitivity for general system events in a uniform 

manner. The sensitivity of p  in Equation (4.18) can be computed by the following matrix-based 

procedure (Song and Kang, 2009): 

 �1 2
=  ... 
θ θ θ

n∂ ∂ ∂  = ∂ ∂ ∂

p P P
p p p P  (4.19) 

where T

1 2[   ]nP P P=P �  in which 
iP  is the probability of the i-th component event; and j

p , 

1,...,j n=  is the probability vector constructed by the matrix-based procedure developed for p  

except that the probabilities of the j-th component event and its complementary event are 

replaced by 1 and −1, respectively during the construction. In summary, the MSR framework 

allows us to compute the system-level parameter sensitivities by use of component probabilities 

and their parameter sensitivities. 

When the components are statistically dependent, the parameter sensitivity is computed as 
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sys T ( )

= ( )
θ θ

P
f d

∂ ∂

∂ ∂∫ S

s

p s
c s s  (4.20) 

in which the sensitivity in the integral is constructed by the procedure in Equation (4.19) except 

that the conditional probability of the component events given =S s , i.e.  

 ( )( )= β 0| = ,  1, ...,
i i i

P P Z i n− ≤ =s S s  (4.21) 

is used instead of 
iP . Substituting (4.17) into (4.21), the conditional probability is computed as 
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4.3.3 Single-loop SRBDO/MSR procedure 

The proposed SRBDO/MSR as shown in Figure 4.3 adopts the same single-loop SRBDO 

approach in Equation (4.14) except that 
sysP  is computed by the MSR method. It is thus 

formulated as 
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 (4.23) 

Figure 4.3 shows the flowchart of the proposed SRBDO/MSR algorithm. 

If the sensitivities of 
sysP  with respect to d and t

iP ’s, i = 1,…,n are available, one can use a 

gradient-based optimization algorithm for the SRBDO. As shown in Section 4.3.2, the MSR 

method provides the sensitivity of 
sysP  with respect to general parameters if the parameter 

sensitivities of component probabilities are available. For example, one can obtain such 

sensitivities using FORM (Bjerager and Krenk, 1989). Herein it is explained how the sensitivity 
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with respect to 
iP ’s can be computed by the MSR method. First, the sensitivity of ( )iP s  with 

respect to the reliability index 
iβ  is derived as 
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 (4.24) 

in which ( )ϕ ⋅  denotes the PDF of the standard normal distribution. Then, the sensitivity with 

respect to the i-th component probability is derived as 

 
( ) ( ) β ( ) 1

β β φ( β )

i i i i

i i i i i

P P P

P P

∂ ∂ ∂ ∂
= ⋅ = − ⋅

∂ ∂ ∂ ∂ −

s s s
 (4.25) 

This sensitivity is used for computing the sensitivity vector in Equation (4.18) or (4.20). 

 

Figure 4.3: Flowchart of the proposed SRBDO/MSR algorithm. 

 

Equivalent SRBDO/PMA
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4.4 NUMERICAL EXAMPLES 

In this section, three numerical examples are presented to demonstrate the capability and 

accuracy of the proposed SRBDO/MSR approach. In the first example, the optimal design of a 

combustion engine is obtained in which the failure is described as a series system event. In the 

second example, the cross-sectional areas of the members of a statically indeterminate truss 

structure are determined for minimum total weight. A constraint is given on the probability of the 

system failure described by a cut-set system event. In the third example, the redistribution of the 

member forces caused by member failures is considered for the truss system in the second 

example. The results based on different RBDO approaches are compared for further 

investigations. Monte Carlo simulations are also performed to confirm the accuracy of the 

system failure probability computed by the MSR method. 

4.4.1 Design of an internal combustion engine 

This example adopted from Liang et al. (2007) deals with the optimal design of the flat head 

of an internal combustion engine (McAllister and Simpson, 2003). The objective is to find the 

mean values of the random design variables that maximize the “specific power” (or minimize the 

negative specific power). A constraint is given on the probability that the design will violate at 

least one of the requirements – a series system event. This SRBDO problem is formulated using 

the negative specific power as follows. 
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where 
6 3

1.859 10  mmV = × , 43,958 kJ/kgQ = , 0.44sC = , 4cN = , and 
( )⋅µ  denotes the mean 

of the corresponding random variable in the subscript. The following five random variables are 

considered: the cylinder bore b, compression ratio cr, exhaust valve diameter dE, intake valve 

diameter dI and the revolution per minute (rpm) at peak power (divided by 1,000), denoted by ω. 

These are assumed to follow normal distributions. Table 4.1 shows the standard deviations of the 

random variables and the lower and upper bound values for their means, i.e., L

X
µ  and U

X
µ . 

Table 4.1: Standard deviations of the random variables and bounds given on their means. 
 

Random variables Std dev Lower bounds Upper bounds 

Cylinder bore, b (mm) 0.40 70 90 

Intake valve diameter, dI 
(mm) 0.15 25 50 

Exhaust valve diameter, dE 
(mm) 0.15 25 50 

Compression ratio, cr 0.05 6 12 

(rpm at peak power)/1000, ω  0.25 5 12 

 

Liang et al. (2007) first performed a PMA-based CRBDO, shown in Equation (4.10), for the 

given problem. For each of the 9 requirements, the constraint on the component failure 

probability 0.00135t

iP =  (equivalent to target reliability index 3.0
t

iβ = ) was assigned. The 
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second column of Table 4.2 shows the optimal mean values and the corresponding maximum 

specific power 50.9713. The system failure probability was estimated as 0.006539 by Monte 

Carlo simulation (MCS) (Liang et al., 2007). For the purpose of comparison, this MCS estimate 

was used as the constraint on 
sysP  during the single-loop SRBDO in (Liang et al., 2007) and 

SRBDO/MSR in this study. During SRBDO in (Liang et al., 2007), the “active set” strategy was 

introduced to deal with a convergence issue caused by small failure probabilities. They assigned 

“1” to active components whose failure probabilities t

iP  are greater than 10
–7

, and “0” to the 

inactive components with smaller probabilities. The “inactive” components (those with “N/A” in 

Table 4.2) were excluded from the system failure probability calculations. The SRBDO/MSR in 

this study used a different optimizer (Svanberg, 1987) and did not experience the convergence 

issue, so the active set strategy was not used, but the lower bounds 10
–7

 were assigned on 

component probabilities t

iP , 1,...,9i =  to facilitate the convergence. The component events 

whose probabilities are lower than the lower bound were not considered during the MSR analysis. 

For the given problem, the optimal mean values and the maximum specific power by 

CRBDO are similar to those by SRBDOs. However, it should be noted that for a given SRBDO 

problem, the CRBDO approach may require repeated optimizations to find the level of 

constraints on the component failure probabilities that lead to the desired system level reliability. 

It is also noted that the maximum specific power by CRBDO is smaller than those by SRBDOs 

even if the system failure probability is the same. This is because the CRBDO approach 

(assigning fixed constraints on individual components) is generally more constrained than 

SRBDOs (assigning a constraint on system event, not on the individual components) at the same 

level of system reliability. 
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Table 4.2. Results of CRBDO (Liang et al., 2007), single-loop SRBDO (Liang et al., 2007), and 

SRBDO/MSR for combustion engine. 
 

 

CRBDO by 

(Liang et al., 

2007) 

SRBDO 

SRBDO 

by (Liang et al., 

2007) 

SRBDO/MSR 

MCS for design 

by 

SBRDO/MSR 

b
µ  82.1333 82.1419 82.1434 82.1434 

Id
µ  35.8430 35.8456 35.8394 35.8394 

Ed
µ  30.3345 30.3641 30.3639 30.3639 

rc
µ  9.3446 9.3174 9.3194  9.3194 

ωµ  5.3141 5.3598 5.3621  5.3621 

1

t
P

 
0.00135

a
 0.001448 0.001467 0.0014686 

2

t
P

 
0.00135

a
 N/A 10

–7
 0 

3

t
P

 
0.00135

a
 0.001665 0.001558 0.0015627 

4

t
P

 
0.00135

a
 0.000811 0.000778 0.0007713 

5

t
P

 
0.00135

a
 N/A 10

–7
 0 

6

t
P

 
0.00135

a
 0.002370  0.002502      0.002503 

7

t
P

 
0.00135

a
 0.000232 0.000266 0.0002573 

8

t
P

 
0.00135

a
 N/A 0.000003 0.0000023 

9

t
P

 
0.00135

a
 N/A 10

–7
 0 

t

sysP
 

N/A 0.006539
a
 0.006539

a
  

sys
P

 
0.006539 (MCS)   0.006546 

Max. Power: ( )f−
X

µ  50.9713 51.1023 51.1014 51.1014 

   a Pre-determined constraints. 

 

The comparison in Table 4.2 confirms that the two SRBDO approaches provide fairly close 

results for the series system problem. The small difference is caused by the upper bound 

approximation in SRBDO in (Liang et al., 2007). According to the component failure 

probabilities of the optimal designs, the contribution of components 2, 5, 8 and 9 to system 

reliability are insignificant. The importance ranking of the other significant components is as 
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follows: 6�3�1�4�7. This ranking of component contributions is an important by-product of 

the SRBDO approaches. The fifth column of Table 4.2 shows the results of MCS (10
7
 times; 

coefficient of variation c.o.v = 0.004) performed using the optimal design variables from 

SRBDO/MSR. The results confirm that the optimal design by SRBDO/MSR leads to the 

component/system failure probabilities that are compatible with the component failure 

probabilities found during optimization and with the assigned constraint on the system failure 

probability. 

4.4.2 SRBDO of an intermediate truss structure 

 

Figure 4.4: A six-member indeterminate truss example. 

 

The uniform applicability of SRBDO/MSR to general system problems is demonstrated by 

an SRBDO example of a statically indeterminate truss system by McDonald and Mahadevan 

(2008). Figure 4.4 shows the geometry and the applied load of the truss system. The yielding 

failures of the six members are modeled as component failure events. When the buckling failure 

modes, the dynamic effect of member damages, and the influence of the load redistribution 

during progressive failures (Song and Kang, 2008) are neglected, the system fails when at least 

two members fail. The system failure event is described by the union of 15 minimal cut-sets: 

{ } {kC = (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), 

(5,6)}, each of which represents the joint failure of the corresponding members (see Figure 4.4 

for the member numbering choice). 

FA

L

L

4

1 2

6

53
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In order to minimize the total weight of the structure, the objective function is defined such 

that it is proportional to the total weight of the members. The design variables are the cross 

sectional areas of the members, 
iA , 1,...,6i =  which are considered deterministic in this problem. 

The applied load 
AF  is assumed to follow a normal distribution with the mean of 4,450 kN and a 

standard deviation of 445 kN while the yield strengths of the members (in stress), ,iF  1,...,6i =  

are assumed to be a normal distribution with the mean 745 MPa and the standard deviation 62 

MPa. All random variables, 
1 6,...,F F  and 

AF , are assumed to be statistically independent of each 

other. The member forces are derived in terms of the applied load assuming that the two diagonal 

bars carry equal forces. The target system failure probability t

sys
P  is given as 0.001. As a result, 

the SRBDO problem is formulated as 

 

1 6
1 2 3 4 5 6

{ ,..., }

15

sys

1

1 2 3 4 5 6

min ( ) 2( )

  . .      = g ( , ) 0 0.001 

( , ) 0.707      1, 2
           

0.500      3,..., 6

            , , , , , 0

k

A A

t

i sys

k i C

i i i A

i i A

f A A A A A A

s t P P P

g A F F i

A F F i

A A A A A A

=

= ∈

= + + + + +

 
≤ ≤ = 

  

= − =

− =

≥

d
d

d X

d X

∪∩
 (4.27) 

In the study by McDonald and Mahadevan (2008), a single-loop SRBDO approach shown in 

Equation (4.14) was used except that the system failure probability was computed as follows. 

First, the probability of each cut-set was calculated as a parallel system using the product of 

conditional marginals method (Pandey, 1998). Considering the entire system event as a series 

system whose components are the cut-sets, the system failure probability was approximated by 

the first-order bounding formula in Equation (4.12) with Pi’s replaced by the probabilities of the 

cut-sets.  
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Table 4.3. Results of SRBDO (McDonald and Mahadevan, 2008) and SRBDO/MSR for the 

indeterminate truss system. 
 

Members 

 Area: Ai  (×10
−3

 mm
2
)  Reliability index: β i 

SRBDO by 

(McDonald and 

Mahadevan, 2008) 

SRBDO/MSR  

SRBDO by 

(McDonald and 

Mahadevan, 2008) 

SRBDO/MSR 

1 18.43 17.89  2.89 2.67 

2 18.27 17.89  2.83 2.67 

3 13.51 13.20  3.16 2.99 

4 13.44 13.20  3.12 2.99 

5 13.33 13.20  3.06 2.99 

6 13.09 13.20  2.92 2.99 

  

The proposed SRBDO/MSR approach in Equation (4.23) is applied to this example. The 

system failure probability and its sensitivities with respect to t

iP  are computed by MSR method 

as explained in Section 4.3. The system failure probability is accurately estimated without using 

a bounding formula. The computed sensitivities facilitate the use of a gradient-based 

optimization algorithm. Table 4.3 compares the results by the two approaches. Except a slightly 

more conservative design in member 6, SRBDO/MSR approach finds less conservative designs 

in all members while the same requirement on the system-level reliability is achieved. The 

minimum objective function value (i.e. minimum total weight) of the proposed approach is 

103.36×10
3
, which is less than that by the approximation method (McDonald and Mahadevan, 

2008), 105.24×10
3
. This is due to the overestimation of the system failure probability by the 

first-order bounding method, which results in a more conservative design than required. This is 

also evidenced by the lower reliability indexes of the component events by the proposed 

approach shown in Table 4.3. It is also noteworthy that, due to the accurate system reliability 

estimates during the SRBDO/MSR, the symmetric conditions between diagonal members (1 and 

2) and between non-diagonal members (3-6) give rise to symmetric results in the optimal design 

(i.e. cross-sectional areas) and the component failure probabilities (i.e. reliability indexes) as well. 

The system failure probability 
sysP  of the optimal cross sectional areas found by SRBDO/MSR is 
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evaluated as 0.001 by the MSR analysis and as 0.00107 by MCS (10
6
 times, c.o.v = 0.03). Both 

estimates are fairly close to the given constraint 0.001.  

According to the magnitude of component failure probabilities of the optimal design, the 

importance ranking of the components is identified as (1,2)�(3,4,5,6). In order to quantify the 

relative importance of components based on their actual contributions to the system failure 

probability (not on the magnitude of individual component events), the conditional probability 

importance measure (CIM; Kang and Song) of the i-th component event, 

 
( )

CIM = ( | )=
( )

i sys

i i sys

sys

P E E
P E E

P E
 (4.28) 

can be used. This importance measure can be computed by the MSR method without significant 

additional computational cost. The system failure probability in the denominator is already 

available. Because the probability vector can be used once again, the only additional task 

required is to find the event vector for the new system event '

sys i sysE E E= . Figure 4.5 shows the 

CIMs of the truss members. The importance ranking is the same as that based on the individual 

component failure probabilities for this particular problem, but it should be noted that these 

rankings can be different in some cases. For example, if a constraint having high likelihood of 

violation does not contribute much to violating the system-level constraint, its CIM can be 

negligible despite its high failure probability. 

 

Figure 4.5: Conditional probability importance measures of the truss member. 
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Table 4.4. Results of SRBDO/MSR for normal and lognormal distribution cases. 

Members 
 Area: Ai  (×10

−3
 mm

2
)  Reliability Index: β i 

Normal  Lognormal  Normal Lognormal 

1 17.89 18.18  2.67 2.79 

2 17.89 18.18  2.67 2.79 

3 13.20 13.51  2.99 3.17 

4 13.20 13.51  2.99 3.17 

5 13.20 13.51  2.99 3.17 

6 13.20 13.51  2.99 3.17 

 

Next, all the random variables in the above example are assumed to follow the lognormal 

distributions with the same means and standard deviations. This is to investigate the effect of the 

types of the probabilistic distributions on the optimal design and to demonstrate the general 

applicability of the proposed method. The minimum objective function value is obtained as 

105.46×10
3
, which is slightly larger than that of the normal distribution case. Table 4.4 shows 

that the reliability indexes of the component events and the optimal cross sectional areas of the 

lognormal distribution case are slightly larger than that of the normal distribution case. The 

system failure probability 
sysP  of the optimal design from the SRBDO/MSR analysis is evaluated 

as 0.000998 by MCS (10
6
 times, c.o.v = 0.032), which is close to the given constraint 

0.001.t

sysP =  

4.4.3 SRBDO of an intermediate truss structure considering progressive failure 

In this example, the SRBDO problem in Section 4.4.2 is re-investigated with consideration 

of load redistribution in the truss system caused by member failures. This load redistribution can 

cause a progressive failure of the system. All the parameters are the same as the previous 

example. The complexity of estimating the likelihood of this system event arises from the fact 

that the failures of the remaining members should be described as new component events due to 

the load re-distribution. Figure 4.6 shows the numbering choice of the component failure events 

defined for the members in the original structure and the structures with one failed member. 
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Figure 4.6: Component failure events defined for the original system and system with failed 

members. 

 

The structure survives if (1) no member fails in the original configuration or (2) one member 

fails but no further member failures take place. Using the component numbering choice shown in 

Figure 4.6, the probability of system survival 
sysE  is described as  

 

( )
( )( ) ( ) ( )
( )( ) ( ) ( )

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 12 13 14 15 16

1 2 3 4 5 6 17 18 19 20 21 1 2 3 4 5 6 22 23 24 25 26

1 2 3 4

     = 

                  

                  

                  

sys
P E P E E E E E E

E E E E E E E E E E E E E E E E E E E E E E

E E E E E E E E E E E E E E E E E E E E E E

E E E E E
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∪ ∪

∪ ∪

( )( ) ( ) ( )5 6 27 28 29 30 31 1 2 3 4 5 6 32 33 34 35 36E E E E E E E E E E E E E E E E E 
∪

 (4.29) 

in which 
iE  and 

iE  respectively denote the failure and survival event of the i-th component. This 

is a link-set system event consisting of 36 components. The size of c and p is 
36 10

2 6.87 10≅ × . 

However, the size of the vectors used in MSR analysis can be further reduced as follows. Due to 

the mutual exclusiveness of the seven link-sets, the probability can be computed as the sum of 

the probabilities of the individual link-sets, which reduces the maximum number of components 
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appearing in an MSR analysis from 36 to 11. It can be further reduced by considering the fact 

that some link-sets include component events defined for the same member. For example, the 

component events 
1E  and 

12E  are defined for the same member as shown in Figure 4.6. Since 

their limit state functions indicate 
1 12E E⊃  for positive values of 

1F  and 
AF , 

1 12E E  is simplified 

to 
12E . As a result, the system reliability can be computed as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2 3 4 5 6 1 3 4 6 7 10 2 5 12 13 14 16

1 3 4 6 18 20 1 3 4 6 23 25 2 5 27 29 30 31 1 3 4 6 33 36

= 
sys

P E P E E E E E E P E E E E E E P E E E E E E

P E E E E E E P E E E E E E P E E E E E E P E E E E E E

+ + +

+ + +
(4.30) 

This system decomposition reduces the maximum number of components appearing an MSR 

analysis to 6. The size of the vectors is only 
6

2 64.=  Noting some component events having the 

same limit-state functions, Equation (4.30) is rewritten using twelve distinct component events as 

follows. 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2 3 4 5 6 1 3 4 6 7 10 2 5 12 13 14 16

1 3 4 6 7 10 1 3 4 6 7 10 2 5 12 13 14 16 1 3 4 6 7 10

= 
sys

P E P E E E E E E P E E E E E E P E E E E E E

P E E E E E E P E E E E E E P E E E E E E P E E E E E E

+ +

+ + + +
 (4.31) 

Thus, the SRBDO problem is formulated as 
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where ,  1,...,7kL k =  is the component index set from Equation (4.31), that is, { }kL = 

{(1,2,3,4,5,6), (1,3,4,6,7,10), (2,5,12,13,14,16), (1,3,4,6,7,10), (1,3,4,6,7,10), (2,5,12,13,14,16), 

(1,3,4,6,7,10)}. 

Table 4.5 compares the results of the SRBDO in Equation (4.32) (denoted by “Ex. 3” in the 

following tables) with those given in the previous example (“Ex. 2”). It is seen that the optimal 

cross sectional areas increase significantly as the effect of load re-distribution is considered. The 

objective function value also increases from 103.36×10
3
 to 114.13×10

3
. This implies that 

neglecting the load redistribution during an SRBDO may result in a design that does not satisfy 

the system-level safety criteria. As expected, when the load redistribution is considered, the 

system failure probability of the optimal design from the previous example (“Ex. 2”) is estimated 

as 0.01208 by MSR analysis and 0.01205 by MCS (10
6
 times; c.o.v = 0.009), which clearly 

exceed the given constraint 0.001. By contrast, the system failure probability of the optimal 

design in this example is estimated as 0.001 by MSR and 0.000986 by MCS (10
6
 times, c.o.v = 

0.0318), which are close to the given constraint. 

Table 4.5. Results of SRBDO/MSR of the truss system with/without consideration of load 

redistribution. 

Member 

(Figure 4.4) 

Component 

events 

(Equation 4.31) 

Area: Ai (×10
−3

 mm
2
) Reliability index: β i 

Ex. 2 Ex. 3 Ex. 2 Ex. 3
a
 

1 1, 12 17.89 19.94 2.668 3.48, −2.07 

2 2, 7 17.89 19.94 2.668 3.48, −1.78 

3 3, 13 13.20 14.44 2.987 3.65, −1.95 

4 4, 14 13.20 14.44 2.987 3.65, −1.95  

5 5, 10 13.20 14.44 2.987 3.65, −1.62 

6 6, 16 13.20 14.44 2.987 3.65, −1.95 

       a two reliability indexes correspond to the component events in the second column (in the same order) 

 

The impact of statistical correlation between random yielding strengths 
iF ’s on the optimal 

design is investigated by varying their correlation coefficients 
,i jρ . For simplicity, the correlation 

coefficients are assumed to be uniform, i.e. 
,i jρ = ρ . The SRBDO problems in Equation (4.27) 

and Equation (4.32) are solved again with correlation coefficient ρ  varying from 0.00 to 
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0.75.The optimal cross-sectional areas and the objective function values are shown in Table 4.6. 

It is seen that considering the effect of load redistribution results in more conservative designs 

for all levels of correlation considered. It is also observed that the higher correlation among 

member yield strengths increase the cross-sectional areas when redistribution is not considered, 

but decreases if redistribution considered. Figure 4.7 presents this trend more clearly by showing 

the objective function values of the SRBDOs. 

Table 4.6. Optimal design and correlation between member yield strengths. 

 

Area: Ai (×10
−3

 mm
2
) 

ρ =0.00* ρ =0.25 ρ =0.50 ρ =0.75
 

Ex. 2 Ex. 3 Ex. 2 Ex. 3 Ex. 2 Ex. 3 Ex. 2 Ex. 3 

M
e
m

b
e
rs

 (
F

ig
u

re
 4

.4
) 1 17.89 19.94 18.03 19.90 18.14 19.83 18.31 19.68 

2 17.89 19.94 18.03 19.90 18.14 19.83 18.31 19.68 

3 13.20 14.44 13.53 14.40 13.91 14.33 14.28 14.16 

4 13.20 14.44 13.53 14.40 13.91 14.33 14.28 14.16 

5 13.20 14.44 13.53 14.40 13.91 14.33 14.28 14.16 

6 13.20 14.44 13.53 14.40 13.91 14.33 14.28 14.16 

Objective 

Function 
103.36 114.13 105.12 113.93 106.93 113.42 108.90 112.34 

    

  

Figure 4.7: Objective functions versus correlation between member yield strengths. 
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4.5 CONCLUDING REMARKS 

In this chapter, an efficient and accurate system reliability-based design optimization 

(SRBDO) approach is developed by integrating a single-loop RBDO algorithm with the recently 

developed matrix-based system reliability (MSR) method. The use of MSR improves the 

efficiency and accuracy of the computation of the system probability and its sensitivities in the 

existing single-loop SRBDO approach (Liang et al., 2007). The MSR method enables us to 

compute the probabilities of general system events including series, parallel, cut-set and link-set 

systems in a uniform manner without using approximate bounds or random samplings. It can 

account for statistical dependence between component events and can compute the sensitivities 

of the system failure probability to various parameters as well, which facilitates the use of 

gradient-based optimization algorithms. Three numerical examples demonstrate the uniform 

applicability of the proposed SRBDO/MSR approach to series, cut-set and link-set systems. It is 

seen that the accuracy of system reliability analysis by the MSR method enables us to obtain less 

conservative optimal design than SRBDO algorithms using upper bounds. The effect of load 

redistribution by member failures on the optimal designs is investigated as well. In each example, 

the accuracy of the MSR method is verified by Monte Carlo simulations. It is noteworthy that the 

SRBDO/MSR in this study employs FORM for component reliability analysis and MSR 

accurately estimates system probability based on the provided component probabilities. 

Therefore, if the component reliability analysis FORM provides inaccurate component 

probabilities due to the nonlinearity of the limit-state functions, this inaccuracy will affect the 

accuracy of any FORM-based SRBDO algorithm including SRBDO/MSR. 
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5 Chapter 5 Single-loop system reliability-based topology  
CHAPTER 5 – SYSTEM RELIABILITY-BASED TOPOLOGY OPTIMIZATION CONSIDERING 

STATISTICAL DEPENDENCE BETWEEN LIMIT-STATES 

CHAPTER 5 – SYSTEM RELIABILITY-BASED TOPOLOGY OPTIMIZATION 

CONSIDERING STATISTICAL DEPENDENCE BETWEEN LIMIT-

STATES 

 

This chapter presents a single-loop algorithm for system reliability-based topology 

optimization (SRBTO) that can account for statistical dependence between multiple limit-states, 

and its applications to computationally demanding topology optimization problems. The 

proposed single-loop SRBTO algorithm accounts for the statistical dependence between the 

limit-states by using the matrix-based system reliability (MSR) method in computing the system 

failure probability and its parameter sensitivities. In order to improve the accuracy of the 

reliability calculations for RBDO or RBTO problems with high nonlinearity, new single-loop 

RBDO schemes utilizing the second-order reliability method are proposed. Numerical examples 

of two- and three-dimensional topology optimization problems demonstrate the proposed 

SRBTO algorithm and its applications 

5.1 INTRODUCTION 

Topology optimization aims to find optimal structural layout under given constraints through 

iterative computational simulations. In the past decades, a large number of studies have been 

devoted to this important research area of structural optimization (Bendsøe and Sigmund, 2003). 

Topology optimization methods have been successfully applied to a wide range of practical 

engineering problems (Rozvany, 2001; Bendsøe and Sigmund, 2003). However, most of the 

efforts have been conducted in a deterministic manner although uncertainties in loads or material 

properties may result in significant probability of violating design constraints. In this study, this 

approach is referred to as deterministic topology optimization (DTO). Recently, active research 

has been performed to achieve reliable topologies under probabilistic constraints. This approach 

is often termed as reliability-based topology optimization (RBTO), and has been successfully 
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applied to a variety of topology optimization problems (Bae et al., 2002; Maute and Frangopol, 

2003; Allen et al., 2004; Jung and Cho, 2004; Kang et al., 2004; Kharmanda et al., 2004; Kim et 

al., 2006; Guest and Igusa, 2008; Rozvany, 2008; Lógó et al., 2009; Luo et al., 2009; Chen et al., 

2010). For example, Maute and Frangopol (2003) employed RBTO in the design of compliant 

micro-electromechanical system mechanism (MEMS). Jung and Cho (2004) applied RBTO to 

geometrically nonlinear structures with uncertain loads and material properties. Additionally, 

Rozvany (2008) derived the analytical solution for benchmark problems in probabilistic topology 

optimization. It is noted that most research efforts on RBTO have been focused on satisfying the 

probabilistic constraint given for each failure mode. In the current study, this approach is referred 

to as component reliability-based topology optimization (CRBTO). A generic formulation for 

CRBTO problems is given as follows 

 

min (ρ( ; ))

. .  [ (ρ( ; ), ) 0] ,   1,...,

      (ρ( ; ))

      

t

i i

d

L U

f

s t P g P i n≤ ≤ =

⋅ =

≤ ≤

d
ψ d

ψ d X

K ψ d u f

d d d

 (5.1)  

where 
k∈ℜd  is the vector of deterministic design variables; ρ( ; )ψ d  is the material density at 

the position 2 3 or ∈ ℜ ℜψ  that is generally determined by a projection function ( )
p

f ⋅  and the 

design variables, i.e. ρ( ; ) ( )
p

f=ψ d d ; ( )f ⋅  is the objective function that gives volume, 

compliance, or displacement; 
m∈ℜX  is the vector of random variables representing the 

uncertainties in the problem; ( ),  1,...,ig i n⋅ =  is the i-th “limit-state function” that indicates 

violating a design constraint given in terms of volume, displacement, or compliance by its 

negative sign, i.e. ( ) 0ig ⋅ ≤ ; t

iP  is the constraint on the probability of the i-th limit state; K, ud and 

f respectively denote the stiffness matrix, displacement vector and load vector in the equilibrium 

constraint; and 
L

d  and 
U

d  are the lower and upper bounds on d , respectively. For simplicity, 

the equilibrium constraint and bounds on the design variables will be omitted in the following 

RBTO formulations of this chapter. The probability constraint in Equation (5.1) is described in 

terms of either the reliability index (RIA: Enevoldsen and Sørensen, 1994) or the performance 

function, i.e. the t

iP - quantile of the limit-state function (PMA: Tu et al., 1999), which is 



 

96 

obtained by use of structural reliability analysis methods such as the first-order reliability method 

(FORM).  

While most research efforts in the literature have been focused on CRBTO, in certain 

circumstances, the probabilistic constraint should be given on a system failure event, i.e. a logical 

(or Boolean) function of multiple failure modes. For example, the failure of a topology design 

can be defined as an event in which at least one of the potential failure modes occurs. This is 

termed as system reliability-based topology optimization (SRBTO). SRBTO introduces 

additional complexity to reliability calculations especially when component events are 

statistically dependent, or when the system event is not a series (i.e. union of events) or parallel 

system (i.e. intersection of events). A generic formulation for SRBTO is as follows. 

 

min (ρ( ; ))

. .  ( ) (ρ( ; ), ) 0 ,   1,...,
k

t

sys i sys

k i C

f

s t P E P g P i n
∈

 
= ≤ ≤ = 

  

d
ψ d

ψ d X∪∩
 (5.2) 

where ( )
sys

P E  is the probability of the system failure event;
 kC  is the index set of the 

components (limit-states) in the k-th cut-set; and t

sysP  is the constraint on the system failure 

probability. Any type of system event may be considered in SRBTO but, for illustration purpose, 

Equation (5.2) shows a cut-set system formulation that can represent series, parallel, and cut-set 

systems. A limited number of studies have been performed on SRBTO because calculation of 

system probability and its parameter sensitivities introduces additional complexity to the 

topology optimization that already requires high computational cost. For example, SRBTO has 

been considered for cases in which all component events are statistically independent of each 

other (Silva et al., 2010). In this case, the system failure probability and its parameter 

sensitivities can be obtained by algebraic calculations of the component probabilities and 

sensitivities. However, the limit-states of SRBTO problems often show strong statistical 

dependence because of shared or correlated random variables. SRBTO has been also applied to 

discrete structures that require less computational cost than continuum topology optimization 

(Mogami et al., 2006). However, the discrete approach (or so-called size approach) cannot 

change the structural topology during the solution process, so the solution will have the same 
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topology as the initial design (Eschenauer and Olhoff, 2001) whereas continuum topology 

optimization can control size, shape and connectivity of the structure. 

As an effort to overcome impediments to adopting SRBTO techniques in current design 

practice, this study focuses on developing new SRBTO algorithms for continuum linear elastic 

structures that can consider statistical dependence between component events (limit-states). First, 

an SRBTO procedure using a matrix-based system reliability (MSR) method (Song and Kang, 

2009) is introduced to handle the statistical dependence between limit-states. The MSR method 

enables accurate and efficient calculation of system failure probability and its parameter 

sensitivities for general system problems including series, parallel, cut-set and link-set systems. 

Second, a new single-loop algorithm to improve the accuracy of FORM-based RBTO (Mogami 

et al., 2006; Nguyen et al., 2009; Silva et al., 2010) by use of the second-order reliability method 

(SORM) is introduced. Finally, the multiresolution topology optimization (MTOP) in Chapter 2 

is integrated with the SRBTO algorithm to enhance efficiency in computationally demanding 

topology optimization problems. This approach uses three distinct meshes with different 

resolutions for finite element, density and design variables in order to achieve high-resolution 

optimal designs with significantly reduced computational costs. 

The remainder of this chapter is structured as follows: Section 5.2 describes the single-loop 

system reliability-based topology optimization using the matrix-based system reliability method; 

Section 5.3 provides a single-loop algorithm to enhance component and system reliability-based 

topology optimization by use of the second-order reliability method; Section 5.4 presents the 

multiresolution topology optimization approach; Section 5.5 provides numerical examples of 

SRBTO; and Section 5.6 provides concluding remarks of this chapter. 

5.2 SYSTEM RELIABILITY-BASED TOPOLOGY OPTIMIZATION USING MSR 

METHOD 

In this section, a single-loop formulation for system reliability-based topology optimization, 

that can account for statistical dependence between limit-states for general system failure events, 

is introduced. After a brief review on single-loop approaches for component and system RBTO 
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and methods to account for statistical dependence, the new SRBTO formulation using matrix-

based system reliability (MSR) method is introduced. 

5.2.1 Single-loop component and system reliability-based topology optimization 

For CRBTO and SRBTO shown in (5.1) and (5.2), a nested or “double-loop” approach has 

been often used, in which each step of the iterations for design optimization involves another 

loop of iterations for reliability analysis. However, this double-loop computation can be 

prohibitive if the computational cost for evaluating limit-state function(s) during the inner-loop 

search for the “most probable point” (MPP) or “design point” (Yang et al., 2005) is expensive. 

There have been active research efforts to overcome this computational challenge by decoupling 

the reliability analysis and the design optimization loops (Wu and Wang, 1998; Royset et al., 

2001; Du and Chen, 2004; Liang et al., 2007; Liang et al., 2008; Shan and Wang, 2008). For 

example, a single-loop approach (Liang et al., 2007; Liang et al., 2008) replaces the inner-loop 

calculations by an approximate solution obtained by the Karush-Kuhn-Tucker (KKT) optimality 

condition. As a result, the double-loop optimization problem is converted into an equivalent 

single-loop problem. This single-loop approach was reported to have the accuracy comparable 

with the double-loop approach and the efficiency almost equivalent to deterministic optimization 

(Liang et al., 2008). In this study, this single-loop approach (Liang et al., 2007; Liang et al., 2008) 

is utilized for the SRBTO formulations. 

The single-loop formulation for the CRBTO problem in Equation (5.1) is given as follows. 
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 (5.3) 

where t
iP

g  is the t

iP -quantile of the i-th limit-state function ( )ig ⋅ ; 1β ( )t t

i iP
−= −Φ  is the target 

(generalized) reliability index where 1( )−Φ ⋅  denotes the inverse cumulative distribution function 

(CDF) of the standard normal distribution; ,x u
J  is the Jacobian matrix of the transformation from 
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the standard normal space to the original random variable space, i.e. ( )=x x u ; ˆ t

iα  is the negative  

normalized gradient (row) vector of the i-th limit-state function evaluated at the approximate 

MPP 
iu� . Instead of searching for the exact MPP at each step of the design iterations, the single-

loop approach obtains an approximate MPP 
iu�
 
by solving the following system equation given 

by the KKT condition (Liang et al., 2008): 

 
( ),(ρ( ; ), ( )) λ β

β 0

t

i i i i

t

i i

g∇ + ⋅∇ − =

− =

x x u u
ψ d x u J u 0

u

� �

�
 (5.4)  

Then, the negative normalized gradient is scaled by the target reliability index β t

i
 to determine 

the location where 
t

iP
g  is approximately evaluated, i.e.  t

iu . Figure 5.1 shows the flowchart of 

the single-loop CRBTO algorithm. 

 

Figure 5.1: Flow chart of the single-loop CRBTO algorithm. 
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Similarly, the SRBTO problem in Equation (5.2) can be solved by a single-loop approach as 

follows. 
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 (5.5)  

where 
t

P  is the vector of the target failure probabilities, t

iP
’
 i=1,…,n. Note that in Equation (5.5), 

the target failure probabilities are treated as design variables rather than pre-defined constraint 

values as in Equation (5.3). This is to control the system failure probability ( )
sys

P E  indirectly in 

the single-loop approach by controlling the radii 1β ( )t t

i iP
−= −Φ ,  i=1,…,n of the spheres on 

which the approximate MPPs are found.  

5.2.2 System reliability-based topology optimization under statistical dependence 

When the limit-states in an SRBTO problem are assumed to be statistically independent 

(Silva et al., 2010), the system probability can be computed by algebraic calculations of the 

probabilities of the individual limit-states. For example, the failure probability of a series system 

event is computed by use of the inclusion-exclusion formula  

 
1

1

1 2

1 1 11

( ) ( ) ( 1) ( )
n n n n

n

i i i j n

i i j ii

P E P E P E E P E E E
−

−

= = = +=

 
= − + + − 

 
∑ ∑∑ � �∪  (5.6)  

where 
iE  denotes the failure event of the i-th limit-state. When these events are statistically 

independent of each other, each joint probability in (5.6) can be computed by the product of the 

component probabilities, e.g., 
1 2 3 1 2 3( ) ( ) ( ) ( )P E E E P E P E P E= . If there exists significant 

statistical dependence between limit-states due to shared or correlated random variables, one 

needs to use other system reliability analysis methods to compute the system failure probability. 



 

101 

The parameter sensitivities of the system failure probability would facilitate the use of gradient-

based optimization algorithm. However, computation of the parameter sensitivities of a system 

failure probability is challenging when component events are statistically dependent or the 

system event is not a series or parallel system. 

The matrix-based system reliability (MSR) method has been applied to general reliability-

based design optimization problems in Chapter 4. This chapter aims to use the MSR method for 

SRBTO problem. The MSR method (Song and Kang, 2009) computes the probability of a 

general system including series, parallel, cut-set and link-set system and its parameter 

sensitivities by systematic matrix calculations. Consider a system event whose i-th component, 

1,...,i n=  has two distinct states, e.g., failure or survival. Then, the sample space can be 

subdivided into 2
n

N =  mutually exclusive and collectively exhaustive (MECE) events, denoted 

by ,je   1,..,j N= . Then, any system event can be represented by an “event” vector c whose j-th 

element is 1 if ej belongs to the system event and 0 otherwise. Let ( ),j jp P e=  1,..,j N=  denote 

the probability of 
je . Due to the 'sje  mutual exclusiveness, the probability of the system event 

sysE , i.e. ( )sysP E  is the sum of the probabilities of 'sje  that belong to the system event. Therefore, 

the system probability is computed by the inner product of the two vectors, that is 

 

T

T

(independent components)

( )
( ) ( ) (dependent components)sysP E

f d




= 

∫ S

s

c p

c p s s s
 (5.7) 

where p is the “probability” vector that contains pj’s  1,..,j N= ; S denotes the random variables 

identified as the sources of statistical dependence between components, termed as common 

source random variables (CSRVs). For a given outcome of CSRVs, the component events are 

conditionally independent of each other, which allows us to use the efficient procedure to 

construct the probability vector that is applicable to independent components (Song and Kang 

2009); ( )p s  denotes the probability vector constructed by use of the conditional failure 

probabilities of the limit-states given =S s , i.e. ( ) ( | )i iP P E≡ =s S s  instead of ( )i iP P E≡ ; and 

( )f
S

s  is joint probability density function (PDF) of S. Song and Kang (2009) developed matrix-

based procedures to construct the vectors c and p efficiently; to compute conditional 
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probabilities and component importance measures; and to evaluate parameter sensitivities of the 

system failure probability. The details of these procedures and merits of the method are 

summarized in  (Song and Kang, 2009). The method has been further developed and successfully 

applied to various system reliability problems (Kang et al., 2008; Kang et al., 2010; Song and Ok, 

2010; Lee et al., 2010b). 

When CSRVs are not clearly shown as in Kang et al. (2008), one can identify the source of 

statistical dependence between limit-states by using the results of the component reliability 

analyses. For example, when the first-order reliability method (FORM) is used for the 

component reliability analyses, the component events are described as β ,i iZ ≤ −  ,,...,1 ni =  

where  
iZ   and   β i

 respectively denote the standard normal random variable and the reliability 

index obtained by FORM. If ,iZ ,,...,1 ni =  follow the generalized Dunnett-Sobel (DS) class 

correlation model (Dunnett and Sobel, 1955; Song and Kang, 2009), they are represented in the 

form: 

 

0.5
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1 1

1 ,    for 1, ,
m m

i ik i ik k

k k

Z r Y r S i n
= =

 
= − + = … 
 
∑ ∑  (5.8) 

in which ,  1,...,iY i n=  and ,  1,...,kS i m=  are uncorrelated standard normal random variables; and 

'sikr  are the coefficients of the generalized DS model that determine the correlation coefficient 

between 
iZ  and 

jZ  as 
1ρ ( . )m

ij k ik jkr r==∑  for i j≠ . Note 
iZ  and 

jZ  are conditionally independent 

of each other given the outcome of CSRVs ,  1,...,kS i m= . The conditional probability of the i-th 

component event given =S s  is then derived as 

 1

2

1

( )
( ) ( | )

1

m

i k ik k
i i i

m

k ik

r s
P P Z

r

β
β =

=

 − − Σ
 = ≤ − = Φ
 − Σ 

s s  (5.9)  

If a given correlation matrix cannot be described exactly by a generalized DS class, one can 

approximate it by obtaining a generalized DS model with the minimum fitting error (Kang et al., 

2010). 
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5.2.3 Single-loop SRBTO algorithm using MSR method  

The single-loop SRBTO using the MSR method is formulated as follows 
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 (5.10)  

When limit-states are statistically dependent, the system failure probability is defined as a 

function of design variables in t

iP  by constructing ( )p s  using ( )iP s  in Equation (5.9) with β i
 

replaced by 1β ( )t t

i iP
−= −Φ . For a case with statistically independent limit-states, the probability 

vector p  is constructed by use of ( β )t

i iP = Φ − . In Equation (5.10), the probability vectors are 

denoted as t
p  and ( )t

p s  to indicate that the probability vectors are constructed by use of β t

i
 

instead of β i
. Inheriting the merits of the MSR method, the proposed SRBTO/MSR approach 

can evaluate the probability of a general system event efficiently and accurately with statistical 

dependence considered. This helps reduce the risk of having under- or over-conservative optimal 

designs caused by inaccurate system reliability calculations (Nguyen et al., 2010a). Figure 5.2 

shows the flowchart of the single-loop SRBTO/MSR algorithm. 

The MSR method provides the parameter sensitivities of ( )sysP E  with respect to design 

variables so as to facilitate the use of gradient-based optimization algorithms. From Equation 

(5.7), the sensitivity of the system failure probability with respect to a parameter θ can be 

computed as follows 
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Song and Kang (2009) developed an efficient matrix procedure to construct / θ∂ ∂p  and 

( ) / θ∂ ∂p s  from the parameter sensitivities of component probabilities / θiP∂ ∂  and ( ) / θiP∂ ∂s , 

respectively. For example, one can obtain component-level parameter sensitivities using the 

FORM (Bjerager and Krenk, 1989).  

 

 Figure 5.2: Flow chart of the single-loop SRBTO/MSR algorithm.  
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(5.11) using the aforementioned matrix procedure in Song and Kang (2009). The sensitivity of 

( )iP s  with respect to 
t

iP  is derived as 
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in which ( )ϕ ⋅  denotes the PDF of the standard normal distribution; and from (5.9), the sensitivity 

with respect to the target reliability index is derived as 
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It is noted that the partial derivative of ( )iP s  with respect to d  is zero (with t

iP  fixed). Therefore, 

for the constraint ( ) t

sys sysP E P≤ , it is not necessary to evaluate the sensitivity of ( )sysP E  with 

respect to d . 

Next, the sensitivities of (ρ( ; ), ( ))t
i

t

i iP
g g≅ ψ d x u  with respect to the design variables are 

derived as follows. First, the sensitivities with respect to design variables d are evaluated as 
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where (ρ, ) / ρig∂ ∂x  is computed for the given limit-state definition, e.g., volume, compliance 

and displacement. For example, the adjoin method (Bendsøe and Sigmund, 2003) may facilitate 

the sensitivity calculation; and ρ( ; ) /∂ ∂ψ d d  is obtained from the given projection function 

presented in (Nguyen et al., 2010b). The sensitivity of t
iP

g  with respect to t

iP  is derived as 
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Note that this partial derivative is approximate because ˆ t

iα  is assumed to be insensitive to the 

changes in t

iP  during the design iterations.  

5.3 IMPROVING ACCURACY OF COMPONENT AND SYSTEM RBTO 

This section introduces single-loop approaches to improve the accuracy of reliability 

calculations in component and system RBTO problems with highly nonlinear limit-state 

functions.  

5.3.1 Accuracy in FORM-based reliability-based design and topology optimization 

As shown in Equations (5.2), (5.5) and (5.10), the system reliability analysis during an 

SRBTO employs the results from the component reliability analyses on the given limit-states. 

Therefore, the accuracy of SRBTOs in satisfying the probabilistic constraint on the system event, 

i.e. ( ) t

sys sysP E P≤ , depends on that of the component reliability analyses. The inaccuracy of the 

FORM-based reliability-based design and topology optimization has been reported in the 

literature (Mogami et al., 2006; Royset et al., 2006; McDonald and Mahadevan, 2008; Rahman 

and Wei, 2008; Silva et al., 2010; Lee et al., 2010a). Some studies have been conducted to 

improve the accuracy. For example, Royset et al. (2006) employed the first-order approximation 

for failure probability and then used higher-order reliability approximations or Monte Carlo 

simulations to adjust parameters to improve the accuracy of system reliability-based design 

optimization. Lee et. al. (2010a) also proposed to use the MPP-based dimension reduction 

method (Xu and Rahman, 2005) in the SRBDO framework. 

Most of the single-loop SRBDO and SRBTO approaches (Liang et al., 2007; McDonald and 

Mahadevan, 2008; Silva et al., 2010; Nguyen et al., 2010a; Nguyen et al., 2010c) also employ 

the FORM for component probability analyses, which potentially results in unconservative or 

non-optimal solutions when the limit-state functions are highly nonlinear. For example, if a limit-

state function is defined in term of the compliance under uncertain loads, the function is a 

quadratic function of the random variables representing the uncertainty in the loads. Therefore, 

the linear approximation by FORM may cause significant errors in component reliability 

analyses, and thus also in system reliability calculations. As an effort to apply the single-loop 
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approach to a wide range of topology optimization problems, a method to enhance the accuracy 

of the component failure probabilities into the single-loop component and system RBTO 

formulations is implemented.  

5.3.2 Single-loop component reliability design and topology optimization with improved 

accuracy 

First, let us consider the single-loop CRBTO in (5.3). At each step of the design iterations, 

the approximate MPP t

iu
 
is obtained by scaling the negative normalized gradient vector at 

i=u u�  , i.e. ˆ t

iα  
by the target reliability index β t

i
. The validity of the approximate MPP is checked 

at the final step of the design iterations. This procedure is modified to improve the accuracy of 

the single-loop approach. Instead of finding the approximate MPP on the surface of the sphere 

with the fixed radius β t

i
, the radius is updated at each step of the design iterations by the ratio of 

β t

i
 to the reliability index by a more accurate reliability method such as the second-order 

reliability method (SORM). The formulation of the proposed scheme is as follows 
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 (5.16)  

where ( )β t k

i
 is the radius used for the scaling at the k-th step of the iterations; ( 1)( )β t k SORM

i

−

 
is the 

reliability index by the SORM, which is obtained based on the principal curvatures around 

t

i=u u  at the (k─1)th step; and 
iu�  is obtained by use of the KKT condition using β t

i
. The 

convergence of the radius ( )β t k

i
 indicates that the reliability index by the SORM approaches the 

target reliability index β t

i
. Figure 5.3 shows the flowchart of the improved single-loop 

SRBTO/MSR algorithm. Compared to similar techniques appear in the literature (Royset et al., 

2006; Rahman and Wei, 2008; Lee et al., 2010a), this study focuses on implementation into the 
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single-loop RBTO based on FORM (Nguyen et al., 2010e). In this study, the improved CRBTO 

by SORM in (5.16) is termed as SORM-based CRBTO. It should be noted that other reliability 

analysis methods such as importance sampling method or dimension reduction method can be 

used for the updating rule in the proposed approach if necessary. 

 

Figure 5.3: Flow chart of the improved single-loop CRBTO algorithm. 
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5.3.3 Single-loop system reliability-based design and topology optimization with improved 

accuracy 

The single-loop SRBTO/MSR in Equation (5.10) is also improved by enhancing the 

accuracy of component reliability analysis results that are used for system reliability analyses 

(Nguyen et al., 2010f). The formulation of the SORM-based SRBTO/MSR is as follows 
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where 
( )t SORM

P  is the vector of the component failure probabilities by the SORM at the 

approximate MPPs, ,  1, ...,t

i i n=u ; ( ) ( )t SORM
p s  and ( )t SORM

p  denote the probability vector 

constructed by use of the SORM reliability indexes  ( )t SORM

iβ
 
instead of t

iβ ; and 
iu�  is obtained by 

use of the KKT condition using β t

i
.  The only change from Equation (5.10) is that the probability 

vector is constructed by use of the SORM reliability indexes instead of the FORM reliability 

indexes at the approximate MPPs. Figure 5.4 shows the flowchart of the improved  single-loop 

SRBTO/MSR algorithm.  
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Figure 5.4: Flow chart of the improved single-loop SRBTO/MSR algorithm. 
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5.4.1 MTOP formulations 

A main challenge in performing RBTOs for realistic problems is the high computational cost 

which is inherited from deterministic topology optimization. The material distribution topology 

optimization method (Bendsøe, 1989) is often used in topology optimization. This method 

rasterizes the domain via the density of pixels/voxels, and thus often requires a large number of 

design variables, especially in three-dimensional applications. Most of the research efforts to 

overcome this challenge focused on finite element analysis that constitutes the dominant 

computational cost in topology optimization. For example, researchers make use of powerful 

computing resources such as parallel computing (Borrvall and Petersson, 2001; Evgrafov et al., 

2008), approximation procedure (Amir et al., 2009), or fast iterative solvers (Wang et al., 2007; 

Amir et al., 2010). These studies employ the same level of resolution for finite element mesh and 

the design mesh during the optimization process. In order to obtain high-resolution topology 

designs with a relatively low computational cost, the multiresolution topology optimization 

approach in Chapter 2 is employed for RBTO problems. In this section, the MTOP approach is 

briefly reviewed and further developed to include pattern symmetry and pattern repetition 

constraints. 

Different from the conventional approaches which use the same mesh for finite element 

analysis and design, the MTOP approach utilizes three different meshes: a relatively coarse finite 

element (FE) mesh to perform the analysis, a fine design variable mesh to perform the 

optimization, and a fine density mesh to represent material distribution. The density mesh is finer 

than the finite element mesh so that each finite element consists of a number of density elements 

(sub-elements). The theory and formulation of the MTOP approach can be found in Chapter 2. 

The basic statement formulation for a “minimum compliance” (i.e. maximum stiffness) topology 

optimization problem to illustrate the MTOP approach is as follows 

 

Tmin   (ρ( ; )) (ρ( ; ), )
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d d
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= =

= ≤∫
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 ψ d ψ d
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where T( , ) dC ρ =u f u  is the compliance of the continuum; ( )V ρ  is the total volume; and Vs is the 

prescribed volume constraint. 

5.4.2 Pattern symmetry and pattern repetition in MTOP 

The topology optimization approach is usually applied to concept design of structures. Due 

to some practical constraints or demands, these structures may require pattern symmetry and/or 

pattern repetition in the design. For example, pattern symmetry and repetition have been 

successfully incorporated into the topology optimization of functionally graded material in two-

dimensional structures (Almeida et al., 2010). In this chapter, pattern symmetry and repetition 

conditions are implemented into the framework of the multiresolution topology optimization. 

Because the design variables are separated from the analysis model in the MTOP framework in 

(5.18), a basic set of design variables can be chosen and mapped to the whole domain to satisfy 

the pattern symmetry and/or pattern repetition condition. Figure 5.5 illustrates the mapping 

schemes to gain pattern symmetry and repetition in the optimal design. 

 

Figure 5.5: Design variables mapping for pattern symmetry and pattern repetition. 
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be considered appropriately by the SRBTO/MSR approach. Second, a three-dimensional cube 

example shows the improvement in the accuracy of the SORM-based RBTOs over the FORM-

based RBTOs. Third, a three-dimensional building example demonstrates that the SORM-based 

SRBTO approach can be applied to computationally demanding topology optimization problems 

with pattern repetition scheme by use of MTOP. For simplicity, all the quantities are given 

dimensionless. 

5.5.1 Two-dimensional bridge 

The first example considers a two-dimensional bridge design in a domain of 250×50 and 

thickness of 0.05 as shown in Figure 5.6. The objective of the optimal design is to minimize the 

volume of the structure under constraints on the displacements at selected locations. The 

isotropic material is assumed to have Young’s modulus E
0
 of 2×10

8
 and Poisson’s ratio ν of 0.3. 

The minimum length scale rmin=1.25, and penalization parameter p=3 are employed. These 

material properties are hereby assumed to be deterministic since the uncertainties in material 

properties usually have minimal impacts on reliability-based optimal topologies for a structure 

under linear elastic behavior. Stochastic loads are applied at nine locations on a non-designable 

layer (with thickness of two) at the bottom of the bridge as shown in Figure 5.6. A symmetric 

loading condition is assumed, so the nine loads are modeled by use of five random variables. 

Each of the five random variables is assumed to follow a Gaussian distribution with the mean (µF) 

of 100,000 and coefficient of variations (ratios of the standard deviations to the means) of 1/6. 

All the five random variables are assumed to be uncorrelated. The constraints on the 

displacements at the locations of the applied forces are described by the limit-state functions 

 0( , ) ( , ),  =1,..,5i i ig d d i= −ρ F ρ F  (5.19) 

where ρ  denotes the vector of the element densities; F  is the vector of the random variables 

representing applied forces; ( , )id ρ F  is the vertical displacement at the i-th location predicted by 

a finite element analysis; and 0

id  is the limit on the displacement. In this example, the 

displacement limit is given as { } { }0 1.25,1.50,1.75, 2.00, 2.25 ,  1,.., 5.
i

d i= =  Because of the 
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symmetry conditions, only a half of the domain is taken into the analysis model with 125×50 

MTOP elements (Q4/n9/d9).  

 

Figure 5.6: Configurations of two-dimensional bridge example.  

 

First, a deterministic topology optimization (DTO) is performed with the loads equal to the 

given mean values. This is performed by Equation (5.1) except that the probabilistic constraints 

are replaced by deterministic ones, i.e. ( , ) 0ig ≥ρ F . The corresponding optimal design is shown 

in Figure 5.7a. The volume fraction (volfrac) of the optimal design, i.e. the ratio of the optimal 

volume to that of the original domain is 39.07%. Next, a FORM-based CRBTO is conducted as 

in (5.3) with all the reliability index targets 2t

iβ =  (or 0.02275t

iP = ). The optimal topology 

shown in Figure 5.7b has the volume fraction of 48.64%. The optimal volume is higher than that 

by the DTO since the topology that avoids the failure under the mean loads is expected to have 

significantly higher probability to violate the constraints than the given target failure probability. 

After the CRBTO optimization is completed, the probability that at least one of the constraints is 

violated (i.e. series system) is estimated by the MSR method as 
sys 0.066517P = . Next, a FORM-

based SRBTO/MSR is performed for the series system event with the same target system failure 

probability 
sys 0.066517P = . This is to compare the optimal topologies by CRBTO and SRBTO 

that have the same system failure probability. The SRBTO optimal topology, which is different 

from those by DTO and CRBTO, is shown in Figure 5.7c (volume fraction of 47.70%). Another 

SRBTO is performed with the means of loads reduced to 25% (Figure 5.7d) to see the impacts of 

the load intensity on the optimal topology. 

Table 5.1 shows the component and system failure probabilities by Monte Carlo simulations 

(MCS) for the optimal designs by the CRBTO and SRBTO in order to verify the accuracy of the 

1 2 3 4 5 4 3 2 1

F1F2F3F4F5F4F3F2F1

50

250
non-designable layer
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FORM-based RBTO procedures in this example. The results confirm that the FORM-based 

RBTO designs provide failure probabilities that are compatible with the target probabilities on 

component events (CRBTO) and system event (SRBTO). This is because the limit-state 

functions in this example are linear function of the uncertain loads and the random variables are 

assumed to follow Gaussian distributions. Thus, the improvement schemes proposed in Section 

5.3 are not required.  

 

Figure 5.7: The results of two-dimensional bridge example: (a) DTO (µF =10
5
, volfrac = 39.07%); 

(b) FORM-based CRBTO (µF =10
5
, volfrac = 48.64%); (c) FORM-based SRBTO/MSR (µF =10

5
, 

volfrac = 47.70%); and (d) FORM-based SRBTO/MSR (µF =2.5×10
4
, volfrac = 16.66%). 

 

The efficiency of MTOP over the conventional element-based approach is investigated using 

the SRBTO problem above. To obtain a similar level of resolution using the element-based 

(a)

(b)

(c)

(d)
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approach, it is necessary to use 375×150 Q4/U elements. After 50 iterations, the computer run 

time of the element-based approach is about two times more than the MTOP Q4/n9/d9 approach. 

The efficiency is further increased as a higher level of resolution is employed. More details on 

comparison of computational cost are found in Chapter 2. 

Table 5.1: Two-dimensional bridge example: verification of failure probabilities of CRBTO and 

SRBTO designs by MCS (10
6
 times, c.o.v = 0.005).  

 

 CRBTO 
MCS on 

CRBTO design 
SRBTO/MSR 

MCS on 

SRBTO design 

 P1  0.002275 0.002266 0.001214 0.001281 

P2  0.002275 0.022798 0.016284 0.016331 

P3  0.002275 0.023119 0.039239 0.039377 

P4  0.002275 0.023019 0.042740 0.042662 

P5  0.002275 0.023132 0.023450 0.023239 

Psys  0.066517 0.066990 0.06652 0.066719 

 

In this example, the volume fraction from SRBTO (47.70%) is fairly close to that of the 

CRBTO (48.64%) that gives the same system failure probability. This might give an impression 

that SRBTO is not necessary considering the additional computations for the system failure 

probability. However, SRBTO is still preferred for RBTO problems under probabilistic constraint 

on the system failure event for the following reasons. First of all, the probabilistic constraints on 

individual limit-states that would satisfy the given constraint on the system failure probability are 

not known a priori. In this numerical example, the constraint on the system failure probability in 

SRBTO is chosen as the system failure probability of the result of the CRBTO just for 

comparison purpose. Second, in using CRBTO formulation for solving SRBTO problems, all the 

component target failure probabilities are often given equal mainly because the actual component 

failure probabilities of an optimal design that would satisfy the system constraint are not known. 

Introducing such uniform target component failure probabilities often makes the SRBTO 

problems more constrained than necessary, which may lead to non-optimal solutions (Nguyen et 

al., 2010a). Finally, in SRBTO, one can identify the relative contribution of each limit-state to 
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the system probability based on components probabilities of the optimal design or by use of the 

component importance measures by the MSR method (Song and Kang, 2009; Nguyen et al., 

2010a). According to the component failure probabilities of the optimal designs, the importance 

ranking of the limit-states is as follows: 4 (most important) �3�5�2�1 (least important). 

 

 

Figure 5.8: Impact on FORM-based SRBTO results (volume fraction) by changes in (a) mean 

values (c.o.v = 1/6, ρij = 0.0); (b) coefficients of variation (µF = 100,000, ρij = 0.0); and (c) 

correlation coefficients (µF = 100,000,  c.o.v = 1/6) of the load random variables. 
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The effects of the means, coefficient of variations, and the correlations between random 

variables 'siF  on the optimal topologies are also investigated. For simplicity, all the loads are 

assumed to have the same mean values (µF), coefficients of variation (c.o.v), and correlation 

coefficients (ρij). The SRBTO problem is solved again with the same target system probability of 

0.066517 while the mean values, coefficient of variations and correlation coefficients are varied. 

First, Figure 5.8a and Figure 5.8b show how the increase in means (from 0.25×10
5
 to 1.25×10

5
) 

and coefficient of variations (from 0.01 to 0.50) results in the increase in volume fractions of the 

optimal topology. Next, the impacts of changes in the correlation coefficients (from 0.00 to 0.90) 

of the load random variables are shown in Figure 5.8c. It is seen that positive correlation among 

the random loads results in higher volume fractions, i.e. more conservative design. This is 

because positively correlated loads increase the displacements, and thus the failure probabilities. 

Therefore, in this problem, if the positive correlation is ignored, the RBTO may lead to an unsafe 

design. Also presented in each plot are the results with the statistical dependence between limit-

states ignored, i.e. the system failure probability is approximated by (5.6). As shown in Figure 

5.8, designs become more conservative than necessary when statistical dependence is ignored. 

This is because the failure probability of a series system is overestimated when statistical 

dependence is ignored. From Figure 5.8b and Figure 5.8c, it is also noted that the effect of 

statistical dependence on the optimal designs increases as the coefficients of variation or the 

correlation coefficients of the random loads increase. 

5.5.2 Three-dimensional cube 

This numerical example is to demonstrate the improved accuracy of the proposed SORM-

based RBTO methods. The objective of optimization is to minimize the volume in a cube domain 

shown in Figure 5.9 while satisfying constraints on the compliances for multiple load cases. One 

corner is fixed in all three directions while the other corners are restricted in the vertical direction 

only. The isotropic material is assumed to have Young’s modulus of 0 1,000E =  and Poisson’s 

ratio of 0.3.ν =  A cube of edge length 24L =  is divided into 12×12×12 B8/n125/d125 MTOP 

elements. The minimum length scale 
min /10r L= , and penalization parameter 3p =  are 

employed. The structure is subjected to three random loads applied at five locations as shown in 
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Figure 5.9. 
1F  denotes the magnitude of the force at the center while 

2F  and 
3F  represent the 

loads at the midpoints between the center and the four corner points of the top face. 
1 2,  F F  and 

3F  are assumed to be normal random variables with the mean values 100, 0 and 0, and with the 

standard deviations 10, 30 and 40, respectively. 

 

Figure 5.9: Three-dimensional topology optimization of a cube. 

 

Limit-states are defined on the compliances caused by two load combinations 
1 1 2( , )F F=F  

and 
2 1 3( , )F F=F  as follows 

 T( , ) ( , ) ,  1, 2t t

i i i i i i ig C C C i= − = − =ρ F ρ F u F  (5.20) 

where ( 120)t

iC =  is the constraint on the compliance; ( , )i iC ρ F  is the compliance corresponding 

to the load case 
iF ; and 

iF  is the global force vector assembled based on the load case 
iF . The 

following three topology optimization methods are investigated: (1) Deterministic Topology 

Optimization (DTO) using the mean values of the loads with deterministic constraints 

( , ) 0i ig ≥ρ F ; (2) CRBTO with probability constraints 
1 2 0.02275t t

P P= = , i.e. reliability indexes 

1 2 2.0;t tβ = β =  and (3) SRBTO with the system limit-state 
1 1 2 2{( ( , ) 0) ( ( , ) 0)}sysE g g= ≤ ≤ρ F ρ F∪  

with 0.04493t

sysP = , which is given so as to match the system failure probability of the optimal 

topology of the CRBTO. 
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Figure 5.10: Optimal topologies by: (a) DTO (volfrac = 6.3%); (b) SORM-based CRBTO (σ(F1) 

= 10, volfrac = 24.4%); (c) SORM-based SRBTO (σ(F1) = 10, volfrac = 22.3%); and (d) SORM-

based SRBTO (σ(F1) = 20, volfrac = 23.9%). 

 

Figure 5.10 shows the optimal topologies by DTO (Figure 5.10a), SORM-based CRBTO 

(Figure 5.10b), and SORM-based SRBTO (Figure 5.10c). The volume fraction of DTO is lower 

than CRBTO and SRBTO because the risk of high compliance caused by the load uncertainties is 

ignored. With the same system failure probabilities, the volume fraction of CRBTO is 10% 

higher than SRBTO. This is because CRBTO approach (assigning fixed constraints on individual 

components) is generally more constrained than SRBTOs (assigning a constraint on system event, 

not on the individual components) at the same level of system failure probability (Nguyen et al., 

2010a). Figure 5.10d shows the result of the SRBTO with the standard deviation of 
1F  increased 

to see the impact of the load variability on the topology. In summary, it is seen from Figure 5.10 

(a) (b)

(c) (d)
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that the optimal topology is affected significantly by the load variability and the failure event 

definitions on the optimal topology of a structure.  

 

Figure 5.11: Convergence histories of topology optimizations of the cube. 

 

The convergence histories of the optimizations are shown in Figure 5.11. The proposed 

single-loop SORM-based CRBTO and SRBTO show similar rates of convergence, which are 

also comparable to that of DTO.  The system failure probability of the optimal topology found by 

SORM-based SRBTO/MSR, 
sysP  = 0.04493 is verified by a fairly close estimate of MCS, 

sysP = 

0.04515 (10
6
 times, c.o.v = 0.005). 

In order to demonstrate the improved accuracy of the SORM-based single-loop CRBTO 

method, the results are compared with those by the FORM-based CRBTO with the component 

probability targets 1 2 0.02275
t t

P P= = . Figure 5.12a shows the differences in the volume fractions 

of the optimal designs. Monte Carlo simulations (MCS: 10
6
 times, c.o.v = 0.005) are performed 

to find the component failure probabilities of the optimal topologies by the FORM-based and 

SORM-based CRBTOs. The results in Figure 5.12b and Figure 5.12c show that the component 

probabilities of SORM-based CRBTOs are fairly close to the target probabilities while the 

FORM-based CRBTOs show significant errors especially when the random loads have large 

variability. 
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Figure 5.12: CRBTOs with variation of standard deviation of load F1: (a) volume fraction of       

optimal designs; (b) failure probabilities on the first limit-state; and (c) failure probabilities on 

the second limit-state. 

 

The accuracy of the SORM-based single-loop SRBTO method is also investigated. The 

FORM-based and SORM-based SRBTO are performed with the system probability target of 

0.04493 while the standard deviation of load 
1F  is varied from 10 to 60. Figure 5.13a compares 

the volume fractions by the FORM and SORM-based SRBTOs. It is seen that the FORM-based 

SRBTO provides unconservative designs due to the inaccuracy in reliability calculations. The 
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results of Monte Carlo simulations (MCS: 10
6
 times; c.o.v = 0.005) in Figure 5.13b show that the 

proposed SORM-based SRBTO provides improved accuracy in predicting the system failure 

probability. 

  

Figure 5.13: SRBTOs with variation of standard deviation of load F1: (a) volume fractions of 

optimal designs; and (b) system failure probabilities. 

 

The results in Figure 5.12a and Figure 5.13a show the volume fractions of the optimal 

designs increase significantly as the load variability increases. It is because the variability of 

random load increases the uncertainty of the compliance and thus the probability of violating 

given constraints. 

5.5.3 Three-dimensional building 

The proposed SRBTO/MSR method and the MTOP approach enable system reliability-

based optimization for large-scale structural topologies. In this example, the SORM-based 

SRBTO employing the MTOP approach is used to design the structural topology of a building 

core subjected to horizontal loads. The objective of the optimization is to minimize the volume 

under the constraint on system failure event defined in terms of the compliances for multiple 

load cases. Figure 5.14a shows the domain of the topology with the dimensions of L×L×5L×L/12 

in which L/12 represents the thickness of the core (L=24). The domain is divided into 
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12×12×60×1 B8/n125/d125 MTOP elements, which results in a total of 2,640 brick elements. 

The four corners of the domain are non-designable regions which are shown as black areas in 

Figure 5.14b. Young’s modulus E
0
 of 10

6
, Poisson’s ratio ν of 0.3, the minimum length scale

min /10r L= , and penalization parameter 4p =  are employed. In this example, the building core 

is designed with four symmetric axes: x, y and two diagonal directions (dash-dot lines in Figure 

5.14b).  

 

Figure 5.14: Building core example: (a) domain; and (b) load cases 

 

Three load cases as shown in Figure 5.14b are considered. In the first load case, the 

uncertain point loads (P1) and the uncertain distributed loads (linearly varying from q1/2 to q1 

along the height as shown in Figure 5.14a) are applied with the angle of θ=45
o
 (diagonal 
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direction). The second and third load cases have the angle of θ=0
o 

(x direction), and θ=90
o 

(y 

direction), respectively. During the finite element analyses, for simplicity, the distributed load is 

converted to the equivalent point loads applied at the finite element nodes along the height of the 

building. All six random variables {P1,P2, P3, q1, q2, q3 } are assumed to follow normal 

distributions. Table 5.2 provides the means and the coefficients of variation (c.o.v) of the random 

variables and the corresponding constraints given on the compliances of the system. These load 

random variables are assumed to be correlated with correlation coefficient ρsame = 0.50 when 

they belong to the same load case and the correlation coefficient ρdiff = 0.25 for the loads from 

different load cases. 

Table 5.2: Three-dimensional building example: statistical parameters of the load random 

variables and constraint on the compliances 

Load 

Cases 

P q (at top) 
t

iC  

mean c.o.v mean c.o.v 

Case 1 70.71 0.30 2.82 0.15 250 

Case 2 50.00 0.15 2.00 0.30 125 

Case 3 50.00 0.20 2.00 0.15 125 

 

First of all, the optimization problem is solved without pattern repetition constraints (Case I). 

The deterministic topology optimization is performed using the mean values of the loads (Figure 

5.15a) and the SORM-based SRBTO is conducted with the target system probability 0.05t

sys
P =

 

on the series system event of compliance limit-states determined for the three load cases (Figure 

5.15b). The DTO (volfrac = 21.93%) and SRBTO (volfrac = 28.15%) result in significantly 

different topologies. The higher volume fraction in the SRBTO topology implies the importance 

of considering the uncertainties in the loads for building structures. In addition, the topology in 

Figure 5.15b from SRBTO shows a better design than the design from DTO in Figure 5.15a: 

First, the diagonal members in Figure 5.15b are distributed more evenly along the vertical 

direction. Second, the diagonal members in Figure 5.15b start from the supports to transfer the 

load, that pattern is often found in the design practice. The component and system probabilities 

of the optimal topologies by SRBTO/MSR and MCS (10
6
 times, c.o.v = 0.005) are shown in 
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Table 5.3, which confirms the accuracy of the SORM-based SRBTO. The component 

probabilities of 0.02731, 0.02088, and 0.00539 help identify the relative importance ranking of 

the three constraints as 1→2→3.  

 

Figure 5.15: Building core optimal topologies (three-dimensional and side views): (a) DTO 

volfrac=21.93%; (b) SRBTO volfrac=28.15% ( 0.05t

sysP = ); and (c) SRBTO volfrac=22.25%  

( 0.85t

sysP = ). 

 

Next, the system probability target t

sysP  is varied from 0.01 to 0.85 (Case II). Figure 5.16 

shows the volume fractions of the optimal designs for the range. It is seen that the decrease of the 

target probability (i.e. more conservative) increases the volume fractions of the optimal designs.  

The volume fraction of the SRBTO converges to that of DTO as the target probability increases. 

For example, the target system probability of 0.85 results in the volume fraction of 22.25%, 

which is only 1.4% different from DTO (21.93%). Even though these two optimal volume 

fractions are fairly close to each other, it is noteworthy that the optimal topology of SRBTO 

(Psys=0.85) in Figure 5.15c is different from that of DTO in Figure 5.15a. 

(a) (b) (c)
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Table 5.3: Three-dimensional building example: component and system probabilities by 

SRBTO/MSR and MCS (10
6
 times). Note: the changes from the default case are shown in bold. 

  P1 P2 P3 Psys 

ρsame = 0.50 

ρdiff = 0.25 

SRBTO/MSR 0.02731 0.02088 0.00539 0.05000 

MCS (c.o.v=0.005) 0.02747 0.021006 0.00542 0.05023 

ρsame = 0.50 

ρdiff = 0.25 

SRBTO/MSR 0.26940 0.25973 0.20818 0.50000 

MCS (c.o.v=0.001) 0.26977 0.26006 0.20800 0.50008 

ρsame = 0.90 

ρdiff = 0.45 

SRBTO/MSR 0.02812 0.02227 0.00625 0.05000 

MCS (c.o.v=0.004) 0.02816 0.02242 0.00638 0.05017 

 

 

Figure 5.16: Optimal volume fractions with target system failure probability. 

 

The problem is solved again using pattern repetition constraints. Figure 5.17 shows pattern 

repetitions along the vertical direction in existing buildings. This type of pattern repetition 

constraint is included for both DTO and SRBTO in this numerical example. The number of 

pattern repetitions along the vertical direction (denoted by m) is varied from 1 to 12 to 

investigate the impact of these constraints on the optimal topologies. The optimal topologies by 

DTO and SRBTO (with 0.05
t

sys
P = ) are shown in Figure 5.18a and Figure 5.18b, respectively. 

Figure 5.18 demonstrates significant impacts of the pattern repetition constraints on optimal 

topologies and topologies that are similar to those in existing buildings (e.g., Figure 5.17a and 
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Figure 5.17c). The effect of the correlation coefficients is also investigated by increasing the 

correlation coefficients (Case III). Figure 5.19 shows the optimal volume fractions versus the 

number of pattern repetitions, m by DTO, SRBTO (ρsame=0.50, ρdiff=0.25), and SRBTO 

(ρsame=0.90, ρdiff=0.45). A larger number of patterns result in more constrained optimization 

problem, and thus provide higher volume fractions. Impacts of the correlation between uncertain 

loads are also observed. 

It is noted that the topology optimization framework in this example is based on continuum 

structures. After obtaining optimal continuum topologies, for example as shown in Figure 5.18, 

engineers may need to transform the results from continuum to discrete structures. For instance, 

discrete components such as beam and column elements can be used to interpret the structural 

components. 

 

Figure 5.17: Pattern repetitions in existing building designs: (a) Jardine house – Hong Kong; (b) 

Taipei 101 tower – Taipei; and (c) Takshing house – Hong Kong (taken from 

http://dangpotter.wordpress.com, http://www.taiwan-taipei.com, and http://www.som.com). 

(a) (b) (c)
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Figure 5.18: Building core optimal topologies with pattern repetition: (a) DTO; and (b) SRBTO 

(ρsame=0.50, ρdiff=0.25, 0.05t

sysP = ). 

m=3 m=12m=6 m=10

(a)

m=3 m=12m=6 m=10

(b)
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Figure 5.19: Optimal volume fraction with the number of pattern repetitions ( 0.05t

sysP = ). 

 

5.6 CONCLUDING REMARKS 

This chapter presents three research developments for enhancing the theories and 

applications of component and system reliability-based topology optimization (CRBTO and 

SRBTO): (1) developing a single-loop SRBTO approach that employs the matrix-based system 

reliability (MSR) method to handle the statistical dependence between multiple limit-states; (2) 

developing SORM-based single-loop approaches for CRBTO and SRBTO to improve the 

accuracy in evaluating probabilistic constraints; and (3) incorporating multiresolution topology 

optimization (MTOP) approach to CRBTO and SRBTO in order to obtain high-resolution design 

with a relatively low computation cost with a capability of imposing pattern repetition and 

symmetric constraints. Three numerical examples of two- and three-dimensional structures 

demonstrate that (1) uncertainties in TO problems can make significant impact on optimal 

topologies; (2) if SRBTO problem (i.e. TO with probabilistic constraint given on a system event, 

not on individual limit-states) is solved by CRBTO approaches, it is hard to determine 

corresponding component target failure probabilities and the problem becomes more constrained 

in general; (3) statistical dependence between limit-states can be successfully incorporated by 

use of the MSR method, which may cause a significant difference in optimal topologies; (4) 

SORM-based RBTO approaches provide optimal designs with improved accuracy in satisfying 
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component and system probabilistic constraints; and (5) MTOP approach enables us to perform 

CRBTOs and SRBTOs of large-scale TO problems with low computational cost and is capable 

of imposing pattern symmetry and repetitions in large-scale RBTO problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

132 

  

6 Chapter 6 Conclusions and Future Work 

CHAPTER 6 – CONCLUSIONS AND FUTURE WORK 

CHAPTER 6 – CONCLUSIONS AND FUTURE WORK 

 

This thesis describes the design and topology optimization problems under uncertainties. 

First, a multiresolution topology optimization approach is developed to overcome the issue of 

computational cost. Second, the single-loop system reliability-based design and topology 

optimization using matrix-based system reliability method is proposed and verified through 

numerical examples.  This chapter summarizes the thesis, its contributions and provides 

suggestions for future work. 

6.1 SUMMARY AND CONCLUDING REMARKS 

The basics of topology optimization and reliability-based design optimization are described 

in the first chapter. The topology optimization approach is introduced in comparison with the 

classical size and shape optimization approaches. The well-known Solid Isotropic Material with 

Penalization (SIMP) model is briefly reviewed. Additionally, the reliability-based design 

optimization problem is introduced. 

Chapter 2 presents the formulations of the topology optimization for minimum compliance. 

The formulations of the integration of the stiffness matrix are discussed. Next, the 

multiresolution topology optimization approach is proposed by using different discretizations. 

The MTOP elements are introduced for both 2D (Q4/n25) and 3D (B8/n125) problems, and 

several other element types such as hexagonal and tetrahedral using MTOP are also discussed. 

Chapter 3 further develops the MTOP approach in Chapter 2 by reducing the number of design 

variables in the MTOP approach in Chapter 2. The adaptive multiresolution topology 

optimization is introduced in this chapter. Also, a ratio to measure the resolution and efficiency 

of a model is proposed. The approaches proposed in Chapters 2 and 3 are demonstrated by 



 

133 

numerous numerical examples to show the features of the approaches over the conventional 

element-based approach. 

In Chapter 4, the reliability-based design optimization approaches in the literature are 

reviewed. The formulations of the reliability index approach (RIA) and the performance measure 

approach (MPA) are compared. Also, the double-loop and single-loop approaches are discussed. 

Next, the component and system reliability-based design optimization problems 

(CRBDO/SRBDO) are described. The matrix-based system reliability (MSR) method is briefly 

reviewed and further developed for integration with the single-loop approach. Finally, the 

SRBDO/MSR procedure is proposed and demonstrated with numerical examples and verified by 

Monte Carlo simulation. 

The RBDO approach is applied to topology optimization problem, so-called reliability-based 

topology optimization (RBTO) in Chapter 5. The single-loop approach is derived using the first-

order reliability method (FORM) which is not accurate when the limit-state functions are highly 

nonlinear. Hence, the SORM-based RBTO formulations are proposed in this chapter to improve 

the accuracy. The RBTO frame work is integrated with the MTOP approach above to enhance the 

efficiency. Numerical examples are presented to demonstrate the SORM-based RBTO over the 

FORM-based approach.     

The major contributions of this study are summarized as follows: 

• A multiresolution topology optimization (MTOP) approach is proposed based on the 

discretizations of the density, design variable and displacement fields with distinct 

resolutions. The MTOP approach is first developed using the same mesh for design 

variables and density. MTOP elements including Q4/n25, B8/n125 are introduced in 

comparison to the conventional Q4/U, B8/U elements. The MTOP approach enables 

us to obtain high-resolution topology design with a relatively low computational cost. 

The MTOP approach is demonstrated by numerous two- and three-dimensional 

topology optimization problems. The MTOP approach developed in this study has 

been successfully applied in designing the optimal shape of bone replacement 
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structures to improve the current practice of the craniofacial reconstruction 

(Sutradhar et al., 2010). 

• The MTOP approach is further developed by employing fully distinct meshes for 

density, design variable and displacement. In comparison to the first development of 

MTOP approach which uses the same mesh for design variables and density, the 

second development of MTOP approach employs different resolutions for design 

variable and density fields. Specifically, a relatively fine mesh for element density, a 

moderately fine mesh for design variables, and a relatively coarse mesh for finite 

elements are employed. This improvement further reduces the number of design 

variables in comparison to the original MTOP approach. New iMTOP elements 

including Q4/n25/d4, B8/n125/d27 are introduced.  

• An adaptive multiresolution topology optimization scheme is proposed in which the 

MTOP or iMTOP elements are used only when and where needed. This scheme 

allows us to further reduce the number of density elements and the number of design 

variables. 

• “iMTOP ratio” is introduced as a measurement of the resolution and efficiency 

model. It is based on the ratio of the number of finite elements, the number of 

density elements, and number of design variables. 

• A single-loop system reliability-based design optimization approach using matrix-

based system reliability method is introduced. The SRBDO/MSR approach is 

applicable to general system events including link-set, cut-set systems under 

dependence between component events. 

• The reliability-based topology optimization (RBTO) problems are investigated in 

both component and system constraint levels. Its efficiency is enhanced by 

employing the proposed MTOP approach and the single-loop approach. 

• To improve the accuracy of the RBTO problem for component and system levels, the 

second-order reliability method (SORM) is employed to enhance the accuracy of the 
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probability computation. The SORM-based CRBTO and SRBTO provide more 

accurate results than the FORM-based approaches. 

• MTOP approach is further developed to include the pattern symmetry and repetition 

constraint to apply for practical design. These constraints are often employed in the 

concept design of structures such as buildings, bridges.   

• The proposed approaches are demonstrated by numerical examples for the structural 

system of a building core in both DTO and RBTO. 

• The accuracy of the developed RBDO and RBTO algorithms are confirmed by 

Monte Carlo simulations of the failure probabilities of the optimal designs and 

topologies. 

6.2 SUGGESTIONS FOR FUTURE WORK  

Based on the outcomes from this study, the following research topics are recommended for 

future work. 

• This study has shown the advantages of the MTOP approach in obtaining high-

resolution design over conventional topology optimization approaches. One key 

factor in the MTOP approach is the use of a projection scheme to compute the 

density from the design variables. The use of the projection scheme provides not 

only the minimum length scale control but also the smooth transition of the density 

in the domain. However, the current projection scheme results in grey areas between 

the solid and the void which is sometimes not preferable. Topics for further 

investigation include the development of a new projection scheme or smoothening 

effect to obtain more black and white designs. An example of high fidelity design is 

the use of the Heaviside function (Guest et al., 2004; Guest and Genut, 2009) or 

morphology-based black and white filter (Sigmund, 2007). 

• The MTOP approach employs a number of density elements and design variables per 

finite element. For example, the element B8/n125/d27 implies 125 density elements 

and 27 design variables per B8 element.  This study has shown the features of the 
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MTOP element over conventional topology optimization element such as B8/U 

which has one density per B8 element. However, in this study, the number of density 

elements and design variables per finite element are chosen heuristically. The study 

can further explore the optimal number and locations of the density elements and 

design variables. The optimal number and location of the density elements and 

design variables can lead to better performance of the multiresolution approach such 

as higher resolution design or less computational cost. Additionally, the adaptive 

multiresolution scheme introduced in this study is focusing on a heuristic selective 

adjustment of the design space. Further study should use multiresolution approach in 

conjunction with other adaptive schemes (Maute and Ramm, 1995; Ainsworth and 

Oden; Costa Jr and Alves, 2003; Stainko, 2006; de Sturler et al., 2008). 

• The multiresolution approach in this study has been applied to the minimum 

compliance and compliant mechanism problems. Topics for further investigation 

include the applications of the multiresolution topology optimization to other fields 

such as multiphysics and multi-scale problems (Carbonari et al., 2009), material 

design (Paulino et al., 2009), multifunctional material systems (Rubio et al., 2009), 

and energy harvesting devices (Silva and Paulino, 2008). Moreover, the current 

study is limited to linear elastic static problems, the future work should investigate 

the performance of the multiresolution approach in nonlinear (Jung and Cho, 2004) 

or dynamic problems (Rubio et al., 2009). 

• The multiresolution approach can be combined with fast iterative solvers to handle 

very large-scale problems. For example, Wang et al. (2007) introduced Krylov 

subspace methods with recycling to solve relatively large-scale topology 

optimization problems using conventional elements. The future work can consider 

the MTOP approach using Krylov subspace methods with recycling technique.  

• The system reliability-based design optimization (SRBDO) in the current study uses 

the matrix-based system reliability (MSR) method for computation of the system 

probability and its sensitivities. When the number of component events increases, the 
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number of basic MECE events increase exponentially, therefore, the sizes of the 

event vector c  and “probability” vector p increase exponentially as and may exceed 

the computer memory capacity. Therefore, in such cases, it may need to employ 

other system reliability methods which are able to handle large-scale general system 

event and the dependence between component events. For example, the sequential 

compounding approach (Kang and Song, 2010) can be considered. Further study 

may tailor the MSR method to SRBDO such as multi-scale approach (Song and Ok, 

2010) to overcome the limitation of the size vectors. 

• Challenging SRBDO problems such as those with mixed continuous-discrete random 

variables and time variant reliability (Gunawan and Papalambros, 2007; McDonald 

and Mahadevan, 2008) need to be addressed as well. 

• A comprehensive study on impacts of the structural redundancy on the reliability is 

needed by use of design/topology optimization algorithms. For example, when a 

structural system may consist of a number of redundant members, the ultimate 

capacity of structure is highly dependent on the degree of the structural redundancy 

(Tsompanakis et al., 2008). One might need to explore the possibility of including 

the system reliability in the objective function during the investigation. 

• The current study considers the displacement, compliance or volume fraction as 

design constraints. These are domain-wide quantities or a quantity at a pre-

determined location. Problems with local constraints such as stress-based 

optimization in the context of reliability-based optimization should be addressed.    
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APPENDIX A – METHOD OF MOVING ASYMPTOTES  

 

APPENDIX A - METHOD OF MOVING ASYMPTOTES  

Topology optimization employs a large number of design variables, therefore, large-scale 

first order-optimizer is expected. The Method of Moving Asymptotes (MMA) is a mathematical 

programming algorithm well suited for the structural topology optimization (Svanberg, 1987; 

Bendsøe and Sigmund, 2003). Because of the merits, the MMA approach is employed as the 

optimizer throughout this thesis.     

The MMA algorithm is especially useful for solving smooth, nonlinear optimization 

problems via a sequence of simpler approximate sub-problems of given type.  These sub-

problems are constructed based on the sensitivity information of the current and several previous 

iterations. Additionally, these sub-problems are separable and convex (Svanberg, 1987; Bendsøe 

and Sigmund, 2003). In the MMA approach, a function F of n real variables x = (x1, …,xn) is 

approximated around a given iteration point x
0
 as follows 
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The parameters Ui , Li give the vertical asymptotes for the approximations of the function F, thus  

the algorithm is named as Method of Moving Asymptotes (MMA). The parameters Ui , Li for 

each function are updated at each iteration. The details and merits of the algorithm are given in 

(Svanberg, 1987; Bendsøe and Sigmund, 2003). 



 

149 

Appendix B – Illustrative example of MSR method  

APPENDIX B – ILLUSTRATIVE EXAMPLE OF MSR METHOD 

 

APPENDIX B - ILLUSTRATIVE EXAMPLE OF MSR METHOD 

Consider three system events, each of which consists of five component events, ,iE

1,...,5i = : 

 

1 2 3 4 5

1 2 3 4 5

1 2 3 2 3 4 3 4 5

   (series)

   (parallel)

( ) ( ) ( )  (link-set)

sys

sys

sys

E E E E E E

E E E E E E

E E E E E E E E E E

=

=

=

∪ ∪ ∪ ∪

∩ ∩ ∩ ∩

∪ ∪ ∩ ∪ ∪ ∩ ∪ ∪

 (B.1) 

In this illustrative example, the probabilities of the system events, ( )sysP E  are computed by the 

MSR method based on the results of the component reliability analyses by first-order reliability 

method (FORM). After FORM analysis, each component event is approximately described by  

 : β ,    1,...,5i i iE Z i≤ − =  (B.2) 

and where 
iZ  is correlated standard normal random variable; and β i

 is the FORM reliability 

index of ,  1,...,5.iE i =  The correlation coefficient between 
iZ  and ,  jZ i j≠  are computed by 

the inner-product of the negative normalized gradient vectors at the corresponding MPPs (Der 

Kiureghian, 2005). In this example, suppose β 3,  1,...,5i i= =  and the inner products give the 

correlation coefficient matrix 

 

1 0.89 0.88 0.87 0.86

0.89 1 0.90 0.90 0.90

0.88 0.99 1 0.90 0.90

0.87 0.90 0.90 1 0.90

0.86 0.90 0.90 0.90 1

 
 
 
 =
 
 
  

R  (B.3) 

The MSR method computes the probabilities of the system events in (B.1) by the matrix 

formulation in (4.16). The numerical integration requires three tasks: (a) describing R

approximately by use of a generalized DS model and identifying common source random 
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variables (CSRVs) S , (b) constructing the event vector c, and (c) computing the conditional 

probability vector ( )p s . 

First, the correlation coefficients in R  are fitted by those constructed by a generalized DS 

model, i.e. 
1ρ ( . )m

ij k ik jkr r==∑  with the minimum error. When one CSRV is used, the coefficients 

in the generalized DS model in (4.22) are 

 
11 21 31 41 510.9223,  0.9539,  0.9541,  0.9432,  0.9435r r r r r= = = = = . (B.4) 

When two CSRVs are used for improved accuracy, the coefficients are obtained as 

 
11 21 31 41 51

12 22 32 42 52

0.9262,  0.6989,  0.6801,  0.6632,  0.6427

0.3769,  0.6436,  0.6614,  0.6782,  0.6998

r r r r r

r r r r r

= = = = =

= = = = =
 (B.5) 

The joint PDF of CSRVs in (4.16), i.e. ( )f
S

s  is 
1φ( )s  and 

1 2φ( )φ( )s s  for one- and two-CSRV 

cases, respectively, in which φ( )⋅  denotes the PDF of the standard normal distribution. 

Second, the event vector c  is constructed for each of the system events. The event vectors 

for the five component events are first constructed by the sequential matrix-based procedures 

proposed in (Song and Kang, 2008). 
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where 0  and 1  denote the column vectors of 
12i−
 zeros and ones, respectively. When the 

iterative procedure is completed, the i-th column of 
[5]C  is the event vector of the i-th component 

event , 1,...,5.iE i =  As a result, the event vectors of the five components are obtained as 

 

1

2

3

T

T

[1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0]

[1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0]
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E

E
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=

=

c

c
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 0 0 0 0]

[1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0]

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

E

E

=

=

c

c

     (B.7) 

Then, the event vector of the system event 
sysE  is obtained by matrix-based procedures 

employing the event vectors of the components. For example, the event vector for the 
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complementary event of E , the intersection and the union of the component events are obtained 

as follows 

 1 1 2

1 1 2

.* .* .*

( ).*( ).* .*( )

n n

n n
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where .*  denotes the element-wise multiplication of two vectors. 

Finally, the conditional probability vector ( )p s  is constructed by the following matrix-based 

procedure: 
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where ( )iP s  is the conditional probability of the i-th component given =S s , which is 

computed by (4.22) employing the reliability indexes β 3i =  and the generalized DS model 

coefficients in (B.4) or (B.5). When the sequential matrix-based procedure in (B.9) is completed, 

[5]
( )p s  is used as ( )p s  in (4.16). 

Table B.1: System probabilities computed by MSR, MCS and bounding formula (×10
−3

)  

System 

Events 

Bi-component bounds MSR: No. of CSRVs MCS (N=10
7
 times) 

Lower bound Upper bound 1 2 P(Esys) c.o.v 

Series 2.309 4.338 3.528 3.526 3.532 0.005 

Parallel N/A N/A 0.2314 0.2318 0.2329 0.021 

Link-set N/A N/A 1.738 1.739 1.764 0.008 

 

Table B.1 shows the results of the system reliability analysis by the MSR method, MCS and the 

bi-component bounding formula (Ditlevsen, 1979). Close agreements between the results by 

MSR method and those by MCS confirm the accuracy of the MSR method for the given example 

while the bi-component bounds show significant width for the series system. 
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APPENDIX C – NOMENCLATURE 

  

APPENDIX C - NOMENCLATURE 

d   = vector of design variables 

C   = compliance 

sV   = prescribed volume 

V   = volume 

ψ   = position of a point in the domain, coordinate vector 

volfrac  = volume fraction 

(.)iN   = shape function 

0
D   = constitutive matrix corresponds to the solid material 

D   = constitutive matrix 

B   = strain-displacement matrix of shape function derivatives 

K   = global stiffness matrix 

eK   = stiffness matrix of displacement element e 

0

eK   = stiffness matrix of element e corresponding to the solid material 

n   = number of density elements per displacement element 

E   = Young’s modulus 

0E   = Young’s modulus corresponding to solid material  

ρ i
  = density of element i  

nd   = design variable n 

minr   = minimum length scale 

p   = penalization parameter 

(.)pf   = projection function  

u  = global displacement vector 

f   = global load vector 

iA   = area (or volume) of the density element i in the initial domain 
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0

iA   = area (or volume) of the density element i in the reference domain 

( .)w   = weight function in the projection scheme 

Q 4/n25   = MTOP Q4 element with 25 density elements and 25 design variables 

Q 4 /n 2 5 /d 4  = iMTOP Q4 element with 25 density elements and 4 design variables 

B8/n125  = MTOP B8 element with 125 density elements and 125 design variables 

B8/n125/d8  = iMTOP B8 element with 125 density elements and 8 design variables 

c  = “event” vector 

( )f ⋅   = objective function 

( , )ig d X  = limit-state (or performance) function of the i-th failure mode 

p   = “probability” vector 

iP   = actual failure probability of the i-th mode 

t

iP   = target failure probability of the i-th mode 

sysP   = actual system failure probability 

t

sysP   = target system failure probability 

S   = common source random variables 

*

iU   = most probable failure point of the i-th mode 

X   = random variables 

ˆ
iα   = negative normalized gradient vector 

iβ   = reliability index  

t

iβ   = target reliability index 

X
µ   = vector of means of X  
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 Appendix D – Abbreviations 

APPENDIX D – ABBREVIATIONS 

 

APPENDIX D - ABBREVIATIONS 

 

CAMD   = continuous approximation of material distribution 

CRBDO   = component reliability-based design optimization 

CRBTO   = component reliability-based topology optimization 

CSRV    = common source random variable 

DTO    = deterministic topology optimization 

FORM    = first-order reliability method 

iMTOP   = improving multiresolution topology optimization 

MCS    = Monte Carlo simulation 

MECE    = mutually exclusive and collective exhaustive 

MMA    = method of moving asymptotes 

MSR     = matrix-based system reliability 

MTOP    = multiresolution topology optimization 

PDF    = probability density function 

PMA     = performance measure approach 

RBDO    = reliability-based design optimization 

RBTO    = reliability-based topology optimization 

RIA     = reliability index approach 

SIMP    = solid isotropic material with penalization 

SORM    = second-order reliability method 

SRBDO   = system reliability-based design optimization 

SRBDO/MSR   = SRBDO using MSR 

SRBTO   = system reliability-based topology optimization 

SRBTO/MSR   = SRBTO using MSR 

 




