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Abstract

Topology optimization refers to the optimum distribution of materials, so as to achieve cer-

tain prescribed design objectives while simultaneously satisfying constraints. Engineering

applications often require unstructured meshes to capture the domain and boundary condi-

tions accurately and to ensure reliable solutions. Hence, unstructured polyhedral elements

are becoming increasingly popular. Since the pioneering work of Wachspress, many inter-

polants for polytopes have come forth; such as, mean value coordinates, natural neighbor-

based coordinates, metric coordinate method and maximum entropy shape functions. The

extension of the shape functions to three-dimensions, however, has been relatively slow

partly due to the fact that these interpolants are subject to restrictions on the topology

of admissible elements (e.g., convexity, maximum valence count) and can be sensitive to

geometric degeneracies. More importantly, calculating these functions and their gradients

are in general computationally expensive. Numerical evaluation of weak form integrals with

sufficient accuracy poses yet another challenge due to the non-polynomial nature of these

functions as well as the arbitrary domain of integration. Virtual Element Method (VEM),

which has evolved from Mimetic Finite Difference methods, addresses both the issues of

accuracy and efficiency. In this work, a VEM framework for three-dimensional elasticity is

presented. Even though VEM is a conforming Galerkin formulation, it differs from tradition

finite element methods in the fact that it does not require explicit computation of approxi-

mation spaces. In VEM, the deformation states of an element are kinematically decomposed

into rigid body, linear and higher order modes. The discrete bilinear form is constructed

to capture the linear deformations exactly which ensures that the displacement patch test

is passed and optimum convergence is achieved. The present work focuses on first-order

VEM with degrees of freedom associated with the vertices of the elements. Construction of

the stiffness matrix reduces to the evaluation of surface integrals, in contrast to the volume

integrals encountered in the conventional finite element method (FEM), thus reducing the

overall computational cost.

By means of the aforementioned approach, a framework for three-dimensional topology

optimization is developed for polyhedral meshes. In the literature, topology optimization

problems are typically solved with either tetrahedral or brick meshes. Numerical anomalies,

such as checkerboard patterns and one-node connections, are present in such formulations.
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Constraints in the geometrical features of spatial discretization can also result in mesh de-

pendent sub-optimal designs. In the current work, polyhedral meshes are proposed as a

means to address the geometric features of the domain discretization. Polyhedral meshes

not only provide greater flexibility in discretizing complicated domains but also alleviate

the aforementioned numerical anomalies. For topology optimization problems, many ap-

proaches are available; which can mainly be classified as density-based methods and differ-

ential equation-driven methods (further subclassified as level-set and phase-field methods).

Before choosing density-based methods for polyhedral topology optimization, a couple of dif-

ferential equation-driven methods; which are representative of the literature, are exhaustively

analyzed in two-dimensions. Finally, we also investigate aesthetics in topology optimization

designs. In this work, two-dimensional topology optimization on tessellations is investigated

as a means to coalesce art and engineering. M.C. Escher’s tessellations using recognizable

figures are mainly utilized. The aforementioned Mimetic Finite Difference-inspired approach

(VEM) facilitates accurate numerical analysis on any non self-intersecting closed polygons

such as tessellations.
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Chapter 1

Introduction

Typical engineering applications often require unstructured meshes to capture the domain

and boundary conditions accurately and to ensure reliable solutions. Hence, unstructured

polyhedral elements are becoming increasingly popular. They are especially attractive in

topology optimization; which optimally distributes material in a given domain, with vari-

able connectivity, so as to satisfy certain design objectives. Polyhedral/polygonal elements

not only provide convenience and flexibility in discretizing complicated design domains but

also lead to optimal designs which are not biased by the domain discretization. Many

finite element interpolants on polytopes are available; such as, Wachspress, mean value co-

ordinates, natural neighbor-based coordinates, metric coordinate method, and maximum

entropy shape functions. In two-dimensions, employing the aforementioned polygonal shape

functions, numerical analysis can be efficiently conducted by mapping the physical element

to a reference element [200], similar to that employed for typical triangle and quad elements.

However, the three-dimensional extension of the shape functions has been relatively slow

partly due to the fact that these interpolants are subject to restrictions on the topology

of admissible elements (e.g., convexity, maximum valence count) and can be sensitive to

geometric degeneracies. More importantly, calculating these functions and their gradients

are in general computationally expensive. Numerical evaluation of weak form integrals with

sufficient accuracy poses yet another challenge due to the non-polynomial nature of these

functions as well as the arbitrary domain of integration. All these reasons suggest that there

is a need for an accurate and numerically efficient scheme for polytopes. This thesis strives

to develop such an approach.

1.1 Introduction to topology optimization

Topology optimization refers to the optimum distribution of a material in a given design

space, under certain specified boundary conditions, so as to satisfy prescribed performance

objectives. In manufacturing industries, topology optimization is often used as a tool to

obtain preliminary conceptual designs. Manufacturing constraints applied to topology opti-

mization can yield designs which can be fine-tuned for performance and manufacturability.
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Hence, the traditional costly and time consuming design iterations can be minimized while

still producing equipment of superior quality. Topology optimization is used in a wide range

of industries such as the automotive and equipment manufacturing industries. Topology

optimization approaches can primarily be classified as either density-based methods or dif-

ferential equation-driven methods. In the next two sections, a brief background of both

classes of optimization methods is provided.

1.1.1 Density-based methods

Density-based methods refer to approaches where the geometry is represented in terms of

two or more phases, one of which typically represents a no material phase. In general, the

material distribution can be considered to be either constant in each element or interpolated

using shape functions with the densities defined at the element nodes. Some of the early

work in the field of density-based methods includes that by Bendsøe and Kikuchi [37], and

Suzuki and Kikuchi [204], which use the homogenization method to determine macroscopic

structure properties, such as elastic modulus, based on the microstructure configuration.

Subsequently, its variants, such as the Solid Isotropic Material with Penalization (SIMP)

method, were proposed [36, 172, 38]; which provided a simple approach to determine in-

termediate material densities. Mathematical programming algorithms; such as, Method of

Moving Asymptotes (MMA) [205], Optimality Criteria (OC) [39], Sequential Linear Pro-

gramming (SLP), Sequential Quadratic Programming (SQP) and CONvex LINearization

approximations (CONLIN) [83] are typically used to update the designs in density-based

methods.

Density-based methods have been used to explore a wide variety of problems; such as,

dynamics [75, 190], multi-physics [183, 187], photonic crystal structures [113], phononic

band gap materials [185], functionally graded materials [162, 194], piezoelectric actuators

[56], reliability-based optimization [118, 150], large-scale optimization [230, 148, 15] and

biomedical engineering applications [203]. Commercial software; such as, OptiStruct, Ansys

and MSC/Nastran are based on density methods.

Evolutionary Structural Optimization (ESO) is another class of density-based methods

used for topology optimization [238]. In ESO methods, certain parameters, such as Mises

stress, are evaluated for each element and, at each iteration, elements with the lowest pa-

rameter value are eliminated. In Bi-directional ESO (BESO), along with elimination, new

elements are added at locations adjacent to the elements with high parameter value. Primary

drawbacks of ESO methods are that they are fully heuristic, they require more iterations to

converge than gradient-based methods, and they have difficulty controlling the final volume

of the design. Genetic Algorithms (GAs) related to Charles Darwin’s survival of the fittest

principle; which are non-gradient methods, have also been proposed for density-based topol-
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ogy optimization. In the literature, authors have often argued that such methods provide

globally optimal solutions. Since the early work of Holland [107] and Goldberg [97], many

GAs have been proposed for topology optimization [64, 207]. The main criticism of such

methods is that they become prohibitively expensive for large scale problems.

1.1.2 Differential equation-driven methods

Recently, a new set of approaches for topology optimization have come forth in which the

design is driven by differential equations. One of the differential equation driven approaches

uses the level-set method [154, 179, 152], c.f. Fig. 1.1, in which the fronts and free boundaries

evolve using the Hamilton-Jacobi equation. The level-set method utilizes implicit level-

set functions to represent the geometry; which allows for the determination of structural

boundaries. The level-set method is a computationally tractable and versatile method,

which has been adapted in a variety of fields; such as, fluid mechanics [202, 63, 248, 78, 60],

optics [115, 102], image processing, solids modeling, and computer animation [242, 214, 152].

In addition, the level-set method has been used to solve thermal problems [100, 249, 237,

119, 112, 142, 239].

ω

∂ω

Ω

(x) < 0ᶲ

(x) > 0ᶲ

∂ω = {x :   (x) = 0}ᶲ
Ω

ω

Figure 1.1: Representation of design domain Ω using implicit function (level-sets). This is an alternative
approach to explicit parameterization of the geometry.

Phase-field based methods are another category of approaches in which designs evolve

using specialized differential equations. Basically, the phase-field method is a diffuse interface

model where boundaries between phases are not sharp, but are considered to have a finite

thickness, hence providing a smooth transition for the physical quantities between the phases.

It has been used in materials science to study the phase transition phenomenon. Cahn and

Hillard [54], and Allen and Cahn [11] used the theory of phase transition to study liquid

phases with variable densities. Phase-field methods have been applied in a wide variety

of fields; such as, fracture mechanics [17], visual reconstruction [139], and crystal growth
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simulations [121]. In Chapter 2, four representative level-set methods and one phase-field

method are critically assessed [89].

1.2 Topology optimization problem statement

Current research concentrates on optimization of linearized elastic system under small de-

formations subjected to surface tractions t. The elasticity problem is expressed as: find u

such that,

a(u , v) = `(v), ∀v ∈ V (1.1)

where

a(u , v) =

∫

Ω

Cε(u) : ε(v) dx, `(v) =

∫

Γt

t · v ds

V =
{
v ∈ H1(Ω)3 : v |Γu = 0

} (1.2)

Here, ε(u) = 1/2(∇u+∇uT ) is the second order linearized strain tensor and C is the material

elasticity tensor. The working domain, Ω, contains all admissible shapes ω, i.e., ω ⊆ Ω. Its

boundary ∂Ω consists of three disjoint segments, ∂Ω = Γu ∪ Γt0 ∪ Γt. Here, Γu, Γt0, and

Γt represent displacement, homogeneous traction, and non-homogeneous traction boundary

conditions (t 6= 0), respectively. Also, the design ω, with boundary ∂ω = γu ∪ γt0 ∪ γt,
is constrained to satisfy γu ⊆ Γu and γt = Γt. Here, γu, γt0, and γt correspond to the

boundaries of ω with displacement, homogeneous traction and non-homogeneous traction

boundary conditions, respectively (c.f. Fig 1.2).

Figure 1.2: Domain description for the topology opti-
mization problem. The boundary, ∂Ω, of the working
domain, Ω, consists of Γu (displacement boundary),
Γt0 (homogeneous traction boundary) and Γt (non-
homogeneous traction boundary). The design ω, with
boundary ∂ω = γu∪γt0∪γt, is constrained to satisfy
γu ⊆ Γu and γt = Γt. Boundaries γu, γt0, and γt
correspond to displacement, homogeneous traction,
and non-homogeneous traction boundary conditions
on ∂ω, respectively.

Γt

γu

γt0
ω

t

Γu

Γ 0t

Ω γt

The thesis focuses on two categories of problems, compliance minimization and linear

compliant mechanisms. The topology optimization problem of compliance minimization

refers to finding the stiffest configuration under applied loads and boundary conditions. The
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work done by the loads, i.e. compliance, is defined as follows:

J1 (ρ) =

∫

Γt

t · u ds =

∫

Ω

C (ρ) ε(u) : ε(u) dx (1.3)

The effective elasticity tensor C is a function of density function, ρ(x). The choice of C will

be discussed in the subsequent chapters.

The other category of problems we study are the linear compliant mechanisms, specifi-

cally the displacement inverter and the gripper problem. The objective is to maximize the

displacement in a predefined direction, uout, in response to the force, fin, exerted by the

actuator, modeled by a spring of stiffness kin. So, the quantity we aim to minimize is:

J2 (ρ) = −uout (1.4)

For non-trivial solutions, a volume constraint,
∫

Ω
ρ(x) dx ≤ Vf |Ω|, is imposed. Thus, the

combined optimization problem can be expressed as:

inf
ρ
Ji (ρ) for i = 1 or 2

subject to:

∫

Ω

Cε(u) : ε(v) dx =

∫

Γt

t · v ds,
∫

Ω

ρ(x) dx ≤ Vf |Ω|
(1.5)

where Vf is the prescribed maximum volume fraction and |Ω| is the volume of the working

domain Ω.

1.3 Finite element analysis using polytopes

Finite element analysis (FEA), typically utilizes triangle/tetrahedron and quadrilateral/brick

elements [70]. In the past couple of decades, polygonal elements; which are inspired from

nature, have grown in stature. Carbon allotropes, salt and basalt crystals are all polygonal.

Also, polygonal geometry is evident in botany (certain organic cells, chloroplasts). Bee-

hives, pattern on the skins of tropical fish and giraffe are also inherently polygonal in shape

(Fig. 1.3). Polygonal elements have been used in a wide variety of fields; such as, fracture

mechanics [42, 43, 41], topology optimization [209, 211, 87], micromechanical analysis [94],

computer graphics and image processing [84, 109, 108].

In topology optimization, polytopes have inherent advantages. In their work, Talischi at

al. [209] have shown that mesh attributes can influence the material distribution and the

orientation of members. Thus, if the mesh geometry is too restrictive, expected features, e.g.

the orthogonality of members in the Michell truss problem, are eliminated from the final de-

sign. Also, the choice of lower order finite elements, such as triangles and quads, introduces
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Figure 1.3: Motivation behind polygonal elements. (a) Carbon allotropes (www.chemicool. com). (b)
Plagiomnium affine (http://forum.mikroscopia.com). (c) Beehive (http:// openbydesign.wpmued.org). (d)
Giraffe (www.wikipedia.org).

artificial features such as single node connections and checkerboard pattern, which spuri-

ously demonstrates superior performance [76, 186]. Polygonal/polyhedral meshes naturally

alleviate single node connections and prevent the occurrence of checkerboard patterns [209].

As previously mentioned, they also provide flexibility in discretizing complicated design do-

mains which arise in real world applications. There are couple of approaches available in the

literature to deal with polytopes. They can mainly be categorized as polygonal/polyhedral

shape function-based methods and Mimetic Finite Difference (MFD) methods. Both meth-

ods are reviewed briefly in the subsequent sections.

1.3.1 Polygonal/Polyhedral shape function-based methods

Polygonal/Polyhedral shape function-based methods are one approach for the numerical

solution of the discrete state equations on arbitrary meshes. The rational polygonal inter-

polants developed by Wachspress [222] laid the foundation for future research in the field of

polygonal/polyhedral interpolants [234, 199, 84, 85, 200, 196]. Later, Warren [234] extended

the Wachspress shape functions to three-dimensional convex polytopes. Natural neighbor

shape functions are another class of polygonal interpolants which can be further subdivided

into the Sibson coordinates [182, 199] and Non-Sibson coordinates or Laplace shape functions

[32, 105, 68, 199, 200]. Wachspress and natural neighbor shape functions can only handle

convex polygons. The mean value coordinates developed by Floater [84], subsequently ex-

tended to three-dimensions [86], are well-defined for concave polygons, but can result in

negative values [108]. The metric coordinate method [138] is another approach that is appli-

cable to concave polygons. Another class of polygonal/polyhedral shape functions, known as

maximum entropy shape functions, was developed by Sukumar [196]; Arroyo and Ortiz [19]
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Interpolants References Concave
elements

Remarks

Wachspress [222, 234, 223] No Earliest interpolant based on rational polynomials

Sibson [182, 199] No Utilizes Voronoi tessellations to construct
interpolant which reduces to the ratios of areas of
Voronoi cells

Non-Sibson [32, 105, 68, 199] No Also based on Voronoi tessellations. The
interpolant is a function of Lebesgue measure of
Voronoi edge and L2 distance norm

Mean value
coordinates

[84, 86] Yes Interpolant is a function of geometric quantities -
L2 distance norm and area

Metric
coordinate
method

[138] Yes Uses measures such as edge length, signed area of
triangle, and trigonometric functions of sine and
cosine to construct the shape functions

Maximum
entropy

[196, 19, 108] Yes Shape functions and their derivatives are obtained
by maximizing the Shannon’s entropy function
under prescribed boundary conditions

Harmonic
coordinates

[114, 140, 40] Yes Shape functions and their derivatives are obtained
by solving the Laplace equation hierarchically

Table 1.1: Summary of the polygonal/polyhedral interpolants.

which is based on the Jaynes’s principle of maximum entropy for convex polytopes. Later,

Hormann and Sukumar [108] extended the maximum entropy shape functions to arbitrary

polytopes using prior functions. For a detailed overview of the main developments in the field

of conforming polygonal interpolants refer to [198]. A summary of the polygonal/polyhedral

interpolants is provided in Table. 1.1.

1.3.2 Mimetic Finite Difference (MFD) methods

As briefly mentioned before, in two-dimensions, polygonal shape function-based methods

can be efficiently implemented using the iso-parametric mapping scheme for numerical in-

tegration [200]. However, in three-dimensions, numerical integration can only be performed

in physical coordinates and, for numerically accurate results, quadrature rules of very high

order need to be used which increases the computational cost. Recently, a new set of numeri-

cal methods, known as Mimetic Finite Difference (MFD) methods, have emerged. The main

characteristic which differentiates the MFD methods and the standard finite element (FE)

approaches is that in the MFD methods, there are no explicitly defined shape functions

associated with the discrete degrees of freedom. Thus, the continuous differential opera-

tors; such as, the div, grad, curl and trace, are approximated or mimicked by their discrete

counterparts; which utilize the discrete quantities defined only at the degrees of freedom.
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This provides greater flexibility in the geometric shapes of the admissible elements. High

quality, skewed, degenerate and even non-convex polyhedra are all admissible. The MFD

methods have been used to solve problems such as linear diffusion [110, 144, 129, 48, 99],

electromagnetics [111], gas dynamics [55], linear elasticity in mixed weakly symmetric form

using Hellinger-Reissner formulation [25] and Stoke’s flow problem [28, 30]. Higher or-

der MFD methods have also been developed [195, 31, 99, 29] which make use of nodal as

well as additional degrees of freedom; namely moments on edges, faces and elements. The

MFD methods have been explored in three-dimensional problems using polyhedral meshes

[49, 48, 47, 28, 30].

Since their inception, MFD methods have evolved from a finite difference/finite volume

framework to more of a finite element-type framework, known as the Virtual Element Method

(VEM). Unlike MFD methods, in VEM the degrees of freedom are attached to trial functions

defined inside the elements, similar to finite element-type methods (FEM). But unlike FEM,

the approximation space is not computed explicitly. At the heart of VEM is the kinematic

decomposition of element deformation states into rigid body, constant strain and higher

order modes. In VEM, the basis which span the rigid body and constant strain spaces

are defined along with the projection maps to extract the corresponding deformation states.

Using these projection maps, the discrete bilinear forms and load linear forms are constructed

without the need for computationally expensive evaluation of canonical basis functions and

their derivatives inside the element. The construction ensures that the linear deformation

states are captured exactly, thus guaranteeing the satisfaction of engineering patch test and

optimal convergence of numerical solutions. The discrete bilinear form is constructed to

have two components; a consistency component and a stability component. The degrees

of freedoms (DOFs) are carefully chosen so as to allow accurate DOF-based computations

when only the polynomials are involved, i.e. the consistency term calculation. The Virtual

Element Method is relatively new and has been used to solve two-dimensional Laplace [26]

and elasticity problems [27, 91, 90, 88]. It has also been explored for plate bending [50]. One

goal of the current work is to explore VEM for three-dimensional linear elastic problems.

1.4 Research motivation

The main focus of the current work is to explore the benefits of polytopes in numerical

analysis and to develop an efficient technique for three-dimensional topology optimization.

The reason polytopes are attractive is because they facilitate automatic discretization of

complicated domains (Fig. 1.4). Tetrahedrons offer similar meshing benefits but numerically

inaccurate results are obtained for problems such as bending, if lower order tetrahedrons are

used. For computational fluid dynamics simulations, researchers have shown that simulations
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on polyhedral meshes converge faster than tetrahedral meshes and provide higher accuracy

[167].

(a) (b)

Figure 1.4: Complicated domains discretized using polyhedral meshes in computational fluid dynamics
simulations. (a) Valve (www.cd-adapco.com), (b) Formula 1 racecar (www.symscape.com).

Numerical simulations of phenomena, such as fracture, often require refinement and coars-

ening of typical finite elements. Such techniques generate elements which are inherently

polyhedral (Fig. 1.5). Gradient calculation is an integral part of finite volume schemes. The

fact that polyhedrons have many faces leads to a superior gradient approximation.

As discussed in Section 1.3.1, many polygonal/polyhedral shape functions-based meth-

ods; such as, Wachspress, and maximum entropy, are available in the literature for numeri-

cal analysis. In three-dimensions, numerical computations need to be performed in physical

coordinates, as iso-parametric mapping is infeasible. In addition, numerical accuracy is

dictated by quadrature order used. A Mimetic Finite Difference-inspired Virtual Element

Method (VEM), discussed in Chapter 4, addresses both the issues of accuracy and efficiency.

To support the arguments presented here, a comparative study is conducted between the

maximum entropy shape function-based analysis (MAXENT) (refer to [196]) and the VEM

(discussed in Chapter 4) using the displacement patch test. The domain is a cube of dimen-

sions 1×1×1 discretized using an increasing number of polyhedrons (e.g. 50, 100, 200). An

arbitrary linear displacement of the form U = AX+B, where A = 1/100 [2 1 3; 3 4 2; 4 3 1]

and B = 1/100 [1 2 3]T , is applied to the nodes on the boundaries of the cube. No forces

are applied to the system. Accuracy is measured in terms of relative L2 displacement errors.

In the MAXENT approach, to numerically integrate the stiffness matrix, polyhedrons are

partitioned into tetrahedrons and corresponding quadrature rules for tetrahedrons are used.

On a CVT mesh of 50 elements, the observed relative L2 errors in displacement for the
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(a)

(b)

Figure 1.5: Mesh refinement and coarsening techniques applied to traditional finite elements produces ele-
ments which are inherently polyhedral. (a) Refinement. (b) Coarsening.

MAXENT approach are 1.84 × 10−1, 8.14 × 10−2 and 4.93 × 10−2 when first, second and

forth order quadrature rules (consisting of 1, 4 and 11 points) are used for each tetrahe-

dron indicating that the displacement patch test is not passed. Moreover, the displacement

error decreases at a low rate, with respect to order of integration. Next, performance of

the MAXENT approach is compared against VEM under mesh refinement. Second order

scheme (four Gauss points) is used for integration of the stiffness matrix in the MAXENT

approach. The relative L2 displacement error for the MAXENT approach, corresponding

to different mesh discretizations, continues to be large; where as for VEM, the errors are of

the order of machine precision. These VEM results serve as source of encouragement for the

current research using polyhedrons.

Number of polyhedrons MAXENT Present

50 8.14× 10−2 5.72× 10−15

100 9.24× 10−2 1.91× 10−14

200 6.63× 10−2 2.66× 10−14

Table 1.2: Comparative study between the MAXENT approach and the VEM approach discussed in Chapter
4 using the displacement patch test under mesh refinement. Columns 2 and 3 corresponding to relative L2

displacement errors.
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1.5 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 presents a critical assessment

of representative differential equation-driven methods for topology optimization. Four level-

set methods and one phase-field method are exhaustively analyzed to identify their strengths

and weaknesses. The goal of this study is to provide some guidelines for future developments

in the field of differential equation-driven methods. Before embarking on the development

of a numerical approach for three-dimensional topology optimization using polyhedrons,

leveraging the knowledge of differential equation-driven methods obtained from Chapter 2,

a two-dimensional phase-field based optimization scheme for polygons is provided in Chapter

3. A centroidal Voronoi tessellation (CVT) based finite volume scheme is used to solve the

governing Allen-Cahn equation on unstructured polygonal meshes. Chapter 4 discusses a

Mimetic Finite Difference-inspired approach for three-dimensional linear elasticity. Detailed

steps for the construction of the stiffness matrix and force vector are shown. To illustrate

the accuracy of the present approach, numerical verification studies are presented which

include the displacement patch test and shear loaded cantilever beam bending problem.

Using the numerical scheme discussed in Chapter 4 to solve the elasticity equation, a three-

dimensional topology optimization scheme is developed in Chapter 5. The effectiveness of

the optimization scheme is shown using numerical examples on various complicated design

domains. Since the Mimetic Finite Difference method presented in this work provides greater

flexibility in the geometric shapes of the admissible elements, Chapter 6 explores topology

optimization using tessellations as a means to coalesce engineering and art. M.C. Escher’s

tessellations, created using recognizable figures such as birds and animals, provides a tool to

add aesthetics to otherwise bland engineering designs. Finally, some concluding remarks are

provided in Chapter 7 along with suggestions for potential extensions of the current work.
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Chapter 2

A critical comparative assessment of

differential equation-driven methods

for structural topology optimization

Density-based methods have been predominantly used in structural optimization [39]. Re-

cently, differential equation-driven methods have emerged as an alternate approach for struc-

tural topology optimization. In such methods, the design is evolved using special differential

equations. Implicit level-set methods are one such set of approaches in which the design

domain is represented in terms of implicit functions and generally (but not necessarily) use

the Hamilton-Jacobi equation as the evolution equation. Another set of approaches are

referred to as phase-field methods; which generally use a reaction-diffusion equation, such

as the Allen-Cahn equation, for topology evolution. Current work analyzes four level-set

methods and one phase-field method, which are representative of the literature. In order

to evaluate performance, all the methods are implemented in MATLAB and studied using

two-dimensional compliance minimization problems. The goal of this work is to serve as a

guide for future developments in the field of topology optimization.

2.1 Introduction

Shape and topology optimization using level-sets have been explored by many researchers

[180, 153, 7, 226, 8]. Wang et al. [226] presented a structural topology optimization method

for bi-material systems and studied the compliance minimization problem for linear elastic

materials. Wang and Wang [227] extended Wang et al. [226] method to multi-material

systems. During the same time, Allaire et al. [7, 8] proposed a structural optimization

technique combining the classical shape derivative and the level-set method. They solved the

compliance minimization, compliant mechanism design, and design dependent load problems

for linear elastic systems and also investigated nonlinear elasticity problems. Both Wang

et al. [226] and Allaire et al. [8] used an upwind scheme [179] for the discrete solution

of the Hamilton-Jacobi equation. Later, Allaire and Jouve extended their level-set method
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for eigenvalue, multiple load [5] and minimum stress design problems [6]. Also, Yamada et

al. [240] and Yamasaki et al. [241] solved the free vibration eigenvalue topology problem

using the level-set method. Other researchers (Wei and Wang [236]; Luo et al. [132, 133];

Challis and Guest [60]) have also used shape sensitivities for the evolution of design using

the level-set methods.

There have been some attempts to develop level-set methods which do not involve solving

the Hamilton-Jacobi equation for the evolution of shapes. For example, Belytschko et al. [34]

proposed a topology optimization method where the weak form of the equilibrium equation

is expressed as a Heaviside step function of the level-set function. The Heaviside function is

subsequently regularized to enable evaluation of sensitivities of the objective functions and

constraints. Van Dijk [216, 215] developed a method where the design domain is implic-

itly represented by a level-set function and the design is evolved using a steepest-descent

type update scheme which utilizes the discrete sensitivities of the objective function. Non-

Hamilton-Jacobi based level-set methods can also be seen in the fluid topology optimization

literature. Cunha [72] presented an Eulerian-type parametric level-set based shape opti-

mization method where the design domain is expressed in terms of level-sets and the design

variables are defined at the mesh vertices. They used it to obtain shapes which reproduce

a particular velocity field for incompressible, viscous fluid using Navier-Stokes and Stokes

flow models. Pingen et al. [169] examined a parametric level-set method for fluid topology

optimization using a hydrodynamic Lattice Boltzmann method. Kreissl et al. [125] find the

optimal layout of fluidic devices employing an explicit level-set method along with a Lattice

Boltzmann solver. No-slip boundary conditions are enforced along the solid-fluid interface

using second-order accurate interpolation schemes. Kriessl and Maute [124] use an approach

similar to Kreissl et al. [125] and model the flow field by the incompressible Navier-Stokes

equations discretized by the extended finite element method (XFEM). Also, they enforce a

no-slip condition along the solid-fluid interface by applying the stabilized Lagrange multiplier

method.

Hamilton-Jacobi based level-set methods generally have a tendency to become too steep

near the boundaries (hence have high spatial gradients) or too flat during the course of

evolution, thus affecting the accuracy and rate of convergence of the level-set method, see Fig.

2.1. Without any control over the gradients near the boundaries, the evolution algorithm

tends to become unstable (indicated by sharp rise in the level-set values), leading to an

inaccurate estimation of the boundary normal. One option to control the gradients is to

periodically reinitialize the level-set function; for example, to a signed-distance function, to

maintain the numerical accuracy. In one reinitialization approach, the zero level-set function

isocontour; which represents the shape boundary, is approximated using the same shape

functions as in FEM and then the distances from the discretized isocontour are computed
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[67, 241]. Another popular approach is to solve a specifically tailored partial differential

equation [202, 8]. Alternatively, Sethian [178, 179] proposed a reinitialization scheme, known

as Fast Marching Method (FMM), which allows one to solve the boundary value problem,

without any iteration, using an optimal ordering of the grid points.

Figure 2.1: Level-set function without any slope control near the design boundaries.

The works of Sethian and Wiegmann [180], Wang et al. [226] and Allaire et al. [8] il-

lustrate that level-set methods allow for drastic change in topology during evolution, but

can have final configurations that are very sensitive to the chosen initial configuration. This

problem can be attributed to the fact that there are no inherent hole nucleation mecha-

nisms in the level-set based topology optimization methods for two-dimensional problems.

Pre-existing holes can only merge or cancel. Several attempts have been made to alleviate

this issue. One set of popular approaches is the use of topological derivatives. Topological

derivative approaches can be further sub-categorized into two strategies. In the first strategy,

holes are nucleated by removing material from the locations where the topological derivative

takes the least value [4, 225]. A second strategy modifies the Hamilton-Jacobi equation to

include topological sensitivity information [52, 16, 102, 59]. Amstutz and Andrä [16] only use

topological derivatives and no shape derivatives in their evolution equation. Another hole

nucleation approach is based on radial basis functions [231, 232, 233, 106]. This approach

does not make use of topological derivative information; instead the Hamilton-Jacobi equa-

tion is reduced to a set of ordinary differential equations using multi-quadratic splines and

solved using Euler’s method. The elimination of reinitialization and adoption of smoothed

naturally extended velocities aids the creation of new holes. Use of radial basis functions

helps maintain the smoothness of the level-set function. Other researchers have also used
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radial basis functions to parameterize the level-set function [74, 236, 134, 125]. In case of

three-dimensional optimization, Allaire et al. [8] have shown that the traditional level-set

approach using the Hamilton-Jacobi equation with shape derivatives is able to nucleate new

holes in the domain due to the pinching of thin walls. Other researchers (e.g. Challis et

al. [62, 61]) have arrived at similar conclusions for three-dimensional optimization with the

level-set method. Recently, Van Dijk et al. [218] published a review article which provides

a detailed overview of the different level-set methods for structural topology optimization.

Phase-field based methods are another category of approaches rapidly gaining popularity.

Essentially, the phase-field method is a diffuse interface model where boundaries between

phases are not sharp, but considered to have a finite thickness, hence providing a smooth

transition for the physical quantities between the phases. It has been used in materials sci-

ence to study the phase transition phenomenon. Cahn and Hillard [54], and Allen and Cahn

[11] used the theory of phase transition to study the liquid phases with variable densities.

Phase-field methods have been applied in a wide variety of fields such as fracture mechanics

[17]), visual reconstruction [139], and crystal growth simulations [121]. Bourdin and Cham-

bolle [46] used the phase-field method to study compliance minimization problems subjected

to design dependent loads such as pressure and gravity. Wang and Zhou [228] used the van

der Waals-Cahn-Hillard phase transition theory to propose a phase-field method for topology

optimization of a design domain consisting of bi-phase systems. Later, Wang and Zhou [229]

extended the method to tri-phase systems. In addition, Burger and Stainko [53] proposed a

phase-field method based relaxation scheme for structural topology optimization problems

with local stress constraints. Takezawa et al. [208] utilized the Allen-Cahn equation [11],

a time dependent reaction-diffusion equation, for the evolution of topologies in structural

optimization problems. The uniqueness of their approach was the utilization of the objective

function sensitivity to construct the double well potential function. Also, Wallin et al. [224]

presented a topology optimization procedure which uses a volume preserving Cahn-Hillard

model and an adaptive finite element formulation.

The goal of the current work is to study some of the prominent, and characteristically

different, level-set and phase-field methods which are representative of the literature. Our

efforts focus on critically understanding the following five methods: the AJT level-set method

[8], the DLK level-set method [216], the WW level-set method [231], Challis’ level-set method

[59] and the TNK phase-field method [208].1 We acknowledge that the cited authors may

have substantially improved their methods after the aforementioned papers were published.

We would like to clarify that our goal is not to address the latest contributions of each author,

but to investigate what has been reported in the five specific papers cited above, namely Allaire

et al. [8], Van Dijk et al. [216], Wang and Wang [231], Challis [59], and Takezawa et al.

1The acronyms, AJT, DLK, WW and TNK are used to abbreviate the last name of the authors in each corresponding paper.
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[208]. Although, the level-set and phase-field methods have been used to study a wide variety

of problems subjected to different constraints, we will focus on two-dimensional compliance

minimization problems only. It should be noted that the methods covered in this work are

representative and not exhaustive of the differential equation driven methods for topology

optimization. We hope this work will be a guide for future additional developments in the

field of topology optimization.

The remainder of the chapter is organized as follows. Section 2.2 discusses the formulation

of the topology optimization problem. Section 2.3 briefly reviews the differential equation-

driven methods analyzed in this work. Section 2.4 discusses the results of our analysis of these

methods, using several numerical examples. Finally, Section 2.5 provides some concluding

remarks.

2.2 Problem statement for differential equation driven methods

For the current comparative study, the topology optimization problem (1.5) is written as

unconstrained optimization problem using Lagrange multiplier method as:

inf
φ
J̄ (φ) = J (φ) + λP (φ) (2.1)

Here, λ is a positive Lagrange multiplier and volume constraint, P (φ), is given by

P (φ) =

(∫

Ω

ρ(φ)dx/|Ω| − Vf
)

(2.2)

where Vf is the prescribed volume fraction. In discrete form (2.1) can be rewritten as:

inf
φ
J̄ (φ) = FTU + λ

(
V Tρ(φ)− Vf

)
(2.3)

where F is the discretized global force vector, U is the global nodal displacement vector,

V is an array of the fractional areas of elements, V = [A1, A2, ..., An]T/
∑

iAi, the Ai’s are

element areas and ρ(φ) is the element density array. In the case of level-set methods, the

design function, φ, is defined as:





φ = 0 x ∈ ∂ω ∩ Ω,

φ < 0 x ∈ ω,
φ > 0 x ∈ (Ω\ (ω ∪ ∂ω)) .

(2.4)

The phase-field method starts with the boundary conditions specified in Fig. 1.2. At any

time during the optimization process, the phase-field domain can be illustrated by Fig.
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2.2. The working domain, Ω, is considered to be composed of two phases (ω0, ω1) and

the interfacial boundary between the phases, ξ, which is called the diffuse interface (Fig.

2.2). The diffuse interface acts as the transition zone between the two phases. The working

domain Ω contains all admissible shapes ω, i.e., ω ⊆ Ω. Here ω ⊂ (ω1 ∪ ξ). Accordingly, the

design function, φ, for the phase-field method is defined as:





φ = 1 x ∈ ω1,

0 < φ < 1 x ∈ ξ, Diffuse interface

φ = 0 x ∈ ω0.

(2.5)

For uniformity of notation, we represent the design variable as φ for both the level-set and

phase-field methods. However, for the phase-field method, the design function, φ, is the

same as the density function, ρ.

Figure 2.2: Phase-field working domain Ω. Domains
ω1, ω0 and ξ represent solid phase, void phase and
diffuse interface, respectively. Here, φ represents the
design function.

Ω

ξ

ω1

(   = 1)ᶲ
ω0

(  = 0)ᶲ

(0 <   < 1)ᶲ

2.3 A brief review of differential equation-based methods

Two general categories of differential equation-driven approaches for topology optimization

can be found in the literature - level-set methods and phase-field methods. We specifically

selected four representative level-set approaches and one representative phase-field approach

to review in this work. We first present a brief summary of the five methods. Note that

all the discussions about the AJT, DLK, WW and TNK methods in sections 2.4 and 2.5

are based on our own implementation and the discussion on Challis’ method are based on

the code provided in [59] with few modifications, to maintain uniformity amongst methods

investigated here, which are pointed out in the section below.
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2.3.1 AJT level-set method (Allaire et al. 2004)

In the level-set method proposed by Allaire et al. [8], the design front propagation is gov-

erned by the Hamilton-Jacobi equation and the advection velocity is derived from a shape

sensitivity analysis. The solid phase, φ < 0, is assumed to be filled with material of elastic-

ity tensor C0. In order to avoid singularities in the global stiffness matrix, the void region,

φ > 0, is filled with a weak phase with elasticity tensor kminC
0. Here, kmin is chosen as

10−3. This is called the Ersatz material approach. Thus, the effective elasticity tensor C for

the entire design domain Ω is defined as:

C(φ) = ρe(φ)C0 with ρe(φ) =





1 φ < 0,

kmin φ > 0.
(2.6)

Here, density ρe is taken as piecewise constant for each element. The procedure to calculate

element densities for the elements which are cut by the zero level-set function is not clearly

described in [8]. One possible approach is provided by Allaire et al. [9]. In this approach,

first the rectangular element is split into four triangles and the central node is assigned the

average of the level-set function values at the rectangular vertices. Then, linear interpolation

is used to obtain densities corresponding to each triangle. The element density is the average

of the densities of the constituent triangles.

The topology is evolved over fictitious time using the Hamilton-Jacobi equation:

∂φ

∂t
+ v |∇φ| = 0,

∂φ

∂n
= 0 on ∂Ω (2.7)

where n is the normal vector and the advection velocity, v, is obtained from the shape

sensitivity analysis. For objective (2.1), v is given as:

v = ε(u)TCε(u)− λ (2.8)

In our implementation, design function, φ, is nodal based. Hence, the velocities need to

be calculated at the nodes as well. First, (2.8) is integrated over each finite element to

obtain elemental velocities. Velocities at the nodes are obtained by taking the average of

the elemental velocities surrounding each node. We use a second order upwind scheme [179]

to solve (2.7).

φn+1
i,j = φni,j −∆t

(
max (vi,j, 0)∇+ + min (vi,j, 0)∇−

)
(2.9)

Here, φni,j, vi,j are values of φ, v for the nth iteration at the node located at xi,j. The
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parameters ∇+ and ∇− in (2.9) are given by:

∇+ =
[
max(A1, 0)2 + min(A2, 0)2 + max(A3, 0)2 + min(A4, 0)2

]1/2

∇− =
[
max(A2, 0)2 + min(A1, 0)2 + max(A4, 0)2 + min(A3, 0)2

]1/2 (2.10)

where the terms A1, A2, A3, A4 are:

A1 = D−xi,j +
∆x

2
m
(
D−x−xi,j , D+x−x

i,j

)
, A2 = D+x

i,j −
∆x

2
m
(
D+x+x
i,j , D+x−x

i,j

)
,

A3 = D−yi,j +
∆y

2
m
(
D−y−yi,j , D+y−y

i,j

)
, A4 = D+y

i,j −
∆y

2
m
(
D+y+y
i,j , D+y−y

i,j

)
.

(2.11)

The function m and derivatives D+x+x
i,j , D+x−x

i,j , D+x and D−x are defined as:

m(x, y) =








x if |x| ≤ |y|
y if |x| > |y|

for xy ≥ 0,

0 for xy < 0.

(2.12)

D+x+x =
φni+2,j − 2φni+1,j + φni,j

(∆x)2
, D+x−x =

φni+1,j − 2φni,j + φni−1,j

(∆x)2
, (2.13)

D+x =
φni+1,j − φni,j

∆x
, D−x =

φni,j − φni−1,j

∆x
. (2.14)

Other derivatives, D−x−xi,j , D+y+y
i,j , D+y−y

i,j , D−y−yi,j , D+y and D−y, can be calculated in a sim-

ilar way. Also, ∆x and ∆y are the distances between the nodes in the x and y direction,

respectively. Over the course of evolution, the level-set function may become too steep or

too flat which may result in an inaccurate approximation of the normal, n. For numerical

accuracy, the level-set function needs to be reinitialized/smoothed periodically. Reinitial-

ization to a signed distance function is one option; which can be achieved by solving the

equation:

∂φ

∂t
+ sign (φ0) (|∇φ| − 1) = 0,

∂φ

∂n
= 0 on ∂Ω (2.15)

with φ(x, t = 0) = φ0(x).

At steady state, the above equation reduces to |∇φ| = 1, the solution of which is a signed

distance function. A second order upwind scheme, discussed previously, is used to solve the

reinitialization equation (2.15).
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2.3.2 DLK level-set method (Van Dijk et al. 2009)

Traditionally, level-set methods use shape derivatives to estimate the advection velocity for

the Hamilton-Jacobi equation. Van Dijk et al. [216] proposed a modified version of level-

set method, which uses discrete sensitivity of the objective function in a steepest-descent

type evolution scheme. Their work was motivated by the argument that the use of shape

sensitivities to derive the velocity field may cause inconsistencies in the discretization of

the velocity field and governing equations, which may lead to poor performance. They also

dealt with multiple constraints, which is not very common in the literature of differential

equation-driven methods for topology optimization. The authors use an adjoint approach

to calculate the discrete sensitivities, modifying the objective function (2.3) by adding the

zero function QTR (ρ(φ),U) as follows:

inf
φ
J̄ (φ) = FTU + λ

(
V Tρ(φ)− Vf

)
+QTR (ρ(φ),U) (2.16)

where Q is a Lagrange multiplier vector and R (ρ(φ),U) is the residual obtained from the

finite element discretization of the equilibrium equation. Apart from the volume constraint,

the authors also impose displacement constraint on the optimization problem. As mentioned

earlier, for simplicity, we will only investigate the compliance minimization problem with vol-

ume constraint. The sensitivity of the objective function (2.3) is calculated by differentiating

(2.16) as follows:
∂J̄

∂φ
=
∂J̄

∂ρ

∂ρ

∂φ
=

(
QT ∂R

∂ρ
+ λV T

)
∂ρ

∂φ
(2.17)

where Q is computed by solving the adjoint system:

∂J̄

∂U
= FT +QT ∂R

∂U
= 0 (2.18)

In the level-set literature, it is often not clear how the level-set function is mapped to the

density domain in the design interface region. The authors (Van Dijk et al. [216]), however,

present a clear mapping scheme using an approximate Heaviside function as shown below:

ρe(φ) =

∫
Ωe
H (φ)dx∫
Ωe
dx

(2.19)
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where Ωe represents the element domain and H (φ) is an approximate Heaviside function

given by:

H(φ) =





1 φ < −h,
1
4

(1− ε)
((

φ
h

)3 − 3
(
φ
h

)
− 2
)

+ 1 −h ≤ φ ≤ h,

ε φ > h.

(2.20)

d

h = d /10

1

є

h-h ᶲ

H (  )ᶲ

Figure 2.3: Approximate Heaviside function to evaluate element densities in the elements cut by the zero
level-set, φ = 0.

Here, h = d/10, where d is the length of the diagonal of the finite element. Thus, ∂ρ/∂φ,

needed to evaluate the objective function sensitivity, can be calculated as:

∂ρe
∂φi

=

∫
Ωe
δ (φ)Nidx∫

Ωe
dx

(2.21)

where δ (φ) is the derivative (Dirac delta function) of the approximate Heaviside function

(2.20):

δ (φ) =





0 φ < −h,
1
4

(1− ε)
(

3φ2

h3
− 3

h

)
−h ≤ φ ≤ h,

0 φ > h.

(2.22)

The integral in the numerator of (2.19) and (2.21) is approximated by sampling φ at 10 ×
10 points over each finite element. In the literature, other approximate Heaviside based

mapping schemes can be found which utilize polynomial functions [226, 131, 116, 215] and

trigonometric functions [34, 101, 132, 169]. Finally, the level-set is evolved according to the

following direct update scheme:

φn+1 = φn − t ∂J̄/∂φ∣∣∂J̄/∂φ
∣∣ (2.23)
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where φn and t represent the design function array at the nth iteration and scaling constant,

respectively. As mentioned before, the authors’ update scheme (2.23) is different from the

typical advection equation updates (2.7) used for the level-set methods. The DLK approach

requires very frequent reinitialization to achieve convergence and this is because the direct

update (2.23) does not preserve the magnitude of the gradient of the level-set function.

Reinitialization is performed using (2.15).

2.3.3 WW level-set method (Wang and Wang 2006)

We next look at the radial basis function-based level-set method proposed by Wang and

Wang [231]. Similar approaches can be seen in [232, 233]. Radial basis functions are radially

symmetric functions centered at a specific point. Wang and Wang [231] used a particular

form of radial basis functions, known as multi-quadric splines, and method of lines to trans-

form the Hamilton-Jacobi partial differential equation into a system of ordinary differential

equations. The authors claim that their method does not require reinitialization (which is

expensive) and is insensitive to initial designs. The general form of a radial basis function,

centered around xi, can be written as Ni(x) = N(|x− xi|). The multi-quadratic splines

used in their work can be expressed as:

Ni(x) =

√
(x− xi)2 + c2

i (2.24)

where ci is assumed to be a constant shape parameter which affects the flatness of the splines.

The design function, φ(x), can be written in terms of multi-quadratic splines with m nodes

or knots as:

φ(x) =
m∑

i=1

αiNi(x) + p(x) (2.25)

where αi is the weight of the radial basis function at the ith knot and p(x) = p0 + p1x+ p2y

is a first degree polynomial to account for the linear and constant portions of the function.

Using the orthogonality conditions (
∑m

i αi = 0,
∑m

i αixi = 0,
∑m

i αiyi = 0) and the given

function values at m knots (φ(xi) = fi, i = 1, 2, ...,m), we get a system of m + 3 linear

equations to solve for m+ 3 unknown coefficients. In matrix notation, the above equations

can be written as:

Hα = f (2.26)

where

H =

[
PN PX

P T
X 0

]
, PN =



N1(x1) · · · Nm(x1)

...
. . .

...

N1(xm) · · · Nm(xm)


 , PX =




1 x1 y1

...
...

...

1 xm ym


 (2.27)

22



α = [α1 · · · αm p0 p1 p2]T , f = [f1 · · · fm 0 0 0]T (2.28)

Thus, (2.25) can be written as, φ(x) = NT (x)α, whereNT (x) = [N1(x) · · · Nm(x) 1 x y]T .

The Hamilton-Jacobi equation, used to update the level-set function, is both space and

pseudo-time dependent. In the WW approach [231], space and time are assumed to be

separable and the time dependency is lumped into the coefficients α. So we have

φ(x, t) = NT (x)α(t) (2.29)

Using (2.29), the Hamilton-Jacobi equation (2.7) can be simplified into following ODE:

H
dα

dt
+B(α) = 0 (2.30)

where

B(α) =




v(x1)|∇NT (x1)α|
...

v(xm)|∇NT (xm)α|
0

0

0




(2.31)

The authors chose Euler’s method to solve the ODE (2.30). So, coefficients α are updated

as:

α(tn+1) = α(tn)−∆tH−1B(α (tn)) (2.32)

Over the course of the evolution, the level-set function may become either too steep at the

design interface or too flat. Typically, in the level-set method literature, in order to maintain

its regularity, the level-set function is reinitialized periodically to a signed distance function.

Wang and Wang [231] argued that due to infinite smoothness of the radial basis functions,

accuracy of the normal vector can be maintained and thus operations such as reinitialization

are not required. In our implementation of the WW method, we too have not used any

reinitialization. We will discuss this issue in detail in Section 2.4. They use the shape

derivatives to define the advection velocity at the design front; which is extended to the

entire domain using the assumption that the strain is zero in the void region, ε = 0. To aid

in the smooth progress of the front, they introduce the following scheme for the advection
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velocity:

v(x) =





ε(u)TCε(u)− λ φ(x) < −h,
v̂(x) −h ≤ φ(x) ≤ h,

−λ φ(x) > h.

(2.33)

Here, v̂(x) is smoothed advection velocity around the zero level-set (design boundary) which

can be written as:

v̂(x) =

∑
p∈Z W (|p− x|) v(x)∑

p∈Z W (|p− x|) (2.34)

where

W (|p− x|) = rmin − |p− x| (2.35)

Also, the parameter h = 1, and Z is the neighborhood of x, such that −h ≤ φ(x) ≤ h,

inside the filter window of radius rmin. The effect of the smoothed velocity field is discussed

in Section 2.4.6. We use (2.19) to map the level-set function to the density domain. Note

that, in the WW approach [231], no mapping scheme is specified.

2.3.4 Challis’ level-set method (Challis 2010)

Recently, Challis [59] published an educational article on the level-set method. In her work,

Challis utilized Burger et al. [52] approach of modifying the traditional Hamilton-Jacobi

equation (2.7) to include topological derivatives to generate holes and applied it to topology

optimization problems. The modified Hamilton-Jacobi equation is given as:

∂φ

∂t
+ v |∇φ| = −wg (2.36)

where g(x) is a scalar field that is based on the topological sensitivities of the objective

function. And w is a positive parameter which determines the influence of g(x). The level-

set function value is evaluated at the center of each element and is considered constant within

each element. In Challis’ approach, the design does not have any intermediate densities. The

level-set is mapped to the density field as follows:

ρe =





1 if φe < 0,

0 if φe ≥ 0.
(2.37)

Here, ρe and φe represent the element density and the level-set function value at the center

of the element, respectively. We would like to point out that in Challis’ approach [59] the

objective function (2.38) is used, which we have modified to (2.3) to maintain uniformity
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amongst the methods investigated in this work. The corresponding normal velocity, v, which

is calculated using the shape sensitivities, is also updated to (2.8).

inf
φ
J̄ (φ) = FTU + λ

(
V Tρ(φ)− Vf

)
+

1

2Λ

(
V Tρ(φ)− Vf

)2
(2.38)

Subsequently, the forcing term, g, evaluated using topological derivatives of the objective

function (2.3), follows as:

g =





π(λ+2µ)
2µ(λ+µ)

(
4µε(u)TCε(u) + (λ− µ)uT (kTr)u

)
− πλn if φ < 0,

0 if φ ≥ 0.
(2.39)

The term uT (kTr)u is the finite element approximation of tr(Cε(u))tr(ε(u)) [59]. After

substituting v and g back into the modified Hamilton-Jacobi equation (2.36), it is solved

using the upwind finite difference scheme. Frequent reinitialization of the level-set function

to a signed distance function is performed using MATLAB’s bwdist function. For further

details, readers are referred to Challis’ paper [59]. We also modified the global stiffness

matrix assembly in Challis’ code to make it more efficient by using the sparse matrix assembly

function available in MATLAB.

2.3.5 TNK phase-field method (Takezawa et al. 2010)

In the current work, apart from the level-set methods discussed earlier, we also look at

the recently proposed phase-field method for structural topology optimization [208]. In the

phase-field method, the solid phase, ω1, is filled with material having elasticity tensor C0

and the region, ω0, mimics a void with elasticity tensor kminC
0. Here, kmin is chosen to be

10−3. The effective elasticity tensor C for the entire design domains (c.f. Fig. 2.2) can be

written as:

C (φ) =





C0 x ∈ ω1,

k (φ) C0 x ∈ ξ,
kminC

0 x ∈ ω0.

(2.40)

where kmin ≤ k (φ) ≤ 1, k (φ) = φp, p = 3. The scheme is similar to the SIMP method.

The evolution of the phases is governed by the Allen-Cahn equation (a reaction-diffusion

equation):
∂φ

∂t
= κ∇2φ− f ′ (φ) ,

∂φ

∂n
= 0 on ∂Ω (2.41)

where κ is the diffusion coefficient and f (φ) is a double well potential function. If f (φ) is

chosen to satisfy the conditions f(0) = 0, f(1) = η J̄ ′(φt)

|J̄ ′(φt)| , and f ′(0) = f ′(1) = 0, then the
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optimization proceeds in the direction which minimizes the design objective. Here, η is a

scaling constant, chosen as 10. One such f (φ) is given by (Fig. 2.4):

f (φ) =
1

4
φ2 (1− φ)2 + η

J̄ ′ (φt)∣∣J̄ ′ (φt)
∣∣
(
6φ5 − 15φ4 + 10φ3

)
(2.42)

Figure 2.4: Illustration of double well potential func-
tion. Here f (φ) is the double well potential function,
J̄ ′ (φt) represents the sensitivity of the reformulated
objective function with respect to φ at time t and η
is a scaling constant.

0 1

f ( )Φ

Φ

η
J (   )Φt′

J (   )Φt′

where J̄ ′ (φt) represents the sensitivity of objective function J̄ with respect to φ at time t.

Sensitivity analysis of objective functions, such as (1.3) and (1.4), is available in the book

by Bendsøe and Sigmund [39]. Thus, the Allen-Cahn equation (2.41) reduces to:

∂φ

∂t
= κ∇2φ+ φ (1− φ)

[
φ− 1

2
− 30η

J̄ ′ (φt)∣∣J̄ ′ (φt)
∣∣φ (1− φ)

]
(2.43)

One way to solve the Allen-Cahn equation is by using the finite difference scheme. Since

an explicit finite difference scheme forces the function φ to diverge when φ /∈ [0, 1], a semi-

implicit scheme is used to discretize the reaction term. Thus, the scheme to update φ can

be written as:

φn+1
i,j =





φni,j+∆t(P1+P2)κ

1−(1−φni,j)r(φni,j)∆t
for r

(
φni,j
)
≤ 0,

φni,j(1+r(φni,j)∆t)+∆t(P1+P2)κ

1+φni,jr(φni,j)∆t
for r

(
φni,j
)
> 0.

(2.44)

where

r
(
φni,j
)

= φni,j −
1

2
− 30η

J̄ ′ (φt1)∣∣J̄ ′ (φt1)
∣∣φ

n
i,j

(
1− φni,j

)

P1 =
φni−1,j − 2φni,j + φni+1,j

(∆x)2 , P2 =
φni,j−1 − 2φni,j + φni,j+1

(∆y)2 (2.45)

The time step ∆t satisfies Courant-Friedrichs-Lewy (CFL) condition.
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2.4 Comparison among methods

Now, we discuss the results of our implementation of all the above mentioned methods.

First the performance of the methods is evaluated for the two-dimensional compliance min-

imization test problems, followed by detailed discussions on the merits and limitations of

each method. We start by looking at the implementation details of our computer codes

below. It should be noted that for Challis’ approach we used the code provided in her paper

with a slight modification in her global stiffness matrix assembly, objective function, shape

sensitivities and topological sensitivities evaluation (details are provided in section 2.3.4).

2.4.1 Implementation details

All the methods have been implemented in MATLAB and have a similar structure. The

optimization algorithm consists of the following steps (c.f Fig. 2.5):

1. Initialize the design function based on the initial guess and set the value of various

algorithm parameters.

2. Perform the following steps until convergence:

(a) Compute the state variable u by solving the state equation (1.1, 1.2).

(b) Calculate sensitivity of the objective function for the DLK level-set method and

the TNK phase-field method. In the case of the AJT, WW and Challis’ level-set

methods, calculate the shape derivatives.

(c) Update the topology using the respective evolution equations.

3. The level-set function needs to be reinitialized from time to time to maintain the signed

distance characteristic. For this purpose, (2.15) is made use of for the AJT and DLK

methods. For Challis’ method, MATLAB’s bwdist function is used. No reinitialization

is performed for the WW level-set method and the TNK phase-field method.

4. Map the current level-set function into the density domain. Phase-field function, φ, is

taken to be the same as the density function, ρ.

2.4.2 Cantilever beam optimization

We compare the performance of the methods first using the cantilever beam compliance

minimization problem; which is a common benchmark problem in the literature. A Young’s

modulus of E = 1, and Poisson’s ratio of ν = 0.3, are used for all of the examples in this

work and consistent units are employed. The design domain is rectangular with dimensions

2 × 1 and discretized using 120 × 60 Q4 elements. The cantilever beam is fixed on the left
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Start

N  > N ?max 

Finite Element analysis to
solve elasticity equations  

Sensitivity / Shape sensitivity analysis,
N = 0  

Design function & variables initialization  

Use differential equation to update the design,
N = N + 1  

Reinitialize design function, if needed  

Yes

No

Stop

Converged ?

Yes

No

Figure 2.5: Flow chart for the differential equation-driven topology optimization. Here, Nmax represents
user defined maximum number of design updates for each finite element analysis.
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side and a unit vertical load is applied at the midpoint of the right side, as shown in Fig.

2.6. The volume fraction, Vf , is fixed at 0.45 by updating the Lagrange multiplier, λ, using a

scheme similar to Allaire and Pantz [10] and Takezawa et al. [208]. Optimization terminates

when either the change in element densities is less than 0.1% or the change in the objective

function is less than 0.01%. The densities are uniform inside each element. The time step,

∆t, satisfies the CFL condition for the AJT, WW, Challis’ level-set methods and the TNK

phase-field method.

Figure 2.6: The cantilever beam with the prescribed
load and boundary conditions is the first test prob-
lem.

F

2

1

Model parameters

For the AJT method, the level-set function is updated 20 times, using a second order upwind

scheme for the Hamilton-Jacobi equation (2.9), for each elasticity analysis (1.1, 1.2). The

level-set function is reinitialized after every 5 update steps of the Hamilton-Jacobi equation,

by conducting five explicit time steps of the second order upwind scheme of (2.15). In our

DLK level-set method implementation, the scaling parameter is chosen as t = hx, where

hx is the length of one side of the finite element. Parameter t is divided into small update

steps of ti = hx/4. After every update step of ti, using (2.23), the level-set is reinitialized by

conducting five explicit time steps of the second order upwind scheme of (2.15). For the WW

method implementation, the shape parameter, c, is chosen as 10−4, rmin = 1.2 and δ = 1. We

take 2 explicit time steps of the set of ODEs obtained from the Hamilton-Jacobi equation

using Euler’s method (2.32) for each elastic finite element analysis (1.1, 1.2). In Challis’

code, the parameters stepLength, numReinit and topWeight [59] are chosen as 2, 4, and

2, respectively, and the design is updated using (2.36). The phase-field diffusion coefficient,

κ, is taken as 2 × 10−5. We perform 20 update step evolution equation for the phase-field

function, by utilizing its semi-implicit finite difference approximate equation (2.44), for every

solution of state equation (1.1, 1.2).

Results

The converged topologies for the cantilever beam problem, with starting topology Fig. 2.7(a),

are shown in Fig. 2.7 and the summary of the results is given in Table 2.1. Converged

configurations from the AJT level-set method (Fig. 2.7(b)), the DLK level-set method (Fig.

2.7(c)) and the TNK phase-field method (Fig. 2.7(f)) are almost identical. The DLK method

produces the lowest compliance of 65.2, and all other compliances are in the range 65 to 74.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Converged topologies for cantilever beam problem on a domain discretized using 120× 60 mesh.
(a) Initial configuration. (b) AJT level-set method. (c) DLK level-set method. (d) WW level-set method.
(e) Challis’ level-set code. (f) TNK phase-field method.

Method Acronym Update
equation

Figure Compliance
(J)

Converged
volume
fraction

Allaire et al. [8] AJT (2.9) 2.7(b) 65.9 0.45
Van Dijk et al. [216] DLK (2.23) 2.7(c) 65.2 0.45
Wang and Wang [231] WW (2.32) 2.7(d) 66.8 0.45
Challis [59] - (2.36) 2.7(e) 73.8 0.45
Takezawa et al. [208] TNK (2.44) 2.7(f) 71.6 0.45

Table 2.1: Summary of results shown in Fig. 2.7 for the cantilever beam problem. Volume fraction, Vf = 0.45,
is imposed on the optimization problem.
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One of the drawbacks of the standard differential equation-driven methods is that new

holes cannot nucleate within a structure because there is no built-in hole nucleation mech-

anism. However, the WW approach [231] and Challis’ approach [59] do claim to generate

holes. Hole nucleation capability may alleviate the dependence on the initial guess which we

shall examine next.

Influence of initial guess

Typically, in differential equation driven methods, the optimal design is mesh dependent,

i.e. it depends on the resolution of the design parameterization. If the design parameteriza-

tion allows smaller details, the optimal design will be topologically more complex and finer

members will be formed. To obtain mesh independent results, some type of length scale

needs to be enforced (similar to density-based topology optimization methods [39]). None

of the five methods studied in this work enforce any length scale control. Thus, the optimal

designs will have topological complexity dependent on the initial guess, unless some form

of hole nucleation mechanism is introduced. This can be easily tested by evaluating the

performance of the five methods for a different initial configuration. For all the methods,

the design parameters are kept the same as before. The results are shown in Fig. 2.8.

In spite of the inclusion of hole nucleation capabilities, we observe that the WW and Chal-

lis’ methods do not alleviate the dependence on the initial guess. The converged topology

from Challis’ approach (Fig. 2.8(e)) is still similar to other methods which can not generate

holes. Although the final configuration obtained from the WW approach (Fig. 2.8(d)) is

topologically more complex than the others (has more holes than the initial starting con-

figuration), it is still not the same as the result obtained in the last problem (Fig. 2.7(d)).

Further discussion on hole nucleation capabilities and other features of the WW and Challis’

methods will follow in subsequent sections.

2.4.3 Bridge with holes optimization

Next, we explore the problem of a bridge with holes. The design domain is rectangular

in shape, discretized using 120 × 60 Q4 elements and is simply supported, as shown in

Fig. 2.9. Two fixed holes are introduced into the design domain and taken care of during

optimization using passive elements [39]. All other parameters are kept the same as in the

previous cantilever beam problem.

Figure 2.10(a) is chosen as the starting topology. The converged topologies are shown

in Fig. 2.10. Converged configurations from Challis’ level-set method (Fig. 2.10(e)) and

the TNK phase-field method (Fig. 2.10(f)) are visually similar, with the same number

of members and similar member orientations. The AJT level-set method topology (Fig.

2.10(b)) also has the same number of members as the TNK method but with a different
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Another initial configuration mesh for cantilever beam problem. (a) Initial topology. (b) AJT
(J = 76.2). (c) DLK (J = 75.6). (d) WW (J = 72.3). (e) Challis’ (J = 80.7). (f) TNK (J = 80.4).

Figure 2.9: The bridge problem with holes in the
design domain.

F

2
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orientation of the middle two members. The results of the DLK method (Fig. 2.10(c)) and

the WW level-set method (Fig. 2.10(d)) are clearly different from the others. In the DLK

method, there are traces of intermediate densities right next to the fixed circular holes which

is undesirable. The DLK method produces the least compliance of 18.5, and compliances

for the other methods are fairly close to each other (in the range 18 to 22). In the following

sections, we examine each method individually.

(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Converged topologies for bridge with holes problem on a domain discretized using 120 × 60
mesh. (a) Initial configuration. (b) AJT (J = 18.6). (c) DLK (J = 18.5). (d) WW (J = 20.1). (e) Challis’
(J = 20.5). (f) TNK (J = 21.4).

2.4.4 Discussion on AJT level-set method

The ability to handle the merging/cancellation of holes makes the AJT level-set method

suitable for topology optimization problems. As mentioned before, in the AJT method, the

lack of length scale control, and an inherent hole nucleation mechanism, results in designs

with topological complexity dependent on the initial guess. For such a method, it is impor-

tant that the results should at least be invariant to mesh refinement when the optimization

starts from a similar topology i.e. starting from a similar initial topology, the method should
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produce designs of similar topological complexity for different mesh discretizations. We test

the invariance of the AJT method with respect to mesh refinement using the cantilever beam

problem (Fig. 2.6) for the initialization shown in Fig. 2.7(a). The Lagrangian multiplier is

kept constant at 25. The resulting converged designs, shown in Fig. 2.11, confirm that the

current method is invariant to mesh refinement for similar starting topology. The compliance

for the different mesh discretizations are also similar (65.8, 65.9, 66.0 and 66.2 for 80× 40,

100× 50, 160× 80 and 200× 100 mesh discretizations, respectively).

(a) (b)

(c) (d)

Figure 2.11: Study of invariance of the AJT level-set approach to mesh refinement when optimization starts
from similar topology of Fig. 2.7(a). Converged configurations for mesh discretizations of (a) 80 × 40
(J = 65.8), (b) 100× 50 (J = 65.9), (c) 160× 80 (J = 66.0), and (d) 200× 100 (J = 66.2).

In their approach, Allaire et al. update the level-set 20 times using the Hamilton-Jacobi

equation (2.7) for every solution of the state equation. Although the scheme is justified,

since one explicit update step (2.7) is much cheaper than the solution of state equation

(1.1, 1.2), estimating the appropriate number of update steps per state equation solution

is a vital and difficult task. A high number of steps results in an inaccurate design and

a small number of steps results in a slow rate of convergence. A physically meaningful,

perhaps adaptive, scheme needs to be devised to estimate the optimum number of update

steps of the Hamilton-Jacobi equation (2.7) to achieve a balance between faster convergence

and accurate results. It should be noted that Allaire et al. reduce the number of update

steps during the course of optimization if the objective function J̄ is not decreasing, but

the exact implementation details are not provided. Similar arguments can be made for the

appropriate frequency of reinitialization and the number of explicit time steps of (2.15) that

need to be performed to maintain the signed distance nature of the level-set function. If

the reinitialization equation (2.15) is solved fully until the level-set function does not change
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anymore, or if the reinitialization is performed very frequently, then the algorithm converges

slowly. On the contrary, if insufficient reinitialization is performed, then the algorithm

tends to become unstable, leading to an inaccurate estimation of the boundary normal, and

ultimately converging to suboptimal topologies.

Since there are no inherent hole nucleation mechanisms in this method, the converged

topology is dependent on the initial chosen topology. Allaire et al. [4] proposed a remedy

to this problem using the topological gradient method or bubble method [80, 189, 57, 92].

In their method, the authors [4] use the topological gradient, at a predefined frequency, to

nucleate holes in the domain. For hole nucleation, the sign of the level-set function is changed

from negative to positive in the regions where the topological derivative attains minimum

negative values. As is evident from the work of Allaire et al. [4], their topological derivative

approach is effective in nucleating holes, but it still does not fully alleviate the dependence

on the initial guess. Again, the frequency at which one uses topological derivatives to

nucleate holes is chosen heuristically. If they are employed too often, the domain becomes

highly irregular, and if employed sparingly, the algorithm may have already converged to a

local minimum which might not be desirable. Some guidelines on choosing the parameters,

discussed above, are provided by Allaire et al. [9].

2.4.5 Discussion on DLK level-set method

In the test problem, we have seen that the DLK approach; which uses sensitivities of the

objective function, instead of shape sensitivities, to update the level-set, produces similar

configurations when compared to other level-set methods. This method is incapable of

generating new holes as other level-set methods, so the converged topology heavily depends

on the initial starting configuration. Topological derivatives can be used (discussed before

for the AJT level-set approach), to nucleate holes in the design domain and alleviate the

dependence on the initial guess to a certain extent. We do not study hole nucleation for the

DLK approach in the current work. Here, we first investigate if the DLK level-set approach

is invariant to mesh refinement for a similar starting topology. We solve the cantilever beam

problem starting with the initial topology, seen in 2.7(a), for mesh discretizations of 80×40,

100 × 50, 160 × 80 and 200 × 100. Figures 2.12(a)-(d) indicate that the DLK approach

produces consistent results for various mesh discretizations and thus it is invariant to mesh

refinement when optimization starts from a similar topology.

In the DLK level-set approach, the scaling parameter t is chosen as hx/2 (constrained

problem) and the subdivided time step is taken as ti = hx/20, where hx is the length of

the side of the finite element. In this work, as mentioned before, we chose a slightly larger

scaling parameter t = hx and subdivided time step ti = hx/4 to speed up the convergence.

The convergence is affected if a bigger scaling parameter is chosen. Limits on the scaling
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(a) (b)

(c) (d)

Figure 2.12: Study of invariance of the DLK level-set approach to mesh refinement when optimization starts
from similar topology. Initial topology is chosen same as Fig. 2.7(a). Converged configurations for mesh
discretizations of (a) 80× 40 (J = 64.6), (b) 100× 50 (J = 65.0), (c) 160× 80 (J = 65.5), and (d) 200× 100
(J = 65.9).

parameter t should be provided, similar to the CFL condition, but are not shown in their

work.

In this work, the level-set function needs to be reinitialized after each update step; the

reason being, that the steepest-descent type updates (2.23) do not preserve the gradient

of the level-set function. The level-set function slope, near the design boundaries, deviates

faster from unity in the DLK method than in the AJT method, which necessitates more

periodic reinitialization to achieve numerical convergence. Now, consider (2.17) and (2.18).

By some algebraic manipulations, we can see that:

∂J̄

∂φi
= −

(
ε(u)TC0ε(u)− λ

) ∂ρe
∂φi

(2.46)

Also, from (2.21) and (2.22), it is clear that ∂ρe
∂φi
≤ 0. Let, ζ = −∂ρe

∂φi
≥ 0; thus, (2.23) can be

simplified as:
φn+1
i − φni

t
≈ −ζ̄v1 (2.47)

where v1 =
(
ε(u)TC0ε(u)− λ

)
and ζ̄ = ζ/

∣∣∣ ∂J̄∂φi
∣∣∣ ≥ 0, ζ̄ ∈ [0, 1]. When compared with the

discrete form of the Hamilton-Jacobi equation used in the AJT method (2.7), i.e.,

φn+1
i − φni

t
≈ −v|∇φn| (2.48)
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we see that (2.47) and (2.48) are similar in nature. For both methods, the level-set function

propagates in the direction in which the strain energy is minimized.

In this method, the bandwidth of the approximate Heaviside function h is chosen as d/10,

where d is the length of the diagonal of the finite element. No justification is provided for

this choice. Ideally h should be as close to zero as possible (to accurately map the level-

set function to the density domain), but h cannot be exactly zero because it will result

in infinite gradients (c.f. (2.21) and (2.22)). So a scheme needs to be devised to obtain

the optimal value of h. Finally, we would like to mention that; since, in this work, we

have limited ourselves to compliance minimization problems, we did not investigate the

compliant mechanism problem, treated as a multiple constraint optimization problem by

applying displacement constraints, in Van Dijk et al.’s work. Effective treatment of multiple

constraints is one of the motivations behind Van Dijk et al.’s work. To demonstrate that,

Van Dijk et al. [216] solved the force inverter problem as a multiple constraint problem.

Their result for the constrained optimization problem indicates the presence of single node

connection and their results for both constrained and unconstrained problems contain tiny

voids inside the solid region. This shows that the optimization converges to local minimums,

which can be avoided by using regularization algorithms such as filtering. So far Van Dijk

et al. have studied the compliance minimization problem and the compliant mechanism

problem as a multiple constraint problem. Their method needs to be investigated for other

optimization problems such as non-linear elasticity and design dependent load problems, to

assess its robustness.

Recently, Van Dijk et al. [217] published an updated version of their previous method

(studied in this work). In their current research, the authors persist with a steepest-descent

type updating scheme for the level-set function and look at multiple constraint problems.

There are two contrasting differences between the two approaches. First, in the updated

version, no reinitialization is used. Second, an exact Heaviside function is used to relate the

level-set function and the element densities. It is known that, without some kind of reinitial-

ization or regularization, the level-set function values drift to large absolute values. In order

to obtain accurate predicted responses, the authors impose an upper bound on the steepest

descent update step for the level-sets and also impose a limit on the size of density change for

each level-set update step, both of which are heuristic in nature. Additionally, they utilize

heuristic diagonal preconditioner to obtain uniform level-set increments. To deal with the

integration of the Heaviside function and its derivatives, in order to obtain the element den-

sities and their sensitivities, the authors define a piecewise linear shape function for Q4 finite

elements. Their results show non-physical gray region (compliance minimization results in

[217]) and single node connections (compliant mechanism results in Van Dijk et al. [217]),

even though good convergence is obtained for the imposed multiple constraints. There are
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also undesirable oscillations in the convergence history. The authors argue that consistent

sensitivity analysis and update scheme lead to good convergence of multi-constrained opti-

mization problem but may also result in numerical artifacts such as excessive gray region

and point hinges (similar to density-based topology optimization methods [39]). The authors

tried administering perimeter constraint and density filters to avoid the aforementioned nu-

merical anomalies. Effective treatment of multiple constraints is an important issue which

needs to be addressed by the level-set community in the future.

2.4.6 Discussion on WW level-set method

Following the same trend as the previous methods, we first check if the WW method is

invariant to mesh refinement for a similar starting topology. We solved the cantilever beam

problem, using the initial guess in Fig. 2.7(a), for mesh discretizations of 80×40 and 100×50.

The result for the 120 × 60 mesh is already shown in Fig. 2.7(d). We could not run the

problem for meshes larger than 120 × 60, for reasons which will be discussed later in this

section. Results (Figs. 2.13(a)-(b) and Fig. 2.7(d)) suggest that the WW level-set method

is also invariant to mesh refinement when the optimization algorithm starts from a similar

topology.

(a) (b)

Figure 2.13: Study of invariance of the WW level-set approach to mesh refinement for similar starting
topology. Figure 2.7(a) is the chosen starting topology. Converged configurations for mesh discretizations
of (a) 80× 40 (J = 65.8) and (b) 100× 50 (J = 66.3).

To investigate the issue of sensitivity of the final topology to the initial chosen configu-

ration, we ran the cantilever beam problem with two different initial configurations (Figs.

2.14(a) and 2.15(a)). The corresponding converged topologies (Figs. 2.14(f) and 2.15(b))

support the author’s claim of hole nucleation; however, lack of a unique converged topol-

ogy (c.f. Figs. 2.7(d), 2.8(d), 2.14(f) and 2.15(b)) for various initial guesses confirms that

dependence on the initial guess has not been fully resolved. The method still converges to

local minimums, dictated by the starting topology.

In the present approach, Wang and Wang [231] used radial basis functions to parameter-

ize the level-set function. Our implementation of the WW approach suggests that although

the infinite smoothness of MQ splines helps maintain smoothness of NT (x) (c.f. (2.29)), the
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Evolution of topology for curved cantilever beam problem starting with initial topology (a) for
the WW approach on a 120× 60 mesh. (b) Iteration 56. (c) Iteration 80. (d) Iteration 85. (e) Iteration 92.
(f) Converged topology.

(a) (b)

Figure 2.15: Different initial topology for the WW approach on a 120 × 60 mesh. (a) Initial guess. (b)
Converged configuration.

39



level-set function grows to very high absolute values because of the rapid growth in α(t).

To observe this, consider Fig. 2.16; which shows the level-set function for the converged

configuration in Fig. 2.7(d). Towards the end of optimization, at some locations across the

design boundaries, the level-set function (Fig. 2.16(b)) varies in the order of +1024 to −1024

(much higher at some other locations). Such unbounded growth and high variation implies

that the boundary is too steep (hence high gradients) and, thus, obtaining an accurate ap-

proximation of the normal at the design interface is difficult. This might cause the algorithm

to converge to incorrect results. Smooth radial basis functions do alleviate the problem of

high gradients to a certain extent, by providing some sort of smoothness to the level-set

function, without which, the algorithm does not converge.

(a)

Level−set function, φ

 

 

−8 −6 −4 −2 0 2 4

x 10
24

(b)

Figure 2.16: Level-set function corresponding to the converged topology in Fig. 2.7(d). (a) Level-set function.
(b) Zoomed in section.

In the WW approach, a new scheme is introduced to extend the advection velocity field,

defined on the front using shape derivatives, to the entire design domain. In order to provide

a physically meaningful extension velocity, they assumed a strain field ε(u) = 0, resulting in

a strain energy of εTCε = 0, for φ(x) > δ. This assumption adds little value when we are

using an Ersatz material approach, since in the region φ > 0 (void region) we assume C ≈ 0

which results in a strain energy of εTCε ≈ 0. The authors also smooth the advection velocity

near the design interface, citing the reason that the advection velocity is discontinuous at

the boundaries. It should be noted that the advection velocity is C0 continuous (c.f. (2.33)).

The smoothing of the advection velocity helps bring down the gradients to a certain extent,

but, high inaccurate gradients persist in some regions, especially the region around the

point of application of the load. Such high values of level-set function can be attributed

to the fact that the WW method does not utilize any regularization schemes (for example,

reinitialization), other than velocity smoothing, to control the gradients of the level-set

function near the design boundaries. When we tried to periodically reinitialize the level-set

function in the WW scheme, we were able to control the magnitude of the gradients (as

expected) but it resulted in the loss of hole nucleation capability.
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c Compliance (J) Converged volume
fraction

Condition number
of H (c.f. (2.26),

(2.27))

Iterations

10−5 66.4 0.45 2.67× 105 93
10−4 65.8 0.45 2.70× 105 147
10−3 65.8 0.45 2.94× 105 212
10−2 65.7 0.45 7.97× 105 298
10−1 - - 1.06× 1012 No convergence

Table 2.2: Influence of shape parameter, c, on the WW level-set method for 80× 40 mesh.

Wang and Wang [231] argued that reinitialization is computationally expensive and

time consuming, which is true to a certain extent, but this cost is minimal compared to

the solution of the Hamilton-Jacobi equation using multi-quadratic radial basis functions.

Multi-quadratic splines produce a dense interpolation matrix H which is known to be ill-

conditioned. So, the design update (2.32) is very expensive since it requires inversion of a

dense matrix. We could run examples only up to a mesh discretization of 120 × 60; which

converged within a reasonable time frame. Finer meshes either take too long to converge

(more than a few hours) or the system runs out of memory.2 Many techniques are avail-

able to efficiently handle dense, ill-conditioned matrices such as the domain decomposition

method, fast multi-pole method and pre-conditioning [51]. In their work, in order to speed

up the convergence Wang et al. chose time steps of 10−3 or 10−4 which is much larger than

the CFL time steps (the CFL time step is of the order of 10−5, 10−6 for 40 × 20, 120 × 60

meshes, respectively). Although rapid convergence can be achieved by using bigger time

steps, it creates instability in the system due to large accumulated errors.

Finally, we also investigated the influence of shape parameter c, which controls the flatness

of the radial basis function, on the optimization algorithm. We varied c in the range 10−5−
10−1 for mesh discretization of 80× 40 and the initial guess shown in Fig. 2.7(a). Our study

(Table 2.2) shows that the condition number of H increases with c, indicating an increase in

instability in the system. The compliances are approximately the same with no discernible

trend. Visually, the converged topologies are all similar to the test problem solution for the

WW method (Fig. 2.7(d)). We did observe that for c = 10−1, the condition number of H

becomes too high and thus the algorithm fails to convergence. This sets an upper limit on

the choice of c. Similar results were observed for other mesh discretizations.
2All the numerical problems were performed on Intel(R) Core 2 Quad, 2.49 GHz processor and 8 GB RAM running MATLAB

R2009a.
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2.4.7 Discussion on Challis’ level-set method

In its current form, Challis’ algorithm possesses some limitations. Her implementation takes

a long time to converge if the mesh discretization is greater than 5000 elements. Because her

original code was developed for educational purpose, justifiably little effort was made on the

part of the author to make it more efficient. We have alleviated this problem by using sparse

matrix assembly as mentioned before. Similar to the AJT method, in Challis’ implemen-

tation, it is difficult to estimate the optimum number of Hamilton-Jacobi equation update

steps that need to be performed for every finite element update. There is a trade off between

accuracy and computational time. Challis uses the MATLAB function bwdist for reinitial-

ization which excessively smooths the level-set function. It is also not possible to control

the degree of smoothness with bwdist. Other approaches, such as the one used in the AJT

method, where (2.15) is used for reinitialization, although computationally more expensive,

can provide the desired control over smoothness. As indicated earlier, in Challis’ approach

the traditional Hamilton-Jacobi equation (2.7) is modified to include topological derivatives

which aid in the generation of holes. Frequency of reinitialization is a significant issue with

regards to hole nucleation. In Challis’ method, reinitializing the level-set function too often

neutralizes the effect of topological derivatives and thus, the hole generation capability is

lost. Therefore, it is vital that a suitable reinitialization frequency is established, which not

only keeps the level-set function gradients near the design boundaries under control, but also

does not hamper hole nucleation.

In Challis’ approach, positive constant w controls the influence of topological derivatives.

We next examine the influence of w on the optimization using the cantilever beam problem

Fig. 2.6. Parameter w is varied in the set {2, 3, 4, 6, 8, 10}. The domain discretization is fixed

to 80×40 and the other parameters are kept constant (Vf = volRec = 0.45, stepLength = 2,

numReinit = 4). It can be seen from Fig. 2.17 that parameter w significantly influences the

final topology. For w = {2, 3, 4}, the topologies are visually similar.

The parameter w is also mesh dependent and the next study confirms this statement. We

keep w constant at 3, all other parameters are kept the same as they were in the last study,

and we vary the mesh discretization. We observe that the final configurations are different

for different mesh discretizations (Fig. 2.18). These two studies indicate that w significantly

influences the optimization algorithm. A smaller value prevents new holes from nucleating

and a larger value causes the topological derivatives to dominate, producing too many holes.

More work needs to be carried out to arrive at an optimal value for w.

In this approach, shape and topological sensitivities are smoothed after each state equa-

tion solution over the entire domain. Explicit sensitivity smoothing is typically employed to

reduce the probability of convergence to a local minimum. But, care must be taken when
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(a) (b)

(c) (d)

(e) (f)

Figure 2.17: Study of the influence of w on Challis’ approach using cantilever beam problem on a 80 × 40
mesh. Initial configuration is a fully solid domain. Converged configurations for (a) w = 2 (J = 72.1), (b)
w = 3 (J = 68.6), (c) w = 4 (J = 70.0), (d) w = 6 (J = 68.4), (e) w = 8 (J = 71.2), and (f) w = 10
(J = 70.6).
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(a) (b)

(c) (d)

Figure 2.18: Mesh refinement study with w = 3 for Challis’ approach. Initial configuration is a fully solid
domain. Converged configurations on mesh discretization of (a) 80× 40 (J = 68.6), (b) 120× 60 (J = 72.7),
(c) 160× 80 (J = 73.0), (d) 200× 100 (J = 73.2).

applying such smoothing techniques, because it affects the hole nucleation process and also

the rate of convergence of the algorithm. In Challis’ approach, a border of void elements

around the design domain is included. The author claimed that they are necessary to repre-

sent the boundary of the structure accurately; which actually aids the algorithm to converge.

This approach has been applied to compliance minimization problems and needs to be tested

for other problems such as compliant mechanisms, design dependent loads and non-linear

elasticity problems, for robustness.

2.4.8 Discussion on TNK phase-field method

The phase-field method by Takezawa et al. [208] utilizes a time dependent reaction-diffusion

equation, known as the Allen-Cahn equation, for the evolution of topologies. The sensitivity

of the objective function, employed extensively in density methods, is used to define a double

well potential function which is a part of the evolution equation. Unlike level-set methods,

the phase-field method eliminates the need for reinitialization, which can be costly. This

method has been verified for minimum compliance, compliant mechanism and eigenfrequency

maximization problems. Problems such as nonlinear elasticity, design dependent loads and

minimum stress are yet to be explored.

The phase-field method performed well for the test problem shown earlier and produced

expected topologies. As shown in the cantilever beam problem, like level-set methods, the

phase-field method does not have an embedded hole generation mechanism and thus the

final topologies are influenced by the initial topology. Takezawa et al. suggest the use of
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topological derivatives to alleviate this problem which is similar to the approach in level-

set methods [4]. We did not investigate the use of topological derivatives in the phase-

field method to generate holes. From Takezawa et al.’s work [208], it is evident that the

use of topological derivatives is a feasible option to nucleate holes. However, further work

is required to verify the accuracy of this approach and more test problems need to be

investigated to establish its robustness.

The diffusion coefficient, κ, plays a critical role in the phase-field method. We investigate

the effects of κ on the optimization process using the cantilever beam problem. For the first

study, the domain discretization is fixed at 160 × 80 elements; a volume fraction of 0.45 is

prescribed and κ is varied. Figure 2.19(a) is chosen as the initial configuration. Optimization

is performed for κ = 0.5× 10−5, 2× 10−5 and 5× 10−5. From Fig. 2.19(b)-(d), it is evident

that as κ increases, the thickness of the diffuse interface increases. The percentage of total

elements in the diffuse interface (Fourth column in Table 2.3), gives a general idea about

the diffuse interface thickness. Design boundary becomes increasingly fuzzy. Also, the

number of holes decreases with increasing κ. Thus, κ also affects the perimeter of the final

configuration.

(a) (b)

(c) (d)

Figure 2.19: Study of the influence of diffusion coefficients κ on the TNK phase-field approach. Mesh
discretization is 160×80 and (a) is the starting configuration. Converged configurations for (b) κ = 0.5×10−5,
(c) κ = 2× 10−5, and (d) κ = 5× 10−5.

For the next study, we fix κ to 1 × 10−5 and vary the mesh discretizations. The initial

guess is kept the same as in the previous study. We see that for a particular κ (1×10−5 in this

case), too coarse of a mesh discretization (Figs. 2.20(a) and (b)) hinders the optimization

and the algorithm stops prematurely, which is evident from the final volume fractions in

Table 2.4. Finer discretizations in the range 160× 80 and 200× 100 (Fig. 2.20(c), (d)) seem
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κ Compliance (J) Converged volume
fraction

Elements in the diffuse
interface

(0.01 < φ < 0.99)

0.5× 10−5 87.6 0.45 13.8 %
2.0× 10−5 71.9 0.45 27.6 %
5.0× 10−5 74.7 0.45 33.0 %

Table 2.3: Influence of diffusion coefficient, κ, on the TNK phase-field method for a fixed 160× 80 mesh and
Vf = 0.45 (c.f. Fig. 2.19).

to be more ideal for κ = 1× 10−5 (least compliance).

(a) (b)

(c) (d)

Figure 2.20: Cantilever beam problem solved on different mesh discretizations with diffusion coefficient
κ = 1 × 10−5. Figure 2.19(a) is choosen as the initial guess. Converged topologies for mesh discretizations
of (a) 80× 40, (b) 120× 60, (c) 160× 80, and (d) 200× 100.

From these two studies it is clear that the choice of κ is mesh dependent. It not only

controls the thickness of the diffuse interface but also the number of holes, thus perimeter, of

the final configuration. If κ is too small the resulting thickness of the diffuse interface is too

small and thus the evolution of the topology is hindered. On the other hand, if κ is too big,

then there is excess gray region and fewer holes in the converged topology(Fig. 2.21). Our

numerical experimentation shows that the ideal choice of κ is one which produces topologies

with approximately three-to-four elements in the diffuse interface.

To conclude, the diffusion coefficient, κ, needs to be scaled appropriately, when the mesh

discretization is varied, to get consistent designs. It should also be noted that, in the

interpolation function (2.40) (same as SIMP model), the power p also affects the gray region.

A penalty, p, greater than or equal to 3 is recommended in the SIMP model.
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Mesh discretization Compliance (J) Converged volume fraction

80× 40 123.9 0.66
120× 60 78.5 0.46
160× 80 70.7 0.45
200× 100 70.6 0.45

Table 2.4: Study of affect of diffusion coefficient (κ = 1 × 10−5) with variations in mesh discretization on
the TNK phase-field method (c.f. Fig. 2.20). Volume fraction, Vf = 0.45, is imposed on the system.

Figure 2.21: Qualitative illustration of the variation
of the choice of diffusion coefficient κ versus the mesh
refinement. For a particular choice of mesh refine-
ment no, if κo represents the ideal choice of κ then
any κ > κo will result in lesser holes and excess gray
region in the converged configuration. On the other
hand if κ < κo then the algorithm stops prematurely.
Here, the ideal choice of κ is defined as the value
which produces topologies with approximately three-
to-four elements in the diffuse interface.
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The phase-field method discussed here (TNK method) is similar to gradient-based den-

sity methods in many aspects. Both methods have the same domain representation and

their optimization algorithms are primarily driven by sensitivity information. Material in-

terpolation schemes such as SIMP, RAMP [192, 39] and ECP [245, 244, 246], are equally

applicable to both. The main difference between the two methods is in the updating algo-

rithms they employ. Mathematical programming algorithms; such as, Method of Moving

Asymptotes (MMA) [205], Optimality Criteria (OC) [39], Sequential Linear Programming

(SLP), Sequential Quadratic Programming (SQP), CONvex LINearization approximations

(CONLIN) [83]) have been applied to density methods. Additional techniques such as filter-

ing, perimeter constraint [39] and manufacturing constraints [122, 12] are used to regularize

the design. In the TNK method, the design is updated using the Allen-Cahn equation (2.41,

2.42). Perimeter constraint is built-in to the updating scheme and can be controlled via the

diffusion coefficient, κ. Moreover, the double well potential function (2.42) has a regulating

effect as it drives the design towards a 0-1 solution.

Finally, Table 2.5 summarizes the key features of the differential equation-driven methods

discussed in this study.
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2.5 Concluding remarks

In this work, we study four level-set methods and one phase-field method. The AJT level-set

method [8] is the first method we analyze. In this method, shape derivatives are combined

with the Hamilton-Jacobi equation for the design front propagation. The second method

we look at is the DLK level-set method [216] in which the objective function sensitivity is

used in a steepest-descent type update scheme. The WW level-set method [231] transforms

the Hamilton-Jacobi equation into a set of ordinary differential equations (ODEs) using

multi-quadratic radial basis functions. The ODEs are solved using Euler’s method. Challis’

level-set method [59] utilizes Burger et al. [52] approach of modifying the Hamilton-Jacobi

equation to include topological sensitivity to nucleate holes in the design domain. Finally,

we also study the TNK phase-field method [208] for structural topology optimization. The

design domain is represented in terms of a phase-field function and evolved using the Allen-

Cahn equation; which utilizes objective function sensitivity.

Our study shows that, in all five methods, the final topologies are dependent on the

starting initial configurations. Although, the WW method and Challis’ method nucleate

holes in the design domain, these methods still possess the initial configuration dependency.

The AJT method produces designs which are invariant to mesh refinement when optimiza-

tion starts from a similar topology i.e. starting from a similar initial topology, the method

should produce designs of similar topological complexity for different mesh discretizations.

In the AJT method, certain parameters such as the number of Hamilton-Jacobi updates

per state equation solution, frequency of reinitialization and number of times the reinitial-

ization equation is solved, are chosen heuristically. A physically meaningful scheme needs

to be devised which can estimate the optimum parameter values. The DLK method also

produces designs which are mesh invariant for similar starting topology but requires very

frequent reinitialization for the algorithm to converge, making it computationally expensive

and resulting in a slow rate of convergence. Reinitialization is required frequently, because

the steepest-descent type update (2.23) used in the DLK method does not preserve the mag-

nitude of the gradient of the level-set function. The slope of the level-set function needs to

be controlled near the design interface for convergence. Unlike other level-set methods, the

WW method does not periodically reinitialize the level-set function, to save computational

cost, and it also aids in the hole nucleation process. But, this also causes the level-set func-

tion and its gradients to grow to large values, making accurate approximation of the normal

at design boundaries difficult. The WW method also produces dense matrices which need

to be inverted frequently, rendering them computationally very expensive. Challis’ method

possesses a built-in hole nucleation mechanism, because of the modified Hamilton-Jacobi

equation which incorporates topological derivatives. But, the final topologies depend on
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the choice of mesh-dependent parameter w; which determines the influence of topological

derivatives. The TNK phase-field method does not require the phase-field function to be

a signed distance function, so no reinitialization is needed. In this method, the diffusion

coefficient, κ; which controls the thickness of diffuse interface and the perimeter of the final

configuration, is mesh dependent and needs to be scaled appropriately for meshes of differ-

ent discretization. It should be noted that, of all the five methods we studied, only Challis’

method enforces black and white solutions.

In this work, we focused on two-dimensional optimization problems for which hole nucle-

ation is a challenge. For the three-dimensional case, Allaire et al. [8] have shown that the

traditional level-set approach of using an advection equation with shape derivatives is able

to nucleate new holes in the domain due to the pinching of thin walls. Also, we limited our-

selves to compliance minimization problems for simplicity. Most methods in the literature

tend to perform relatively well in the case of compliance minimization and thus may appear

to be similarly effective. Methods which produce similar results for compliance minimization

might exhibit drastically different behavior for other objectives, such as compliant mecha-

nism, stress criterion and nonlinear elasticity. Only when these methods are tested against

objectives other than compliance can one ascertain the actual robustness of the method.

We would like to point out that the evolution equations for the level-set methods and

phase-field method that we have examined in this work can be regarded as some sort of

steepest decent method. In the case of compliance, the algorithms strive to minimize the

strain energy in the system by placing more material at high strain energy locations. Thus,

the differential equation-driven methods follow the same design philosophy as the gradient-

based density methods for topology optimization.
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Chapter 3

Phase-field based topology

optimization with polygonal elements

In Chapter 2, we have seen that uniform grids have been the common choice of domain dis-

cretization in the topology optimization literature. Over-constraining geometrical features

of such spatial discretizations can result in mesh-dependent, sub-optimal designs. Thus, in

the current work, we employ unstructured polygonal meshes constructed using Voronoi tes-

sellations to conduct structural topology optimization. We utilize the phase-field method,

derived from phase transition phenomenon, which makes use of the Allen-Cahn differential

equation and sensitivity analysis to update the evolving structural topology. The solution

of the Allen-Cahn evolution equation is accomplished by means of a centroidal Voronoi tes-

sellation (CVT) based finite volume approach. The unstructured polygonal meshes not only

remove mesh bias but also provide greater flexibility in discretizing complicated (e.g. non-

Cartesian) domains. The features of the current approach are demonstrated using various

numerical examples for compliance minimization and compliant mechanism problems.

3.1 Introduction

Level-set methods and phase-field methods are two types of differential equation-driven

methods that have emerged as an alternative to density-based methods. In general, level-set

functions become too flat or too steep during the course of evolution and thus, for numer-

ical accuracy, they need to be reinitialized periodically, for example, to a signed distance

function. Phase-field methods are attractive in this regard as they do not require frequent

reinitialization. It has been widely used in the field of materials science as a means to study

phase transition phenomenon. For instance, it is especially suitable to investigate the stabil-

ity of systems with multiple unstable phases. Cahn and Hillard [54] and Allen and Cahn [11]

used the theory of phase transition to study liquid phases with variable densities. In essence,

the phase-field method is a diffuse interface model where the boundary between phases is not

sharp, but considered to have a finite thickness, thus providing a smooth transition for the

physical quantities between the phases. In the phase-field method, explicit interface tracking
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is avoided and topologies are evolved by solving the governing equations over the complete

design domain without prior information about the location of phase interfaces.

For simplicity, topology optimization problems are often solved on Cartesian meshes. The

orientation of members in the evolving topologies are thus biased because of the geomet-

rical constraints of such meshes. Accurate representation of general design domains and

boundary conditions requires additional effort. Moreover, it is well known that traditional

density-based topology optimization on Cartesian meshes suffer from numerical artifacts

such as checkerboard patterns and one-node connections [76, 186]. Techniques such as fil-

ters [186, 45, 98] may alleviate numerical anomalies and mesh bias. However, Rozvany et

al. [171] indicated that such heuristic schemes can result in (considerable) weight increase.

Polygonal elements address some of the aforementioned problems. They not only provide

convenience and flexibility in discretizing complicated design domains but also lead to opti-

mal designs that are not biased by the mesh discretization. For instance, polygonal elements

alleviate one-node connection problems and prevent checkerboard pattern from occurring in

density methods [209]. The Voronoi diagram, named after Georges Voronoi [221], has been

a popular choice for generating polygonal meshes in the field of computer graphics, robotics,

pattern recognition [95, 94] and is the method of choice in this work. Voronoi diagram is a

mathematical approach of dividing space into a number of regions using a set of points or

seeds. The Voronoi cell associated with each seed is the set of all the points whose distance

from this seed is not greater than their distances from other seeds. Some of the prominent

Voronoi diagram computing algorithms are naive method, divide-and-conquer method, in-

cremental method, geometric transforms-based method, and digital plane algorithm [151];

lower envelopes-based method [181] and octrees-based method [127]. Detailed surveys of

Voronoi diagrams and their applications are available in [20, 21, 151].

In this work, we utilize unstructured polygonal meshes, constructed using Voronoi tes-

sellations, for structural topology optimization employing the phase-field method. In order

to evolve the partial differential equation (PDE), known as the Allen-Cahn equation, a cen-

troidal Voronoi tessellation based finite volume approach [219] is used. We also present a

heuristic finite difference approach, as an alternate scheme, which can be used for assessing

the accuracy of results obtained from the finite volume approach. To generate polygonal

meshes, we use PolyMesher [210], which is an extension of the work by Bolander and Saito

[42] and Yip et al. [243].

The remainder of this chapter is organized as follows. In Section 3.2, we review the

polygonal finite element method used in this work. Sections 3.3 and 3.4, address the finite

volume and finite difference approaches for solving the Allen-Cahn equation on non-Cartesian

domains discretized using unstructured polygonal meshes, respectively. Section 3.5 provides

several numerical examples. Finally, we conclude with some remarks in Section 3.6.
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3.2 Polygonal finite elements

In the literature, often uniform grids of linear quads/triangles (2D) or bricks/tetrahedra

(3D) are used for topology optimization problems. Because of their intrinsic geometrical

constraints, such spatial discretizations bias the orientation of members and hence can result

in mesh-dependent, sub-optimal designs (cf. Fig. 21 in [209]). In the current work, we use

polygonal meshes constructed using Voronoi tessellations [95, 209, 210, 94] to implement the

phase-field method. The use of such unstructured meshes not only circumvents mesh bias

but also provides greater flexibility in discretizing complicated domains (as demonstrated

later) with accurate representation of boundary conditions.

We use Voronoi diagrams to generate polygonal meshes. In this approach, the given

design domain with smooth boundaries is first populated with a set of random points/seeds.

Using the concept of signed distance function, a set of points are generated which are the

reflections of the seeds, lying near the boundary, about the boundary. The Voronoi diagram

is generated for the set of random seeds and their reflections. The Voronoi cells corresponding

to the random seeds represent the discretized design domain. The Voronoi diagram is forced

to be centroidal in order to generate high quality meshes. The Lloyd’s algorithm [130] is

used for the construction of centroidal Voronoi tessellations (CVTs). For more details on

the polygonal mesh generation scheme, the reader is referred to [209, 210]. It should also be

noted that due to the random placement of seeds, the node and element numbering will be

random, resulting in a stiffness matrix of large bandwidth. If needed, the heuristic reverse

Cuthill-McKee (RCM) [73] algorithm is used to reduce the bandwidth of the stiffness matrix.

Other equivalent algorithms can also be employed [159, 160].

In this work, we use the natural neighbor scheme-based Laplace interpolants to construct

finite element shape functions for the polygonal elements [200]. Here we briefly review

the finite element scheme for convex polygons. Two points are natural neighbors of each

other if they have a common Voronoi edge. Consider a point q and let the set of points

Q = {q1, q2, ..., qn} be its natural neighbors. The Laplace shape function for the node qi is

given by:

Ni(x) =
αi(x)∑
Q αj(x)

, αi(x) =
si(x)

hi(x)
, x ∈ R2 (3.1)

where x is the location of q, αi(x) is Laplace weight function, si(x) is the length of the

common Voronoi edge associated with q and qi, and hi(x) is the distance between q and qi

(Fig. 3.1).

These shape functions satisfy all the desirable properties in the context of a conforming

Galerkin approximation such as non-negativity, Kronecker-delta property, and partition of
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Figure 3.1: Definition of Laplace shape function.
The parameter si denotes the length of the common
Voronoi edge associated with q and qi and hi is the
distance between q and qi. q qi si

hi

unity:

0 ≤ Ni(x) ≤ 1, Ni (xj) = δij,
∑

Q

Ni(x) = 1 (3.2)

Here, xj represents the location of node qj. These functions are also linearly precise or

complete: ∑

Q

xiNi(x) = x (3.3)

which indicates that a linear function is represented exactly by these shape functions. Fur-

thermore, on the boundary of the domain, the Laplace shape functions are linear which

along with Kronecker-delta property ensures that linear essential boundary conditions can

be imposed.

3.3 CVT-based finite volume (FV) method for unstructured

meshes

In the current work, we employ the approach available in [208] which is discussed in Section

2.3.5. The finite volume (FV) method is a popular method of choice for solving PDEs when

dealing with unstructured grids. To solve the Allen-Cahn equation (2.43), we employ a

scheme similar to that of Vasconcellos and Maliska [219] who proposed a centroidal Voronoi

tessellation (CVT) based finite volume method for fluid flow. Consider a point p and let the

set of points P = {p1, p2, ..., pn} be its natural neighbors. The integral form of (2.41), over

time t and on each Voronoi cell Ωp, can be expressed as:

∫

t,Ωp

∂φ

∂t
dtdx =

∫

t,Γp

κ∇φ · ndtds−
∫

t,Ωp

f ′ (φ) dtdx (3.4)
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Figure 3.2: Illustration of the CVT-based finite vol-
ume scheme. The parameter Si represents the length
of the common Voronoi edge associated with points
p and pi, and Hi denotes the distance between the
points p and pi p

pi

Si

Hi

Dp

Each term in (3.4) can be integrated as shown below (also refer to Fig. 3.2). First,

∫

t,Ωp

∂φ

∂t
dtdx =

∫

Ωp

(φn+1 − φn)dx ≈ (φn+1
p − φnp )Vp (3.5)

where φnp is the value of φ for the nth iteration at the center of the Voronoi cell corresponding

to point p and Vp represents the area of the control volume, in the form of Voronoi cell,

centered at p. Next,

∫

t,Γp

κ∇φ · ndtds ≈
∫

t

∑

P

[κ∇φn · nS]idt =

(∑

P

[(
κ
∂φn

∂n

)

p,pi

Si

])
∆t = P3 (3.6)

where Si is the length of the common Voronoi edge associated with points p and pi. The

directional derivative (∂φn/∂n)p,pi can be calculated taking advantage of the local orthogo-

nality property of Voronoi cells:

(
∂φn

∂n

)

p,pi

=
φnpi − φnp
Hi

(3.7)

where Hi is the distance between points p and pi. Because an explicit scheme forces the

function φ to diverge when φ /∈ [0, 1], we use a semi-implicit method to simplify the final

term in (3.4) as shown below [235]:

∫

t,Ωp

f ′ (φ) dtdx ≈ Vp∆tf
′ (φnp

)
= Vp∆t




φn+1
p

(
1− φnp

)
r
(
φnp
)

for r
(
φnp
)
≤ 0

φnp
(
1− φn+1

p

)
r
(
φnp
)

for r
(
φnp
)
> 0

(3.8)

where

r
(
φnp
)

= φnp −
1

2
− 30η

J̄ ′ (φt)∣∣J̄ ′ (φt)
∣∣φ

n
p

(
1− φnp

)
(3.9)
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The semi-implicit FV updating scheme for φ in (2.43) can thus be expressed as:

φn+1
p =





Vpφnp+P3

Vp(1−(1−φnp)r(φnp)∆t)
for r

(
φnp
)
≤ 0

Vpφnp(1+r(φnp)∆t)+P3

Vp(1+φnp r(φnp)∆t)
for r

(
φnp
)
> 0

(3.10)

3.4 A finite difference (FD) method on unstructured meshes

Another method to solve the Allen-Cahn equation is the finite difference (FD) scheme.

As before, a semi-implicit scheme is used to discretize the reaction term. The discretized

evolution equation on a structured grid follows:

φn+1
i,j − φni,j

∆t
= κ

(
φni−1,j − 2φni,j + φni+1,j

(∆x)2 +
φni,j−1 − 2φni,j + φni,j+1

(∆y)2

)

+




φn+1
i,j

(
1− φni,j

)
r
(
φni,j
)

for r
(
φni,j
)
≤ 0

φni,j
(
1− φn+1

i,j

)
r
(
φni,j
)

for r
(
φni,j
)
> 0

(3.11)

where

r
(
φni,j
)

= φni,j −
1

2
− 30η

J̄ ′ (φt)∣∣J̄ ′ (φt)
∣∣φ

n
i,j

(
1− φni,j

)
(3.12)

Here ∆x and ∆y are the distances between grid points in the x and y direction, respectively

and φni,j is the value φ for the nth iteration at the grid point xi,j. Thus, the scheme to update

φ using the semi-implicit FD scheme is as follows:

φn+1
i,j =





φni,j+∆t(P1+P2)κ

1−(1−φni,j)r(φni,j)∆t
for r

(
φni,j
)
≤ 0

φni,j(1+r(φni,j)∆t)+∆t(P1+P2)κ

1+φni,jr(φni,j)∆t
for r

(
φni,j
)
> 0

(3.13)

where

P1 =
φni−1,j − 2φni,j + φni+1,j

(∆x)2 , P2 =
φni,j−1 − 2φni,j + φni,j+1

(∆y)2 (3.14)

Polygonal meshes are unstructured in nature, i.e., the nodes of the meshes are irregularly

arranged. Regular FD scheme based on (3.11) and (3.12) cannot be directly used to solve

the Allen-Cahn equation on such a mesh with nodes (or element centers) as grid points.

Thus, we propose the following approach to perform the FD, as illustrated by Fig. 3.3.

The ellipse represents the design domain Ω discretized using a polygonal mesh. The ellipse

is enclosed within an imaginary rectangular box of length L and width B (represented by

dotted lines). The rectangular box is filled with equidistant grid point (represented by small
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Figure 3.3: Illustration of the finite difference scheme.
The design domain Ω, discretized using polygonal el-
ements, is represented by the ellipse and is enclosed
within an imaginary rectangular box of length L and
width B, represented by dotted lines. The rectangu-
lar box is filled with equidistant grid points, shown
by small squares. For the grid points lying outside
the ellipse (solid squares), the phase-field function
value and sensitivity are assigned as zero, whereas,
for other grid points, they are assigned the same value
as the polygonal element in which they lie.

L

B

squares). The regular FD scheme can be applied on this structured grid. We need to resolve

the phase-field function value on these grid points. First, a search routine needs to be

performed to find the location of each grid point relative to the polygonal elements. For

the grid points lying outside the design domain (solid squares), the phase-field function φ

value is assigned as zero along with zero sensitivity J̄ ′ (φ). For other grid points, the phase-

field function and sensitivity are taken to be the same as the corresponding values of the

polygonal element inside which they lie. We have assumed that the phase-field function and

the sensitivity are constant inside each element. After conducting an appropriate number of

updates of the Allen-Cahn equation, the quantities computed on the structured grid need

to be mapped backed to the polygonal mesh. We take the value of phase-field function for

each element as the average of the values at all the grid points lying inside that element.

In this approach, we need at least one grid point to lie inside each polygonal element,

which can be done by having a structured grid of sufficient refinement. Otherwise, the

element’s phase will not change throughout the optimization or, in other words, it will act

as a “dead” element, resulting in an incorrect topology. To estimate the structured grid

size, the number of grid points in the x and y direction are given by β
√
nelemL/B and

β
√
nelemB/L, respectively. Here nelem is the number of polygonal elements in the finite

element mesh and β is a multiplicative factor lying in the range 1.5− 2. The proposed finite

difference scheme is heuristic in nature and possesses some approximations. The motivation

behind its development is to provide an alternate scheme which gives a general idea of how

the converged topologies should look like and thus can be used for estimating the accuracy

of the results obtained from the finite volume scheme. In general, the CVT-based finite

volume scheme, being more accurate, should be used.
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3.5 Numerical examples

The use of polygonal finite elements makes it possible to perform topology optimization

for complicated geometries. The mesh generator by Talischi et al. [210] based on the

implicit description of the design domain and centroidal Voronoi diagrams along with the

FV/FD scheme makes this possible. In this section, we first illustrate some examples with

conventional rectangular design domains for benchmark compliance minimization and linear

compliant mechanism problems, followed by examples with non-conventional design domains.

For all the examples, the parameters adopted are: η = 10, kmin = 10−4, Young’s modulus

E = 1, and Poisson’s ratio ν = 0.3. The time step ∆t satisfies the CFL condition [71, 208]

and consistent units are employed. Note that the solution of the elasticity problem (1.1,

1.2) is computationally expensive compared to one update step of the Allen-Cahn equation.

Therefore, for fast convergence, after each FE iteration, we perform 20 FV/FD update steps

of the Allen-Cahn equation [208, 8].

3.5.1 Cantilever beam problem

We first consider cantilever beam with load applied at the middle of right face. The objective

is to obtain the stiffest configuration while using the least amount of material. The domain

size is 2× 1, discretized with 20,000 polygonal elements. The Lagrange multiplier λ is fixed

at 95.

The diffusion coefficient is set to κ = 1 × 10−5 for all the examples in which the FD

scheme is used to solve the Allen-Cahn equation. When the FV scheme is used to update

the Allen-Cahn equation, the diffusion coefficient is taken as κ = 2× 10−5, unless otherwise

specified. The reason we chose a slightly higher diffusion coefficient for the FV approach

is that the diffusion coefficient affects the thickness of diffuse interface and convergence is

hindered if the thickness is too small. A suitable value needs to be chosen based on level

of mesh refinement. Finer meshes require a higher diffusion coefficient. In case of the FD

scheme, the superimposed structured grid, on which FD operations are performed, is finer

than the polygonal mesh thus a smaller value of diffusion coefficient is needed. The FV

scheme is performed on the polygonal mesh itself, so a slightly larger diffusion coefficient

is chosen. Figure 3.4(b) is chosen as the initial topology for the cantilever beam problem.

Since the phase-field method can’t generate holes, the initial topology needs to have enough

holes so that it can converge to a meaningful topology. The resulting topologies, Fig. 3.4(c)

(FV scheme is used to update Allen-Cahn equation) and Fig. 3.4(d) (FD scheme is used

to update Allen-Cahn equation), are consistent with the ones seen in the literature [8, 208].

For comparison purposes, we also solve the cantilever beam problem on a coarser mesh with

5,000 elements. All the parameters are chosen the same as before except κ = 4 × 10−5 for
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FD and κ = 8× 10−5 for FV. Converged topologies (Fig. 3.4(e), Fig. 3.4(f)) are similar to

the ones on the finer mesh.

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Cantilever beam problem with load applied at the middle of right face. (a) Problem description.
(b) Initial topology on 20,000 polygonal element mesh. Converged topologies on mesh discretization of
20,000 polygonal elements using (c) FV scheme, (d) FD scheme, and also on mesh discretization of 5,000
polygonal elements using (e) FV scheme, (f) FD scheme.

The convergence history of the objective function J̄ for the above problem, for mesh

discretization of 20,000 polygonal elements (Figs. 3.4(c) and (d)), is shown in Fig. 3.5. The

FV scheme curve has a steeper slope, indicating a faster rate of convergence. This makes

sense because the FD scheme is an approximate scheme which is less accurate than the FV

scheme. But, both methods ultimately converge to similar objective function values.

The phase-field method converges to a local minimum, which, like other implicit function

methods for topology optimization, such as level set method, is strongly dependent on the

initial topology. This is due to the fact that this method can not generate holes in the

domain - holes can only collapse. Converged topologies using the FV scheme are shown in

Fig. 3.6(b) and Fig. 3.7(b) for the two other initial guesses of Fig. 3.6(a) and Fig. 3.7(a),

respectively. All the parameters are kept the same as before.
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Figure 3.5: Convergence history of the objective
function for the cantilever beam problem of Fig.
3.4 for mesh discretization of 20,000 polygonal
elements.
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(a) (b)

Figure 3.6: Cantilever beam problem with a different initial topology. (a) Initial topology with 7 holes. (b)
FV scheme.

(a) (b)

Figure 3.7: Cantilever beam problem with another initial topology. (a) Initial topology with 9 holes. (b)
FV scheme.
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3.5.2 Bridge problem

We next look at the bridge problem and study the influence of the diffusion coefficient, κ, on

the optimization. The size of the design domain is a rectangle of size 2×1.2, discretized with

15,360 polygonal elements. The bottom corners are restrained by pin and roller supports,

and a unit vertical force is applied at the middle of the bottom face (Fig. 3.8(a)). The

objective (same as the last example) is to obtain the stiffest configuration while using the

least amount of material. The parameter λ is chosen as 60 and κ = 2 × 10−5, 10 × 10−5.

Approximately 200 finite element iterations are needed for convergence of both the results,

with the initial guess shown in Fig. 3.8(b). The CVT based finite volume scheme is used to

solve the evolution equation.

F

2

1.2

(a) (b)

(c) (d)

Figure 3.8: Bridge problem solved using different diffusion coefficients κ for the FV approach. (a) Problem
description. (b) Initial topology. (c) κ = 2× 10−5. (d) κ = 10× 10−5.

It is evident from Figs. 3.8(c) and (d) that κ influences the thickness of the diffuse

interface. For κ = 2 × 10−5 and κ = 10 × 10−5, 28.2% and 46.3% elements, respectively,

have phase-field values between 0.01 and 0.99 (Note that the design boundary ∂ω lies in the

region 0 < φ(x) < 1). Thus, larger κ leads to a thicker interface. The current phase-field

method implicitly possesses perimeter control effect which can be varied through κ. Bigger

voids (larger perimeter) are obtained for lower κ (Fig. 3.8(c)) and smaller voids for larger

κ (Fig. 3.8(d)). From this one may conclude that the smaller the value of κ, the better

resolved the interface is. However, our numerical experiments using the current phase-field
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method have shown that, in order for the topologies to evolve smoothly, an appropriate value

of κ has to be chosen for a particular mesh discretization. Hence, κ can not be indefinitely

reduced to get a sharp interface. If a sharp, perfectly resolved interface is desired then an

adaptive mesh refinement strategy near the interfaces may be adopted [81, 224] along with

adaptive reduction in κ. Although pertinent, this investigation is beyond the scope of the

current work.

3.5.3 Inverter problem on rectangular design domain

The phase-field method (discussed here) can also be used to solve compliant mechanism

problems. We look at the classical inverter problem discussed in, for example, Bendsøe and

Sigmund [39]. The problem is shown in Fig. 3.9(a). The domain is a square of size 2 × 2,

discretized using 6,000 polygonal elements. It is fixed on the top and bottom corners on the

left face. The objective of the optimization problem is to maximize the output displacement

uout. Spring stiffnesses kin and kout are taken to have the same values of the components

of the global stiffness matrix at the corresponding degrees of freedom. In order to obtain

the sensitivities needed for the double well potential function, an adjoint system needs to be

solved (see, for example, Bendsøe and Sigmund [39]). The FV scheme is used to solve the

Allen-Cahn equation, and we set λ = 0.02 and κ = 10 × 10−5. For the initial guess of Fig.

3.9(b), the converged configuration is shown in Fig. 3.9(c), which is similar to Fig. 5.5 of

[39].

3.5.4 Cantilever beam problem on a circular segment domain

The benchmark example of cantilever beam problem, with vertically downward load applied

on the midpoint of the right face, is now solved on a design domain in the shape of a circular

segment (Fig. 3.10(a)). Figure 3.10(b) is chosen as the initial guess. The design domain

is a symmetric polygonal mesh (about the horizontal axis) with 12,800 elements. Figure

3.10(c) shows the converged topology, utilizing the FV scheme and λ = 95. Although the

design domain chosen here is different from the conventional one, the converged topologies

are similar to the ones with rectangular design domains (cf. Fig. 3.10 and Fig. 3.4).

3.5.5 Bridge problem on a semi-circular domain

Next, we consider the bridge problem on a semi-circular design domain (Fig. 3.11(a)). The

boundary conditions are the same as the ones for the bridge problem on a rectangular domain

discussed before. The polygonal mesh used to discretize the design domain consists of 11,000

elements, and λ is chosen as 60. The optimization is performed with Fig. 3.11(b) as the

initial guess and it converges to Fig. 3.11(c) for the FV updating scheme, which resembles
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Figure 3.9: Inverter problem on a polygonal mesh with 6,000 elements. (a) Problem description. (b) Initial
topology. (c) Final configuration utilizing FV scheme.
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Figure 3.10: Cantilever beam problem on a circular segment design domain. (a) Problem description. (b)
Initial topology. (c) Converged topology using FV scheme.
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the result obtained on the rectangular domain (Fig. 3.8(c)).

2

F

(a)

(b) (c)

Figure 3.11: Bridge problem on semi-circular design domain. (a) Problem description. (b) Initial topology.
(c) FV scheme.

3.5.6 Curved cantilever beam problem

In the literature, rectangular/cuboidal design domains have been the preferred domain

shapes for topology optimization. To depart from this trend, consider the problem of can-

tilever beam on a doubly curved design domain (Fig. 3.12(a)). The domain is discretized

using 20,000 polygonal elements. The Lagrange multiplier λ is chosen as 250. Converged

topologies for the chosen initial design, Fig. 3.12(b), are shown in Fig. 3.12(c) for the

FV scheme and Fig. 3.12(e) for the FD scheme. Figures 3.12(d) and 3.12(f) are the 3D

visualizations of the corresponding phase-field functions.

Figure 3.13 shows the convergence history of the objective function, J̄ , for the above

curved cantilever beam problem (Fig. 3.12). Although both FV and FD schemes seem

to converge to similar objective function values, the converged topologies are somewhat

different. As stated before, the FD scheme involves more approximation than the FV scheme

(refer to Section 3.4). In the FD scheme, the phase-field function values at the grid points

(lying inside the design domain) are assumed to be the same as the corresponding value of

the polygonal element inside which they lie. This leads to inefficient evaluation of ∇2φ in

(2.43) which results in a different converged topology when compared to the FV scheme.

This inefficiency reduces as the mesh becomes finer. The differences between the schemes
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Figure 3.12: Curved cantilever beam problem. (a) Problem description. (b) Initial topology. (c) FV scheme.
(d) 3D visualization of (c). (e) FD scheme. (f) 3D visualization of (e).
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are amplified because of the unstructured nature of the polygonal meshes used here. When

structured quad elements are used and only one grid point lies inside each quad for the FD

scheme, then both methods produce exactly the same result.

Figure 3.13: Convergence history of the objective
function for the curved cantilever beam problem
of Fig. 3.12.
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To demonstrate the previously stated fact that, in the phase-field method, converged

topologies depend on the initial guess, we solved the doubly curved cantilever problem on

a different initial guess (Fig. 3.14(a)). Figures 3.14(b)-(f) show the evolution of topologies

over time for the new initial guess.

3.5.7 Inverter problem on circular segment domain

Finally, we consider the inverter problem on a non-rectangular design domain. The domain

is in the shape of a circular segment, discretized into 6,000 polygonal elements. All the other

parameters are kept same as the inverter problem on the rectangular domain discussed before

(cf. Fig. 3.9). The problem description is shown in Fig. 3.15(a). The design domain of

circular segment chosen here, although non traditional, has similar boundary and loading

conditions to the traditional example on a rectangular domain (see Bendsøe and Sigmund

[39]). The converged topology (Fig. 3.15(c) for FV updating schemes) is similar to the one

with rectangular design domain (cf. Figs. 3.15(c) and 3.9(c)).

3.6 Concluding remarks

In the current work, we employ a fully unstructured polygonal finite element based mesh to

implement a phase-field method for structural topology optimization. The polygonal meshes

are based on Voronoi tessellations [210] which not only facilitate non-mesh biased designs but

also provide greater flexibility in discretizing non-Cartesian design domains. A CVT-based

finite volume method is used to solve the phase-field evolution equation (Allen-Cahn PDE)

67



(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Evolution of the topology for the curved cantilever beam problem using FV scheme for a
different initial guess. (a) Initial topology. (b) Iteration 13. (c) Iteration 19. (d) Iteration 29. (e) Iteration
51. (f) Converged topology.
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Figure 3.15: Inverter problem on a circular segment design domain. (a) Problem description. (b) Initial
topology. (c) FV updating scheme.
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on unstructured polygonal meshes. An alternate approach using a finite difference scheme

is also presented to solve the phase-field equation.

Phase-field methods, similar to the one discussed in this work, bear a resemblance to

the level-set methods in the sense that the topologies are represented in terms of implicit

functions and evolved using certain governing PDEs. The most characteristic difference

between the two is the fact that in level-set methods the interface is explicitly defined and

tracked (φ = 0 contour), whereas, in the phase-field approach the interfaces have a finite

thickness (requiring no tracking of the interfaces). In the phase-field method, topologies

are evolved by solving the governing equations over the complete design domain without

any prior knowledge of location of phase boundaries. In order to resolve the phase interfaces

(obtaining a 0-1 design) an adaptive mesh refinement strategy or other alternative approaches

may be used, e.g. Sun and Beckermann [201].

The present approach has been used to solve 2D compliance minimization and compliant

mechanism problems on complicated design domains. It can also be used to solve struc-

tural optimization problems such as eigenvalue problems, design dependent load problems,

and nonlinear elasticity problems on any desired design domain. For this purpose, sensitiv-

ities need to be evaluated, for each particular objective function, to define the double well

potential function. Since the phase-field method employed in this work has no embedded

hole generation mechanism, the final topologies are greatly influenced by the initial shapes.

Topological derivatives [80, 189, 57] can be used to alleviate this issue.
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Chapter 4

A Mimetic Finite Difference-inspired

approach for three-dimensional linear

elasticity problem using polyhedrons

Polyhedral meshes are one of the popular choices in the industry for obtaining accurate

and reliable finite element solutions on complicated domains. Polyhedral meshes provide

flexibility in discretizing complicated domains [79] and capturing the domain and bound-

ary conditions accurately. Moreover, techniques such as mesh refinement and coarsening

produce elements which are inherently polyhedral. In fluid dynamics simulations, the fluid

flow should ideally be perpendicular to the element surfaces [79]. Polyhedral elements with

many faces have a greater probability of satisfying such a criteria. Figure 4.1 illustrates

a domain discretized using polyhedral elements. In three-dimensions, available finite ele-

ment interpolants on polytopes such as natural neighbor-based coordinates and maximum

entropy shape functions are undesirable, because numerical computations need to be per-

formed in physical coordinates, as iso-parametric formulations can not be applied. Also,

high quadrature order needs to be adopted for accurate results.

(a) (b) (c)

Figure 4.1: Mesh visualization. (a) Original mesh. (b) Split view. (c) Split view with wire frame.
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The Virtual Element Method (VEM), which has evolved from the Mimetic Finite Differ-

ence methods, addresses both the issues of accuracy and efficiency. The goal of the current

work is to explore VEM for three-dimensional linear elastic problems. The Virtual Element

Method is a Galerkin approach, but unlike the classical finite element methods does not

require explicit computation of the approximation space. Its underlying philosophy is the

explicit construction of the discrete bilinear and load linear forms without actually evaluat-

ing the canonical basis functions and their derivatives inside the elements. The construction

begins with the kinematic decomposition of the element deformation states into rigid body,

constant strain and higher order modes. Two projection matrices are defined and constructed

to extract rigid body and constant strain components of deformation and subsequently used

to explicitly construct the stiffness matrix and the load vector. As it will be shown later,

the construction reduces to the computation of purely geometric quantities. We use linear

polyhedral elements in which degrees of freedom are associated with the vertices. Twelve

basis functions are chosen which span the linear polynomial space. Surface integrals en-

countered during the construction of the stiffness matrix are evaluated numerically using a

nodal quadrature and a conforming interpolant quadrature schemes. The chapter focuses on

elaborating upon the core mathematical concepts underlying the VEM within the context

of elasticity problems and details the implementation of the method for general polyhe-

dral meshes. We hope that this work will be beneficial to the engineering and industrial

community.

The construction of the bilinear form by splitting the discrete space into polynomial

and non-polynomial spaces is based on similar techniques developed in the early 1980’s to

tackle the issue of hourglass instabilities arising out of under integration of the stiffness

matrix. In large computational problems, particularly dynamic problems, which require

repeated computation of the stiffness matrix, the use of full integration schemes can be

computationally expensive. Reduced integration schemes are often used to alleviate this issue

but may cause mesh instabilities known as hour glassing. Consider a linear brick element

which has twenty four degrees of freedom; out of which, six are rigid body, six are uniform

strain and twelve are non-constant strain modes. Due to the reduced integration scheme

(one-point quadrature in this case), hourglass modes or zero energy modes lead to singular

stiffness matrix for certain boundary conditions. One of the early attempts to deal with this

phenomenon was by Maenchen and Sack [136] who introduced an artificial viscosity to tackle

hourglass modes in two-dimensional meshes for finite difference methods. The finite element

version of Maenchen and Sack’s stabilization was developed by Belytschko and Kennedy

[33]. It was realized later that merely introducing viscous damping is not the most effective

technique to handle hourglassing. Stabilization approaches were then developed to deal with

the hourglass modes which enforced the requirement of orthogonality of hourglass modes to
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the rigid-bodyand uniform-strain modes [117, 123]. This requirement is essential, because the

hourglass control should not prevent the element from passing the patch test (also known as

the consistency condition) and should eliminate rank deficiency of the discrete bilinear form.

In their work, Kosloff and Frazier [123] added an hourglass stiffness matrix, constructed from

the pure bending modes, to the one-point quadrature stiffness matrix to suppress hourglass

modes. For non-rectilinear elements, their method involves the solution of four sets of eight

equations for hexahedrons. Subsequently, Flanagan and Belytschko [82] and Belytschko et

al. [35] developed explicit expressions for hourglass control in two and three-dimensional

problems which does not involve solving any equations. The connections between hourglass

stabilization and the VEM are elaborated in the subsequent sections.

The remainder of this chapter is organized as follows. In Section 4.1, we discuss the

three-dimensional elasticity problem formulation and the requirements for a well defined

problem. Section 4.2 provides the implementation details for the elasticity problem. Ex-

pressions for the stiffness matrix and the force vectors are derived. In Section 4.3, the VEM

implementation is evaluated using the displacement patch test and shear loaded cantilever

beam bending problems. Finally, we conclude with some remarks in Section 4.4.

4.1 Elasticity problem

In this work, we consider a linear elastic body, Ω ⊆ R3, characterized by fourth order

tensor C, under small deformations subjected to displacement boundary conditions g, surface

tractions t and body forces b.

4.1.1 Continuous and discrete formulation

We define the continuous problem as:

Find u ∈ Vg

a(u , v) = `(v), ∀v ∈ V0
(4.1)

where

a(u , v) =

∫

Ω

Cε(u) : ε(v) dx, `(v) =

∫

Ω

b · v dx+

∫

ΓT

t · v ds

Vg =
{
v ∈ H1 (Ω)3 : v |ΓD

= g
} (4.2)

For simplicity, let g = 0 and subsequently, Vg = V0 = V . Here, ε is the second order

linearized strain tensor, ε(u) = 1/2(∇u + ∇uT ) and ΓD represents the boundary of Ω on

which Dirichlet boundary conditions are applied. Assuming, the bilinear form is continuous
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and elliptic, i.e., ∃C <∞ and α > 0 such that:

|a(u , v)| ≤ C‖u‖V‖v‖V , a(v , v) ≥ α‖v‖2
V ∀v ∈ V (4.3)

problem (4.2) has a unique solution. Let, H to be a null sequence of positive real numbers

and (Vh)h∈H to be a family of conforming finite-dimensional subsets of space V , i.e. Vh ⊂ V ,

then the discrete Galerkin version of (4.1) is written as:

Find uh ∈ Vh

ah(uh, vh) = `h (vh) , ∀vh ∈ Vh

(4.4)

Under the assumption of continuity and uniform Vh-ellipticity of ah(·, ·) and continuity of

`h, the discrete form (4.4) admits a unique solution uh ∈ Vh.

4.1.2 Convergence properties

Strang’s first lemma states that for a uniform Vh-elliptic family of bilinear forms (ah(·, ·))h∈H,

there exists a constant c independent of the space Vh such that:

‖u − uh‖V ≤ c

(
inf

vh∈Vh

{
‖u − vh‖V + sup

wh∈Vh

|a(vh,wh)− ah(vh,wh)|
‖wh‖V

}
+

sup
wh∈Vh

|`(wh)− `h(wh)|
‖wh‖V

)
(4.5)

Next, we show that the VEM discrete solution naturally satisfies a similar constraint due to

certain assumptions and characteristics built into the method. To this end, let us assume

the discrete bilinear form can be written as the sum of the contributions from the elements

as:

ah(uh, vh) =
∑

E

aEh (uh, vh) ∀uh, vh ∈ Vh (4.6)

where the discrete bilinear form aEh (·, ·) is defined on VE
h ×VE

h and VE
h is the restriction of Vh

to a polyhedral element E. We assume Vh to be a conforming space of smooth displacement

fields which implies the validity of (4.6). From the viewpoint of a Galerkin approximation,

VE
h represents the space spanned by smooth shape functions which are non-negative, form

a partition of unity, satisfy the Kronecker-delta property, are linearly precise and C0 on the

edges. In the VEM, we aim to construct the discrete bilinear form in such a way that the

following properties are satisfied.

1. Consistency:

In finite element analysis, a patch test is an indicator of the consistency of a method. In
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the displacement patch test, displacement boundary conditions are applied to the patch and

we verify that the patch is able to capture the rigid body and constant strain states. In the

VEM, we construct the discrete bilinear form to satisfy:

aEh (p1, vh) = aE(p1, vh)

∀E, ∀vh ∈ VE
h , ∀p1 ∈ P1(E)3

(4.7)

where aE is the restriction of continuous bilinear form a, and a(u , v) =
∑

E a
E(u , v), ∀u , v ∈

V . Equation (4.7) is nothing but the displacement patch test condition. It implies that when

the solution field is linear, represented by p1 ∈ P1(E)3, the discrete bilinear form is exactly

the same as the continuous bilinear form. Here, P1(E)3 is the three-dimensional space

spanned by linear polynomials.

2. Stability:

For the discrete solution, vh, to be stable, we also need to ensure that the discrete bilinear

form is continuous and bounded. Thus, we require that there exist constants α∗, α∗ > 0 such

that:

α∗a
E(vh, vh) ≤ aEh (vh, vh) ≤ α∗aE(vh, vh) ∀E, ∀vh ∈ VE

h (4.8)

This property ensures stability of the numerical solution with mesh refinement.

Under the assumptions (4.6), (4.7), and (4.8), the unique VEM discrete solution, uh,

satisfies:

‖u − uh‖V ≤ c

(
‖u − u I‖V + ‖u − uπ‖h,V + sup

wh∈Vh

|`(wh)− `h(wh)|
‖wh‖V

)
(4.9)

Inequality (4.9) is true for every approximation u I ∈ Vh, and uπ of u that is piecewise in

P3
1. For a detailed proof of (4.9), refer to [27]. We can see from the estimate (4.9) that the

discrete solution is bounded by a positive quantity which decreases with mesh refinement

resulting in convergence of the discrete solution, uh, to the exact solution, u .

4.1.3 Projection and the discrete bilinear form

To incorporate the consistency condition into the discrete bilinear form, let us define a

projection operator ΠE as:

ΠE : VE
h → P1(E)3

aE(ΠEvh,p1) = aE(vh,p1) and ΠEp1 = p1, ∀p1 ∈ P1(E)3
(4.10)

Note that the projection ΠEuh for uh ∈ VE
h can be computed, since it is expressed as a

combination of linear polynomials and uh can be computed exactly on element edges using
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the discrete fields sampled at the degrees of freedom. Now, let us select the discrete bilinear

form as:

aEh (uh, vh) = aE(ΠEuh,Π
Evh) (4.11)

This choice ensures that the consistency condition (4.7) is satisfied, because it follows from

the first part of the definition of projection, ΠE, (4.10) that the right hand side of (4.11) is

equivalent to

aE(ΠEuh,Π
Evh) = aE(uh,Π

Evh) (4.12)

since, ΠEvh ∈ P1(E)3. Further, if ΠEvh = vh = p1, which is the second part of the definition

of the projection ΠE, we can see that the consistency condition is satisfied. However, the

choice (4.11) does not guarantee the stability condition (4.8). We need an additional term in

(4.11) to satisfy stability requirements. We have seen that we can use quantities which belong

to P1(E)3, to compute (4.11). Now, let us consider the space of higher order deformation

modes, VE

h which is spanned by the set of basis that belong to VE
h excluding P1(E)3, i.e.

VE

h = VE
h \P1(E)3. Assuming we have the energy orthogonality

aEh (p1, vh) = aE(p1, vh) = 0 ∀p1 ∈ P1(E)3, vh ∈ VE

h (4.13)

then the additional term of the discrete bilinear form can be taken as aE(uh, vh), for uh, vh ∈
VE

h . The idea here is to construct the projection ΠE in such a way that the arguments in

the consistency term span the P1(E)3 space and the arguments in the stability term span

the VE

h space. In other words, the following identity holds:

aE(uh, vh) = aE(ΠEuh,Π
Evh) + aE((I− ΠE)uh, (I− ΠE)vh), uh, vh ∈ VE

h (4.14)

which is nothing but the Pythagoras theorem when uh = vh. But, its unclear how to

compute the stability term we discussed above. So we pick an easily computable bilinear

form which is any symmetric positive definite matrix and satisfies

c0a
E(vh, vh) ≤ SE(vh, vh) ≤ c1a

E(vh, vh) ∀E, ∀vh ∈ VE

h (4.15)

Now, the discrete bilinear form is written as:

aEh (uh, vh) = aE(ΠEuh,Π
Evh) + SE((I− ΠE)uh, (I− ΠE)vh), uh, vh ∈ VE

h (4.16)

The final expression for the discrete bilinear form (4.16) still holds the consistency condition

and also satisfies the stability condition which can be shown as follows. For p1 ∈ P1(E)3,

the stability term reduces to SE((I−ΠE)p1, (I−ΠE)vh) = 0. Hence, in (4.16) we are only

left with the first term, which satisfies the consistency condition. Also, using (4.14) and
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(4.15), we can show that the stability requirement is also met.

The Virtual Element Method has strong ties with the hourglass stabilization approaches

discussed earlier. Both approaches share similarities in terms of construction of the stiffness

matrix based on splitting of discrete space into two aE-orthogonal spaces. Now, consider a

rectangular brick element. The stiffness matrix obtained from one-point Gauss quadrature

using B8 shape functions is exactly identical to the consistency term of the VEM stiffness

matrix. Moreover, both approaches add an additional term to the discrete bilinear form to

introduce stability to the solutions. The order of magnitude of the stability term is important

because a large magnitude may result in locking of the elements and a small magnitude may

not have the desired stabilization effect. The hourglass stabilization approaches discussed

earlier [117, 123, 82, 35], were developed specifically for hexahedral elements. The Virtual

Element Method imposes no such restriction on the shape of the element.

4.2 Implementation and practical aspects

In this section, we derive the terms in the stiffness matrix and the force vector explicitly,

based on the concepts discussed in the previous section. The derivations provided here are

motivated by the ones available in [173].

4.2.1 Construction of local stiffness matrix

First, in order to derive the expressions for the stiffness matrix, the basis vectors which span

the P1(E)3 space need to be selected. One feasible choice is:

P1(E)3 = span
(
p̂1, p̂2, ..., p̂β, ..., p̂12

)
(4.17)

= span
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The strains corresponding to the first six bases are zero, i.e. in Voigt notation the strains are:

ε(p̂i) = (0, 0, 0, 0, 0, 0)T for i = 1, ..., 6, which indicates that they span the rigid body space of

three rotational and three translational degrees of freedom. The strains of the remaining basis

elements are: ε(p̂7) = (1, 0, 0, 0, 0, 0)T , ε(p̂8) = (0, 1, 0, 0, 0, 0)T , ε(p̂9) = (0, 0, 1, 0, 0, 0)T ,

ε(p̂10) = (0, 0, 0, 1, 0, 0)T , ε(p̂11) = (0, 0, 0, 0, 1, 0)T , and ε(p̂12) = (0, 0, 0, 0, 0, 1)T . In order

to aid in future derivations, let us assume that the linear space P1(E)3 can be split as follows:

P1(E)3 = P0
1(E)3 ⊕ P1

1(E)3 (4.18)
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where P0
1(E)3 represents the rigid body space (RBS) spanned by bases p̂i for i = 1, ..., 6

and P1
1(E)3 is the remainder of the linear space. Figures 4.2 and 4.3 illustrate the linear

polynomial bases on hexahedral and polyhedral element, respectively.

Consistency term

To build the first term of the discrete bilinear form, the projection ΠE : VE
h → P1(E)3 needs

to be constructed. Since the discrete bilinear form involves calculating the strains of the

arguments, the contribution of the rigid body terms is lost as they have zero strains. So, we

treat the rigid body motions separately and split the projection ΠE as follows:

ΠE = Π̄E + Π0(I− Π̄E) (4.19)

Here, Π̄E : VE
h → P1

1(E)3 and Π0 : VE
h → P0

1(E)3. Note that aE(ΠEuh,Π
Evh) =

aE(Π̄Euh, Π̄
Evh). Thus, the consistency term requires determining the projection Π̄E. Con-

sider a function uh ∈ VE
h expressed in terms of Lagrangian bases, φi:

uh =
3n∑

i=1

φiui (4.20)

where, ui are the nodal dof and φ3i−2 = [φi, 0, 0]T , φ3i−1 = [0, φi, 0]T , φ3i = [0, 0, φi]
T . As

Π̄Eφi ∈ P1
1(E)3, Π̄Eφi can be written in terms of the basis functions p̂α ∈ P1

1(E)3 as:

Π̄Eφi =
∑

β

siβp̂β (4.21)

Using the definition of projection (4.10) and (4.21), the expression aE(Π̄Eφi, p̂α) = aE(φi, p̂α),

is written as:

aE(Π̄Eφi, p̂α) =
∑

β

siβa
E(p̂β, p̂α) = aE(φi, p̂α) (4.22)

Let R represent (4.22) written in matrix form. Now, using Green’s first identity, for p1 ∈
P1(E)3, vh ∈ VE

h , we express the bilinear term as:

aE(vh,p1) =

∫

E

Cε(vh) : ε(p1) dx

= −
∫

E

vh · div (Cε(p1)) dx+

∫

∂E

vh · (Cε(p1)) n ds

=

∫

∂E

vh · (Cε(p1)) n ds

(4.23)
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Figure 4.2: Illustration of polynomial basis representing rigid body translations (a) p1 (b) p2 (c) p3, rigid
body rotations (d) p4 (e) p5 (f) p6, axial strains (g) p7 (h) p8 (i) p9 and shear strains (j) p10 (k) p11 (l)
p12, on a hexahedral element.
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Figure 4.3: Illustration of polynomial basis representing rigid body translations (a) p1 (b) p2 (c) p3, rigid
body rotations (d) p4 (e) p5 (f) p6, axial strains (g) p7 (h) p8 (i) p9 and shear strains (j) p10 (k) p11 (l)
p12, on a polyhedral element.
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Using (4.23), matrix R is computed as follows:

R3i−2:3i, : = aE(φi, p̂α) =

∫

∂E

φi · (Cε(p̂α)) n ds, i = 1, ..., N

=

Nneighbor∑

j=1

(
(Cε(p̂α)) nj ·

∫

∂E

φi dsj

)
(4.24)

Figure 4.4: Illustration of the adjacency information
needed in the consistency term evaluation. The shape
function corresponding to node i is integrated over
the three faces containing it. The arrows represent
the outward unit normals, ni.

i

n1

n2

n3

In (4.24), the summation of the integral of the Lagrangian shape function φi is carried out

over all faces j which share node i, as illustrated in Fig. 4.4. Now, the basis p̂β can be

written in terms of Lagrangian bases as:

p̂β =
3n∑

i=1

φiNiβ (4.25)

where Niβ is the nodal coordinate matrix of dimension 3N × 6, and N is the total number

of nodes in an element and is expressed as:

N3i−2:3i, : =



xi 0 0 yi 0 zi

0 yi 0 xi zi 0

0 0 zi 0 yi xi


 , i = 1, ..., N (4.26)

Thus, we have all the ingredients to construct the consistency part of the stiffness matrix.

Using (4.22), (4.24) and (4.25), we show that

∑

β

siβa
E(p̂β, p̂α) =

∑

β

siβNiβRiα = Riα (4.27)

which can be written in matrix form as, S = [sij] = R(NTR)−1. Thus, from the definition

of projection (4.21) and (4.22), the matrix form, PM , of the projection Π̄E can be expressed
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as
[
N(RTN)−1RT

]
, and the consistency term, K1, can be written as:

aE(Π̄Eφi, Π̄
Eφj) = aE(Π̄Eφi,φj) =

∑

β

siβa
E(p̂β,φj) =

[
R(NTR)−1RT

]
ij

(4.28)

Stability term

The discrete bilinear term contains a second term, SE((I−ΠE)φi, (I−ΠE)φj), which imparts

stability to the solution. Using (4.19), we can write (I− ΠE) = (I− Π̄E)(I− Π0). We need

to construct and compute the projection Π0 : VE
h → P0

1(E)3 (projection onto the rigid body

space) in order to compute the stability term. The projection Π0 is defined as:

Π0v = v̄ +

〈
1

|E|

∫

E

∇vdx
〉

(x − x̄ ) (4.29)

where, v̄ and <> are the mean of the vector and skew symmetric part of the tensor, re-

spectively and x̄ is the mean of the nodal coordinates of the element. The projection Π0 in

(4.29) is chosen such that, if v ∈ P0
1(E)3 (i.e. v =

∑6
i=1 ci p̂i where ci’s are constants) then

Π0v = v . Hence, the stability term, represented by K2, is expressed as:

SE((I− ΠE)φi, (I− ΠE)φj) = (I−PT
M)(I−PT

1 )SE(φi,φj)(I−P1)(I−PM) (4.30)

where P1 is the matrix representation of the projection operator Π0. The final piece in the

construction of the stability term is the choice of SE(φi,φj). It should be a positive definite

matrix and should scale like the consistency term. Let us choose SE(φi,φj) as αδij, where

α is a scaling factor. Thus, the final stiffness matrix expression is:

aEh (φi,φj) = Kij =
[
R(NTR)−1RT

]
ij

+
[
α(I−PT

M)(I−PT
1 )(I−P1)(I−PM)

]
ij

(4.31)

In this work, the scaling factor α is chosen as α∗ trace(K1), where α∗ is a scaling coefficient

chosen based on a parametric study conducted in section 4.3.2. Other choices of the scaling

factor, which satisfy the requirement discussed above, are possible.

4.2.2 Surface integration schemes

To evaluate the surface integral in (4.24), we encountered during the derivation of the stiffness

matrix, we use two schemes - nodal quadrature and conforming interpolant quadrature.

Nodal quadrature scheme

The nodal quadrature described here is first order accurate. Consider a Lagragian basis,

φi, corresponding to the node i. We define the surface integral of φi over any face of the
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polyhedral element E using nodal quadrature as:

∫

∂E

φids = φi(xi) Ai = Ai (4.32)

where Ai is the nodal weight of node i, which is calculated as follows. Consider any face of

a polyhedral element (Fig. 4.5). The nodal weight for each node on the face is taken as the

area of the quadrilateral formed by the node, the centroid of the face, and mid-points of the

edges containing the node. For a regular hexahedron, nodal quadrature exactly integrates

(4.24) and each nodal weight is equal to a quarter of the area of the face.

Figure 4.5: Nodal quadrature scheme for surface in-
tegration. The variables c and Ai represent the cen-
troid of the polygon and the nodal weight associated
with the node i on any face, respectively.

i
Ai

c

For concave polygonal faces, the nodal quadrature scheme is valid only for polygons of

type (a), shown in Fig. 4.6, which are star-convex with respect to their centroid. A polygon

is considered star-convex with respect to a specific point, c, if the line segment connecting

the point c to any point on the boundary of the polygon does not intersect the boundary at

any other point [40]. Concave polygons shown in Fig. 4.6(b) and (c), are non-star-convex.

The star convexity constraint avoids inaccuracies in the computation of the nodal weights.

For Galerkin mesh-free methods conforming nodal integration schemes are available [66, 65]

which could be potentially be explored for the VEM.

Conforming interpolant quadrature

The conforming Galerkin approximations satisfy the Kronecker-delta property, i.e. the La-

grangian shape functions for a particular node takes unit value at the location of the node

and goes to zero at all other nodes in the element. For three-dimensional polyhedrons,

this implies that, on a particular face of a polyhedral element, only the shape functions

associated with the nodes lying on that face contribute to the interpolation of a function.

Taking advantage of this fact, (4.24) can be evaluated with any order of accuracy on polyg-

onal faces of any shape using any of the well known polygonal shape functions available in

the literature such as Wachspress [200, 210], mean value coordinates [84], natural neighbor
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(a)
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(b)

Figure 4.6: Nodal quadrature scheme for surface integrals is valid only for concave polygons of type (a) only,
which are star-convex [40] with respect to centroid c.

[199] or MAXENT [196, 19]. In this work, we choose the mean value coordinates due to

their robustness. Before conducting the numerical integration, the planar polygonal face in

three-dimensional domain is rotated to a two-dimensional plane. The proposed scheme is

illustrated in Fig. 4.7. Integration on the polygonal face is conducted by partitioning it into

triangles, by connecting the centroid to the vertices, and then using standard quadrature

rules of a triangle. Alternatively, special numerical quadrature rules developed for polygonal

domains can be used [135, 146, 145]. The conforming interpolant quadrature scheme using

mean value coordinates is valid for all concave polygons (even non-star-convex).

X2

X1

X3
ξ2

ξ1

x2

x1

x1

x2

Figure 4.7: Conforming interpolation quadrature for surface integration. The planar polygonal faces in three-
dimensional domain are rotated to a two-dimensional plane before conducting the numerical integration.
Subsequently, integration on the polygonal face is conducted by partitioning it into triangles, by connecting
the centroid to the vertices, and then using standard quadrature rules of a triangle.

4.2.3 Load vector

Solution of the discrete elasticity equations (4.4) results in a system of equations, written in

matrix form as KU=F. So far, we have dealt with the construction of the stiffness matrix

K. In this section, we discuss how to handle the right hand side vector, F. The global load

vector F = `h(φ) can split as F =
∑

E FE =
∑

E `
E
h (φ). For point loads, the load vector
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F consists of all zeros except at degrees of freedom corresponding to the point loads where

it takes the value of the load. For surface loads, in order to obtain equivalent nodal loads,

surface integration schemes discussed in section 4.2.2 can be used. To handle volumetric or

body forces a volumetric nodal quadrature can be used, due to the lack of explicit expressions

for the shape functions in VEM. A volumetric nodal quadrature, similar to surface nodal

quadrature (section 4.2.2), is approximately first order accurate. Thus, for an element E

subjected to body forces b, the equivalent nodal loads, FE, are given by:

FE =

∫

E

φbdx ≈ [φi(xi)b(xi)wi]
T , ∀i = 1 to n

= [b(x1)w1 b(x2)w2, . . . , b(xn)wn]T (4.33)

Here, φi and n are the Lagrangian basis functions and number of nodes in the element,

respectively. The volumetric nodal weights wi are obtained by summing up the volumes of

the pyramids1 surrounding each node, as illustrated in Fig. 4.8.

Figure 4.8: Illustration of volumetric load calcula-
tion. Red polyhedron (formed using the element cen-
ter, three edge mid-points, three face centroids and
node 12) represents the volumetric weight associated
with the node 12.

4.2.4 Numerical verification studies

In order to complement the discussions presented in the previous sections, we conduct an

eigenvalue analysis for the generic hexahedral element shown in Fig. 4.9. The Young’s

modulus and Poisson’s ratio are chosen as 25 and 0.3, respectively, for all the examples in

this work and consistent units are employed.

The eigenvalues of the stiffness matrix corresponding to finite element analysis using B8

shape functions are λ = {0, 0, 0, 0, 0, 0, 1.47, 3.11, 3.55, 4.28, 4.82, 6.04, 6.44, 6.98, 8.75, 9.85,

11.50, 12.75, 13.34, 14.19, 15.06, 16.24, 16.62, 45.91}. The same problem is solved with the

VEM using a scaling factor of 0.1 trace(K1). For surface integration both nodal integration

1A polyhedron is divided into pyramids using polyhedron’s vertices, edge mid-points, face centroids and polyhedral centroid
[188].
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(0, 0, 0)

(1.1, 0, 0)

(1.3, 1.7, 0)

(1.3, 1.7, 1.5)
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(0, 0, 1.054)

(0, 1.6, 0)
(1.1, 0, 1.3)

Figure 4.9: A generic hexahedral element for the eigenvalue test.

schemes and conforming interpolant quadrature (third order) are used. The eigenvalues of

the stiffness matrix for the nodal integration scheme are λ = {0, 0, 0, 0, 0, 0, 9.77, 10.52,

11.08, 11.10, 11.12, 11.25, 11.25, 11.25, 11.25, 11.25, 11.25, 11.32, 11.32, 12.24, 13.57, 16.21,

16.42, 45.89} and for the conforming interpolant quadrature scheme are λ = {0, 0, 0, 0, 0, 0,

9.71, 10.48, 11.06, 11.11, 11.13, 11.25, 11.26, 11.26, 11.26, 11.27, 11.27, 11.32, 11.40, 12.30,

13.58, 16.22, 16.42, 45.90}. The hexahedron has 8 nodes, hence 24 degrees of freedom, six of

which represent the rigid body motion. Similar to the FEM, the VEM is able to capture six

zero eigenvalues corresponding to the physical rigid-body modes and λi > 0, for i = 7− 24,

which indicates that the stiffness matrix is full rank and devoid of any spurious modes.

Finite element analysis differentiates between different non-rigid body deformation modes,

as indicated by the distinct eigenvalues, where as the VEM makes less of a distinction. Also,

the maximum and minimum eigenvalues are the same for both methods.

4.3 Numerical examples

In this section, we evaluate the accuracy of the method and implementation using two test

cases - displacement patch test and shear loaded cantilever beam bending. The accuracy

and convergence of the numerical results are verified in terms of relative L2 error norms.

The displacement error norm is one of the metric used here and is expressed as:

UErr =

√
(Uexact −UV EM)T W (Uexact −UV EM)

UT
exactWUexact

(4.34)

where Uexact and UV EM are the exact and VEM solutions, respectively. The diagonal matrix

W consists of volumetric nodal weights wi as its diagonal entries (refer to section 4.2.3 for

the procedure to calculate wi). We also use the stress error norm to measure the accuracy

of the method. In the VEM, since we do not have explicit expressions for Lagrangian
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shape functions, we can not calculate the stresses point-wise inside each element. The next

best approach is to calculate stresses in an average/weak sense. From the definition of the

projection, Π̄, (4.10) and some algebraic manipulation, we see that

∫

E

Cε(uh)dx =

∫

E

Cε(Π̄Euh)dx (4.35)

Thus, using (4.20), (4.21), (4.27) and (4.35), the VEM average element stresses, σ̄V EM, e,

are calculated as:

σ̄V EM, e = Cε(Π̄Euh) (4.36)

= uTe
(
R(NTR)−1

)
Cε(p̂β)

The error measure that we use for the stresses, σ (written in Voigt notation), is defined as:

σ̄Err =
|E1|2
|E2|2

(4.37)

Matrices E1 and E2 are of dimension (Number of elements)× 6 and constructed such that

each row of E1 and E2 corresponds to
∫
E

(σexact − σ̄V EM, e)
2 dx and

∫
E

(σexact)
2 dx, respec-

tively, which are numerically integrated over each element. Here, σexact is the exact stress.

For numerical integration, each polyhedron is divided into pyramids [188] and the location

of Gauss points and their corresponding weights are obtained by mapping from a solid hex-

ahedral isoparameteric element. A fourth order quadrature rule, i.e. 64 Gauss points per

pyramid, is used for the integration.

The relative L2 error norms are plotted against the mean element diameter of the mesh or

the number of nodes in the mesh. An element diameter is defined as the maximum pairwise

distance of all the vertices of the polyhedron. We use the open source MATLAB toolbox,

Multi-Parametric Toolbox (MPT) [126], for generating the polyhedral meshes. Two types

of polyhedral meshes are used in the investigations - Centroidal Voronoi Tessellation (CVT)

meshes and random Voronoi meshes (RND). The CVT meshes are high quality meshes and

are generated by successively replacing the seeds, which are used to generate the Voronoi

cells, by the centroids of the Voronoi cells.

4.3.1 Displacement patch test

We start with the displacement patch test on a cube of dimension 1×1×1, discretized using

a different number of polyhedrons (e.g. 50, 100, 200). Both CVT and RND polyhedral

meshes are tested. An arbitrary linear displacement of the form U = AX + B, where

A = 1/100 [2 1 3; 3 4 2; 4 3 1] and B = 1/100 [1 2 3]T , is applied to the nodes on
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the boundaries of the cube. No forces are applied to the system. For surface integration,

both nodal and conforming interpolant quadratures are considered. The stability terms

discussed in section 4.2.1; along with different scaling factors of the form α∗ trace(K1),

with α∗ ∈ [10−3 − 103] are investigated. The relative L2 displacement error and relative

L2 average stress errors are of the order 10−12 − 10−15 for CVT Voronoi meshes, indicating

that the VEM passes the displacement patch test exactly. For random Voronoi meshes the

errors are approximately one order of magnitude higher than CVT mesh errors, but still

in the machine precision range. The tests indicate that the choice of surface integration

scheme, stability term, or scaling factor has no impact on the patch test results. Figure 4.10

illustrates one of the deformed configurations from the patch test for both CVT and random

Voronoi meshes.

(a) (b)

Figure 4.10: Displacement patch test using (a) CVT Voronoi mesh and (b) random Voronoi mesh of 100
polyhedral elements. Blue lines and gray discretized boxes represent the initial configurations and deformed
configurations, respectively.

The reason the displacement patch test is passed for the polyhedral meshes, in spite of the

approximate evaluation of surface integrations, is as follows. For p1 ∈ P1(E)3 and vh ∈ VE
h ,

from (4.7), definition of projection (4.10) and (4.23), we have:

aEh (p1, vh) = aE(p1,Π
Evh) =

∫

∂E

vh · (Cε(p1)) n ds =

∫

∂E

vh · σ(p1)n ds

The last surface integral can be expressed as the sum of the numerically computed surface

integrals over each face of the polyhedron F ∈ ∂E, using the quadrature schemes discussed
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previously: ∫

∂E

vh · σ(p1)n ds =
∑

F∈∂E

(∫

F

vh · σ(p1)n ds

)
(4.38)

Now, for a generic patch test, the exact solution is u = p1 ∈ P1(E)3. Let tractions t =

σ(p1)n be imposed on ΓT and displacements g = p1 applied to the remaining boundary

ΓD. For an arbitrary test function vh ∈ Vh, we have:

ah(p1, vh) =
∑

E

aEh (p1, vh) =
∑

E

∑

F∈∂E

(∫

F

vh · σ(p1)n ds

)
=
∑

F∈ΓT

(∫

F

vh · σ(p1)n ds

)

= `h(vh) (4.39)

In the second last integral, we use the fact that surface integrals on the internal faces cancel

each other out and v = 0 on ΓD. As p1 ∈ Vh, this indicates that uh = p1 is the unique

solution to the discrete problem with prescribed linear displacement boundary conditions.

Hence, the global patch test is passed.

We also conducted the displacement patch test on meshes containing concave polyhedral

elements. Figure 4.11 shows the deformed configuration of one such mesh. As before, we

test both stability terms, along with different scaling factors of the form α∗ trace(K1),

with α∗ ∈ [10−3 − 103]. Both surface integration schemes are also tested. For all the

aforementioned cases, the VEM passes the displacement patch test on meshes containing

concave polyhedral elements.

Figure 4.11: Displacement patch test on polyhedral
mesh containing concave elements. Blue lines and
gray discretized boxes represent the initial configura-
tions and deformed configurations, respectively.

4.3.2 Shear loaded cantilever beam bending

Here, we study the performance of VEM using brick, CVT and random Voronoi (RND)

meshes for the shear loaded cantilever beam bending problem. Consider a rectangular beam
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with a cross-section bounded by planes x = ±a, y = ±b; length bounded by planes z = 0, c

and loaded by shear force Fy = F in the negative y direction acting through the origin. The

actual expressions for stresses are available in [23] and are repeated here for completeness.

σxx = 0, σyy = 0, σzz =
3F

4ab3
yz σxy = 0

σzx =
3Fνa

2π2b3(1 + ν)

∞∑

n=1

(−1)n

n2
sin
(nπx

a

)
sinh

(nπy
a

)/
cosh

(
nπb

a

)
,

σyz =
3F (b2 − y2)

8ab3
+
Fν (3x2 − a2)

8ab3(1 + ν)

− 3Fνa

2π2b3(1 + ν)

∞∑

n=1

(−1)n

n2
cos
(nπx

a

)
cosh

(nπy
a

)/
cosh

(
nπb

a

)

(4.40)

Using the stress-strain relationships and definitions of displacement gradients, we derived

the displacement fields corresponding to the stresses (4.40):

u = − 3Fν

4ab3E
xyz + C1 + C2y − C3z,

v =
3Fν

8ab3E
z
(
x2 − y2

)
− Fz3

8ab3E
+ C4 − C2x+ C5z,

w =
3F

8ab3E
yz2 +

Fν

8ab3E
y
(
y2 − 3x2

)
+

∫
2(1 + ν)

E
σyzdy + C6 + C3x− C5y

(4.41)

Here, u, v and w represent the displacements in the x, y and z directions, respectively. Con-

stants C1 − C6 account for the six rigid body motions in three-dimensions. For the simu-

lations, the beam is assumed to be of dimension 1 × 1 × 5 and the shear load is taken as

F = 0.1.

As mentioned before, in the VEM formulation, the choice of scaling factor for the stability

term in the stiffness matrix (4.31) is significant and affects the accuracy of results. We

selected the scaling factor as α∗ trace(K1). In order to evaluate this feasible choice of α∗,

we conduct a parametric study where α∗ is varied in the range [10−3 − 103]. The study

use two mesh discretizations of 100 and 200 CVT Voronoi elements. In the plots (Fig.

4.12), relative L2 displacement error (4.34) and relative L2 average stress error (4.37) are

plotted against scaling coefficient α∗. It can be seen in Fig. 4.12(a) that the relative L2

errors attain a minimum somewhere in the range [0.03, 0.08] for both the errors and both

CVT mesh discretizations. Similar results are obtained for other mesh discretizations and

are not shown here. We also investigated the effect of various orders of quadrature for the

conforming interpolant quadrature scheme. The studies show (Fig. 4.12(b)) that there is no

discernible improvement in accuracy with increase in the order of the quadrature scheme.

In fact, the accuracy of higher order quadrature for the conforming interpolant quadrature

90



scheme is comparable to that of the nodal quadrature scheme for almost the entire range of

α∗ studied. The reason the results are invariant to the order of integration is the same as

the one provided for the displacement patch test. Based on this study, we chose α∗ = 0.05

and nodal quadrature for all remaining investigations.
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Figure 4.12: Study of the scaling coefficient α∗ for the shear loaded cantilever beam problem. (a) Error plots
for two polyhedral mesh discretizations of 100, 200 elements using nodal quadrature for surface integration.
(b) Comparison of nodal and conforming interpolant quadrature of different orders, for polyhedral mesh of
100 elements. Each curve represents the average errors of 5 sets of CVT meshes of same discretization.

The shape of the polyhedrons dictates the accuracy of the numerical simulations. To

verify this hypothesis, we tested the performance of the VEM using CVT, RND Voronoi

meshes and uniform hexahedral/brick meshes. The results of the study are shown in Fig.

4.13. The relative L2 errors are plotted against the mean element diameters. For polyhedral

meshes, each curve represents the average errors of 5 sets of CVT meshes of the same

level of discretization. For the displacement field, using bricks and RND Voronoi meshes, a

second order convergence is achieved which is consistent with the finite element literature,

c.f. Fig. 4.13(a). For the choice of α∗ = 0.05, the VEM using CVT meshes showed

a superior performance with an average rate of convergence slightly over two. For a given

mean element diameter, CVT meshes produce the smallest error, followed by RND and brick

meshes. The shape of elements has a strong influence on the numerical results. Babuska and

Aziz [22] demonstrated that the accuracy of finite element analysis on triangular meshes

degrades as the angles approach 180◦. The results for polyhedral meshes show a similar

pattern. Numerical analysis on random Voronoi meshes (RND), which contain elements

of bad aspect ratio, are almost one order of magnitude less accurate than CVT meshes.

Note that the VEM error depends on the scaling coefficient α∗. We chose an optimum α∗

which produced the smallest error for CVT meshes (Fig. 4.12(a)). Other meshes such as
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hexahedrons or random Voronoi may have a different optimum value. The relative L2 stress

errors, on the other hand, show almost no noticeable difference (Fig. 4.13(b)). Brick meshes

seem to be marginally more accurate compared to CVT and RND meshes. A first order rate

of convergence is observed for the computed average stresses.
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Figure 4.13: Performance of the VEM on different meshes, namely CVT Voronoi, random (RND) Voronoi
and Brick meshes. (a) L2 displacement error. (b) L2 average stress error. Results pertaining to polyhedral
meshes are average errors of 5 sets of meshes.

Evaluating the accuracy of the numerical method on different meshes, based on error

estimates plotted against mean/max element diameters, may not be the most appropriate

measure. The RND meshes, which might have highly skewed elements, may have a higher

mean element diameter in a mesh, compared to CVT or brick meshes. Error estimates

with respect to the total number of nodes in the mesh may provide better insight into the

effectiveness of the method (Fig. 4.14). As a frame of reference, we included the relative

L2 errors computed on brick meshes using the B8 finite element (FE) shape functions. As

seen before, for the displacement fields using α∗ = 0.05, VEM on CVT meshes continues to

outperform VEM on RND and uniform brick meshes for the current measure as well. The

FE results using B8 shape functions are less accurate compared to the VEM on CVT meshes

(Fig. 4.14(a)). For the stress errors, the difference is bit more apparent. It is interesting

to note that, the relative L2 average stress errors are almost identical for analysis using the

VEM and B8 shape functions on a uniform brick mesh.

In their work, Beirão Da Veiga et al. [28] use the concept of decomposition of the

approximation space into two orthogonal spaces and solve the Stokes problem on polygonal

meshes. Their consistency term construction is similar to the approach discussed in this

chapter, but for the stability term they provide a different expression which still satisfies all
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Figure 4.14: Comparison of B8 shape functions with VEM on different meshes (CVT Voronoi, RND Voronoi
and Brick mesh). (a) L2 displacement error. (b) L2 average stress error. Polyhedral mesh results are average
errors of 5 sets of meshes.

the desired requirements discussed previously. Their stability term is:

K2 = αP (4.42)

where P is the orthogonal projector of P1(E)3 and is chosen as:

P = I3n×3n −T
(
TTT

)−1
TT (4.43)

The matrix T is the modified nodal coordinate matrix N of dimension 3n× 12,

T3i−2:3i,: =




1 0 0 yi 0 −zi xi 0 0 yi 0 zi

0 1 0 −xi zi 0 0 yi 0 xi zi 0

0 0 1 0 −yi xi 0 0 zi 0 yi xi


 (4.44)

Here, we compare the procedure to compute the stability term in the stiffness matrix dis-

cussed in section 4.2.1 to the one discussed above (referred to as Stab1 and Stab2, respec-

tively). Illustrated in Fig. 4.15, the relative L2 average stress curves for Stab1 and Stab2

almost overlap each other, indicating similar accuracy and rate of converge between the two

stability terms. However, Stab1 seems to converge at a faster rate than Stab2 as the meshes

become more fine.

As a means to visualize the beam deformation under uniform shear load and the stress

fields generated as a result of the deformation, we illustrate one of the results in Fig. 4.16

on CVT and RND meshes.
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Figure 4.15: Comparison of the two stability terms using CVT Voronoi meshes. (a) L2 displacement error.
(b) L2 average stress error. Polyhedral mesh results are average errors of 5 sets of meshes.
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Figure 4.16: Deformation plots for shear loaded cantilever beam bending problem using (a) CVT Voronoi
mesh and (b) Random Voronoi mesh. The colors indicate the magnitude of σzz stress. Shear load is applied
on the bottom face in the negative y direction.
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4.4 Concluding remarks

In this work, we present a Virtual Element Method approach for three-dimensional elasticity

problems using linear polygonal elements in which degrees of freedom are associated with the

nodes. The Virtual Element Method is a Galerkin method, but unlike typical finite element

schemes does not compute the approximation space explicitly. The discrete bilinear form

and load linear form are constructed directly without the computation of shape function

derivatives in the interior of the elements. The construction begins with the definition of

projection maps which extract the rigid body and constant strain components of an element

deformation. Twelve basis functions are chosen, which span the linear polynomial space,

to define and construct projection maps. Virtual Element Method reduces the volumetric

integration, encountered in typical finite element methods, to compute the stiffness matrix

to surface integrals, thereby reducing the associated computational cost. The previous state-

ments are true for any generic polyhedron except linear tetrahedrons where one point volume

integral is able to integrate the discrete bilinear form exactly and thus is cheaper than four

surface integrations on the four faces. In VEM, the stiffness matrix is constructed to cap-

ture the linear deformation modes exactly, thereby passing the engineering patch test and

ensuring optimum numerical convergence. It is shown in this chapter that the computations

reduce to surface integrals consisting of only geometric quantities.

The method is tested using the displacement patch test and shear loaded beam bending

problems. The formulation passes the displacement patch test irrespective of the choice of

the type of surface integration scheme, stability term, or scaling factor for the stability term.

Next, we evaluated the method using the shear loaded cantilever beam bending problem. A

parametric study of the scaling coefficient, α∗, for the stability term of the stiffness matrix

showed that the ideal choice of α∗ is in the range [0.03, 0.08] in order to obtain the lowest

displacement and average stress errors for CVT meshes. Note that the optimum range for α∗

may be different for other types of meshes such as hexahedrons or random Voronoi. A second

and first order rate of convergence is observed for the displacements and average stresses for

all meshes considered. The results indicate that, for the choice of α∗ = 0.05, polyhedrons

perform better, when it comes to displacement fields in shear loaded bending problems, when

compared to uniform bricks. Displacement field obtained using finite element method on

hexahedral mesh were relatively more accurate than the VEM on the same mesh. In terms of

average stress errors, similar trends were seen for different meshes. Random Voronoi meshes

containing many degenerate elements perform well, with expected rates of convergence, using

the VEM formulation, and its accuracy is close to the high quality CVT Voronoi meshes.

Finally, we compared the two different expressions for the stability terms. Relative L2

average stress errors for both were almost identical, whereas the stability term 1 showed a
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faster rate of convergence for relative L2 displacement errors.

The Virtual Element Method (VEM) is in many ways similar to the Discrete Exterior

Calculus (DEC). DEC [104, 96] is the discrete counterpart of Exterior Calculus, which is a

generalization of vector calculus or is calculus on manifolds2. Essentially, in one of the DEC

approaches, on a given discrete mesh, complete calculus is developed using only discrete

combinatorial and geometric operations. DEC defines discrete equivalents of differential

forms along with vector fields and operators acting on these objects. Using these discrete

quantities, a calculus is developed by defining special operators such as discrete exterior

derivatives (which uses topological information), codifferential operator (uses geometric in-

formation) and Hodge star operator (which encodes the metric3). In DEC, in order to solve

the elasticity problem, the governing state equation is rewritten in the exterior calculus

notation and all operators and objects are replaced by their discrete counterparts. In partic-

ular, this involves the discrete Hodge star which is defined using purely geometric quantities

defined on dual and primal meshes (for example, Voronoi diagrams are dual of Delaunay

triangulation). So, similar to the VEM, no canonical shape functions are involved. The

similarities come from the fact that both VEM and DEC belong to a class of methods that

are generally referred to as compatible discretization schemes which attempt to mimic the

governing physics behind a physical problem.

2Manifold is a topological space which is locally Euclidean
3Metric refers to measure of geometric quantities, most commonly distances. For instance, in Euclidean space, the metric is

the Euclidean distance/L2 norm.
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Chapter 5

Polyhedral topology optimization

Typical engineering applications require unstructured meshes to capture the design domain,

boundary and load conditions accurately. Unstructured polyhedral meshes provide great

flexibility in discretizing complicated domains. To solve the governing linear elasticity prob-

lem, the available polyhedral interpolants such as maximum entropy shape functions and

Laplace shape functions, tend to be computationally prohibitive in order to obtain numeri-

cally accurate results. The reason being that, to solve the elasticity problem on polyhedral

meshes, the computation of the global stiffness matrix would require conducting numerical

integration in physical coordinates and dealing with each polyhedral element individually.

In the current work, we utilize the Virtual Element Method approach, discussed in Chapter

4, to develop a scheme for three-dimensional linear elastic topology optimization. In this

approach, the stiffness matrix is constructed in such a way that the displacement patch test

is passed exactly and the bilinear form of the elasticity problem is continuous and bounded

to ensure unique and stable solutions. The stiffness matrix terms require evaluation of sur-

face integrals, in contrast to the volume integrals encountered in conventional FEM, thus

reducing the overall computational cost.

Topology optimization strives to obtain an optimal distribution of material which satisfies

certain design objectives. In the past, Talischi et al. [209, 211], Gain and Paulino [87]

have explored two-dimensional topology optimization on arbitrary polygonal meshes. In

two dimensions, using the iso-parametric mapping scheme for numerical integration [200],

polygonal shape functions can be utilized as efficiently as the typical triangle and quad

elements. However, in three-dimensions, the polytope shape functions discussed earlier loose

their numerical efficiency. The solution of discrete elasticity problems requires the evaluation

of derivatives of polyhedral shape functions, which are far from trivial. The numerical

integration can only be performed in physical coordinates which increases the computational

cost. Moreover, to achieve accurate results, a very high order quadrature rule needs to be

used. The approach discussed in Chapter 4, known as the Virtual Element Method (VEM),

addresses some of the challenges pertaining to the use of polyhedral elements for three-

dimensional problems. This method provides a greater flexibility in the geometric shapes of

the admissible elements. High quality, skewed, degenerate and even non-convex polyhedra
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are all admissible.

The remainder of this chapter is organized as follows. In Section 5.1, we discuss the

topology optimization problem formulation along with the sensitivity calculations and the

filter technique used in this work. We discuss the centroidal Voronoi tessellation (CVT)

based approach to generate polyhedral meshes in Section 5.2. In Section 5.3, we show

several numerical examples used to evaluate the current approach. Finally, we provide some

concluding remarks in Section 5.4.

5.1 Density-based topology optimization problem formulation

In this work, we concentrate on a linearized elastic system discussed in Section 1.2. We

deal with two categories of problems, compliance minimization (1.3) and linear compliant

mechanism problems (1.4). The effective elasticity tensor C is a function of density, ρ(x) and,

as per the Solid Isotropic Material with Penalization (SIMP) model [36, 172], is expressed

as:

C (ρ) = [kmin + (1− kmin) ρp] C0 (5.1)

The solid region is filled with material of elasticity tensor C0. Parameter kmin is arbitrarily

chosen as 10−4 and the penalization parameter, p, is set to 3 for all numerical examples. In

order to solve (1.5) numerically, it is discretized as follows:

inf
ρ
J = PTU

subject to: K(ρ)U = F, V Tρ ≤ Vf

(5.2)

where K, U and F are the global stiffness matrix, global nodal displacement vector and

global nodal force vector, respectively. Also, V is an array of the fractional volumes of

elements, V = [V 1
e , V

2
e , ..., V

n
e ]T/|Ω|, where the V i

e ’s are element volumes, and ρ is the

element density array. The vector P represents the global force vector F for compliance

minimization problems since the objective is to minimize external work. For the displacement

inverter and gripper problems, P is a vector with all zeros except at locations corresponding

to the output node, where it is unity. For more details on the displacement inverter problem

refer to the book by Bendsøe and Sigmund [39]. The numerical method discussed in Chapter

4 is used to solve the above equilibrium equation.

5.1.1 Sensitivity analysis and optimizer

We use a gradient-based optimization algorithm for solving the discrete problem (5.2), which

requires computation of the gradient of the objective function J . Using the adjoint method
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[39], the sensitivity of J with respect to element density, ρe, is given by:

∂J

∂ρe
= −p(1− kmin)ρp−1

e λTe KeUe (5.3)

Here, Ke and Ue are the element stiffness matrix and element displacement vector, respec-

tively. As per the adjoint method, for the compliance minimization problem (1.3), the vector

λe is the same as the element displacement vector Ue. For the displacement inverter problem

(1.4), λe is the elemental component of λ that solves the adjoint system Kλ = P. Also, the

sensitivity of the volume constraint with respect to element density, ρe, in (5.2) is expressed

as Ve/|Ω|, where Ve is the element volume. For the simulations, we use Optimality Criteria

(OC) [39] as the optimization algorithm.

5.1.2 Projection method - Filtering

In order to obtain mesh independent designs, we enforce a minimum length scale using

a linear filter which assigns a weighted average of the nearby elemental densities to each

element. Thus, the projected element density of an element e, ρe, is written as:

ρe =

∑
j∈Nej

wejρj∑
j∈Nej

wej
(5.4)

Here, Nej is the set of all elements j, with element densities ρj, whose centers lie within a

distance rmin from the center of the element e under consideration. The linear weights wej

are:

wej = max

(
0,
rmin − rej
rmin

)
(5.5)

where rmin and rej are the enforced minimum member size and the distance between centroids

of elements e and j, respectively.

To compute the sensitivity of the objective function J with respect to the independent

design variables ρj, we use the chain rule:

∂J

∂ρj
=
∂J

∂ρe

∂ρe
∂ρj

(5.6)

which is computed using (5.3) and partial derivative of (5.4) with respect to ρj, given as:

∂ρe
∂ρj

=
wej∑

j∈Nej
wej

(5.7)
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5.2 On centroidal Voronoi tessellation meshing

We use Voronoi diagram to generate three-dimensional polyhedral meshes [20, 243, 94, 210].

Given a set of n distinct seeds Q = {qi}ni=1, the Voronoi tessellation of the domain Ω ⊂ R3

is defined as:

D(Q) = {Ωi ∩ Ω : qi ∈ Q} (5.8)

where Ωi is the Voronoi cell corresponding to seed qi:

Ωi =
{
x ∈ R3 : |x− qi| < |x− qj|, ∀j 6= i

}
(5.9)

The above definition of Ωi represents a domain consisting of all points that are closer to

seed qi than any other seed qj ∈ Q. Here, | · | is the standard Euclidean norm in R3. Note

that the Voronoi cells are necessarily convex polyhedrons since they are formed by the finite

intersection of convex half-planes.

Following the guidelines discussed in [243, 210], a polyhedral discretization is obtained

from the Voronoi diagram of a given set of seeds and their reflections about the closest

boundary of Ω. Our meshing algorithm is implemented for general domains using the concept

of a signed distance function. A signed distance function dΩ(x) is defined as:

dΩ(x) = s(x) min(|x− y|), ∀y ∈ ∂Ω (5.10)

where s(x) is the sign function defined as:

s(x) =




−1, x ∈ Ω,

+1, x ∈ R3\Ω.
(5.11)

Thus, dΩ(x) = 0 if x ∈ ∂Ω and dΩ(x) < 0 if x ∈ Ω\∂Ω. Using the signed distance function

and its gradient, the reflection, qri , of the seed qi can be calculated as:

qri = qri − 2dΩ(qi)∇dΩ(qi) (5.12)

First, to construct a polyhedron discretization of the domain Ω, each point in Q is re-

flected about the closest boundary of Ω. The resulting set of points are denoted by RΩ(Q).

Subsequently, we construct the Voronoi diagram of the space using the original point set and

its reflection, T (Q ∪ RΩ(Q);R3). For a given point set Q, the discretization of the domain

Ω is uniquely defined and denoted by:

MΩ(Q) =
{
Vy ∈ T (Q ∪RΩ(Q);R3) : y ∈ Q

}
(5.13)
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If the Voronoi cell of a seed qi and its reflection have a common edge, then this edge forms an

approximation to the domain boundary and a reasonable discretization of Ω is obtained. In

order to mesh complicated geometries, a signed distance function along with set operations

such as union, difference, and intersection are used [168, 210].

In the meshing algorithm, a set of signed distance functions corresponding to basic ge-

ometric shapes such as three-dimensional plane, sphere, cylinder and rectangular box is

defined. We also construct a bounding box B, that contains the domain Ω, to generate

the random seeds in R3. A random seed is accepted only if it lies inside the domain Ω,

determined by evaluating the sign of the resultant distance function, dΩ, associated with Ω.

Figure 5.1 shows the basic steps for obtaining a random point set of size n.

In our meshing algorithm, first a set of signed distance functions corresponding to basic
geometric shapes such as three-dimensional plane, sphere, cylinder and rectangular box are
defined. We also construct a bounding box B, that contains the domain D, to generate the
random seeds in R3. A random seed is accepted only if it lies inside the domain D and this
is determined by evaluating the sign of the resultant distance function dD, associated with
D. Algorithm 1 shows the basic steps for obtaining a random point set of size n.

Algorithm 1 Initial random seed placement

input: B, n %% B ⊃ Ω ∈ R3and n is the number of seeds
set Q = ∅
while |Q| < n do

generate random point y ∈ B
if dD(y) < 0 then

Q← Q ∪ {y}
end if

end while
output: Q

We handle convex and non-convex features of Ω by carefully choosing a set of seeds to
be reflected w.r.t. the boundary. Reflection of a seed far from the boundary may land inside
the domain or interfere with the reflection of another seed. Since the reflection of most of
the seeds in the interior of the domain has no effect on the approximation of the boundary,
we reflect only the seeds that are in a band near boundary. A seed y ∈ Q is reflected about
boundary segment ∂D provide that:

|dD(y)| < c

( |D|
n

)1/3

(31)

where n is the number of seeds and c is the proportionality constant, chosen to be greater
than 1 to make the band size near boundary larger than the average element volume.

Clearly Voronoi meshes generated from random/quasi-random seeds may cause incon-
sistencies at the boundaries resulting in poor approximation of the boundaries of design
domain. To introduce some regularity in the Voronoi meshes, i.e we construct Centroidal
Voronoi tessellations (CVT) using a modified Lloyd’s algorithm [25]. For a large number of
iterations, CVT cells tend to be uniform in size [14]. To generate CVT meshes, we replace
seeds Q with centroids Qc of the Voronoi cells. We compute the polyhedron centroid by
partitioning it into tetrahedrons and determining the weighted mean of the centroids of the
tetrahedrons. The weights are the volumes of the tetrahedrons.

To construct the element stiffness matrix using the approach discussed in Section 3, along
with vertices location and element connectivity information, we need to know the nodes on
each face of every polyhedral element. The pseudo-code listed in Algorithm 2 summarizes
our approach to obtain facial information in MATLAB. The inputs to the algorithm are
the vertices coordinates, element connectivity and seeds’ coordinates. For each seed of the

10

Figure 5.1: Initial random seed placement.

We handle convex and non-convex features of Ω by carefully choosing a set of seeds to be

reflected w.r.t. the boundary. Reflection of a seed far from the boundary may land inside

the domain or interfere with the reflection of another seed. Since the reflection of most of

the seeds in the interior of the domain has no effect on the approximation of the boundary,

we reflect only the seeds that are in a band near the boundary. A seed y ∈ Q is reflected

about boundary segment ∂Ω provide that:

|dΩ(y)| < c

( |Ω|
n

)1/3

(5.14)

where n is the number of seeds and c is the proportionality constant, chosen to be greater

than 1 to make the band size near the boundary larger than the average element volume.

Clearly, Voronoi meshes generated from random/quasi-random seeds may cause incon-

sistencies at the boundaries resulting in a poor approximation of the boundaries of the

design domain. To introduce some regularity in the Voronoi meshes, we construct centroidal

Voronoi tessellations (CVT) using a modified Lloyd’s algorithm [130]. For a large number of

iterations, CVT cells tend to be uniform in size [77]. To generate CVT meshes, we replace
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seeds Q with centroids Qc of the Voronoi cells. We compute the polyhedron centroid by

partitioning it into tetrahedrons and determining the weighted mean of the centroids of the

tetrahedrons. The weights are the volumes of the tetrahedrons.

To construct the element stiffness matrix using the approach discussed in Section 4.2,

along with vertices location and element connectivity information, we need to know the nodes

on each face of each polyhedral element. The pseudo-code listed in Figure 5.2 summarizes

the approach to obtain facial information in MATLAB. The inputs to the algorithm are the

element connectivity and the coordinates of the vertices and seeds. For each seed of the

mesh, the algorithm computes the convex hull of the set S, which consists of the vertices of

the corresponding element. The convex hull of S is a matrix H with as many rows as the

number of triangles present in the convex hull, and three columns containing the indexes

of the vertices of the triangles. Then, we iterate over all triangles and unite those that are

co-planar to obtain the polygonal faces of the polyhedron. The resulting array, called Elem,

contains the faces and vertices of each polyhedral element. Figure 5.3 shows some of the

sample meshes and their statistics, obtained from the current algorithm.

mesh, the algorithm computes the convex hull of the set S, which consists of the vertices of
the corresponding element. The convex hull of S is a matrix H with as many rows as the
number of triangles present in the convex hull, and three columns containing the indexes
of the vertices of the triangle. Then, we iterate over all triangles and unite those that are
co-planar to obtain the polygonal faces of the polyhedron. The resulting array, called Elem,
contains the faces and the vertices of each polyhedral element.

Algorithm 2 Construction of final mesh consisting of vertices, elements and faces in
MATLAB.
input: E,ND,Q, n %% Voronoi cells E, vertices coords ND, seeds coords Q, and number

of seeds n
Elem← 0 %% initialize an array with size of n
for i = 1 to n do

let S = ND(E(i))
construct convex hull H← H(S;R3)
m← |H| %% number of triangles m obtained from the convex hull
ElementFaces ← 0
for j = 1 to m do

let T = E(H(j)) %% vertices of a triangle
T = OrderV ertices(ND,T,Q(i))
ElementFaces ← T %% create/unite faces

end for
Elem(i)← ElementFaces

end for
output: Elem

[Figure 4 about here]

5 Numerical examples

In this section, we show some numerical examples to demonstrate the effectiveness of the
current approach. First, the results from the cantilever beam problem are solved on a box
domain using different mesh discretizations, followed by problems on non-Cartesian design
domains. For all the examples, the Young’s modulus, E, and Poisson’s ratio, ν, are taken as
10, 000 and 0.3, respectively. Optimality Criteria (OC) is used as the optimization algorithm.
The optimization is terminated when either the maximum of the change in element densities
is less than 0.01 or the maximum iterations exceed 300.

5.1 Cantilever beam problem on box domain

We start with the cantilever beam problem on a 2× 1× 1 box domain. Nodes along the left
face are fixed and point load is applied in the middle of right face (refer Fig. 5). The problem
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Figure 5.2: Construction of final mesh consisting of vertices, elements and faces in MATLAB.

5.3 Numerical examples

In this section, we show some numerical examples to demonstrate the effectiveness of the

current approach. First, the results from the cantilever beam problem are solved on a box

domain using different mesh discretizations, followed by problems on non-Cartesian design
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Figure 5.3: Sample meshes. (a) Cylinder. (b) Cylinder mesh statistics. On average, the elements in the
mesh have approximately 23 vertices with a standard deviation of 2.92. (c) Curved cantilever beam. (d)
Curved cantilever mesh statistics. On average, the elements in the mesh also have approximately 23 vertices
with a standard deviation of 3.69.
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domains. For all the examples, the Young’s modulus, E, and Poisson’s ratio, ν, are taken

as 10, 000 and 0.3, respectively. The scaling factor α is chosen as α∗ trace(K1), where α∗

is a scaling coefficient chosen as 0.05 based on a parametric study conducted in [91]. As

mentioned earlier, Optimality Criteria (OC) is used as the optimization algorithm. The

optimization is terminated when either the maximum of the change in element densities is

less than 0.01 or the number of iterations exceed 300.

5.3.1 Cantilever beam problem on box domain

We begin with the benchmark cantilever beam problem for a design domain of dimension

2×1×1. The left face of the box is fixed and a point load is applied in the middle of the right

face (refer Fig. 5.4). The problem is solved on both brick and polyhedral element meshes.

Taking advantage of symmetry, only half of the domain is optimized, which is discretized

using 54,872 brick elements (60,060 nodes) and 10,000 polyhedrons (58,601 nodes). A linear

filter of radius 5% of the maximum domain dimension is used and a volume fraction of 0.1

is prescribed.

F

2

1

1

Figure 5.4: Cantilever beam problem.

With the present approach, both mesh discretizations produce similar optimization results

(Fig. 5.5). Note that the optimized topologies shown in Fig. 5.5 (also all subsequent results)

show only the elements whose density exceeds 0.5. The final compliance values are 0.1098

and 0.1082 for the topologies on brick and polyhedral meshes, respectively.

For comparison, the same problem is solved using the finite element method on a brick

mesh. Topology similar to the present method is obtained. The convergence history for all

three cases are illustrated in Fig. 5.6. As expected, a smooth monotonic convergence is

obtained for all three cases and they all converge to similar final compliance values.
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(a) (b)

Figure 5.5: Converged topologies for the cantilever beam problem using the present method. (a) Brick mesh
of 54,872 elements, 60,060 nodes (J = 0.1098). (b) Polyhedral mesh of 10,000 elements, 58,601 nodes. The
average number of vertices per polyhedron is, µ = 22.85, with standard deviation, σ = 3.80, (J = 0.1082).
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Figure 5.6: Convergence history for the cantilever beam problem.
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5.3.2 Curved cantilever beam problem

Next, we explore problems on non-Cartesian design domains. The cantilever beam problem

discussed in the previous section, with a point load applied in the middle of the right face,

is now optimized on a curved design domain (c.f. Fig. 5.7). A volume fraction of 0.1 is

prescribed, and a linear filter with radius equal to 4% of the maximum domain dimension is

used.

Figure 5.7: Curved cantilever beam problem. The
left face is fixed and a point load is applied in the
middle of the right face.

F

As illustrated in Fig. 5.8, the shape of the domain influences the final topology. The

member orientations are similar to the ones in the two-dimensional version of the problem

(c.f. [87, 211]). The optimization algorithm converged to a final compliance value of 0.0796.

5.3.3 Shear loaded thin disc

We next investigate the shear loaded thin disc problem. The thin disc domain has an external

radius of 6 units with an internal cylindrical hole of radius 1 unit and has a thickness of

0.5 units (Fig. 5.9). Eight equidistant shear loads are applied along the circumference of

the disc and all the nodes along the cylindrical hole are fixed. A polyhedral mesh of 10,000

elements (55,810 nodes) is used to discretize the design domain. A filter radius of 4% of the

outer diameter is selected and a volume fraction of 0.2 is enforced.

According to Michell layout theory [143, 103], an optimum structural layout is one in

which the tension and compression members meet orthogonally. Such a set of orthogonal

curves are known as Hencky nets [103]. The tension and compression members in topology

optimization solutions should adhere to this principle. The converged topology for the shear

loaded thin disc problem, obtained from our algorithm, is shown in Fig. 5.10 (resembles

a flower). The members of the structure intersect nearly at right angles, even for a coarse

polyhedral mesh, indicating that mesh bias is alleviated with polyhedral elements. The

compliance of the final topology is 0.5850.

106



Figure 5.8: Converged topology for the curved cantilever beam problem using the present method on a 10,000
elements, 63,626 nodes polyhedral mesh. The average number of vertices per polyhedron is, µ = 23.38, with
standard deviation, σ = 3.38, (J = 0.0796).

Figure 5.9: Problem description for
thin disc. Eight equidistant shear loads
are applied along the circumference of
the disc and all the nodes along the cen-
tral cylindrical hole are fixed.

6 1

F

0.5

Figure 5.10: Final topology for shear
loaded thin disc on a 10,000 element,
55,810 nodes polyhedral mesh. The av-
erage number of vertices per element
are, µ = 20.53, with standard deviation
of, σ = 3.71, (J = 0.5850).
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5.3.4 Hollow cylinder under torsional load

We now explore the torsionally loaded hollow cylinder. The design domain is in the shape of

a hollow cylinder of thickness 0.1 units, height 4 units and outer diameter of 1 unit (c.f. Fig.

5.11(a)). Four equidistant nodes along the bottom face are fixed and four tangential point

loads are applied to corresponding nodes on the top face, effectively acting as a torsional

load. A filter radius of 3% of the height of the cylinder and a volume fraction of 0.3 are

prescribed. The problem is solved on three sets of meshes - two tetrahedral meshes of 9,977

elements (3,349 nodes); 451,584 elements (85,320 nodes) and a polyhedral mesh of 10,000

elements (79,925 nodes).

F

4

1

FF
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0.1

(a) (b) (c) (d)

Figure 5.11: Hollow cylinder under torsional load. (a) Problem description. Converged topologies for
(b) Linear tetrahedral mesh of 9,977 elements, 3,349 nodes (J = 1.1397); (c) Polyhedral mesh of 10,000
elements, 79,925 nodes. On average, polyhedral elements have, µ = 22.57, vertices with standard derivation
of, σ = 2.88, (J = 1.6005); (d) Linear tetrahedral mesh of 451,584 elements, 85,320 nodes (J = 1.2064).

Using the polyhedral mesh, our optimization algorithm yields an elegant spiraling struc-

ture with nearly orthogonally oriented crossing members (Fig. 5.11(c)). For a tetrahedral

mesh, with a similar number of elements as the polyhedral mesh (9,977), we still obtain a

similar spiraling structure (c.f. Fig. 5.11(b)), but the members orientation is affected by
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the mesh geometry and the intersecting members are not fully orthogonal. This might be

because although the tetrahedral mesh has similar number of elements as polyhedral mesh,

the degrees of freedom in tetrahedral mesh is far less than the polyhedral mesh. So we solved

the hollow cylinder problem on a fine tetrahedral mesh, such that the number of nodes in

the mesh are comparable to that of the polyhedral mesh. Note that, in the fine tetrahedral

mesh, the number of elements has risen to 451,584. Although the fine tetrahedral mesh (Fig.

5.11(d)) rectifies the lack of member orthogonality in the optimization result, the fine mesh

considerably increases the computational cost associated with operations, such as creation

and storage of the filter matrix, compared to the polyhedral and coarse tetrahedral meshes.

If other length scale control approaches are adopted, for example enforcing perimeter con-

straint, in place of filters, the the computational cost associated with fine tetrahedral meshes

can be considerably reduced. But the downside to this approach on tetrahedral meshes is

that single node connections may arise in the designs. In terms of the cost associated with

solving the governing elasticity problem, polyhedral meshes are marginally expensive than

tetrahedral meshes of comparable total degrees of freedom. This is due to that fact that

polyhedrons on an average have higher number of vertices (approximately 23 for our meshes)

than tetrahedrons. Finally, note that the lower compliance for the optimization result on a

coarse tetrahedral mesh (Fig. 5.11(b)) can be attributed to the fact that tetrahedral meshes

experience artificial stiffness due to shear locking phenomenon, which reduces with mesh

refinement.

We would like to point out that the element stiffness matrix obtained using the lin-

ear tetrahedral finite element approach is identical to the one obtained using the current

approach. The reason being that, in the present method, for elements in the shape of a

tetrahedron, the contribution of the stability term is zero, because the approximate space,

VE
h , is identical to the space of linear deformations, P1(E)3. So, the only contribution to

the element stiffness matrix comes from the consistency term which is the same as the one

obtained from finite element analysis. Thus, the final topologies obtained from the current

approach and the linear tetrahedral finite element approach should be identical, along with

the convergence history. the results are in agreement with the above statement.

5.3.5 Hook domain under line load

For the final compliance minimization problem, we investigate the hook domain subjected

to a uniformly distributed line load along the negative z-direction (Fig. 5.12). A volume

fraction of 0.1 is prescribed and a linear filter with radius equal to 2% of the maximum

domain dimension is used. Using symmetry, we optimize only half the hook domain. The

polyhedral mesh contains 10,000 elements (67,893 nodes). The converged topology, Fig.

5.13, has a compliance of 7.0484 and resembles the structure of a fan. The two dimensional
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version of the problem [211] has similar member orientations as the current three-dimensional

result.
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z

Figure 5.12: Hook domain problem description. All the nodes along the top half of the upper cylindrical
hole are fixed and line load is applied along the circular arc in the negative z-direction.

In topology optimization, filters are used to enforce a length-scale in the problem and

to ensure mesh-independency. Filtering implies that stiffness at any point in the design

domain depends on the densities of all the points in the neighborhood of that point. Filtering

imposes a limitation on the allowable density distribution in any optimized solution. We

studied the effect of filters on the optimization results for polyhedral meshes. Keeping all

the parameters the same as before, we solved the hook problem without using any filter. As

expected, without any length-scale control, more structural members, including some thin

ones, appear in the solution (Fig. 5.14). It is interesting to note that even without filtering

no single node connections were observed in the design. Other filters, such as sensitivity

filters may also be used.

5.3.6 Displacement inverter

Apart from compliance minimization, we also investigate a compliant mechanism problem,

specifically the displacement inverter. The problem description is shown in Fig. 5.15. The

domain is of dimension 1× 1× 1 and is fixed at the bottom four corners. The objective of

optimization is to maximize the output displacement uout on a workpiece modeled by a spring

of stiffness kout. The input and output spring stiffnesses, kin and kout, are taken to be the

same as the components of the global stiffness matrix at the degrees of freedom corresponding

to the input and output nodes. Taking advantage of symmetry, only a quarter of the domain

is optimized and is discretized using 10,000 polyhedral elements (58,785 nodes). A volume
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Figure 5.13: Final topology for the hook domain under line load using the present method on a 10,000
elements, 67,893 nodes polyhedral mesh. The average number of vertices per polyhedron is, µ = 23.97,
with standard deviation, σ = 4.19 (J = 7.0484). A linear filter with radius of 2% of the maximum domain
dimension is used.

Figure 5.14: Hook problem without any filter.
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fraction of 0.05 is prescribed. Our final topology (Fig. 5.16) is similar to the ones available in

the literature [14]. Visually, the three-dimensional optimization result (Fig. 5.16) resembles

to the two-dimensional optimization result [39].

0.05

kout

uout

kin

fin

1

1
1

Figure 5.15: Displacement inverter problem.

The output spring stiffness, kout, controls the displacement amplification obtained from

the inverter. A high value of the spring stiffness produces small output displacement and vice

versa. To verify this for our polyhedral topology optimization implementation, we ran the

inverter problem using kout of magnitude 0.01 times the global stiffness matrix component

at the degree of freedom corresponding to the output direction. The current design (Fig.

5.17) is clearly different from the one obtained before (Fig. 5.16) towards the top. The four

members at the top become narrower as they approach the knot (compared to Fig. 5.16),

making the design more compliant.

5.3.7 Gripper

A gripper, as the name suggests, is a complaint mechanism suitable for gripping objects. The

input actuator, modeled as a spring with stiffness kin, and a force fin, applies a horizontal

load as indicated in Fig. 5.18(a) and the goal of optimization is to maximize the vertical

output displacement uout on a workpiece modeled by a spring of stiffness kout. The problem

dimensions and boundary conditions are indicated in Fig. 5.18(a). Nodes on the top and

bottom section on the right face, indicated by gray color, are fixed. Using the passive

element concept the orange box is modeled as void. Before each optimization cycle, the

elements lying inside the orange box are identified and are assigned the minimum density

corresponding to voids. The spring stiffnesses, kin and kout are taken to be the same as

the components of the global stiffness matrix at the degrees of freedom corresponding to
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Figure 5.16: Converged topology for the displacement inverter problem. Due to symmetry, only a quarter of
the domain is optimized and is discretized using 10,000 polyhedral elements containing 58,785 nodes. The
average number of vertices per polyhedron is, µ = 22.98, with standard deviation of, σ = 3.75.

Figure 5.17: Converged topology for the displacement inverter problem using the present method on a 10,000
elements, 58,785 nodes polyhedral mesh.
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the input and output nodes. Due to symmetry, only a quarter of the domain is optimized

and is discretized using 10,000 polyhedral elements (58,785 nodes) with a prescribed volume

fraction of 0.10. The converged topology (Fig. 5.18) for three-dimensional optimization is a

clear extension of the two-dimensional results available in reference [39]. The combination of

gripping jaws and hinge mimicking narrow necks, along the middle of the design, resemble

a pair of scissors. The convergence history for the gripper problem, shown in Fig. 5.19,

indicates stable convergence.

5.4 Concluding remarks

In this work, we explore polyhedral elements for three-dimensional topology optimization.

Polyhedral elements provide flexibility in discretizing complicated design domains often en-

countered in engineering applications. We use a Virtual Element Method (VEM) to solve

the elastic problem which is the governing state equation in our simulations. The VEM is

a Galerkin scheme, similar to classical finite element approaches, which begins with trans-

forming a continuous problem into its weak form and then solving the resulting equations on

approximation spaces spanned by a finite set of interpolation functions. However, VEM does

not require explicit computation of these interpolation functions. In VEM, the approxima-

tion space is first systematically decomposed into rigid body, linear and higher order spaces.

Using the bases which span the rigid body and constant strain spaces, two projection maps

are defined which extract the rigid body and constant strain modes of the deformation.

These projection maps facilitate the construction of stiffness matrix without the need for

the evaluation of canonical basis functions and their derivatives inside the element. All the

computations are reduced to the evaluation of purely geometric quantities pertaining to the

faces of the polyhedrons.

We investigate the topology optimization of compliance minimization and compliant

mechanism problems using polyhedrons. A centroidal Voronoi tessellation (CVT) based

meshing approach is implemented to discretize complicated design domains employing the

concept of signed distance functions. Compliance minimization problems such as the can-

tilever beam, curved cantilever beam, shear loaded disc, hollow cylinder under torsion, hook

problem subjected to line load; and compliant mechanism problems such as the displacement

inverter and gripper are explored. As indicated by our thin disc and hollow cylinder prob-

lem solutions, unstructured polyhedral elements capture member orthogonality and alleviate

mesh bias in the design. Single node connections often arise in topology optimization designs

and techniques such as filtering are used to tackle them. Due to their geometry, polyhedral

elements naturally alleviate such numerical anomalies. Current work of three-dimensional

topology optimization with polyhedrons paves the way to future applications in the field of
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Figure 5.18: Topology optimization design of gripper. A quarter of the problem is solved with a polyhedral
mesh of 10,000 elements and 59,194 nodes. The average number of vertices per polyhedron is, µ = 23.11,
with standard deviation, σ = 3.85. Region in orange is assigned as voids using passive element concept. (a)
Problem description. (b) Complete design. (c) Front view. (d) Quarter section view.
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Figure 5.19: Convergence history for the gripper problem.

multiphysics designs [183, 56] and biomedical engineering [203]. The complicated designs

resulting from polyhedrons-based three-dimensional topology optimization can be rapidly

prototyped using additive manufacturing/3D printing.

As observed in typical topology optimization solutions, the ones presented in this chapter

are governed by the chosen initial optimization parameters, such as the prescribed volume

fraction and filter radius. Design loads and boundary conditions, which have been assumed

deterministic in our analysis, often have uncertainties embedded in them. Reliability-based

topology optimization approaches, to obtain robust designs, accounting for uncertainties,

have been explored in the past [141, 118, 150]. There are also uncertainties associated with

the manufacturing of these topology optimization designs using processes such as milling and

etching. Misaligned, malcalibrated machine tools and under/over etching may degrade the

performance of carefully optimized topology optimization designs. Robust design against

such manufacturing imprecisions have been proposed [184, 170]. Development of a robust

topology optimization scheme for polyhedrons will be explored in the future.
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Chapter 6

BEAM - Bridging Engineering, Art

and Mathematics

Generally, two-dimensional finite element analysis utilizes triangular and quadrilateral ele-

ments. The pioneering work of Wachspress laid the foundation for polygonal interpolants

which has made polygonal elements popular. The next stage of element shapes, after polyg-

onal elements, can be considered as tessellations. In this work, we investigate the topology

optimization of linear elastic systems on tessellations as a means to coalesce art and engi-

neering. We mainly focus on M.C. Escher’s tessellations using recognizable figures. To solve

the elasticity problem, we utilize a Mimetic Finite Difference-inspired approach, known as

the Virtual Element Method. In this approach, the stiffness matrix is constructed to pass

the displacement patch test and ensure optimum numerical convergence rates. Numerical

verification studies such as the displacement patch test and shear loaded cantilever beam

bending problem are solved to demonstrate the accuracy of the present approach in two-

dimensions. The artistic aspects of topology optimization designs are explored using three

numerical examples with the design objective of compliance minimization [88].

6.1 Introduction

Having explored the utility of polygonal elements in diverse fields such as fracture mechanics,

topology optimization, micromechanical analysis, computer graphics and image processing,

researchers have often pondered where do we go next? What is the next evolutionary stage

of element geometries? One potential direction is tessellations. A tessellation refers to the

arrangement of one or more geometric shapes to completely cover the plane, without overlap-

ping and gaps. Tessellations have the potential to bridge diverse fields such as engineering,

art and mathematics, which is the topic of investigation of the current work.

Tessellations divide a plane using closed regular as well as irregular shapes. There have

been many pioneers in this field. Dutch graphic artist Maurits Cornelis Escher was a prolific

creator of visual riddles, impossible structures, tessellations and patterns. He is well known

for his, often mathematically-inspired, lithographs and woodcuts. Some of his famous works
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include impossible constructions and art works such as Relativity, Waterfall and Hand with

Reflecting Sphere. Electrical engineer Robert Fathauer is another well known tessellation

artist. He is one of the first artists to use computers to generate tessellations. He is famous

for his artwork involving fractals, knots and links. Mathematics professor Roger Penrose

is an expert in recreational math and has made significant contributions in the field of

geometric puzzles and tessellations. Penrose tiles are one of his pioneering works. Penrose

tiles are self-similar quasicrystals which possess reflective and rotational symmetry but lack

translational symmetry (Fig. 6.1).

a

(c)(a) (b) (d)

Figure 6.1: Artworks of famous artists. M.C. Escher’s (a) Waterfall, (b) Hand with Reflecting Sphere
(www.wikipedia.org). (c) Robert Fathauer’s fractal tree (http://mathartfun.com). (d) Roger Penrose’s
penrose tiling (www.wikipedia. org).

In order to numerically solve governing partial differential equations on arbitrary polyg-

onal meshes, specialized approaches are available. Utilizing polygonal shape functions, one

such approach, has been discussed in previous chapters. In polygonal shape functions-based

numerical simulations, an isoparametric mapping scheme for numerical integration is used

[200]. To pass the patch test using previously discussed shape functions, a high quadrature

rule is needed which is computationally expensive. For tessellations, with a large number

of vertices, numerical simulations can become even more cumbersome. A recently proposed

approach, known as the Virtual Element Method (VEM), addresses the issue of both accu-

racy as well as efficiency and has been discussed in detail in Chapter 4. The Virtual Element

Method provides an elegant way to handle any non self-intersecting closed polygon. In this

work, to solve the linear elasticity problem, we use an approach derived from the Virtual

Element Method.

Tessellations have been explored in computational mechanics in the past in the form of

tiling. The terms tiling and tessellations are often used interchangeably. Tiling refers to

patterns of polygons with straight boundaries. Tilings, such as the pinwheel, have been used
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in fracture mechanics [155, 163] because pinwheel tiling produces tiles in infinitely many

orientations which is favorable for crack propagation. In this work, we investigate topology

optimization on tessellated meshes as a means to coalesce engineering and art. Topology

optimization aims to obtain an optimal material distribution in a domain in order to satisfy

certain prescribed design objectives. Since the early works of Bendsøe and Kikuchi [37],

Suzuki and Kikuchi [204], Bendsøe [36] and Rozvany et al. [172], the field of topology opti-

mization has grown rapidly. Here, we mainly concentrate on the density-based linear elastic

topology optimization problem of compliance minimization (1.3). The domain description

for the optimization problem is shown in Fig. 6.2. Refer to Section 5.1 for more details on

the problem formulation, sensitivity analysis and filtering scheme.

Figure 6.2: Illustration of the design domain, Ω.
Its boundary, ∂Ω, contains three disjoint segments,
∂Ω = Γu ∪ Γt0 ∪ Γt, corresponding to displacement,
homogeneous traction, and non-homogeneous trac-
tion boundary conditions, respectively. Any design
ω ⊆ Ω, with boundary ∂ω = γu ∪ γt0 ∪ γt, is con-
strained to satisfy γu ⊆ Γu and γt = Γt. Bound-
aries γu, γt0, and γt correspond to displacement, ho-
mogeneous traction, and non-homogeneous traction
boundary conditions on ∂ω, respectively.

t
Γt

γu

γt0ω

Γu

Γ 0t

Ω

γt

The remainder of this chapter is organized as follows. In Section 6.2, we discuss the gen-

eration of tessellations based on basic two-dimensional shapes such as triangles and quadri-

laterals. In Section 6.3, we briefly discuss the Mimetic Finite Difference-inspired approach to

solve two-dimensional linear elasticity equation on meshes with arbitrary shaped elements.

In Section 6.4, we show some numerical verification studies to illustrate the accuracy of

the current numerical approach. Section 6.5, shows some designs obtained from topology

optimization on tessellations. Finally, we conclude with some remarks in Section 6.6.

6.2 Tessellation generation

In this section, we discuss the generation of tessellations which we use to explore art in

engineering. All the tessellations discussed here use basic two-dimensional shapes, such as

triangles and quadrilaterals, as the background shape which is then modified to obtain the

motifs1 used to generate the tessellations. These tessellations are developed using the basic

concepts of translation and rotation. We divide the tessellations discussed in this work into

1M.C. Escher defines motif as a certain polygonal form that repeats itself in congruent shapes to form a tessellation [175].
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two categories. The first category of tessellations are created from minor modifications of

the basic shapes. The second category of tessellations are based on recognizable figures such

as images of birds, animals, people and other day to day objects which one could relate

to. Such tessellations use motifs with very intricate curved lines to resemble a recognizable

object. M.C. Escher was a great exponent of such tessellations [175]. We use some of his

designs in this work and develop some of our own based on the concepts discussed in [175].

6.2.1 Tessellations of polygons

Using a triangle as the building block and using translation and rotation operations, we create

four sets of tessellations. Figure 6.3 illustrates the sequence of steps to create triangle-based

tessellations. We start with the red dashed line a1 and bend it into the blue solid line. The

deformed line a1 is rotated by 180◦ about 1 to obtain line ab which is then rotated by ±60◦

to obtain lines ac and bc, respectively.

Figure 6.3: The sequence of steps to create a triangle-
based tessellations. We start with the red dashed line
a1 and deform it into the blue solid line. Deformed
line a1 is rotated by 180◦ about 1 to obtain line ab
which is then rotated by ±60◦ to obtain lines ac and
bc, respectively.

a 1

a b

c

1

23

By horizontally and vertically translating the patches created using the technique il-

lustrated in Fig. 6.3, the tessellations in Fig. 6.4 are created. Each patch/element in

tessellations Tess T1 (Fig. 6.4(a)), Tess T2 (Fig. 6.4(b)), Tess T3 (Fig. 6.4(c)), Tess T4

(Fig. 6.4(d)) contains 9, 15, 15 and 27 nodes, respectively. The nodes in each elements are

numbered counterclockwise and we conduct checks to ensure there are no duplicate nodes

in the mesh.

The sequence of steps to generate tessellations using a quadrilateral base is similar to

that for the triangule base discussed previously. We start from the red dashed line a1 and

deform it into the blue solid line. Deformed line a1 is rotated by 180◦ about 1 to obtain line

ab, which is then rotated by 90◦ to obtain line ad. Deformed blue solid lines ab and ad are

translated vertically and horizontally to obtain dc and bc, respectively (Fig. 6.5).

Tessellations in Fig. 6.6 are created using the technique illustrated in Fig. 6.5. Patches

in tessellations shown in Figs. 6.6(a) and 6.6(b) contain 12 and 20 nodes each, respectively.
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(a) (b)

(c) (d)

Figure 6.4: Tessellations generated using the patches shown in the corresponding insets. (a) Tess T1. (b)
Tess T2. (c) Tess T3. (d) Tess T4.

Figure 6.5: The sequence of steps to create a
quadrilateral-based tessellations. We start from the
red dashed line a1 and deform it into the blue solid
line. Deformed line a1 is rotated by 180◦ about 1 to
obtain line ab, which is then rotated by 90◦ to obtain
line ad. Deformed blue solid lines ab, ad are trans-
lated vertically and horizontally to obtain dc and bc,
respectively.

a 1

a b1

24

d c3
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(a) (b)

Figure 6.6: Tessellations generated using the patches shown in the corresponding insets. (a) Tess Q1. (b)
Tess Q2.

6.2.2 Tessellations of recognizable figures

M.C. Escher was one of the pioneers of creating tessellations using recognizable figures such

as birds, horses, fishes and lizards [175]. Escher classified his tessellations into quadrilateral

systems and triangle systems. In his work, tessellations based on quadrilaterals are more

common as they are easier to work with. He further subcategorizes his quadrilateral systems

depending on two characteristics: the type of underlying polygon (represented by letters

A, B, C, D, E) and the symmetry present in the motif (represented by Roman numerals I

through X). The letters A, B, C, D and E denote parallelogram, rhombus, rectangle, square

and isosceles right triangle, respectively. In this work, we will explore a few tessellations of

type ID, VC and IVB.

We start with Pegasus and Bird tessellations which belong to the system of type ID. Class

ID tessellations use a square as the underlying polygon (square abcd in Fig. 6.7) and use

translation in both transversal and diagonal directions. Edge dc and da are replaced by the

curved lines as shown in Fig. 6.7. Then curved edges dc and da are translated vertically

and horizontally to ab and cb to complete the motif. In our tessellations, we use a total of

66 and 52 nodes per Pegasus and Bird motif, respectively. Final tessellations are created by

simply translating the motifs, obtained earlier, vertically and horizontally.

A Bulldog is a type V tessellation. Parallelogram abcd (Fig. 6.8) is used as the back-

ground shape. Edge dc represented by the red dashed line is deformed into a curved line

(green colored) and is then glide-reflected (translation of the reflected image) to the bottom

edge ba. The Bulldog motif is completed by translating the blue curved edge da horizon-

tally to edge cb. By repeating identical copies of this motif horizontally and mirror copies

vertically a Bulldog tessellation can be obtained. Escher classified this design as type VC

[175]. We have 72 nodes per Bulldog element.
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a b

d c

(a)

a b

d c

(b)

Figure 6.7: Escher’s tessellations of type ID. (a) Pegasus. (b) Bird.

a b

d c

Figure 6.8: Bulldog - Escher’s tessellations of type VC
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As an example of type IVB, we look at the Winged Lion tessellation (Fig. 6.9). A

quadrilateral shaped like a dart or kite is used as the starting polygon. Deformed edges dc

and ad are glide-reflected to edges cb and ba, respectively. Each Winged Lion motif has 76

nodes.

a

b

d

c

Figure 6.9: Winged Lion - Escher’s tessellations of type IVB

6.3 A MFD-inspired approach for two-dimensional linear

elasticity

In order to numerically solve the linear elasticity problem (1.1, 1.2) we use a Mimetic Finite

Difference-inspired approach, known as the Virtual Element Method [26, 27, 91, 173]. The

details of the method for the three-dimensional linear elasticity problem were presented in

Chapter 4. In this section, for the two-dimensional problem, we summarize the construction

of the discrete bilinear form, also known as the stiffness matrix, and the force vector which

are needed to solve the optimization problem (1.4).

Let the continuous bilinear form be split over polygonal elements, E, as:

a(u , v) =
∑

E

aE(u , v), ∀u , v ∈ V (6.1)

In the Virtual Element Method, the bilinear form is constructed in such a way that the

displacement patch test is satisfied, i.e:

aEh (p1, vh) = aE(p1, vh)

∀E, ∀vh ∈ VE
h , ∀p1 ∈ P1(E)2

(6.2)

Equation (6.2) implies that, when the trial function belongs to linear space P1(E)2, the

discrete bilinear form is exactly the same as the continuous bilinear form. Here VE
h ⊂ V ,

and from the viewpoint of Galerkin approximations, represents the space spanned by the
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smooth shape functions which are non-negative inside the domain, form a partition of unity,

satisfy the Kronecker-delta property, are linearly precise and C0 continuous on the edges.

For the discrete solution to be stable, we also need to ensure that the discrete bilinear form

is continuous and bounded, i.e., we require that there exists constants α∗, α∗ > 0 such that:

α∗a
E(vh, vh) ≤ aEh (vh, vh) ≤ α∗aE(vh, vh) ∀E, ∀vh ∈ VE

h (6.3)

The discrete bilinear form is constructed to have two terms, consistency and stability, which

satisfy the displacement patch test and stability requirements, respectively. In order to derive

the expressions for the stiffness matrix, the linear space P1(E)2 is selected as the span of basis

vectors p̂1 = [1, 0]T , p̂2 = [0, 1]T , p̂3 = [y, −x]T , p̂4 = [x, 0]T , p̂5 = [0, y]T , p̂6 = [y, x]T .

The consistency term is taken as aEh (φi,φj) = aE(ΠEφi,Π
Eφj), where the projection ΠE :

VE
h → P1(E)2 needs to be constructed. For discussion on the rationale for such a choice,

refer to [26, 27, 91, 173]. Since the discrete bilinear form involves calculating the strains of

the arguments, the contribution of the rigid body terms is lost as they have zero strains. So

we treat the rigid body motions separately and split the linear space, P1(E)2, and projection

ΠE as follows:

P1(E)2 = P0
1(E)2 ⊕ P1

1(E)2, ΠE = Π̄E + Π0(I− Π̄E) (6.4)

Here, P0
1(E)2 and P1

1(E)2 represent the rigid body and constant strain spaces, respectively.

And the projections are defined as, Π̄E : VE
h → P1

1(E)2 and Π0 : VE
h → P0

1(E)2. Note that

aE(ΠEφi,Π
Eφj) = aE(Π̄Eφi, Π̄

Eφj). Thus, the consistency term requires determining the

projection Π̄E. After some algebraic manipulations, the consistency term, represented by

K1, can be written as [91, 173]:

K1 = aE(Π̄Eφi, Π̄
Eφj) =

[
R(NTR)−1RT

]
ij

(6.5)

where N is the nodal coordinate matrix of dimension 2N × 3, N being the total number of

nodes in an element and is expressed as:

N2i−1:2i, : =

[
xi 0 yi

0 yi xi

]
, i = 1, ..., N (6.6)
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Matrix R is also of dimension 2N × 3 and is calculated as (c.f. Fig. 6.10):

R2i−1:2i, : =

∫

∂E

φi · (Cε(p̂α)) n ds, i = 1, ..., N

=

Nneighbor∑

j=1

(
(Cε(p̂α)) nj ·

∫

∂E

φi dsj

)
(6.7)

= Cε(p̂α) (ei−1ni−1 + eini) /2

Figure 6.10: Illustration of the adjacency information
needed in evaluation of line integral in the consistency
term. Lengths of the sides adjacent to node i are
represented by ei−1, ei. The arrows represent the
outward pointing normals, ni−1, ni.

iei

E
i+1

i-1
ei-1ni

ni-1

Here, lengths of the sides adjacent to node i are represented by ei−1 and ei. The ar-

rows represent the outward pointing normals, ni−1 and ni. The discrete bilinear term is

constructed to contain a second term, K2 = SE((I − ΠE)φi, (I − ΠE)φj), which imparts

stability to the solution. The second term is chosen to be a symmetric positive definite

matrix which is continuous and bounded. It is also constructed in such a way that the

appended discrete bilinear form still satisfies the displacement patch test. Using (6.4), K2

can be simplified as:

K2 = (I−PT
M)(I−PT

1 )SE(φi,φj)(I−P1)(I−PM) (6.8)

where PM is the matrix representation of the projection Π̄E and is equivalent to
[
N(RTN)−1RT

]
.

Also, P1 is the matrix representation of the projection operator Π0 and we define it as:

Π0v = v̄ +

〈
1

|E|

∫

E

∇vdx
〉

(x − x̄ ) (6.9)

The projection Π0 in (6.9) is chosen such that, if v ∈ P0
1(E)2 (i.e. v =

∑3
i=1 ci p̂i where

ci’s are constants), then Π0v = v . Finally, SE(φi,φj) needs to be chosen such that it is a

positive definite matrix and should scale like the consistency term. Let, SE(φi,φj) be αδij,
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where α is a scaling factor. So, the final stiffness matrix expression looks like,

aEh (φi,φj) = Kij =
[
R(NTR)−1RT

]
ij

+
[
α(I−PT

M)(I−PT
1 )(I−P1)(I−PM)

]
ij

(6.10)

In this work, the scaling factor α is chosen as α∗trace(K1), where α∗ is a scaling coefficient

chosen based on a parametric study conducted in Section 6.4.2.

For the numerical examples in Section 6.4, we only consider concentrated point loads.

The global force vector F, corresponding to those loads consists of all zeros except at the

degrees of freedom corresponding to the point loads, where it takes the value of the loads.

6.4 Numerical verification studies

Here, we demonstrate the accuracy of the present numerical approach using the displacement

patch test and shear loaded cantilever beam bending problems. The purpose of the numerical

verification studies is to show that the current approach produces numerically convergent and

stable results for tessellations of arbitrary shape including concave elements. The accuracy

and convergence of the numerical results are verified in terms of relative L2 error norms.

The displacement error norm is the first metric we use and is expressed as:

UErr =
|Uexact −UV EM |

|Uexact|
(6.11)

where Uexact and UV EM are the exact and VEM solutions, respectively. We also utilize a

stress error norm to measure the accuracy of the method. The error measure that we use

for the stresses, σ (written in Voigt notation), is defined as:

σ̄Err =
|E1|2
|E2|2

(6.12)

Matrices E1 and E2 are of dimension (Number of elements)× 3 and constructed such that

each row of E1 and E2 corresponds to
∫
E

(σexact − σ̄V EM, e)
2 dx and

∫
E

(σexact)
2 dx, respec-

tively, which are numerically integrated over each element. Here, σexact is the exact stress

and σ̄V EM, e is the VEM average element stress calculated as [91]:

σ̄V EM, e = uTe
(
R(NTR)−1

)
Cε(p̂β) (6.13)

For numerical integration, we triangulate each element and use the standard integration rules

of linear T3 element to obtain the location of Gauss points and their corresponding weights.

The relative L2 error norms are plotted against the maximum of the element diameter in the

mesh. An element diameter is defined as the maximum pairwise distance of all the vertices

of the element.
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6.4.1 Displacement patch test

We conduct the displacement patch tests for all the tessellations shown in Figs. 6.4, 6.6

6.7, 6.8 and 6.9. An arbitrary linear displacement of the form U = AX + B, where A =

1/100 [2 1; 3 4] and B = 1/100 [1 2]T , is applied to all the nodes on the boundary of the

mesh and no forces are applied to the system. Scaling factors of the form α∗trace(K1), with

α∗ ∈ [10−3 − 103] are investigated. For all tessellations, the relative L2 displacement error

and relative L2 average stress errors are in the machine precision range (10−16) indicating

that the VEM passes the displacement patch test exactly. The tests indicate that the choice

of the scaling factor has no impact on the patch test results. Figure 6.11 illustrates the

deformed configurations from the patch test for the triangle-based tessellations Tess T2 and

Tess T3.

(a) (b)

Figure 6.11: Displacement patch test on triangle-based tessellations (a) Tess T2, (b) Tess T3. Blue colored
mesh with circular nodes represents the initial configuration and red colored mesh with triangular nodes
represents the deformed configuration.

6.4.2 Shear loaded cantilever beam bending

Next, we study the performance of the present numerical approach using the shear loaded

cantilever beam bending problem. Consider a rectangular beam of length a and width 2b,

0 < x < a, −b < y < b, subjected to transverse shear load, F = 0.1, at end x = 0. For the

current study, a = 10 and 2b = 1. The expressions for stresses are available in [213, 23] and

are repeated here for completeness.

σxx =
3Fxy

2b3
, σyy = 0, σxy =

3F (b2 − y2)

4b3
(6.14)
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Using the stress-strain relationships and definitions of displacement gradients, the displace-

ment fields corresponding to the stresses (6.14) are written as:

u =
3Fx2y

4Eb3
+

3F (1 + ν)y

2Eb
− F (2 + ν)y3

4Eb3
+ A− Cy,

v = −3Fνxy2

4Eb3
− Fx3

4Eb3
+B + Cx

(6.15)

Here, u and v represent the displacements in the x and y directions, respectively. Constants

A, B and C account for the three rigid body motions in two-dimensions.

In the VEM formulation, the choice of scaling factor for the stability term in the stiffness

matrix (6.10) needs to be chosen carefully, as it affects the accuracy of results. We chose

the scaling factor as α∗ trace(K1). We conducted a parametric study to determine feasible

choices of α∗, where α∗ is varied in the range [10−3 − 103]. The study utilized two mesh

discretizations of 490 and 810 elements of the tessellation Tess Q1. Figure 6.12 shows

the relative L2 displacement error (6.11) and relative L2 average stress error (6.12) plotted

against scaling coefficient α∗. Illustrated in Fig. 6.12, the relative L2 error curves attain

a minimum somewhere in the range [0.0, 0.1]. Similar results are obtained for other mesh

discretizations and are not shown here. Based on this study, we chose α∗ = 0.1.

Figure 6.12: Parametric study of the scaling coeffi-
cient α∗ for the shear loaded cantilever beam problem
using two discretizations of 490, 810 elements of the
tessellation Tess Q1 shown in the inset.
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The current approach can be applied to tessellations/polygons of any arbitrary shape,

including concave elements, however the shape of the element dictates the accuracy of the

numerical simulations. We evaluate the performance of the approach for tessellations Tess

Q1, centroidal Voronoi tessellation (CVT) meshes and uniform quad meshes and compare

it with FEM results on uniform quad meshes. The results of the study are shown in Fig.

6.13 where the relative L2 errors are plotted against the maximum element diameter of the

meshes. We note that, even for tessellation Tess Q1, which essentially contains concave

elements, a second order of convergence is obtained for displacement errors (Fig. 6.13(a))
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and a first order of convergence for average stress errors (Fig. 6.13(b)). We observe that, for

a given maximum element diameter, tessellation Tess Q1 produces the highest displacement

error (Fig. 6.13(a)). On the other hand, the relative L2 average stress errors showed almost

no noticeable difference (Fig. 6.13(b)) among different meshes using the VEM and FEM.
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Figure 6.13: Comparison of the performance of the VEM on different meshes (Tess Q1, CVT Voronoi mesh,
uniform quad mesh) and the FEM on a uniform quad mesh. (a) L2 displacement error. (b) L2 average stress
error.

Evaluating the accuracy of the numerical method on different meshes based on error

estimates plotted against maximum element diameters may not be the most appropriate

measure. Error estimates with respect to the total number of nodes in the mesh may provide

better insight into the effectiveness of the method (Fig. 6.14). As a frame of reference, we

included the relative L2 errors computed from FEM on uniform quad meshes. In terms

of displacement errors, the current numerical approach on uniform quad meshes seems to

produce the lowest L2 error. For the average stress errors, the difference is a bit more

apparent. It is interesting to note that, the relative L2 average stress errors are almost

identical for analysis using the current approach and FEM on uniform quad meshes.

6.5 Generation of optimal and artistic designs

In the construction industry, a landmark design comes about as a consequence of a syner-

gistic blend of architecture and engineering. In general, this is a difficult task to achieve.

Engineers focus on objectives such as structural stability, efficiency and efficient load transfer.

Architects, on the other hand, are concerned with the style and appearance, i.e. aesthetics of

the design. More often than not, the goals of an engineer and architect conflict. Since both

structural performance and aesthetics are crucial to the building design, often a compromise
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Figure 6.14: Comparison of the performance of VEM on different meshes (Tess Q1, CVT Voronoi mesh,
uniform quad mesh) and FEM on uniform quad mesh with respect to total number of nodes in the mesh.
(a) L2 displacement error. (b) L2 average stress error.

is arrived at. The goal of the current work of topology optimization on tessellated meshes is

to provide a natural means to integrate artistic aspects in engineering, thus satisfying both

engineers and architects. This is illustrated using three examples - a cantilever beam with

circular support, a bracing system design and a bridge problem. The Young’s modulus and

Poisson’s ratio are selected as 1.0 and 0.3, respectively and consistent units are employed.

We chose Optimality Criteria (OC) as the optimization algorithm. Optimization is termi-

nated when either the maximum of the change in element densities is less than 0.01 or the

maximum iterations exceed 150.

6.5.1 Cantilever beam with circular support

We start with the benchmark problem of a cantilever beam with circular support [209]. The

problem description is shown in Fig. 6.15. All the nodes along the circular segment are fixed

and a point load, acting in the negative y-direction, is applied approximately in the middle

of the right edge. The domain is discretized using Escher’s type ID tessellations - Pegasus

and Bird (Fig. 6.7). The Pegasus tessellation contains 1,441 elements (47,603 nodes) and

the Bird tessellation has 1,442 elements (37,261 nodes). The volume fraction and penalty

factor for the SIMP model are chosen as 0.3 and 3.0, respectively.

For the first case, optimization is performed without any filters. As illustrated in Fig.

6.16 the overall converged topologies are similar to the ones available in the literature [209].

In this work, we are more interested in the details around the boundaries of the members.

In Fig. 6.16, outlines of the Pegasus and Bird are clearly visible and their heads and feet
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F

Figure 6.15: Cantilever beam with circular support.

are well defined. Aesthetically, in our opinion, such designs are much more appealing than

the optimization designs on triangle and quadrilateral meshes.

(a) (b)

Figure 6.16: Converged topologies for the cantilever beam with circular support. The volume fraction and
SIMP penalty factor are chosen as 0.3 and 3, respectively and no filter is used. (a) Pegasus tessellation. (b)
Bird tessellation.

In the previous designs (Fig. 6.16), we see that, due to the absence of filters, the bound-

aries, in general, are distinct. Artistically it would be much more attractive if there were a

gradation at the boundaries, with elements of varying densities. To obtain such a design,

we perform optimization on the cantilever beam problem discussed earlier, employing a lin-

ear filter of radius equal to 3% of the maximum domain dimension. The other parameters

are kept the same. In the zoomed in section (Fig. 6.17(b)) of the optimized design, Fig.
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6.17(a), an elegant design pattern can be seen. In our opinion, such designs will not only be

appreciated by an engineer for being structurally optimal and stable but also by architects

due to their aesthetic appeal.

(a) (b)

Figure 6.17: Converged design for cantilever beam with circular support problem solved on Bird tessellation,
using a linear filter of radius 3% of the maximum domain dimension, is shown in (a). Volume fraction and
SIMP penalty factor are taken as 0.3 and 3, respectively. (b) Zoomed in section.

6.5.2 Bracing system design

Next example focuses on the design of more practical systems, the bracings. In buildings,

they provide lateral resistance to withstand loadings such as the wind and seismic forces. We

consider a model problem shown in Fig. 6.18. Nodes along the bottom edge are fixed and

lateral loads are applied at the top corners. The design domain is discretized using Escher’s

type VC tessellation - Bulldog, consisting of 690 elements and 25,063 nodes. A linear filter

of radius equal to 3% of the maximum domain dimension is adopted along with a volume

fraction and SIMP penalty factor of 0.3 and 3, respectively.

As expected, the optimization algorithm produces an X-bracing system (Fig. 6.19) to

resist lateral loads. As before, we can identify the outline of the Bulldogs and their graded

pattern which add an artistic touch to an otherwise bland engineering design. To design

bracing systems for high-rise buildings, manufacturing and layout constraints such as pattern

repetition and pattern gradation can be employed [12, 193]. In pattern repetition manufac-

turing constraint utilizes the same design pattern for multiple stories to help increase the

speed of construction and ensure high quality. Pattern gradation can be used for a smooth
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FF

Figure 6.18: Problem description for bracing system design.

transition of the design between two dissimilar loading resistance requirements, such as for

tall building where overturning moments are higher at the bottom and shear is dominant at

the top.

Figure 6.19: Structurally efficient and aesthetically pleasing bracing design using Bulldog tessellation.

6.5.3 Bridge problem

The final example is the optimization of the bridge shown in Fig. 6.20. The locations of the

piers are indicated by pin and roller supports. Two point loads, representing dead weights,

are applied at the locations shown in Fig. 6.20. Escher’s type IVB tessellation - Winged

Lion, is used to discretize the design domain. The mesh consists of a total of 3,200 elements

134



and 121,948 nodes. To obtain a graded pattern at the design boundaries, a linear filter of

radius equal to 5% of the minimum domain dimension is used. The other parameters are

kept the same as in previous examples.

F F

Figure 6.20: Problem description for the bridge design.

The converged design (Fig. 6.21(a)) resembles a typical bridge with two fan like struc-

tural segments. Figure 6.21(b) illustrates the captivating design details at the boundaries.

In our opinion, an architect would more often than not choose this design over ones with

zigzag boundaries that are typically obtained from topology optimization using typical fi-

nite elements such as quadrilaterals. To design bridges with multiple spans, the previously

discussed pattern repetition concept can be adopted.

(a)

(b)

Figure 6.21: Converged bridge design solved on Winged Lion tessellation, using a linear filter of radius 5%
of the minimum domain dimension, is shown in (a). Volume fraction and SIMP penalty factor are chosen
as 0.3 and 3, respectively. (b) Zoomed in section.
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6.6 Concluding remarks

In this work, we investigate topology optimization using tessellations as a means to bridge

diverse fields such as engineering, art and mathematics. A special numerical approach is

needed to handle tessellations; which can often be highly skewed, degenerate and non-convex

in nature. The Mimetic Finite Difference method-inspired Virtual Element Method provides

an elegant way to handle any non self-intersecting closed polygons. In this approach, the

approximation space on each element is split into spaces spanned by linear and higher order

polynomials. The discrete bilinear form is constructed to be continuous, bounded and pass

the displacement patch test exactly.

(b)(a)

Figure 6.22: Architectural designs of Bjarke Ingels Group inspired by basic shapes such as circles and Voronoi
polygons (www.big.dk). (a) REN building. (b) Warsaw museum of modern art.

We discuss the construction of tessellations, including ones created using recognizable

figures, which are used as the background meshes to generate artistic designs. The current

numerical approach to solve the linear elastic system is tested using the displacement patch

test and shear loaded cantilever beam bending problems. All the tessellations used in this

work pass the displacement patch test exactly. For the shear loaded cantilever beam bending

problem, second and first order rates of convergence are obtained for relative displacement

and average stress errors, respectively, for different tessellations with varying degrees of ac-

curacy. We make use of compliance minimization (stiffest structure) topology optimization

to obtain our artistic designs. Other objectives such as minimization of lateral drift, maxi-

mization of the fundamental eigenvalue and maximization of the minimum critical buckling

load can be used [39]. We illustrate three optimization examples - a cantilever beam with

circular support, a bracing system design and a bridge problem. We obtain structurally op-

timal, stable and aesthetically appealing designs which, we feel will be appreciated by both

136



engineers and architects. Architectural firms such as Bjarke Ingels Group have been using

basic shapes such as circles and Voronoi polygons (c.f. Fig. 6.22) in their designs. We hope

that our approach of topology optimization using tessellations acts as a source of inspiration

for architects and engineers alike who strive to create mechanically sound innovative designs.

Other potential applications of tessellation-based topology optimization is the design of

high-strength composites. Tessellations such as Pegasus and Bulldog contain interlocking

elements which provide natural resistance to shear and axial load. These self-penetrating

elements posses higher edge length to face area ratio than typical finite elements such as

triangles and quads, thus are better suited to model grains for high toughness composite

design. The design of masonry structures could also benefit from tessellations. Masonry is

a form of durable construction which has been around for centuries. Masonry construction

utilizes bricks, stones, concrete blocks as the construction units laid in and bound together

using mortar. These units could be shaped as tessellations, which provide natural toughness

due to their self-penetrating nature. Tessellation-based masonry walls could be customized

using different patterns which will not only be aesthetically pleasing but also structurally

strong. Also, tessellated construction units will reduce the need of mortar as binding material

due to their inherent interlocking nature.
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Chapter 7

Conclusions and extensions

In this work, a framework for linear elastic topology optimization using polytopes is pre-

sented. A Mimetic Finite Difference-inspired approach is used to accurately and efficiently

solve the governing linear elasticity problem. The current numerical approach is verified us-

ing numerical studies such as the displacement patch test and shear loaded cantilever beam

bending problems. The topology optimization framework is illustrated using various compli-

ance minimization and compliant mechanism problems. Also, recently emerged differential

equation-driven methods for topology optimization, such as level-set and phase field, are in-

vestigated. To conclude the work, aesthetics in topology optimization is explored using M.C.

Escher’s tessellations of recognizable figures. In this chapter, the thesis and its contributions

are summarized and suggestions for future work are provided.

7.1 Concluding remarks

Various topology optimization approaches and polytope-based numerical methods are ex-

plained in Chapter 1. Density-based and differential equation driven methods for topology

optimization are elucidated and their literature background is provided. Chapter 1 also

explains two main categories of polytope-based numerical methods - polygonal/polyhedral

shape function-based methods and Mimetic Finite Difference methods. The statement of

the topology optimization problem, explored in this thesis, is also discussed in this chapter.

In Chapter 2, a critical comparative study of the differential equation-driven methods

for two-dimensional topology optimization is conducted. Four level-set methods and one

phase-field method, which are representative of the literature, are exhaustively analyzed us-

ing compliance minimization topology optimization problems. The main differences between

the two methods are as follows. In level-set methods, the design variables are level-set func-

tions, which are generally updated using the Hamilton-Jacobi equation and later the design

variables are mapped onto the density field for physical interpretation of the design. On the

other hand, in phase-field methods, the design variables are the same as the density variables

and the design is updated using the Allen-Cahn equation. The investigation demonstrates

that the evolution equations for the level-set methods and the phase-field method, that were
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examined in this work, can be regarded as variations of the steepest decent method. For

compliance minimization, all the methods strive to minimize the strain energy in the sys-

tem by placing more material at high strain energy locations. Thus, both the differential

equation-driven methods and the gradient-based density methods for topology optimization

follow similar design philosophies. Most differential equation-driven methods show similar

behavior when used for compliance minimization problems, but might exhibit drastically

different behavior for objective functions such as compliant mechanism and non-linear elas-

ticity. Thus, to ascertain the robustness of any method, it needs to be evaluated against all

these objectives.

The Allen-Cahn evolution equation-based phase-field method for topology optimization

in two-dimensions is further investigated in Chapter 3. Merits of polygonal elements are also

explored in this chapter. A centroidal Voronoi tessellation (CVT) based finite volume scheme

is used to solve the governing Allen-Cahn equation on unstructured polygonal meshes. The

features of the approach are demonstrated using various compliance minimization and com-

pliant mechanism problems on complicated domains. The phase-field method, implemented

here, is similar to gradient-based density methods in many aspects. Both methods have

the same domain representation and their optimization algorithms are primarily driven by

sensitivity information. The main difference between the two methods is in the updating

algorithms they employ. Mathematical programming algorithms such as, Method of Mov-

ing Asymptotes (MMA) and Optimality Criteria (OC) are used to update the designs in

gradient-based density methods whereas, the phase-field method uses the Allen-Cahn evo-

lution equation.

In Chapter 4, a Mimetic Finite Difference-inspired approach, known as the Virtual El-

ement Method (VEM), for three-dimensional elasticity, is explored. Similar to the finite

element method, the VEM is a Galerkin method with an underlying approximation space

defined according to the partition of the domain. It is distinct from classical finite elements

in that the approximation space is not computed explicitly. Rather the discrete bilinear

form and load linear form are constructed directly based on the kinematic decomposition

of the element deformation states into rigid body, constant strains and higher order modes.

The construction captures the linear deformations exactly, guaranteeing satisfaction of the

engineering patch test and optimum numerical convergence. Explicit expressions for the

projection maps are derived to extract the linear displacement component and to subse-

quently construct the expressions for the stiffness matrix and load vector. Surface integrals

encountered during the construction of the stiffness matrix are evaluated numerically using

nodal quadrature and a conforming interpolant quadrature scheme. To verify the formula-

tion and implementation, numerical studies such as the displacement patch test and shear

loaded cantilever beam bending problem are presented. The Virtual Element Method is es-
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pecially attractive, because under the same framework of splitting the approximation space

into linear and higher order spaces, a higher order VEM can be formulated for any general

polyhedral element. Appropriate degrees of freedom (DoF), such as DoFs defined on the

edges and internal points, need to be chosen and suitable basis functions needs to be defined

to span the required polynomial space.

Utilizing the numerical scheme presented in Chapter 4 for linear elasticity, a framework

for three-dimensional topology optimization is developed in Chapter 5. The effectiveness

of the optimization scheme and flexibility of polyhedral meshes to discretize non-Cartesian

design domains is illustrated using various compliance minimization and compliant mecha-

nism problems. The thin disc and hollow cylinder topologies indicate that the unstructured

polyhedral elements capture member orthogonality and thus alleviate any mesh bias in the

design. Numerical artifacts, such as single node connections, are also alleviated.

As discussed previously, a mimetic-inspired Virtual Element Method provides greater

flexibility in the geometric shapes of the admissible elements. To take advantage of this

fact, Chapter 6 explores two-dimensional topology optimization on tessellations as a means

to coalesce engineering and art. M.C. Escher’s tessellations of recognizable figures, such

as birds and animals, are used to add aesthetics to otherwise bland engineering designs.

The goal of the topology optimization examples shown in this chapter, such as the bracing

system and bridge problems, is to provide a source of inspiration to architects and engineers

to strive for innovative designs which are also mechanically sound.

7.2 Suggestions for future work

The unstructured nature of polyhedral elements offers many benefits in engineering appli-

cations such as topology optimization and fracture mechanics simulations. Some potential

extensions of the current work are suggested below.

Large-scale three-dimensional topology optimization using polyhedrons

Application of polyhedral topology optimization to practical problems; such as, large scale

structures or complex materials, requires three-dimensional models with hundreds of thou-

sands of degrees of freedom. One option for large scale computations is the object oriented

framework - TopFEM [24]. TopFEM is a computational framework designed to perform finite

element analysis using a topological data structure, called TopS [58]. TopS and TopFEM are

written in C++ to take advantage of the Object Oriented Programming (OOP) paradigm;

which includes features such as data abstraction, encapsulation, modularity, polymorphism,

and inheritance, making the codes extensible and reusable. Large codes can be reduced to

smaller, manageable ones using OOP, increasing the maintainability of the codes. Finite
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element meshes are represented using TopS; which is a compact adjacency-based data struc-

ture. TopS provides efficient handling of data by reducing the required storage space; while

preserving the ability to retrieve all the adjacency information in a time proportional to the

number of retrieved entries. This efficiency is due to the fact that nodes and elements are

the only entities stored explicitly, while other topological entities such as facets, edges and

vertices are implicitly represented.

Parallel computing is another option for large-scale topology optimization. Parallel com-

puting for topology optimization on traditional Central Processing Unit (CPU) architecture

has been explored by Borrvall and Petersson [44], Kim et al. [120], Vemaganti et al. [220],

Mahdavi et al. [137], Aage et al. [3] and Aage and Lazarov [2]. Schmidt and Schulz [176]

and Zegard and Paulino [247] used Graphics Processor Unit (GPUs) for parallelization.

An efficient approach to deal with large topology optimization problems is to split it into

smaller problems. These smaller problems can either be solved serially and assembled later

or parallel computing can be used to analyze the individual pieces concurrently.

In structural topology optimization, the solution of the state equation is typically the

most computationally expensive step. Iterative solvers; such as Krylov subspace recycling

[174, 230], are especially attractive in this regard. In topology optimization, since the system

changes slowly over optimization steps, Wang et al. [230] were able to reduce the number

of iterations and runtime by recycling the information from previous steps. Alternatively,

Amir et al. [13] integrated the Combined Approximation method into topology optimiza-

tion. They showed that approximate solutions of system equations produced comparable

designs with significant savings in runtime. Later, Amir and Sigmund [14], utilized a single

factorization/preconditioner for the entire optimization process and combined it with the

Preconditioned Conjugate Gradient (PCG) method to solve the system approximately with

fairly accurate designs. All these methods are encouraging and can potentially be used for

topology optimization using polyhedrons.

Polyhedral multiresolution topology optimization (PolyMTOP3D)

For large-scale optimization, to obtain high resolution designs, approaches other than the

ones indicated in the previous section are available in the literature. One such approach

is the multiresolution topology optimization developed by Nguyen et al. [148]. In their

approach for two-dimensional optimization, Nguyen et al. use three different levels of mesh

discretization. A coarse finite element mesh is used to solve the elasticity problem and the

optimization is conducted on a fine design variable mesh and element densities are repre-

sented on a finer mesh. Thus, this approach reduces the computational cost compared to

the case when both finite element analysis and optimization are performed on a fine mesh.
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Later, Nguyen et al. [149] made their MTOP approach more efficient by introducing adaptive

refinement of design and density meshes.

The two-dimensional MTOP approach can naturally be extended to three-dimensions

using the polyhedral topology optimization approach discussed in this thesis. Two pos-

sible three-dimensional polyhedral multiresolution topology optimization (PolyMTOP3D)

approaches are illustrated in Figs. 7.1 and 7.2.

(a) (b) (c)

Figure 7.1: PolyMTOP3D using tetrahedral sub-elements as density elements. (a) Displacement element.
(b) Tetrahedral density elements. (c) Split view of the density elements.

(a) (b) (c)

Figure 7.2: PolyMTOP3D using polyhedral sub-elements as density elements. (a) Displacement element.
(b) Polyhedral density elements. (c) Split view of the density elements.

In the first approach, the finite element analysis is conducted on a polyhedral mesh (also

referred to as the displacement mesh) and optimization is conducted on a tetrahedral mesh,

obtained by subdividing the polyhedrons in the displacement mesh. Figure 7.1 shows one
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displacement polyhedral element with tetrahedral sub-elements as density elements. An-

other possible approach is to use polyhedrons as sub-divided density elements (Fig. 7.2).

The main challenge in the implementation of PolyMTOP3D is to develop an efficient data

structure which is needed to obtain element adjacency information. Perhaps the data struc-

ture TopS [58] could be used for this purpose. Capability to handle polyhedrons needs to

be added to TopS.

Multi-objective topology optimization (MOTO)

In general, practical applications of topology optimization may require simultaneous opti-

mization of multiple objective functions. In contrast to single-objective problems, multi-

objective problems are more complex. For example, for minimization problems, the notion

of minimum of a multiple functions is unclear. The features which minimize a particular

objective may maximize, minimize or have no affect on other objective functions. To deal

with multi-objective optimization, the concept of Pareto optimality [156] was introduced. It

states that a point x∗ is called a Pareto optimal point if there is no point x in the feasible

design space that improves at least one objective function while keeping others unchanged.

There are many multi-objective optimization methods available in the literature which are

characterized by the nature of the solutions they provide. Some methods provide only Pareto

optimal solutions but skip certain solution points in the Pareto optimal set. The weighted

sum method is one such approach, in which the total objective is written as the weighted sum

of individual objective functions with the weights chosen beforehand. By varying the weights

systematically, different Pareto optimal points can be obtained. There are other methods

which capture the entire Pareto optimal set but may also encompass non-Pareto optimal

points, such as the weighted min-max method. Other multi-objective optimization methods

are multi-objective genetic algorithms, weighted global criterion, goal programming and the

lexicographic method [18]. Depending on the application, the relevant objective functions

can be chosen for a multi-objective topology optimization. For example, for the concep-

tual design of craniofacial bone replacements, optimum load transfer and vascularization of

the replacement are important considerations [203] which can be explored using polyhedral

topology optimization on arbitrary non-Cartesian domains.

Other applications of polyhedral topology optimization

In this thesis, a computationally efficient topology optimization approach using polyhedrons

is presented. The unstructured characteristic of the mesh alleviates any mesh bias in the de-

signs. These features make the present approach attractive for applications in multi-physics

problems [183, 187], photonic crystal structure design [113], phononic band gap material
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design [185], design of functionally graded materials [162, 194] and piezoelectric actuators

[56]. In their work, Pereira et al. [166] present a topology optimization implementation

for fluid flow problems in two-dimensions. They use polygonal elements to obtain a stable

low-order discretization of the governing incompressible Stokes flow problem. In a separate

work [212], the same authors show that their formulation satisfies the Babuska-Brezzi sta-

bility conditions for polygonal meshes such as Voronoi tessellations. The two-dimensional

formulation of Pereira et al. [166] may conceivably be extended to three-dimensions using

the approach discussed in this thesis.

The manufacturing industry could benefit from three-dimensional topology optimization

using polyhedrons. There are two types of processes which are suitable for manufacturing

topology optimization designs - subtractive manufacturing (cutting or drilling) and additive

manufacturing (3D printing). Subtractive manufacturing refers to the removal of unwanted

material to achieve a desired shape, for example, sculptures. Topology optimization has a

similar design philosophy to subtractive manufacturing in terms of eliminating undesired ma-

terial. Operations such as casting and milling have been included in the optimization process

as manufacturing constraints [165, 177, 93]. In additive manufacturing or 3D printing, as

the name suggests, a solid object is manufactured by successively laying down layers of ma-

terial in different shapes. Additive manufacturing is advantageous because objects of almost

any complexity can be manufactured using this technique. It has potential applications in

the field of manufacturing scientific equipment [164], printing human organs [1], customizing

food [69] and in chemical compounds [206]. The process starts with the creation of computer

aided design (CAD) of the object and digital slices of cross-sections. The CAD files are then

fed into a printing machine using STL file formats. The machine reads each cross-section

data and lays down layers of powder or liquid which are automatically fused to create the

final product. Although 3D printing can generate high print resolutions, sometimes an over-

sized version of the object is created and the unwanted material is removed using a high

resolution subtractive process to obtain more precise designs. 3D printing is an attractive

tool for rapid prototyping complicated polyhedrons-based three-dimensional topology opti-

mization designs which might be difficult for subtracting manufacturing processes to handle.

To generate 3D models, first the converged polyhedral topology optimization design needs

to be post-processed and a corresponding CAD model needs to be generated.

Dynamic fracture simulations using polyhedral elements

A natural extension of the current work would be for dynamic problems such as dynamic

crack propagation simulations. In fracture simulations, mesh orientation adversely affects

the quality of computational solutions in simulations where crack propagation is confined
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to element interfaces. To alleviate mesh bias, techniques such as adaptive mesh refinement

[157], nodal perturbation and edge-swap operators [161] have been used in the past. Mesh

bias can also be reduced by using unstructured meshes such as Voronoi polygonal meshes

[43, 197, 41, 128, 191]. Other special meshes such as pinwheel tilings have also been used

[155, 163]. It should be noted that approaches such as mesh refinement, nodal perturbation

and edge-swap often result in elements which are polygonal/polyhedral. Thus, use of nu-

merical approaches based on polytopes not only reduces mesh bias naturally but can also

handle the elements resulting from the bias reduction approaches discussed earlier. In this

regard, the Mimetic Finite Difference-inspired approach discussed in this work can be ben-

eficial for fracture simulations. For dynamic fracture simulation, other than the stiffness

matrix, expressions for the mass and damping matrices need to be derived using the current

approach. Other components such as the time integration schemes (for example Newmark

algorithm [147]), cohesive zone models (for example PPR [158]) are well established.
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Appendix A

Nomenclature

a, ah continuous and discrete bilinear form

`, `h continuous and discrete load linear form

ε linearized strain field

b applied body force

t surface loads

J objective function

J̄ effective objective function

C elasticity tensor

ω admissible design for the optimization problem

Ω working domain consisting of all admissible shapes ω

|·| measure (area or volume) of a set. Also, Euclidean norm of vector

K global stiffness matrix

F discretized global force vector

U discretized global displacement vector

E Young’s modulus

ν Poisson’s ratio

ρ, ρe continuous density function and discrete element density

V array of the fractional areas/volumes of elements

Vf prescribed volume fraction

φni,j design function, φ, level-set or phase-field, for nth iteration at location xi,j

vi,j Hamilton-Jacobi advection velocity, v, for nth iteration at location xi,j

rmin filter radius

aE, aEh restriction of a, ah to polyhedron E
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Vh approximate solution space spanned by smooth shape functions

VE
h restriction of Vh to polyhedral element E

P1(E)n linear space

P0
1(E)n rigid body space

P1
1(E)n constant strain space

ΠE projection operator to extract P1(E)n

Π0 projection operator to extract P0
1(E)n

Π̄E projection operator to extract P1
1(E)n

R surface integration matrix

N nodal coordinate matrix

φi Lagrange basis function

P1, PM matrix representation of projection Π0, Π̄E

K1, K2 consistency, stability terms of the stiffness matrix

α scaling factor for the stability term
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http://control.ee.ethz.ch/ mpt/.

[127] D. Lavender, A. Bowyer, J. Davenport, A. Wallis, and J. Woodwark. Voronoi diagrams
of set-theoretic solid models. Computer Graphics and Applications, 12(5):69–77, 1992.

[128] S. E. Leon, D. W. Spring, and G. H. Paulino. Reduction of mesh bias for dynamic
fracture using adaptive splitting of polygonal finite elements. 2013. Submitted for
review.

[129] K. Lipnikov, J. Morel, and M. Shashkov. Mimetic finite difference methods for diffusion
equations on non-orthogonal non-conformal meshes. Journal of Computational Physics,
199(2):589–597, 2004.

[130] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[131] Z. Lui, J. G. Korvink, and R. Huang. Structure topology optimization: fully cou-
pled level set method via FEMLAB. Structural and Multidisciplinary Optimization,
29(6):407–417, 2005.

[132] J. Luo, Z. Luo, L. Chen, L. Tong, and M. Y. Wang. A semi-implicit level set method
for structural shape and topology optimization. Journal of Computational Physics,
227(11):5561–5581, 2008a.

[133] J. Luo, Z. Luo, L. Chen, L. Tong, and M. Y. Wang. A new level set method for
systematic design of hinge-free compliant mechanisms. Computer Methods in Applied
Mechanics and Engineering, 198(2):318–331, 2008b.

[134] Z. Luo, L. Tong, M. Y. Wang, and S. Wang. Shape and topology optimization of
compliant mechanisms using a parameterization level set method. Journal of Compu-
tational Physics, 227(1):680–705, 2007.

[135] J. N. Lyness and G. Monegato. Quadrature rules for regions having regular hexagonal
symmetry. SIAM Journal on Numerical Analysis, 14(2):283–295, 1977.

156



[136] G. Maenchen and S. Sack. The TENSOR code. Methods in Computational Physics,
3:181–210, 1964.

[137] A Mahdavi, R. Balaji, M. Frecker, and E. M. Mockensturm. Topology optimization
of 2D continua for minimum compliance using parallel computing. Structural and
Multidisciplinary Optimization, 32(2):121–132, 2006.

[138] E. A. Malsch, J. J. Lin, and G. Dasgupta. Smooth two dimensional interpolants: a
recipe for all polygons. Journal of Graphics Tools, 10:2, 2005.

[139] R. March. Visual reconstructions with discontinuities using variational methods. Image
and Vision Computing, 10:30–38, 1992.

[140] S. Martin, P. Kaufmann, M. Botsch, M. Wicke, and M. Gross. Polyhedral finite
elements using harmonic basis functions. Computer Graphics Forum, 27(5):1521–1529,
2008.

[141] K. Maute and D. M. Frangopol. Reliability-based design of MEMS mechanisms by
topology optimization. Computers and Structures, 81(8-11):813–824, 2003.

[142] K. Maute, S. Kreissl, D. Makhija, and R. Yang. Topology optimization of heat conduc-
tion in nano-composites. In 9th World Congress on Structural and Multidisciplinary
Optimization, Shizuoka, Japan, 2011.

[143] A. G. M. Michell. The limits of economy of material in frame-structures. Philosophical
Magazine, 8(47):589–597, 1904.

[144] J. E. Morel, R. M. Roberts, and M. J. Shashkov. A local support-operators diffusion
discretization scheme for quadrilateral r - z meshes. Journal of Computational Physics,
144(1):17–51, 1998.

[145] S. E. Mousavi, H. Xiao, and N. Sukumar. Generalized Gaussian quadrature rules
on arbitrary polygons. International Journal for Numerical Methods in Engineering,
82(1):99–113, 2010.

[146] S. Natarajan, S. Bordas, and D. R. Mahapatra. Numerical integration over arbi-
trary polygonal domains based on SchwarzChristoffel conformal mapping. Interna-
tional Journal for Numerical Methods in Engineering, 80(1):103–134, 2009.

[147] N. M. Newmark. A method of computation for structural dynamics. Journal of the
Engineering Mechanics Division, 85(3):67–94, 1959.

[148] T. H. Nguyen, G. H. Paulino, J. Song, and C. H. Le. A computational paradigm
for multiresolution topology optimization (MTOP). Structural and Multidisciplinary
Optimization, 41(4):525–539, 2010.

[149] T. H. Nguyen, G. H. Paulino, J. Song, and C. H. Le. Improving multiresolution
topology optimization via multiple discretizations. International Journal for Numerical
Methods in Engineering, 92(6):507–530, 2012.

[150] T. H. Nguyen, J. Song, and G. H. Paulino. Single-loop system reliability-based topology
optimization considering statistical dependence between limit-states. Structural and
Multidisciplinary Optimization, 44(5):593–611, 2011.

157



[151] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: concepts and
applications of Voronoi diagrams. John Wiley, 2nd edition, 2000.

[152] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. Springer-
Verlag, 2003.

[153] S. Osher and F. Santosa. Level set methods for optimization problems involving ge-
ometry and constraints: I. Frequencies of a two-density inhomogeneous drum. Journal
of Computational Physics, 171(1):272–288, 2001.

[154] S. Osher and J. A. Sethian. Front propagating with curvature-dependent speed: al-
gorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics,
79:12–49, 1988.

[155] K.D. Papoulia, S.A. Vavasis, and P. Ganguly. Spatial convergence of crack nucleation
using a cohesive finite-element model on a pinwheel-based mesh. International Journal
for Numerical Methods in Engineering, 67(1):1–16, 2006.

[156] V. Pareto. Manuale di Economia Politica Societa Editrice Libraria. Milan, 1906.

[157] K. Park, G. H. Paulino, W. Celes, and R. Espinha. Adaptive mesh refinement and
coarsening for cohesive zone modeling of dynamic fracture. International Journal for
Numerical Methods in Engineering, 92(1):1–35, 2012.

[158] K. Park, G. H. Paulino, and Roesler J. R. A unified potential-based cohesive model for
mixed-mode fracture. Journal of the Mechanics and Physics of Solids, 57(6):891–908,
2009.

[159] G. H. Paulino, I. F. M. Menezes, M. Gattass, and S. Mukherjee. Node and element
resequencing using the Laplacian of a finite element graph. Part I: General concepts and
algorithm. International Journal for Numerical Methods in Engineering, 37(9):1994,
1994a.

[160] G. H. Paulino, I. F. M. Menezes, M. Gattass, and S. Mukherjee. Node and element
resequencing using the Laplacian of a finite element graph. Part II: Implementation
and numerical results. International Journal for Numerical Methods in Engineering,
37(9):1531–1555, 1994b.

[161] G. H. Paulino, K. Park, W. Celes, and R. Espinha. Adaptive dynamic cohesive fracture
simulation using nodal perturbation and edge-swap operators. International Journal
for Numerical Methods in Engineering, 84(11):1303–1343, 2010.

[162] G. H. Paulino and E. C. N Silva. Design of functionally graded structures using
topology optimization. Materials Science Forum, 492-493:435–440, 2005.

[163] G.H. Paulino, K. Park, W. Celes, and R. Espinha. Adaptive dynamic cohesive fracture
simulation using nodal perturbation and edge-swap operators. International Journal
for Numerical Methods in Engineering, 84(11):1303–1343, 2010.

[164] J. M. Pearce. Building research equipment with free, open-source hardware. Science,
337(6100):1303–1304, 2012.

158



[165] C. B. W. Pedersen and P. Allinger. Industrial implementation and applications of
topology optimization and future needs. In IUTAM symposium on topological de-
sign optimization of structures, machines and materials: status and perspectives. Solid
mechanics and its applications, volume 137, pages 229–238. Springer, 2006. ISBN
1-4020-4729-00.

[166] A. Pereira, C. Talischi, G. H. Paulino, I. F. M. Menezes, and M. S. Carvalho. Implemen-
tation of fluid flow topology optimization in PolyTop. Structural and Multidisciplinary
Optimization, 2013. Submitted.

[167] M. Peric. Flow simulation using control volumes of arbitrary polyhedral shape. ER-
COFTAC Bulletin, 62, September 2004.

[168] P.-O. Persson and G. Strang. A simple mesh generator in MATLAB. SIAM Review,
46(2):329–345, 2004.

[169] G. Pingen, M. Waidmann, A. Evgrafov, and K. Maute. A parametric level-set ap-
proach for topology optimization of flow domains. Structural and Multidisciplinary
Optimization, 41(1):117–131, 2010.

[170] X. Qian and O. Sigmund. Topological design of electromechanical actuators with
robustness toward over- and under-etching. Computer Methods in Applied Mechanics
and Engineering, 253:237–251, 2013.

[171] G. I. N. Rozvany, O. M. Querin, Z. Gaspar, and V. Pomezanski. Weight-increasing
effect of topology simplification. Structural and Multidisciplinary Optimization, 25(5-
6):459–465, 2003.

[172] G. I. N. Rozvany, M. Zhou, and T. Birker. Generalized shape optimization without
homogenization. Structural and Multidisciplinary Optimization, 4(3-4):250–252, 1992.

[173] A. Russo. Virtual Element Methods II. In Workshop on discretiza-
tion methods for polygonal and polyhedral meshes., Milan, Italy, 2012.
http://k.matapp.unimib.it/WSVEM-2012/index.shtml.

[174] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2nd edition, 2003.

[175] D. Schattschneider. M.C. Escher: Visions of Symmetry. Harry N. Abrams, 2nd edition,
2004.

[176] S. Schmidt and V. Schulz. A 2589 line topology optimization code written for the
graphics card. Computing and Visualization in Science, 14(6):249–256, 2011.

[177] U. Schramm and M. Zhou. Recent developments in the commercial implementation
of topology optimization. In IUTAM symposium on machines and materials: status
and perspectives. Solid mechanics and its applications., volume 137, pages 239–248.
Springer, 2006. ISBN 1-4020-4729-0.

[178] J. A. Sethian. Fast marching methods. SIAM Review, 41(2):199–235, 1999a.

[179] J. A. Sethian. Level-Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics,Computer Vision and Materials Science.
Cambridge University Press, Cambridge, UK, 1999b.

159



[180] J. A. Sethian and A. Wiegmann. Structural boundary design via level set and immersed
interface methods. Journal of Computational Physics, 163(2):489–528, 2000.

[181] M. Sharir and P. Agarwal. Davenport-Schinzel sequences and their geometric applica-
tions. Cambridge University Press, 1995.

[182] R. Sibson. A vector identity for the Dirichlet tessellation. Mathematical Proceedings
of the Cambridge Philosophical Society, 87:151–155, 1980.

[183] O. Sigmund. Design of multiphysics actuators using topology optimization - Part II:
Two-material structures. Computer Methods in Applied Mechanics and Engineering,
190(49-50):6605–6627, 2001.

[184] O. Sigmund. Manufacturing tolerant topology optimization. Acta Mechanica
Sinica/Lixue Xuebao, 25(2):227–239, 2009.

[185] O. Sigmund and J. S. Jensen. Systematic design of phononic band-gap materials and
structures by topology optimization. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 361(1806):1001–1019, 2003.

[186] O. Sigmund and J. Peterson. Numerical instabilities in topology optimization: a sur-
vey on procedures dealing with checkerboards, mesh-dependencies and local minima.
Structural Optimization, 16(1):68–75, 1998.

[187] E.C.N. Silva, R.C. Carbonari, and G.H. Paulino. On graded elements for multiphysics
applications. Smart Materials & Structures, 16(6):2408–2428, 2007.

[188] D. Sohn, Y.-S. Cho, and S. Im. A novel scheme to generate meshes with hexahedral
elements and poly-pyramid elements: The carving technique. Computer Methods in
Applied Mechanics and Engineering, 201-204:208–227, 2012.

[189] J. Sokolowski and A. Zochowski. On the topological derivatives in shape optimization.
SIAM Journal on Control and Optimization, 37:1251–1272, 1999.

[190] C. A. Soto and A. R. Diaz. Layout of plate structures for improved dynamic response
using a homogenization method. American Society of Mechanical Engineers, Design
Engineering Division (Publication) DE, 65(1):667–674, 1993.

[191] D. W. Spring, S. E. Leon, and G. H. Paulino. Unstructured adaptive refinement on
polygonal meshes for the numerical simulation of dynamic cohesive fracture. 2013. To
be submitted for publication.

[192] M. Stolpe and K. Svanberg. An alternative interpolation scheme for minimum compli-
ance topology optimization. Structural and Multidisciplinary Optimization, 22(2):116–
124, 2001.

[193] L. L. Stromberg, A. Beghini, W. F. Baker, and G. H. Paulino. Application of layout and
topology optimization using pattern gradation for the conceptual design of buildings.
Structural and Multidisciplinary Optimization, 43(2):165–180, 2011.

[194] F. V. Stump, E. C. N. Silva, and G. H. Paulino. Optimization of material distribution in
functionally graded structures with stress constraints. Communications in Numerical
Methods in Engineering, 23(6):535–551, 2007.

160



[195] V. Subramanian and J. B. Perot. Higher-order mimetic methods for unstructured
meshes. Journal of Computational Physics, 219(1):68–85, 2006.

[196] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach.
International Journal of Numerical Methods in Engineering, 61(12):2159–2181, 2004.

[197] N. Sukumar and J. E. Bolander. Voronoi-based interpolants for fracture modelling.
In Tessellations in the Sciences: Virtues, Techniques and Applications of Geometric
Tilings. Springer Verlag, 2009.

[198] N. Sukumar and E. A. Malsch. Recent advances in the construction of polygonal finite
element interpolations. Archives of Computational Methods in Engineering, 13(1):129–
163, 2006.

[199] N. Sukumar, B. Moran, A. Y. Semenov, and V. V. Belikov. Natural neighbor Galerkin
methods. International Journal for Numerical Methods in Engineering, 50:1–27, 2001.

[200] N. Sukumar and A. Tabarraei. Conforming polygonal finite elements. International
Journal of Numerical Methods in Engineering, 61(12):2045–2066, 2004.

[201] Y. Sun and C. Beckermann. Sharp interface tracking using the phase-field equation.
Journal of Computational Physics, 220(2):626–653, 2007.

[202] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to
incompressible two-phase flow. Journal of Computational Physics, 114:146–159, 1994.

[203] A. Sutradhar, G. H. Paulino, M. J. Miller, and T. H. Nguyen. Topology optimization for
designing patient-specific large craniofacial segmental bone replacements. Proceedings
of the National Academy of Sciences, 107(30):13222–13227, 2010.

[204] K. Suzuki and N. Kikuchi. A homogenization method for shape and topology opti-
mization. Computer Methods in Applied Mechanics and Engineering, 93(3):291–318,
1991.

[205] K. Svanberg. The method of moving asymptotoes - a new method for structural
optimization. International Journal for Numerical Methods in Engineering, 24(2):359–
373, 1987.

[206] M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. T. Cooper, R. W. Bowman,
T. Vilbrandt, and L. Cronin. Integrated 3D-printed reactionware for chemical synthesis
and analysis. Nature Chemistry, 4(5):349–354, 2012.

[207] K. Tai and T.H. Chee. Design of structures and compliant mechanisms by evolution-
ary optimization of morphological representations of topology. Journal of Mechanical
Design, Transactions of the ASME, 122(4):560–566, 2000.

[208] A. Takezawa, S. Nishiwaki, and M. Kitamura. Shape and topology optimization based
on the phase field method and sensitivity analysis. Journal of Computational Physics,
229:2697–2718, 2010.

[209] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes. Polygonal finite elements
for topology optimization: A unifying paradigm. International Journal for Numerical
Methods in Engineering, 82:671–698, 2010.

161



[210] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes. PolyMesher: A general-
purpose mesh generator for polygonal elements written in Matlab. Structural and
Multidisciplinary Optimization, 45(3):309–328, 2012.

[211] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes. PolyTop: a Matlab im-
plementation of a general topology optimization framework using unstructured polyg-
onal finite element meshes. Journal of Structural and Multidisciplinary Optimization,
45(3):329–357, 2012.

[212] C. Talischi, A. Pereira, G. H. Paulino, I. F. M. Menezes, and M. S. Carvalho. Polygonal
finite elements for incompressible flow. International Journal for Numerical Methods
in Engineering, 2013. Accepted.

[213] S.P. Timoshenko and J.N. Goodier. Theory of Elasticity. McGraw Hill, 3rd edition,
1970.

[214] R. Tsai and S. Osher. Level set methods and their application in image science.
Communications in Mathematical Sciences, 1:623–656, 2003.

[215] N. P. Van Dijk. Pushing the boundaries: Level-set methods and geometrical nonlinear-
ities in structural topology optimization. PhD thesis, Delft University of Technology,
2012b.

[216] N. P. Van Dijk, M. Langelaar, and F. van Keulen. A discrete formulation of a discrete
level set method treating multiple contraints. In 8th World Congress on Structural and
Multidisciplinary Optimization, Lisbon, Portugal, June 2009.

[217] N. P. Van Dijk, M. Langelaar, and F. Van Keulen. Explicit level-set based topology
optimization using an exact Heaviside function and consistent sensitivity analysis.
International Journal for Numerical Methods in Engineering, 91(1):67–97, 2012a.

[218] N. P. Van Dijk, K. Maute, M. Langelaar, and F. Van Keulen. Level-set methods for
structural topology optimization: A review. Structural and Multidisciplinary Opti-
mization, March 2013. DOI: 10.1007/s00158-013-0912-y.

[219] J. F. V. Vasconcellos and C. R. Maliska. A finite-volume method based on Voronoi
discretization for fluid flow problems. Numerical Heat Transfer, Part B, 45:319–342,
2004.

[220] K. Vemaganti and W. E. Lawrence. Parallel methods for optimality criteria-based
topology optimization. Computer Methods in Applied Mechanics and Engineering,
194(34-35):3637–3667, 2005.

[221] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes
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