
c© 2014 by Tomás Zegard. All rights reserved.

STRUCTURAL OPTIMIZATION: FROM CONTINUUM AND GROUND
STRUCTURES TO ADDITIVE MANUFACTURING

BY

TOMÁS ZEGARD

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Civil Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Professor Glaucio H. Paulino; Chair and Director of research
William F. Baker; Skidmore, Owings & Merrill LLP
Professor Paolo Gardoni
Dr. Arkadiusz Mazurek; Skidmore, Owings & Merrill, LLP
Professor Ivan Menezes; Pontif́ıcia Universidade Católica do Rio de Janeiro
Professor Luke Olson

Abstract

This work focuses on optimal structural systems, which can be modeled using discrete el-

ements (e.g. slender columns and beams), continuum elements (e.g. walls or slabs), or

combinations of these. Optimization problems become meaningful only after the objective

function, or benchmark, that evaluates a given design has been defined. Thus, it is logical

to explore a variety of objectives, with emphasis on the ones that yield distinct results. The

design may include constraints in response to performance or habitability, which must be

included in the optimization to yield feasible designs.

Structural optimization can be used to improve structural designs by giving cheaper,

stronger, lighter and safer structures. Gradient–based optimization is the preferred ap-

proach in this work, for it consciously improves a design using the gradient information, as

opposed to making random guesses. The optimization problem has an internal dependency

on structural analysis, which may require modifications or careful analysis, in order to obtain

meaningful gradient information.

Simple problems composed solely of discrete elements are of particular interest to engi-

neers in practice. The design of lateral bracing systems falls into this category. A novel

discrete element topology optimization algorithm is proposed, and to facilitate the adoption

by industry and academia, the implementation is also provided. Discrete element topology

optimization has the potential to aid in the discovery of new closed–form solutions for com-

mon problems in structural engineering. These closed–form solutions, while often impractical

to build, give insight into the physics of the optimal structural system. This information can

be used to steer civil structural projects towards more efficient load transfer systems.

ii

The manufacturing of optimal structures often lags behind our ability to analyse and de-

sign them. Additive manufacturing presents itself as the (much sought) final stage required

for a complete structural optimization design process. A clean and streamlined methodology

for manufacturing optimal structures is proposed. This includes optimal structures obtained

from density–based methods as well as the ground structure method. The goal of this work

is to improve the current sequential design process of civil structures. It does so by facili-

tating the integration of optimization techniques into existing design processes, in addition

to extending optimization algorithms to address a wider variety of problems. Despite being

centered primarily on civil structures, this work has the potential to impact other disciplines.

In particular, an example that incorporates optimization techniques into the medical field is

shown.

iii

To my parents, Ketty & Gastón.

iv

Acknowledgments

First and foremost, I would like to thank my advisor, Professor Glaucio H. Paulino, for

his help and providing me with the opportunity to conduct graduate studies. His constant

encouragement to pursue novel, interesting and challenging problems are reflected in this

document. I gratefully acknowledge the support of the Fulbright–CONICYT scholarship

program, without whom I would have never been able to pursue this goal. I recognize the

financial support of the National Science Foundation (NSF) for projects CMMI 1321661 and

CMMI 1335160. In addition, I also acknowledge partial support from the Donald B. and

Elizabeth M. Willett endowment at the University of Illinois at Urbana–Champaign.

I am very thankful to the collaboration opportunity with Skidmore, Owings & Merrill

(SOM); for the feedback and constant stream of challenging and applied problems for me to

explore. In particular, the guidance and insight of Bill Baker were essential to the transfer

component of this research to industry. In addition, I owe a debt of gratitude to Arek

Mazurek for his feedback, comments and good sense of humor. The words of encouragement

and support from Professor Ivan Menezes in times when things did not work as expected,

in addition to his feedback, were essential during my studies. I would like to acknowledge

Professor Luke Olson; his vision from outside the field of structural engineering was very

helpful and provided a much needed different perspective to problems. I would also like

to thank Bill Baker, Professor Paolo Gardoni, Arek Mazurek, Professor Ivan Menezes and

Professor Luke Olson for participating in my PhD defense committee.

I am very thankful of my friends. It would be impossible to name them all, but I would

like to specially acknowledge Tatiana Afanasyeva, Beth Baumgartner, Lauren Beghini, Max

v

Bobrovskyy, Collin Carlier, Heng Chi, Pablo Faŕıas, Roberto Jiménez, Sofie Leon, Maria

Lobkis, Julián Maŕın, Daniel Maturana, Daniel Rubin, Max Silva, Daniel Spring, Cam

Talischi and Guillermo Zañartu. Their support, help, humor and friendship made graduate

school some of the best days of my life. I would also like to thank Emily Ewers for her

unconditional support, patience and confidence.

Finally, my deepest gratitude and love are for my parents, Ketty and Gastón, and my

brothers Christian and Gastón Andrés. Their never-ending support and confidence in me

kept me going through these years away from home. My mother was influential in my belief

in education and scholarship, and taught me to always give the best of myself in whatever

it is that I do.

vi

Table of Contents

List of Tables . x

List of Figures . xii

Chapter 1 Introduction . 1
1.1 Motivation . 2

1.1.1 Mixed discrete–continuum optimization 2
1.1.2 Closed–form solutions for applied problems 3

1.2 Document outline and organization . 5

Chapter 2 Truss layout optimization within a continuum 7
2.1 Formulation . 8

2.1.1 Mapping discrete to continuum . 12
2.1.2 Convolution-based shape functions 13
2.1.3 Connection with blur filters . 17
2.1.4 Optimization issues . 19

2.2 Verification of the method . 20
2.2.1 One-dimensional bar with a cable anchor 20
2.2.2 Deep beam with cable anchors . 26

2.3 Examples . 31
2.3.1 Tapered building with truss superstructure 31
2.3.2 Full truss layout optimization for tapered building 33
2.3.3 Three-dimensional beam with truss reinforcements 35
2.3.4 Reinforced double corbel . 36

2.4 Conclusions . 42

Chapter 3 Lateral bracing systems in 2D and 3D 44
3.1 Four complementary formulations . 45

3.1.1 Volume formulation . 46
3.1.2 Load–path formulation . 47
3.1.3 Compliance formulation . 48
3.1.4 Displacement formulation . 49

3.2 Formulation equivalency . 50
3.2.1 Load–path to volume . 51
3.2.2 Compliance to load–path . 51

vii

3.2.3 Displacement to compliance . 52
3.2.4 Equivalence summary . 52

3.3 Single brace analysis . 53
3.3.1 Minimum volume optimal . 55
3.3.2 Load–path optimal . 56
3.3.3 Compliance optimal . 56
3.3.4 Displacement optimal . 57
3.3.5 Results summary . 57

3.4 Multiple bays/stories . 59
3.4.1 Single bay — Multiple stories . 59
3.4.2 Limit case of infinite bays — Single story 60
3.4.3 Multiple bays — Multiple stories . 61
3.4.4 Three–dimensional case . 65
3.4.5 Extension to non–square three–dimensional braces 65
3.4.6 Additional verification with the “Ground structure method” 67

3.5 Conclusions . 67

Chapter 4 Unstructured ground structure method in 2D 74
4.1 Formulations . 76

4.1.1 Elastic formulation . 77
4.1.2 Plastic formulation . 78

4.2 Implementation . 80
4.2.1 Domain definition — Base mesh . 80
4.2.2 Ground structure generation . 82
4.2.3 Collinearity check . 85
4.2.4 Restriction zones . 90
4.2.5 Linear program input/output . 92
4.2.6 Plotting scheme . 92

4.3 Examples and verification . 94
4.3.1 Structured square cantilever . 94
4.3.2 Cantilever with circular support . 94
4.3.3 Hook problem . 96
4.3.4 Serpentine cantilever . 96
4.3.5 Messerschmitt–Bölkow–Blohm (MBB) beam 97
4.3.6 Flower problem . 97

4.4 Conclusions . 98

Chapter 5 Unstructured ground structure method in 3D 104
5.1 Plastic analysis formulation in 3D . 106
5.2 Implementation . 107

5.2.1 Domain definition — Base mesh . 107
5.2.2 Ground structure generation & collinearity check 109
5.2.3 Restriction zones . 110
5.2.4 Plotting scheme . 123

viii

5.3 Verification using known analytical solutions 123
5.3.1 Torsion cylinder . 124
5.3.2 Torsion cone . 125
5.3.3 Torsion sphere (orthogonal domain) 127
5.3.4 Torsion sphere (spherical domain) . 132

5.4 Sample problems . 136
5.4.1 Edge–supported (double) cantilever beam 136
5.4.2 Diamond problem . 139
5.4.3 Cup problem (spider) . 140
5.4.4 Crane problem . 143
5.4.5 Lotte tower (Seoul, South Korea) . 145

5.5 Conclusions . 147

Chapter 6 Additive manufacturing of optimal structures 149
6.1 Refinement of intermediate values in density–based topology optimization . . 151

6.1.1 Filters for density–based topology optimization in 3D 156
6.1.2 Reduction of intermediate densities by continuation 161

6.2 Procedure: from the computer to your hands 165
6.2.1 Output for three–dimensional optimal ground structures 167
6.2.2 Output for two–dimensional optimal ground structures 168
6.2.3 Output for three-dimensional density–based optimal topologies using

SIMP . 169
6.3 Rendering of optimal structures via web browser 169
6.4 TOPslicer — Inspector and exporter for 3D density–based topologies 170
6.5 Examples of manufactured optimal structures 171
6.6 Putting it all together: workflow for an optimal human bone replacement . . 172
6.7 Conclusions . 179

Chapter 7 Summary of conclusions and possible extensions 183
7.1 Summary of conclusions . 183
7.2 Possible extensions and future work . 185

Appendix A GRAND v1.0 source code . 187

Appendix B GRAND3 v1.0-rc2 source code (release candidate 2) 194

Appendix C Collision primitive testing framework 206

References . 219

ix

List of Tables

2.1 One-dimensional bar with cable: optimal anchor location for randomly gen-
erated discretizations with different levels of refinement. 23

2.2 One-dimensional bar with cable: optimal anchor location with varying con-
volution radius for a randomly generated discretization with NE = 20. 24

2.3 Deep beam with cable anchors: optimal anchor location and compliance for
an increasingly refined Q4 mesh and R = 0.3. 28

2.4 Deep beam with cable anchors: optimal anchor location and compliance for
an increasingly refined Q9 mesh and R = 0.3. 28

2.5 Deep beam with cable anchors: optimal anchor location and compliance for
a 20× 8 Q9 mesh with varying convolution radius. 30

2.6 Building with truss superstructure: Final nodal locations for the symmetry
constrained and free problems with node numbering in accordance with Figure
2.20(b). 32

2.7 Building with truss superstructure (full layout optimization): Final cross-
sectional areas for truss members in accordance with Figure 2.20(b). 35

2.8 Initial truss nodal locations within the three-dimensional beam. 36
2.9 Final truss nodal locations within the three-dimensional beam. 36
2.10 Double corbel optimization: final node locations for one symmetric half of the

steel in tension (in). 41
2.11 Final cross-sectional areas for one symmetric half of the steel in tension. Val-

ues given for segments between nodes i and j (in2). 41
2.12 Corbel reinforcement steel in traction. 42

3.1 Optimal bracing point location in two and three dimensions with different
objectives. 57

3.2 Single brace improvement in the objective function for the optimal bracing
compared to a mid–height bracing point. 59

4.1 Domain definition (base mesh) input variables for GRAND. 81
4.2 Square cantilever beam comparison. 94
4.3 Cantilever with circular support. Problem parameters: r = 1, R = 5, H = 4

and P = 1. 96

5.1 Domain definition (base mesh) input variables for GRAND3. 109

x

5.2 Convergence for a cylinder under torsion with M = 5, H = 11 and r = 3.
Ground structures are generated with Lvl = 3. The optimal volume is Vopt =
36.6667. 126

5.3 Convergence for a capped cone under torsion with M = 3, H = 10, rL = 7
and rU = 2. Ground structures are generated with Nr = 5 and Lvl = 3. The
optimal volume is Vopt = 16.8076. 128

5.4 Convergence for a regular orthogonal domain of side L = 1 under torsion with
M = 1, for different meshes with varied connectivity levels. 131

5.5 Convergence for a hollow spherical domain with M = 7, ri = 2.9, rm = 3.0
and ro = 3.1. The discretization in φ is constant; i.e. the angle φF (and the
volume Vopt) increases with refinement. 134

5.6 Convergence for a hollow spherical domain with M = 7, ri = 2.9, rm = 3.0 and
ro = 3.1. The discretization in φ makes the first and last ∆φ equal to π/10,
with the remaining elements evenly distributed; i.e. the angle φF is constant
and equal to φF = π/2 − π/10 for all discretizations. Ground structures are
generated with Nr = 2 and Lvl = 3. The optimal volume is Vopt = 51.5964. . 135

5.7 Convergence for the three–dimensional double cantilever beam with Lx = 3,
Ly = Lz = 1 and P = 1, approximated using a regular–orthogonal mesh. . . 139

A.1 Description of function files in GRAND. 188

B.1 Description of function files in GRAND3. 194

xi

List of Figures

1.1 The driving forces behind structural optimization. Projects may decide to
include structural optimization motivated by these concepts. 2

1.2 Example of a model using discrete and continuum elements. (a) Column–
Beam–Wall frame. (b) Idealized model for the column–beam–wall using dis-
crete and continuum elements. 3

1.3 Structural problems with no known closed–form solutions. (a) Find the opti-
mal cable anchor location for a cantilever beam. (b) Find the optimal rein-
forcement thickness, shape and spatial distribution for a beam. (c) Building
loaded laterally by wind. 4

1.4 Two–dimensional simplification of the problem of a building subjected to lat-
eral loads. (a) Domain, loading and supports. (b) Approximated optimal
structure solution obtained using the algorithm and implementation described
in Chapter 4 and Appendix A. (c) Slip–line field for a sufficiently wide block
compressed between perfectly rough platens (Chakrabarty, 2006). 5

2.1 Simply-supported deep beam with cable supports loaded by self-weight. Discrete—
continuum structural optimization can provide the optimal anchor point lo-
cations for the cable supports. 9

2.2 Two-dimensional truss element with local and global degrees-of-freedom and
nodal coordinates (x1, y1) and (x2, y2). 10

2.3 Plots of the convolution functions presented in Equation (2.17). 15
2.4 Binary domain partition examples for 0—1 domains. (a) Quadtree in two

dimensions (4 partitions, P = [0.595 0.715]. (b) Octtree in three dimensions
(3 partitions, P = [0.19 0.43 0.56]. 16

2.5 Image convolution comparison: (a) Original image [c© Benh Lieu Song | li-
censed under CC-BY-SA-3.0] of size 480 × 320. (b) Gaussian blur with a 2
pixel radius. (c) Convolution with h2 (r) with a 25 pixel radius. (d) Gaussian
blur with a 4 pixel radius. (e) Convolution with h2 (r) with a 100 pixel radius. 18

2.6 One-dimensional truss-continuum problem. (a) Bar (continuum) reinforced
by a stiff cable (truss). (b) Idealized model of the bar with reinforcing cable. 21

2.7 Simple model of a continuum subjected to a body force and a load at the tip. 21
2.8 (a) Compliance with convolution coupling for different mesh refinements. (b)

Detail close to the optimum. 22

xii

2.9 (a) Gradient with convolution coupling for different mesh refinements. (b)
Detail close to the optimum. 23

2.10 (a) Compliance with convolution coupling for different convolution radiuses.
(b) Detail close to the optimum. 23

2.11 (a) Gradient with convolution coupling for different convolution radius. (b)
Detail close to the optimum. 24

2.12 (a) Sensitivity plot for analytical, FEM-based and convolution-based shape
functions. (b) Detail close to the optimum. 25

2.13 Optimization evolution for 50 iterations with different convolution radiuses.
(a) Anchor point βL. (b) Compliance. 25

2.14 Deep beam with cable supports subjected to self-weight. (a) Idealized model.
(b) Model considering the symmetry of the problem. 26

2.15 Objective function plot for the deep beam with cable support problem using
a 9 × 3 Q4 element mesh for the continuum. (a) FEM-based coupling. (b)
Detail of FEM-based coupling near the global optimum. (c) Convolution-
based coupling with R = 0.5. (d) Detail of convolution-based coupling with
R = 0.5. 27

2.16 Objective function plot for the deep beam with cable support problem using a
20× 8 Q4 element mesh for the continuum. (a) FEM-based coupling. (b) De-
tail of FEM-based coupling near the global optimum. (c) Convolution-based
coupling with R = 0.5. (d) Detail of convolution-based coupling with R = 0.5.
(e) Convolution-based coupling with R = 0.3. (f) Detail of convolution-based
coupling with R = 0.3. 29

2.17 Evolution of the compliance for the beam with cable anchors problem. Opti-
mization was done with 30 iterations, R = 0.3, and using increasingly refined
Q4 meshes. 30

2.18 Optimization for beam with cable anchor using Q9 elements. (a) Compli-
ance evolution for increasingly refined meshes and R = 0.3. (b) Compliance
evolution for a 20× 8 mesh with varying radius. 30

2.19 Deep beam with cable anchors: optimization for a 20 × 8 Q9 element mesh
showing the anchor path throughout the iterations. 31

2.20 Building with truss superstructure. (a) Domain and truss specifications. (b)
Starting configuration with node and element numbering with 4 spans, Lx1 =
1.0, Lx2 = 0.6 and Ly = 2. (c) Final configuration with symmetry along the
mid vertical axis imposed. (d) Final configuration with symmetry not imposed. 33

2.21 Optimization for building with truss superstructure (design variables are nodal
coordinates) for 50 iterations. (a) Compliance evolution throughout the opti-
mization. (b) Volume evolution throughout the optimization. 34

2.22 Full layout optimization of the building’s truss superstructure (design vari-
ables are nodal coordinates and member cross-sectional areas) for 50 itera-
tions. (a) Final geometry. (b) Volume evolution throughout the optimization. 34

xiii

2.23 Optimization for a three-dimensional beam with an embedded truss. (a) Do-
main definition and node numbering. (b) Continuum meshed with Tet10
elements in the final deformed state. (c) Front, side and top views of the final
configuration. 37

2.24 Three-dimensional beam with an embedded truss: compliance evolution for
30 iterations. 38

2.25 Double corbel problem definition. (a) Problem definition in accordance with
ACI SP-208. (b) Model domain, loads and boundary conditions. 38

2.26 Double corbel optimization results after 200 iterations. (a) Compliance evo-
lution throughout the iterations. (b) Final steel layout and concrete Drucker-
Praguer stress. 40

2.27 Double corbel optimized steel in tension. (a) Cross-sectional area. (b) Axial
stress. 41

2.28 Double corbel with optimized steel in tension. 42

3.1 Examples of single and multiple bays braced buildings. (a) The John Hancock
Center — Chicago, Illinois, USA [SOM | Ezra Stoller c© Esto]. (b) The Alcoa
Building — San Francisco, California, USA [SOM | c© Mak Takahashi]. (c)
Building in Presidente Riesco Ave, Santiago, Chile [c© Tomás Zegard]. 45

3.2 Displacements of a lateral bracing system due to a load P . The top story drift
is u3 = u4 = ∆. 49

3.3 Equivalency requirements between formulations. 53
3.4 Two–dimensional lateral bracing system. 53
3.5 Three–dimensional lateral bracing system. 55
3.6 Two–dimensional bracing systems consisting of multiple bays and stories with

horizontal and vertical loads. (a) 1× 1 brace. (b) 3× 1 brace. (c) 1× 2 brace.
(d) 3× 2 brace. 60

3.7 Two–dimensional single story bracing system with infinite bays. (a) Brace
with loads. (b) Load and boundary conditions for horizontal load. (c) Loads
and boundary conditions for vertical load. 61

3.8 Two–dimensional optimal single story bracing system with infinite number of
bays. 61

3.9 Multiple bays — Multiple stories optimal bracing locations in two dimensions.
(a) One story high. (b) Two stories high. (c) Three stories high. 62

3.10 Two–dimensional optimal braces with cross–sectional areas and stresses for
modules with 1.5B = H (areas and stresses are normalized). Symmetry is
enforced and dashed members have near–zero cross–sectional area. 64

3.11 Three–dimensional brace with three bays and two stories (potential uses: stage
supports, machine supports, mechanical floors, warehouses, etc). 65

3.12 Multiple bays — Multiple stories optimal bracing locations in three dimen-
sions. (a) One story high. (b) Two stories high. (c) Three stories high. . . . 66

3.13 Ground structure optimization of a braced module. (a) Problem definition.
(b) Ground structure (interconnected truss) for a 2× 10 partition. 68

xiv

3.14 Optimized brace for minimum volume using the ground structure method
using a 2×200 partition. (a) Two–dimensional optimal brace with x = 0.75H.
(b) Three–dimensional optimal brace with x = 0.625H. 68

3.15 Two–dimensional optimal braces with cross–sectional areas and stresses for
modules with 1.5B = H (areas and stresses are normalized). Symmetry is
enforced and dashed members have near–zero cross–sectional area. 70

3.16 Three–dimensional optimal brace with cross–sectional areas and stresses for
a 1–bay 1–story truss with 1.5B = H (areas and stresses are normalized).
Symmetry is enforced and dashed members have near–zero cross–sectional
area. (a) Optimized for volume. (b) Optimized for compliance. 71

3.17 Three–dimensional optimal brace with cross–sectional areas and stresses for
a 1–bay 2–stories truss with 1.5B = H (areas and stresses are normalized).
Symmetry is enforced and dashed members have near–zero cross–sectional
area. (a) Optimized for volume. (b) Optimized for compliance. 72

3.18 Three–dimensional optimal brace with cross–sectional areas and stresses for
a 2–bays 1–story truss with 1.5B = H (areas and stresses are normalized).
Symmetry is enforced and dashed members have near–zero cross–sectional
area. (a) Optimized for volume. (b) Optimized for compliance. 73

4.1 Cantilever with circular support. The analytical solution is given by Michell
(1904) provided that the height H is large enough to develop the complete
solution. 75

4.2 Overlapping members example assuming P = 1, h = 1 and σT = 1. (a)
Problem with a unique solution: optimal volume is V = 1 and a1 = a2 = 1.
(b) Problem with a non–unique solution: optimal volume is V = 1, but
a1 = a2 = [0, 1] and a3 = 1− a1. 81

4.3 Ground structure connectivity level generation example. (a) Base mesh com-
posed of 9 polygonal elements. (b) Level 1 connectivity. (c) Level 2 connectiv-
ity. (d) Level 3 connectivity. (e) Level 4 connectivity. (f) Level 5 connectivity. 83

4.4 Member number growth using the GRAND ground structure generation algo-
rithm. (a) Member generation for the polygonal element base mesh shown in
Figure 4.3(a). (b) Member generation for a structured and orthogonal mesh
with 30× 10 square elements. 84

4.5 Connectivity matrix calculation. (a) Base mesh and starting node. (b) Level
1 connectivity obtained from A1. (c) Level 2 connectivity. Note that the
entries of A2 = (A1)2 are typically > 1 due to the existence of more than one
path to the new set of nodes. 85

4.6 Domain that curls: The highlighted node will generate collinear members at
level 6. The generation algorithm will reach these three nodes at the same
time, and collinearity between them will not be checked. 86

4.7 Collinearity test between three bars. The long bar (dashed line) between
nodes p and q is candidate for deletion. 87

xv

4.8 Ground structure generation example. (a) Sample base mesh with 7 elements
and 12 nodes. (b) Resulting ground structure for a level 1 connectivity. (c)
Resulting ground structure for a level 2 connectivity. 88

4.9 Restriction zones for the cantilever with circular support detailed in Figure 4.1. 91
4.10 Restriction zone setback to prevent nodes in the domain to come in contact

with the restriction zones. The setback is a margin of size tol, relatively small
compared to the scale of the domain. 92

4.11 Plotting of 20 members with cross–sectional areas ai = i/20 for i = 1 . . . 20
using 2, 3, 4, 8 and 20 plotting groups. 93

4.12 Cantilever loaded at the mid–tip (a) Domain definition, discretized with 30×
10 elements and level 10 connectivity (b) Solution from GRAND (c) Solution
from a structured ground structure implementation (Sokó l, 2011). 95

4.13 Cantilever with circular support. (a) Convergence with ground structure re-
finement. (b) Solution obtained for Nb = 851, 511, generated from a non–
symmetric (unstructured) polygonal mesh with Ne = 5, 000, Nn = 9, 889 and
Lvl = 5. 99

4.14 Hook problem: (a) Domain, loading and boundary conditions. (b) Restric-
tion zone composed of three circles and one segment. (c) Solution obtained
from GRAND with Nb = 72, 589 using an externally generated mesh and
level 10 connectivity. (d) Solution from a density method with Ne = 10, 000
(continuum polygonal elements) for comparison. 100

4.15 Serpentine cantilever problem: (a) Domain, loading and boundary conditions.
(b) Restriction zone composed of two circles. (c) Serpentine domain dis-
cretized using polygonal elements (Talischi et al., 2012a): Ne = 600 and
Nn = 1, 192. Nodes with prescribed displacements and forces are highlighted
with a blue B and a magenta M respectively. (d) Solution obtained from
GRAND with lvl = 5 and Nb = 1, 192. 101

4.16 Messerschmitt–Bölkow–Blohm (MBB) beam problem with aspect ratio Lx :
Ly = 6 : 1. (a) Domain, loading and boundary conditions. (b) MBB domain
discretized with a regular and orthogonal base mesh in GRAND: Ne = 120×
20 = 2, 400 and Nn = 2, 541. Nodes with prescribed displacements and forces
are highlighted with a blue B and a magenta M respectively. (c) Optimized
ground structure for the MBB domain: lvl = 6 and Nb = 101, 548. (d)
Analytical solution adapted from Lewiński et al. (1994a). 102

4.17 Flower problem (donut–shaped domain) loaded tangentially at 5 locations on
the outer radius. (a) Domain, loading and boundary conditions. (b) Restric-
tion zone for the donut–shaped domain. (c) Mesh and boundary conditions
are loaded from an externally generated file: Ne = 2, 000 and Nn = 2, 100. (d)
Optimized ground structure for the flower domain: lvl = 4 and Nb = 69, 400.
(e) Photo of Claytonia caroliniana [c© Nathan Masters | Masters Imaging]. . 103

5.1 Optimal (analytical) structure to transfer a moment couple. (a) Distribution
of the members according to Michell (1904). (b) Illustration of the latitude
φF , which defines the small circles where the moment couples are applied. . . 105

xvi

5.2 Elements supported by GRAND3 and their corresponding node numbering
scheme. (a) Volumetric elements: Hexahedron (8-nodes), Prism (6-nodes),
Pyramid (5-nodes) and Tetrahedron (4-nodes). (b) Surface elements: Quad-
rangle (4-nodes), Triangle (3-nodes) and Segment (2-nodes). 108

5.3 Collision test between a box and a segment. (a) Three–dimensional sketch
of the box—segment collision test. (b) Two–dimensional simplification of the
box—segment collision test (equal to the rectangle—segment test). 112

5.4 Collision test between a triangle and a segment. 113
5.5 Collision test between a quadrangle and a segment. 115
5.6 Collision test between a sphere and a segment. 116
5.7 Collision test between a disc and a segment. 117
5.8 Collision test between a cylinder (infinite length) and a segment. 119
5.9 Collision test between a rod (finite cylinder with endcaps) and a segment. . . 121
5.10 Collision surface example: Surface is tessellated into triangles and quadrangles.122
5.11 Plotting scheme sample for three–dimensional ground structures. (a) Sin-

gle member connecting two nodes. (b) Multiple members with varied cross–
sectional areas. 124

5.12 Torsion cylinder problem. (a) Domain definition, loading and supports. (b)
Sample mesh for H = 11, r = 3 discretized with Nz = 11, Nr = 6 and
Nθ = 18. (c) Axisymmetric plot of the sample mesh with H = 11, r = 3 and
Nz = 11, Nr = 6. 125

5.13 Cylinder domain under torsion. (a) Convergence with base mesh refinement.
(b) Solution obtained for Nb = 152, 795, generated from a cylindrical domain
with Ne = 1, 188, Nn = 1, 308 and Lvl = 3. 126

5.14 Torsion cone problem. (a) Domain definition, loading and supports. (b)
Sample mesh for H = 10, rL = 7 and rU = 2 discretized with Nz = 9, Nr = 5,
Nθ = 20 and λ = 0.870058. (c) Axisymmetric plot of the sample mesh with
H = 10, rL = 7, rU = 2, Nz = 9, Nr = 5 and λ = 0.870058. 127

5.15 Capped cone domain under torsion. (a) Convergence with base mesh refine-
ment. (b) Solution obtained for Nb = 115, 789, generated using a cylindrical–
coordinate domain with Ne = 900, Nn = 1, 010 and Lvl = 3. 128

5.16 Torsion sphere problem modeled using an orthogonal domain. (a) Domain
definition, loading and supports. (b) Sample mesh with N = 5. 129

5.17 Convergence to the optimal solution of increasingly refined regular orthogonal
base meshes under torsion. Increasing the ground structure connectivity level
does not improve the quality of the solution in this case. 130

5.18 Optimized structures for the torsion sphere problem in an orthogonal domain.
(a) Solution with N = 5, Lvl = 4 and Nb = 15, 980. (b) Solution with N = 13,
Lvl = 4 and Nb = 475, 996. 131

5.19 Polar view of the analytical closed–form solution for the torsion sphere prob-
lem. A fictitious regular discretization with some members is shown to high-
light the inability of higher level members to approximate the solution. . . . 133

xvii

5.20 Torsion sphere problem. (a) Domain definition, loading and supports. (b)
Sample mesh with ri = 2.9, rm = 3 and ro = 3.1 discretized with Nθ =
30, Nφ = 14 and Nr = 2. (c) Axisymmetric plot of the sample mesh with
π/2−φF = π/10, ri = 2.9, rm = 3 and ro = 3.1 discretized with Nφ = 14 and
Nr = 2. 134

5.21 Michell’s torsion sphere solution obtained for a domain with ri = 2.9, rm = 3
and ro = 3.1. Domain is discretized with Nθ = 30, Nφ = 14 and Nr = 2,
resulting in Ne = 840, Nn = 1, 176. The ground structure generated with
Lvl = 3 has Nb = 38, 734 members, and an optimal volume of V = 53.6278. . 135

5.22 Convergence to the optimal solution of increasingly refined spherical base
meshes. The case where φF increases with refinement begins to diverge as
φF ≈ π/2. The case where φF is constant converges as is expected. 136

5.23 Edge–supported double cantilever problem. (a) Domain with loads, boundary
conditions and dimensions. (b) Base mesh used to generate a coarse ground
structure: Lx = 3, Ly = Lz = 1 and P = 1, discretized with Nx = 6 and
Ny = Nz = 2, resulting in Ne = 24 and Nn = 63. (c) Base mesh used to
generate a fine ground structure: Lx = 3, Ly = Lz = 1 and P = 1, discretized
with Nx = 30 and Ny = Nz = 10, resulting in Ne = 3, 000 and Nn = 3, 751. . 137

5.24 Optimized structures for the edge–supported double cantilever problem. (a)
Solution for the coarse base mesh with Ne = 24 and Nn = 63, using Lvl = 2
and Nb = 962. (b) Solution for the fine base mesh with Ne = 3, 000 and
Nn = 3, 751, using Lvl = 6 and Nb = 1, 474, 218. 138

5.25 Edge–supported double cantilever problem with improved base mesh dis-
cretization. (a) Base mesh used to generate the ground structure: discretized
with Nx = 5 and Ny = Nz = 10, resulting in Ne = 1, 000 and Nn = 726.
(b) Solution using the improved base mesh with Lvl = 6 and Nb = 137, 877.
Resulting optimal volume is V = 14.2725. 138

5.26 Convergence of the optimal volume for the edge–supported double cantilever
problem, for a set of increasingly refined ground structures. 139

5.27 Diamond problem: Vertically loaded cylinder with a coin–shaped discontinu-
ity. (a) Half–domain with loads, boundary conditions and dimensions. (b)
Base mesh used to generate the ground structure: Nz = 12, Nθ = 16 and
Nr = 5. (c) Axisymmetric plot of the base mesh with Nz = 12 and Nr = 5. . 140

5.28 Optimal solution obtained for the diamond problem using Nz = 12, Nθ = 16,
Nr = 5, Lvl = 3 and Nb = 109, 820. The optimized volume is V = 4.7067. . . 141

5.29 Vertically loaded inverted cup problem. (a) Half–domain with loads, bound-
ary conditions and dimensions. (b) Base mesh used to generate the ground
structure. (c) Axisymmetric plot of the base mesh. 141

5.30 Optimal solution to the inverted cup problem. Problem’s parameters are
Ne = 1, 392, Nn = 1, 781, Lvl = 3 and Nb = 168, 436, resulting in an optimal
volume of V = 2.9384. (a) Plot of the optimal structure using GRAND3. (b)
Detail of the optimal structure. 142

5.31 Structural optimization problem with a non–unique (degenerate) solution:
(a), (b), (c) and (d) are all optimal topologies. 142

xviii

5.32 Options of topologies for a degenerate problem: (a) Spoke and hub option.
(b) Slab option. 143

5.33 Crane problem: Tower with arms loaded at four points. (a) Domain with
loads, boundary conditions and dimensions. (b) Base mesh used to generate
a coarse ground structure: Ne = 10 and Nn = 38. (c) Base mesh used to
generate a fine ground structure: Ne = 768 and Nn = 935. 144

5.34 Optimized ground structures for the crane problem. (a) Solution for the
coarse base mesh: Lvl = 3 and Nb = 315. (b) Solution for the fine base mesh:
Lvl = 3 and Nb = 47, 076; the plotting cutoff is Cutoff = 0.002 to prevent
members from ending mid–air. 145

5.35 Lotte tower problem: (a) Rendering of the Lotte tower [c© Skidmore, Ow-
ings & Merrill LLP]. (b) Domain definition, loading and boundary conditions
for the laterally loaded tower. (c) Domain definition, loading and boundary
conditions for the torsionally loaded tower. (d) Base mesh for the ground
structure generation, with the restriction surface also shown. 146

5.36 Lotte tower problem: (a) Optimized ground structure for a lateral loading at
the top. (b) Optimized ground structure for a torsional load at the top. . . . 147

6.1 Normalized convolution (weighting) functions for two–dimensional filters in
a sample patch from a regular and orthogonal mesh. Shaded elements have
weights different than zero. (a) Linear filter. (b) Quadratic filter. (c) Cubic
filter. (d) Quartic filter. 156

6.2 Topology optimization filters in two and three dimensions. The meshes are
regular and orthogonal with elements of unit dimension. The filter is linear of
size rmin = 1.3. (a) Two–dimensional filter patch: the filter weight associated

with the center element is H
(2D)
ii = 0.5200, plus 4 adjacent elements. (b)

Three–dimensional filter patch: the filter weight associated with the center
element is H

(3D)
ii = 0.4194, plus 6 adjacent elements. 158

6.3 Weight coefficient for the central element Hii for different filter radii. Curves
for filters in two– and three–dimensions and for different filter order q are
shown (assuming a regular and orthogonal mesh). 159

6.4 Three–dimensional filter exponent q(3D) required to achieve the same filter
weight for the center element as in two–dimensions. 160

6.5 Rectangular cantilever clamped at the left side and loaded at the right by a
distributed force applied at the lower edge. 161

6.6 Results for the edge–loaded cantilever problem using density–based topology
optimization. Plot shows the ρ = 0.5 isosurface (density cutoff). (a) Results
using a linear filter q = 1, highlighting the artificial thinning of the member
close to the joints. (b) Results from using a cubic filter q = 3 with no artificial
thinning. 162

6.7 Slices of the resulting density–based topology optimization with SIMP for the
edge–loaded cantilever problem. (a) Isosurface and contours obtained from
using a linear filter q = 1. (b) Isosurface and contours obtained from using a
cubic filter q = 3. 163

xix

6.8 Bridge problem: Domain is loaded vertically on the top surface. The bridge
slab is represented by a passive–solid region of height hs. The domain is fixed
on the bottom plane at strips of length Ls at both ends. 164

6.9 Results for the bridge problem using density–based topology optimization
with SIMP. Plot shows the ρ = 0.5 isosurface. (a) Result using a con-
stant penalization p = 3. Members end mid–air under the slab because
the members spread too thin, and these intermediate densities are under
the cutoff. (b) Results using the continuation approach for the penaliza-
tion p = {1.0 , 2.0 , 3.0 , 3.5 , 4.0 , 4.25}. Members are continuous from the
supports to the loaded slab. 165

6.10 Diagram illustrating the possible file outputs (X3D and STL) and their in-
tended purpose. 166

6.11 Tessellated spheres. (a) Icosphere tessellated into 324 triangles. (b) Sphere
discretized using spherical coordinates using 320 triangles. 167

6.12 Sample output for ground structures. (a) Three–dimensional ground structure
composed of 6 members. (b) Two–dimensional ground structure composed of
3 members. 168

6.13 Sample rendering of an optimal edge-loaded cantilever beam optimized using
SIMP. The result displayed is the ρ = 0.5 isosurface. 169

6.14 Density–based optimal structure with terrain rendered live in a web browser. 171
6.15 TOPslicer screenshot: The sample problem in Section 6.1.1 has symmetry

applied and is being sliced to inspect the quality of the solution. The final
isosurface can be directly exported for manufacture (STL) or communication
and editing (X3D). 172

6.16 Examples of manufactured optimal three–dimensional ground structures [scales
indicate inches]: (a) Torsion spheres of various sizes (Section 5.3.4). (b) Tor-
sion sphere of 7 inches in diameter (Section 5.3.4). (c) Torsion cylinders of
various sizes (Section 5.3.1). (d) Torsion cone (Section 5.3.2). (e) Diamond
problem (Section 5.4.2). 173

6.17 Examples of manufactured optimal two–dimensional ground structures [scales
indicate inches]: (a) Flower problem (Section 4.3.1). (b) Cantilever problem
(Section 4.3.1). (c) Pinwheel problem; the domain, loading and supports used
to obtain the result is also provided. 174

6.18 Examples of manufactured optimal three–dimensional density–based struc-
tures [scales indicate inches]: (a) Edge–loaded cantilever problem (in accor-
dance with Figure 6.5). (b) Shear box problem; the domain, loading and
supports used to generate this result are also shown [based on an example in
Nguyen et al. (2009)]. 175

6.19 Examples of manufactured application–focused optimal structures [scales indi-
cate inches]: (a) Laterally and torsionally loaded Lotte towers (Section 5.4.5).
(b) Bridge problem (in accordance with Figure 6.8). 176

xx

6.20 Architectural model of a topology optimized pedestrian bridge [scale indicates
inches]. Model includes procedurally generated terrain, railings and people
silhouettes. The contrasting colors highlight the different components in the
model. 177

6.21 Craniofacial reconstruction problem. The design domain, loading and bound-
ary conditions are generated procedurally, however, this particular illustration
is to–scale with the results that follow. 177

6.22 Results for the craniofacial reconstruction problem using density–based topol-
ogy optimization. Plot shows the ρ = 0.5 isosurface (density cutoff). 178

6.23 Slices of the resulting topology for the craniofacial reconstruction problem
using density–based topology optimization. The slices show a well defined
topology (little intermediate values), due to the continuation and higher–order
filtering techniques used. 179

6.24 Rendering of the resulting topology for the craniofacial reconstruction problem
positioned within a human skull. 180

6.25 Solution for the craniofacial reconstruction problem using three–dimensional
ground structures. 180

6.26 Manufactured optimal solution for craniofacial reconstruction. Model includes
an upper jaw cast in metal made from the author’s teeth to serve as a reference
[scales indicate inches]: (a) Frontal view with a model of a human skull for.
(b) Perspective view of the model with teeth attached. 181

6.27 Using the framework described in this work, two distinct (but related) optimal
solutions may be obtained and manufactured. 182

7.1 Author holding a 3 foot–long manufactured bridge obtained with density–
based topology optimization using SIMP. The bridge is made from 3 pieces of
1 foot–long pieces. 186

C.1 Graphical user interface to test the collision of segments against a box. GUI
object name tags are shown to match the source code callbacks. 206

C.2 Graphical user interfaces to test the collision primitives. (a) Box. (b) Cylin-
der. (c) Disc. (d) Quadrangle. (e) Rod or finite cylinder. (f) Sphere. (g)
Triangle. 218

xxi

Chapter 1

Introduction

Currently, limited worldwide resources are driving research and development in all areas

towards efficiency and optimality. Structural engineering is not exempt from this trend:

new requirements for extreme and/or cheaper structures challenge the traditional design

procedures.

The traditional building design sequence begins with a topology (usually) determined

by the architect. This topology is then sized by the structural engineer in order for the

project to materialize. Advances in material science, computational power and structural

analysis have spoiled architecture by allowing for even more radical designs. With efficiency

in mind, however, the design must go back to its roots where the shape was dictated not

only by aesthetics but by structural behavior as well. Thus, the driving force behind an

optimal design may be one, or a combination, of the following objectives (Figure 1.1): limited

resources, extreme structural requirements and/or structural functionality (safe structures).

The work presented in this document, explores a variety of topics and areas of optimal

structural design: computer algorithms, design tools, structural optimization formulations,

discrete-continuum element optimization and additive manufacturing. The ultimate goal is

to make tangible contributions in these areas to be incorporated in future structural systems.

1

Figure 1.1: The driving forces behind structural optimization. Projects may decide to include
structural optimization motivated by these concepts.

1.1 Motivation

1.1.1 Mixed discrete–continuum optimization

Structural modeling and analysis consist of the harmonious linkage of multi–scales, materials

and shapes. Some information is implicitly represented in the computer model (e.g. steel

reinforcement within the concrete), while other must be explicitly present as an element

itself (e.g. a column or a beam). These explicit elements may be of discrete or continuum

type. Depending on the element’s dimension and the level of detail of the model, a column

may be modeled as an infinitely thin member with representative properties, whereas a wall

may be modeled as a flat continuum (Figure 1.2).

Structural optimization often deals with the optimization of discrete or continuum struc-

tures, but a combination of both is rare. Only recently, continuum optimization with discrete

elements has gained some attention (Allahdadian et al., 2012; Liang et al., 2000; Liang, 2007;

2

(a) (b)

Figure 1.2: Example of a model using discrete and continuum elements. (a) Column–Beam–
Wall frame. (b) Idealized model for the column–beam–wall using discrete and continuum
elements.

Mijar et al., 1998; Stromberg et al., 2012), and the same can be said of discrete optimization

(truss layout) in the presence of a continuum (Amir and Sigmund, 2013; Kato and Ramm,

2010; Zegard and Paulino, 2013b). Nonetheless, current developments often suffer from lim-

itations and gaps in their application, as is expected from new developments. Moreover, the

simultaneous optimization of both, discrete and continuum elements is still unresolved.

1.1.2 Closed–form solutions for applied problems

Despite the fact that structural optimization has been in development for years (Topping,

1983), the library of known closed–form optimal solutions is restricted to relatively simple

problems. In other words, these solutions have limited use in real civil structures. Presently,

there are no known solutions for a variety of problems that could potentially impact the field

of structural engineering (Figure 1.3): the optimal bracing pattern for a building subjected

to wind loads; the optimal layout of the reinforcement in a beam; the optimal location for a

suspension cable support on a cantilever beam, to name a few.

Numerical methods can provide close enough solutions for problems with no known an-

alytical closed–form solutions. For all practical purposes, coarse numerical solutions are

3

(a) (b) (c)

Figure 1.3: Structural problems with no known closed–form solutions. (a) Find the optimal
cable anchor location for a cantilever beam. (b) Find the optimal reinforcement thickness,
shape and spatial distribution for a beam. (c) Building loaded laterally by wind.

sufficiently accurate when contrasted with our ability to manufacture and specify structural

designs. However, numerical solutions with a high degree of detail can aid in the devel-

opment of new closed–form solutions. These in turn provide a structural benchmark and

provides insight into the optimal structural system for the problem. Thus, the importance

of highly detailed solutions is justified. The family of known closed–form analytical solu-

tions began with the work of Michell (Michell, 1904; Hemp, 1973). Additional closed–form

solutions and extensions can be found in the works of Rozvany and Gollub (1990); Lewiński

et al. (1994b,a); Rozvany et al. (1997); Rozvany (1998); Lewiński (2004); Graczykowski and

Lewiński (2005, 2006a,b,c, 2007); Lewiński and Rozvany (2007, 2008b,a); Lewiński et al.

(2013), among others.

A sample workflow for obtaining closed–form solutions is as follows: Consider the problem

in Figure 1.4(a) for example. The approximate discrete–element optimal solution is shown

in Figure 1.4(b). The solution away from the supported base is related to the slip–line

field (theory of plasticity) for a plate subjected to compression. There is thus a connec-

tion between the fields of structural optimization and theory of plasticity (Michell, 1904;

Hencky, 1923). Further analysis of the problem in Figure 1.4 may result in a closed–form

4

?

(a) (b)

x

β

P

d

h

y

h

α

(c)

Figure 1.4: Two–dimensional simplification of the problem of a building subjected to lateral
loads. (a) Domain, loading and supports. (b) Approximated optimal structure solution
obtained using the algorithm and implementation described in Chapter 4 and Appendix A.
(c) Slip–line field for a sufficiently wide block compressed between perfectly rough platens
(Chakrabarty, 2006).

analytical solution for building bracing patterns. Nonetheless, the solution in Figure 1.4(b)

is sufficiently detailed to serve as the starting point of an efficient building design.

1.2 Document outline and organization

The remainder of this document is organized as follows: Chapter 2 presents a methodology to

couple discrete and continuum structural elements such that a gradient–based optimization

for the discrete elements can be applied. In Chapter 3, we employ a variety of optimiza-

tion algorithms and formulations to the problem of finding the optimal bracing system for

building loaded laterally. Chapter 4 describes in detail a two–dimensional ground–structure

based topology optimization implementation for concave domains and with the possibility

5

of holes. The algorithm is extended to three–dimensional space in Chapter 5. Both the two–

and three–dimensional implementation and algorithms (Chapters 4 and 5), are verified and

compared against known closed–form solutions. Chapter 6 describes the general procedure

to manufacture and integrate results obtained from topology optimization into structural

designs. The conclusions from each chapter are aggregated and summarized in Chapter 7,

along with potential extensions of the present work. Finally, educational implementations

in MATLAB are provided in the Appendices A and B. This work has resulted in a number

of publications in peer–reviewed journals, and thus the reader is also referred to Zegard and

Paulino (2013b); Zegard et al. (2014); Zegard and Paulino (2014a,b).

6

Chapter 2

Truss layout optimization within a
continuum

Several methods exist for structural optimization; unfortunately none of them is able

to tackle every problem, and all have drawbacks. The most popular optimization methods

consist of optimizing a density material distribution in a continuum (Bendsøe and Sigmund,

2003), optimizing a truss layout (Felix and Vanderplaats, 1987; Hansen and Vanderplaats,

1990; Lipson and Gwin, 1977; Ohsaki, 2010), and optimizing the shape of a continuum

(Haslinger and Mäkinen, 2003). Truss layout optimization has greatly evolved with the

ground structure method (Dorn et al., 1964; Sokó l, 2011), and proves to be a reliable and

robust method for the optimization of truss structures. However, the optimization of a

structure that combines both discrete and continuum elements has many caveats today.

Material distribution of a continuum with an overlaying truss structure has been previously

studied (Allahdadian et al., 2012; Liang et al., 2000; Liang, 2007; Mijar et al., 1998), and

recent refinements make it suitable for real applications (Stromberg et al., 2012). Previously,

a formulation for embedding reinforcement (discrete elements) in the context of reinforced

concrete was developed (Elwi and Hrudey, 1989), and later extended to three-dimensions

(Barzegar and Maddipudi, 1994). Optimization of reinforced concrete using this embedded

formulation was also explored (Kato and Ramm, 2010). The ground-structure method with

elements embedded in a continuum has also proven to be feasible (Amir and Sigmund, 2013).

This work attempts to solve the problem where discrete structure, linked to a continuum

7

(or embedded), is geometrically optimized. In this process, the discrete nodes will not

directly match over continuum nodes, and a convolution-based coupling was developed. Some

examples of structures typically modeled in a discrete-continuum fashion are: reinforced

concrete, cable supported bridges, column supporting a slab and beam-wall connections to

name a few.

If the continuum is modeled using traditional C0 elements, the first derivatives of the

displacement field are discontinuous, thus making the embedded formulation difficult to

optimize using traditional gradient based optimizers. The discontinuity problem could po-

tentially be solved using C1 elements, however, the formulations for these are complex, es-

pecially for higher dimensions. Thus, the goal is to develop a formulation to couple discrete

truss elements to continuum elements in a simple way, yet sophisticated enough to obtain a

smooth derivative field necessary for gradient based optimizers. An example of a situation

that requires such framework is given in Figure 2.1, and consists of a simply-supported deep

beam with cable supports loaded by self-weight. The problem consists of optimizing the

anchor location for the cable supports.

This formulation is based on small deformation theory, and because nodes are treated as

a cloud, any type or order of finite elements can be used (i.e. the element connectivity is not

used). The examples in the present work deal with compliance (external work) minimization.

Nevertheless, the technique can be applied to any objective function based on stiffness for

which an expression for the gradient can be obtained.

2.1 Formulation

Truss layout optimization has been explored previously with good results (Felix and Vander-

plaats, 1987; Hansen and Vanderplaats, 1990; Lipson and Gwin, 1977; Ohsaki, 2010). The

formulation for truss layout optimization presented here is analogous to the one presented

in (Hansen and Vanderplaats, 1990), but better suited for any-dimensional (1D, 2D, 3D)

8

Figure 2.1: Simply-supported deep beam with cable supports loaded by self-weight.
Discrete—continuum structural optimization can provide the optimal anchor point locations
for the cable supports.

problems and extended by combining it with a continuum.

The stiffness matrix for a truss element in local coordinates is

K? =
AE

L

 1 −1

−1 1

 (2.1)

with A, E and L being the element’s cross-sectional area, Young modulus, and length re-

spectively. Given the truss element schematic in Figure 2.2, the directional cosines vector d

is defined as

d2D =
1

L
[x2 − x1, y2 − y1]

d3D =
1

L
[x2 − x1, y2 − y1, z2 − z1] , (2.2)

and the transformation matrix

T =

 d 0

0 d

 (2.3)

9

u1

u2

α

u1X

u1Y

(,)x1 y1

(,)x2 y2
u2X

u2Y

Figure 2.2: Two-dimensional truss element with local and global degrees-of-freedom and
nodal coordinates (x1, y1) and (x2, y2).

The local degrees-of-freedom u1 and u2 can be related to the global DOFs as:

 u1

u2

 = T2D

ux1

uy1

ux2

uy2

,

 u1

u2

 = T3D

ux1

uy1

uz1

ux2

uy2

uz2

(2.4)

The stiffness matrix in global coordinates Ke for truss element e in terms of the local stiffness

K?
e and the transformation matrix Te is

Ke = TT
e K?

eTe (2.5)

The derivative of the global stiffness matrix with respect to the coordinate n of node j

10

of the truss member is

∂Ke

∂nj
=
∂TT

e

∂nj
K?
eTe + TT

e

∂K?
e

∂L

∂L

∂nj
Te + TT

e K?
e

∂Te

∂nj
(2.6)

with L representing the truss element’s length, n = {x, y, z} and j = {1, 2}. The derivatives

of the element’s length L, with respect to the coordinate n, are

∂L

∂n1

= −dn

∂L

∂n2

= dn

(2.7)

and the derivative of the stiffness matrix with respect to the element length is

∂K?

∂L
= −AE

L2

 1 −1

−1 1

 (2.8)

The Jacobian matrix of the directional cosine vector with respect to the coordinates of the

first truss element node (j = 1) is

J(1) (d) =
1

L

(
dTd− I

)
(2.9)

and J(2) (d) = −J(1) (d). Inspecting a couple of terms, we obtain, for example:

[
J(1) (d)

]
21

=
∂d2

∂x1

=
dxdy
L[

J(2) (d)
]

22
=
∂d2

∂y2

= −dydy − 1

L

(2.10)

and with this the derivatives of the transformation matrix T are completely defined. This

formulation is equivalent to the one presented in (Hansen and Vanderplaats, 1990), but

better suited to be coupled with a continuum.

11

2.1.1 Mapping discrete to continuum

Consider the (global) stiffness matrix of a continuum Kc obtained by means of a finite

element method (FEM), and the stiffness matrix from a single truss element Ke in global

coordinates. The challenge is to add the contribution of Ke onto Kc in a coherent fashion

(energy conservation), and with a smooth derivative field. An approach based on energy

conservation and FEM shape functions meets the first requirement, but because the FEM

shape functions are discontinuous across elements, it does not have a smooth derivative field.

The components of the truss’ stiffness matrix Ke associated with a single node will be

mapped to another matrix K+
e in terms of the continuum nodes, so that its contribution can

be added to Kc. Calling the DOFs associated with the truss node u and the ones from the

continuum uc, the mapping based on energy conservation is:

uTKeu = uTc K+
e uc (2.11)

Because the truss node is within the continuum, the displacement field at the truss’ node

location is an interpolation of the values in the continuum at known discrete positions.

Using some shape function N to interpolate the continuum field, the degrees of freedom of

the continuum and truss’s node are related as:

u = Nuc , (2.12)

and thus Equation (2.11) becomes:

uTKeu = uTc K+
e uc

(Nuc)
T Ke (Nuc) = uTc K+

e uc

uTc
(
NTKeN

)
uc = uTc K+

e uc

NTKeN = K+
e (2.13)

12

The mapping described in Equation (2.13) is done for every truss node being mapped to the

continuum. If traditional FEM shape functions are used in N, the derivative of the mapped

stiffness with respect to the truss nodal position becomes problematic due to discontinuities

in the shape function derivatives across elements. In detail:

∂K+
e

∂nj
=
∂NT

∂nj
KeN + NT ∂Ke

∂nj
N + NTKe

∂N

∂nj
, (2.14)

while the second term in Equation (2.14) is smooth throughout the whole continuum, the

first and third terms are not. In practical applications, the discontinuities increase with the

number of elements: more elements result in more edges, and therefore more discontinuities.

For highly refined continuum meshes, there will be a high number of local minima close to

the optimum. This situation will prevent the optimizer from converging to the true (ideally

global) optimum.

The choice of the shape functions N used in the mapping to K+
e is of critical importance

to obtain an embedded formulation with a smooth gradient field. In addition to the inter-

element discontinuity, the truss node position needs to be mapped into the parent element

coordinates (typically xi, eta and zeta), if an isoparametric formulation is to be used, as is the

case for previous embedded formulations (Elwi and Hrudey, 1989; Barzegar and Maddipudi,

1994). The alternative proposed in the present work is to use shape functions based on a

convolution operator. These can be arbitrarily smooth up to any derivative depending on

the convolution function chosen (although we are only interested in the first derivative),

and do not need to be mapped to parent coordinates since they operate in the actual node

coordinates of the continuum.

2.1.2 Convolution-based shape functions

Sacrificing some coherence in the coupling (different shape functions used to analyze the

continuum and for the embedding), an approach based on a convolution operator is pro-

13

posed. This approach consists of representing the truss DOFs as a convolution of the nearby

continuum nodes. That is, we use a shape function Ñ 6= N, with Ñ built from a convolution

operator h (·), that ensures smoothness of the gradient field by complying with

h (0) = 1

h (r ≥ R) = 0

dh

dr

∣∣∣∣
r=R

= 0

(2.15)

with R defined as the convolution operator radius, and r the distance between the truss and

continuum node. In addition, the shape functions Ñ must preserve partition of unity

∑
k

Ñk = 1 (2.16)

Two possible functions for h (·) are presented in Equation (2.17), but any other function

that complies with Equation (2.15) can be used

h1 (r) =

1− sin

(
rπ
2R

)
0

r ≤ R

r > R

h2 (r) =

(
r
R

)2 − 2
(
r
R

)
+ 1

0

r ≤ R

r > R

(2.17)

The functions presented in Equation (2.17) are plotted in Figure 2.3. The shape function

for a truss node, associated with the continuum node a is

Ña =
h (ra)∑
k h (rk)

(2.18)

The shape function derivative for a specific truss node corresponding to a continuum node

14

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

r/R

h(
r)

h

1
(r)

h
2
(r)

Figure 2.3: Plots of the convolution functions presented in Equation (2.17).

a with respect to coordinate n is

∂Ña

∂n
=

∂h
∂n

(ra)
∑

k h (rk)− h (ra)
∑

k
∂h
∂n

(rk)

[
∑

k h (rk)]
2 (2.19)

with the derivatives of the convolution functions as follows:

∂h1
∂n

(r) =

π

2R
cos
(
rπ
2R

)
d̃n

0

r ≤ R

r > R

∂h2
∂n

(r) =

−2 r−R

R2 d̃n

0

r ≤ R

r > R

(2.20)

where d̃ in this case is the directional cosine from the truss node to the continuum node

(associated with the distance r). The sum in the denominator is through all the nodes

in the continuum, but because the convolution function is zero for r > R, the sum only

encompasses a few of the total nodes. The continuum nodes that fall within the convolution

operator are found using a tree data structure, making the search for different truss nodes

linking to continuum efficient. This tree scheme becomes a quadtree and an octtree in two

and three dimensions respectively (Figure 2.4).

The convolution shape functions lack desirable properties like the Kronecker delta prop-

15

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1
0

0.25

0.5

0.75

1

(b)

Figure 2.4: Binary domain partition examples for 0—1 domains. (a) Quadtree in two di-
mensions (4 partitions, P = [0.595 0.715]. (b) Octtree in three dimensions (3 partitions,
P = [0.19 0.43 0.56].

erty (δii = 1 and δij = 0 for nodes i 6= j), because these shape functions are not associated

to a specific node as with FEM shape functions, but to a cloud of nodes instead. However,

it does comply with partition of unity (Equation (2.16)) and has no negative values any-

where. These convolution shape functions posses continuous first derivative field, a desirable

property and required for the present work.

The mapping of Ke onto the continuum follows the energy conservation mapping de-

scribed in Equation (2.13), but using Ñ instead of the FEM shape functions. This is also

analogous for Equation (2.14) resulting in the following expressions:

K+
e = ÑTKeÑ (2.21)

∂K+
e

∂nj
=
∂ÑT

∂nj
KeÑ + ÑT ∂Ke

∂nj
Ñ + ÑTKe

∂Ñ

∂nj
(2.22)

Note that the dimensionality of Ñ is variable and does not necessarily match with N.

16

2.1.3 Connection with blur filters

This coupling to the continuum works by smearing (or blurring) the displacement field around

the truss member node. Provided that the convolution radius is not too big, the error intro-

duced by this method is controllable and provides a smooth derivative field throughout the

continuum. The smearing error will have a higher impact when closer to a rapid variation

of the field (i.e. sharp edges, single node loads and boundary conditions). There are rea-

sons, however, that justify the application of the convolution and introduction of the error;

the derivative field should be continuous, and the fields should be smooth (except for the

aforementioned singularity points).

The convolution-based shape functions Ñ operate in a similar fashion to blur filters used

in image processing: blur filters apply a convolution function to the image. In the present

work however, instead of blurring an image, the convolution blurs the displacement field to

ensure continuous first derivatives. There are many blur filters used in image processing,

with the Gaussian blur being one of the most common ones (Nixon and Aguado, 2012).

Figure 2.5 applies the traditional gaussian blur and a convolution based on h2 (r) to an

image for comparison purposes. From inspection of the images and function plots it can be

concluded that:

• The effect of the convolution based on h2 (r) is more localized compared to the Gaussian

blur. This is due to the rapid decay of the h2 (r) function.

• The convolution of a Gauss function extends to infinity (most image processors ignore

values beyond 6σ, with σ typically taken as half of the filter radius r). Thus, the

convolution of h2 (r) involves a smaller set of nodes.

• Using similar radii, the convolution based on h2 (r) introduces a smaller distortion of

the original data. This is again due to the rapid decay of this function.

• The convolution based on h2 (r) allows large radii without great impact on the data.

17

(a)

(b) (c)

(d) (e)

Figure 2.5: Image convolution comparison: (a) Original image [c© Benh Lieu Song | licensed
under CC-BY-SA-3.0] of size 480 × 320. (b) Gaussian blur with a 2 pixel radius. (c)
Convolution with h2 (r) with a 25 pixel radius. (d) Gaussian blur with a 4 pixel radius. (e)
Convolution with h2 (r) with a 100 pixel radius.

18

2.1.4 Optimization issues

The algorithm becomes unstable for a large number of variables if the variables are allowed

to freely vary at each iteration. This is specially true for large number of variables. Thus,

a move limit m enforces small variations from one iteration to the next. This results in a

more cautious progression towards the optimum, and with the step size controlled by the

move limit m, as follows:

∣∣nnewi − noldi
∣∣ ≤ m ∀ n = x, y, z and i = 1 . . . Nnodes (2.23)

The move limit or variable bounds are common features in optimizers, making the imple-

mentation of Equation (2.23) simple.

The optimizer could decide to overlap two nodes together, typically resulting in a super-

member (two members overlapping). Nevertheless, this might also result in a member of

length L = 0, causing problems in Equations (2.1), (2.2), (2.8) and (2.9). To prevent this

situation, a minimum length constraint Lmin > 0 for every member is included:

Lmin − Le ≤ 0 (2.24)

Maximum truss volume Vmax can be also specified as

∑
e

LeAe − Vmax ≤ 0 (2.25)

with the derivatives for the constraints in Equations (2.24) and (2.25) completely defined

using Equations (2.8) and (2.7). If the element cross-sectional areas are also design variables,

the derivative is trivial since

∂K+
e

∂Ae
=
E

L

 1 −1

−1 1

 (2.26)

Setting a lower limit on the cross-sectional area is often recommended for stability and

19

constructibility reasons. In addition a move limit on the cross-sectional areas stabilizes

the problem (analogous to Equation 2.23). These requirements translate into the following

equations

Ae > Amin∣∣Anewe − Aolde
∣∣ ≤ ma ∀e = 1 . . . Nelems

(2.27)

2.2 Verification of the method

2.2.1 One-dimensional bar with a cable anchor

This problem seeks to find the optimal anchor position of a reinforcing cable within a weaker

bar modeled as a continuum subjected to body force, as exemplified by Figure 2.6(a). The

objective function for minimization is the compliance (external work) of the total structure

(continuum and discrete). This model can be idealized as in Figure 2.6(b): αL is defined as

the anchor point distance and βL is the anchor point measured within the continuum bar.

The ratio between the bar (continuum) and cable stiffness is defined as γ = EA/EcAc, where

Ec and Ac are the bar’s Young modulus and cross-sectional area of the continuum, and E

and A are the same but for the anchor cable. The design variable is the anchoring distance

βL. This problem is of particular interest because an analytical solution can be obtained.

The compliance of a single bar problem of length L, subjected to body force b and an end

force P as in Figure 2.7 is:

C =

∫ L

0

u (x) b dx+ Pu (L) =
1

EA

(
b2L3

3
+ PbL2 + P 2L

)
(2.28)

The displacement at the anchor point uanchor can be obtained by simple structural analysis:

uanchor =
bL2

2AE

β (α + β) (2− β)

α + β + γβ
(2.29)

20

(a)

αL L

βL
b

(b)

Figure 2.6: One-dimensional truss-continuum problem. (a) Bar (continuum) reinforced by a
stiff cable (truss). (b) Idealized model of the bar with reinforcing cable.

b
P

Figure 2.7: Simple model of a continuum subjected to a body force and a load at the tip.

The problem can be partitioned at the anchor point, and the expression in Equation (2.28)

can be used for both segments of the continuum and the cable. The end force P taken by

the bar segment of length βL is

P =
bL

2

2α + 2β − 2αβ − 2β2 − γβ2

α + β + γβ
(2.30)

Finally, the compliance for the complete problem is

C =
b2L3

12EA

4α + 4β + 4γβ − 12γβ2 + 12γβ3 − 3γβ4

α + β + γβ
(2.31)

21

0 1 2 3 4 5 6 7
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

βL

Co
m

pl
ia

nc
e

Detail

Analytical
N

E
=10

N
E

=20

N
E

=40

(a)

4 4.5 5 5.5 6
1.515

1.52

1.525

1.53

1.535

1.54

1.545

1.55

βL

Co
m

pl
ia

nc
e

Analytical
N

E
=10

N
E

=20

N
E

=40

(b)

Figure 2.8: (a) Compliance with convolution coupling for different mesh refinements. (b)
Detail close to the optimum.

The optimal anchor point (minimizes compliance) is located at βcL, with

βc = min

(
1 + γ − 2α +

√
1 + 8α + 2γ + 4α2 + 8αγ + γ2

3 + 3γ
, 1

)
(2.32)

Given the following problem data: L = 7, α = 2/7, EcAc = 210, EA = 150, γ = 5/7

and b = 2, the embedding technique is performed for three different discretizations keeping

the convolution radius fixed at R = 0.2L, and then compared to the analytical solution in

Figure 2.8. The convolution function used is h2 (·) from Equation (2.17). The gradient is also

compared in Figure 2.9. The optimal location is at βc =
(
2 +
√

22
)
/9 and C (βc) = 1.5252.

To ensure the algorithm is robust, the finite element size ∆x is distributed randomly between

0.7L/NE ≤ ∆x ≤ 1.3L/NE, with NE representing the number of elements of the partition.

The minima for all meshes are presented in Table 2.1.

The same analysis is repeated keeping the mesh refinement fixed at NE = 20 and varying

the size of the convolution radius R. The results are compared in Figure 2.10. The gradient

is also compared in Figure 2.11 and the minima for each case are presented in Table 2.2.

Using a mesh with evenly spaced elements, Figure 2.12 compares the analytical sensitivity

22

0 1 2 3 4 5 6 7
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

βL

G
ra

di
en

t -

 C
/

 (β
L)

Detail

Analytical
N

E
=10

N
E

=20

N
E

=40

∂
∂

(a)

4 4.5 5 5.5 6
−0.06

−0.04

−0.02

0

0.02

0.04

βL

Analytical
N

E
=10

N
E

=20

N
E

=40

G
ra

di
en

t -

 C
/

 (β
L)

∂
∂

(b)

Figure 2.9: (a) Gradient with convolution coupling for different mesh refinements. (b) Detail
close to the optimum.

Table 2.1: One-dimensional bar with cable: optimal anchor location for randomly generated
discretizations with different levels of refinement.

βc C (βcL)
Exact 0.7434 1.5252
NE = 10 0.7492 1.5144
NE = 20 0.7346 1.5169
NE = 40 0.7431 1.5203

0 1 2 3 4 5 6 7
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

βL

Co
m

pl
ia

nc
e

Detail

Analytical
R=0.1L
R=0.2L
R=0.4L

(a)

4 4.5 5 5.5 6

1.52

1.525

1.53

1.535

1.54

1.545

1.55

βL

Co
m

pl
ia

nc
e

Analytical
R=0.1L
R=0.2L
R=0.4L

(b)

Figure 2.10: (a) Compliance with convolution coupling for different convolution radiuses.
(b) Detail close to the optimum.

23

0 1 2 3 4 5 6 7
−0.4

−0.3

−0.2

−0.1

0

0.1

βL

Detail

Analytical
R=0.1L
R=0.2L
R=0.4L

G
ra

di
en

t -

 C
/

 (β
L)

∂
∂

(a)

4 4.5 5 5.5 6
−0.06

−0.04

−0.02

0

0.02

0.04

βL

Analytical
R=0.1L
R=0.2L
R=0.4L

G
ra

di
en

t -

 C
/

 (β
L)

∂
∂

(b)

Figure 2.11: (a) Gradient with convolution coupling for different convolution radius. (b)
Detail close to the optimum.

Table 2.2: One-dimensional bar with cable: optimal anchor location with varying convolution
radius for a randomly generated discretization with NE = 20.

βc C (βcL)
Exact 0.7434 1.5252

R = 0.1L 0.7333 1.5187
R = 0.2L 0.7396 1.5177
R = 0.4L 0.7393 1.5258

with the FEM-based and convolution-based couplings. The embedding using FEM shape

functions suffers from discontinuities at the element boundary and ∂C/∂x = 0 at several

points, thus is prone to converge at the many local minima, far from the global optimum.

Convolution coupling is continuous, and inspection of the gradient indicate that it is likely

to converge close to the actual (analytical) optimum.

The optimization problem for 50 iterations, with a starting point β0 = 0.5 is performed for

NE = 20 (element mesh), with randomly spaced elements of size 0.7L/NE ≤ ∆x ≤ 1.3L/NE.

The only constraint or technique used is the move limit as detailed in Equation (2.23) with

m = 0.1. The optimizer is the Method of Moving Asymptotes (MMA) (Svanberg, 1987). The

convergence towards the optimal point βcL is shown in Figure 2.13(a) and the compliance

plot in Figure 2.13(b). There is an oscillatory behavior between iterations 17 and 30 due

24

0 1 2 3 4 5 6 7
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

βL

Detail

Analytical
Energy
Convolution

G
ra

di
en

t -

 C
/

 (β
L)

∂
∂

(a)

4 4.5 5 5.5 6
−0.06

−0.04

−0.02

0

0.02

0.04

βL

Analytical
Energy
Convolution

G
ra

di
en

t -

 C
/

 (β
L)

∂
∂

(b)

Figure 2.12: (a) Sensitivity plot for analytical, FEM-based and convolution-based shape
functions. (b) Detail close to the optimum.

0 10 20 30 40 50
3.5

4

4.5

5

5.5

Iteration

βL

Analytical
R=0.7L
R=1.4L
R=2.8L

(a)

0 10 20 30 40 50
1.5

1.52

1.54

1.56

1.58

1.6

Iteration

Co
m

pl
ia

nc
e

Analytical
R=0.7L
R=1.4L
R=2.8L

(b)

Figure 2.13: Optimization evolution for 50 iterations with different convolution radiuses. (a)
Anchor point βL. (b) Compliance.

to the adventurous behavior of the optimizer close to the optimum. The oscillations can be

eliminated by taking a smaller move limit, or decreasing it with each iteration.

25

x2
x1 Ly

2Lx

Ly

(a)

Lx

Ly

Ly

x2
x1

(b)

Figure 2.14: Deep beam with cable supports subjected to self-weight. (a) Idealized model.
(b) Model considering the symmetry of the problem.

2.2.2 Deep beam with cable anchors

This problem, introduced in Figure 2.1, tries to find the optimal anchoring location of two

(symmetric) cables on a simply supported deep beam loaded by self-weight. The problem is

modeled as in Figure 2.14(a): using symmetry the problem is reduced to finding the optimal

position of a single cable (constant area) on a half domain as in Figure 2.14(b). The half

domain has size Lx × Ly and is loaded by self-weight b, the domain is regularly partitioned

in Nx × Ny four node quadrilateral elements (Q4). The convolution function being used

is h2 (r) presented in Equation (2.17). The design variables of the problem are the anchor

location coordinates x1 and x2, with the only constraint or technique being the move limit

as in Equation (2.23) with m = 0.05.

The problem parameters are Lx = 2 (2Lx = 4), Ly = 0.8, b = −2, Ec = 100, ν = 0.3 and

26

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

Compliance [C]

0.5

1

1.5

2

2.5

(a)

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Compliance [C]

0.2

0.3

0.4

0.5

(b)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

Compliance [C]

0.5

1

1.5

2

2.5

(c)

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Compliance [C]

0.2

0.3

0.4

0.5

(d)

Figure 2.15: Objective function plot for the deep beam with cable support problem using a
9×3 Q4 element mesh for the continuum. (a) FEM-based coupling. (b) Detail of FEM-based
coupling near the global optimum. (c) Convolution-based coupling with R = 0.5. (d) Detail
of convolution-based coupling with R = 0.5.

EA = 300. The objective function (compliance) using FEM-based and convolution-based

coupling for an Nx = 9 and Ny = 3 mesh are plotted in Figure 2.15. The convolution-

based coupling exhibits what seems to be a single unique optimum, whereas the FEM-based

coupling has a tendency to produce a minimum at the continuum element’s centroid.

Refining the continuum with Nx = 20 and Ny = 8, the differences in the objective func-

tion (compliance) plots become more apparent. The FEM-based coupling is now plagued

by multiple local minima (Figures 2.16(a) and 2.16(b)), whereas the convolution-based cou-

pling became smoother due to the larger number of points within the convolution operator

(Figures 2.16(c) and 2.16(d)). With this finer mesh, we can afford to reduce the radius

27

Table 2.3: Deep beam with cable anchors: optimal anchor location and compliance for an
increasingly refined Q4 mesh and R = 0.3.

Mesh x1 x2 C (x1, x2)
10× 04 0.9999 0.5100 0.1956
20× 08 0.8541 0.4016 0.1910
40× 16 0.8094 0.3712 0.1971
80× 32 0.8635 0.3711 0.2025

Table 2.4: Deep beam with cable anchors: optimal anchor location and compliance for an
increasingly refined Q9 mesh and R = 0.3.

Mesh x1 x2 C (x1, x2)
10× 04 0.8497 0.4030 0.1952
20× 08 0.8688 0.3736 0.2006
40× 16 0.9004 0.3833 0.2056
80× 32 0.9272 0.3721 0.2101

of the convolution operator while still preserving a smooth and continuous field (Figures

2.16(e) and 2.16(f)). This reduction is desirable when possible to minimize the error that

is being introduced. The convolution-based coupling with R = 0.3 gives x1 = 0.8165 and

x2 = 0.3699 as the global optimum for a 20×8 mesh. However, the global optimum location

does change with the mesh refinement, and the solution experiences small changes when the

mesh is changed.

The problem is optimized for 30 iterations with a starting point [x1, x2] = [Lx, Ly/2]

measured from the bottom left corner of the half-domain, using a convolution radius of

R = 0.3. The optimizer is again the Method of Moving Asymptotes (MMA) (Svanberg,

1987). Mesh convergence results are available in Table 2.3 and Figure 2.17.

The method makes no distinction of the element type or mesh. The problem is re-

meshed with 9 node quadrilateral elements (Q9) and tested with different mesh refinements

and convolution radii. The evolution of the objective function throughout the iterations for

both methods are plotted in Figures 2.18(a) and 2.18(b), and in both situations a smooth

decrease is observed. The final converged results, available in Tables 2.4 and 2.5, reinforce

the fact that the method is relatively stable: variations can be seen again with refinement,

but these all oscillate about the same general area.

28

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

Compliance [C]

0.5

1

1.5

2

2.5

(a)

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Compliance [C]

0.2

0.3

0.4

0.5

(b)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

Compliance [C]

0.5

1

1.5

2

2.5

(c)

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Compliance [C]

0.2

0.3

0.4

0.5

(d)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

Compliance [C]

0.5

1

1.5

2

2.5

(e)

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Compliance [C]

0.2

0.3

0.4

0.5

(f)

Figure 2.16: Objective function plot for the deep beam with cable support problem using a
20 × 8 Q4 element mesh for the continuum. (a) FEM-based coupling. (b) Detail of FEM-
based coupling near the global optimum. (c) Convolution-based coupling with R = 0.5. (d)
Detail of convolution-based coupling with R = 0.5. (e) Convolution-based coupling with
R = 0.3. (f) Detail of convolution-based coupling with R = 0.3.

29

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Iteration

Co
m

pl
ia

nc
e

10x04 mesh
20x08 mesh
40x16 mesh
80x32 mesh

Figure 2.17: Evolution of the compliance for the beam with cable anchors problem. Opti-
mization was done with 30 iterations, R = 0.3, and using increasingly refined Q4 meshes.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Iteration

Co
m

pl
ia

nc
e

10x04 Q9 mesh
20x08 Q9 mesh
40x16 Q9 mesh
80x32 Q9 mesh

(a)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Iteration

Co
m

pl
ia

nc
e

R=0.2
R=0.3
R=0.4
R=0.5

(b)

Figure 2.18: Optimization for beam with cable anchor using Q9 elements. (a) Compliance
evolution for increasingly refined meshes and R = 0.3. (b) Compliance evolution for a 20×8
mesh with varying radius.

Table 2.5: Deep beam with cable anchors: optimal anchor location and compliance for a
20× 8 Q9 mesh with varying convolution radius.

x1 x2 C (x1, x2)
R = 0.2L 0.8763 0.4025 0.2154
R = 0.3L 0.8688 0.3736 0.2006
R = 0.4L 0.8747 0.3752 0.1900
R = 0.5L 0.8769 0.3748 0.1816

30

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 2.19: Deep beam with cable anchors: optimization for a 20 × 8 Q9 element mesh
showing the anchor path throughout the iterations.

The anchor path throughout the iterations for this problem is shown in Figure 2.19. This

path exhibits a steady and consistent approach towards the optimal solution, where the cable

most efficiently supports the continuum.

2.3 Examples

The examples explored here showcase some of the problems this method can address. The

optimizer is the Method of Moving Asymptotes (MMA) (Svanberg, 1987), and the convo-

lution function used is h2 (·) from Equation (2.17). Problems are optimized for minimum

compliance (J = uTKeu) of the coupled structure. For the specific case of two-dimensional

problems, unit thickness and plane stress is assumed.

2.3.1 Tapered building with truss superstructure

This problem explores extending the method to a larger number of elements (and design

variables). All truss members are embedded within the continuum. In addition, the con-

tinuum is modeled with an unstructured mesh. A sketch of the continuum domain, with a

31

Table 2.6: Building with truss superstructure: Final nodal locations for the symmetry con-
strained and free problems with node numbering in accordance with Figure 2.20(b).

Symm Free Symm Free
x1 −0.3958 −0.3959 y1 0.0000 0.0000
x2 −0.3522 −0.3433 y2 0.5376 0.5406
x3 −0.2770 −0.2733 y3 0.9426 0.9546
x4 −0.2379 −0.2491 y4 1.3449 1.4098
x5 −0.2188 −0.2385 y5 1.7725 1.8019
x6 0.3958 0.4167 y6 0.0000 0.0000
x7 0.3522 0.3547 y7 0.5376 0.5027
x8 0.2770 0.3063 y8 0.9426 0.9485
x9 0.2379 0.2275 y9 1.3449 1.3711
x10 0.2188 0.2086 y10 1.7725 1.8003
x11 0.0000 −0.0285 y11 0.5544 0.5494
x12 0.0000 0.0535 y12 0.9420 0.9122
x13 0.0000 −0.0201 y13 1.3124 1.3115
x14 0.0000 −0.0318 y14 1.7901 1.7828

truss superstructure is shown in Figure 2.20(a), where the truss superstructure links to the

continuum at the node locations. The problem is optimized with 4 spans, and a starting

position as shown in Figure 2.20(b), with the nodes numbered as in the Figure.

The continuum is meshed with NE = 1520 Q8 elements, with dimensions and material

properties: Lx1 = 1.0, Lx2 = 0.6, Ly = 2, Ec = 10, ν = 0.3. The truss consists of 4

spans with equal properties for all bars EA = 300 and convolution radius R = 0.075. The

structure is loaded by self-weight of the continuum b = −10. The design variables are the

nodal positions of the truss (cross-sectional areas are not being optimized). The problem

is optimized for 50 iterations, with a coordinate move limit of m = 0.015 as in Equation

(2.23), and a truss volume constraint of Vmax = 32 (note that initially the truss has a volume

V0 = 34.76) in accordance with Equation (2.27).

The optimization is performed for the case where symmetry is imposed, and for when

is not. The final configurations for both cases can be seen in Figures 2.20(c) and 2.20(d),

and the final nodal locations are reported in Table 2.6. The unsymmetrical mesh in the

continuum causes the truss to loose symmetry, and it is unable to recover.

The compliance plot in Figure 2.21(a) has an initial increase while the optimizer is fulfill-

32

Lx1

Lx2

Ly

Span1

Span2

Span3

Span4

(a)

−0.5 0 0.5
0

0.5

1

1.5

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) (c) (d)

Figure 2.20: Building with truss superstructure. (a) Domain and truss specifications. (b)
Starting configuration with node and element numbering with 4 spans, Lx1 = 1.0, Lx2 = 0.6
and Ly = 2. (c) Final configuration with symmetry along the mid vertical axis imposed. (d)
Final configuration with symmetry not imposed.

ing the truss volume constraint, as shown in Figure 2.21(b). Once the constraint is satisfied,

the optimizer is free to search for the optimal truss geometry (using the node locations

only). The final compliance for the symmetry imposed and free cases are Csymm = 1.1215

and Cfree = 1.1296. The optimized compliance for the symmetric case is surprisingly lower.

However, if iterations continue, the less-constrained unsymmetric case will have a lower final

value. The unsymmetric case has more than twice the number of design variables compared

to the symmetric case, resulting in a (slightly) lower rate of convergence.

2.3.2 Full truss layout optimization for tapered building

This is an extension of the previous problem, adding the truss member’s cross-sectional

areas as design variables for the optimization of the symmetric case. The simultaneous

optimization of member sizing and geometry translates into a full layout optimization of the

building’s truss superstructure. Previously, the final volume of the truss did not match Vmax

33

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

Co
m

pl
ia

nc
e

Iteration

With symmetry
No symmetry

(a)

0 10 20 30 40 50
29

30

31

32

33

34

35

V max

Vo
lu

m
e

Iteration

With symmetry
No symmetry

(b)

Figure 2.21: Optimization for building with truss superstructure (design variables are nodal
coordinates) for 50 iterations. (a) Compliance evolution throughout the optimization. (b)
Volume evolution throughout the optimization.

(a)

0 10 20 30 40 50
28

29

30

31

32

33

34

35

V max

Vo
lu
m
e

Iteration

(b)

Figure 2.22: Full layout optimization of the building’s truss superstructure (design variables
are nodal coordinates and member cross-sectional areas) for 50 iterations. (a) Final geometry.
(b) Volume evolution throughout the optimization.

because the design variables were the node locations only (Figure 2.21(b)). The gradient of

the cross-sectional areas follow Equation (2.26). The constraints in Equation (2.27) are also

used with Amin = 0.015 and ma = 0.015.

34

Table 2.7: Building with truss superstructure (full layout optimization): Final cross-sectional
areas for truss members in accordance with Figure 2.20(b).

A1 3.6269 A9 3.1658 A17 3.0460
A2 3.6165 A10 3.1296 A18 2.7400
A3 3.5832 A11 3.0016 A19 2.7346
A4 3.3270 A12 2.8983 A20 2.6999
A5 3.6269 A13 3.1658 A21 3.0460
A6 3.6165 A14 3.1296 A22 2.7400
A7 3.5832 A15 3.0016 A23 2.7346
A8 3.3270 A16 2.8983 A24 2.6999

The optimized element areas following the element numbering scheme from Figure 2.20(b)

are detailed in Table 2.7. The node locations exhibit minimal variation with respect to

the previous symmetric case (Figure 2.22(a)). As expected, the optimizer allocated the

previously unused volume, further improving the solution and resulting in an active volume

constraint (Figure 2.22(b)). The final compliance after 50 iterations is equal to Cfull =

1.0977. This value is lower than in the previous cases, as expected, because of the larger

volume of the truss in the final structure.

2.3.3 Three-dimensional beam with truss reinforcements

This problem explores the optimal position of a reinforcing truss within a three-dimensional

beam. Because the truss only links with the continuum at the nodes, the bars have no

connection along their length with the continuum: this can be interpreted as if the truss

members are within a casing allowing them to slide between nodes. The domain definition

and initial bar location is given in Figure 2.23(a). The design variables are the node locations,

that are initially positioned as specified in Table 2.8, following the node numbering from

Figure 2.23(a). The domain is meshed with Tet10 elements dividing the domain in Nx ×

Ny × Nz = 36 × 11 × 8 blocks, with each block subdivided in 6 Tet10 elements for a total

of NE = 19008 Tet10 elements (Figure 2.23(b) is a deformed plot of the mesh). In addition,

the dimensions are Lx = 10, Ly = 3, Lz = 2, and the material properties for the continuum

are Ec = 100 and ν = 1/3. All truss members have equal properties; EA = 500. The

35

Table 2.8: Initial truss nodal locations within the three-dimensional beam.

Node x y z
1 0.5000 1.2000 1.6000
2 3.0000 1.2000 0.4000
3 7.0000 1.2000 0.4000
4 9.5000 1.2000 1.6000
5 0.5000 1.8000 1.6000
6 3.0000 1.8000 0.4000
7 7.0000 1.8000 0.4000
8 9.5000 1.8000 1.6000

Table 2.9: Final truss nodal locations within the three-dimensional beam.

Node x y z
1 0.4972 0.6366 1.2482
2 2.2785 0.7085 0.0000
3 7.7148 0.7021 0.0000
4 9.5002 0.6281 1.2542
5 0.5005 2.3713 1.2562
6 2.2828 2.2935 0.0000
7 7.7181 2.2898 0.0000
8 9.5012 2.3635 1.2485

only constraint or restriction included is a move limit in the nodal coordinates m = 0.1,

in accordance with Equation (2.23). The beam is loaded by a distributed load acting on

the top face b = −2, and the problem is optimized for compliance for 30 iterations with a

convolution radius R = 0.5

The problem does not have symmetry imposed, and the final nodal coordinates after

30 iterations are in Table 2.9. Nevertheless, within some numerical precision, symmetry

is preserved. The final compliance for the problem is C = 79.5418, and the evolution

throughout the iterations is presented in Figure 2.24, again with a smooth decrease towards

the optimum.

2.3.4 Reinforced double corbel

This example deals with the steel layout of a double corbel based on Example 3.2 in the ACI

SP-208 (ACI Committee, 2002). The corbel transfers beam reaction forces Vu = 61.8 kips

36

Lx
Ly

Lz

1

7

2

3

4

5

6 8

or
ig
in

(a)

X Y

Z

0
2

4
6

8
10 0 1 2 3

-1

0

1

(b)

0 2 4 6 8 10
0

1

2

3

X

Y

0 2 4 6 8 10
0

1

2

X

Z

0 1 2 3
0

1

2

Y

Z

(c)

Figure 2.23: Optimization for a three-dimensional beam with an embedded truss. (a) Domain
definition and node numbering. (b) Continuum meshed with Tet10 elements in the final
deformed state. (c) Front, side and top views of the final configuration.

37

0 5 10 15 20 25 30
78

80

82

84

86

88

90

92

94

Co
m
pl
ia
nc

e

Iteration

Figure 2.24: Three-dimensional beam with an embedded truss: compliance evolution for 30
iterations.

6”3” 3”
12”

10
”

18
”

8”

12” 14” 12”

V =61.8 kipsu

N =14.3 kipsuc

P =275 kipsu

(a)

6”3” 3”
12”

10
”

18
”

8”

12” 14” 12”

14
”

14
”

q =1.403 kipsn

q =0.736 kipsn

q =0.17 kipst

2”

2”

2”

(b)

Figure 2.25: Double corbel problem definition. (a) Problem definition in accordance with
ACI SP-208. (b) Model domain, loads and boundary conditions.

and Nuc = 14.3 kips to a square 14 in column through a 6 in plate as depicted in Figure

2.25(a). In addition, the upper column carries a compressive axial load Pu = 275 kips. The

problem deals with the layout of the steel in tension, initially placed 2 in below the corbel

supports.

The loads coming from the upper column and the beams are distributed over the column

38

cross-sectional area and plate respectively. Analysis for the continuum will be carried out

on a t = 1 in thick model, with plane stress. Given the depth dimension of the corbel, a

three-dimensional analysis would be more appropriate, but the simplicity of a plane stress

analysis is more appropriate to showcase the method in an application setting. The vertical

steel in compression has a cross-sectional area Asc = 0.1 in2 (not to be designed), and the

steel in tension has initially Ast = 0.1 in2. The elastic modulus of steel is Es = 29000 kips,

and for the concrete Ec = 3600 kips and ν = 0.2. The model with the loads, boundary

conditions and initial steel placement (for a 1 in thick model) is presented in Figure 2.25(b).

The concrete is modeled using 23312 T6 elements, and 47065 nodes. The steel rebars

are modeled as several pin-jointed bars 1 in apart to allow for linkage with the continuum

throughout the length of the bar. The convolution radius is R = 0.25 in. The optimization

is done for compliance subject to constant volume, and the design variables are steel cross-

sectional areas of the bars, and the vertical (y direction) node positions of the bar in tension

(layout optimization). The node movement is limited to 1 in away from the concrete edges

to allow for steel cover. The constraints or restrictions included are a move limit m = 0.1

as in Equation (2.23) for the node locations, and in the cross-sectional areas ma = 0.005 in2

and Amin = 0.001 in2 as in Equation (2.27). The optimization is run for 200 iterations for a

symmetric mesh, with symmetry not enforced.

Experimental results (Imran and Pantazopoulou, 1996) suggest the following Drucker-

Prager model for concrete:

0.3

(
I1

f ′c
+ 1

)
=

√
1

3
−
√
J2

f ′c
, (2.33)

where I1 and J2 are the first and second principal stress invariant. Reorganizing the terms:

0.27 + 0.3
√

3

0.73
I1 +

1 + 0.3
√

3

0.73

√
3J2 = f ′c , (2.34)

39

0 50 100 150 200
0.4902

0.4904

0.4906

0.4908

0.4910

0.4912

0.4914

0.4916

0.4918

Iteration

Co
m
pl
ia
nc

e

(a)

−20 −10 0 10 20

−5

0

5

10

15

20

σ
dp

 [ksi]

0

1

2

3

4

(b)

Figure 2.26: Double corbel optimization results after 200 iterations. (a) Compliance evolu-
tion throughout the iterations. (b) Final steel layout and concrete Drucker-Praguer stress.

we can define the Drucker-Prager stress as:

σdp = 1.0817I1 + 2.0817
√

3J2 (2.35)

Failure occurs when σdp = f ′c, analogous to Von Mises stress. The concrete used in the

documented example in (ACI Committee, 2002) is assumed to have f ′c = 4 ksi.

The compliance plot (Figure 2.26(a)) exhibits a smooth decrease throughout the iter-

ations, but with little improvement after the optimization. Despite not being enforced,

symmetry was indeed preserved as expected. The final position of the steel and the cross-

sectional areas are in Figure 2.26(b) (blue and red color indicate steel in compression and

tension respectively), as well as a Drucker-Prager stress.

The gain is clear if the steel is looked at in detail: the bar orients itself towards the

principal directions taking a moustache shape. The optimized cross-sectional areas vary as

in Figure 2.27(a), but most importantly, the bar takes a constant stress throughout its length

as in Figure 2.27(b), in accordance with Michell’s fully stressed requirements (Hemp, 1973;

Michell, 1904; Rozvany, 1996, 1997b). In the final configuration there is no shear in the bar,

40

−20 −10 0 10 20
0

0.1

0.2

Ba
r A

re
a

[in
2]

Optimized
Original

(a)

−20 −10 0 10 20

0

20

40

60

Ba
r S

tr
es

s
[k

si
]

Optimized
Original

(b)

Figure 2.27: Double corbel optimized steel in tension. (a) Cross-sectional area. (b) Axial
stress.

that, along with the constant stress (smaller than the previous maximum stress), makes a

more efficient use of the steel available and thus a better design. The final position and

cross-sectional areas for the (half) bar are in Tables 2.10 and 2.11 respectively.

Table 2.10: Double corbel optimization: final node locations for one symmetric half of the
steel in tension (in).

Node x y Node x y
1 0 16.2521 11 10 16.9086
2 1 16.2555 12 11 16.7158
3 2 16.2695 13 12 16.5538
4 3 16.2921 14 13 16.4070
5 4 16.3344 15 14 16.2939
6 5 16.3995 16 15 16.2710
7 6 16.5203 17 16 16.3699
8 7 16.7265 18 17 16.4352
9 8 16.9813 19 18 16.4119
10 9 17.0000

Table 2.11: Final cross-sectional areas for one symmetric half of the steel in tension. Values
given for segments between nodes i and j (in2).

nodei nodej As nodei nodej As
1 2 2.5389 10 11 1.3553
2 3 2.5596 11 12 1.0042
3 4 2.5937 12 13 0.3947
4 5 2.6694 13 14 0.0148
5 6 2.6540 14 15 0.0144
6 7 2.7265 15 16 0.0143
7 8 2.6469 16 17 0.0143
8 9 2.1364 17 18 0.0142
9 10 1.6514 18 19 0.0142

41

Figure 2.28: Double corbel with optimized steel in tension.

The steel for the whole 14 in thick corbel is laid in one layer and 3 different lengths

following the results from the optimization as in Table 2.12. The corbel with the optimized

steel design is presented in Figure 2.28. This problem only optimizes and designs the primary

reinforcement; Additional shear reinforcement and hooks are required for the design to be

treated seriously.

Table 2.12: Corbel reinforcement steel in traction.

Rebar Horizontal Position?

3#5 −12.5 in to 12.5 in
2#5 −9.0 in to 9.0 in
2#5 −7.5 in to 7.5 in
? Lengths measured horizontally

2.4 Conclusions

The method presented here extends truss layout optimization to the situation when it is

embedded within a continuum, allowing for mixed-element type optimization problems to

42

be solved. The method is based on a convolution operator to link the truss node to the

continuum. The derivative field remains continuous and sufficiently smooth, and gradient-

based optimizers can be used, even for small convolution radii.

Convolution coupling to the continuum does violate the energy principle of the problem,

but when used with a reasonable sized convolution radius, the results are shown to agree up

to some degree with an exact solution when available. In cases where an analytical solution

cannot be easily found, the method exhibits stable results (i.e. converging to similar solutions

for a wide range of initial conditions). It is expected for the optimum solution to have small

variations, that are attributed to the difference in the FEM solutions with refinement, and

numerical inaccuracies.

There is no restriction over the objective function in the optimization, provided that the

derivation for the stiffness term follows Equation (2.21). Restrictions to the optimization

are easily implemented and examples with volume constraint, minimum cross-sectional areas

and member lengths are given. The method does require a move limit between iterations

due to the highly nonlinear behavior of the problems involving geometric optimization. The

situation worsens with an increased number of truss nodes or the inclusion of member sizing,

and thus the optimization can easily diverge.

The method is shown to effectively reach optimal configurations. However, an acceptable

initial guess must be given, because of the large number of local minima in these problems.

Note that a truss can have an infinite number of spatial configurations, thus, relying on the

engineer’s common sense to provide a starting point for the optimization.

43

Chapter 3

Lateral bracing systems in 2D and 3D

Structural optimization has a long history of applications with buildings. Lateral bracing

systems are often used to provide lateral stiffness to buildings. These may span one or several

bays, single or several stories high (Figure 3.1).

Density–based topology optimization has been applied to optimal bracing system prob-

lems (Neves et al., 1995; Mijar et al., 1998; Allahdadian et al., 2012; Stromberg et al., 2012),

with the finding that the optimal bracing point is not always at mid–height. Density–based

topology optimization is a powerful technique, but the interpretation of the results and

subsequent member sizing is not straightforward. An alternative approach is the ground

structure method (Dorn et al., 1964; Ben-Tal and Bendsøe, 1993; Sokó l, 2011). The ground

structure method results in solutions with a large number of members, that asymptotically

converge to the theoretical optimum for problems with known (analytical) solutions (Michell,

1904; Hemp, 1973). The approach used in this work simultaneously optimizes truss geometry

(node locations) and member sizes (Felix and Vanderplaats, 1987; Hansen and Vanderplaats,

1990; Lipson and Gwin, 1977), as is often called truss layout optimization. The structural

connectivity is fixed, so no members are added or removed. Zero cross–sectional areas are

a special case which cannot be allowed due to a known discontinuity in member’s stresses

(Sved and Ginos, 1968; Kirsch, 1990; Rozvany, 2001). However, in most applications, a very

small cross–sectional area has an effect similar to removing the bar. The bracing system is

44

(a) (b) (c)

Figure 3.1: Examples of single and multiple bays braced buildings. (a) The John Hancock
Center — Chicago, Illinois, USA [SOM | Ezra Stoller c© Esto]. (b) The Alcoa Building
— San Francisco, California, USA [SOM | c© Mak Takahashi]. (c) Building in Presidente
Riesco Ave, Santiago, Chile [c© Tomás Zegard].

modeled as an elastic truss with static loads and small displacements. The connection costs

are considered to be constant or null. This means that the cost to connect members with

different cross–sectional areas and angles is assumed not to change.

3.1 Four complementary formulations

The question of where is the optimal bracing point, is actually a subjective one: the math

and physics involved are exact, but to define an optimum, a measure or benchmark must be

chosen. The options for the objective function (measure) are limitless, but only a handful

are of interest to the practicing engineer. The following four objectives are explored in this

work:

1. Minimize the volume

2. Minimize the load–path

45

3. Minimize compliance

4. Minimize displacements

These objectives require constraints in order for the solution to be bounded and unique. In

all cases, the structural internal–external force equilibrium is enforced, either by Ku = f ,

or an equivalent expression. The problems considered in this paper are elastic lateral brac-

ing systems with small deformations, and no self–weight or connection costs (or constant).

Nonetheless, some of the concepts and conclusions can be extended to a wider range of op-

tions and constraints (e.g. buckling or frequencies). Each formulation has some properties,

advantages and disadvantages. A brief discussion of these will be presented in the following

section.

3.1.1 Volume formulation

An intuitive formulation for a practicing engineer is to minimize the volume of structural

material. Typically, the cost of a structure is proportional to its weight. Thus, minimizing

the total weight of the structure minimizes its cost (when the connection and joint costs are

constant). A stress constraint is required as it prevents the member’s cross–sectional areas

from approaching zero. The minimum volume formulation is as follows (with s.t. standing

for subject to):

min
A,x

V = ATL

s.t. σc ≤ σi ≤ σt ∀i = 1 . . . ne

A ≥ 0

with Ku = f ,

(3.1)

where L and A are column vectors with the member lengths and cross–sectional areas

respectively, x is a vector with the joint coordinates, K the stiffness matrix, u the nodal

displacements, f the nodal force vector, σi the member stresses and σc and σt the stress

limits on compression and tension respectively.

46

The volume formulation is arguably the most intuitive and common (Michell, 1904; Hemp,

1973). The strength of this formulation is that dealing with different stress limits for com-

pression and tension, is simple and straightforward. Euler buckling constraints, for example,

can also be included in the formulation with an additional stress constraint:

− π2E

(κLi/ri)
2 ≤ σi ∀i = 1 . . . ne (3.2)

where E is the modulus of elasticity, κ is the column effective length factor, r is the member’s

radius of gyration (r =
√
I/A), and I is the member’s area moment of inertia. Because

Euler’s buckling criterion overestimates the buckling strength of structural members, better

criteria and safety factors should be considered (AISC, 2011).

3.1.2 Load–path formulation

The load–path formulation, also called performance index or Michell’s number (Lev, 1981;

Mazurek et al., 2011), has equal treatment of compression and tension members. This

number takes into account the distance the internal forces travel through the structure:

min
A,x

Z =
∑

i

(
N(t)i −N(c)i

)
Li =

∑
i |Ni|Li

s.t.
∑

iAiLi ≤ V̄

A ≥ 0

with Ku = f ,

(3.3)

where Ni stands for the axial force in member i, and V̄ is a prescribed limit on the volume.

The load–path formulation, has the difficulty of an absolute value in the objective func-

tion. Alternatively, the compression and tension loads can be split into two positive variables

thus making the objective a linear function (Hemp, 1973). The biggest advantage of this

formulation is that for statically determinate trusses, the axial load does not depend on the

47

cross–sectional areas. In other words, the member sizing problem is decoupled from the

geometry, reducing the design variables from (nd ∗ nn + ne) to just (nd ∗ nn), where nd, nn

and ne are the problem’s dimension, number of nodes and number of elements respectively.

The formulation can be extended to treat compression and tension differently by introduc-

ing a parameter γ = −σt/σc, and rewriting the objective for Equation (3.3) to include this

penalization parameter (Sokó l, 2011)

min
A,x

Z? =
∑

i

(
N(t)i − γN(c)i

)
Li

s.t.
∑

iAiLi ≤ V̄

A ≥ 0

with Ku = f

(3.4)

Including a buckling constraint, on the other hand, is not straightforward.

3.1.3 Compliance formulation

Recent works on structural optimization revolve around measures of structural stiffness for

the structure’s performance (Bendsøe and Sigmund, 2003). A typical formulation for this

purpose is the compliance formulation: an energy measure, related to maximizing the stiff-

ness of the structure for given loads:

min
A,x

C = uTKu = uT f

s.t.
∑

iAiLi ≤ V̄

A ≥ 0

with Ku = f

(3.5)

The volume constraint is required in this case, otherwise, the stiffest structure resem-

bles a solid block of material. The main advantage of the compliance formulation is that

the objective function is self–adjoint: when computing the sensitivity, the solution to the

48

P P

1 2

3 4

5

u3 u4

Figure 3.2: Displacements of a lateral bracing system due to a load P . The top story drift
is u3 = u4 = ∆.

adjoint problem is known (Giles and Pierce, 2000), making this formulation computation-

ally attractive. Stress and buckling constraints can be implemented, but are, again, not

straightforward.

3.1.4 Displacement formulation

Displacement objective functions are employed so as to minimize the maximum displacement,

the top story displacement of a building, or inter–story drift to name a few. Considering a

single displacement ∆ = |uj| (Figure 3.2), the displacement formulation takes the form:

min
A,x

∆ = uj

s.t.
∑

iAiLi ≤ V̄

A ≥ 0

with Ku = f

(3.6)

The displacement formulation is simple and has the advantage of possessing a direct phys-

ical meaning for the engineer. It has similar characteristics to the compliance formulation,

but it is not self–adjoint.

49

3.2 Formulation equivalency

The four objectives presented in Equations (3.1), (3.3), (3.5) and (3.6) may seem different,

but under typical conditions, these formulations will result in the same optimal brace point

location. In other words, the stiffest structure in a direction, the least compliant structure,

the least weight structure and the one with the smallest load–path all have the same optimum

solution. The focus of this section is to explain when this occurs, and what happens when

additional constraints are introduced to the problem.

Optimal structures, in the sense of material efficiency, tend to be fully stressed (Michell,

1904; Lev, 1981; Topping, 1983). The proof is intuitive with the formulation in Equation

(3.1): for a structure that is not fully stressed, a reduction of the cross–sectional areas will

decrease the objective without violating the constraints. With no displacement, buckling or

symmetry constraints (manufacturing constraints), the optimal design for a single load case

is fully stressed. This statement is not true for the case of multiple loading conditions, and

is not considered in the present work. The fully stressed condition leads to the “Stress–ratio

method” (that relates to Michell’s solutions (Lev, 1981)), where the cross–sectional areas are

updated at each iteration as

Ai(new) = max

(
σc
σi
,
σt
σi

)
Ai (3.7)

Typically, optimal structures for a single load case are statically determinate. However,

for the case of multiple loading scenarios, as Schmidt (1962) correctly concluded, a statically

indeterminate form could sometimes give a lighter structure than a statically determinate

one.

50

3.2.1 Load–path to volume

The connection between volume and load–path was pointed out by Michell (Lev, 1981). If

the structure is fully stressed, then there are limit stress values σc and σt such that

N(c)i = σcAi N(t)i = σtAi (3.8)

With these, the objective in Equation (3.4) becomes

Z? =
∑
i

[
σt Ai|(t) −

(
−σt
σc

)
σc Ai|(c)

]
Li = σt

∑
AiLi = σtA

TL , (3.9)

and Equation (3.3) is a sub–case of the previous. Therefore, if the structure is fully stressed,

minimizing the performance index is equivalent to the formulation in Equation (3.3) (multi-

plied by a constant).

3.2.2 Compliance to load–path

The compliance problem in Equation (3.5) with a single load P , independent of the design

variables and displacements, can have the objective simplified as

C = uT f = P∆ , (3.10)

where ∆ is the displacement in the direction of the load P . For a truss with a single point

load, the principle of work and energy (Baker, 1992) states that

P∆ =
∑
i

N2
i Li
AiE

=
∑
i

|Ni|2 Li
AiE

(3.11)

51

Including the fully stressed assumption with |Ni| /Ai = σ̄, results in

C =
∑
i

|Ni|2 Li
AiE

=
σ̄

E

∑
i

|Ni|Li , (3.12)

thus making it equivalent to the formulation in Equation (3.3) (multiplied by a constant).

3.2.3 Displacement to compliance

If the displacement problem from Equation (3.6) has a single constant load P (independent

of design variables and displacements), and the displacement ∆ being minimized, is in the

direction of the force P , then

min ∆ = minP∆ = min uT f , (3.13)

leading to the formulation in Equation (3.5). If the objective function in Equation (3.6) is a

linear combination of several displacements of the truss, then the equivalency is preserved if

and only if the loads in the displacement directions are in the same ratio as the coefficients

in the linear combination. If the previous condition is not met, then the optimal design,

which minimizes some displacement ∆ (or linear combination of displacements), may not be

fully stressed.

3.2.4 Equivalence summary

The relationship and requirements for equivalency between formulations are then summa-

rized in Figure 3.3. The requirements for equivalency shed light on when these connections

may be broken. In particular, previous studies have already shown situations where the

minimum weight and fully stressed design may not be equivalent (Kicher, 1966; Razani,

1965).

52

DisplacementComplianceLoad−PathVolume

Cost − Weight
Sti�ness − Performance

Figure 3.3: Equivalency requirements between formulations.

P P

x

B

H

y

3
2

1

Figure 3.4: Two–dimensional lateral bracing system.

3.3 Single brace analysis

The following analytical derivations for two–dimensional braces extend the conclusions de-

rived by Stromberg et al. (2012), where the optimal bracing point was found to be at

x = 0.75H for two–dimensional single–bay multiple–stories braces optimized for compli-

ance. In addition, Stromberg et al. (2012) includes real building applications of the concepts

and conclusions in the work. The findings from this single brace analysis form the basis for

more general bracing rules in the following sections. The bracing point location in Figure

3.4 will be optimized using formulations discussed earlier.

Using the symmetry condition, only half of the brace needs to be analyzed. Consideration

of different values for σt and σc is not important because the direction of lateral loads in

buildings is uncertain, therefore a single value σ̄ is used to limit positive and negative stresses.

53

The compliance of the structure is:

C =
4P 2

EB2

[
L3

1

A1

+
L3

2

A2

+
L3

A3

y2

]
, (3.14)

where B denotes the bay width (Figure 3.4). The volume for the half–structure is:

V =
3∑
i=1

AiLi = A1L1 + A2L2 + A3H , (3.15)

where H denotes the bay height (Figure 3.4). The derivatives of the member lengths L with

respect to variable y are:
dL1

dy
=
y

L1

dL2

dy
=
y −H
L2

dL3

dy
=0 ,

(3.16)

and derivatives of the axial loads with respect to the variable y are:

dN1

dy
=

(
−2P

B

)(
y

L1

)
dN2

dy
=

(
2P

B

)(
y −H
L2

)
dN3

dy
=

2P

B
,

(3.17)

where N is the axial load on the member, P is the load at the top of the braced module,

and x and y locate the bracing point.

The three–dimensional case is symmetric with respect to the x1x3 and x2x3 planes (lateral

forces in a building are often considered in one direction at a time); therefore only one quarter

of the brace needs to be solved. Figure 3.5 illustrates the bracing system loaded in the plane

x1x3. If the base is square B1 = B2, the resulting optimal braces in both planes are the same.

Corner columns participate in both loading directions, making these members attractive, if

the goal is to strengthen the structure given a limited amount of material. The diagonals

54

B1B2

H

x

y

P

P

P

P

x1x2
x3

Figure 3.5: Three–dimensional lateral bracing system.

however, due to the symmetry constraint, are mirrored to the other loading plane. This can

be interpreted as the cost of the diagonals being twice that of the two–dimensional case:

a cost (or multiplicity) variable α = 1 for the two–dimensional case and α = 2 for the

three–dimensional case will be used.

3.3.1 Minimum volume optimal

The Lagrangian for the minimum volume objective is:

L = αA1L1 + αA2L2 + A3H + λ11 (−A1σ̄ −N1) + λ12 (−A1σ̄ +N1) + ...

λ21 (−A2σ̄ −N2) + λ22 (−A2σ̄ +N2) + ...

λ31 (−A3σ̄ −N3) + λ32 (−A3σ̄ +N3)

(3.18)

55

Which has a single feasible optimum at:

λ11 = αL1/σ̄ λ12 = 0

λ21 = 0 λ22 = αL2/σ̄

λ31 = 0 λ32 = H/σ̄

(3.19)

Therefore, the optimal bracing point is located at:

x =
2α + 1

4α
H y =

2α− 1

4α
H (3.20)

3.3.2 Load–path optimal

The Lagrangian for the minimum load–path objective (introducing fictitious equivalent forces

in the three–dimensional case to enforce symmetry, i.e. taking α = 2) is:

L = α
2PL1

B
L1 + α

2PL2

B
L2 +

2Py

B
H , (3.21)

with no constraint since the structure is statically determinate. The optimal bracing point

is located at:

x =
2α + 1

4α
H y =

2α− 1

4α
H (3.22)

3.3.3 Compliance optimal

The Lagrangian for the minimum compliance objective (introducing fictitious equivalent

forces in the three–dimensional case to enforce symmetry, i.e. taking α = 2) is:

L =
4P 2

EB2

[
L3

1

A1

+
L3

2

A2

+
L3

A3

y2

]
+ λ

(
αA1L1 + αA2L2 + A3H − V̄

)
(3.23)

The optimum is found for

λ =
4P 2y2

EB2A2
3

, (3.24)

56

Table 3.1: Optimal bracing point location in two and three dimensions with different objec-
tives.

Height x
Weight - Cost Performance

Volume Load–Path Compliance Displacement
2D 0.75H 0.75H 0.75H 0.75H
3D 0.625H 0.625H 0.6768H 0.6768H

and the optimal bracing point is at:

x =
2
√
α + 1

4
√
α

H y =
2
√
α− 1

4
√
α

H (3.25)

3.3.4 Displacement optimal

The Lagrangian for the minimum displacement objective (introducing fictitious equivalent

forces in the three–dimensional case to enforce symmetry, i.e. taking α = 2) is:

L =
∑ N2

i Li
AiE

+ λ
(
αA1L1 + αA2L2 + A3H − V̄

)
(3.26)

The stress values in the members as a function of λ are:

σ1 =
√
PEλ

σ2 = σ3 =
√
αPEλ ,

(3.27)

and the optimal bracing point is found at:

x =
2
√
α + 1

4
√
α

H y =
2
√
α− 1

4
√
α

H (3.28)

3.3.5 Results summary

Results obtained with the four objectives above are compared in Table 3.1.

The methods can be grouped (or characterized) by objectives: weight/cost and stiff-

ness/performance. In two–dimensional braces all four formulations result in the same so-

57

lution. In the three–dimensional case, however, optimizing for weight/cost or for stiff-

ness/performance results in different optimal bracing points. It is important to note that

the member stresses will not be constant for the 3D performance–optimized case (σ2 = σ3 =

√
ασ1): the optimal design and fully stressed condition don’t match (Kicher, 1966; Razani,

1965). In other words, given the symmetry constraints in two axes, the fully stressed condi-

tion is broken, and thus, the equivalency between all formulations is not maintained (Figure

3.3).

The decrease in the objective function for the optimal bracing point (as in Table 3.1),

compared to the midpoint brace (x = 0.5H), depend on the aspect ratio of the brace.

As expected, the improvement in the compliance objective (displacement decrease) with a

volume constraint, is the square of the improvement in the volume objective with stress

constraints, for a single two–dimensional brace:

V (x = 0.75H,Aopt)

V (x = 0.5H,Aopt
x=0.5H)

∣∣∣∣
2D

=
4B2 + 7H2

4B2 + 8H2
(3.29)

C(x = 0.75H,Aopt)

C(x = 0.5H,Aopt
x=0.5H)

∣∣∣∣
2D

=

[
4B2 + 7H2

4B2 + 8H2

]2

(3.30)

However, this is not true for the (symmetry–constrained) three–dimensional case. The opti-

mization for loads in two different directions results in an optimal structure that is not fully

stressed for each of the loads. The ratio of the objectives for the three–dimensional problem

is as follows:

V (x = 0.625H,Aopt)

V (x = 0.5H,Aopt
x=0.5H)

∣∣∣∣
3D

=
16B2 + 23H2

16B2 + 24H2
(3.31)

C(x = 0.6768H,Aopt)

C(x = 0.5H,Aopt
x=0.5H)

∣∣∣∣
3D

=

[
8B2 +

(
7 + 4

√
2
)
H2

8B2 +
(
8 + 4

√
2
)
H2

]2

(3.32)

A comparison of the improvements in the objective function for a single brace, for the cases

where (B = H) and (1.5B = H), is summarized in Table 3.2.

58

Table 3.2: Single brace improvement in the objective function for the optimal bracing com-
pared to a mid–height bracing point.

Improvement Weight — Cost Performance
over x = 0.5H B = H 1.5B = H B = H 1.5B = H

2D 8.33% 10.23% 15.97% 19.41%
3D 2.50% 3.21% 9.02% 11.28%

3.4 Multiple bays/stories

The previous section deals with a single brace loaded laterally, but in some applications the

bracing system may span several stories or bays (side by side) as in Figure 3.6. Additionally,

the braces could also be loaded vertically by a load Pz, but this load is only taken downwards

as opposed to the lateral Px that may act in any direction.

The optimal solution has a different bracing point for each case. Nonetheless, a unique

bracing point for the whole bracing system is desirable for construction and aesthetic reasons.

In this section, the optimal bracing point for several different cases are found assuming a

single optimal bracing point for all modules. For statically indeterminate trusses, the cross–

sectional areas must be included in the optimization.

3.4.1 Single bay — Multiple stories

Single bay braces (several stories high) as in Figures 3.6(a) and 3.6(c) are statically determi-

nate, and the optimal bracing point using the Load–path formulation requires no member

sizing. The addition of vertical loads does not have an effect on the optimal bracing point

location. Vertical loads transfer directly to the base through the columns, and therefore

affect only the column sizing. The optimal is found to be at x = 0.75H using all of the

presented formulations.

59

Px Pz Px Pz

(a)

Px Pz Px Pz2Px 2Pz 2Px 2Pz

(b)

Px Pz Px Pz

Px Pz Px Pz

(c)

Px Pz

Px Pz

Px Pz

Px Pz2Px 2Pz

2Px 2Pz

2Px 2Pz

2Px 2Pz

(d)

Figure 3.6: Two–dimensional bracing systems consisting of multiple bays and stories with
horizontal and vertical loads. (a) 1 × 1 brace. (b) 3 × 1 brace. (c) 1 × 2 brace. (d) 3 × 2
brace.

3.4.2 Limit case of infinite bays — Single story

The bracing system is statically indeterminate in this case, and the cross–sectional areas

must be included in the optimization. However, taking advantage of the symmetry, the

analysis can be done as in Figure 3.7 for a single braced column. The optimum bracing

points are found to be at x = 0.50H using all of the presented formulations. The columns

get sized with a zero cross–sectional area, and the addition of vertical loads does not change

the location of the optimum bracing points. This can be interpreted as a shear transfer

problem across stories, and as expected, the optimal solution consists of straight diagonal

braces from the load point to the supports, as depicted in Figure 3.8. The solution for

60

Px Pz Px Pz Px Pz Px Pz

(a)

Px

(b)

Pz

(c)

Figure 3.7: Two–dimensional single story bracing system with infinite bays. (a) Brace with
loads. (b) Load and boundary conditions for horizontal load. (c) Loads and boundary
conditions for vertical load.

Px Pz Px Pz Px Pz Px Pz

H
0.5H

Figure 3.8: Two–dimensional optimal single story bracing system with infinite number of
bays.

vertical loads only are columns sized accordingly with no diagonals (an unstable solution).

Any small lateral load will cause the solution to have diagonals only and no columns.

3.4.3 Multiple bays — Multiple stories

The solution to this problem (Figure 3.6(d)) is not trivial due to the large number of variables

introduced by the cross–sectional areas and the nonlinearity of the problem, and therefore

the problem is solved numerically. The stress ratio method introduced in Equation (3.7)

tends to drive the solution to a local minimum for large enough problems. The cross–

sectional areas are introduced into the optimization along with the bracing point variable,

and the optimization is done using the interior–point method (Karmarkar, 1984; Wright,

61

1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Stories = 1

bays

x/
H

Pz /Px =0.0

Pz /Px =0.5

Pz /Px =1.0

(a)

1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Stories = 2

bays

x/
H

Pz /Px =0.0

Pz /Px =0.5

Pz /Px =1.0

(b)

1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Stories = 3

bays

x/
H

Pz /Px =0.0

Pz /Px =0.5

Pz /Px =1.0

(c)

Figure 3.9: Multiple bays — Multiple stories optimal bracing locations in two dimensions.
(a) One story high. (b) Two stories high. (c) Three stories high.

2004). Based on tributary areas, the lateral and vertical loads double at internal nodes.

For low levels of vertical loads, the optimal solution lies between the previous solutions

x = 0.50H and x = 0.75H, and these values act like upper and lower bounds of all possible

solutions. This is proven false when a bracing system is subjected to high vertical loads and

multiple stories, as the solution may fall below x = 0.5H and slowly converge to this value

from below. From Figure 3.9, it can be inferred that an increase on the number of bays, or

on the vertical loads will drive the solution closer to x = 0.5H. In general, the bracing point

location decays asymptotically towards x = 0.5H. As an example, the solution for the case

62

with no vertical loads Pz = 0.0 and a single story is precisely described by

x[1-story Pz=0.0] =

(
0.25

bays
+ 0.5

)
H , (3.33)

and on the limit of infinite bays converges to x = 0.5H as predicted.

The optimal bracing point, cross–sectional areas and member stresses are given for mod-

ules with 1.5B = H in Figure 3.15, to serve as examples.

63

00.
2

0.
4

0.
6

0.
8

1

00.
2

0.
4

0.
6

0.
8

1

A
 /

A
m

ax
σ

/ σ
m

ax

F
ig

u
re

3.
10

:
T

w
o–

d
im

en
si

on
al

op
ti

m
al

b
ra

ce
s

w
it

h
cr

os
s–

se
ct

io
n
al

ar
ea

s
an

d
st

re
ss

es
fo

r
m

o
d
u
le

s
w

it
h

1.
5B

=
H

(a
re

as
an

d
st

re
ss

es
ar

e
n
or

m
al

iz
ed

).
S
y
m

m
et

ry
is

en
fo

rc
ed

an
d

d
as

h
ed

m
em

b
er

s
h
av

e
n
ea

r–
ze

ro
cr

os
s–

se
ct

io
n
al

ar
ea

.

64

3 bays

3 bays
2

st
or

ie
s

Figure 3.11: Three–dimensional brace with three bays and two stories (potential uses: stage
supports, machine supports, mechanical floors, warehouses, etc).

3.4.4 Three–dimensional case

Three–dimensional braces composed of several bays have their use, for example, in mechan-

ical floors of buildings and machine supports (Figure 3.11). Based on tributary areas and

compared to corner nodes, loads double at edge nodes, and quadruple at interior nodes.

The solutions are similar to the two–dimensional case, but with different upper bounds:

for cost/weight optimization the upper bound is at x = 0.625H = 5/8H, and for stiff-

ness/performance the upper bound is at x = 0.6768H for Pz = 0.0, but this upper limit gets

reduced with the addition of vertical loads (Figure 3.12).

The optimal bracing point, cross–sectional areas and member stresses are given for mod-

ules with 1.5B = H in Figures 3.16, 3.17 and 3.18, to serve as examples.

3.4.5 Extension to non–square three–dimensional braces

The analysis of three–dimensional braces is limited to square bases to narrow the scope of

this section. However, the extension to braces with non–square bases follows from this work.

As an example, the optimal bracing point for a single non–square three–dimensional brace,

65

Comp.
Pz /Px =0.0

Pz /Px =0.5

Pz /Px =1.0

Vol.

1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Stories = 1

bays

x/
H

(a)

Comp.
Pz /Px =0.0

Pz /Px =0.5

Pz /Px =1.0

Vol.

1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Stories = 2

bays

x/
H

(b)

Comp.
Pz /Px =0.0

Pz /Px =0.5

Pz /Px =1.0

Vol.

1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Stories = 3

bays

x/
H

(c)

Figure 3.12: Multiple bays — Multiple stories optimal bracing locations in three dimensions.
(a) One story high. (b) Two stories high. (c) Three stories high.

optimized for volume/cost, considering different loads in each direction P1 and P2 is:

x =
H

4

[
2 +

max (λ1, λ2)

λ1 + λ2

]
y =

H

4

[
2− max (λ1, λ2)

λ1 + λ2

]
, (3.34)

with λ1 = P1/B1, λ2 = P2/B2, and the width of the bay in the x1 and x2 directions being

B1 and B2 respectively (Figure 3.5).

66

3.4.6 Additional verification with the “Ground structure

method”

The numerical method used in the previous sections sizes the structural members and op-

timizes the geometry concurrently. The addition of the geometrical optimization makes the

problem computationally and mathematically more complex than just member sizing. The

ground structure method (Dorn et al., 1964; Hemp, 1973), formulates the minimum volume

problem in Equation (3.1) as a Linear Program (LP), and the solution is therefore known to

be globally optimal and can be computed with great computational efficiency (Karmarkar,

1984; Wright, 2004).

The power of the method relies on a highly redundant and interconnected structure

(Figure 3.13). This compensates for the fact that the geometry is not really being optimized.

The layout optimization problem (sizing and geometry), gets translated into a sizing–only

problem, but involving a larger number of design variables. This sizing–only problem, despite

its large number of design variables, it is computationally more efficient and globally optimal.

Using an implementation of the method developed for unstructured domains (explained in

detail in Chapters 4 and 5), the results previously obtained for a single brace, are again

confirmed numerically (Figure 3.14).

3.5 Conclusions

Optimal structures, and consequently bracing systems are said to be optimal in accordance to

the objective function used. Four common formulations (using different objective functions)

for structural optimization were presented. Similarities, differences and connections between

them were highlighted and explored. Compared to geometrical optimization, the member

sizing problem is better known and understood. Therefore, the focus of this work was placed

on the bracing point location, leaving the member sizing to be done a posteriori (although,

to calculate the optimal bracing point for indeterminate trusses, the members had to be

67

1

1

1 1

?

(a)

N =2x

N =10y

(b)

Figure 3.13: Ground structure optimization of a braced module. (a) Problem definition. (b)
Ground structure (interconnected truss) for a 2× 10 partition.

X: 0.5
Y: 0.75

(a)

X: 0.5
Y: 0.625

(b)

Figure 3.14: Optimized brace for minimum volume using the ground structure method using
a 2 × 200 partition. (a) Two–dimensional optimal brace with x = 0.75H. (b) Three–
dimensional optimal brace with x = 0.625H.

sized).

The optimal bracing point location in two–dimensions is the same regardless of the objec-

tive function (formulation) used. In most cases, the optimal bracing point is found to be in

a feasible region delimited by x = 0.50H and an upper limit or bound. The optimal bracing

point location may fall below x = 0.50H if the structure is subjected to high vertical loads.

If the bracing system is subjected to vertical loads, and/or if the bracing system is composed

of multiple bays, then the optimal bracing point location approaches the lower limit. The

68

upper limit is x = 0.75H = 3/4H for the 2D case, regardless of the objective function. For

the three–dimensional case, the upper limit is x = 0.625H = 5/8H for cost/weight optimized

structures, and for the stiffness/performance case the upper limit is x = 0.6768H, or a lower

value if subjected to vertical loads.

The optimal cross–sectional areas depend on the aspect ratio of the module. The symme-

try constraint in three–dimensional trusses breaks the fully stressed condition in structures

optimized for stiffness/performance. In other words, material is not being used efficiently

(or at full capacity) but the resulting structure will still be the stiffest.

The purpose of this chapter is to provide insight for the initial guess of cost–effective or

high–performing lateral braces. These findings can aid the engineer in the initial stages of

design, and also provide guidance to improve common engineering practices that often put

the bracing point at the middle x = 0.5H, or worse, at the top x = H. A natural extension

of his work is the consideration of the dynamic behavior of the structure.

69

00.
2

0.
4

0.
6

0.
8

1

00.
2

0.
4

0.
6

0.
8

1

A
 /

A
m

ax
σ

/ σ
m

ax

F
ig

u
re

3.
15

:
T

w
o–

d
im

en
si

on
al

op
ti

m
al

b
ra

ce
s

w
it

h
cr

os
s–

se
ct

io
n
al

ar
ea

s
an

d
st

re
ss

es
fo

r
m

o
d
u
le

s
w

it
h

1.
5B

=
H

(a
re

as
an

d
st

re
ss

es
ar

e
n
or

m
al

iz
ed

).
S
y
m

m
et

ry
is

en
fo

rc
ed

an
d

d
as

h
ed

m
em

b
er

s
h
av

e
n
ea

r–
ze

ro
cr

os
s–

se
ct

io
n
al

ar
ea

.

70

00.
2

0.
4

0.
6

0.
8

1

00.
2

0.
4

0.
6

0.
8

1

σ
/ σ

m
ax

A
 /

A
m

ax

(a
)

00.
2

0.
4

0.
6

0.
8

1

00.
2

0.
4

0.
6

0.
8

1

σ
/ σ

m
ax

A
 /

A
m

ax

(b
)

F
ig

u
re

3.
16

:
T

h
re

e–
d
im

en
si

on
al

op
ti

m
al

b
ra

ce
w

it
h

cr
os

s–
se

ct
io

n
al

ar
ea

s
an

d
st

re
ss

es
fo

r
a

1–
b
ay

1–
st

or
y

tr
u
ss

w
it

h
1.

5B
=
H

(a
re

as
an

d
st

re
ss

es
ar

e
n
or

m
al

iz
ed

).
S
y
m

m
et

ry
is

en
fo

rc
ed

an
d

d
as

h
ed

m
em

b
er

s
h
av

e
n
ea

r–
ze

ro
cr

os
s–

se
ct

io
n
al

ar
ea

.
(a

)
O

p
ti

m
iz

ed
fo

r
vo

lu
m

e.
(b

)
O

p
ti

m
iz

ed
fo

r
co

m
p
li
an

ce
.

71

00.
2

0.
4

0.
6

0.
8

1

00.
2

0.
4

0.
6

0.
8

1

A
 /

A
m

ax
σ

/ σ
m

ax

(a
)

00.
2

0.
4

0.
6

0.
8

1

00.
2

0.
4

0.
6

0.
8

1

A
 /

A
m

ax
σ

/ σ
m

ax

(b
)

F
ig

u
re

3.
17

:
T

h
re

e–
d
im

en
si

on
al

op
ti

m
al

b
ra

ce
w

it
h

cr
os

s–
se

ct
io

n
al

ar
ea

s
an

d
st

re
ss

es
fo

r
a

1–
b
ay

2–
st

or
ie

s
tr

u
ss

w
it

h
1.

5B
=
H

(a
re

as
an

d
st

re
ss

es
ar

e
n
or

m
al

iz
ed

).
S
y
m

m
et

ry
is

en
fo

rc
ed

an
d

d
as

h
ed

m
em

b
er

s
h
av

e
n
ea

r–
ze

ro
cr

os
s–

se
ct

io
n
al

ar
ea

.
(a

)
O

p
ti

m
iz

ed
fo

r
vo

lu
m

e.
(b

)
O

p
ti

m
iz

ed
fo

r
co

m
p
li
an

ce
.

72

00.
2

0.
4

0.
6

0.
8

100.
2

0.
4

0.
6

0.
8

1

A
 /

A
m

ax

σ
/ σ

m
ax

(a
)

00.
2

0.
4

0.
6

0.
8

100.
2

0.
4

0.
6

0.
8

1

A
 /

A
m

ax

σ
/ σ

m
ax

(b
)

F
ig

u
re

3.
18

:
T

h
re

e–
d
im

en
si

on
al

op
ti

m
al

b
ra

ce
w

it
h

cr
os

s–
se

ct
io

n
al

ar
ea

s
an

d
st

re
ss

es
fo

r
a

2–
b
ay

s
1–

st
or

y
tr

u
ss

w
it

h
1.

5B
=
H

(a
re

as
an

d
st

re
ss

es
ar

e
n
or

m
al

iz
ed

).
S
y
m

m
et

ry
is

en
fo

rc
ed

an
d

d
as

h
ed

m
em

b
er

s
h
av

e
n
ea

r–
ze

ro
cr

os
s–

se
ct

io
n
al

ar
ea

.
(a

)
O

p
ti

m
iz

ed
fo

r
vo

lu
m

e.
(b

)
O

p
ti

m
iz

ed
fo

r
co

m
p
li
an

ce
.

73

Chapter 4

Unstructured ground structure
method in 2D

The ground structure method (Dorn et al., 1964) provides an approximation to an optimal

Michell structure (Michell, 1904; Hemp, 1973) composed of an infinite number of members,

by using a reduced finite number of truss members. The optimal (least–weight) truss for a

single load case, under elastic and linear conditions, subjected to stress constraints can be

formulated as a linear programming problem (Ohsaki, 2010). The method removes unneces-

sary members from a highly interconnected truss (ground structure) while keeping the nodal

locations fixed. Hegemier and Prager (1969) showed that a truss with maximum stiffness

is also fully stressed. In addition, the problem of a single load case considering equal stress

limits in compression and tension, is equivalent to the minimization of compliance for a

prescribed volume (Bendsøe and Sigmund, 2003).

The analytical solution must satisfy some known conditions for structural optimization

problems (Michell, 1904; Hencky, 1923). However, these conditions themselves do not provide

means for obtaining the optimal analytical solution. Given a candidate optimal structure,

these requirements can be used to check if the structure is indeed optimal or not. This is

where the ground structure method excels; it provides a solution that is close to the absolute

optimal solution sought.

The ground structure method has been refined, simplified and optimized, resulting in

an easy–to–use implementation for truss topology optimization in structured orthogonal do-

74

P

R

H2r ?

Figure 4.1: Cantilever with circular support. The analytical solution is given by Michell
(1904) provided that the height H is large enough to develop the complete solution.

mains (Sokó l, 2011). The method has also been extended to support unstructured meshes

(Smith, 1998), where the initialization of the method (generation of the ground structure) is

intricate. Recently, exact solutions for complicated domains have been numerically approxi-

mated and obtained (Lewiński et al., 2013), and there is ongoing work to extend the library

of known analytical solutions for complicated domains.

The interest in unstructured non–orthogonal domains is reasonable; applied engineering

problems are often not composed of boxes. The analytical solution of a cantilever supported

on a circle (Figure 4.1) was obtained by Michell (Michell, 1904), and later generalized to

different geometries and conditions (Graczykowski and Lewiński, 2005). This problem, for

example, cannot be solved with an orthogonal structured domain. The present work extends

the ground structure method with a simple, flexible and effective methodology to gener-

ate the ground structures in non–orthogonal unstructured and concave domains. However,

the method is restricted to piecewise polygonal boundaries (convex, concave and with the

possibility of holes).

The computational implementation, named GRAND, aims to have a balance between

performance and legible code (educational). The objective is to provide future researchers

in structural optimization with a ground structure implementation that serves as a start-

ing point for future developments. The complete source code for GRAND is available in

75

Appendix A. Limitations and assumptions of the present implementation and method are:

• single static load case scenario

• constant forces (design independent)

• small deformations

• two–dimensional (2D) problems

It can, however, address different limits in tension σT and compression σC (Sokó l, 2011).

Throughout this chapter, the terms truss member and bar are used interchangeably.

4.1 Formulations

Michell (1904) derived the conditions necessary for a minimum volume truss subjected to

stress constraints (Ohsaki, 2010; Hemp, 1973): given stress limits in tension σT > 0 and

compression σC > 0, and the average limit stress σ0 = (σT + σC) /2, the truss is optimal if:

1. The truss is in equilibrium

2. The stress is equal to either σT or σC for all members

3. There exists a compatible deformation field such that the strains are equal to εt =

σ0ε0/σT and εc = σ0ε0/σC for members in tension and compression, respectively

As a consequence, the members in the resulting structure are arranged in the directions of

the principal strains for the displacement field. Unfortunately, Michell’s solutions encompass

infinitely dense members. Nonetheless, a reasonable approximation to this solution can be

obtained using a (finite) large number of members within the prescribed domain.

The problem formulation used in this work is based on plastic analysis : no stiffness

matrices, compatibility equations or stress–strain relations are used (Hemp, 1973). However,

for the sake of completeness, the elastic analysis and some issues present in this method will

also be discussed (Christensen and Klarbring, 2009).

76

4.1.1 Elastic formulation

Consider a rigid truss (no mechanisms), with Ndof nodal forces f (excluding the components

with supports), and assume that the supports are sufficient to prevent the structure from

having rigid body motions. The basic formulation for the minimum volume truss is then

(Ohsaki, 2010):

min
a

V = lTa

s.t. Ku = f

−σC ≤ σi ≤ σT if ai > 0

ai ≥ 0 i = 1, 2 . . . Nb ,

(4.1)

with ai, li and σi the cross–sectional area, length and stress of the ith member (for all Nb

members). The parameters Nn and Nsup are the number of nodes and components with

supports respectively, and Ndof = 2Nn−Nsup for a two–dimensional ground structure. Here,

K denotes the global stiffness matrix and u denotes the nodal displacements associated with

the Ndof free nodal components. Theoretically, a member is absent (removed) from the

truss if ai = 0. This issue has received significant attention in the literature, and is further

discussed in the next paragraph. The redundancy of the ground structure is Nb −Ndof and

should be greater than zero to provide optional layouts.

This formulation considers the equilibrium and compatibility conditions, and is thus an

elastic analysis formulation (Hemp, 1973; Kirsch, 1993). The stress constraint may be vi-

olated if its corresponding member is absent, i.e. ai = 0 (Sved and Ginos, 1968). This

phenomena of is known as vanishing constraints or design–dependent constraints. For the

case of multiple loads, the optimal solution may become a singular topology, and thus ob-

taining the global optimum becomes quite challenging (Rozvany, 2001). Fortunately, the

single load case does not suffer from this problem.

77

4.1.2 Plastic formulation

Compared to Equation (4.1), a formulation based on plastic analysis enforces equilibrium

and no explicit compatibility or stress–strain relations (Kirsch, 1993):

min
a

V = lTa

s.t. BTn = f

−σCai ≤ ni ≤ σTai i = 1, 2 . . . Nb ,

(4.2)

where BT is the nodal equilibrium matrix of size Ndof × Nb (B has size Ndof × Nb), built

from the directional cosines of the members, and n is a vector with the internal (axial) force

for all members in the ground structure. The stress constraint (in tension or compression)

must be active for all members at the optimum. An intuitive proof is that if the ith member

has ni < σTai and ni > −σCai, then ai can be reduced (reducing the total volume) without

violating the constraints. The stress constraint is expressed in terms of member force, thus

simplifying its treatment. Incorporating slack variables in the stress constraints (Hemp,

1973; Achtziger, 2007), converts the stress inequalities into equalities:

ni + 2
σ0

σC
s−i = σTai

−ni + 2
σ0

σT
s+
i = σCai ,

(4.3)

where the (positive) coefficients multiplying the slack variables simplify the resulting expres-

sions for cross–sectional area and axial force:

ai =
s+
i

σT
+
s−i
σC

ni = s+
i − s−i

(4.4)

78

The optimization problem in (4.2) becomes then a linear programming problem as:

min
s+,s−

V = lT
(

s+

σT
+

s−

σC

)
s.t. BT (s+ − s−) = f

s+
i , s

−
i ≥ 0

(4.5)

Note that for any active member, only one of s+
i and s−i is non–zero. The member is in

tension if s+
i > 0, and in compression if s−i > 0. If the truss structure is stable, has no

repeated and no overlapping members, then the rank of matrix BT is Ndof (i.e. the solution

does not lie on the edge of the feasible domain). The solution of the linear programming

problem (4.5) yields at most Ndof non–zero basic variables, with the remainder non–basic

variables being absent from the optimal structure (i.e. ai = 0). Therefore, the optimal

truss is statically determinate and the solution is also globally optimal (Sved, 1954; Kicher,

1966). The elastic design (Equation 4.1) has to satisfy additional compatibility conditions,

and thus a higher optimal volume is expected compared to the plastic design (Equation

4.2). But because the optimal structure for a single load case is statically determinate, then

the plastically admissible structure, based on force equilibrium, also satisfies the kinematic

compatibility and stress–strain relation, and is thus also an elastically admissible structure:

the optimal solution for both methods are equal for the given assumptions (Dorn et al., 1964;

Hemp, 1973).

If the ratio in the stress limits is defined as κ = σT/σC , then the formulation becomes:

min
s+,s−

V̄ =
V

σT
= lT (s+ + κs−)

s.t. BT (s+ − s−) = f

s+
i , s

−
i ≥ 0

(4.6)

This final form of the plastic layout optimization problem is utilized in this work (Sokó l, 2011;

Achtziger, 2007; Gilbert and Tyas, 2003), and can be efficiently solved using the interior–

79

point algorithm (Karmarkar, 1984; Wright, 2004). The optimal volume V̄ is calculated for

σT = 1, and should be scaled by 1/σT for values other than unity.

The resulting optimal structure will be in equilibrium. However, the equilibrium may

be unstable due to the existence of members with zero cross–sectional areas belonging to

the basic variables (degenerate LP problem). As recommended by Dorn et al. (1964), the

structure should be post–processed to become a reduced optimal structure (ROS) with:

• Nodes connecting two collinear members are all replaced with a single long member

(collinear hinges).

• Nodes where all members have ai = 0 are removed, i.e. nodes not participating in the

resulting structural configuration are removed.

• Members associated with basic variables (LP) having zero cross–sectional area should

have a minimum value amin > 0 to account for imperfections and small variations in

the geometry and loads.

The resulting (stable) structure maintains all the properties of the original one: equilib-

rium, statically determinate and fully stressed. This post–processing however, is left to the

judgement of the user or practitioner and will not be addressed in this chapter.

4.2 Implementation

4.2.1 Domain definition — Base mesh

To define the domain and boundaries, four variables must be specified. These in turn will be

used to generate the ground structure, and are described in detail in Table 4.1. The number

of nodes, elements, nodes with prescribed boundary conditions and nodes with prescribed

loads are Nn, Ne, Nf and Nl respectively. It should be noted that GRAND makes no

assumption on the type of elements (lines, triangles, quads, polygonal or combinations of

80

Table 4.1: Domain definition (base mesh) input variables for GRAND.

Variable
Name

Type &
Size

Description

NODE array

Nn × 2
Each row p has the nodal coordinates x and y for node
p.

ELEM cell Ne×
1

Every element in the list is a row vector containing the
node numbers for a particular element.

SUPP array

Nf × 3
Each row consists of a node number, fixity x and fixity
in y. Any value other than NaN specifies fixity. The
total number of specified fixities is Nsup.

LOAD array

Nl × 3
Each row consists of a node number, load in x and load
in y. A zero or NaN specify no force in that direction.

1

P

2

P

h

(a)

3
1

2

P

P

h

(b)

Figure 4.2: Overlapping members example assuming P = 1, h = 1 and σT = 1. (a) Problem
with a unique solution: optimal volume is V = 1 and a1 = a2 = 1. (b) Problem with a
non–unique solution: optimal volume is V = 1, but a1 = a2 = [0, 1] and a3 = 1− a1.

these), nor on the element numbering. This information is only used to define the nodal

connectivity, the domain’s extension and boundaries. GRAND has three options available

for importing or generating the base mesh: loading an external mesh following the guidelines

from Table 4.1, generating the mesh with the bundled polygonal mesher called PolyMesher

(Talischi et al., 2012a), and generating an orthogonal structured domain using a subroutine

provided with GRAND.

81

4.2.2 Ground structure generation

The generation of the ground structure is the main contribution in GRAND. To ensure

that the solution is unique and the representation of the solution is appropriate, the ground

structure should have no overlapping truss members (members connecting collinear nodes),

or two members connecting the same nodes (Figure 4.2). The starting point of the ground

structure generation process is the base mesh (defined as in Table 4.1). In addition, a

connectivity level Lvl and a collinearity tolerance ColTol need to be specified. To efficiently

generate the ground structure on modern computer architectures, the problem of generating

the ground structure should be translated to linear algebra and matrix operations when

possible, thus taking advantage of the optimizations in numerical computing frameworks

(Heath, 1998; Olson, 2013).

The user defined connectivity level determines the level of redundancy, or inter–connectedness,

of the initial ground structure. If the connectivity level Lvl is sufficiently high, the ground

structure generation algorithm will interconnect all nodes; this is often referred to as a full

level ground structure. The analytical solution (Michell, 1904), is typically composed of

curved members. The ground structure method will have a tendency to retain short mem-

bers, so as to more accurately try to represent these curved members in a piecewise fashion.

Thus, the full level ground structure, containing long (edge–to–edge) candidate members, is

not the best from a cost–effective point of view. If two nodes belong to the same element

in the base mesh (Figure 4.3(a)), then they are considered neighbors. From this idea of

neighbors, the connectivity level can be explained as follows:

• Level 1 connectivity will generate members between all neighboring nodes as in Figure

4.3(b).

• Level 2 connectivity will generate members up to the neighbors of the neighbors as in

Figure 4.3(c).

• Level 3 connectivity will generate members up to the neighbors of the neighbors of the

82

neighbors as in Figure 4.3(d).

• Level 4 connectivity . . .

The example in Figure 4.3 achieves a full level ground structure at level 5, and the difference

between levels 4 and 5 is minimal. Note that no members are generated in the domain’s

concave region; this desirable feature will be discussed in detail in the following sections.

The member generation process scales rapidly with the connectivity level, only decelerates

when the ground structure reaches full level connectivity (Figure 4.4).

The nodal connectivity matrix (symmetric i.e. bi–directional) for the base mesh is named

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Ground structure connectivity level generation example. (a) Base mesh composed
of 9 polygonal elements. (b) Level 1 connectivity. (c) Level 2 connectivity. (d) Level 3
connectivity. (e) Level 4 connectivity. (f) Level 5 connectivity.

83

Connectivity Level [Lvl]

N
um

be
r o

f B
ar

s
[N

b
]

1 2 3 4 5 6
0

50

100

150

200

Full Level

 Ground Str.

(a)

Connectivity Level [Lvl]

N
um

be
r o

f B
ar

s
[N

b
]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

1

2

3

4
x 10

4

Full Level

 Ground Str.

(b)

Figure 4.4: Member number growth using the GRAND ground structure generation algo-
rithm. (a) Member generation for the polygonal element base mesh shown in Figure 4.3(a).
(b) Member generation for a structured and orthogonal mesh with 30× 10 square elements.

A1, and is defined as follows:

[A1]p,q =

 1 or true if nodes p, q share an element

0 or false otherwise or if p = q
(4.7)

The second level connectivity is simply A2 = A1A1. However, it should be noted that

this matrix is likely to have entries > 1 and a non–zero diagonal (see the example in Figure

4.5). Thus, the diagonal is set to zero and the matrix is again converted to logical : true or

1 for any value larger than 1, and false or 0 otherwise. The nodal connectivity matrix for

some level n > 1 is then:

[An]p,q =

0 or false if p = q

1 or true if [An
1]p,q > 0

0 or false otherwise

(4.8)

84

(a) (b) (c)

Figure 4.5: Connectivity matrix calculation. (a) Base mesh and starting node. (b) Level 1
connectivity obtained from A1. (c) Level 2 connectivity. Note that the entries of A2 = (A1)2

are typically > 1 due to the existence of more than one path to the new set of nodes.

4.2.3 Collinearity check

The following assumptions are made in the collinearity check:

1. New bars added at level n are deleted if found collinear with bars from previous levels.

2. New bars added at level n are assumed not to be collinear between them.

The first assumption is logical if we consider that new bars are longer than those from

previous levels. The second assumption may be violated if elements in the base mesh are not

strictly convex, or in domain shapes that curl; where a new level may have two (or more)

collinear nodes viewed from the starting node (Figure 4.6). The new (candidate) bars for

level n can be obtained as:

Gn = An −An−1 , (4.9)

with G1 = A1. The non–zero entries in Gn that will be included in the ground structure

are those that have no angle close to zero with previously accepted bars. The directional

85

Figure 4.6: Domain that curls: The highlighted node will generate collinear members at level
6. The generation algorithm will reach these three nodes at the same time, and collinearity
between them will not be checked.

cosines vector d̂p,q from node p to node q is:

dp,q = NODEq,: − NODEp,:

d̂p,q =
dp,q
‖dp,q‖

,
(4.10)

where NODEi,: stands for row i of the nodal coordinates array (i.e. the coordinates x and y

of node i), as defined in Table 4.1. The angle between two directional cosines vectors is:

cos (∠qpr) = d̂p,q · d̂p,r (4.11)

Assume that m new candidate bars originating from a specific node i, have to be checked

against previously accepted n bars from the same node. The directional vectors of the new

(candidate) bars can be grouped into Dnew of size m× 2, and the previously accepted bars

into Dold of size n× 2. The dot product of new (candidate) and old bars can be (efficiently)

computed by:

C = DoldD
T
new , (4.12)

86

β1
β2

qr

p

Figure 4.7: Collinearity test between three bars. The long bar (dashed line) between nodes
p and q is candidate for deletion.

where a new (candidate) bar j is found to be collinear with a previously accepted bar if

any entry in column j is equal to 1. In reality, a collinearity tolerance ColTol / 1 is used

instead, and a bar j is removed if:

Ci,j > ColTol ∀ i = 1 . . . n (4.13)

The bars that passes the collinearity test are then appended to the ground structure.

The currently accepted bars at a level are stored in matrix H, with:

Hp,q =

 1 or true if there ∃ member pq

0 or false otherwise
(4.14)

Matrix H looses symmetry when a bar has one angle below ColTol and one above; in the

example of Figure 4.7 this means cos (β2) < ColTol < cos (β1), and thus Hp,q = 0 but

Hq,p = 1. If the member has one angle that pass the ColTol requirement, it will be spared

from deletion by forcing matrix H to be symmetric again:

H? = H + HT , (4.15)

87

after each level calculation. The entries H? > 0 contain the bars of the current ground

structure to be used in the next level iteration if any.

The generation algorithm stops once it reached the specified connectivity level Lvl, or

earlier if Gn has no entries (all zero or false matrix). Once the ground structure has been

generated, only bars linking nodes p and q with p < q are returned (i.e. the upper triangular

form of H?). This prevents duplicate bars from appearing in the ground structure.

1
2

3

4 5

6

7

1 2 3 4

5
6

7

8
9

10 11 12

(a) (b) (c)

Figure 4.8: Ground structure generation example. (a) Sample base mesh with 7 elements
and 12 nodes. (b) Resulting ground structure for a level 1 connectivity. (c) Resulting ground
structure for a level 2 connectivity.

The sample base mesh in Figure 4.8(a) results in the matrices A1 = G1 and G2 detailed

in Equations (4.16) and (4.17).

A1 = G1 =

0 1 0 0 1 1 0 0 0 0 0 0

0 1 0 1 1 1 1 0 0 0 0

0 1 0 1 1 1 1 0 0 0

0 0 0 1 0 1 0 0 0

0 1 0 0 0 1 1 0

0 1 1 0 1 1 0

0 1 1 0 0 1

0 1 0 1 1

0 0 0 1

symm 0 1 0

0 1

0

(4.16)

88

G2 =

0 0 1 0 0 0 1 1 0 1 1 0

0 0 1 0 0 0 0 1 1 1 1

0 0 1 0 0 0 0 1 1 1

0 0 1 0 1 0 0 0 1

0 0 1 1 0 0 0 1

0 0 0 1 0 0 1

0 0 0 1 1 0

0 0 1 0 0

0 0 1 0

symm 0 0 1

0 0

0

(4.17)

The members from level 1 are always included in the ground structure (no collinearity

check), resulting in the ground structure in Figure 4.8(b). The candidate bars at level 2 are

tested against the previously accepted bars at level 1, and thus not all members in G2 will

be retained. The accepted bars for levels 1 and 2 are detailed in matrix H? as follows:

H? =

0 1 0 0 1 1 1 0 0 0 1 0

0 1 0 1 1 1 1 0 1 1 1

0 1 1 1 1 1 1 1 1 1

0 0 1 1 0 1 0 0 0

0 1 0 1 0 1 1 1

0 1 1 1 1 1 1

0 1 1 1 0 1

0 1 1 1 1

0 0 1 1

symm 0 1 0

0 1

0

(4.18)

Note, for example, that node 1 does not link to nodes 3, 8 or 10 because these (level 2)

bars are collinear with members from previous levels. The output of the ground structure

algorithm for the base mesh in Figure 4.8(a), for a level 2 connectivity with no collinear bars

89

results in the following 48 members:

BARS =

1 2

1 5

1 6

1 7

1 11

2 3

2 5

2 6

2 7

2 8

2 10

2 11

2 12

...
...

∣∣∣

...
...

3 4

3 5

3 6

3 7

3 8

3 9

3 10

3 11

3 12

4 6

4 7

...
...

∣∣∣

∣∣∣

...
...

4 9

5 6

5 8

5 10

5 11

5 12

6 7

6 8

6 9

6 10

6 11

...
...

∣∣∣

...
...

6 12

7 8

7 9

7 10

7 12

8 9

8 10

8 11

8 12

9 11

9 12

10 11

11 12

(4.19)

The bar connectivity information in Equation (4.19) results in the ground structure in Figure

4.8(c).

4.2.4 Restriction zones

The restriction zone idea is inspired by known collision detection algorithms used in video–

games and in computational geometry (Ericson, 2004).

The domain may have concave regions or holes where no bar should be present. To

prevent the ground structure generation algorithm from laying out members in these regions,

the user defines restriction zones (i.e. hitboxes): geometric entities that no bar should

intersect. The current implementation provides the following restriction primitives:

90

• rectangle

• circle

• segment (line)

• convex polygon

The restriction primitives return a true or 1 if a member comes in contact with them.

These primitives can be combined using logical operators to create complicated regions or

boundaries, and the user can easily implement new collision primitives in GRAND. Union,

intersection and substraction of primitives are all possible using these logical operators. The

restriction zone for the cantilever with circular support is illustrated in Figure 4.9 as an

example. Candidate bars for levels > 1 are tested against the restriction zones. Level 1,

however, is not tested because it is assumed that the base input mesh is completely contained

within the feasible domain.

If a node in the domain touches the boundary of a restriction primitive, then all members

originating from that node will be flagged from removal (except for level 1 that does not get

tested). To avoid unexpected removals, a small reduction of the restriction zone primitives is

advised. This setback (or margin) is applied in the form of a small tolerance tol as explained

in Figure 4.10. The setback tol is specified by the user, and should be relative to the scale

of the problem.

Figure 4.9: Restriction zones for the cantilever with circular support detailed in Figure 4.1.

91

R

R - tol

tol

Figure 4.10: Restriction zone setback to prevent nodes in the domain to come in contact
with the restriction zones. The setback is a margin of size tol, relatively small compared to
the scale of the domain.

4.2.5 Linear program input/output

The matrix BT in Equation 4.6 is assembled from the directional cosines d̂, and the member

length vector denoted as l = ‖di‖. The nodal force vector f is generated with the information

supplied in the LOAD array.

With no loss of generality, the implementation assumes σT = 1. The case of σT 6= 1 is

scaled from the results obtained with the previous assumption, as follows:

aσT 6=1 = a/σT

VσT 6=1 = (VσT=1) /σT (4.20)

4.2.6 Plotting scheme

Solutions with a large number of members may have plotting issues. To prevent this, only the

members with cross–sectional areas ai > (Cutoff) (amax) are plotted: this may cause a truss

cord to abruptly end mid–air in the resulting figure, which is not accurate, but is merely

a plotting artifact. Members are plotted with lines of varying thicknesses. The member

92

Group 01 Group 02

Group 01 Group 02 Group 03

Group 01 Group 02 Group 03 Group 04

Group 01

Group 02

Group 03

Group 04

Group 05

Group 06

Group 07

Group 08

Gro
up

 0
1

Gro
up

 0
2

Gro
up

 0
3

Gro
up

 0
4

Gro
up

 0
5

Gro
up

 0
6

Gro
up

 0
7

Gro
up

 0
8

Gro
up

 0
9

Gro
up

 1
0

Gro
up

 1
1

Gro
up

 1
2

Gro
up

 1
3

Gro
up

 1
4

Gro
up

 1
5

Gro
up

 1
6

Gro
up

 1
7

Gro
up

 1
8

Gro
up

 1
9

Gro
up

 2
0

Figure 4.11: Plotting of 20 members with cross–sectional areas ai = i/20 for i = 1 . . . 20
using 2, 3, 4, 8 and 20 plotting groups.

thickness is proportional to the square root of its cross–sectional area. In other words:

LineWidthi = c
√
ai , (4.21)

where c is a scaling constant. The scaling constant is chosen such that the thickest member

is 5 points width.

To reduce the plot function calls, members of similar areas are grouped and plotted

together with average visual characteristics (thickness and color), in a single function call.

The user can specify the number of groups used in this plot grouping technique. Provided

that sufficient groups are specified, the error introduced is small (Figure 4.11).

93

Table 4.2: Square cantilever beam comparison.

30× 10 mesh with GRAND Structured
Level 10 connectivity code implementation*
DOFs 660 660
Bars 19,632 19,632
Volume 13.6857 13.6857
* The structured implementation refers to Sokó l (2011)

4.3 Examples and verification

The following problems were selected to showcase features and issues in GRAND. Unless

stated otherwise, the stress limit ratio is κ = 1.0 with σT = 1, the collinear tolerance is

ColTol = 0.999999, and the plotting cutoff is Cutoff = 0.002, using 50 plotting groups;

similar members are grouped and plotted together.

4.3.1 Structured square cantilever

The ground structure generation algorithm for unstructured meshes (detailed in this chap-

ter), must generate the same ground structure as an implementation of the method for

structured orthogonal meshes. A rectangular cantilever beam clamped at the left side and

loaded at the right by a vertical force applied at the middle–central point is used for compari-

son: the domain size is 3×1, discretized using 30×10 elements with a unit downward vertical

load and Cutoff = 10−6. Table 4.2 and Figure 4.12 summarize the number of truss elements,

degrees–of–freedom (DOFs), optimal volume and resulting structure for both methods: the

solution using GRAND is exactly the same as the reference implementation (Sokó l, 2011).

4.3.2 Cantilever with circular support

This problem is also known as the Michell’s cantilever (Figure 4.1). Due to the geometry

of the domain, this problem requires an unstructured mesh to be modeled accurately. This

problem has a known analytical solution (Michell, 1904; Graczykowski and Lewiński, 2005)

94

1
?
3

1

(a)

(b)

(c)

Figure 4.12: Cantilever loaded at the mid–tip (a) Domain definition, discretized with 30×10
elements and level 10 connectivity (b) Solution from GRAND (c) Solution from a structured
ground structure implementation (Sokó l, 2011).

if the problem height H is sufficiently large to allow the full solution to develop:

Vopt = P log
(r
R

)[1

σT
+

1

σC

]
(4.22)

Given the following parameters for the problem; r = 1, R = 5, H = 4 and P = 1, the

optimal volume is Vopt = 16.0944. The convergence with refinement to the analytical solution

is shown in Figure 4.13(a), with the values taken from Table 4.3. One of these solutions is

shown in Figure 4.13(b) as an example.

95

Table 4.3: Cantilever with circular support. Problem parameters: r = 1, R = 5, H = 4 and
P = 1.

Ne Nn Lvl Nb Volume V
300 593 1 3,264 16.9824
625 1,239 2 20,447 16.2777

1,200 2,369 3 78,807 16.1834
2,800 5,527 4 313,830 16.1396
5,000 9,889 5 851,511 16.1234
10,500 20,761 6 2,548,545 16.1140

4.3.3 Hook problem

The hook problem (Figure 4.14(a)) initially introduced by Talischi et al. (2012b) has no

analytical solution, yet the complexity of the domain makes it a good example to showcase

the capabilities of the proposed method. The domain has a restriction zone composed of four

primitives as in Figure 4.14(b): three circles and one segment. For comparison, the solution

from a polygonal density–based method (Talischi et al., 2012b) is also provided: there is a

qualitative agreement of the solutions from both methods (Figures 4.14(c) and 4.14(d)).

4.3.4 Serpentine cantilever

The serpentine cantilever, introduced in Talischi et al. (2012b), is meshed using 600 polygonal

elements and 30 Lloyd’s iterations (Talischi et al., 2012a). The ground structure is then

generated for a level 5 connectivity, using the restriction zone illustrated in Figure 4.15(b).

The restriction zone is the union of 2 circle restriction primitives. The domain, restriction

zone, base mesh and optimized ground structure are illustrated in Figure 4.15.

The solution, despite it being coarse, is rich in fan and involute structures. In addition,

the members tend to cross at perpendicular angles. These are all signs of an optimal solution,

and the quality and quantity of these increase with mesh refinement.

96

4.3.5 Messerschmitt–Bölkow–Blohm (MBB) beam

The MBB beam is a typical problem in topology optimization (Bendsøe and Sigmund, 2003;

Lewiński et al., 1994a). The domain size is Lx×Ly = 6× 1, and is meshed with a structural

and orthogonal arrangement of 120 × 20 quads (using an internal GRAND function that

generates structured–orthogonal meshes). The ground structure is constructed for a level 6

connectivity with no restriction zone since the domain is convex. The domain, base mesh,

optimized ground structure and reference analytical solution are illustrated in Figure 4.16. As

expected, the (numerical) solution obtained with GRAND agrees with the known analytical

solution.

4.3.6 Flower problem

The flower problem is a donut–shaped domain loaded tangentially in the exterior at 5 equal

angle locations. The domain is fully supported at the interior radius (Figure 4.17(a)). The

mesh is structured, however, this domain does require a restriction zone for the donut hole

(Figure 4.17(b)).

The optimal solution to this problem is composed by 5 Michell’s cantilevers (cantilever

with circular support as shown in Section 4.3.2). These are distributed at equidistant angles

around the interior circle, with each cantilever supporting one of the loads applied in the

exterior circle. The analytical solution to this problem is:

Vopt = 5PR log

(
R

r

)[
1

σT
+

1

σC

]
= 13.8629 (4.23)

The volume obtained using the base mesh in Figure 4.17(c) is Vgrand = 13.9674. This

(numerically computed) volume is less than 1% higher than the known optimal.

This example illustrates the capability of GRAND for generating a biologically inspired

structure, which displays the patterns of a flower, as shown by Figures 4.17(d) and 4.17(e).

97

4.4 Conclusions

The ground structure method provides insight into the optimal solution for a given problem.

This information can be used to further refine the solution, and in some cases, to obtain an

analytical solution (or benchmark). The present method and implementation extends the

ground structure method to domains of any shape with a simple and efficient technique.

To guarantee quality solutions, the ground structure should have linear independence

among truss members (no collinearity), and no two members connecting the same nodes

(repeated members). Concave domains and holes are addressed by defining restriction zones,

that are constructed with collision primitives common in the video game and rendering

industries. These zones flag colliding members so that they can be removed when generating

the ground structure. The member generation, collinearity check, restriction calculation

and member removal are translated into linear algebra operations that can be efficiently

calculated in modern linear algebra systems.

A freely–available MATLAB implementation is provided to encourage future research in

the field and an in–depth understanding of the method. This implementation was created

with a balance of performance and readability in mind, and can be further improved for

speed and flexibility if required. In particular, methods that adaptively generate, modify

and/or reduce the ground structure have been successful at achieving greater level of detail,

while maintaining a reasonable computational cost (Gilbert and Tyas, 2003; Rozvany and

Sokó l, 2013).

98

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

Number of Bars − N b

er
ro

r =
 (

V
−

V o
pt

)
/ V

op
t

(a)

(b)

Figure 4.13: Cantilever with circular support. (a) Convergence with ground structure re-
finement. (b) Solution obtained for Nb = 851, 511, generated from a non–symmetric (un-
structured) polygonal mesh with Ne = 5, 000, Nn = 9, 889 and Lvl = 5.

99

?

(a) (b)

(c) (d)

Figure 4.14: Hook problem: (a) Domain, loading and boundary conditions. (b) Restriction
zone composed of three circles and one segment. (c) Solution obtained from GRAND with
Nb = 72, 589 using an externally generated mesh and level 10 connectivity. (d) Solution from
a density method with Ne = 10, 000 (continuum polygonal elements) for comparison.

100

P

?

(a) (b)

(c) (d)

Figure 4.15: Serpentine cantilever problem: (a) Domain, loading and boundary conditions.
(b) Restriction zone composed of two circles. (c) Serpentine domain discretized using polyg-
onal elements (Talischi et al., 2012a): Ne = 600 and Nn = 1, 192. Nodes with prescribed
displacements and forces are highlighted with a blue B and a magenta M respectively. (d)
Solution obtained from GRAND with lvl = 5 and Nb = 1, 192.

101

Ly

Lx

?

P

(a)

(b)

(c)

(d)

Figure 4.16: Messerschmitt–Bölkow–Blohm (MBB) beam problem with aspect ratio Lx :
Ly = 6 : 1. (a) Domain, loading and boundary conditions. (b) MBB domain discretized
with a regular and orthogonal base mesh in GRAND: Ne = 120 × 20 = 2, 400 and Nn =
2, 541. Nodes with prescribed displacements and forces are highlighted with a blue B and a
magenta M respectively. (c) Optimized ground structure for the MBB domain: lvl = 6 and
Nb = 101, 548. (d) Analytical solution adapted from Lewiński et al. (1994a).

102

P
P

P

P

P

2r=0.5
R=1

(a) (b) (c)

(d) (e)

Figure 4.17: Flower problem (donut–shaped domain) loaded tangentially at 5 locations on
the outer radius. (a) Domain, loading and boundary conditions. (b) Restriction zone for
the donut–shaped domain. (c) Mesh and boundary conditions are loaded from an externally
generated file: Ne = 2, 000 and Nn = 2, 100. (d) Optimized ground structure for the flower
domain: lvl = 4 and Nb = 69, 400. (e) Photo of Claytonia caroliniana [c© Nathan Masters |
Masters Imaging].

103

Chapter 5

Unstructured ground structure
method in 3D

The search for optimal structures was reinvigorated with Michell’s work (Michell, 1904).

His work on minimum weight structures determined the best possible configuration for a

variety of structural problems (also known as Michell’s solutions). Later, Hemp (1973)

reanalyzed these and other examples in more detail. Michell’s work focused mostly on

two–dimensional structures, and only one three–dimensional problem was addressed. This

problem is known as the Michell’s sphere (or torsion ball), and is the optimal (analytical)

structure to transfer a moment couple. This truss–like solution is a capped sphere structure

with a grid of orthogonal members on its surface (Figure 5.1(a)). The optimal volume for this

problem was given by Michell (1904), but a detailed derivation was not given. The solution

for the torsion ball was later re–derived (Hemp, 1973; Lewiński, 2004) and confirmed1. The

optimal volume of the torsion ball is:

Vopt = 2M log

(
tan

{
π

4
+
φF
2

})[
1

σT
+

1

σC

]
, (5.1)

where φF is the latitude of the small circles where the moment is applied (Figure 5.1(b)). It

should be noted that the optimal volume is independent of the sphere’s radius r. Nonetheless,

the domain must be large enough to allow the solution’s sphere with radius r to develop. It

1Michell’s formula matches the subsequent work provided that the quantity L in Michell (1904) is taken
to be equal to Mr. Whether Michell meant this to be the real meaning of the quantity L, or not, is unclear.

104

(a)

φF

M

M

(b)

Figure 5.1: Optimal (analytical) structure to transfer a moment couple. (a) Distribution of
the members according to Michell (1904). (b) Illustration of the latitude φF , which defines
the small circles where the moment couples are applied.

should be noted that this is the optimal truss–like solution: if the solution sought is of the

continuum type, then the solution becomes a hollow spherical shell with varying thickness.

The inclusion of additional constraints in the continuum solution can drive it towards the

aforementioned truss–like structure (Aage et al., 2014).

In later years, the topic of optimal three–dimensional structures was revisited, and the

solution to a number of additional problems was given (Lewiński, 2004). The ground struc-

ture method (Dorn et al., 1964; Hemp, 1973) was extended to three–dimensional problems

(Gerdes, 1994; Smith, 1998; Gilbert et al., 2005; Tyas et al., 2006) with promising results.

Most of these works, with the exception of Smith (1998), tackle problems in rectangular

domains. Other numerical methods have also been utilized to address the 3D layout op-

timization problem with mixed results (Zhou and Li, 2005; Dewhurst and Taggart, 2009).

However, those methods’ ability to approximate the analytical solution is usually less than

105

that of the ground structure method.

Real structures are three–dimensional, and thus the requirement of a true three–dimensional

analysis is obvious. Therefore, the unstructured ground structure method presented in the

previous chapter is extended to 3D space. The implementation of the method is named

GRAND3 (GRound structure ANalysis and Design in 3D), and is a direct extension of the 2D

implementation (GRAND) described in Chapter 4 and in Zegard and Paulino (2014a). The

approach used in GRAND3 makes it easy to model, analyze and optimize, three–dimensional

domains of almost any shape (concave and with the possibility of holes) using the ground

structure method. The complete source code for GRAND3 is available in Appendix B.

5.1 Plastic analysis formulation in 3D

The plastic formulation (Dorn et al., 1964; Hemp, 1973) is extended to three–dimensional

space. The dimensions of the matrices and vectors involved are modified to accommodate

the third dimension. Starting from Equation (4.6), the formulation in three–dimensional

space (with the sizes of matrices and vectors indicated) is:

min
s+,s−

V ? =
V

σT
=

{
lT κ lT

}
1×2Nb

s+

s−

2Nb×1

s.t.

[
BT −BT

]
Ndof×2Nb

s+

s−

2Nb×1

= f
Ndof×1

s+
i , s

−
i ≥ 0

(5.2)

The number of degrees–of–freedom (DOFs) is Ndof = 3Nn − Nsup (previously in two–

dimensions Ndof = 2Nn−Nsup). Equation (5.2) highlights the sizes of the variables involved:

The objective suffers no change, but the equilibrium constraints grow by (approximately)

a factor of 1.5. The computational complexity depends mostly on the number of variables

106

n in the linear program; for the particular case of the plastic formulation n = 2Nb, with

Nb being the number of members in the ground structure. The implementation, written in

MATLAB, uses the linear programming routine within MATLAB’s Optimization Toolbox,

itself being a modified version of the LIPSOL library (Zhang, 1998). Linear programming

algorithms typically exhibit computational complexities in the range of O (n4) to O (n3)

and lower (Anstreicher, 1999; Wright, 2004). For a given number of members Nb in the

ground structure, the runtime should remain mostly unaffected by extending the method to

three–dimensions. In practice, however, the three–dimensional ground structure method is

slower than its two–dimensional counterpart. This will depend on the specific variation of

the interior–point method used, in this case LIPSOL (Zhang, 1998). In addition, problems

with solutions that lie on a facet (or edge) of the feasible domain are computationally more

difficult to obtain.

5.2 Implementation

The implementation is an extension of the two–dimensional GRAND (refer to Chapter 4

and Zegard and Paulino (2014a)). The concept and algorithms remain mostly intact, with

a few exceptions that are outlined and detailed here.

5.2.1 Domain definition — Base mesh

The ground structure generation algorithm requires a base mesh. The nodal connectivity

information (required to generate the ground structure) is obtained from this mesh, but no

edge or facet information is used. The method assumes that all elements in the base mesh

are strictly convex. Thus, it is safe to connect all nodes within an element for a level 1

connectivity (trivial extension of the conclusions in Section 4.2.3). Given these assumptions,

the method can handle any type of convex polytope elements in the base mesh. This, how-

ever, proves to be challenging for plotting routines since no edge and facet information are

107

1 2

3

4

1 2
34

5 6

78

1
2

3

4
5

6

1 2
34

5

(a)

1 2

34

1
2

3

1

2

(b)

Figure 5.2: Elements supported by GRAND3 and their corresponding node numbering
scheme. (a) Volumetric elements: Hexahedron (8-nodes), Prism (6-nodes), Pyramid (5-
nodes) and Tetrahedron (4-nodes). (b) Surface elements: Quadrangle (4-nodes), Triangle
(3-nodes) and Segment (2-nodes).

provided. In addition, the maturity of 3D polytope meshing algorithms (Barber et al., 1996;

Herceg et al., 2013; Rycroft, 2014) is lagging behind that of more traditional meshing algo-

rithms based on standard elements (bricks, tetrahedra). Therefore, while the analysis engine

can work with any element type, for practical purposes, the current implementation is lim-

ited to 7 basic elements: 4 volumetric and 3 surface elements (the segment, although not flat,

is grouped with surface elements). The 7 elements supported in the current implementation

are illustrated in Figure 5.2.

These elements have a unique topology (facets and edges), provided that they are num-

bered properly. The surface elements are not two–dimensional, but three–dimensional en-

tities that can be used to define shells, domes and membranes for example. The segment

element is special: it can be used to fine–tune the node connectivity matrix by allowing two

non–neighboring nodes to share level 1 connectivity.

The base mesh specification for input follows from the two–dimensional implementation,

with the main difference being the possibility of defining volumetric and surface elements

108

Table 5.1: Domain definition (base mesh) input variables for GRAND3.

Variable
Name

Type &
Size

Description

NODE array

Nn × 3
Each row p has the nodal coordinates x, y and z for
node p.

ELEM struct Structure with fields V and/or S for volumetric and
surface elements respectively. The numbering scheme
is given in Figure 5.2.

ELEM.V cell

Nve × 1
Entries are row vectors containing the node numbers
for each particular volumetric element. The total num-
ber of volumetric elements is Nve.

ELEM.S cell

Nse × 1
Entries are row vectors containing the node numbers
for each particular surface element. The total number
of surface elements is Nse.

SUPP array

Nf × 4
Each row consists of a node number, fixity x, fixity in
y and fixity in z. Any value other than NaN specifies
fixity. The total number of specified fixities is Nsup.

LOAD array

Nl × 4
Each row consists of a node number, load in x, load in
y and load in z. A zero or NaN specify no force in that
direction.

(Table 5.1). The ELEM variable is a structure (or struct) with fields V and S for volumetric

and surface elements respectively. The user can pass volumetric, surface or both types of

elements in the base mesh. In other words, at least one field (V or S) must be defined. The

total number of volumetric and surface elements are Nve and Nse respectively. Therefore,

the total number of elements in the base mesh is Ne = Nve +Nse.

5.2.2 Ground structure generation & collinearity check

The ground structure generation and collinearity check undergo minimal changes compared

to the two–dimensional procedure. The creation of the connectivity matrix (and ground

structure connectivity level) remain unmodified. The change is in the size of the matrices

and vectors involved, where the nodal coordinates are now three–dimensional pairs, and thus

109

the directional cosines vector for a member becomes (extension of Equation (4.10)):

dp,q
1×3

= NODEq,: − NODEp,:

d̂p,q
1×3

=
dp,q
‖dp,q‖

(5.3)

The collinearity check, just like in the two–dimensional case, is done at each level with

the C matrix (extension of Equation (4.12)):

C
N

(old)
b ×N(new)

b

= Dold

N
(old)
b ×3

DT
new

3×N(new)
b

, (5.4)

where any value in a column higher than ColTol indicates that the member corresponding

to that column, should be removed.

5.2.3 Restriction zones

The restriction zones are built from collision tests. Collision tests do not aim to find the

exact collision point(s), thus differing from intersection tests. In general, however, collision

tests tend to be computationally cheaper than intersection tests. However, in some cases, in

order to determine if there is collision, the exact intersection point is determined.

Literature in this field is rich and varied thanks to the video–game industry, and com-

puter graphics (specifically ray–tracing) literature (Akenine-Möller et al., 2008; Ericson,

2004; Schneider and Eberly, 2002). The intersection of rays and objects is well documented,

and the modification from ray to segment is trivial in most cases. The collision primitives

currently implemented in GRAND3 are:

1. Box

2. Triangle

3. Quadrangle

110

4. Sphere

5. Disc

6. Cylinder (infinite length)

7. Rod (finite length cylinder with endcaps)

8. Surface (built from the triangle and quadrangles primitives)

Other primitives can be easily implemented by the user. The collision primitives for the

box, triangle, quadrangle and cylinder follow procedures outlined in Ericson (2004) with

some modifications. The sphere, disc and rod2 were developed specifically for GRAND3,

although similar procedures are likely to be found in literature given the relatively simple

nature of the problem. The collision primitives developed were interactively tested in a

variety of scenarios, in order to detect and fix false–positives and false–negatives. Additional

details (including source code) on the testing framework are available in Appendix C.

The surface primitive, built from the triangle and quadrangle primitives, is special; a

complicated restriction volume can be translated into testing the collision on its surface.

This allows the method to address complicated volumes that would be difficult to represent

with the already available primitives.

Box primitive

The box primitive is defined with the coordinates of the two extreme vertices; Amin =

{xmin , ymin , zmin} and Amax = {xmax , ymax , zmax}. Given a segment PQ, the segment’s

directional vector is d =
−→
PQ = Q − P , and any point X in the segment is defined as

X = P + td, with 0 ≤ t ≤ 1.

The segment collides with the box if there is a sub–segment within PQ contained inside

the box, as shown in Figure 5.3(a). The procedure is better understood in two–dimensions,

2Ericson (2004) outlined a procedure for the finite cylinder. However, his derivation is flawed. The book’s
errata attempts to fix this, but with no success.

111

P

Q

Amin

Amax

Q’
P’

(a)

P

Q

P’

Q’

xmin xmax

ymin

ymax

Amin

Amax

(b)

Figure 5.3: Collision test between a box and a segment. (a) Three–dimensional sketch of
the box—segment collision test. (b) Two–dimensional simplification of the box—segment
collision test (equal to the rectangle—segment test).

where the test becomes the collision test of a rectangle and a segment (Figure 5.3(b)). Once

the test in two–dimensions is derived, upscaling to three–dimensional space is trivial.

Defining the sub–segment P ′Q′, with P ′ = P + tmind and Q′ = P + tmaxd, the sub–

segment is valid if 0 ≤ tmin ≤ tmax ≤ 1. Initially tmin = 0 and tmax = 1, positioning nodes

P ′ and Q′ at P and Q respectively. The sub–segment is then clipped by 4 planes (6 in

three–dimensional space), corresponding to xmin, xmax, ymin and ymax as in Figure 5.3(b).

If the sub–segment is still valid after the clipping has been done, then the sub–segment is

inside the rectangle (box in three–dimensions).

Defining a unit vector in the x direction ê1 = {1 , 0 , 0}, the procedure for clipping on

the x plane is as follows:

t1 =
Amin · ê1 − P · ê1

d · ê1

t2 =
Amax · ê1 − P · ê1

d · ê1

(5.5)

Depending on the orientation of PQ, it could occur that t1 > t2, and in such case their

values are switched; t1 ← t2 and t2 ← t1. Finally, the clipping process is simply:

tmin ← max (tmin , t1) tmax ← min (tmax , t2) (5.6)

112

The process is then repeated for the y plane with ê2 = {0 , 1 , 0}, and finally the z plane

with ê3 = {0 , 0 , 1}. The segment collides with the box if tmin ≤ tmax after all the clipping

has been carried out. Incidentally, this procedure can address the accidental case where Amin

and Amax are reversed.

Triangle primitive

Given a segment PQ, intersecting the plane defined by points A, B and C in space at a

point W (Figure 5.4). The segment intersects the triangle 4ABC if point W lies inside the

triangle.

A

B

C

W

P

Q

Figure 5.4: Collision test between a triangle and a segment.

One possible solution is to find the point W , and then check if such point is inside the

triangle. Point W is found to be inside the triangle if it is a convex combination of points A,

B and C: W = α1A+α2B+α3C, with α1 +α2 +α3 = 1. An alternative procedure considers

the triangle to be arranged counterclockwise: point W is inside the triangle if it is located

to the left of all of the triangle’s edges. Extending to any triangle arrangement (clockwise

or counterclockwise): point W is inside the triangle if it is located to the same side for all

of the triangle’s edges. Based on this idea, the volumes of the three distinct tetrahedra

can be defined by segment PQ, and each one of the triangle’s edges. These volumes can

be computed by triple products, with the sign of these triple products depending on the

manifold orientation of the three vectors defining the tetrahedron (in volume calculations an

113

absolute value is often used). If point W is found to the same side of all edges, then the sign

of these volume calculations (triple products) should be the same.

Defining the segment’s directional vector as d =
−→
PQ = Q− P , then any point X within

the segment is defined as X = P + td, with 0 ≤ t ≤ 1. The normal to the plane of the

triangle is n =
−→
AB×

−→
AC. The intersection point with the plane of the triangle W is defined

as W = P + twd, with:

tw =

−→
PA · n
d · n

. (5.7)

The triple products are defined as:

v1 =
[
d
−→
PC
−−→
PB
]

v2 =
[
d
−→
PA
−→
PC
]

v3 =
[
d
−−→
PB
−→
PA
]

(5.8)

Taking e1 = d×
−→
PC and e2 = d×

−−→
PB, then the triple products become:

v1 = e1 ·
−−→
PB v2 = −e1 ·

−→
PA v3 = e2 ·

−→
PA (5.9)

Finally, the segment PQ intersects the triangle 4ABC if and only if:

0 ≤ tw ≤ 1 and sign (v1) = sign (v2) = sign (v3) (5.10)

Quadrangle primitive

Splitting the quadrangle into two triangles, the quadrangle is really an extension of the

triangle primitive case. It is assumed that the quadrangle is flat and all 4 points lie (approx-

imately) in the same plane. Compared to two complete triangle tests, there is a potential

computational saving if one of the two triangles is chosen early in the calculations (triangles

4AB1C and 4ACB2 in Figure 5.5).

Defining the segment’s directional vector as d =
−→
PQ = Q− P , then any point X within

the segment is defined as X = P + td, with 0 ≤ t ≤ 1. The normal to the plane of the

114

A

C

W

P

Q

B1

B2

Figure 5.5: Collision test between a quadrangle and a segment.

quadrangle is n =
−−→
AB1 ×

−−→
AB2. The intersection point with the plane of the quadrangle is

defined as W = P + twd, with:

tw =

−→
PA · n
d · n

. (5.11)

The triple products are defined as:

va =
[
d
−→
PC
−−→
PB1

]
= e1 ·

−−→
PB1

vb =
[
d
−→
PA
−−→
PB2

]
= e1 ·

−−→
PB2

v2 = −
[
d
−−→
PB
−→
PA
]

= −e1 ·
−→
PA ,

(5.12)

with e1 = d ×
−→
PC. If the segment collides with a triangle, then all triple products must

have the same sign. Thus, the correct triangle can be chosen at this stage, and the third

(and last) triple product can be computed:

e2 =

 d×
−−→
PB1 if sign (va) = sign (v2)

d×
−−→
PB2 if sign (vb) = sign (v2)

, (5.13)

with the third triple product being:

v3 = e2 ·
−→
PA (5.14)

115

The segment collides with the quadrangle �AB1CB2 if and only if:

0 ≤ tw ≤ 1 and sign (v2) = sign (v3) (5.15)

Sphere primitive

Defining the segment’s directional vector as d =
−→
PQ = Q − P , then any point X in the

segment is defined as X = P + td, with 0 ≤ t ≤ 1. The segment intersects the sphere if any

of the following three criteria is met (Figure 5.6):

1. Point P is inside the sphere.

2. Point Q is inside the sphere.

3. The point in the segment that is closest to the sphere’s center is between P and Q and

inside the sphere.

C

r

v-wv

P

Q

Figure 5.6: Collision test between a sphere and a segment.

Defining a vector v = C − P , then there is collision according to the first criteria if:

v · v ≤ r2 (5.16)

116

Similarly, there is collision according to the second criteria if:

(v − d) · (v − d) = v · v − 2v · d + d · d ≤ r2 (5.17)

The closest point in the line defined by P and Q to the sphere’s center, measured from point

P is:

w =
v · d
d · d

d (5.18)

This point is inside the sphere if:

(v −w) · (v −w) =

(
v − v · d

d · d
d

)
·
(

v − v · d
d · d

d

)
≤ r2 , (5.19)

with this point inside the segment PQ if and only if 0 ≤ w ·d ≤ d ·d, which is an equivalent

expression to 0 ≤ t ≤ 1.

Disc primitive

Defining the segment’s directional vector as d =
−→
PQ = Q − P , then any point X in the

segment is defined as X = P + td, with 0 ≤ t ≤ 1.

P

Q

r

A
W

B

Figure 5.7: Collision test between a disc and a segment.

The disc is centered at point A, and the normal points towards a point B as in Figure

5.7. The normal to the plane of the disc is n = B − A. Defining v =
−→
AP = P − A, the

117

intersection with the disc’s plane is found at a point W = P + twd:

tw = −v · n
d · n

(5.20)

The segment collides with the disc if the distance between point W and the disc’s center

A is less than or equal to the disc’s radius:

−−→
AW = W − A = P − A+ twd = v − v · n

d · n
d (5.21)

Finally, the segment collides with the disc if and only if:

−−→
AW ·

−−→
AW =

(
v − v · n

d · n

)
·
(
v − v · n

d · n

)
≤ r2 , (5.22)

with 0 ≤ tw ≤ 1.

Cylinder primitive (infinite cylinder)

Defining the segment’s directional vector as d =
−→
PQ = Q − P , then any point X in the

segment is defined as X = P + td, with 0 ≤ t ≤ 1. The segment is found to collide with the

(infinite) cylinder if:

1. The segment collides with the cylinder’s surface.

2. The segment is completely contained within the cylinder.

The cylinder’s axis is defined by n = B − A as in Figure 5.8. The intersection with the

cylinder’s surface is found at points W = P + twd. Defining the radial vector of length r

from the cylinder’s axis to point W as m, then:

0 = m ·m− r2 =

(
−−→
AW −

−−→
AW · n
n · n

n

)
·

(
−−→
AW −

−−→
AW · n
n · n

n

)
− r2 (5.23)

118

W’
n

A

r
P

Q

B

v

m W

Figure 5.8: Collision test between a cylinder (infinite length) and a segment.

Defining v =
−→
AP = P − A, and expanding

−−→
AW in terms of v, d and tw:

0 =

(
(v + twd)−

[
(v + twd) · n

n · n

]
n

)
·
(

(v + twd)−
[

(v + twd) · n
n · n

]
n

)
− r2 , (5.24)

where terms can be ordered to obtain a quadratic equation for tw:

0 =

[
d · d− (d · n)2

n · n

]
t2w + 2

[
v · d− (d · n) (v · n)

n · n

]
tw + (v · v)− (v · n)2

n · n
− r2 (5.25)

Multiplying by n · n, the quadratic equation becomes:

0 = at2w + btw + c

a = (n · n) (d · d)− (d · n)2

b

2
= (n · n) (v · d)− (d · n) (v · n) (5.26)

c = (n · n)
[
(v · v)− r2

]
− (v · n)2 ,

119

with solutions given by:

tw =
−b±

√
b2 − 4ac

2a
=
− b

2
±
√(

b
2

)2 − ac
a

(5.27)

The (infinite) line defined by the segment does not intersect the cylinder if the discriminant

in Equation (5.27) is negative (i.e. (b/2)2 − ac < 0). If the discriminant is positive, then an

additional check must be made to ensure the intersection point is within the segment PQ:

The segment collides with the cylinder if 0 ≤ tw ≤ 1 for any of the two roots from Equation

5.27, corresponding to points W and W ′ in Figure 5.8.

Finally, the segment is completely contained inside the cylinder, if the distance from the

cylinder’s axis to point P is less than or equal to the radius r:

(
v − v · n

n · n
n
)
·
(
v − v · n

n · n
n
)
≤ r2 (5.28)

Rod primitive

The rod primitive is a combination of the infinite cylinder and disc primitives with some

minor modifications. The segment collides with the rod if any of the following 4 situations

occur:

• The segment collides with the finite cylinder’s surface.

• The segment collides with the A endcap (disc).

• The segment collides with the B endcap (disc).

• The segment is fully contained within the rod.

The collision with the finite cylinder’s surface begins from the test primitive for the

infinite cylinder outlined in Equations (5.26) and (5.27). In addition, the intersection points

W and W ′ (Figure 5.9) must be in the surface between the endcaps. Thus, an additional

120

n

B

A
r

P

Q

v

W

W’

w

Figure 5.9: Collision test between a rod (finite cylinder with endcaps) and a segment.

check is required; the segment collides with the finite cylinder’s surface if:

0 ≤w · n ≤ n · n

0 ≤ (v + twd) · n ≤ n · n (5.29)

for any of the two roots of tw from Equation (5.27), with 0 ≤ tw ≤ 1.

The collision with the endcaps A and B follow the procedure for the disc primitive.

Equation (5.22) can be used with no modification to test the collision against endcap A.

The B endcap is analogous to the endcap A; the segment collides with endcap B if:

−−→
BW ·

−−→
BW =

(
v +

n · n− v · n
d · n

)
·
(

v +
n · n− v · n

d · n

)
≤ r2 , (5.30)

with:

0 ≤
(
tw =

n · n− v · n
d · n

)
≤ 1 (5.31)

Finally, if the segment is completely contained in the rod, then point P must be inside

the rod. In other words, if the distance from point P to the cylinder’s axis is less than or

121

equal to r: (
v − v · n

n · n
n
)
·
(
v − v · n

n · n
n
)
≤ r2 , (5.32)

with an additional check to verify point A is between the endcaps:

0 ≤ v · n
n · n

≤ 1 (5.33)

Surface primitive

The surface primitive builds from the base of the triangle and quadrangle primitives. The

surface primitive can handle any surface provided that it is tessellated (discretized) and the

points in each facet lie (approximately) in the same plane. In addition, it is assumed that

all facets are convex in their own plane. An example of a tessellated surface is shown in

Figure 5.10: the surface was tessellated using triangles and quadrangles. The inputs for this

collision primitive are:

• A matrix of nodes RNODE of size Nrn × 3, where Nrn is the number of nodes in the

collision surface.

• A list (cell) with facet connectivity RFACE of size Nrf × 1, where Nrf is the number

of facets in the collision surface. Each entry in RFACE is a row vector with nodal

connectivity (based on RNODE).

Figure 5.10: Collision surface example: Surface is tessellated into triangles and quadrangles.

122

The surface collision primitive can address facets with more than 4 nodes (flat polygons),

provided that all the nodes lie in (approximately) the same plane. This polygon will be

subdivided into triangles and evaluated sequentially.

5.2.4 Plotting scheme

The analysis in the current implementation (Equation (5.2) does not consider the shape

of member’s section. Issues such as the cost of connections, local buckling and manufac-

turing costs are not taken into account. Thus, given a known cross–sectional area and no

information on the section type, the section is assumed to be circular (cylinders).

The optimal cross–sectional areas are obtained for σT = 1, and the solution must be scaled

for values other than unity. Therefore, the members in the optimal structure are represented

as cylinders with radii equal to ri = c
√
ai, where c is a scaling constant. Analogous to

the two–dimensional implementation, only the members with cross–sectional areas ai >

(Cutoff) (amax) are plotted: this may cause a truss cord to abruptly end mid–air in the

resulting figure, which is not accurate, but is merely a plotting artifact.

Nodes with one or more members above the cutoff cross–sectional area will be represented

graphically by a sphere. The sphere’s radius is equal to the largest radius of all members

connected to that node. Therefore, a single member connecting two nodes is represented as

in Figure 5.11(a). The case of multiple members with varying cross–sectional areas is shown

in Figure 5.11(b).

5.3 Verification using known analytical solutions

The following examples aim to verify GRAND3 by approximating optimal closed–form so-

lutions. Unless otherwise stated, the stress limit ratio is κ = 1.0 with σT = 1, the collinear

tolerance is ColTol = 0.999999, and the plotting cutoff is Cutoff = 0.005.

123

(a) (b)

Figure 5.11: Plotting scheme sample for three–dimensional ground structures. (a) Single
member connecting two nodes. (b) Multiple members with varied cross–sectional areas.

5.3.1 Torsion cylinder

A cylindrical domain of radius r and height H is subjected to an end moment distributed

over the outer ring of the end cap (Figure 5.12(a)). The domain is fully supported on the

bottom end cap. This problem is of interest since the analytical volume for the theoretical

optimal structure can be derived. A moment pair causes a pure–shear condition on the

cylinder surface. Therefore, the principal stress lines are oriented at ±π/4. The members in

the optimal solution follow the lines of principal stresses (Michell, 1904; Hencky, 1923; Hemp,

1973). A single fiber following a principal stress line has a length lf =
√

2H. The force in

the fiber due to the moment pair is nf =
√

2M/4πr2 for tension, and −nf for compression.

Finally, the volume of the optimal cylinder in torsion is:

Vopt =

[
(nf) (lf)

σT
− (−nf) (lf)

σC

]
(2πr)

Vopt =

(√
2M

4πr2

)(√
2H
)[1

σT
+

1

σC

]
(2πr)

Vopt =
MH

r

[
1

σT
+

1

σC

]
(5.34)

Using cylindrical coordinates, the model is discretized in Nz × Nr × Nθ elements cor-

124

responding to the z, r and θ coordinate axes respectively. The problem is analyzed for

the specific case where H = 11, r = 3 and M = 5. A sample mesh discretized with

{Nz, Nr, Nθ} = {12, 6, 16} is shown in Figure 5.12(b). An axisymmetrical plot of this mesh

is given in Figure 5.12(c). The convergence of the ground structure method with refinement

of the base mesh is given in Table 5.2 and Figure 5.13(a). There is a convergence towards the

optimal volume Vopt = 36.6667. As an example, one of these solutions is plotted in Figure

5.13(b).

H

M
r

(a) (b)

r

z

3

11

(c)

Figure 5.12: Torsion cylinder problem. (a) Domain definition, loading and supports. (b)
Sample mesh for H = 11, r = 3 discretized with Nz = 11, Nr = 6 and Nθ = 18. (c)
Axisymmetric plot of the sample mesh with H = 11, r = 3 and Nz = 11, Nr = 6.

5.3.2 Torsion cone

A capped cone domain of height H = 10 with lower and upper radius rL = 7 and rU = 2

respectively, is subjected to an end moment M = 3 distributed over the outer ring at the

upper end cap (Figure 5.14(a)). The analytical solution for this problem was derived by

125

Table 5.2: Convergence for a cylinder under torsion with M = 5, H = 11 and r = 3. Ground
structures are generated with Lvl = 3. The optimal volume is Vopt = 36.6667.

Nz Nr Nθ Ne Nn Nb Volume V LPiter Runtime∗ [min]
7 4 12 336 392 32,911 37.9628 8 0.049
9 5 15 675 760 78,954 37.4937 9 0.283
11 6 18 1,188 1,308 152,795 37.2637 11 0.803
13 7 22 2,002 2,170 278,467 37.0453 94 16.06
15 8 26 3,120 3,344 458,811 36.9395 11 10.13
17 9 29 4,437 4,716 677,370 36.8830 10 25.21
19 10 32 6,080 6,420 950,419 36.8486 11 52.35
* Runtimes measured on an Intel Xeon E3-1245 with 32GB of RAM with MATLAB R2013b.

Number of Bars − N b

er
ro

r =
 (

V
−

V o
pt

)
/ V

op
t

10
4

10
5

10
6

10
−3

10
−2

10
−1

M

(a) (b)

Figure 5.13: Cylinder domain under torsion. (a) Convergence with base mesh refinement. (b)
Solution obtained for Nb = 152, 795, generated from a cylindrical domain with Ne = 1, 188,
Nn = 1, 308 and Lvl = 3.

Lewiński (2004), by constraining the solution to exist in the cone’s surface:

Vopt = M

√
H2 + (rL − rU)2

rL − rU
log

(
rL
rU

)[
1

σT
+

1

σC

]
= 16.8076 (5.35)

Using cylindrical coordinates, the model is discretized in Nz × Nr × Nθ elements corre-

sponding to the z, r and θ coordinate axes respectively. An axisymmetrical plot of this mesh

126

is given in Figure 5.14(c). In an effort to preserve the aspect ratio of the elements in the

mesh, the spacing in the z direction is such that ∆hi+1/∆hi = λ, with λ being constant. A

sample mesh discretized with {Nz, Nr, Nθ} = {9, 5, 20} and λ = 0.87006 is shown in Figure

5.14(b). The convergence of the ground structure method with refinement of the base mesh

is given in Table 5.3 and Figure 5.15(a). As an example, one of these solutions is plotted in

Figure 5.15(b). The increasingly refined solutions converge smoothly toward the optimum,

with a relatively small oscillation appearing when the number of bars is Nb > 400, 000. The

reason behind this oscillation being that the node positions do not precisely match the loca-

tions dictated by the analytical closed–form solution. In other words, this is caused by the

aspect ratio of the discretization, influenced by Nz, Nθ and λ. However, the overall trend

does converge to the analytical optimum as expected.

rL

M

rU

(a) (b)

r

z

7

10

2

∆h1

∆h2

∆hNZ

(c)

Figure 5.14: Torsion cone problem. (a) Domain definition, loading and supports. (b) Sample
mesh for H = 10, rL = 7 and rU = 2 discretized with Nz = 9, Nr = 5, Nθ = 20 and
λ = 0.870058. (c) Axisymmetric plot of the sample mesh with H = 10, rL = 7, rU = 2,
Nz = 9, Nr = 5 and λ = 0.870058.

5.3.3 Torsion sphere (orthogonal domain)

The optimal structure for transmitting a torsional moment is a ball, provided that the do-

main is large enough to allow the full solution to develop (Figure 5.1(a)). In contrast, the

127

Table 5.3: Convergence for a capped cone under torsion with M = 3, H = 10, rL = 7 and
rU = 2. Ground structures are generated with Nr = 5 and Lvl = 3. The optimal volume is
Vopt = 16.8076.

Nz Nθ λ Ne Nn Nb Volume V LPiter Runtime∗ [min]
5 9 0.778371 225 276 22,532 18.2822 10 0.027
6 12 0.811563 360 427 38,946 17.5218 11 0.071
7 15 0.836134 525 608 61,072 17.2178 10 0.171
8 17 0.855050 680 774 82,849 17.1354 11 0.332
9 20 0.870058 900 1,010 115,789 17.0310 11 0.609
10 22 0.882253 1,100 1,221 147,058 16.9935 153 8.510
11 25 0.892358 1,375 1,512 193,686 16.9526 53 6.492
12 27 0.900868 1,620 1,768 235,938 16.9300 10 2.115
13 30 0.908131 1,950 2,114 296,383 16.9146 10 3.212
14 32 0.914404 2,240 2,415 350,830 16.8982 10 3.970
15 35 0.919875 2,625 2,816 429,220 16.8947 12 5.873
16 37 0.924689 2,960 3,162 497,407 16.8813 12 7.063
17 40 0.928958 3,400 3,618 592,377 16.8837 14 11.01
18 42 0.932769 3,780 4,009 675,462 16.8720 18 17.14
19 45 0.936192 4,275 4,520 792,874 16.8776 113 121.7
20 47 0.939283 4,700 4,956 892,456 16.8670 116 162.5
* Runtimes measured on an Intel Xeon E3-1245 with 32GB of RAM with MATLAB R2013b.

Number of Bars − N b

er
ro

r =
 (

V
−

V o
pt

)
/ V

op
t

10
4

10
5

10
6

10
−3

10
−2

10
−1

M

(a) (b)

Figure 5.15: Capped cone domain under torsion. (a) Convergence with base mesh refinement.
(b) Solution obtained for Nb = 115, 789, generated using a cylindrical–coordinate domain
with Ne = 900, Nn = 1, 010 and Lvl = 3.

128

L

L

L

M

(a) (b)

Figure 5.16: Torsion sphere problem modeled using an orthogonal domain. (a) Domain
definition, loading and supports. (b) Sample mesh with N = 5.

example in Section 5.3.1 (torsion cylinder) addresses a similar problem, but with a con-

strained domain. With no previous knowledge of the optimal solution, it is reasonable to

use a regular and orthogonal base mesh. The moment (and support) is applied at the four

nodes closest to the poles, as shown in Figures 5.16(a) and 5.16(b).

The domain is discretized using N ×N ×N elements. Considering a domain with L = 1

and M = 1, sample solutions for two different discretizations are shown in Figures 5.18(a)

and 5.18(b). The convergence of the ground structure method for increasingly refined base

meshes is given in Table 5.4 and Figure 5.17. It should be noted that distance from the

loaded and supported nodes to the pole axis decreases with refinement, i.e. the angle φF

increases with a decrease of the element size in the base mesh (Figure 5.20(c)). Thus, the

optimal volume Vopt changes with the discretization. For a regular structured–orthogonal

cube mesh of dimension L, discretized with N elements in each direction (Figure 5.16), the

129

angle φF is:

dx =
L

N

rF =
1

2

√
dx2 + dx2 =

√
2L

2N

φF = atan

(
L/2

rF

)
= atan

(√
2N

2

)
(5.36)

R =

√(
L

2

)2

+ r2
F =

L

2N

√
N2 + 2 ,

where dx is the dimension of a single hexahedral element in the base mesh, and rF is the

distance from the pole to the loaded nodes (radius of the moment application circle).

The poor convergence rate observed with mesh refinement, and even worse with connec-

tivity level, is attributed to a number of reasons:

• This is a particularly unfavorable scenario for the method: approximating a sphere

with a box.

Number of Bars − N b

er
ro

r =
 (

V
−

V o
pt

)
/ V

op
t

10
4

10
5

10
6

10
−0.9

10
−0.8

10
−0.7

10
−0.6

Lvl = 2
Lvl = 3
Lvl = 4
Lvl = 5

very coarse

coarse

mid-coarse

mid-�ne

�ne
very �ne

M

Figure 5.17: Convergence to the optimal solution of increasingly refined regular orthogonal
base meshes under torsion. Increasing the ground structure connectivity level does not
improve the quality of the solution in this case.

130

Table 5.4: Convergence for a regular orthogonal domain of side L = 1 under torsion with
M = 1, for different meshes with varied connectivity levels.

Base mesh N Ne Nn R φF Lvl Nb Vopt Volume V LPiter Runtime∗ [min]

very coarse 5 125 216 0.5196 1.2952

2 5,540

7.9017

9.6571 10 0.006
3 11,372 9.6571 11 0.016
4 15,980 9.6571 11 0.024
5 19,508 9.6571 11 0.025

coarse 7 343 512 0.5101 1.3714

2 15,652

9.2101

10.8069 12 0.038
3 35,932 10.8069 13 0.107
4 56,668 10.8069 13 0.203
5 82,804 10.8069 13 0.255

mid-coarse 9 729 1,000 0.5061 1.4149

2 33,804

10.1997

11.8774 14 0.397
3 82,356 11.8615 17 0.583
4 137,652 11.8615 16 1.156
5 218,652 11.8615 17 2.358

mid-fine 11 1,331 1,728 0.5041 1.4429

2 62,348

10.9943

12.6330 16 1.585
3 157,604 12.6252 17 2.561
4 272,804 12.6252 17 3.658
5 454,748 12.6252 18 9.408

fine 13 2,197 2,744 0.5029 1.4624

2 103,636

11.6579

13.3360 19 8.292
3 268,636 13.3041 20 9.355
4 475,996 13.3015 20 12.13
5 818,788 13.3015 21 40.60

very fine 15 3,375 4,096 0.5022 1.4768

2 160,020

12.2274

13.9097 25 29.15
3 422,412 13.8713 21 26.43
4 761,100 13.8649 23 43.19
5 1,338,468 13.8642 100 541.9

* Runtimes measured on an Intel Xeon E3-1245 with 32GB of RAM with MATLAB R2013b.

(a) (b)

Figure 5.18: Optimized structures for the torsion sphere problem in an orthogonal domain.
(a) Solution with N = 5, Lvl = 4 and Nb = 15, 980. (b) Solution with N = 13, Lvl = 4 and
Nb = 475, 996.

131

• Increasing φF (reducing the radius of the circumference where the load is applied),

makes the problem more difficult to approximate numerically. Truss elements, such

as those used in the ground structure method cannot handle a moment applied at a

single point, and thus as φF ≈ π/2 the optimal volume Vopt → ∞ (refer to Equation

(5.1)).

• The radius of the analytical closed–form solution (Equation (5.36)), given in Table

5.4, exceeds the boundaries of the discretized domain 2R > L = 1. Thus, the domain

does not fully accommodate the optimal analytical solution. This situation, however,

improves with mesh refinement.

• For this problem in particular, the theoretical optimal solution is comprised solely

of curved members. A high connectivity level will generate longer straight members,

which do not improve the approximation for this analytical solution. Figure 5.19 shows

the analytical solution viewed from the poles, along with a fictitious discretization il-

lustrating some members at different connectivity levels: lower level members (shorter)

have a better chance at approximating the solution.

5.3.4 Torsion sphere (spherical domain)

Once knowledge is gained that the solution lies in a close–to–spherical domain, the base mesh

can be modified to provide a better approximation. The base mesh in this case is a thick

hollow sphere. This is not a shell, for it allows the solution to modify its radii if needed. The

load is applied at an intermediate radius rm between the inner and outer radii of the hollow

sphere, ri and ro respectively as shown in Figure 5.20(a). The domain is represented using

spherical coordinates, and is discretized in the θ, φ and r directions using Nθ, Nφ and Nr

elements respectively. A sample mesh discretized with {Nθ, Nφ, Nr} = {30, 14, 2} is shown

in Figure 5.20(b), with an axisymmetrical plot given in Figure 5.20(c). The sphere is hollow,

and thus a spherical restriction zone with radius equal to the internal radius ri is used.

132

level 1

level 3

level 2
level 4

N = 10x

N

=
10

y

Figure 5.19: Polar view of the analytical closed–form solution for the torsion sphere problem.
A fictitious regular discretization with some members is shown to highlight the inability of
higher level members to approximate the solution.

If the domain is discretized with a constant spacing on φ, then the angle φF of the applied

force is:

φF =
π

2

Nφ − 2

Nφ

(5.37)

The optimal volume, given by Equation (5.1), will increase with refinement on the base

mesh due to an increase in φF . Optimal volumes for increasingly refined base meshes with

constant spacing are given in Table 5.5.

Ideally, a convergence study should solve the same problem using increasingly refined

meshes. To fix the location of the applied loads, the size of the first and last element on the

φ partition are fixed, and the remaining elements are evenly distributed. Thus making φF

133

rm
ri

ro

M

(a) (b)

x

z
φ

r

φF

- φF2
π_

(c)

Figure 5.20: Torsion sphere problem. (a) Domain definition, loading and supports. (b)
Sample mesh with ri = 2.9, rm = 3 and ro = 3.1 discretized with Nθ = 30, Nφ = 14 and
Nr = 2. (c) Axisymmetric plot of the sample mesh with π/2− φF = π/10, ri = 2.9, rm = 3
and ro = 3.1 discretized with Nφ = 14 and Nr = 2.

Table 5.5: Convergence for a hollow spherical domain with M = 7, ri = 2.9, rm = 3.0
and ro = 3.1. The discretization in φ is constant; i.e. the angle φF (and the volume Vopt)
increases with refinement.

Nθ Nφ Nr Ne Nn Lvl Nb φF Vopt Volume V LPiter Runtime∗ [min]
16 8 2 256 342 3 4,308 1.1781 45.2170 48.5088 11 0.008
24 12 2 576 798 3 21,076 1.3090 56.7725 60.2254 10 0.069
32 16 2 1,024 1,446 3 59,780 1.3744 64.8980 67.9621 60 1.801
40 20 2 1,600 2,286 3 121,244 1.4137 71.1785 74.0993 84 5.456
48 24 2 2,304 3,318 3 202,036 1.4399 76.3012 78.9887 32 6.192
56 28 2 3,136 4,542 3 308,844 1.4586 80.6280 83.4937 98 26.11
64 32 2 4,096 5,958 3 425,284 1.4726 84.3738 87.6053 13 13.83
72 36 2 5,184 7,566 3 575,932 1.4835 87.6764 91.4038 110 90.11
* Runtimes measured on an Intel Xeon E3-1245 with 32GB of RAM with MATLAB R2013b.

constant for all discretizations (Figure 5.20(c)), and consequently Vopt constant regardless of

the refinement in the base mesh. Taking π/2− φF = π/10, the resulting optimal volume is

Vopt = 51.5964. The resulting optimal volumes for increasingly refined base meshes are given

in Table 5.6, with one of these solutions shown in Figure 5.21.

Making φF constant ensures that the refinement is approximating the same boundary

value problem, and thus a smooth convergence to the analytical closed–form solution is

obtained. If φF is variable, then the method is approximating a different problem with each

134

Table 5.6: Convergence for a hollow spherical domain with M = 7, ri = 2.9, rm = 3.0
and ro = 3.1. The discretization in φ makes the first and last ∆φ equal to π/10, with
the remaining elements evenly distributed; i.e. the angle φF is constant and equal to φF =
π/2−π/10 for all discretizations. Ground structures are generated with Nr = 2 and Lvl = 3.
The optimal volume is Vopt = 51.5964.

Nθ Nφ Ne Nn Nb Volume V LPiter Runtime∗ [min]
20 10 400 546 10,564 54.9909 108 0.261
30 14 840 1,176 38,734 53.6278 10 0.189
40 18 1,440 2,046 96,484 52.8693 11 1.011
50 22 2,200 3,156 178,804 52.4600 12 3.467
60 26 3,120 4,506 283,444 52.2877 110 33.34
70 30 4,200 6,096 415,664 52.1777 12 10.30
* Runtimes measured on an Intel Xeon E3-1245 with 32GB of RAM with MATLAB R2013b.

Figure 5.21: Michell’s torsion sphere solution obtained for a domain with ri = 2.9, rm = 3
and ro = 3.1. Domain is discretized with Nθ = 30, Nφ = 14 and Nr = 2, resulting in
Ne = 840, Nn = 1, 176. The ground structure generated with Lvl = 3 has Nb = 38, 734
members, and an optimal volume of V = 53.6278.

discretization, and thus convergence is not guaranteed. The torsion sphere problem becomes

more difficult to approximate numerically if the radius where the moment couple is applied

is small (large φF). Convergence curves for both situations are shown in Figure 5.22.

135

Number of Bars − N b

er
ro

r =
 (

V
−

V o
pt

)
/ V

op
t

10
3

10
4

10
5

10
6

10
−2

10
−1

φ
F

 increasing

φ
F
 = π/2 − π/10

1.1781
φ F

 =
1.3090

φ F
 =

1.3744

φ F
 = 1.4137

φ F
 = 1.4399

φ F
 =

1.4586
φ

F =
1.4726

φ
F =

1.4835
φ

F =

φF

M

Figure 5.22: Convergence to the optimal solution of increasingly refined spherical base
meshes. The case where φF increases with refinement begins to diverge as φF ≈ π/2.
The case where φF is constant converges as is expected.

5.4 Sample problems

The following problems were selected to showcase features and issues of the method and its

implementation (GRAND3). Unless otherwise stated, the stress limit ratio is κ = 1.0 with

σT = 1, the collinear tolerance is ColTol = 0.999999, and the plotting cutoff is Cutoff =

0.005.

5.4.1 Edge–supported (double) cantilever beam

This problem consists of a three–dimensional box domain, fixed at one end on two (opposite)

vertical edges, and loaded at the center of the other end (Figure 5.23(a)). The domain has

dimensions Lx = 3 and Ly = Lz = 1, is loaded with P = 1, and is discretized with a regular

partition in all three dimensions. Examples for a coarse and a fine base mesh are given in

Figures 5.23(b) and 5.23(c). The optimal volumes obtained from a series of increasingly

refined meshes exhibit convergence to a unique value as expected.

136

P

Lx

Ly

Lz

(a)

(b) (c)

Figure 5.23: Edge–supported double cantilever problem. (a) Domain with loads, boundary
conditions and dimensions. (b) Base mesh used to generate a coarse ground structure:
Lx = 3, Ly = Lz = 1 and P = 1, discretized with Nx = 6 and Ny = Nz = 2, resulting in
Ne = 24 and Nn = 63. (c) Base mesh used to generate a fine ground structure: Lx = 3,
Ly = Lz = 1 and P = 1, discretized with Nx = 30 and Ny = Nz = 10, resulting in
Ne = 3, 000 and Nn = 3, 751.

Two sample solutions obtained for the coarse and a fine base meshes are shown in Figures

5.24(a) and 5.24(b). These results hint that optimal closed–form solution consists of two flat

cantilever beams (as in Lewiński et al. (1994b)), meeting at the load application point. With

this assumption, a new base mesh is created for the problem: this (improved) base mesh

allows for perfectly flat cantilevers to develop if the optimal structure requires it, as shown

in Figure 5.25(a). The optimal structure obtained for this new base mesh can be seen in

Figure 5.25(b), and confirms the flat cantilever hypothesis.

The optimal volumes obtained using regular base meshes show convergence to an absolute

137

(a) (b)

Figure 5.24: Optimized structures for the edge–supported double cantilever problem. (a)
Solution for the coarse base mesh with Ne = 24 and Nn = 63, using Lvl = 2 and Nb = 962.
(b) Solution for the fine base mesh with Ne = 3, 000 and Nn = 3, 751, using Lvl = 6 and
Nb = 1, 474, 218.

(a) (b)

Figure 5.25: Edge–supported double cantilever problem with improved base mesh discretiza-
tion. (a) Base mesh used to generate the ground structure: discretized with Nx = 5 and
Ny = Nz = 10, resulting in Ne = 1, 000 and Nn = 726. (b) Solution using the improved base
mesh with Lvl = 6 and Nb = 137, 877. Resulting optimal volume is V = 14.2725.

optimal in the vicinity of Vopt ≈ 13.93: this value was obtained using the two–dimensional

implementation described in Chapter 4 and in Zegard and Paulino (2014a). Convergence

data and plots are shown in Table 5.7 and Figure 5.26 respectively.

138

Table 5.7: Convergence for the three–dimensional double cantilever beam with Lx = 3,
Ly = Lz = 1 and P = 1, approximated using a regular–orthogonal mesh.

Nx Ny Nz Ne Nn Lvl Nb Volume V
6 2 2 24 63 2 962 15.250000
12 4 4 192 325 3 17,604 14.680556
18 6 6 648 931 4 112,374 14.458478
24 8 8 1,536 2,025 5 499,112 14.255496
30 10 10 3,000 3,751 6 1,474,218 14.123627
36 12 12 5,184 6,253 7 4,078,236 14.054298

Number of Bars − N b

10
2

10
4

10
6

10
8

14

14.5

15

15.5

Vo
lu

m
e

−
V

P

Figure 5.26: Convergence of the optimal volume for the edge–supported double cantilever
problem, for a set of increasingly refined ground structures.

5.4.2 Diamond problem

The diamond problem is a cylindrical domain with a coin–shaped (or disc) discontinuity in

the middle. This problem shows the capability of the method to find optimal load paths

for problems that include discontinuities, imperfections or barriers in their structure. The

domain has a vertical load along it’s z axis, as shown in Figure 5.27(a). The domain is

meshed as in Figures 5.27(b) and 5.27(c). The ground structure is generated for a Lvl = 3

connectivity, resulting in Nb = 109, 820. The restriction zone is a disc primitive in the coin–

shaped discontinuity. The resulting optimal structure resembles a diamond : the members

fan away from the axis to evade the discontinuity. At the point of maximum width, it creates

139

1

1

0.8

3

0.01

(a) (b)

r

z

1

30.01

0.8

(c)

Figure 5.27: Diamond problem: Vertically loaded cylinder with a coin–shaped discontinuity.
(a) Half–domain with loads, boundary conditions and dimensions. (b) Base mesh used to
generate the ground structure: Nz = 12, Nθ = 16 and Nr = 5. (c) Axisymmetric plot of the
base mesh with Nz = 12 and Nr = 5.

a strong ring with the purpose of shifting the member orientation back into the support as

shown in Figure 5.28.

5.4.3 Cup problem (spider)

This problem consists of an inverted cup–shaped domain, loaded vertically in the interior.

Figure 5.29(a) shows the half–domain with loads, boundary conditions and dimensions. The

domain is discretized using cylindrical coordinates, and the restriction zone is a single rod

primitive in the interior of the cup. The resulting mesh is shown in Figure 5.29(b), with a

axisymmetric view given in Figure 5.29(c). The solution to this problem is shown in Figure

5.30(a).

The optimal solution at the top (Figure 5.30(b)) is degenerate; the solution lies on a

facet of the feasible domain. This is not an issue of the ground structure method, but rather

140

Figure 5.28: Optimal solution obtained for the diamond problem using Nz = 12, Nθ = 16,
Nr = 5, Lvl = 3 and Nb = 109, 820. The optimized volume is V = 4.7067.

P

1

0.7

10.6

(a) (b)

r

z

(c)

Figure 5.29: Vertically loaded inverted cup problem. (a) Half–domain with loads, boundary
conditions and dimensions. (b) Base mesh used to generate the ground structure. (c)
Axisymmetric plot of the base mesh.

a characteristic of the problem: it does not have a unique solution (Rozvany, 1997a). This

situation can be better understood with a simple 3 force problem (Mazurek et al., 2011): the

optimal structure to carry 3 forces evenly distributed on a circle of radius R is not unique,

as shown in Figure 5.31. For the topology in Figure 5.31(a), the force in each member is

141

(a) (b)

Figure 5.30: Optimal solution to the inverted cup problem. Problem’s parameters are Ne =
1, 392, Nn = 1, 781, Lvl = 3 andNb = 168, 436, resulting in an optimal volume of V = 2.9384.
(a) Plot of the optimal structure using GRAND3. (b) Detail of the optimal structure.

P

PP

(a)

P

PP

(b)

P

PP

(c)

P

PP

(d)

Figure 5.31: Structural optimization problem with a non–unique (degenerate) solution: (a),
(b), (c) and (d) are all optimal topologies.

Ni = P , and the length of the members is Li = R. Thus, the optimal volume is:

Vopt1 = 3

(
P

σT

)
(R) = 3

PR

σT

Repeating the analysis for the topology in Figure 5.31(b), the force in each member is

Ni = P/
√

3, and the member’s length is Li =
√

3R. Thus, the optimal volume is:

Vopt2 = 3

(
P/
√

3

σT

)(√
3R
)

= 3
PR

σT

142

In fact, any combination of the previous two cases, as in Figures 5.31(c) and 5.31(d) for ex-

ample, will result in the same optimal volume. In practice, when facing an optimal structure

with a degenerate solution like in Figure 5.30(a), the engineer can decide the final topology.

Figures 5.32(a) and 5.32(b) are examples of possible optimal topologies for the problem in

Figure 5.30(b).

(a) (b)

Figure 5.32: Options of topologies for a degenerate problem: (a) Spoke and hub option. (b)
Slab option.

5.4.4 Crane problem

The crane (or tower) problem was introduced by Smith (1998), in whose work the domain

had to be partitioned into regions in a specialized CAD system. A three–dimensional ground

structure was then generated within these regions.

The approach presented here (and implemented in GRAND3), requires no subdivision of

the domain, but does require the definition of restriction zones. Domains are often procedu-

rally generated using geometric primitives. Because the restriction zone is typically a subset

of the primitives used to construct the domain, the additional work required is comparatively

small.

The domain in Figure 5.33(a) is discretized with two different degrees of refinement as in

Figures 5.33(b) and 5.33(c). The restriction zone is the union of two boxes under both of the

tower’s arms. The optimized ground structures for each case are shown in Figures 5.34(a) and

143

P
P

P
P

2

6
62

2 10

(a)

(b) (c)

Figure 5.33: Crane problem: Tower with arms loaded at four points. (a) Domain with
loads, boundary conditions and dimensions. (b) Base mesh used to generate a coarse ground
structure: Ne = 10 and Nn = 38. (c) Base mesh used to generate a fine ground structure:
Ne = 768 and Nn = 935.

5.34(b). This example showcases the ability of the method (and implementation) to provide

solutions with different levels of detail. Highly detailed solutions provide information into

the optimal load transfer mechanism, while coarse solutions are more likely to be developed

into real structures.

144

(a) (b)

Figure 5.34: Optimized ground structures for the crane problem. (a) Solution for the coarse
base mesh: Lvl = 3 and Nb = 315. (b) Solution for the fine base mesh: Lvl = 3 and
Nb = 47, 076; the plotting cutoff is Cutoff = 0.002 to prevent members from ending mid–air.

5.4.5 Lotte tower (Seoul, South Korea)

The Lotte tower is a shell–like domain (no thickness) that is square at the base and circular

at the top. This problem was inspired by the design competition of the same name by

Skidmore, Owings & Merill LLP (Figure 5.35(a)), and has been previously optimized using

a density–based optimization approach by Stromberg et al. (2010). In the present example,

the domain is optimized for two loading scenarios: lateral load at the tip acting at 4 points

(Figure 5.35(b)), and a torsional load distributed over the top circumference (Figure 5.35(c)).

The domain’s height is H = 80, the square at the base has sides 2a = 10, and the circle

at the top has a diameter of 2r = 10. The domain is discretized using quadratic surface

elements; partitioned into Nz = 12 elements along its height, and Nθ = 16 elements around,

resulting in Ne = 192 and Nn = 208. The restriction zone is a surface primitive set–back

from the interior of the domain by a small spacing, as shown in Figure 5.35(d).

The ground structure is generated for a Lvl = 5 connectivity, resulting in Nb = 4, 100

145

(a)

2r

H

2a
(b)

2r

H

2a
(c) (d)

Figure 5.35: Lotte tower problem: (a) Rendering of the Lotte tower [c© Skidmore, Owings
& Merrill LLP]. (b) Domain definition, loading and boundary conditions for the laterally
loaded tower. (c) Domain definition, loading and boundary conditions for the torsionally
loaded tower. (d) Base mesh for the ground structure generation, with the restriction surface
also shown.

potential members. The optimized ground structures for the lateral loading and torsional

loading cases are shown in Figures 5.36(a) and 5.36(b) respectively.

The lateral loading causes part of the resulting topology to work as a web (front view in

Figure 5.36(a)); developing an arrangement similar to an optimal cantilever, and analogous

to the two–dimensional problem in Section 4.3.1 (Figure 4.12). The other side of the solution

(side view in Figure 5.36(a)) acts as a flange, transferring the load in tension/compression

away from the web and to the foundation supports. It is understood that buildings are

subject to lateral loads from any directions and therefore 4-axis symmetry in this design

could be enforced.

The optimized tower for torsion (Figure 5.36(b)) results in a diagrid pattern, similar to

those used in high–rise buildings. While the torsional stiffness of structural systems is impor-

146

(a) (b)

Figure 5.36: Lotte tower problem: (a) Optimized ground structure for a lateral loading at
the top. (b) Optimized ground structure for a torsional load at the top.

tant in tall building design, a combination of lateral and torsional stiffness requirements will

likely result in a better design. Thus, it can be anticipated that a more rigorous optimization

process will likely result in a hybrid of the designs in Figures 5.36(a) and 5.36(b).

5.5 Conclusions

The ground structure generation and analysis methodology presented in the previous chapter

is successfully extended to three–dimensional space. Concavities and holes in the domain

are addressed using three–dimensional collision primitives, extending the approach proposed

147

in Chapter 4. Collision primitives for a variety of shapes are explained or developed, among

which the surface primitive offers a viable alternative in the eventual case that no other

primitive is adequate.

The method is verified and benchmarked using three problems for which the solutions

are known, with the method converging to the analytical solution. Features and details fot

he convergence process are explored in detail. Additional problems showcase the capabilities

of the method to address complicated domains, and to generate structures with various

levels of detail. The ability to handle domains other than boxes has resulted in innovative

bio–inspired and natural designs, as is the case with the “Diamond problem” and the “Cup

domain or spider” (Figures 5.28 and 5.30(a) respectively).

Limited computational power, and the rapid scaling of the complexity in three–dimensional

space, make it necessary for the user to employ engineering judgement in order to obtain

reasonably good solutions for applied problems. A good solution is such that it can be ob-

tained within reasonable computer time, is detailed enough, and can be manufactured. The

“Lotte tower” problem loaded under torsion (Section 5.4.5), for example, results in a diagrid

structure that is both; beautiful and feasible.

148

Chapter 6

Additive manufacturing of optimal
structures

The field of structural optimization has developed for over a century (Topping, 1983;

Rozvany, 2009; Deaton and Grandhi, 2013). However, the ability to manufacture these

structures lags behind our ability to design and optimize them. Recently, additive manu-

facturing (colloquially known as 3D printing), positions itself as the missing link towards a

fully integrated optimal structural design: the materialization.

Additive manufacturing opens the possibility to overcome limits currently imposed by

conventional manufacturing techniques. There is a large variety of additive manufacturing

technologies. However, the steep cost and size of these machines indirectly restricted these

to large industry and research installations. Recently, there has been a push to bring these

technologies to the consumer and small industry (Jones et al., 2011). Five of the most

common additive manufacturing technologies are:

1. Fused Deposition Modeling (FDM);

2. Stereolithography (SLA);

3. PolyJet;

4. Selective Laser Sintering (SLS);

5. Selective Laser Melting (SLM).

149

In FDM (Crump, 1992), layers are built by extruding material, joining it to previously built

layers in the process. In SLA (also referred as LS), consecutive layers of photopolymer

liquid are cured by a UV laser or similar (Hull, 1986). PolyJet technology is similar to

SLA, except that the photopolymer is jetted in thin layers onto the model and rapidly cured

by a UV light. SLS and SLM fuse material powder in layers, with each consecutive layer

commencing by depositing a new layer of powder (Meiners et al., 1998; Deckard, 1989). The

main difference between SLS and SLM is whether the material gets fully melted by the laser

or not. The cost reduction and improved reliability of Fused Deposition Modeling (FDM)

have generated increased awareness and widespread use of 3D printing (Crump, 1992; Jones

et al., 2011; Wittbrodt et al., 2013).

This chapter aims to provide a simple and effective procedure for the last step in the

design of optimal structures: the manufacture. Three different types of optimal structures

are addressed:

• Two–dimensional ground structure optimization

• Three–dimensional ground structure optimization

• Density–based topology optimization

The goal in all three cases is the same—to generate three–dimensional data in a format that

can be used for additive manufacturing. The workflow and techniques presented here apply

to most (if not all) of the additive manufacturing technologies. Work combining topology

optimization techniques (density–based methods mostly) and additive manufacturing do

exist (Brackett et al., 2011; Dewhurst and Srithongchai, 2005; Dewhurst and Taggart, 2009;

Meisel et al., 2013; Reinhart and Teufelhart, 2011; Rezaie et al., 2013; Sundararajan, 2011;

Villanueva and Maute, 2014). However, the use of these technologies is still novel, and

further research by the scientific community is required to streamline the process and extend

it to a variety of situations.

150

6.1 Refinement of intermediate values in

density–based topology optimization

Topology optimization is making progress with a number of different techniques or ap-

proaches: density–based, ground structure, truss layout, level set, phase field, evolutionary

and several others (Topping, 1983; Bendsøe and Sigmund, 2003; Deaton and Grandhi, 2013;

Sigmund and Maute, 2013). All these try to answer the same question: What is the best

distribution of material within a prescribed domain?

This section briefly reviews the theory and concepts behind density–based methods. The

topology optimization problem can be solved by two approaches: the nested method, where

the structural equilibrium equations are assumed to be satisfied for each optimization step,

i.e. alternating design update and analysis steps; and the simultaneous method, that concur-

rently optimizes for the solution of the structural equilibrium and design variables (Chris-

tensen and Klarbring, 2009). This work focuses on the nested formulation, with design

updates guided by gradient information.

The topology optimization problem may be formulated as follows: find the material

distribution that minimizes some objective function J , subject to a volume constraint g0 ≤ 0,

and possibly Nc additional constraints gi ≤ 0, i = 1 . . . Nc. The material distribution is

described by χ (x), that can take either the value 0 for void, or 1 for solid, at any point x in

the design domain Ω. Thus, the optimization problem becomes:

min
χ

J (χ,u (χ))

s.t. g0 (χ) =
∫

Ω
χ (x) dV − (f) (V0) ≤ 0

gi (χ,u (χ)) ≤ 0 i = 1 . . . Nc

χ (x) = {0, 1} ∀ x ∈ Ω ,

(6.1)

where f = [0, 1] is the specified volume constraint, V0 is the volume of the design domain,

151

and u is the displacement field that satisfies the equations of elasticity1.

The continuous problem described in Equation (6.1) is typically solved by discretizing

the domain Ω into a large number of finite elements. In its simplest form, each finite

element has an associated density value, constant within the element2. Therefore, the density

distribution is represented in a piecewise constant fashion throughout the domain. The

discretized optimization problem is then:

min
χ

J (χ,u (χ))

s.t. g0 (χ) =
∑Ne

j χjvj − (f) (V0) ≤ 0

gi (χ,u (χ)) ≤ 0 i = 1 . . . Nc

χj = {0, 1} j = 1 . . . Ne

with K (χ) u = f ,

(6.2)

where vi is the volume associated with the i-th element, for all Ne elements in the domain.

In addition, there is an implicit relationship between the design variables χ and the dis-

placements u; where K is the (assembled) global stiffness matrix in accordance to χ, and f

is the nodal force vector.

1Consider an isotropic elastic material in Ω: the static theory of linear elasticity requires that:

∇ · σ (u) + b = 0 in Ω

u|Γ1
= u0

σ (u) · n|Γ2
= t ,

with u being the displacement, b the body force, σ the stress tensor, u0 the prescribed displacements in
the boundary Γ1, and t the prescribed traction in the boundary Γ2 with outer normal n. The boundary is
defined everywhere, i.e. ∂Ω = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. The stress tensor σ (u) is defined as:

σ (u) = 2µε (u) + λtr {ε (u)} I ,

where the positive constants µ and λ are called the Lamé parameters and are related to the elastic material
properties. The strains ε correspond to the symmetrical part of the displacement gradient:

ε =
1

2

{
∇u + (∇u)

T
}

2Alternative approaches include assigning the density variables to the nodes (Matsui and Terada, 2004),
to a finer embedded mesh (Nguyen et al., 2009), among others.

152

In the discretized optimization problem (Equation (6.2)), the design variables χi can

only take discrete values: 0 or 1. This discrete problem is computationally difficult to solve,

especially considering the large number of design variables involved. By allowing the density

variables to take continuous values between 0 and 1, enables the use of gradient–based

optimization algorithms. Gradient–based optimization has rapid convergence, even with the

large number of variables involved. The structural equilibrium will encounter computational

difficulties with the void elements. It is thus common to replace the void by an Erzats

representation instead, i.e. the void is modeled by a very weak material (compared to the

solid). Hence, introducing a lower limit ρmin in the density variable, then the problem

becomes:

min
ρ

J (ρ,u (ρ))

s.t.
∑Ne

j ρjvj − (f) (V0) ≤ 0

gi (ρ,u (ρ)) ≤ 0 i = 1 . . . Nc

0 . ρmin ≤ ρj ≤ 1 j = 1 . . . Ne

with K (ρ) u = f ,

(6.3)

where K is the assembled on a per–element basis, with stiffness distributions in accordance

to the now continuous density variable ρi.

The material properties for solid and void (and intermediate values) are defined by a

material interpolation scheme. Using the SIMP (Solid Isotropic Material with Penalization),

or power–law, proposed by Bendsøe (1989) and Zhou and Rozvany (1991), the material

property associated with the i-th element is defined as:

Ei (ρi) = ρpiE0 with p ≥ 1 , (6.4)

where p is the penalization parameter, and E0 is the Young’s modulus of the solid3. The

3Alternative interpolation schemes have been developed to address some of the issues associated with the
SIMP (Bendsøe and Sigmund, 1999; Stolpe and Svanberg, 2001; Bruns, 2005; Dzierżanowski, 2012).

153

case of p = 1 corresponds to the variable thickness sheet problem, that for compliance min-

imization is known to be convex and with a unique solution (Petersson, 1999). Penalization

values p > 1 will cause the problem to have multiple local minima, but penalizes the in-

termediate density values. High values for the penalization p will result in a solution close

to solid—void (or 0—1), but will likely converge to a local minimum. The modified SIMP

rescales the standard SIMP so as to remove the lower limit on the density variable (Sigmund,

2007):

min
ρ

J (ρ,u (ρ))

s.t.
∑Ne

j ρjvj − (f) (V0) ≤ 0

gi (ρ,u (ρ)) ≤ 0 i = 1 . . . Nc

0 ≤ ρj ≤ 1 j = 1 . . . Ne

Ek (ρk) = Emin + ρpk (E0 − Emin) k = 1 . . . Ne

with K (ρ) u = f ,

(6.5)

where Emin > 0 is the modulus of elasticity of the Ersatz material (very weak material used

to represent the void). The domain may also include passive elements (or associated design

variables). Passive elements can be prescribed to be void or solid, and are referred to as

passive–void and passive–solid respectively. The density variables to be optimized are called

active. The number of active, passive–void and passive–solid variables are Na, Npv and Nps

respectively, with Ne = Na +Npv +Nps. It may be desirable to specify a volume fraction f ?

for the design domain only (i.e. the active region). This volume fraction f ? is related to the

total volume fraction f by:

f =
f ?
∑Na

j vj +
∑Nps

k vk∑Na
j vj +

∑Nps
k vk +

∑Npv
l vl

=
f ?
∑Na

j vj +
∑Nps

k vk∑Ne
i vi

=
f ?
∑Na

j vj +
∑Nps

k vk

V0

(6.6)

The continuous nature of the density variable ρ is not physical, and a solid—void (or

0—1) solution is desired: some interpretation process is required. The solid boundary can

be defined by a cutoff (or threshold) value: densities ρ > cutoff ≈ 0.5 are considered to

154

be solid. The interpreted solution is no longer optimal and the volume constraint may be

violated. More sophisticated approaches can ensure that these variations are not significant

(Sigmund, 2007; Xu et al., 2010). Nonetheless, taking cutoff ≈ 0.5 does yield reasonably

good results, specially if the results have a small amount of intermediate densities.

The topology optimization problem in Equation (6.1) is not well–posed: the objective can

always be decreased by increasingly more and smaller holes throughout the entire domain

(Sigmund and Petersson, 1998). Similarly, for the discretized problem in Equations (6.2),

(6.3) and (6.5), a refinement of the finite element mesh will typically cause more holes to

appear in the solution, i.e. the solution is mesh–dependent. For the problem to be well–

posed, the problem needs to be relaxed (Bendsøe and Kikuchi, 1988) or restricted (the latter

being more popular in current approaches).

There are a variety of restriction methods for SIMP problems: perimeter control (Ambro-

sio and Buttazzo, 1993; Haber et al., 1996), sensitivity filter (Sigmund, 1997), density filter

(Bruns and Tortorelli, 2001; Bourdin, 2001), projection filter (Guest et al., 2004; Sigmund,

2007; Xu et al., 2010; Wang et al., 2011). The present work uses the density filter, which

defines the elements’ physical densities ρ as the weighted average of the design variables ρ.

The weighting function is local in nature and operates over the variables in a neighborhood

of radius rmin. The SIMP with density filtering is a class of the so called two–field SIMP,

because it makes use of a design variable ρ and a density variable ρ field (Sigmund and

Maute, 2013). This filter can also be viewed as a convolution operation over the design

variables, and implicitly controls the minimum length–scale of the resulting topology.

The density filter has the downside of encouraging a smooth transition region between

solid and void. This is also true for other filters as well. There are a number of approaches to

reduce the amount of intermediate densities in the transition region, mainly projection and

continuation (Allaire and Kohn, 1993; Allaire and Francfort, 1993; Sigmund and Petersson,

1998).

155

6.1.1 Filters for density–based topology optimization in 3D

(a) (b)

(c) (d)

Figure 6.1: Normalized convolution (weighting) functions for two–dimensional filters in a
sample patch from a regular and orthogonal mesh. Shaded elements have weights different
than zero. (a) Linear filter. (b) Quadratic filter. (c) Cubic filter. (d) Quartic filter.

Linear filters are often used in two–dimensional density–based topology optimization

(Sigmund, 2001; Bendsøe and Sigmund, 2003; Andreassen et al., 2011; Liu and Tovar, 2014).

However, it has been pointed out that linear filters do not clearly define the solid—void

boundary, as they create a smooth transition region between solid and void. The filter is

necessary to make the problem well–posed and prevent checkerboard patches in the solution

(Dı́az and Sigmund, 1995; Sigmund and Petersson, 1998). The checkerboard problem is a

numerical artifact common in meshes with traditional elements (e.g. triangles, quadrilaterals,

hexahedra, wedges to name a few), where the resulting topology is artificially stiff when

exhibiting a checkerboard solid—void pattern. In practice, the filter implicitly introduces a

minimum length scale of the details in the topology. The physical density of an element ρ

156

is a weighted average of the design variables ρ and their associated volumes v as:

ρ = Hρ (6.7)

with Hij =
h (i, j) vj∑Ne
k h (i, k) vk

h (i, j) =

[rmin − dist (i, j)]q for rmin − dist (i, j) > 0

0 otherwise
,

where matrix H contains the weights relating the design and density variables. The operator

dist (i, j) is defined as the distance between density variable ρi and design variable ρj, and

rmin is the user–defined filter radius. The order of the filter is defined by the exponent

q, where q = 1 results in the linear filter: convolution with a cone in two–dimensions.

Examples of the resulting convolution functions in two–dimensions for q = {1, 2, 3, 4} are

shown in Figure 6.1. The formulation for density–based topology optimization using SIMP

and including a volume filter is:

min
ρ

J (ρ,u (ρ))

s.t. ρ = Hρ∑Ne
i ρivi − (f) (V0) ≤ 0

gi (ρ,u (ρ)) ≤ 0 i = 1 . . . Nc

0 ≤ ρj ≤ 1 j = 1 . . . Ne

Ek (ρk) = Emin + ρpk (E0 − Emin) k = 1 . . . Ne

with K (ρ) u = f

(6.8)

Higher–order filters q > 1 are efficient at reducing the amount of intermediate material

at the boundary due to their rapid decay (Almeida et al., 2009). The effect of filters in

three–dimensional density–based topology optimization has not received as much attention

as two–dimensional ones. A number of factors contribute to this: the increased complexity

157

of three–dimensional analysis, limited computational power, and the complexity of three–

dimensional plotting. Given a filter with specific rmin and exponent q, the effect of the filter

in two and three–dimensional space is different: the blurring (or smearing) effect is increased

in three–dimensions.

0.0000 0.1200 0.0000

0.1200 0.5200 0.1200

0.0000 0.1200 0.0000

1

r =1.3min

(a) (b)

Figure 6.2: Topology optimization filters in two and three dimensions. The meshes are
regular and orthogonal with elements of unit dimension. The filter is linear of size rmin = 1.3.
(a) Two–dimensional filter patch: the filter weight associated with the center element is

H
(2D)
ii = 0.5200, plus 4 adjacent elements. (b) Three–dimensional filter patch: the filter

weight associated with the center element is H
(3D)
ii = 0.4194, plus 6 adjacent elements.

Consider a two–dimensional regular and orthogonal mesh with square elements of unit

size, and a single design and density variable per element located at the center. Taking

rmin = 1.3 and q = 1 in Equation (6.7), the resulting convolution kernel in two–dimensions

is shown in Figure 6.2(a). Using these parameters for an equivalent three–dimensional mesh

of hexahedral elements, the convolution kernel involves 6 neighboring elements instead of 4,

as shown in Figure 6.2(b). The weight for the design variable at the center decreases from

H
(2D)
ii = 0.5200 to H

(3D)
ii = 0.4194. The difference in Hii increases with the filter radii: the

elements inside a two–dimensional filter scales with r2, compared r3 in three–dimensions.

The evolution of the weight Hii with the filter radius for the case of regular and orthogonal

158

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Filter radius [r]

M
ax

. �
lte

r c
on

vo
lu

tio
n

w
ei

gh
t [

 H
ii

]

min

2D
3D

q=1
q=2
q=3
q=4

Figure 6.3: Weight coefficient for the central element Hii for different filter radii. Curves for
filters in two– and three–dimensions and for different filter order q are shown (assuming a
regular and orthogonal mesh).

meshes is shown in Figure 6.3.

Consider a regular and orthogonal mesh: given a filter radius rmin and two–dimensional

exponent q(2D), a three–dimensional exponent q(3D) can be found such that H
(2D)
ii = H

(3D)
ii .

The weight coefficients of the neighboring design variables must decrease. The objective is to

reduce the amount of material being leaked to the neighboring elements, while maintaining

the filter radius unchanged (control over the minimum length–scale). Figure 6.4 plots the

required q(3D) that results in same value for Hii.

The curves in Figure 6.4 have a discontinuity at rmin = 1 as expected, but are otherwise

continuous. The curves can be considered smooth for rmin ≥ 1.5. For cases with 1.5 ≤

rmin ≤ 6 and 1 ≤ q(2D) ≤ 3, the following empirical expression displays good agreement with

the curves in Figure 6.4:

q(3D) = log (rmin) +
17

20
q(2D) +

4

57
q(2D)rmin +

4

87
rmin (6.9)

It is of interest to note that the main contributions in Equation (6.9) are: a logarithmic term

for the filter radius rmin and a linear term for q(2D).

159

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5
1.
1.5
2.
2.5
3.
3.5
4.
4.5
5.
5.5
6.

Filter Radius [r]

Re
qu

ire
d

3D
 e

xp
on

en
t [

q
(3

D
)]

q(2D) =1.0

q(2D) =1.5

q(2D) =2.0

q(2D) =2.5

q(2D) =3.0

0

0

0

0

0

0

min

Figure 6.4: Three–dimensional filter exponent q(3D) required to achieve the same filter weight
for the center element as in two–dimensions.

The filter exponent in three–dimensional filters q(3D) should be higher compared to two–

dimensional filters. Maintaining the same filter radius will cause the implicit control over

minimum length–scale to be similar, but not equal. These conclusions are not restricted to

density filters, but extend to sensitivity filters and projection schemes (three–field SIMP) as

well.

Edge–loaded cantilever example

The effect of high order filters can be further examined with an example. The three–

dimensional cantilever in Figure 6.5 is clamped at one end, and loaded at the bottom edge

of the opposite tip. The objective function is the minimization of structural compliance

(maximization of stiffness); that is J = uTKu = uT f . The problem is symmetric, and thus

only a half–domain is modeled. The domain is discretized using Lx×Ly×Lz = 216×72×72

brick (8–node) elements (216× 36× 72 for the half–domain). The material’s Poisson’s ratio

is ν = 0.3 and Emin = 10−9E0. The filter radius is rmin = 6, the penalization is p = 3 and

the volume fraction is f = 0.1 (10% of the domain’s volume).

The cutoff (or threshold) used is cutoff = 0.5, i.e. the solid is defined by the domain region

160

Ly

Lx

Lz

p
Figure 6.5: Rectangular cantilever clamped at the left side and loaded at the right by a
distributed force applied at the lower edge.

with density ρ ≥ 0.5. For the case where a linear filter is used (q = 1), the resulting cutoff

isosurface is shown in Figure 6.6(a), including a detail on a specific member; this member

suffers from an unnatural thinning at the ends. This is caused by the intermediate densities

in the vicinity of the joints caused by the filter. The intermediate densities located between

the members and close to the joint provide some additional stiffness, even when penalized.

Consequently, the structure demands less material from the members’ cross–sections to carry

the load, i.e. the member cross–sectional area is reduced.

The isosurface obtained from a cubic filter (q = 3) (Figure 6.6(b)) does not suffer from

this thinning problem. The cubic filter does not spread the material in the vicinity of the

joint as much as the linear filter due to its rapid decay. Figures 6.7(a) and 6.7(b) slice the

resulting topology along the member to highlight the intermediate densities in the vicinity

of the joints.

6.1.2 Reduction of intermediate densities by continuation

Knowing that the compliance minimization problem is convex for p = 1 (Petersson, 1999),

motivates the use of a continuation approach on the penalization parameter (Allaire and

Kohn, 1993; Allaire and Francfort, 1993; Sigmund and Petersson, 1998). This consists in

161

(a)

(b)

Figure 6.6: Results for the edge–loaded cantilever problem using density–based topology
optimization. Plot shows the ρ = 0.5 isosurface (density cutoff). (a) Results using a linear
filter q = 1, highlighting the artificial thinning of the member close to the joints. (b) Results
from using a cubic filter q = 3 with no artificial thinning.

initially optimizing for p = 1, and gradually increasing the penalization value during the

optimization process to reduce the amount of intermediate density values. This approach

drives the solution closer towards a 0—1 design (solid—void). While this technique often

converges to better designs, this cannot be guaranteed nor proven mathematically.

The original formulation (Equations (6.1) and (6.2)) was solved for a solid—void (or 0—1)

solution, i.e. χ = {0, 1}. The problem was then relaxed allowing for the continuous variable

ρ = [0, 1]. Continuation on the penalization parameter can be interpreted as gradually re–

introducing the solid—void (or 0—1) requirement. The penalization parameter can be safely

increased to values p > 4, that in the case of constant penalization would likely converge to

162

(a)

(b)

Figure 6.7: Slices of the resulting density–based topology optimization with SIMP for the
edge–loaded cantilever problem. (a) Isosurface and contours obtained from using a linear
filter q = 1. (b) Isosurface and contours obtained from using a cubic filter q = 3.

a worse design.

Alternatively, a continuation scheme could be used on the filter radius instead, i.e. grad-

ually decrease the filter radius during the optimization process (Sigmund and Maute, 2013).

This approach may result in checkerboarded regions or small length–scale topologies if in-

troduced too early in the optimization process, and is thus considered less robust.

Bridge loaded at the top surface

The effect of continuation at improving the resulting topologies is examined with a suitable

example. The three–dimensional bridge domain in Figure 6.8 is fixed on the bottom plane

163

Lx Ly

Lz

hs

Ls

Figure 6.8: Bridge problem: Domain is loaded vertically on the top surface. The bridge slab
is represented by a passive–solid region of height hs. The domain is fixed on the bottom
plane at strips of length Ls at both ends.

at strips of length Ls = 17 at each end (18 rows of nodes). The domain has a passive–solid

slab on the top surface of height hs = 2, on top of which a vertical distributed load is

applied. The objective function is the minimization of structural compliance (maximization

of stiffness); that is J = uTKu = uT f . The problem is double–symmetric, and thus only a

quarter–domain is modeled. The domain is discretized using Lx × Ly × Lz = 440× 88× 88

hexahedral (8–node) elements of unit size (220 × 44 × 88 for the quarter–domain). The

material’s Poisson’s ratio is ν = 0.3 and Emin = 10−9E0. The filter radius is rmin = 5.28,

the continuation on the penalization is p = {1.0 , 2.0 , 3.0 , 3.5 , 4.0 , 4.25} and the volume

fraction is f = 0.1 (10% of the design domain’s volume).

The nature of the distributed force on the bridge causes the members to spread too

thin in an effort to support the load everywhere. In doing so, the members seem to end

abruptly just before the load as shown in Figure 6.9(a). This situation can be alleviated by

reducing the cutoff density. This however, will result in an undesirable (artificial) increase of

the volume fraction. The increased penalization in the last iterations, i.e. p > 4, forces the

members to further define their topology. Thus preventing them from attempting to support

the loaded deck everywhere as seen in Figure 6.9(b).

164

(a)

(b)

Figure 6.9: Results for the bridge problem using density–based topology optimization with
SIMP. Plot shows the ρ = 0.5 isosurface. (a) Result using a constant penalization p =
3. Members end mid–air under the slab because the members spread too thin, and these
intermediate densities are under the cutoff. (b) Results using the continuation approach
for the penalization p = {1.0 , 2.0 , 3.0 , 3.5 , 4.0 , 4.25}. Members are continuous from the
supports to the loaded slab.

6.2 Procedure: from the computer to your hands

Regardless of the additive manufacturing technology, a vast majority of additive manu-

facturing machines accept STL or stereolithography files (*.stl) as input (France, 2013;

Lipson and Kurman, 2013). The specification for stereolithography files is relatively old and

outdated. In addition, it can only describe solids by a surface tessellated into triangles.

The X3D format (*.x3d), itself a successor of the VRML format, is a modern royalty–

free ISO standard to specify three–dimensional computer data, and is the output format

choice in the present work (Brutzman and Daly, 2010). The X3D specification has implicit

definitions for basic geometric primitives like the box, cone, cylinder and sphere, in addition

165

100101
01101 Optimization

Application

STL �leX3D �le

Third party
communication

Additive
Manufacturing

Figure 6.10: Diagram illustrating the possible file outputs (X3D and STL) and their intended
purpose.

to tessellated surfaces. The number of facets or details on these implicit primitives is the

responsibility of the specific renderer or interpreter. X3D has support for label definitions

which can be reutilized to reduce the output size, while still being human–readable. In

addition, X3D output poses additional benefits that extend beyond manufacturing: ease of

communication, editing and third–party visualization.

Translation from X3D to STL is straightforward and simple. In the process however,

the implicit geometrical entities must be discretized. Translating from STL to X3D is also

possible, however, a discretized sphere surface will not become an implicit sphere (defined

by center and radius) in X3D; thus, there is a loss of information when converting from X3D

to STL. For the sake of completeness and to provide options to the user, both, X3D and

STL output capabilities were developed for all three types of optimal structures in this work.

166

The output possibilities, as well as their intended purpose are summarized in Figure 6.10.

6.2.1 Output for three–dimensional optimal ground structures

The output of three–dimensional ground structures follow a similar scheme to the one out-

lined in Section 5.2.4, where the members are represented by a cylinder and the joints by

spheres.

The X3D format has support for cylinders and spheres. Thus, the resulting ground

structure can be exported with little to no modification.

(a) (b)

Figure 6.11: Tessellated spheres. (a) Icosphere tessellated into 324 triangles. (b) Sphere
discretized using spherical coordinates using 320 triangles.

In order to directly output to an STL file, the cylinders and spheres that compose the

ground structure must first be tessellated into triangles (discretized surface). This procedure

causes a loss of information compared to the implicit representation of the cylinder and the

sphere. The sphere is discretized with a surface partition based on an icosahedron (Figure

6.11(a)). This offers a more uniform quality of the surface discretization compared to a

standard spherical coordinate discretization (Figure 6.11(b)). Figure 6.12(a) is an example

of the output generated, rendered using X3DOM (Behr et al., 2009).

167

(a) (b)

Figure 6.12: Sample output for ground structures. (a) Three–dimensional ground structure
composed of 6 members. (b) Two–dimensional ground structure composed of 3 members.

6.2.2 Output for two–dimensional optimal ground structures

The output of two–dimensional ground structures is an extrusion of the two–dimensional

representation: given an extrusion height he, the members are slender boxes of width wi =

ai/he. The nodes are represented by cylinders of height he (as opposed to spheres in the

three–dimensional case).

The X3D format has support for boxes and cylinders. Thus, the resulting ground struc-

ture can be exported with little to no modification.

In order to directly output to an STL file, the boxes and cylinders that compose the

ground structure must first be tessellated into triangles (discretized surface). The box’s

surface can be tessellated into triangles with no loss of quality. The cylinder, however, will

undergo a loss of information compared to the implicit cylinder in X3D. Figure 6.12(b) is an

example of the output generated, rendered using X3DOM (Behr et al., 2009).

168

Figure 6.13: Sample rendering of an optimal edge-loaded cantilever beam optimized using
SIMP. The result displayed is the ρ = 0.5 isosurface.

6.2.3 Output for three-dimensional density–based optimal

topologies using SIMP

The density variable field at discrete spatial locations is used to obtain an isosurface (three–

dimensional equivalent to a contour line or isoline). The solid is defined by this closed and

water–tight isosurface. The isosurface level is typically at ρ = 0.5 (assuming ρ = 0 is void

and ρ = 1 is solid), although values other than 0.5 may be used. The isosurface is tessellated

into triangles and this data is then written to the output (STL or X3D). Translation between

these formats has no information loss as data is represented by a tessellated surface in both

cases. Figure 6.13 is an example of the output generated, rendered in X3DOM (Behr et al.,

2009).

6.3 Rendering of optimal structures via web browser

The X3D format can be interpreted and rendered in a web browser. At the time of this writ-

ing, its usage and acceptance in three–dimensional web applications is increasing. X3DOM

169

(Behr et al., 2009) is a library that allows for X3D content to be interactively rendered in a

browser, with requiring only JavaScript and WebGL (Khronos Group, 2014). Thus, the X3D

standard has the added benefit of easily communicating three–dimensional data to third–

parties without the requirement of additional software or plug–ins. In addition, the X3D

model can be imported into graphical design tools used by Architects and Engineers. In the

specific field of structural optimization, this can reduce the project’s development time by

quickly communicating design updates between involved parties. Figure 6.14 illustrates a

bridge structure with terrain rendered live in a web browser.

6.4 TOPslicer — Inspector and exporter for 3D

density–based topologies

Density–based topologies are represented by four–dimensional data: space coordinates {x, y, z}

and an associated density value ρ. The solid–void topology is typically obtained by calcu-

lating the isosurface at some cutoff value for ρ (post–processing). This isosurface does not

provide information on the quality of the solution, that is, the amount of intermediate den-

sities. To correctly visualize and examine the solution, the solid must be sliced at a plane

and the resulting three–dimensional data can then be plotted and inspected.

TOPslicer is a simple graphical tool to slice three–dimensional density–based topology

optimization data. In addition, the user can change the isosurface cutoff value and evaluate

the change on the fly. For problems where symmetry was exploited, TOPslicer can mirror

the results in one or more coordinate axis to recover the complete model. Finally, once the

cutoff and symmetry conditions have been applied, and the solution is deemed acceptable

from inspection, the isosurface can be exported to X3D and/or STL. Figure 6.15 shows

TOPslicer working with data from the sample problem in Section 6.1.1.

170

Figure 6.14: Density–based optimal structure with terrain rendered live in a web browser.

6.5 Examples of manufactured optimal structures

The optimal structures analyzed and discussed in the present work were manufactured using

FDM and SLS technologies (mostly FDM). Figures 6.16 and 6.17 have pictures of manufac-

tured optimal ground structures in two– and three–dimensional space respectively; Figure

6.18 shows manufactured optimal density–based structures; while Figure 6.19 has manufac-

tured examples of application–focused optimal structures. Finally, the connection with the

field of architecture is demonstrated by an architectural model in Figure 6.20.

171

Figure 6.15: TOPslicer screenshot: The sample problem in Section 6.1.1 has symmetry
applied and is being sliced to inspect the quality of the solution. The final isosurface can be
directly exported for manufacture (STL) or communication and editing (X3D).

6.6 Putting it all together: workflow for an optimal

human bone replacement

The human body is a highly optimized system: every component has been optimized

throughout thousands of years of evolution. For this same reason, our ability to repair

the human body after severe trauma is often partial, since it is unlikely to reach the original

intended performance. Patients who suffer from traumatic bone loss, cancer, malformation

or other illnesses often require bone structure replacement. These patients endure a long

process of reconstruction that struggles to recreate the appearance and functionality of the

172

(a)

(b) (c)

(d) (e)

Figure 6.16: Examples of manufactured optimal three–dimensional ground structures [scales
indicate inches]: (a) Torsion spheres of various sizes (Section 5.3.4). (b) Torsion sphere of 7
inches in diameter (Section 5.3.4). (c) Torsion cylinders of various sizes (Section 5.3.1). (d)
Torsion cone (Section 5.3.2). (e) Diamond problem (Section 5.4.2).

173

(a) (b)

LP

L L

Optimization
+

Manufacture

(c)

Figure 6.17: Examples of manufactured optimal two–dimensional ground structures [scales
indicate inches]: (a) Flower problem (Section 4.3.1). (b) Cantilever problem (Section 4.3.1).
(c) Pinwheel problem; the domain, loading and supports used to obtain the result is also
provided.

original structure.

Topology optimization and additive manufacturing technologies offer a path to potentially

change the current reconstructive procedures: Given structural, biological, manufacturing

and surgical requirements, usually specified by the medical doctor, an appropriate optimiza-

tion problem can be formulated and solved (Sutradhar et al., 2010). The result will be a

patient–specific replacement topology that is structurally optimized and functional. The

solution obtained can then be manufactured, and used in the reconstructive process.

Using density–based optimization with SIMP, the process begins by defining the opti-

mization problem: domain, loading, boundary conditions, active/passive–void zones and

174

(a)

L

L

L

Optimization
+

Manufacture

P

(b)

Figure 6.18: Examples of manufactured optimal three–dimensional density–based structures
[scales indicate inches]: (a) Edge–loaded cantilever problem (in accordance with Figure 6.5).
(b) Shear box problem; the domain, loading and supports used to generate this result are
also shown [based on an example in Nguyen et al. (2009)].

optimization parameters (based on the previous work by Sutradhar et al. (2010)). For the

specific problem in Figure 6.21, the domain is discretized in 108×63×81 regular hexahedral

elements with dimension 0.0333 in (dimensions are 3.6× 2.1× 2.7 in), resulting in a total of

551, 124 design variables and 1, 716, 096 degrees–of–freedom. The objective function is the

minimization of structural compliance (maximization of stiffness); that is J = uTKu = uT f .

The material’s Poisson’s ratio is ν = 0.3 and Emin = 10−9E0. The filter used has a radius

of rmin = 6 units = 0.2 in and order q = 3. The SIMP penalization exponent p is increased

by continuation from p = 1.0 up to p = 4.25.

The resulting topology is shown in Figure 6.22. The solution is well defined (Figure 6.23),

175

(a)

(b)

Figure 6.19: Examples of manufactured application–focused optimal structures [scales indi-
cate inches]: (a) Laterally and torsionally loaded Lotte towers (Section 5.4.5). (b) Bridge
problem (in accordance with Figure 6.8).

176

Figure 6.20: Architectural model of a topology optimized pedestrian bridge [scale indicates
inches]. Model includes procedurally generated terrain, railings and people silhouettes. The
contrasting colors highlight the different components in the model.

Support

Upper jaw
load

Nose bridge
or Glabella load

Eye
cavity

Oral
cavity

Nasal
cavity

Figure 6.21: Craniofacial reconstruction problem. The design domain, loading and boundary
conditions are generated procedurally, however, this particular illustration is to–scale with
the results that follow.

that is, there is a relatively small amount of intermediate densities and the solution does not

exhibit the issues shown in Sections 6.1.1 and 6.1.2. It should be noted that the problem is

generated procedurally, and thus the domain, loading, boundary conditions and passive–void

zones can be modified on a patient–specific basis. Figure 6.24 displays the resulting topology

177

Figure 6.22: Results for the craniofacial reconstruction problem using density–based topology
optimization. Plot shows the ρ = 0.5 isosurface (density cutoff).

in its intended position on a digital model of a skull.

The craniofacial reconstruction problem is also solved using the three–dimensional ground

structure approach detailed in Chapter 5. The solution, shown in Figure 6.25, is composed

of a large number of members as it is expected for this method. This result is helpful in

providing information on the optimal load–paths and load transfer mechanism. The solution

from this method has an overall agreement when compared to the density–based solution

(Figure 6.22).

Finally, the optimized bone replacement can be manufactured and implanted in the

patient. For display purposes, Figure 6.26 shows the model manufactured with FDM and

attached to an upper jaw cast made from the author’s teeth. However, for medical uses, the

process would likely involve bio–compatible metals or human cell printing; technologies that

are rapidly evolving (Salmi et al., 2012; Salmi, 2013; EOS GmbH, 2014).

178

z=0.0167 in

z=0.9833 in

z=1.9833 in

z=2.6833 in

L =3.6 inX

L =2.1 in
Y

L
 =

2.
7

in
Z

Figure 6.23: Slices of the resulting topology for the craniofacial reconstruction problem
using density–based topology optimization. The slices show a well defined topology (little
intermediate values), due to the continuation and higher–order filtering techniques used.

6.7 Conclusions

Additive manufacturing presents itself as the final and missing link in a complete structural

optimization framework: given requirements and limitations, the problem is optimized, and

finally the structure is manufactured. In addition, the three–dimensional models can be

used to rapidly communicate design concepts and changes (a side effect of the proposed

framework).

Two optimization methods were explored and developed: the density–based method using

SIMP and the ground structure method. Both methods have strengths and weaknesses, and

together provide valuable information of the optimal structural mechanism and geometry

(Figure 6.27). This is specially useful at the early stages of a design; when the shape and

structural mechanisms are not fully conceived.

The framework and techniques here developed are not restricted to buildings and bridges,

179

Figure 6.24: Rendering of the resulting topology for the craniofacial reconstruction problem
positioned within a human skull.

Figure 6.25: Solution for the craniofacial reconstruction problem using three–dimensional
ground structures.

180

(a) (b)

Figure 6.26: Manufactured optimal solution for craniofacial reconstruction. Model includes
an upper jaw cast in metal made from the author’s teeth to serve as a reference [scales
indicate inches]: (a) Frontal view with a model of a human skull for. (b) Perspective view
of the model with teeth attached.

and their usage in other fields looks promising: medical applications (Sutradhar et al., 2010)

and bicycle designs (Zegard and Paulino, 2013a) are few of many (yet unexplored) possibil-

ities.

181

Design domain,
loading and supports

Ground structure
method

Density-based
method with SIMP

Manufacturing Manufacturing

P

Lx

Ly

Lz

Figure 6.27: Using the framework described in this work, two distinct (but related) optimal
solutions may be obtained and manufactured.

182

Chapter 7

Summary of conclusions and possible
extensions

7.1 Summary of conclusions

The present work began with a new gradient–based formulation for structural systems com-

bining discrete and continuum elements in Chapter 2. The goal is to optimize the layout of

the discrete structural members that link to the continuum. This method is based on con-

volution operators to link the discrete members to the continuum. This linkage formulation

introduces error into the calculations, however, the effect (or size) of the convolution operator

is reduced with refinement of the continuum mesh, thus assuring convergence. This novel

technique is a contribution towards the integration of discrete and continuum optimization,

topics that are usually kept separate.

Optimal lateral bracing systems in two– and three–dimensional space were studied in

Chapter 3. The analysis included bracing systems spanning several stories and bays, and a

number of different objectives. It was shown that the optimal brace, in the sense of minimum

weight and maximum stiffness, need not be the same (as is often expected). The outcome

of this work is simple guidelines for the design of lateral braces. In three–dimensional space,

these guidelines are different depending on wether the braces are optimized for weight/cost

or for performance.

Chapter 4 described an improved algorithm for two–dimensional topology optimization

using the ground structure method. The core contribution is the ground structure genera-

183

tion algorithm, which integrates concepts commonly used in the video–game industry—more

specifically—collision tests (or hit–boxes). This approach is able to address concave geome-

tries with the possibility of holes. The definition, as well as the collision (or restriction)

zones, are built from geometrical primitives. The ground structure method, combined with

this novel generation algorithm, allow the construction of complex geometries in a simple and

efficient manner. Thus enabling the analysis of previously thought complicated problems.

The implementation of the algorithm is freely available, and the source code for the core

functions can be found in Appendix A. This source code was built with an educational focus

with the hope that it proves useful to the industry and scientific communities, by providing

a starting point for future developments.

The previous algorithm for two–dimensional topology optimization using the ground

structure method (Chapter 4), is extended to three–dimensional space in Chapter 5. The

collision tests are replaced by three–dimensional primitives used not only in the video–game

industry, but on ray–tracing (computer graphics) as well. This progression is logical since

real structures are three–dimensional. Analogous to the previous two–dimensional work, the

implementation of the algorithm is freely available, and the source code for the core functions

can be found in Appendix B.

The recent rise of additive manufacturing has made impact in multiple fields. Topology

optimization can benefit from this technology for it provides means to manufacture the

optimized designs—the final of a design. Chapter 6 describes a framework and best practices

to manufacture optimal topologies. This work focuses on three techniques for topology

optimization: three–dimensional ground structures, two–dimensional ground structures and

density–based topology optimization using SIMP. In addition, the integration with more

traditional structural design processes and the efficient communication between involved

parties is also discussed. Examples of manufactured optimal structures are provided, some

of which target fields other than civil structures in an effort to showcase the broad extent of

the work.

184

The aggregation of the developments in this work, push the field of topology optimization

closer to production environments. The manufacturing component of the work is the final

stage for a complete applied optimization framework, often forgotten or disregarded. By

advancing the methods and algorithms for discrete and continuum structural optimization,

the integration of optimization into real projects is even more likely.

7.2 Possible extensions and future work

The work on truss layout optimization embedded in a continuum in Chapter 2, and the

lateral bracing system rules in Chapter 3, are restricted to truss elements. In reality, beam

elements are often used to add a degree of redundancy (safety) to the structural system.

Thus, the work should consider an extension to include beam elements in the optimization.

Currently, the continuum is not optimized in the embedded truss layout optimization

work. Optimizing both the discrete and the continuum is desirable, although instabilities

may arise. These instabilities could potentially be addressed by optimizing the discrete and

continuum in alternating cycles as opposed to together.

The ground structure implementations for concave domains in two– and three–dimensions

described in Chapters 4 and 5, can become the starting points for more refined and sophisti-

cated analysis. The adaptive ground structure method (Gilbert and Tyas, 2003) has proven

to be successful at reducing the computational cost of the method, while retaining a high

level of detail. In addition, local and global instabilities can also be integrated with the

ground structure method (Tyas et al., 2006). The path towards integrating these techniques

into production environments lies in reduced computation times and the capability to an-

alyze large problems: parallel computing and GPU acceleration may provide the necessary

tools to achieve this.

The models shown in Chapter 6 are limited to 1 foot–long. Larger structures could

be split into smaller components and then assembled for larger builds. The connectivity

185

between the pieces requires special attention, and should be incorporated into the design

process. As a proof–of–concept, a 3 foot–long long topology optimized bridge is being held

by the author in Figure 7.1. This model was manufactured in 3 separate 1 foot–long pieces,

and later combined into a single model. With proper considerations, this technique could be

scaled up to dimensions used in civil infrastructure.

The results obtained from the optimization algorithms have to be post–processed before

it can be manufactured. For the case of density–based topology optimization using SIMP,

this translated in defining a cutoff density and calculate the isosurface. The structure is

most likely not optimal anymore (but close). Similarly, for the case of ground structures, the

member cutoff will introduce changes to the optimal topology. Models could be manufactured

using high–fidelity additive manufacturing, such as Selective Laser Melting (SLM), and tested

to validate (or not) the conditions of optimality.

Figure 7.1: Author holding a 3 foot–long manufactured bridge obtained with density–based
topology optimization using SIMP. The bridge is made from 3 pieces of 1 foot–long pieces.

186

Appendix A

GRAND v1.0 source code

Table A.1 provides a brief description of the files that comprise the problem–independent

modules of GRAND.

The source code for GRAND v1.0, as detailed in Table A.1, is as follows:

GRANDscript.m

1 %GRAND - Ground Structure Analysis and Design Code.

2 % Tomas Zegard, Glaucio H Paulino - Version 1.0, Dec-2013

3

4 %% === MESH GENERATION LOADS/BCS ==

5 kappa = 1.0; ColTol = 0.999999;

6 Cutoff = 0.002; Ng = 50; % Plot: Member Cutoff & Number of plot groups

7

8 % --- OPTION 1: POLYMESHER MESH GENERATION --------------------------------

9 % addpath(’./PolyMesher’)

10 % [NODE,ELEM,SUPP,LOAD] = PolyMesher(@MichellDomain,600,30);

11 % Lvl = 5; RestrictDomain = @RestrictMichell;

12 % rmpath(’./PolyMesher’)

13

14 % --- OPTION 2: STRUCTURED-ORTHOGONAL MESH GENERATION ---------------------

15 % [NODE,ELEM,SUPP,LOAD] = StructDomain(60,20,3,1,’MBB’);

16 % Lvl = 6; RestrictDomain = []; % No restriction for box domain

17

18 % --- OPTION 3: LOAD EXTERNALLY GENERATED MESH ----------------------------

19 % load MeshHook

20 % Lvl = 10; RestrictDomain = @RestrictHook;

21

22 % load MeshSerpentine

23 % Lvl = 5; RestrictDomain = @RestrictSerpentine;

24

25 % load MeshMichell

26 % Lvl = 4; RestrictDomain = @RestrictMichell;

27

28 load MeshFlower

29 Lvl = 4; RestrictDomain = @RestrictFlower;

30

31 %% === GROUND STRUCTURE METHOD ==

32 PlotPolyMesh(NODE,ELEM,SUPP,LOAD) % Plot the base mesh

33 [BARS] = GenerateGS(NODE,ELEM,Lvl,RestrictDomain,ColTol); % Generate the GS

34 Nn = size(NODE,1); Ne = length(ELEM); Nb = size(BARS,1);

35 [BC] = GetSupports(SUPP); % Get reaction nodes

36 [BT,L] = GetMatrixBT(NODE,BARS,BC,Nn,Nb); % Get equilibrium matrix

187

Table A.1: Description of function files in GRAND.

Filename Description
GRANDscript Main user script. Contains commented examples for all three available

input options. Parameters are set in the file’s preamble.

GenerateGS Generates the ground structure for a given base mesh up to a specified
level, with an optional restriction zone.

GetMatrixBT Builds the nodal equilibrium matrix BT. The row entries corresponding
to supports are removed.

GetSupports Returns the global numbering of supported nodal components based on
the data in SUPP. These are in turn used to remove these equations from
the nodal equilibrium matrix BT and force vector f .

GetVectorF Returns the nodal force vector based on the data in LOAD. The row
entries corresponding to supports are removed.

PlotBoundary Identifies the boundary edges and plots them.
PlotPolyMesh Takes the resulting cross–sectional areas, the nodal coordinates and

member definitions to plot all members with cross–sectional areas above
the specified cutoff.

rCircle Restriction zone primitive to test collision against a circle.
rLine Restriction zone primitive to test collision against a line segment.
rPolygon Restriction zone primitive to test collision against a polygon.
rRectangle Restriction zone primitive to test collision against a rectangle.
StructDomain Generates structured orthogonal domains and can optionally also return

boundary conditions for a cantilever problem, the MBB beam and a
half–space bridge.

PolyMesher/ Folder containing the polygonal mesher with all its related files (Talischi
et al., 2012a).

37 [F] = GetVectorF(LOAD,BC,Nn); % Get nodal force vector

38

39 fprintf(’Mesh: Elements %d, Nodes %d, Bars %d, Level %d\n’,Ne,Nn,Nb,Lvl)

40 BTBT = [BT -BT]; LL = [L; kappa*L]; sizeBTBT = whos(’BTBT’); clear BT L

41 fprintf(’Matrix [BT -BT]: %d x %d in %gMB (%gGB full)\n’,...

42 length(F),length(LL),sizeBTBT.bytes/2^20,16*(2*Nn)*Nb/2^30)

43

44 tic, [S,vol,exitflag] = linprog(LL,[],[],BTBT,F,zeros(2*Nb,1));

45 fprintf(’Objective V = %f\nlinprog CPU time = %g s\n’,vol,toc);

46

47 S = reshape(S,numel(S)/2,2); % Separate slack variables

48 A = S(:,1) + kappa*S(:,2); % Get cross-sectional areas

49 N = S(:,1) - S(:,2); % Get member forces

50

51 %% === PLOTTING ===

52 PlotGroundStructure(NODE,BARS,A,Cutoff,Ng)

53 PlotBoundary(ELEM,NODE)

GenerateGS.m

1 function [BARS]=GenerateGS(NODE,ELEM,Lvl,RestrictDomain,ColTol)

2

188

3 if nargin<5, ColTol=0.9999; end

4 if (nargin<4 || isempty(RestrictDomain)), RestrictDomain=@(~,~)[];

5 elseif nargin<3, error(’Not enough input arguments.’), end

6

7 % Get element connectivity matrix

8 Nn = max(cellfun(@max,ELEM)); Ne = length(ELEM);

9 A1 = sparse(Nn,Nn);

10 for i=1:Ne, A1(ELEM{i},ELEM{i}) = true; end

11 A1 = A1 - speye(Nn,Nn); An = A1;

12

13 % Level 1 connectivity

14 [J,I] = find(An); % Reversed because find returns values column-major

15 BARS = [I J];

16 D = [NODE(I,1)-NODE(J,1) NODE(I,2)-NODE(J,2)];

17 L = sqrt(D(:,1).^2+D(:,2).^2); % Length of bars

18 D = [D(:,1)./L D(:,2)./L]; % Normalized dir

19

20 % Levels 2 and above

21 for i=2:Lvl

22 Aold = An; An = logical(An*A1); Gn = An - Aold; % Get NEW bars @ level ’n’

23 [J,I] = find(Gn-diag(diag(Gn)));

24 if isempty(J), Lvl = i - 1; fprintf(’-INFO- No new bars at Level %g\n’,Lvl); break, end

25

26 RemoveFlag = RestrictDomain(NODE,[I J]); % Find and remove bars within restriction zone

27 I(RemoveFlag) = []; J(RemoveFlag) = [];

28

29 newD = [NODE(I,1)-NODE(J,1) NODE(I,2)-NODE(J,2)];

30 L = sqrt(newD(:,1).^2+newD(:,2).^2);

31 newD = [newD(:,1)./L newD(:,2)./L];

32

33 % Collinearity Check

34 p = 1; m = 1; RemoveFlag = zeros(size(I)); Nb = size(BARS,1);

35 for j=1:Nn

36 % Find I(p:q) - NEW bars starting @ node ’j’

37 for p=p:length(I), if I(p)>=j, break, end, end

38 for q=p:length(I), if I(q)>j, break, end, end

39 if I(q)>j, q = q - 1; end

40

41 if I(p)==j

42 % Find BARS(m:n) - OLD bars starting @ node ’j’

43 for m=1:Nb, if BARS(m,1)>=j, break, end, end

44 for n=m:Nb, if BARS(n,1)>j, break, end, end

45 if BARS(n,1)>j, n = n - 1; end

46

47 if BARS(n,1)==j

48 % Dot products of old vs. new bars. If ~collinear: mark

49 C = max(D(m:n,:)*newD(p:q,:)’,[],1);

50 RemoveFlag(p-1+find(C>ColTol)) = true;

51 end

52 end

53 end

54

55 % Remove collinear bars and make symmetric again. Bars that have one

56 % angle marked as collinear but the other not, will be spared

57 ind = find(RemoveFlag==false);

58 H = sparse(I(ind),J(ind),true,Nn,Nn,length(ind));

59 [J,I] = find(H+H’);

60 fprintf(’Lvl %2g - Collinear bars removed: %g\n’,i,(length(RemoveFlag)-length(I))/2);

61

62 BARS = sortrows([BARS; I J]);

63 D = [NODE(BARS(:,1),1)-NODE(BARS(:,2),1) NODE(BARS(:,1),2)-NODE(BARS(:,2),2)];

64 L = sqrt(D(:,1).^2+D(:,2).^2); % Length of bars

65 D = [D(:,1)./L D(:,2)./L]; % Normalized dir

66 end

67

68 % Only return bars {i,j} with i<j (no duplicate bars)

69 A = sparse(BARS(:,1),BARS(:,2),true,Nn,Nn);

189

70 [J,I] = find(tril(A)); BARS = [I J];

GetMatrixBT.m

1 function [BT,L]=GetMatrixBT(NODE,BARS,BC,Nn,Nb)

2 % Generate equilibrium matrix BT and get member lengths L

3 D = [NODE(BARS(:,2),1)-NODE(BARS(:,1),1) NODE(BARS(:,2),2)-NODE(BARS(:,1),2)];

4 L = sqrt(D(:,1).^2+D(:,2).^2);

5 D = [D(:,1)./L D(:,2)./L];

6 BT = sparse([2*BARS(:,1)-1 2*BARS(:,1) 2*BARS(:,2)-1 2*BARS(:,2)],...

7 repmat((1:Nb)’,1,4),[-D D],2*Nn,Nb);

8 BT(BC,:) = [];

GetSupports.m

1 function [BC]=GetSupports(SUPP)

2 % Return degrees-of-freedom with fixed (prescribed) displacements

3 Nf = sum(sum(~isnan(SUPP(:,2:3))));

4 BC = zeros(Nf,1); j = 0;

5 for i=1:size(SUPP,1)

6 if ~isnan(SUPP(i,2)), j = j + 1; BC(j) = 2*SUPP(i) - 1; end

7 if ~isnan(SUPP(i,3)), j = j + 1; BC(j) = 2*SUPP(i); end

8 end

9 if j~=Nf, error(’Parsing number mismatch on BCs.’), end

GetVectorF.m

1 function [F]=GetVectorF(LOAD,BC,Nn)

2 % Return nodal force vector

3 Nl = sum(sum(~isnan(LOAD(:,2:3))));

4 F = sparse([],[],[],2*Nn,1,Nl);

5 for i=1:size(LOAD,1)

6 n = LOAD(i,1);

7 if ~isnan(LOAD(i,2)), F(2*n-1) = LOAD(i,2); end

8 if ~isnan(LOAD(i,3)), F(2*n) = LOAD(i,3); end

9 end

10 F(BC) = [];

PlotBoundary.m

1 function []=PlotBoundary(ELEM,NODE)

2

3 % Get number of nodes, elements and edges (nodes) per element

4 Nn = size(NODE,1); Ne = length(ELEM); NpE = cellfun(@numel,ELEM);

5

6 FACE = sparse([],[],[],Nn,Nn,sum(NpE));

7 for i=1:Ne

8 MyFACE = [ELEM{i}; ELEM{i}(2:end) ELEM{i}(1)];

9 for j=1:NpE(i)

10 if FACE(MyFACE(1,j),MyFACE(2,j))==0 % New edge - Flag it

11 FACE(MyFACE(1,j),MyFACE(2,j)) = i;

12 FACE(MyFACE(2,j),MyFACE(1,j)) =-i;

13 elseif isnan(FACE(MyFACE(1,j),MyFACE(2,j)))

14 error(sprintf(’Edge [%d %d] found in >2 elements’,MyFACE(:,j)))

15 else % Edge belongs to 2 elements: inside domain. Lock it.

16 FACE(MyFACE(1,j),MyFACE(2,j)) = NaN;

17 FACE(MyFACE(2,j),MyFACE(1,j)) = NaN;

18 end

19 end

20 end

21 [BOUND(:,1),BOUND(:,2)] = find(FACE>0);

22 BOUND(:,3) = FACE(sub2ind(size(FACE),BOUND(:,1),BOUND(:,2)));

23 plot([NODE(BOUND(:,1),1) NODE(BOUND(:,2),1)]’,[NODE(BOUND(:,1),2) NODE(BOUND(:,2),2)]’,’k’)

190

PlotGroundStructure.m

1 function []=PlotGroundStructure(NODE,BARS,A,Cutoff,Ng)

2

3 figure(’Name’,’GRAND v1.0 -- Zegard T, Paulino GH’,’NumberTitle’,’off’)

4 hold on, axis equal, axis off, color=jet(Ng);

5

6 A = A/max(A); % Normalize to [0,1] areas

7 ind = find(A>Cutoff);

8 MyGroup = ceil(Ng*A(ind)); % Round up to the closest group of bars

9 Groups = cell(Ng,1); % Store the indices of similar bars

10 for i=1:Ng, Groups{i} = ind(find(MyGroup==i)); end

11 for i=Ng:-1:1 % Plot each group of similar bars in a single plot call

12 if ~isempty(Groups{i})

13 XY = [NODE(BARS(Groups{i},1),:) NODE(BARS(Groups{i},2),:)];

14 GroupArea = mean(A(Groups{i})); % Mean area for this group

15 plot(XY(:,[1 3])’,XY(:,[2 4])’,’LineWidth’,5*sqrt(GroupArea),’Color’,color(i,:))

16 end

17 end

18 fprintf(’-PLOT- Cutoff %g, Groups %g, Bars plotted %g\n’,Cutoff,Ng,length(ind))

PlotPolyMesh.m

1 function []=PlotPolyMesh(NODE,ELEM,SUPP,LOAD)

2 figure, hold on, axis equal, axis off

3 MaxNVer = max(cellfun(@numel,ELEM)); %Max. num. of vertices in mesh

4 PadWNaN = @(E) [E NaN(1,MaxNVer-numel(E))]; %Pad cells with NaN

5 ElemMat = cellfun(PadWNaN,ELEM,’UniformOutput’,false);

6 ElemMat = vertcat(ElemMat{:}); %Create padded element matrix

7 patch(’Faces’,ElemMat,’Vertices’,NODE,’FaceColor’,’w’);

8 if (nargin==4 && ~isempty(SUPP) && ~isempty(LOAD))

9 plot(NODE(SUPP(:,1),1),NODE(SUPP(:,1),2),’b>’,’MarkerSize’,8);

10 plot(NODE(LOAD(:,1),1),NODE(LOAD(:,1),2),’m^’,’MarkerSize’,8);

11 end

12 axis tight, drawnow

rCircle.m

1 function flag=rCircle(C,r,NODE,BARS)

2 % Circle with center point C and radius R

3 Nb = size(BARS,1);

4 U = NODE(BARS(:,1),:) - repmat(C,Nb,1);

5 V = NODE(BARS(:,2),:) - repmat(C,Nb,1);

6 D = V - U;

7 L = sqrt(D(:,1).^2 + D(:,2).^2);

8 D = [D(:,1)./L D(:,2)./L];

9 flag = any([(sum(D.*V,2)>=0) .* (sum(D.*U,2)<=0) .*...

10 (abs(D(:,1).*U(:,2)-D(:,2).*U(:,1))<r) , ...

11 (U(:,1).^2+U(:,2).^2<=r^2) , ...

12 (V(:,1).^2+V(:,2).^2<=r^2)] , 2);

rLine.m

1 function flag=rLine(A,B,NODE,BARS)

2 % Line segment between points A and B

3 P = NODE(BARS(:,1),:); D = NODE(BARS(:,2),:) - P; V = B - A;

4 C = D(:,1)*V(2) - V(1)*D(:,2); % cross(d,v)

5 Ct = (A(1)-P(:,1)).*D(:,2) - (A(2)-P(:,2)).*D(:,1); % cross(a-p,d)

6 Cu = (A(1)-P(:,1))*V(2) - (A(2)-P(:,2))*V(1); % cross(a-p,v)

7 Ct = Ct./C; Cu = Cu./C;

8 % If intersection is between A-B and P-Q

9 flag = (Ct>0).*(Ct<1).*(Cu>0).*(Cu<1);

191

rPolygon.m

1 function flag=rPolygon(A,NODE,BARS)

2 % Polygon with N edges defined by A of size [N x 2]

3 % Get normals for each half-space (A are poly nodes in CCW)

4 Np= size(A,1); % Number of half-spaces

5 N = zeros(Np,2);

6 N(1:Np-1,:) = A(2:Np,:) - A(1:Np-1,:); N(Np,:) = A(1,:) - A(Np,:);

7 N = [N(:,2) -N(:,1)]; % Normal vectors for all half-spaces

8 % Get number of bars and initialize T

9 Nb= size(BARS,1);

10 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

11 Tmin = zeros(Nb,1); Tmax = ones(Nb,1);

12 % Loop through all halfspaces

13 for i=1:Np

14 deno = D * N(i,:)’;

15 dist = (repmat(A(i,:),Nb,1) - NODE(BARS(:,1),:)) * N(i,:)’;

16 T = dist ./ deno;

17 ind = find((T>Tmin) .* (deno<0)); Tmin(ind) = T(ind);

18 ind = find((T<Tmax) .* (deno>0)); Tmax(ind) = T(ind);

19 end

20 % No intersection if Tmin>Tmax

21 flag = (Tmin<=Tmax);

rRectangle.m

1 function flag=rRectangle(Amin,Amax,NODE,BARS)

2 % Amin and Amax are the rectangle’s limit coords: minimum and maximum

3 Nb= size(BARS,1);

4 Tmin = zeros(Nb,1); Tmax = ones(Nb,1);

5 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

6 for i=1:2 % Check on X (i=1) and Y (i=2)

7 T1 = (Amin(i) - NODE(BARS(:,1),i)) ./ D(:,i);

8 T2 = (Amax(i) - NODE(BARS(:,1),i)) ./ D(:,i);

9 ind = find(T1>T2); % We require T1<T2, swap if not

10 [T1(ind),T2(ind)] = deal(T2(ind),T1(ind)); % Swap operation

11 Tmin = max(Tmin,T1); Tmax = min(Tmax,T2);

12 end

13 % No intersection with rectangle if Tmin>Tmax

14 flag = (Tmin<=Tmax);

StructDomain.m

1 function [NODE,ELEM,SUPP,LOAD]=StructDomain(Nx,Ny,Lx,Ly,ProblemID)

2 % Generate structured-orthogonal domains

3 [X,Y] = meshgrid(linspace(0,Lx,Nx+1),linspace(0,Ly,Ny+1));

4 NODE = [reshape(X,numel(X),1) reshape(Y,numel(Y),1)];

5 k = 0; ELEM = cell(Nx*Ny,1);

6 for j=1:Ny, for i=1:Nx

7 k = k+1;

8 n1 = (i-1)*(Ny+1)+j; n2 = i*(Ny+1)+j;

9 ELEM{k} = [n1 n2 n2+1 n1+1];

10 end, end

11

12 if (nargin==4 || isempty(ProblemID)), ProblemID = 1; end

13 switch ProblemID

14 case {’Cantilever’,’cantilever’,1}

15 SUPP = [(1:Ny+1)’ ones(Ny+1,2)];

16 LOAD = [Nx*(Ny+1)+round((Ny+1)/2) 0 -1];

17 case {’MBB’,’Mbb’,’mbb’,2}

18 SUPP = [Nx*(Ny+1)+1 NaN 1;

19 (1:Ny+1)’ ones(Ny+1,1) nan(Ny+1,1)];

20 LOAD = [Ny+1 0 -0.5];

21 case {’Bridge’,’bridge’,3}

192

22 SUPP = [1 1 1;

23 Nx*(Ny+1)+1 1 1];

24 LOAD = [(Ny+1)*round(Nx/2)+1 0 -1];

25 otherwise

26 SUPP = []; LOAD = [];

27 disp(’-INFO- Structured domain generated with no loads/BC’)

28 end

193

Appendix B

GRAND3 v1.0-rc2 source code
(release candidate 2)

Table B.1 provides a brief description of the files that comprise the problem–independent

modules of GRAND3.

Table B.1: Description of function files in GRAND3.

Filename Description

GRAND3script Main user script. Contains commented examples for the two
available input options. Parameters are set in the file’s pream-
ble.

GenerateGS3 Generates the three–dimensional ground structure for a given
base mesh up to a specified level, with an optional restriction
zone.

GetMatrixBT3 Builds the nodal equilibrium matrix BT. The row entries cor-
responding to supports are removed.

GetSupports3 Returns the global numbering of supported nodal components
based on the data in SUPP. These are in turn used to remove
these equations from the nodal equilibrium matrix BT and force
vector f .

GetVectorF3 Returns the nodal force vector based on the data in LOAD. The
row entries corresponding to supports are removed.

PlotDomain3 Plots the domain (outer boundary only), with markers for the
nodes with loads and supports.

PlotGroundStructure3 Takes the resulting cross–sectional areas, the nodal coordinates
and member connectivity as inputs. Plots all members with
cross–sectional areas above a specified cutoff.

rBox Restriction zone primitive to test collision against a box with
planes parallel to the coordinate axes.

rCylinder Restriction zone primitive to test collision against an infinite
cylinder.

194

Table B.1: (continued)

Filename Description

rDisc Restriction zone primitive to test collision against a flat disc.
rQuad Restriction zone primitive to test collision against a flat quad.
rRod Restriction zone primitive to test collision against a rod (finite

cylinder).
rSphere Restriction zone primitive to test collision against a sphere.
rSurf Restriction zone primitive to test collision against a surface (in-

ternally calls rTriangle and rQuad).
rTriangle Restriction zone primitive to test collision against a flat triangle.
StructDomain3 Generates structured orthogonal domains and can optionally

also return boundary conditions for a three–dimensional can-
tilever, bridge, tripod, torsion box and pyramid problems.

The source code for GRAND3 v1.0-rc2, as detailed in Table B.1, is as follows:

GRAND3script.m

1 %GRAND3 - 3D Ground Structure Analysis and Design Code.

2 % Tomas Zegard, Glaucio H Paulino - Version 1.0, Nov-2014

3

4 %% === MESH GENERATION LOADS/BCS ==

5 kappa = 1.0; ColTol = 0.999999;

6 Ff = 2; Cutoff = 0.005; % Plot: Facet factor & member Cutoff

7

8 % --- OPTION 1: STRUCTURED-ORTHOGONAL MESH GENERATION ---------------------

9 [NODE,ELEM,SUPP,LOAD]=StructDomain3(12,4,4,3,1,1,’Cantilever’);

10 Lvl=3; RestrictDomain=[];

11

12 % --- OPTION 2: LOAD EXTERNALLY GENERATED MESH ----------------------------

13 % load MeshCylinder

14 % Lvl=3; RestrictDomain=[];

15

16 % load MeshTube

17 % Lvl=3; RestrictDomain=@RestrictTube;

18

19 % load MeshCone

20 % Lvl=3; RestrictDomain=[];

21

22 % load MeshBallHollow

23 % Lvl=3; RestrictDomain=@RestrictBallHollow;

24

25 % load MeshDiamond

26 % Lvl=3; RestrictDomain=@RestrictDiamond;

27

28 % load MeshCantileverWedges

29 % Lvl=6; RestrictDomain=[];

30

31 % load MeshCantileverHole

32 % Lvl=6; RestrictDomain=@RestrictCantileverHole;

33

34 % load MeshCup

35 % Lvl=3; RestrictDomain=@RestrictCup;

36

37 % load MeshCraneFine

38 % load MeshCraneCoarse

39 % Lvl=3; RestrictDomain=@RestrictCrane;

195

40

41 % load MeshLotteLat

42 % load MeshLotteTor

43 % Lvl=5; RestrictDomain=@(N,B)rSurf(RNODE,ELEM.S,N,B);

44

45 % load MeshCraniofacial

46 % Lvl=2; RestrictDomain=@RestrictCraniofacial;

47

48 %% === GROUND STRUCTURE METHOD ==

49 PlotDomain3(NODE,ELEM,SUPP,LOAD) % Plot the base mesh

50 [BARS] = GenerateGS3(NODE,ELEM,Lvl,RestrictDomain,ColTol); % Generate the GS

51 Nn = size(NODE,1); Nb = size(BARS,1); Ne = 0;

52 if isfield(ELEM,’V’), Ne = Ne + length(ELEM.V); end

53 if isfield(ELEM,’S’), Ne = Ne + length(ELEM.S); end

54 [BC] = GetSupports3(SUPP); % Get reaction nodes

55 [BT,L] = GetMatrixBT3(NODE,BARS,BC,Nn,Nb); % Get equilibrium matrix

56 [F] = GetVectorF3(LOAD,BC,Nn); % Get nodal force vector

57

58 fprintf(’Mesh: Elements %d, Nodes %d, Bars %d, Level %d\n’,Ne,Nn,Nb,Lvl)

59 BTBT = [BT -BT]; LL = [L; kappa*L]; sizeBTBT = whos(’BTBT’); clear BT L

60 fprintf(’Matrix [BT -BT]: %d x %d in %gMB (%gGB full)\n’,...

61 length(F),length(LL),sizeBTBT.bytes/2^20,16*(3*Nn)*Nb/2^30)

62

63 tic, [S,vol,exitflag,output] = linprog(LL,[],[],BTBT,F,zeros(2*Nb,1));

64 fprintf(’Objective V = %f\nlinprog CPU time = %g s\n’,vol,toc);

65

66 S = reshape(S,numel(S)/2,2); % Separate slack variables

67 A = S(:,1) + kappa*S(:,2); % Get cross-sectional areas

68 N = S(:,1) - S(:,2); % Get member forces

69

70 %% === PLOTTING ===

71 PlotGroundStructure3(NODE,BARS,A,Cutoff,Ff)

GenerateGS3.m

1 function [BARS]=GenerateGS3(NODE,ELEM,Lvl,RestrictDomain,ColTol)

2 nargchk(nargin,3,5);

3 if nargin<5, ColTol=0.9999; end % Default collinear tolerance

4 if (nargin<4 || isempty(RestrictDomain)), RestrictDomain=@(~,~)[]; end

5

6 % Get element connectivity matrix

7 if isfield(ELEM,’V’), Nn(1) = max(cellfun(@max,ELEM.V)); end

8 if isfield(ELEM,’S’), Nn(2) = max(cellfun(@max,ELEM.S)); end

9 Nn = max(Nn); A1 = sparse(Nn,Nn);

10 if isfield(ELEM,’V’), for i=1:length(ELEM.V), A1(ELEM.V{i},ELEM.V{i}) = true; end, end

11 if isfield(ELEM,’S’), for i=1:length(ELEM.S), A1(ELEM.S{i},ELEM.S{i}) = true; end, end

12 A1 = A1 - speye(Nn,Nn); An = A1;

13

14 % Level 1 connectivity

15 [J,I] = find(An); % Reversed because find returns values column-major

16 BARS = [I J];

17 D = [NODE(I,1)-NODE(J,1) NODE(I,2)-NODE(J,2) NODE(I,3)-NODE(J,3)];

18 L = sqrt(D(:,1).^2+D(:,2).^2+D(:,3).^2); % Length of bars

19 D = [D(:,1)./L D(:,2)./L D(:,3)./L]; % Normalized dir

20

21 % Levels 2 and above

22 for i=2:Lvl

23 Aold = An; An = logical(An*A1); Gn = An - Aold; % Get NEW bars @ level ’n’

24 [J,I] = find(Gn-diag(diag(Gn)));

25 if isempty(J), Lvl = i - 1; fprintf(’-INFO- No new bars at Level %g\n’,Lvl); break, end

26

27 RemoveFlag = RestrictDomain(NODE,[I J]); % Find and remove bars within restriction zone

28 I(RemoveFlag) = []; J(RemoveFlag) = [];

29

30 newD = [NODE(I,1)-NODE(J,1) NODE(I,2)-NODE(J,2) NODE(I,3)-NODE(J,3)];

31 L = sqrt(newD(:,1).^2+newD(:,2).^2+newD(:,3).^2);

196

32 newD = [newD(:,1)./L newD(:,2)./L newD(:,3)./L];

33

34 % Collinearity Check

35 p = 1; m = 1; RemoveFlag = zeros(size(I)); Nb = size(BARS,1);

36 for j=1:Nn

37 % Find I(p:q) - NEW bars starting @ node ’j’

38 for p=p:length(I), if I(p)>=j, break, end, end

39 for q=p:length(I), if I(q)>j, break, end, end

40 if I(q)>j, q = q - 1; end

41

42 if I(p)==j

43 % Find BARS(m:n) - OLD bars starting @ node ’j’

44 for m=1:Nb, if BARS(m,1)>=j, break, end, end

45 for n=m:Nb, if BARS(n,1)>j, break, end, end

46 if BARS(n,1)>j, n = n - 1; end

47

48 if BARS(n,1)==j

49 % Dot products of old vs. new bars. If ~collinear: mark

50 C = max(D(m:n,:)*newD(p:q,:)’,[],1);

51 RemoveFlag(p-1+find(C>ColTol)) = true;

52 end

53 end

54 end

55

56 % Remove collinear bars and make symmetric again. Bars that have one

57 % angle marked as collinear but the other not, will be spared

58 ind = find(RemoveFlag==false);

59 H = sparse(I(ind),J(ind),true,Nn,Nn,length(ind));

60 [J,I] = find(H+H’);

61 fprintf(’Lvl %2g - Collinear bars removed: %g\n’,i,(length(RemoveFlag)-length(I))/2);

62

63 BARS = sortrows([BARS; I J]);

64 D = [NODE(BARS(:,1),1) - NODE(BARS(:,2),1)...

65 NODE(BARS(:,1),2) - NODE(BARS(:,2),2)...

66 NODE(BARS(:,1),3) - NODE(BARS(:,2),3)];

67 L = sqrt(D(:,1).^2+D(:,2).^2+D(:,3).^2); % Length of bars

68 D = [D(:,1)./L D(:,2)./L D(:,3)./L]; % Normalized dir

69 end

70

71 % Only return bars {i,j} with i<j (no duplicate bars)

72 A = sparse(BARS(:,1),BARS(:,2),true,Nn,Nn);

73 [J,I] = find(tril(A)); BARS = [I J];

GetMatrixBT3.m

1 function [BT,L]=GetMatrixBT3(NODE,BARS,BC,Nn,Nb)

2 % Generate equilibrium matrix BT and get member lengths L

3 D = [NODE(BARS(:,2),1)-NODE(BARS(:,1),1)...

4 NODE(BARS(:,2),2)-NODE(BARS(:,1),2)...

5 NODE(BARS(:,2),3)-NODE(BARS(:,1),3)];

6 L = sqrt(D(:,1).^2+D(:,2).^2+D(:,3).^2);

7 D = [D(:,1)./L D(:,2)./L D(:,3)./L];

8 BT = sparse([3*BARS(:,1)-2 3*BARS(:,1)-1 3*BARS(:,1)...

9 3*BARS(:,2)-2 3*BARS(:,2)-1 3*BARS(:,2)],...

10 repmat((1:Nb)’,1,6),[-D D],3*Nn,Nb);

11 BT(BC,:) = [];

GetSupports3.m

1 function [BC]=GetSupports3(SUPP)

2 % Return degrees-of-freedom with fixed (prescribed) displacements

3 Nf = sum(sum(~isnan(SUPP(:,2:4))));

4 BC = zeros(Nf,1); j = 0;

5 for i=1:size(SUPP,1)

197

6 if ~isnan(SUPP(i,2)), j = j + 1; BC(j) = 3*SUPP(i) - 2; end

7 if ~isnan(SUPP(i,3)), j = j + 1; BC(j) = 3*SUPP(i) - 1; end

8 if ~isnan(SUPP(i,4)), j = j + 1; BC(j) = 3*SUPP(i); end

9 end

10 if j~=Nf, error(’Parsing number mismatch on BCs.’), end

GetVectorF3.m

1 function [F]=GetVectorF3(LOAD,BC,Nn)

2 % Return nodal force vector

3 Nl = sum(sum(~isnan(LOAD(:,2:4))));

4 F = sparse([],[],[],3*Nn,1,Nl);

5 for i=1:size(LOAD,1)

6 n = LOAD(i,1);

7 if ~isnan(LOAD(i,2)), F(3*n-2) = LOAD(i,2); end

8 if ~isnan(LOAD(i,3)), F(3*n-1) = LOAD(i,3); end

9 if ~isnan(LOAD(i,4)), F(3*n) = LOAD(i,4); end

10 end

11 F(BC) = [];

PlotDomain3.m

1 function []=PlotDomain3(NODE,ELEM,SUPP,LOAD,Color)

2 nargchk(nargin,4,5);

3

4 Alpha = 0.15; % Alpha transparency value

5 if nargin<5, Color = 0.3*[1 1 1]; end % Default color is gray

6

7 %% Create index lists for every element type

8 ELEMlist = cell(7,1);

9 if isfield(ELEM,’V’)

10 VNp = cellfun(@numel,ELEM.V);

11 VELEMtype = [VNp==8 VNp==6 VNp==5 VNp==4]; % Hexahedra, Prism & Tetrahedra

12 ELEMlist{1} = find(VELEMtype(:,1)); % --- Hexahedra

13 ELEMlist{2} = find(VELEMtype(:,2)); % --- Prism

14 ELEMlist{3} = find(VELEMtype(:,3)); % --- Pyramid

15 ELEMlist{4} = find(VELEMtype(:,4)); % --- Tetrahedra

16 end

17 if isfield(ELEM,’S’)

18 SNp = cellfun(@numel,ELEM.S);

19 SELEMtype = [SNp==4 SNp==3 SNp==2]; % Quadrangles, Triangles & Lines

20 ELEMlist{5} = find(SELEMtype(:,1)); % --- Quadrangles

21 ELEMlist{6} = find(SELEMtype(:,2)); % --- Triangles

22 ELEMlist{7} = find(SELEMtype(:,3)); % --- Lines

23 end

24 Ne = cellfun(@numel,ELEMlist);

25 FACE4 = nan(6*Ne(1)+3*Ne(2)+Ne(3)+Ne(5),4); N4 = 0; % Faces: hexa-6, prism-3, pyra-1, quad-1

26 FACE3 = nan(2*Ne(2)+4*Ne(3)+4*Ne(4)+Ne(6),3); N3 = 0; % Faces: prism-2, pyra-4, tetra-4, tria-1

27

28 for i=1:Ne(1) % --- Hexahedra

29 FACE4(N4+(1:6),:) = ELEM.V{ELEMlist{1}(i)}([1 2 3 4; 5 6 7 8; 1 2 6 5; 4 3 7 8; 2 3 7 6; 1 4 8 5]);

30 N4 = N4 + 6;

31 end

32 for i=1:Ne(2) % --- Prisms

33 FACE3(N3+(1:2),:) = ELEM.V{ELEMlist{2}(i)}([1 2 3; 4 5 6]); N3 = N3 + 2;

34 FACE4(N4+(1:3),:) = ELEM.V{ELEMlist{2}(i)}([1 2 5 4; 2 3 6 5; 3 1 4 6]); N4 = N4 + 3;

35 end

36 for i=1:Ne(3) % --- Pyramids

37 FACE3(N3+(1:4),:) = ELEM.V{ELEMlist{3}(i)}([1 2 5; 2 3 5; 3 4 5; 4 1 5]); N3 = N3 + 4;

38 FACE4(N4+1,:) = ELEM.V{ELEMlist{3}(i)}([1 2 3 4]); N4 = N4 + 1;

39 end

40 for i=1:Ne(4) % --- Tetrahedra

41 FACE3(N3+(1:4),:) = ELEM.V{ELEMlist{4}(i)}([1 2 3; 1 4 2; 2 4 3; 3 4 1]); N3 = N3 + 4;

42 end

43 if Ne(5)>0, FACE4(N4+(1:Ne(5)),:) = vertcat(ELEM.S{ELEMlist{5}}); N4 = N4 + Ne(5); end

198

44 if Ne(6)>0, FACE3(N3+(1:Ne(6)),:) = vertcat(ELEM.S{ELEMlist{6}}); N3 = N3 + Ne(6); end

45

46 % --- Reorder face numbering for sorting and plot

47 figure, hold on, axis equal, axis off, set(gcf,’Color’,’w’)

48 if ~isempty(FACE3)

49 [~,ind] = min(FACE3,[],2);

50 for i=1:size(FACE3,1)

51 if ind(i)~=1, FACE3(i,:) = FACE3(i,[ind(i):3 1:ind(i)-1]); end

52 end

53 ind = find(FACE3(:,2)>FACE3(:,3)); FACE3(ind,2:3) = FACE3(ind,[3 2]);

54 [FACE3,~,ind] = unique(FACE3,’rows’);

55 IsBoundary = sparse(ind,ones(size(ind)),ones(size(ind))); % 2 = INNER

56 BOUND3 = find(IsBoundary==1);

57 patch(’Faces’,FACE3(BOUND3,:),’Vertices’,NODE,’FaceColor’,Color,’FaceAlpha’,Alpha);

58 end

59 if ~isempty(FACE4)

60 [~,ind] = min(FACE4,[],2);

61 for i=1:size(FACE4,1)

62 if ind(i)~=1, FACE4(i,:) = FACE4(i,[ind(i):4 1:ind(i)-1]); end

63 end

64 ind = find(FACE4(:,2)>FACE4(:,end)); FACE4(ind,2:4) = fliplr(FACE4(ind,2:4));

65 [FACE4,~,ind] = unique(FACE4,’rows’);

66 IsBoundary = sparse(ind,ones(size(ind)),ones(size(ind))); % 2 = INNER

67 BOUND4 = find(IsBoundary==1);

68 patch(’Faces’,FACE4(BOUND4,:),’Vertices’,NODE,’FaceColor’,Color,’FaceAlpha’,Alpha);

69 end

70 if ~isempty(ELEMlist{7}) % --- Plot line elements

71 LINE=cat(1,ELEM.S{ELEMlist{7}});

72 plot3([NODE(LINE(:,1),1) NODE(LINE(:,2),1)]’,[NODE(LINE(:,1),2) NODE(LINE(:,2),2)]’,...

73 [NODE(LINE(:,1),3) NODE(LINE(:,2),3)]’,’Color’,[4 21 9]/30,’LineWidth’,1.5)

74 end

75 if (nargin>2 && ~isempty(SUPP) && ~isempty(LOAD)) % --- Plot boundary conditions if available

76 plot3(NODE(SUPP(:,1),1),NODE(SUPP(:,1),2),NODE(SUPP(:,1),3),’b>’,’MarkerSize’,8);

77 plot3(NODE(LOAD(:,1),1),NODE(LOAD(:,1),2),NODE(LOAD(:,1),3),’m^’,’MarkerSize’,8);

78 end

79 view(30,20), rotate3d on, drawnow

PlotGroundStructure3.m

1 function []=PlotGroundStructure3(NODE,BARS,A,Cutoff,Ff)

2 nargchk(nargin,4,5);

3

4 RGBcolor = [0.6 0.6 1]; % Default member color

5 c = 1/100; % Member size scale factor

6 if nargin==4, Ff = 2; end % Default facet factor (plot quality)

7

8 lim = [min(NODE); max(NODE)]; % Domain limits

9 dim = max(diff(lim)); % Domain dimension (for cylinder width)

10 A = A / max(A); % Normalize to [0,1] areas

11 indC = find(A>Cutoff); % Only plot A > cutoff * A_max

12 figure(’Name’,’GRAND3 v1.0 -- Zegard T, Paulino GH’,’NumberTitle’,’off’)

13 hold on, axis equal, axis off, set(gcf,’Color’,’w’), view(30,20)

14 axis(lim(:)’ + c*dim * [-1 1 -1 1 -1 1]) % Note that max(R) = c*dim*sqrt(1)

15

16 % PLOT CYLINDERS & GET SPHERE’S RADII

17 nodeA = zeros(size(NODE,1),1); % Store nodal areas (sphere radii)

18 for i=1:length(indC)

19 Nf = round(Ff*(6*sqrt(A(indC(i)))+8)); % Number of facets (empirical)

20 aux = BARS(indC(i),:);

21 DrawRod([NODE(aux(1),1) NODE(aux(2),1)],[NODE(aux(1),2) NODE(aux(2),2)],...

22 [NODE(aux(1),3) NODE(aux(2),3)],c*dim*sqrt(A(indC(i))),RGBcolor,Nf)

23 nodeA(aux) = max([nodeA(aux) A(indC(i))*[1;1]],[],2);

24 end

25 % PLOT SPHERES

26 indS = find(nodeA>0);

27 Nf = round(Ff*(4*sqrt(nodeA(indS))+6)); % Number of facets (empirical)

199

28 for i=1:max(Nf)

29 [Sx,Sy,Sz] = sphere(i); Sc = repmat(reshape(RGBcolor,[1 1 3]),i+1,i+1);

30 aux = find(Nf==i);

31 for j=1:length(aux)

32 Sr = c*dim*sqrt(nodeA(indS(aux(j))));

33 surf(Sr*Sx+NODE(indS(aux(j)),1),Sr*Sy+NODE(indS(aux(j)),2),...

34 Sr*Sz+NODE(indS(aux(j)),3),Sc,’EdgeColor’,’none’)

35 end

36 end

37

38 rotate3d on, light

39 fprintf(’-PLOT- Cutoff %g, Facet factor %g, Bars %g, Spheres %g\n’,...

40 Cutoff,Ff,length(indC),length(indS))

41

42 function []=DrawRod(X,Y,Z,R,C,Nt)

43 % Draws rods connecting points X(:,1)-X(:,2), Y(:,1)-Y(:,2) & Z(:,1)-Z(:,2)

44 % Rods have radius R, color C and Nt facets.

45 nargchk(nargin,3,6);

46 Nc = size(X,1);

47 if nargin<6, Nt = 12; end % Draw 12 facets by default

48 if (nargin<5 || isempty(C)), C = 0.5*[1 1 1]; end % Default color is gray

49 if (nargin<4 || isempty(R)), R = ones(size(X,1),1); end % Default radius=1

50 if ~isequal(size(X),size(Y),size(Z)), error(’Vectors must be the same lengths.’), end

51 if size(X,2)~=2, error(’Coordinates must have size [N x 2]’), end

52 if isscalar(R), R = R*ones(Nc,1); end

53

54 Cc = zeros(Nt,2,3);

55 if size(C,1)==1, for i=1:3, Cc(:,:,i) = C(i); end, end % 3D RGB matrix

56

57 t = linspace(0,2*pi,Nt)’;

58 qt = cos(t); rt = sin(t); % Parametrized circle for cylinder’s cap

59 p = [diff(X,[],2) diff(Y,[],2) diff(Z,[],2)]; % Directional vector

60 L = sqrt(sum(p.^2,2));

61 p = [p(:,1)./L p(:,2)./L p(:,3)./L]; % Normalized cylinder axis director

62 for i=1:Nc

63 if abs(p(i,3))<0.9, q = cross([0 0 1],p(i,:)); % If not pointing to +Z

64 else, q = cross([0 1 0],p(i,:));

65 end

66 q = q / norm(q); % Normalize second basis vector

67 r = cross(q,p(i,:)); % Get the third basis vector

68 r = r / norm(r); % Normalize third basis vector

69

70 S = R(i)*repmat(qt*q(1)+rt*r(1),1,2) + repmat(X(i,:),Nt,1);

71 T = R(i)*repmat(qt*q(2)+rt*r(2),1,2) + repmat(Y(i,:),Nt,1);

72 U = R(i)*repmat(qt*q(3)+rt*r(3),1,2) + repmat(Z(i,:),Nt,1);

73 % If each member has different color specified

74 if size(C,1)~=1, for j=1:3, Cc(:,:,j) = C(i,j); end, end

75 surf(S,T,U,Cc,’EdgeColor’,’none’)

76 end

rBox.m

1 function flag=rBox(Amin,Amax,NODE,BARS)

2 % Amin and Amax are the box’s limit coords: minimum and maximum

3 Nb= size(BARS,1);

4 Tmin = zeros(Nb,1); Tmax = ones(Nb,1);

5 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

6 for i=1:3 % Check all 3 coordinates [X,Y,Z]

7 T1 = (Amin(i) - NODE(BARS(:,1),i)) ./ D(:,i);

8 T2 = (Amax(i) - NODE(BARS(:,1),i)) ./ D(:,i);

9 ind = find(T1>T2); % We require T1<T2, swap if not

10 [T1(ind),T2(ind)] = deal(T2(ind),T1(ind)); % Swap operation

11 Tmin = max(Tmin,T1); Tmax = min(Tmax,T2);

12 end

13 % No intersection with box if Tmin>Tmax

14 flag = (Tmin<=Tmax);

200

rCylinder.m

1 function flag=rCylinder(A,B,r,NODE,BARS)

2 % Collision test for an infinite cylinder A-B, with radius r

3 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

4 V = NODE(BARS(:,1),:) - repmat(A,size(BARS,1),1);

5 N = B - A;

6

7 VD = sum(V.*D,2);

8 VN = V*N’;

9 DN = D*N’;

10 NN = N*N’;

11 VV = sum(V.^2,2);

12 DD = sum(D.^2,2);

13

14 % Cylinder surface check

15 a = NN*DD - DN.^2;

16 b = NN*VD - DN.*VN; % Actually this is b/2

17 c = NN*(VV-r^2) - VN.^2;

18 discr = b.^2 - a.*c;

19 ind = find(discr>=0);

20 flag1 = false(size(discr,1),2);

21 if ~isempty(ind)

22 T = [(-b(ind)+sqrt(discr(ind)))./a(ind) (-b(ind)-sqrt(discr(ind)))./a(ind)];

23 flag1(ind,:) = (T>=0) & (T<=1);

24 end

25

26 % Check for point A if segment is completely contained within the cylinder

27 T = VN./NN;

28 W = V - T*N;

29 flag2= (sum(W.^2,2)<=r^2);

30

31 % If any collision, return true

32 flag = any([flag1 flag2],2);

rDisc.m

1 function flag=rDisc(A,B,r,NODE,BARS)

2 % Collision test for a disc centered at A, with radius r and normal towards B

3 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

4 V = NODE(BARS(:,1),:) - repmat(A,size(BARS,1),1);

5 N = B - A;

6 % Project onto disc plane

7 VN = V*N’;

8 DN = D*N’;

9 T = -VN./DN;

10 % Calculate distance to center

11 W = V + [T.*D(:,1) T.*D(:,2) T.*D(:,3)];

12 flag = (sum(W.^2,2)<=r^2) & (T>=0) & (T<=1);

rQuad.m

1 function flag=rQuad(A,B1,C,B2,NODE,BARS)

2

3 Nb = size(BARS,1);

4

5 % Find intersection point

6 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

7 PA= repmat(A,Nb,1) - NODE(BARS(:,1),:);

8 N = cross(B1 - A , B2 - A);

9 T = (PA*N’)./(D*N’);

10 ind = find((T>=0).*(T<=1));

11 flag = zeros(Nb,1);

12

201

13 % Check along diagonal AC and identify the triangle to check

14 D = D(ind,:); PA= PA(ind,:);

15 PB1= repmat(B1,length(ind),1) - NODE(BARS(ind,1),:);

16 PC = repmat(C,length(ind),1) - NODE(BARS(ind,1),:);

17 PB2= repmat(B2,length(ind),1) - NODE(BARS(ind,1),:);

18 E = [D(:,2).*PC(:,3)-D(:,3).*PC(:,2) D(:,3).*PC(:,1)-D(:,1).*PC(:,3) D(:,1).*PC(:,2)-D(:,2).*PC(:,1)];

19 VA= sum(PB1.*E,2);

20 VB= sum(PB2.*E,2);

21 V2=-sum(PA.*E,2);

22 aux = [sign(VA) sign(VB) sign(V2)];

23 tri1 = find(abs(aux(:,1)-aux(:,3))<2);

24 tri2 = find(abs(aux(:,2)-aux(:,3))<2);

25 if ~isempty(tri1) % Indices to check for AB1C

26 E(tri1,:)=[D(tri1,2).*PB1(tri1,3) - D(tri1,3).*PB1(tri1,2)...

27 D(tri1,3).*PB1(tri1,1) - D(tri1,1).*PB1(tri1,3)...

28 D(tri1,1).*PB1(tri1,2) - D(tri1,2).*PB1(tri1,1)]; % E1 = D x PB1

29 end

30 V31= sum(PA(tri1,:).*E(tri1,:),2);

31 if ~isempty(tri2) % Indices to check for BCB2

32 E(tri2,:)=[D(tri2,2).*PB2(tri2,3) - D(tri2,3).*PB2(tri2,2)...

33 D(tri2,3).*PB2(tri2,1) - D(tri2,1).*PB2(tri2,3)...

34 D(tri2,1).*PB2(tri2,2) - D(tri2,2).*PB2(tri2,1)]; % E2 = D x PB2

35 end

36 V32= sum(PA(tri2,:).*E(tri2,:),2);

37

38 flag1 = false(length(ind),1); flag2 = false(length(ind),1);

39 flag1(tri1) = max(abs(aux(tri1,3)-sign(V31)),[],2)<2;

40 flag2(tri2) = max(abs(aux(tri2,3)-sign(V32)),[],2)<2;

41 flag(ind) = any([flag1 flag2],2);

rRod.m

1 function flag=rRod(A,B,r,NODE,BARS)

2 % Collision test for a rod A-B, with radius r

3 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

4 V = NODE(BARS(:,1),:) - repmat(A,size(BARS,1),1);

5 N = B - A;

6

7 VD = sum(V.*D,2);

8 VN = V*N’;

9 DN = D*N’;

10 NN = N*N’;

11 VV = sum(V.^2,2);

12 DD = sum(D.^2,2);

13

14 % A endcap

15 T = -VN./DN;

16 W = V + [T.*D(:,1) T.*D(:,2) T.*D(:,3)];

17 flag1 = (sum(W.^2,2)<=r^2) & (T>=0) & (T<=1);

18

19 % B endcap

20 T = (NN-VN)./DN;

21 W = V + [T.*D(:,1)-N(1) T.*D(:,2)-N(2) T.*D(:,3)-N(3)];

22 flag2 = (sum(W.^2,2)<=r^2) & (T>=0) & (T<=1);

23

24 % Cylinder surface check

25 a = NN*DD - DN.^2;

26 b = NN*VD - DN.*VN; % Actually this is b/2

27 c = NN*(VV-r^2) - VN.^2;

28 discr = b.^2 - a.*c;

29 flag3 = false(size(discr,1),2);

30 ind = find(discr>=0);

31 if ~isempty(ind)

32 T = [(-b(ind)+sqrt(discr(ind)))./a(ind) (-b(ind)-sqrt(discr(ind)))./a(ind)];

33 W = V(ind,:) + [D(ind,1).*T(:,1) D(ind,2).*T(:,1) D(ind,3).*T(:,1)];

34 WN= W*N’;

202

35 flag3(ind,1) = (WN>=0).*(WN<=NN).*(T(:,1)>=0).*(T(:,1)<=1);

36 W = V(ind,:) + [D(ind,1).*T(:,2) D(ind,2).*T(:,2) D(ind,3).*T(:,2)];

37 WN= W*N’;

38 flag3(ind,2) = (WN>=0) & (WN<=NN) & (T(:,2)>=0) & (T(:,2)<=1);

39 end

40

41 % Check for point A if segment is completely contained within the rod

42 T = VN./NN;

43 W = V - T*N;

44 flag4 = (sum(W.^2,2)<=r^2) & (T>=0) & (T<=1);

45

46 % If any collision, return true

47 flag = any([flag1 flag2 flag3 flag4],2);

rSphere.m

1 function flag=rSphere(C,r,NODE,BARS)

2

3 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

4 V = repmat(C,size(BARS,1),1) - NODE(BARS(:,1),:);

5

6 VD = sum(V.*D,2);

7 VV = sum(V.^2,2);

8 DD = sum(D.^2,2);

9

10 % Point X in L(t) is inside sphere

11 VDn = VD./DD;

12 VmW = V - [VDn.*D(:,1) VDn.*D(:,2) VDn.*D(:,3)];

13 flag1 = (sum(VmW.^2,2)<=r^2) & (VDn>=0) & (VDn<=1);

14

15 % Point A is inside sphere

16 flag2 = (VV<=r^2);

17

18 % Point B is inside sphere

19 flag3 = (VV-2*VD+DD<=r^2);

20

21 % If any collision, return true

22 flag = any([flag1 flag2 flag3],2);

rSurf.m

1 function flag=rSurf(RNODE,RFACE,NODE,BARS)

2

3 flag = false(size(BARS,1));

4 for i=1:length(RFACE)

5 switch length(RFACE{i})

6 case {1,2}

7 error(’Surface facets must have 3+ nodes.’)

8 case 3

9 flag = any([flag rTriangle(RNODE(RFACE{i}(1),:),RNODE(RFACE{i}(2),:),...

10 RNODE(RFACE{i}(3),:),NODE,BARS)],2);

11 case 4

12 flag = any([flag rQuad(RNODE(RFACE{i}(1),:),RNODE(RFACE{i}(2),:),...

13 RNODE(RFACE{i}(3),:),RNODE(RFACE{i}(4),:),NODE,BARS)],2);

14 otherwise

15 for j=3:length(RFACE{i})

16 flag = any([flag rTriangle(RNODE(RFACE{i}(1),:),RNODE(RFACE{i}(j-2),:),...

17 RNODE(RFACE{i}(j),:),NODE,BARS)],2);

18 end

19 end

20 end

rTriangle.m

203

1 function flag=rTriangle(A,B,C,NODE,BARS)

2

3 Nb = size(BARS,1);

4

5 % Find intersection point

6 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

7 PA= repmat(A,Nb,1) - NODE(BARS(:,1),:);

8 N = cross(B - A , C - A);

9 T = (PA*N’)./(D*N’);

10 ind = find((T>=0).*(T<=1));

11 flag = zeros(Nb,1);

12

13 % If R between P and Q, check if inside triangle

14 if ~isempty(ind)

15 D = D(ind,:); PA= PA(ind,:);

16 PB= repmat(B,length(ind),1) - NODE(BARS(ind,1),:);

17 PC= repmat(C,length(ind),1) - NODE(BARS(ind,1),:);

18 E = [D(:,2).*PC(:,3) - D(:,3).*PC(:,2)...

19 D(:,3).*PC(:,1) - D(:,1).*PC(:,3)...

20 D(:,1).*PC(:,2) - D(:,2).*PC(:,1)];

21 V1= sum(PB.*E,2);

22 V2=-sum(PA.*E,2);

23 E = [D(:,2).*PB(:,3) - D(:,3).*PB(:,2)...

24 D(:,3).*PB(:,1) - D(:,1).*PB(:,3)...

25 D(:,1).*PB(:,2) - D(:,2).*PB(:,1)];

26 V3= sum(PA.*E,2);

27 aux = [sign(V1) sign(V2) sign(V3)];

28 % Check for signs and consider case with zero volumes

29 flag(ind) = max(aux,[],2) - min(aux,[],2)<2;

30 end

StructDomain3.m

1 function [NODE,ELEM,SUPP,LOAD]=StructDomain3(Nx,Ny,Nz,Lx,Ly,Lz,ProblemID)

2 nargchk(nargin,6,7);

3

4 % Generate structured-orthogonal domains

5 [X,Y,Z] = meshgrid(linspace(0,Lx,Nx+1),linspace(0,Ly,Ny+1),linspace(0,Lz,Nz+1));

6 NODE = [reshape(X,numel(X),1) reshape(Y,numel(Y),1) reshape(Z,numel(Z),1)];

7 Nn = (Nx+1)*(Ny+1)*(Nz+1); Ne = Nx*Ny*Nz;

8

9 ELEM.V = cell(Ne,1);

10 aux = [1 Ny+2 Ny+3 2 (Nx+1)*(Ny+1)+[1 Ny+2 Ny+3 2]];

11 for k=1:Nz,

12 for j=1:Nx

13 for i=1:Ny

14 n = (k-1)*Ny*Nx + (j-1)*Ny + i;

15 ELEM.V{n} = aux + (k-1)*(Ny+1)*(Nx+1) + (j-1)*(Ny+1) + i-1;

16 end

17 end

18 end

19

20 if (nargin<7 || isempty(ProblemID)), ProblemID = 1; end

21 switch ProblemID

22 case {’Cantilever’,’cantilever’,1}

23 if rem(Ny,2)~=0, fprintf(’INFO - Ideal Ny is EVEN.\n’), end

24 SUPP = [(1:(Nx+1)*(Ny+1):Nn)’ ones(Nz+1,3);

25 (Ny+1:(Nx+1)*(Ny+1):Nn)’ ones(Nz+1,3)];

26 LOAD = [round((Nz+1)/2)*(Nx+1)*(Ny+1)-round(Ny/2) 0 0 -1];

27 case {’Bridge’,’bridge’,2}

28 if rem(Ny,2)~=0, fprintf(’INFO - Ideal Ny is EVEN.\n’), end

29 ind = find(NODE(:,1)==0);

30 SUPP = [ind ones(size(ind)) nan(length(ind),2);

31 Nx*(Ny+1)+1 NaN ones(1,2) ;

32 (Nx+1)*(Ny+1) NaN ones(1,2)];

204

33 LOAD = [Nz*(Nx+1)*(Ny+1)+round((Ny+1)/2) 0 0 -1];

34 case {’Tripod’,’tripod’,3}

35 if any(rem([Nx Ny],2)), fprintf(’INFO - Ideal Nx and Ny are EVEN.\n’), end

36 SUPP = [1 1 1 1;

37 Ny+1 1 1 1;

38 Nx*(Ny+1)+1 1 1 1;

39 (Nx+1)*(Ny+1) 1 1 1];

40 LOAD = [round(Nx/2)*(Ny+1)+round((Ny+1)/2) 0 0 -1];

41 case {’Torsion’,’torsion’,4}

42 if ~all(rem([Nx Ny],2)), fprintf(’INFO - Ideal Nx and Ny are ODD.\n’), end

43 mid = round(Nx/2)*(Ny+1) + round(Ny/2) + [-Ny-1 -Ny 0 1]’;

44 SUPP = [mid zeros(4,3)];

45 M = 1; % Applied moment

46 f = [-Ly/Ny Lx/Nx]; dL = norm(f);

47 f = (M/4)*(f/dL)*(2/dL); % Nodal loads are applied at 4 locations

48 LOAD = [Nz*(Nx+1)*(Ny+1)+mid [-f 0; f(1) -f(2) 0; -f(1) f(2) 0; f 0]];

49 NODE = NODE - repmat([Lx Ly Lz]/2,Nn,1); % Center the model at the origin

50 case {’Pyramid’,’pyramid’,5}

51 if any(rem([Nx Ny],2)), fprintf(’INFO - Ideal Nx and Ny are EVEN.\n’), end

52 SUPP = [1 0 0 0;

53 Ny+1 0 NaN 0;

54 Nx*(Ny+1)+1 NaN NaN 0;

55 (Nx+1)*(Ny+1) NaN NaN 0];

56 LOAD = [Nn-round(Nx/2)*(Ny+1)-round(Ny/2) 0 0 -1];

57 otherwise

58 SUPP = []; LOAD = [];

59 disp(’-INFO- Structured domain generated with no loads/BC’)

60 end

205

Appendix C

Collision primitive testing framework

To thoroughly test the collision primitives, simple Graphical User Interfaces (or GUIs)

were developed in MATLAB. Segments are plotted in green by default. When a segment

collides with a primitive, it changes color to red. This tool makes it simple to detect (and

fix) false–positives and false–negatives. A sample GUI with tags is shown in Figure C.1, and

the accompanying source code is given. Additional GUIs are shown in Figure C.2.

sliderPX

sliderPY

sliderPZ

editPX

editPY

editPZ

pushbuttonAB

pushbuttonBC

pushbuttonCA
pushbuttonRAND

node P coordin.

axes1

node A
coordinates

node B
coordinates

node C
coordinates

node Q
coordinates

Figure C.1: Graphical user interface to test the collision of segments against a box. GUI
object name tags are shown to match the source code callbacks.

206

main.m

1 function varargout = main(varargin)

2 % MAIN MATLAB code for main.fig

3 % MAIN, by itself, creates a new MAIN or raises the existing

4 % singleton*.

5 %

6 % H = MAIN returns the handle to a new MAIN or the handle to

7 % the existing singleton*.

8 %

9 % MAIN(’CALLBACK’,hObject,eventData,handles,...) calls the local

10 % function named CALLBACK in MAIN.M with the given input arguments.

11 %

12 % MAIN(’Property’,’Value’,...) creates a new MAIN or raises the

13 % existing singleton*. Starting from the left, property value pairs are

14 % applied to the GUI before main_OpeningFcn gets called. An

15 % unrecognized property name or invalid value makes property application

16 % stop. All inputs are passed to main_OpeningFcn via varargin.

17 %

18 % *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

19 % instance to run (singleton)".

20 %

21 % See also: GUIDE, GUIDATA, GUIHANDLES

22

23 % Edit the above text to modify the response to help main

24

25 % Last Modified by GUIDE v2.5 16-Jul-2014 14:07:18

26

27 % Begin initialization code - DO NOT EDIT

28 gui_Singleton = 1;

29 gui_State = struct(’gui_Name’, mfilename, ...

30 ’gui_Singleton’, gui_Singleton, ...

31 ’gui_OpeningFcn’, @main_OpeningFcn, ...

32 ’gui_OutputFcn’, @main_OutputFcn, ...

33 ’gui_LayoutFcn’, [] , ...

34 ’gui_Callback’, []);

35 if nargin && ischar(varargin{1})

36 gui_State.gui_Callback = str2func(varargin{1});

37 end

38

39 if nargout

40 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

41 else

42 gui_mainfcn(gui_State, varargin{:});

43 end

44 % End initialization code - DO NOT EDIT

45

46

47 % --- Executes just before main is made visible.

48 function main_OpeningFcn(hObject, eventdata, handles, varargin)

49 % This function has no output args, see OutputFcn.

50 % hObject handle to figure

51 % eventdata reserved - to be defined in a future version of MATLAB

52 % handles structure with handles and user data (see GUIDATA)

53 % varargin command line arguments to main (see VARARGIN)

54

55 % Choose default command line output for main

56 handles.output = hObject;

57

58 % Default control point locations

59 P=[7 6 3];

60 Q=[-3 -4 -4];

61 A=[6 1 -6];

62 B=[-5 -2 1];

63 C=[-6 5 3];

64

65 set(handles.editPX ,’String’,num2str(P(1)))

207

66 set(handles.editPY ,’String’,num2str(P(2)))

67 set(handles.editPZ ,’String’,num2str(P(3)))

68 set(handles.editQX ,’String’,num2str(Q(1)))

69 set(handles.editQY ,’String’,num2str(Q(2)))

70 set(handles.editQZ ,’String’,num2str(Q(3)))

71 set(handles.editAX ,’String’,num2str(A(1)))

72 set(handles.editAY ,’String’,num2str(A(2)))

73 set(handles.editAZ ,’String’,num2str(A(3)))

74 set(handles.editBX,’String’,num2str(B(1)))

75 set(handles.editBY,’String’,num2str(B(2)))

76 set(handles.editBZ,’String’,num2str(B(3)))

77 set(handles.editCX,’String’,num2str(C(1)))

78 set(handles.editCY,’String’,num2str(C(2)))

79 set(handles.editCZ,’String’,num2str(C(3)))

80 set(handles.sliderPX ,’Value’,P(1))

81 set(handles.sliderPY ,’Value’,P(2))

82 set(handles.sliderPZ ,’Value’,P(3))

83 set(handles.sliderQX ,’Value’,Q(1))

84 set(handles.sliderQY ,’Value’,Q(2))

85 set(handles.sliderQZ ,’Value’,Q(3))

86 set(handles.sliderAX ,’Value’,A(1))

87 set(handles.sliderAY ,’Value’,A(2))

88 set(handles.sliderAZ ,’Value’,A(3))

89 set(handles.sliderBX,’Value’,B(1))

90 set(handles.sliderBY,’Value’,B(2))

91 set(handles.sliderBZ,’Value’,B(3))

92 set(handles.sliderCX,’Value’,C(1))

93 set(handles.sliderCY,’Value’,C(2))

94 set(handles.sliderCZ,’Value’,C(3))

95

96 handles.P=P; handles.Q=Q; handles.A=A; handles.B=B; handles.C=C;

97 axes(handles.axes1), view(-30,20) % Default view

98 PlotBoxAndSegment(handles)

99

100 % Update handles structure

101 guidata(hObject, handles);

102

103 % UIWAIT makes main wait for user response (see UIRESUME)

104 % uiwait(handles.figure1);

105

106

107 % --- Outputs from this function are returned to the command line.

108 function varargout = main_OutputFcn(hObject, eventdata, handles)

109 % varargout cell array for returning output args (see VARARGOUT);

110 % hObject handle to figure

111 % eventdata reserved - to be defined in a future version of MATLAB

112 % handles structure with handles and user data (see GUIDATA)

113

114 % Get default command line output from handles structure

115 varargout{1} = handles.output;

116

117

118 function editPX_Callback(hObject, eventdata, handles)

119 input=str2num(get(hObject,’String’));

120 if isempty(input)

121 set(hObject,’String’,num2str(handles.P(1)))

122 else

123 handles.P(1)=input;

124 set(handles.sliderPX ,’Value’,input)

125 end

126 PlotBoxAndSegment(handles)

127 guidata(hObject,handles)

128

129 function editPX_CreateFcn(hObject, eventdata, handles)

130 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

131 set(hObject,’BackgroundColor’,’white’);

132 end

208

133

134

135 function editPY_Callback(hObject, eventdata, handles)

136 input=str2num(get(hObject,’String’));

137 if isempty(input)

138 set(hObject,’String’,num2str(handles.P(2)))

139 else

140 handles.P(2)=input;

141 set(handles.sliderPY ,’Value’,input)

142 end

143 PlotBoxAndSegment(handles)

144 guidata(hObject,handles)

145

146 function editPY_CreateFcn(hObject, eventdata, handles)

147 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

148 set(hObject,’BackgroundColor’,’white’);

149 end

150

151

152 function editPZ_Callback(hObject, eventdata, handles)

153 input=str2num(get(hObject,’String’));

154 if isempty(input)

155 set(hObject,’String’,num2str(handles.P(3)))

156 else

157 handles.P(3)=input;

158 set(handles.sliderPZ ,’Value’,input)

159 end

160 PlotBoxAndSegment(handles)

161 guidata(hObject,handles)

162

163 function editPZ_CreateFcn(hObject, eventdata, handles)

164 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

165 set(hObject,’BackgroundColor’,’white’);

166 end

167

168

169 function sliderPX_Callback(hObject, eventdata, handles)

170 input=get(hObject,’Value’);

171 handles.P(1)=input;

172 set(handles.editPX ,’String’,num2str(input))

173 PlotBoxAndSegment(handles)

174 guidata(hObject,handles)

175

176 function sliderPX_CreateFcn(hObject, eventdata, handles)

177 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

178 set(hObject,’BackgroundColor’,[.9 .9 .9]);

179 end

180

181

182 function sliderPY_Callback(hObject, eventdata, handles)

183 input=get(hObject,’Value’);

184 handles.P(2)=input;

185 set(handles.editPY ,’String’,num2str(input))

186 PlotBoxAndSegment(handles)

187 guidata(hObject,handles)

188

189 function sliderPY_CreateFcn(hObject, eventdata, handles)

190 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

191 set(hObject,’BackgroundColor’,[.9 .9 .9]);

192 end

193

194

195 function sliderPZ_Callback(hObject, eventdata, handles)

196 input=get(hObject,’Value’);

197 handles.P(3)=input;

198 set(handles.editPZ ,’String’,num2str(input))

199 PlotBoxAndSegment(handles)

209

200 guidata(hObject,handles)

201

202 function sliderPZ_CreateFcn(hObject, eventdata, handles)

203 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

204 set(hObject,’BackgroundColor’,[.9 .9 .9]);

205 end

206

207

208 function editQX_Callback(hObject, eventdata, handles)

209 input=str2num(get(hObject,’String’));

210 if isempty(input)

211 set(hObject,’String’,num2str(handles.Q(1)))

212 else

213 handles.Q(1)=input;

214 set(handles.sliderQX ,’Value’,input)

215 end

216 PlotBoxAndSegment(handles)

217 guidata(hObject,handles)

218

219 function editQX_CreateFcn(hObject, eventdata, handles)

220 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

221 set(hObject,’BackgroundColor’,’white’);

222 end

223

224

225 function editQY_Callback(hObject, eventdata, handles)

226 input=str2num(get(hObject,’String’));

227 if isempty(input)

228 set(hObject,’String’,num2str(handles.Q(2)))

229 else

230 handles.Q(2)=input;

231 set(handles.sliderQY ,’Value’,input)

232 end

233 PlotBoxAndSegment(handles)

234 guidata(hObject,handles)

235

236 function editQY_CreateFcn(hObject, eventdata, handles)

237 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

238 set(hObject,’BackgroundColor’,’white’);

239 end

240

241

242 function editQZ_Callback(hObject, eventdata, handles)

243 input=str2num(get(hObject,’String’));

244 if isempty(input)

245 set(hObject,’String’,num2str(handles.Q(3)))

246 else

247 handles.Q(3)=input;

248 set(handles.sliderQZ ,’Value’,input)

249 end

250 PlotBoxAndSegment(handles)

251 guidata(hObject,handles)

252

253 function editQZ_CreateFcn(hObject, eventdata, handles)

254 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

255 set(hObject,’BackgroundColor’,’white’);

256 end

257

258

259 function sliderQX_Callback(hObject, eventdata, handles)

260 input=get(hObject,’Value’);

261 handles.Q(1)=input;

262 set(handles.editQX ,’String’,num2str(input))

263 PlotBoxAndSegment(handles)

264 guidata(hObject,handles)

265

266 function sliderQX_CreateFcn(hObject, eventdata, handles)

210

267 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

268 set(hObject,’BackgroundColor’,[.9 .9 .9]);

269 end

270

271

272 function sliderQY_Callback(hObject, eventdata, handles)

273 input=get(hObject,’Value’);

274 handles.Q(2)=input;

275 set(handles.editQY ,’String’,num2str(input))

276 PlotBoxAndSegment(handles)

277 guidata(hObject,handles)

278

279 function sliderQY_CreateFcn(hObject, eventdata, handles)

280 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

281 set(hObject,’BackgroundColor’,[.9 .9 .9]);

282 end

283

284

285 function sliderQZ_Callback(hObject, eventdata, handles)

286 input=get(hObject,’Value’);

287 handles.Q(3)=input;

288 set(handles.editQZ ,’String’,num2str(input))

289 PlotBoxAndSegment(handles)

290 guidata(hObject,handles)

291

292 function sliderQZ_CreateFcn(hObject, eventdata, handles)

293 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

294 set(hObject,’BackgroundColor’,[.9 .9 .9]);

295 end

296

297

298 function editAX_Callback(hObject, eventdata, handles)

299 input=str2num(get(hObject,’String’));

300 if isempty(input)

301 set(hObject,’String’,num2str(handles.A(1)))

302 else

303 handles.A(1)=input;

304 set(handles.sliderAX ,’Value’,input)

305 end

306 PlotBoxAndSegment(handles)

307 guidata(hObject,handles)

308

309 function editAX_CreateFcn(hObject, eventdata, handles)

310 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

311 set(hObject,’BackgroundColor’,’white’);

312 end

313

314

315 function editAY_Callback(hObject, eventdata, handles)

316 input=str2num(get(hObject,’String’));

317 if isempty(input)

318 set(hObject,’String’,num2str(handles.A(2)))

319 else

320 handles.A(2)=input;

321 set(handles.sliderAY ,’Value’,input)

322 end

323 PlotBoxAndSegment(handles)

324 guidata(hObject,handles)

325

326 function editAY_CreateFcn(hObject, eventdata, handles)

327 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

328 set(hObject,’BackgroundColor’,’white’);

329 end

330

331

332 function editAZ_Callback(hObject, eventdata, handles)

333 input=str2num(get(hObject,’String’));

211

334 if isempty(input)

335 set(hObject,’String’,num2str(handles.A(3)))

336 else

337 handles.A(3)=input;

338 set(handles.sliderAZ ,’Value’,input)

339 end

340 PlotBoxAndSegment(handles)

341 guidata(hObject,handles)

342

343 function editAZ_CreateFcn(hObject, eventdata, handles)

344 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

345 set(hObject,’BackgroundColor’,’white’);

346 end

347

348

349 function sliderAX_Callback(hObject, eventdata, handles)

350 input=get(hObject,’Value’);

351 handles.A(1)=input;

352 set(handles.editAX ,’String’,num2str(input))

353 PlotBoxAndSegment(handles)

354 guidata(hObject,handles)

355

356 function sliderAX_CreateFcn(hObject, eventdata, handles)

357 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

358 set(hObject,’BackgroundColor’,[.9 .9 .9]);

359 end

360

361

362 function sliderAY_Callback(hObject, eventdata, handles)

363 input=get(hObject,’Value’);

364 handles.A(2)=input;

365 set(handles.editAY ,’String’,num2str(input))

366 PlotBoxAndSegment(handles)

367 guidata(hObject,handles)

368

369 function sliderAY_CreateFcn(hObject, eventdata, handles)

370 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

371 set(hObject,’BackgroundColor’,[.9 .9 .9]);

372 end

373

374

375 function sliderAZ_Callback(hObject, eventdata, handles)

376 input=get(hObject,’Value’);

377 handles.A(3)=input;

378 set(handles.editAZ ,’String’,num2str(input))

379 PlotBoxAndSegment(handles)

380 guidata(hObject,handles)

381

382 function sliderAZ_CreateFcn(hObject, eventdata, handles)

383 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

384 set(hObject,’BackgroundColor’,[.9 .9 .9]);

385 end

386

387

388 function editBX_Callback(hObject, eventdata, handles)

389 input=str2num(get(hObject,’String’));

390 if isempty(input)

391 set(hObject,’String’,num2str(handles.B(1)))

392 else

393 handles.B(1)=input;

394 set(handles.sliderBX,’Value’,input)

395 end

396 PlotBoxAndSegment(handles)

397 guidata(hObject,handles)

398

399 function editBX_CreateFcn(hObject, eventdata, handles)

400 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

212

401 set(hObject,’BackgroundColor’,’white’);

402 end

403

404

405 function editBY_Callback(hObject, eventdata, handles)

406 input=str2num(get(hObject,’String’));

407 if isempty(input)

408 set(hObject,’String’,num2str(handles.B(2)))

409 else

410 handles.B(2)=input;

411 set(handles.sliderBY,’Value’,input)

412 end

413 PlotBoxAndSegment(handles)

414 guidata(hObject,handles)

415

416 function editBY_CreateFcn(hObject, eventdata, handles)

417 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

418 set(hObject,’BackgroundColor’,’white’);

419 end

420

421

422 function editBZ_Callback(hObject, eventdata, handles)

423 input=str2num(get(hObject,’String’));

424 if isempty(input)

425 set(hObject,’String’,num2str(handles.B(3)))

426 else

427 handles.B(3)=input;

428 set(handles.sliderBZ,’Value’,input)

429 end

430 PlotBoxAndSegment(handles)

431 guidata(hObject,handles)

432

433 function editBZ_CreateFcn(hObject, eventdata, handles)

434 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

435 set(hObject,’BackgroundColor’,’white’);

436 end

437

438

439 function sliderBX_Callback(hObject, eventdata, handles)

440 input=get(hObject,’Value’);

441 handles.B(1)=input;

442 set(handles.editBX,’String’,num2str(input))

443 PlotBoxAndSegment(handles)

444 guidata(hObject,handles)

445

446 function sliderBX_CreateFcn(hObject, eventdata, handles)

447 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

448 set(hObject,’BackgroundColor’,[.9 .9 .9]);

449 end

450

451

452 function sliderBY_Callback(hObject, eventdata, handles)

453 input=get(hObject,’Value’);

454 handles.B(2)=input;

455 set(handles.editBY,’String’,num2str(input))

456 PlotBoxAndSegment(handles)

457 guidata(hObject,handles)

458

459 function sliderBY_CreateFcn(hObject, eventdata, handles)

460 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

461 set(hObject,’BackgroundColor’,[.9 .9 .9]);

462 end

463

464

465 function sliderBZ_Callback(hObject, eventdata, handles)

466 input=get(hObject,’Value’);

467 handles.B(3)=input;

213

468 set(handles.editBZ,’String’,num2str(input))

469 PlotBoxAndSegment(handles)

470 guidata(hObject,handles)

471

472 function sliderBZ_CreateFcn(hObject, eventdata, handles)

473 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

474 set(hObject,’BackgroundColor’,[.9 .9 .9]);

475 end

476

477

478 function editCX_Callback(hObject, eventdata, handles)

479 input=str2num(get(hObject,’String’));

480 if (isempty(input) || input<=0)

481 set(hObject,’String’,num2str(handles.C(1)))

482 else

483 handles.C(1)=input;

484 set(handles.sliderCX,’Value’,input)

485 end

486 PlotBoxAndSegment(handles)

487 guidata(hObject,handles)

488

489 function editCX_CreateFcn(hObject, eventdata, handles)

490 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

491 set(hObject,’BackgroundColor’,’white’);

492 end

493

494

495 function editCY_Callback(hObject, eventdata, handles)

496 input=str2num(get(hObject,’String’));

497 if (isempty(input) || input<=0)

498 set(hObject,’String’,num2str(handles.C(2)))

499 else

500 handles.C(2)=input;

501 set(handles.sliderCY,’Value’,input)

502 end

503 PlotBoxAndSegment(handles)

504 guidata(hObject,handles)

505

506 function editCY_CreateFcn(hObject, eventdata, handles)

507 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

508 set(hObject,’BackgroundColor’,’white’);

509 end

510

511

512 function editCZ_Callback(hObject, eventdata, handles)

513 input=str2num(get(hObject,’String’));

514 if (isempty(input) || input<=0)

515 set(hObject,’String’,num2str(handles.C(3)))

516 else

517 handles.C(3)=input;

518 set(handles.sliderCZ,’Value’,input)

519 end

520 PlotBoxAndSegment(handles)

521 guidata(hObject,handles)

522

523 function editCZ_CreateFcn(hObject, eventdata, handles)

524 if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

525 set(hObject,’BackgroundColor’,’white’);

526 end

527

528

529 function sliderCX_Callback(hObject, eventdata, handles)

530 input=get(hObject,’Value’);

531 handles.C(1)=input;

532 set(handles.editCX,’String’,num2str(input))

533 PlotBoxAndSegment(handles)

534 guidata(hObject,handles)

214

535

536 function sliderCX_CreateFcn(hObject, eventdata, handles)

537 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

538 set(hObject,’BackgroundColor’,[.9 .9 .9]);

539 end

540

541

542 function sliderCY_Callback(hObject, eventdata, handles)

543 input=get(hObject,’Value’);

544 handles.C(2)=input;

545 set(handles.editCY,’String’,num2str(input))

546 PlotBoxAndSegment(handles)

547 guidata(hObject,handles)

548

549 function sliderCY_CreateFcn(hObject, eventdata, handles)

550 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

551 set(hObject,’BackgroundColor’,[.9 .9 .9]);

552 end

553

554

555 function sliderCZ_Callback(hObject, eventdata, handles)

556 input=get(hObject,’Value’);

557 handles.C(3)=input;

558 set(handles.editCZ,’String’,num2str(input))

559 PlotBoxAndSegment(handles)

560 guidata(hObject,handles)

561

562 function sliderCZ_CreateFcn(hObject, eventdata, handles)

563 if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

564 set(hObject,’BackgroundColor’,[.9 .9 .9]);

565 end

566

567

568 function pushbuttonRAND_Callback(hObject, eventdata, handles)

569 P=round(rand(1,3)*200-100)/10;

570 Q=round(rand(1,3)*200-100)/10;

571 while any(Q<P), Q=round(rand(1,3)*200-100)/10; end

572 A=round(rand(1,3)*200-100)/10;

573 B=round(rand(1,3)*200-100)/10;

574 C=round(rand(1,3)*200-100)/10;

575 set(handles.editPX ,’String’,num2str(P(1)))

576 set(handles.editPY ,’String’,num2str(P(2)))

577 set(handles.editPZ ,’String’,num2str(P(3)))

578 set(handles.editQX ,’String’,num2str(Q(1)))

579 set(handles.editQY ,’String’,num2str(Q(2)))

580 set(handles.editQZ ,’String’,num2str(Q(3)))

581 set(handles.editAX ,’String’,num2str(A(1)))

582 set(handles.editAY ,’String’,num2str(A(2)))

583 set(handles.editAZ ,’String’,num2str(A(3)))

584 set(handles.editBX,’String’,num2str(B(1)))

585 set(handles.editBY,’String’,num2str(B(2)))

586 set(handles.editBZ,’String’,num2str(B(3)))

587 set(handles.editCX,’String’,num2str(C(1)))

588 set(handles.editCY,’String’,num2str(C(2)))

589 set(handles.editCZ,’String’,num2str(C(3)))

590 set(handles.sliderPX ,’Value’,P(1))

591 set(handles.sliderPY ,’Value’,P(2))

592 set(handles.sliderPZ ,’Value’,P(3))

593 set(handles.sliderQX ,’Value’,Q(1))

594 set(handles.sliderQY ,’Value’,Q(2))

595 set(handles.sliderQZ ,’Value’,Q(3))

596 set(handles.sliderAX ,’Value’,A(1))

597 set(handles.sliderAY ,’Value’,A(2))

598 set(handles.sliderAZ ,’Value’,A(3))

599 set(handles.sliderBX,’Value’,B(1))

600 set(handles.sliderBY,’Value’,B(2))

601 set(handles.sliderBZ,’Value’,B(3))

215

602 set(handles.sliderCX,’Value’,C(1))

603 set(handles.sliderCY,’Value’,C(2))

604 set(handles.sliderCZ,’Value’,C(3))

605 handles.Q=Q; handles.P=P; handles.B=B; handles.A=A; handles.C=C;

606 PlotBoxAndSegment(handles)

607 guidata(hObject, handles);

608

609

610 function pushbuttonAB_Callback(hObject, eventdata, handles)

611 B=handles.A; A=handles.B;

612 handles.B=B; handles.A=A;

613 set(handles.editAX ,’String’,num2str(A(1)))

614 set(handles.editAY ,’String’,num2str(A(2)))

615 set(handles.editAZ ,’String’,num2str(A(3)))

616 set(handles.editBX,’String’,num2str(B(1)))

617 set(handles.editBY,’String’,num2str(B(2)))

618 set(handles.editBZ,’String’,num2str(B(3)))

619 set(handles.sliderAX ,’Value’,A(1))

620 set(handles.sliderAY ,’Value’,A(2))

621 set(handles.sliderAZ ,’Value’,A(3))

622 set(handles.sliderBX,’Value’,B(1))

623 set(handles.sliderBY,’Value’,B(2))

624 set(handles.sliderBZ,’Value’,B(3))

625 PlotBoxAndSegment(handles)

626 guidata(hObject,handles)

627

628

629 function pushbuttonBC_Callback(hObject, eventdata, handles)

630 C=handles.B; B=handles.C;

631 handles.C=C; handles.B=B;

632 set(handles.editCX,’String’,num2str(C(1)))

633 set(handles.editCY,’String’,num2str(C(2)))

634 set(handles.editCZ,’String’,num2str(C(3)))

635 set(handles.editBX,’String’,num2str(B(1)))

636 set(handles.editBY,’String’,num2str(B(2)))

637 set(handles.editBZ,’String’,num2str(B(3)))

638 set(handles.sliderCX,’Value’,C(1))

639 set(handles.sliderCY,’Value’,C(2))

640 set(handles.sliderCZ,’Value’,C(3))

641 set(handles.sliderBX,’Value’,B(1))

642 set(handles.sliderBY,’Value’,B(2))

643 set(handles.sliderBZ,’Value’,B(3))

644 PlotBoxAndSegment(handles)

645 guidata(hObject,handles)

646

647

648 function pushbuttonCA_Callback(hObject, eventdata, handles)

649 C=handles.A; A=handles.C;

650 handles.C=C; handles.A=A;

651 set(handles.editCX,’String’,num2str(C(1)))

652 set(handles.editCY,’String’,num2str(C(2)))

653 set(handles.editCZ,’String’,num2str(C(3)))

654 set(handles.editAX ,’String’,num2str(A(1)))

655 set(handles.editAY ,’String’,num2str(A(2)))

656 set(handles.editAZ ,’String’,num2str(A(3)))

657 set(handles.sliderCX,’Value’,C(1))

658 set(handles.sliderCY,’Value’,C(2))

659 set(handles.sliderCZ,’Value’,C(3))

660 set(handles.sliderAX ,’Value’,A(1))

661 set(handles.sliderAY ,’Value’,A(2))

662 set(handles.sliderAZ ,’Value’,A(3))

663 PlotBoxAndSegment(handles)

664 guidata(hObject,handles)

PlotBoxAndSegment.m

1 function []=PlotBoxAndSegment(handles,ColFlag)

216

2

3 P=handles.P; Q=handles.Q; A=handles.A; B=handles.B; C=handles.C;

4

5 if nargin<2 % If collision flags are not passed, get them

6 ColFlag=rBox(P,Q,[A; B; C],[1 2; 2 3]);

7 end

8

9 axes(handles.axes1), cla, hold on, axis equal, rotate3d on, box on

10 camlight, lighting flat

11

12 % Draw the box using 2 surf calls

13 surf([P(1) Q(1) Q(1) P(1); P(1) Q(1) Q(1) P(1)],...

14 [P(2) P(2) P(2) P(2); Q(2) Q(2) Q(2) Q(2)],...

15 [P(3) P(3) Q(3) Q(3); P(3) P(3) Q(3) Q(3)],0.4*ones(2,4,3))

16 surf([Q(1) P(1) P(1) Q(1); Q(1) P(1) P(1) Q(1)],...

17 [Q(2) Q(2) P(2) P(2); Q(2) Q(2) P(2) P(2)],...

18 [Q(3) Q(3) Q(3) Q(3); P(3) P(3) P(3) P(3)],0.4*ones(2,4,3))

19

20 if ColFlag(1) % If segment 1 collides, draw in red

21 plot3([A(1) B(1)],[A(2) B(2)],[A(3) B(3)],’r’,’LineWidth’,1.5)

22 else % else draw in green

23 plot3([A(1) B(1)],[A(2) B(2)],[A(3) B(3)],’g’,’LineWidth’,1.5)

24 end

25 if ColFlag(2) % If segment 2 collides, draw in red

26 plot3([C(1) B(1)],[C(2) B(2)],[C(3) B(3)],’r’,’LineWidth’,1.5)

27 else % else draw in green

28 plot3([C(1) B(1)],[C(2) B(2)],[C(3) B(3)],’g’,’LineWidth’,1.5)

29 end

30

31 % Plot the control points and label them

32 plot3([P(1) Q(1) A(1) B(1) C(1)],[P(2) Q(2) A(2) B(2) C(2)],[P(3) Q(3) A(3) B(3) C(3)],’k.’)

33 text(A(1),A(2),A(3),’A’)

34 text(B(1),B(2),B(3),’B’)

35 text(C(1),C(2),C(3),’C’)

36 text(P(1),P(2),P(3),’P’)

37 text(Q(1),Q(2),Q(3),’Q’)

38

39 xlabel(’X’),ylabel(’Y’),zlabel(’Z’), axis([-10 10 -10 10 -10 10]), alpha(0.3)

rBox.m

1 function flag=rBox(Amin,Amax,NODE,BARS)

2 % Amin and Amax are the box’s limit coords: minimum and maximum

3 Nb= size(BARS,1);

4 Tmin = zeros(Nb,1); Tmax = ones(Nb,1);

5 D = NODE(BARS(:,2),:) - NODE(BARS(:,1),:);

6 for i=1:3 % Check all 3 coordinates [X,Y,Z]

7 T1 = (Amin(i) - NODE(BARS(:,1),i)) ./ D(:,i);

8 T2 = (Amax(i) - NODE(BARS(:,1),i)) ./ D(:,i);

9 ind = find(T1>T2); % We require T1<T2, swap if not

10 [T1(ind),T2(ind)] = deal(T2(ind),T1(ind)); % Swap operation

11 Tmin = max(Tmin,T1); Tmax = min(Tmax,T2);

12 end

13 % No intersection with box if Tmin>Tmax

14 flag = (Tmin<=Tmax);

217

(a) (b)

(c) (d)

(e) (f)

(g)

Figure C.2: Graphical user interfaces to test the collision primitives. (a) Box. (b) Cylinder.
(c) Disc. (d) Quadrangle. (e) Rod or finite cylinder. (f) Sphere. (g) Triangle.

218

References

Aage, N., Andreassen, E., and Lazarov, B. S. (2014). Topology optimization using PETSc:
An easy-to-use, fully parallel, open source topology optimization framework. Structural
and Multidisciplinary Optimization, August:1–8. doi: 10.1007/s00158-014-1157-0.

Achtziger, W. (2007). On simultaneous optimization of truss geometry and topology. Struc-
tural and Multidisciplinary Optimization, 33(4-5):285–304.

ACI Committee (2002). SP-208: Examples for the Design of Structural Concrete with Strut-
and-Tie Models.

AISC (2011). Steel construction manual. Chicago, IL, 14th edition.

Akenine-Möller, T., Haines, E., and Hoffman, N. (2008). Real-time rendering. A. K. Peters,
Ltd., Natick, MA, 3rd edition.

Allahdadian, S., Boroomand, B., and Barekatein, A. R. (2012). Towards optimal design
of bracing system of multi-story structures under harmonic base excitation through a
topology optimization scheme. Finite Elements in Analysis and Design, 61:60–74.

Allaire, G. and Francfort, G. (1993). A numerical algorithm for topology and shape opti-
mization. In Bendsøe, M. P. and Mota Soares, C. A., editors, Topology design of structures,
pages 239–248. Springer Netherlands, Sesimbra, Portugal.

Allaire, G. and Kohn, R. (1993). Topology optimization and optimal shape design using
homogenization. In Bendsøe, M. P. and Mota Soares, C. A., editors, Topology design of
structures, pages 207–218. Springer Netherlands, Sesimbra, Portugal.

Almeida, S. R. M., Paulino, G. H., and Silva, E. C. N. (2009). A simple and effective inverse
projection scheme for void distribution control in topology optimization. Structural and
Multidisciplinary Optimization, 39(4):359–371.

Ambrosio, L. and Buttazzo, G. (1993). An optimal design problem with perimeter penaliza-
tion. Calculus of Variations and Partial Differential Equations, 1(1):55–69.

Amir, O. and Sigmund, O. (2013). Reinforcement layout design for concrete structures based
on continuum damage and truss topology optimization. Structural and Multidisciplinary
Optimization, 47(2):157–174.

219

Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. S., and Sigmund, O. (2011). Effi-
cient topology optimization in MATLAB using 88 lines of code. Structural and Multidis-
ciplinary Optimization, 43(1):1–16.

Anstreicher, K. (1999). Linear programming in O
(
n3

lnn
L
)

operations. SIAM Journal on

Optimization, 9(4):803–812.

Baker, W. F. (1992). Energy-based design of lateral systems. Structural Engineering Inter-
national, 2(2):99–102.

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 22(4):469–483. http://www.qhull.
org/.

Barzegar, F. and Maddipudi, S. (1994). Generating reinforcement in FE modeling of concrete
structures. Journal of Structural Engineering, 120(5):1656–1662.

Behr, J., Eschler, P., Jung, Y., and Zöllner, M. (2009). X3DOM: a DOM-based HTML5/X3D
integration model. Proceedings of the 14th International Conference on 3D Web Technol-
ogy, pages 127–136. http://www.x3dom.org/.

Ben-Tal, A. and Bendsøe, M. P. (1993). A new method for optimal truss topology design.
SIAM Journal on Optimization, 3(2):322–358.

Bendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural
Optimization, 1(4):193–202.

Bendsøe, M. P. and Kikuchi, N. (1988). Generating optimal topologies in structural design
using a homogenization method. Computer Methods in Applied Mechanics and Engineer-
ing, 71(2):197–224.

Bendsøe, M. P. and Sigmund, O. (1999). Material interpolation schemes in topology opti-
mization. Archive of Applied Mechanics (Ingenieur Archiv), 69(9-10):635–654.

Bendsøe, M. P. and Sigmund, O. (2003). Topology optimization: theory, methods and appli-
cations. Engineering Online Library. Springer, Berlin, Germany, 2nd edition.

Bourdin, B. (2001). Filters in topology optimization. International Journal for Numerical
Methods in Engineering, 50(9):2143–2158.

Brackett, D., Ashcroft, I., and Hague, R. (2011). Topology optimization for additive manu-
facturing. 22nd Annual Solid Freeform Fabrication Symposium, pages 348–362.

Bruns, T. (2005). A reevaluation of the SIMP method with filtering and an alternative
formulation for solid–void topology optimization. Structural and Multidisciplinary Opti-
mization, 30(6):428–436.

220

Bruns, T. E. and Tortorelli, D. A. (2001). Topology optimization of non-linear elastic struc-
tures and compliant mechanisms. Computer Methods in Applied Mechanics and Engineer-
ing, 190(26-27):3443–3459.

Brutzman, D. and Daly, L. (2010). X3D: extensible 3D graphics for Web authors. Morgan
Kaufmann, San Francisco, CA, USA, 1st edition.

Chakrabarty, J. (2006). Theory of plasticity. Butterworth-Heinemann, Oxford, UK, 3rd
edition.

Christensen, P. and Klarbring, A. (2009). An Introduction to Structural Optimization.
Springer, Berlin, Germany, 1st edition.

Crump, S. (1992). Apparatus and method for creating three-dimensional objects. US Patent
5,121,329.

Deaton, J. D. and Grandhi, R. V. (2013). A survey of structural and multidisciplinary con-
tinuum topology optimization: post 2000. Structural and Multidisciplinary Optimization,
49(1):1–38.

Deckard, C. (1989). Method and apparatus for producing parts by selective sintering. US
Patent 4,863,538.

Dewhurst, P. and Srithongchai, S. (2005). An Investigaton of Minimum-Weight Dual-
Material Symmetrically Loaded Wheels and Torsion Arms. Journal of Applied Mechanics,
72(2):196–202.

Dewhurst, P. and Taggart, D. (2009). Three-dimensional cylindrical truss structures: a case
study for topological optimization. In Hernández, S. and Brebbia, C. A., editors, Computer
Aided Optimum Design in Engineering XI, pages 83–94. WIT Press.

Dı́az, A. and Sigmund, O. (1995). Checkerboard patterns in layout optimization. Structural
optimization, 10(1):40–45.

Dorn, W. S., Gomory, R. E., and Greenberg, H. J. (1964). Automatic design of optimal
structures. Journal de Mecanique, 3(1):25–52.

Dzierżanowski, G. (2012). On the comparison of material interpolation schemes and opti-
mal composite properties in plane shape optimization. Structural and Multidisciplinary
Optimization, 46(5):693–710.

Elwi, A. and Hrudey, T. (1989). Finite element model for curved embedded reinforcement.
Journal of engineering mechanics, 115(4):740–754.

EOS GmbH (accessed June 14, 2014). Electro Optical Systems: Orthopaedic Technology.
http://www.eos.info/industries_markets/medical/orthopaedic_technology.

Ericson, C. (2004). Real-Time Collision Detection. Morgan Kaufmann, San Francisco, CA,
USA, 1st edition.

221

Felix, J. and Vanderplaats, G. N. (1987). Configuration optimization of trusses subject
to strength, displacement and frequency constraints. Journal of Mechanical Design,
109(2):233–241.

France, A. K. (2013). Make: 3D Printing - The Essential Guide to 3D Printers. Maker
Media, Sebastopol, CA, USA, 1st edition.

Gerdes, D. (1994). Strukturoptimierung unter Anwendung der Optimalitätskriterien auf
diskretisierte Tragwerke bei besonderer Berücksichtigung der Stabilität (in German). Phd
thesis, Universit́lat Essen.

Gilbert, M., Darwich, W., Tyas, A., and Shepherd, P. (2005). Application of large-scale
layout optimization techniques in structural engineering practice. 6th World Congress of
Structural and Multidisciplinary Optimizartion, June:1–10.

Gilbert, M. and Tyas, A. (2003). Layout optimization of large-scale pin-jointed frames.
Engineering Computations, 20(8):1044–1064.

Giles, M. B. and Pierce, N. A. (2000). An introduction to the adjoint approach to design.
Flow, Turbulence and Combustion, 65(3-4):393–415.

Graczykowski, C. and Lewiński, T. (2005). The lightest plane structures of a bounded stress
level transmitting a point load to a circular support. Control and Cybernetics, 34(1):227–
253.

Graczykowski, C. and Lewiński, T. (2006a). Michell cantilevers constructed within trape-
zoidal domains—Part I: geometry of Hencky nets. Structural and Multidisciplinary Opti-
mization, 32(5):347–368.

Graczykowski, C. and Lewiński, T. (2006b). Michell cantilevers constructed within trape-
zoidal domains—Part II: virtual displacement fields. Structural and Multidisciplinary Op-
timization, 32(6):463–471.

Graczykowski, C. and Lewiński, T. (2006c). Michell cantilevers constructed within trape-
zoidal domains—Part III: force fields. Structural and Multidisciplinary Optimization,
33(1):1–19.

Graczykowski, C. and Lewiński, T. (2007). Michell cantilevers constructed within trape-
zoidal domains—Part IV: Complete exact solutions of selected optimal designs and their
approximations by trusses of finite number of joints. Structural and Multidisciplinary
Optimization, 33(2):113–129.

Guest, J. K., Prévost, J. H., and Belytschko, T. (2004). Achieving minimum length scale in
topology optimization using nodal design variables and projection functions. International
Journal for Numerical Methods in Engineering, 61(2):238–254.

Haber, R. B., Jog, C. S., and Bendsøe, M. P. (1996). A new approach to variable-topology
shape design using a constraint on perimeter. Structural Optimization, 11(1-2):1–12.

222

Hansen, S. R. and Vanderplaats, G. N. (1990). An approximation method for configuration
optimization of trusses. AAIA Journal, 28(1):161–168.

Haslinger, J. and Mäkinen, R. (2003). Introduction to shape optimization: theory, approxi-
mation, and computation. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1st edition.

Heath, M. (1998). Scientific Computing. An Introductory Survey. McGraw Hill, New York,
NY, USA, 2nd edition.

Hegemier, G. and Prager, W. (1969). On Michell trusses. International Journal of Mechanical
Sciences, 11(2):209–215.

Hemp, W. S. (1973). Optimum Structures. Oxford University Press, Oxford, UK, 1st edition.

Hencky, H. (1923). Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen
Körpern. Z. Angew. Math. Mech, 747:241–251.

Herceg, M., Kvasnica, M., Jones, C. N., and Morari, M. (2013). Multi-Parametric Toolbox
3.0. In Proc. of the European Control Conference, pages 502–510, Zürich, Switzerland.
http://control.ee.ethz.ch/~mpt.

Hull, C. (1986). Apparatus for production of three-dimensional objects by stereolithography.
US Patent 4,575,330.

Imran, I. and Pantazopoulou, S. J. (1996). Experimental study of plain concrete under
triaxial stress. ACI materials Journal, 93(6):589–601.

Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., and Bowyer, A. (2011).
RepRap — The replicating rapid prototyper. Robotica, 29(1):177–191.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combi-
natorica, 4(4):373–395.

Kato, J. and Ramm, E. (2010). Optimization of fiber geometry for fiber reinforced composites
considering damage. Finite Elements in Analysis and Design, 46(5):401–415.

Khronos Group (accessed June 16, 2014). WebGL v1.0 — OpenGL ES 2.0 for the Web.
http://www.khronos.org/webgl/.

Kicher, T. P. (1966). Optimum design-minimum weight versus fully stressed. ASCE Journal
of Structural Division, 92(ST 6):265–279.

Kirsch, U. (1990). On singular topologies in optimum structural design. Structural Opti-
mization, 2(3):133–142.

Kirsch, U. (1993). Structural Optimization: Fundamentals and Applications. Springer-
Verlag, Berlin, Germany, 1st edition.

223

Lev, O. E. (1981). Topology and optimality of certain trusses. ASCE Journal of the Structural
Division, 107(ST 2):383–393.

Lewiński, T. (2004). Michell structures formed on surfaces of revolution. Structural and
Multidisciplinary Optimization, 28(1):20–30.

Lewiński, T. and Rozvany, G. I. N. (2007). Exact analytical solutions for some popular
benchmark problems in topology optimization—Part II: three-sided polygonal supports.
Structural and Multidisciplinary Optimization, 33(4-5):337–349.

Lewiński, T. and Rozvany, G. I. N. (2008a). Analytical benchmarks for topological
optimization—Part IV: square-shaped line support. Structural and Multidisciplinary Op-
timization, 36(2):143–158.

Lewiński, T. and Rozvany, G. I. N. (2008b). Exact analytical solutions for some popular
benchmark problems in topology optimization—Part III: L-shaped domains. Structural
and Multidisciplinary Optimization, 35(2):165–174.

Lewiński, T., Rozvany, G. I. N., Sokó l, T., and Bo lbotowski, K. (2013). Exact analytical
solutions for some popular benchmark problems in topology optimization III: L-shaped
domains revisited. Structural and Multidisciplinary Optimization, 47(6):937–942.

Lewiński, T., Zhou, M., and Rozvany, G. I. N. (1994a). Extended exact least-weight truss
layoutsŮ–Part II: unsymmetric cantilevers. International Journal of Mechanical Sciences,
36(5):399–419.

Lewiński, T., Zhou, M., and Rozvany, G. I. N. (1994b). Extended exact solutions for least-
weight truss layoutsŮ–Part I: cantilever with a horizontal axis of symmetry. International
Journal of Mechanical Sciences, 36(5):375–398.

Liang, Q. (2007). Performance-Based Optimization of Structures: Theory and Applications.
Spon Press, New York, NY, USA, 1st edition.

Liang, Q., Xie, Y., and Steven, G. (2000). Optimal topology design of bracing systems for
multistory steel frames. Journal of Structural Engineering, 127(7):823–829.

Lipson, H. and Kurman, M. (2013). Fabricated: The new world of 3D printing. Wiley,
Indianapolis, IN, USA, 1st edition.

Lipson, S. L. and Gwin, L. B. (1977). The complex method applied to optimal truss config-
uration. Computers & Structures, 7(3):461–468.

Liu, K. and Tovar, A. (2014). An efficient 3D topology optimization code written in Matlab.
Structural and Multidisciplinary Optimization, June:1–22. doi: 10.1007/s00158-014-1107-
x.

Matsui, K. and Terada, K. (2004). Continuous approximation of material distribution
for topology optimization. International Journal for Numerical Methods in Engineering,
59(14):1925–1944.

224

Mazurek, A., Baker, W. F., and Tort, C. (2011). Geometrical aspects of optimum truss like
structures. Structural and Multidisciplinary Optimization, 43(2):231–242.

Meiners, W., Wissenbach, K., and Gasser, A. (1998). Shaped body especially prototype or
replacement part production. DE Patent 19,649,865.

Meisel, N. A., Gaynor, A., Williams, C. B., and Guest, J. K. (2013). Multiple-material
topology optimization of compliant mechanisms created via polyjet 3d printing. 24rd
Annual International Solid Freeform Fabrication Symposium, pages 980–997.

Michell, A. G. M. (1904). The limits of economy of material in frame-structures. Philosophical
Magazine Series 6, 8(47):589–597.

Mijar, A. R., Swan, C. C., Arora, J. S., and Kosaka, I. (1998). Continuum topology opti-
mization for concept design of frame bracing systems. Journal of Structural Engineering,
124(5):541–550.

Neves, M. M., Rodrigues, H., and Guedes, J. M. (1995). Generalized topology design of
structures with a buckling load criterion. Structural and Multidisciplinary Optimization,
10(2):71–78.

Nguyen, T. H., Paulino, G. H., Song, J., and Le, C. H. (2009). A computational paradigm
for multiresolution topology optimization (MTOP). Structural and Multidisciplinary Op-
timization, 41(4):525–539.

Nixon, M. and Aguado, A. (2012). Feature Extraction & Image Processing for Computer
Vision. Elsevier, Oxford, UK, 3rd edition.

Ohsaki, M. (2010). Optimization of Finite Dimensional Structures. CRC Press, Boca Raton,
FL, USA, 1st edition.

Olson, L. (2013). Personal communication. Department of Computer Science, University of
Illinois at Urbana-Champaign.

Petersson, J. (1999). A finite element analysis of optimal variable thickness sheets. SIAM
Journal on Numerical Analysis, 36(6):1759–1778.

Razani, R. (1965). Behavior of fully stressed design of structures and its relationship to
minimum-weight design. AAIA Journal, 3(12):2262–2268.

Reinhart, G. and Teufelhart, S. (2011). Load-adapted design of generative manufactured
lattice structures. Physics Procedia, 12(Part A):385–392.

Rezaie, R., Badrossamay, M., Ghaie, a., and Moosavi, H. (2013). Topology Optimization for
Fused Deposition Modeling Process. Procedia CIRP, 6:521–526.

Rozvany, G. and Gollub, W. (1990). Michell layouts for various combinations of line
supports—I. International Journal of Mechanical Sciences, 32(12):1021–1043.

225

Rozvany, G., Gollub, W., and Zhou, M. (1997). Exact Michell layouts for various combina-
tions of line supports—Part II. Structural Optimization, 14(2-3):138–149.

Rozvany, G. I. N. (1996). Some shortcomings in Michell’s truss theory. Structural Optimiza-
tion, 12(4):244–250.

Rozvany, G. I. N. (1997a). On the validity of Prager’s example of nonunique Michell struc-
tures. Structural optimization, 13(2-3):191–194.

Rozvany, G. I. N. (1997b). Some shortcomings in Michell’s truss theory — Corrigendum.
Structural Optimization, 13(2-3):203–204.

Rozvany, G. I. N. (1998). Exact analytical solutions for some popular benchmark problems
in topology optimization. Structural optimization, 15(1):42–48.

Rozvany, G. I. N. (2001). On design-dependent constraints and singular topologies. Structural
and Multidisciplinary Optimization, 21(2):164–172.

Rozvany, G. I. N. (2009). A critical review of established methods of structural topology
optimization. Structural and Multidisciplinary Optimization, 37(3):217–237.

Rozvany, G. I. N. and Sokó l, T. (2013). Validation of Numerical Methods by Analytical
Benchmarks, and Verification of Exact Solutions by Numerical Methods. In Topology
Optimization in Structural and Continuum Mechanics. Springer, Vienna, Austria.

Rycroft, C. H. (accessed April 21, 2014). Voro++ v0.4.6: a three-dimensional Voronoi cell
library in C++. http://math.lbl.gov/voro++/.

Salmi, M. (2013). Medical applications of additive manufacturing in surgery and dental care.
Phd thesis, Aalto University, Helsinki, Finland.

Salmi, M., Tuomi, J., Paloheimo, K.-S., Björkstrand, R., Paloheimo, M., Salo, J., Kontio,
R., Mesimäki, K., and Mäkitie, A. A. (2012). Patient-specific reconstruction with 3D
modeling and DMLS additive manufacturing. Rapid Prototyping Journal, 18(3):209–214.

Schmidt, L. C. (1962). Minimum weight layouts of elastic, statically determinate, triangu-
lated frames under alternative load systems. Journal of the Mechanics and Physics of
Solids, 10(2):139–149.

Schneider, P. and Eberly, D. (2002). Geometric tools for computer graphics. Morgan Kauf-
mann, San Francisco, CA, USA, 1st edition.

Sigmund, O. (1997). On the Design of Compliant Mechanisms Using Topology Optimization.
Mechanics of Structures and Machines, 25(4):493–524.

Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and
Multidisciplinary Optimization, 21(2):120–127.

Sigmund, O. (2007). Morphology-based black and white filters for topology optimization.
Structural and Multidisciplinary Optimization, 33(4-5):401–424.

226

Sigmund, O. and Maute, K. (2013). Topology optimization approaches. Structural and
Multidisciplinary Optimization, 48(6):1031–1055.

Sigmund, O. and Petersson, J. (1998). Numerical instabilities in topology optimization: a
survey on procedures dealing with checkerboards, mesh-dependencies and local minima.
Structural optimization, 16(1):68–75.

Smith, O. D. S. (1998). Generation of ground structures for 2D and 3D design domains.
Engineering Computations, 15(4):462–500.

Sokó l, T. (2011). A 99 line code for discretized Michell truss optimization written in Math-
ematica. Structural and Multidisciplinary Optimization, 43(2):181–190.

Stolpe, M. and Svanberg, K. (2001). An alternative interpolation scheme for minimum com-
pliance topology optimization. Structural and Multidisciplinary Optimization, 22(2):116–
124.

Stromberg, L. L., Beghini, A., Baker, W. F., and Paulino, G. H. (2010). Application of
layout and topology optimization using pattern gradation for the conceptual design of
buildings. Structural and Multidisciplinary Optimization, 43(2):165–180.

Stromberg, L. L., Beghini, A., Baker, W. F., and Paulino, G. H. (2012). Topology optimiza-
tion for braced frames: Combining continuum and beam/column elements. Engineering
Structures, 37:106–124.

Sundararajan, V. (2011). Topology optimization for additive manufacturing of customized
meso-structures using homogenization and parametric smoothing functions. Msc thesis,
University of Texas at Austin.

Sutradhar, A., Paulino, G. H., Miller, M. J., and Nguyen, T. H. (2010). Topological optimiza-
tion for designing patient-specific large craniofacial segmental bone replacements. Proceed-
ings of the National Academy of Sciences of the United States of America, 107(30):13222–
13227.

Svanberg, K. (1987). The method of moving asymptotes - a new method for structural
optimization. International Journal for Numerical Methods in Engineering, 24(2):359–
373.

Sved, G. (1954). The minimum weight of certain redundant structures. Australian Journal
Of Applied Science, 5(1):1–9.

Sved, G. and Ginos, Z. (1968). Structural optimization under multiple loading. International
Journal of Mechanical Sciences, 10(10):803–805.

Talischi, C., Paulino, G. H., Pereira, A., and Menezes, I. F. M. (2012a). PolyMesher: a
general-purpose mesh generator for polygonal elements written in Matlab. Structural and
Multidisciplinary Optimization, 45(3):309–328.

227

Talischi, C., Paulino, G. H., Pereira, A., and Menezes, I. F. M. (2012b). PolyTop: a Matlab
implementation of a general topology optimization framework using unstructured polygo-
nal finite element meshes. Structural and Multidisciplinary Optimization, 45(3):329–357.

Topping, B. H. V. (1983). Shape optimization of skeletal structures: A review. Journal of
Structural Engineering, 109(8):1933–1951.

Tyas, A., Gilbert, M., and Pritchard, T. (2006). Practical plastic layout optimization of
trusses incorporating stability considerations. Computers & Structures, 84(3-4):115–126.

Villanueva, C. H. and Maute, K. (2014). Density and level set-XFEM schemes for topology
optimization of 3-D structures. Computational Mechanics, 54(1):133–150.

Wang, F., Lazarov, B. S., and Sigmund, O. (2011). On projection methods, convergence and
robust formulations in topology optimization. Structural and Multidisciplinary Optimiza-
tion, 43(6):767–784.

Wittbrodt, B., a.G. Glover, Laureto, J., Anzalone, G., Oppliger, D., Irwin, J., and Pearce,
J. (2013). Life-cycle economic analysis of distributed manufacturing with open-source 3-D
printers. Mechatronics, 23(6):713–726.

Wright, M. H. (2004). The interior-point revolution in optimization: history, recent de-
velopments, and lasting consequences. Bulletin of the American Mathematical Society,
42(1):39–56.

Xu, S., Cai, Y., and Cheng, G. (2010). Volume preserving nonlinear density filter based on
heaviside functions. Structural and Multidisciplinary Optimization, 41(4):495–505.

Zegard, T., Baker, W. F., Mazurek, A., and Paulino, G. H. (2014). Geometrical Aspects
of Lateral Bracing Systems: Where Should the Optimal Bracing Point Be? Journal of
Structural Engineering, 140(9):04014063.

Zegard, T. and Paulino, G. H. (2013a). Toward GPU accelerated topology optimization on
unstructured meshes. Structural and Multidisciplinary Optimization, 48(3):473–485.

Zegard, T. and Paulino, G. H. (2013b). Truss layout optimization within a continuum.
Structural and Multidisciplinary Optimization, 48(1):1–16.

Zegard, T. and Paulino, G. H. (2014a). GRAND – Ground structure based topology op-
timization on arbitrary 2D domains using MATLAB. Structural and Multidisciplinary
Optimization, 50(5):861–882.

Zegard, T. and Paulino, G. H. (2014b). GRAND3 – Ground structure based topology
optimization on arbitrary 3D domains using MATLAB. Structural and Multidisciplinary
Optimization, Submitted.

Zhang, Y. (1998). Solving large-scale linear programs by interior-point methods under the
Matlab Environment. Optimization Methods and Software, 10(1):1–31.

228

Zhou, K. and Li, J. (2005). Forming Michell truss in three-dimensions by Finite Element
Method. Applied Mathematics and Mechanics, 26(3):381–388.

Zhou, M. and Rozvany, G. I. N. (1991). The COC algorithm, Part II: Topological, geomet-
rical and generalized shape optimization. Computer Methods in Applied Mechanics and
Engineering, 89(1-3):309–336.

229

