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The motivation to study fracture and failure exists
in many fields

Hambli, R., and S. Allaoui. Annals
of Biomedical Engineering 41, no. 3
12 (2013): 2515-2527.



The adaptive schemes explored in this work result in:
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The adaptive schemes explored in this work result in:

Improved solutions over non adaptive
schemes — Adaptive polygonal splitting



Mathematical formulation for dynamic fracture

Consider the case of an arbitrary domain
that is subjected to surface tractions,
along the boundary and cohesive
tractions along the fractured surfaces

Neglecting body forces and damping, the principle of virtual work of the dynamic
fracture problem states:
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Compare three 2D mesh discretizations for
dynamic fracture simulation

Structured 4K Unstructured CVT Unstructured Random
Polygonal Polygonal

Repeated 4k patched

Voronoi seed = cell
centroid



Each mesh type is powerful for certain applications

Structured 4K Unstructured CVT Unstructured Random
Polygonal Polygonal
Pros: Easily generated, Efficiently mesh complex No mesh bias, simple
refinement schemes are domains, regular mesh construction
readily available elements

A

/

Potential directions not _ '
Cons: equal at each junction Typically only 3 possible
directions per junction

0°, 45°, 90°, etc. only



Adaptive mesh operators are introduced improve
fracture patterns on the 4k mesh

Original 4k mesh Nodal perturbation

Original 4k mesh Edge swap

Paulino, G. H., Park, K., Celes, W., & Espinha, R. UNME, 84(11), 1303-1343. 2010.



Element splitting provides more directions for the

crack to propagate on polygonal meshes

N Unrestricted Restricted

No splitting splitting splitting
CVT N N
polygonal e
mesh Qﬁ\\
Random
polygonal
mesh

S. E. Leon*, D. W. Spring*, and G. H. Paulino. /NME, 100(8): 555-76, 2014.
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Geometric study to evaluate ability of mesh to
represent a straight line using Dijkstra’s algorithm




Geometric study to evaluate ability of mesh to
represent a straight line using Dijkstra’s algorithm

d.. -d.,
Error = FE Euclidean

Euclidean

Evaluate error from 0° to 180°
in 1° increments




Polygonal meshes provide an alternative to
structured meshes that reduces mesh bias

180°

150°

210°

4k mesh

90°

o 4k No swap, NP =0.0
* 4k With swap, NP = 0.0

o 4k No swap, NP =0.3

~ 4k With swap, NP = 0.3

240°

300°

270°

e -

CVT polygonal

120°

150°%/

180°

90°

60°

0.05

. L 0.1:
Increasing error~_ °"

> CVT, No splitting
° CVT, Restricted splitting
° CVT, Unrestricted splitting

30°

0.2

00

0.25

180°

Random polygonal

90°

°© Random, No splitting
° Random, Restricted splitting
° Random, Unrestricted splitting
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Normalized occurrence

Hausdorff distances are also lower for polygonal
meshes compared to 4k

Given a discretized path, P, whose vertices are H (P, Q)
p, and a mathematical path Q, the Hausdorff ’
distance is

H (P, @) = s i [dist (p, )]

Q
Unperturbed 4K Perturbed 4K CVT Random

600

Hausdorff distance 14



Numerical investigation of different meshes with
Compact Compression Specimen
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Numerical investigation of polygonal meshed with

imen

Spec

1on

Compact Compress
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Cohesive elements aim to capture the nonlinear

behavior in the zone ahead of a crack tip

SRF
R

Nonlinear zone, voids
and micro-cracks

Region ahead of the macro crack is
idealized by a traction-separation —
relationship

—_

Cohesive zone

AT,

A
A 4
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Cohesive elements aim to capture the nonlinear

behavior in the zone ahead of a crack ti

L g, ek
SR
A v

Nonlinear zone, voids
and micro-cracks

PPR Cohesive Model:
U = min (¢, ¢¢) + [Fn (1 —

T, A\ AN -
Tn —Ota (1 - E) [Ft ( - 5—75) + <¢t - ¢n>]
R O Y (B3 )
t — 5t . n 671, n t 5t

K. Park, G. H. Paulino, and J. R. Roesler. JMPS57, no. 6 (2009): 891-908. 2008.10.003.
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Nodes of bulk elements are duplicated when
cohesive elements are inserted

Cohesive element with Separation in cohesive
 Zero initial thickness element (An, A¢)
‘ L ®
2D
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Bulk elements ¢ v
Cohesive tractions (T, T%)
Cohesive element with Separation in cohesive
f zero initial thickness / element
3D

X

) 5
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Bulk elements



Random polygonal elements are not reliable for
dynamic fracture simulation

* CVT time step = 2.5e-9to 1e-9
 Random time step without splitting = 1e-10 = requires over 1,000,000 steps!
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The adaptive schemes explored in this work result in:

Improved solutions over non adaptive
schemes — Adaptive polygonal splitting

22



The adaptive schemes explored in this work result in:
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Increased computational efficiency —
3D refinement and coarsening
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3D simulation

A
N

2 mm

* Linear tetrahedral elements with edge length of 6.25um results in 3,932,160
elements & 852,359 nodes

e Simulate for 2 usec with dt = 4e-10 seconds = 5000 steps

24



3D simulation

Clock time = 15.5 hours

* Linear tetrahedral elements with edge length of 6.25um results in 3,932,160
elements & 852,359 nodes

e Simulate for 2 usec with dt = 4e-10 seconds = 5000 steps

25



Adaptive mesh refinement and coarsening
algorithms improve computational efficiency

Coarse mesh
throughout the
domain

Use fine elements only
where needed — around
crack tips

Coarsen regions that were
previously refined but now

Keep neighborhood around behind the crack front

cohesive elements refined to
avoid losing detail of the
crack pattern

26



The mesh is represented by a complete and
compact topological data structure, TopS

* The application has access to all entities and all adjacencies

* Node and elements are stored explicitly, the rest are stored implicitly and can be
retrieved on the fly

Oriented entities used to perform local searched when obtaining adjacency information

F%J O %J O @)
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Nodes and elements

Celes, W., G. H. Paulino, and R. Espinha. J/NME 64, no. 11 (2005): 1529-1556. 27



The mesh is represented by a complete and
compact topological data structure, TopS

* The application has access to all entities and all adjacencies
* Node and elements are stored explicitly, the rest are stored implicitly and can be
retrieved on the fly

* Oriented entities used to perform local searched when obtaining adjacency information
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Celes, W., G. H. Paulino, and R. Espinha. UNME 64, no. 11 (2005): 1529-1556. 28



The mesh is represented by a complete and
compact topological data structure, TopS

* The application has access to all entities and all adjacencies
* Node and elements are store explicitly, the rest are stored implicitly and can be
retrieved on the fly

* Oriented entities used to perform local searched when obtaining adjacency information
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Celes, W., G. H. Paulino, and R. Espinha. UNME 64, no. 11 (2005): 1529-1556. 29



In numerical simulation automatic crack tip
tracking modifies mesh discretization on the fly

Crack tip nodes

- —_ are unduplicated
nodes of cohesive

elements

30



As cracks propagate regions around the crack tips
are refined, and others are coarsened

Refinement region associated
with indicated node

Region is not coarsened due to
presence of cohesive elements

31



Geometric aspects of the hierarchical 3D 4k mesh

Coarse region contains hexahedra
comprised of 6 tetrahedra

32



Geometric aspects of the hierarchical 3D 4k mesh

Fine region contains hexahedra
comprised of 24 tetrahedra

33



Mesh refinement is executed by means of the
automatic crack tip cracking

If an element falls inside an
active crack tip region, refine
to user-specified depth

Refine elements by splitting along longest edge: Insert a node at the midpoint of the
longest edge and updating connectivity accordingly




As TopS updates the mesh, the application updates

the physical model via callback functions

API functions

) ok o o ol o e ol ol e ol ol ol o ol ol o o ol ok ok ok ke

190 TopElement - Adjacencies
191 "*’ﬁ’l&!‘"!"!"*’!"*"!‘/

192 PS_API int topElement_GetNAdj(TopModel* m, TopElement el);

)4 PS_API TopElement topElement_GetAdj(TopModel* m, TopElement el, int fi);

/0 () %ok ok ook ook ook ook ok ok ok ok ok ok K —

TopElement - Facets
190 R ﬁﬁ’ﬁ*!ﬁﬁﬁ*#ﬁﬁﬁ*ﬁ*'ﬁ)‘/

199 PS_API int topElement_GetNFacets(TopModel* m, TopElement el);

500

501 PS_API TopFacetUse topElement_GetFacetUse(TopModel* m, TopElement el, int 1i);

502 PS_API TopFacet topElement_GetFacet(TopModel* m, TopElement el, int fi);

Fracture code (application) TopS

Callback functions

// Register TopRefinement call backs
topRefinement4K3D_SetNodeCb (refine3D, Callback_InsertNode, (void*) mAtt);
topRefinement4K3D_SetCrackTipRefineCb (refine3D, Callback_CrackTipRefine, (void*) mAtt);

35



Communication between TopS and application
during mesh refinement

After the cracks have propagated, the application calls the

> UpdateMeshRefinement Function
>8>_. TopS identifies new crack tips and begins refining
elements that fall within the refinement regions

TopS notifies the client when a new node is inserted. The client initializes the new node and
interpolates its displacement field from neighboring nodes using standard finite element

shape functions of parent (grey) elements.

36



Mesh coarsening is executed by means of the
automatic crack tip cracking

Nodes outside current
refinement regions are
eligible to be removed. Regions not eligible

for coarsening

The node will be removed if the norm of
the difference in the strain between the
original refined patch and the potential
coarse patch is less than a certain

threshold.

6pad:ch — ||€reﬁned - gcoarsenedH

37



Communication between TopS and application
during mesh coarsening

After the cracks have propagated, the application calls the

> UpdateMeshCoarsening Function

>:>-O TopS identifies old refinement regions and asks the application if
the patches associated these nodes can be coarsened

The application computes the strain on the refined and coarsened patch to determine if the

error threshold is met.

To maintain conformity of the mesh, all elements adjacent to the node to be removed are

considered in the patch. 38



Benchmark problem to investigate AMR+C
schemes

Uniform

AMR, AMR+C

fo.z mm

ya Crack confined to

dotted red line

ANVZAN)

Specimen thickness: 0.05-0.01 mm
Coarse mesh resolution: 12.5-50 um
Coarsening strain error tolerance: 0.01-0.0001

39



Refinement saves computational time and space,
coarsening is dependent on criteria

6 ‘ ‘ : 6 ‘ ‘
5 1 5 1
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Velocity changes with level of refinement, but is
consistent for different coarsening criteria

Variation in size of coarse elements

—_ —_ —_ —_
- o EN 2} ®
T T T T T

Crack tip position (mm)
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—6.25um

—12.5um

—25um
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o
~
T

o
(V)

1 1 T
100 150 200
Time (nanoseconds)

Propagation is faster in finer far-field
mesh

I
250

Variation in coarsening tolerance

2,
—— Uniform
1.8{{ —AMR
—— AMR=+C tol = 0.01
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1.61 AMR=+C tol = 0.001
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Refinement and coarsening do not have
an impact on the crack front velocity

Leon, S. E., Espinha, R., Celes, W. and Paulino, G. H. “Adaptive refinement and coarsening on structured 3D meshes” In preparation.
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A second benchmark problem demonstrates the
use of the method for mixed mode problems

2.4cm

‘L‘L v=0.5m/s

6.4 mm
2.0cm H

Y O 19.2 cm o7
v 929.4 cm
z

Model size and run time restrictions make this problem computationally challenging:
e Uniform refinement of 224x24x72 4k patches = 10 million elements = 47 GB of RAM
« AMR+C initial refinement = 610 MB of RAM initially, but takes over 48 hours
* Choose a coarser level of refinement to make this possible

7.2cm

42



Three point bend simulation

43



TPB Results

Many cohesive elements are inserted but not all are
completely separated

7000,

—— AMR coarse
|| —=—AMR+C coarse
60001 - AMR fine

- AMR<C fine
@ 5000f
c
£
5 4000
[
2
 3000]
S Opening
O 2000} P

I 0.75

I 0.25
0

44



If the material model contains Internal State
Variables, we must map them to the new mesh

Element variables on Variables need to be
original elements transferred to new elements

45



Project element variables from one mesh to
another by minimizing the error between them

O, 2, Y] ::/ W(F,z) dV+/ poB - dV — T -pdS
B B orB

source field available at global field through
integration points projection
//// ______ P — \‘.\“ \\\\.
X XX XX
X X X X X

------------------ ® ® ®
X XX XX
X X X X X

e ® ® ®
X XX XX

X X i X XX | )

. . R : : ® ® ®

|| source field [ ] target field

—1
Zh = Aa (/ Aarsl dV) / Agz dV
B B

Sandia
'11 ﬂaﬁgﬁgﬂries Mota, A., Sun, W., Ostien, J. T., Foulk, J. W., & Long, K. N. (2013). Computational Mechanics.




Certain element variables can not be projected
directly — example rotation matrices

Given rotations at two points, find R=?

the rotation at some other point: o
Rl R2

Polynomial interpolation of rotations does not make sense because rotations belong
to a multiplicative group, specifically the Special Orthogonal, SO(3), Lie Group

T
R#R1+R2 R € SO (3) = {AeM (AA —1, detA—l}

In order to produce a variable that belongs to a Lie group we can map it to its Lie
Algebra where addition is admitted. The Lie Algebra of SO are skew-symmetric
matrices, so(3)

logR=r€so(3)={B=M(n)|B=-B"}

Sandia
fl'] National 47
Laboratories




Lie group interpolation and L2 error minimizing
projection

Lie Group X

48



Lie group interpolation and L2 error minimizing

projection

Lie Group X

Lie Algebra O

./

Logarithmic mapping

49



Lie group interpolation and L2 error minimizing

projection

Lie Group X

_—

Lie Algebra O

./

Logarithmic mapping

Projection

Remesh

Lie Algebra O
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Lie group interpolation and L2 error minimizing

projection

Lie Group X

Projection
_—

Lie Algebra O

Remesh

./

Logarithmic mapping

Lie Algebra O Lie Group X

L 4

Exponential mapping

51




Uniaxial tension of a smooth bar is used to
investigate the remeshing and mapping procedure

coarse mesh, 10 fine mesh, 20
elements across elements across
thickness thickness

Sandia
rh National

Laboratories
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Numerical study 1: Mapping without remeshing

Lie Group X

Same mesh

Case 1:
Projection
Many times
inarow
onto the
same mesh

Lie Algebra O Lie Algebra O Lie Group X

-/ A 4

Logarithmic mapping Exponential mapping

53



Some diffusion in the internal state variables is present
when many remaps are performed

Equivalent plastic strain in fine mesh at one
integration point per element at end of analysis

| |

eqps_]1
&. Q066

0.8

0.6

Ly

0.2
i

0

Reference -

m ﬁa?_dial
ationa H
labotoies  INO remapping

eqps_]1
Q0139

|

0.8
0.6
|

0.4

0.2
|

0

Remap 100 times between
t=0and t=0.25
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The loss is less prevalent in a fine mesh than in a
coarser mesh

Coarse mesh Fine mesh

12000

8000 —

Load

4000 —

. | | | | | |

Displacement

No remaps (reference)

10 remaps at equally spaced intervals
25 remaps at equally spaced intervals
100 remaps at equally spaced intervals

Sandia
ﬂ'l National

Laboratories




Numerical study 2: Mapping and remeshing

Lie Group X

Case 2:

P e

interval

Lie Algebra O

./

Logarithmic mapping

Remesh
Many times
and project
once at each

New mesh

Lie Algebra O

Lie Group X

A 4

Exponential mapping

56




Some loss is present in the load-displacement curve, but
it reduces with mesh refinement

Coarse mesh Fine mesh
12000 ‘ ‘ ‘ ‘ ‘ ‘ 12000
8000 —+ 8000 —
© ©
© ©
o — o _
- —l
4000 — 1 4000 —
I I O N U B | | | | |
0 0.02 0.04 b’06‘ &08 d.] b'JQ 0.]4 0 0.02 d.oq &06 37.08 d.] bl? 0.\74
Displacement Displacement

No remeshing or mapping (reference)
25 remaps at equally spaced intervals without remeshing
25 remaps at equally spaced intervals with remeshing

Sandia
I"I National 57
Laboratories




The adaptive schemes explored in this work result in:
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Increased computational efficiency —
3D refinement and coarsening
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The adaptive schemes explored in this work result in:

L

Enables solutions to complicated problems — GPU Adaptivity 59



Adaptive fracture simulation on a GPU

* A GPU is a massively parallel system, could run thousands of threads at once
* GPU fracture achieved speed up over the CPU implementation

No. of bulk elements  Timestep  CPUtime  GPU time Speedup
36,864 2.0e-9 410.181 s 11.788 s 34.8

147,456 0.5e-9 6,537.839s  153.809 s 42.5

60
Alhadeff, A., W. Celes, and G. H. Paulino. “Mapping Cohesive Fracture and Fragmentation Simulations to GPUs.” /NME. Accepted.



GPU is significantly faster than CPU implementations
and AMR+C make larger problems feasible

A

rrrr ottt

y/2

Reduced scale =16 mm x4 mm
Full scale =0.2 m x 0.05 m

(&)
<! S
2|
g
80 1=
c
D)
60 -
(@)
£ &
c g <
20 D

CPU GPU

Vv v v b v v vy v v vy v

X

AMR and AMR+C are more expensive on the GPU
than the no adaptivity case for the reduced scale
model

Full scale problem is not possible with uniform
refinement on the GPU due to memory
restrictions

61



Adaptive mesh refinement and coarsening on a
GPU

* In order to avoid the race condition, previous works have used a graph coloring
scheme

') %
thread n thread n+1

) %
thread n+2 thread n+3

Alhadeff, A., W. Celes, and G. H. Paulino. “Mapping Cohesive Fracture and Fragmentation Simulations to GPUs.” JNME. Accepted. 62



Adaptive mesh refinement and coarsening on a
GPU

* |In order to avoid the race condition, previous works have used a graph coloring
scheme

 However, it is too expensive to color the mesh every time the number of
elements change

% 0
thread n thread n+1
0y 0

thread n+2 thread n+3

63



Adaptive mesh refinement and coarsening on a

GPU

* We will employ a node-by-node implementation, rather than an element by
element approach, so no coloring is necessary

—

1
I

h

Launch one thread per
node and gather
contributions from each
of its adjacent elements

* Also requires changes to the data structure in order to account for the changing

number of bulk elements

64



A node and element table contains the necessary
information for AMR+C on the structured mesh

Node table Element table
Id X y Adj Elem Id v0 vl v2 v3 v4 v5 0, o, o, Level Ref Labels
0 0 2 7 1 17 16 6 5 -1 1 0 0-0-1
1 12 7 10 21 29 26 10 7 5 2 1 0-2-0
3 8 4 9 6 20 19 -1 12 4 1 3 0-0-1
16 X y 0 4 2 4 8 3 6 5 3 6 -1 0 4 0-0-0
17 X y 1
11 13 8 11 22 33 30 12 2 9 2 2 1-0-2
32 X y 8 12 8 9 11 19 32 33 8 11 2 2 2 1-2-0
33 X y 12 65




The AMR+C GPU implementation makes the
variation of the numerical solution evident

—_—>

refinement

unode= +ue2+ +u +ue5+ +ue7+ue8
or

unode= ue1+ue2+ue3+ + +U + +ue8
or

Upode™ Ye1tUg U s U U U U FU g

or...

The order in which the
new elements are
inserted are random.
So, the way their
contributions are added
to the white node will
be different from one
simulation to the next

—  A+B#B+A

66



Adaptive results on GPU appear quite different
from one simulation to another

AMR AMR+C

67



Study of physically relevant properties reveals
minimal influence from randomness

Post processing algorithm traces the final

—  Mai K . . pe
— T Craok branch crack path of open elements and identifies
INK IN
main crack —— Secondary branch branches

N2

A cohesive element is considered open if
the separation between nodes is greater
than a user-defined threshold

Variation for AMR and AMR+C with both thresholds

Total crack length
(energy released): Number of branches: Length of branches:

1.5% - 4.5% 20% - 100% 80% - 130%

Leon, S. E*., Alhadeff, A.*, W. Celes, and G. H. Paulino. “Massively parallel adaptive mesh refinement and coarsening for dynamic fracture g8
simulations .” In preparation.



Adaptivity on GPU makes the larger scale version
of the problem computationally tenable

T, OUoOTDUTNTETCTCTTITCTTeY

) Sharon, E., and J. Fineberg. Physical
17,565 Cohesive Elements Review B 54, no. 10 (1996): 7128- gg

856,473 Nodes 39.



Summary of PhD research

Dynamic fracture simulation using Adaptive mesh refinement and coarsening on
polygonal elements with adaptive 3D 4K meshes
element splitting

90°

150°

180°)

e CVT, No splitting
° CVT, Restricted splitting
° CVT, Unrestricted splitting

Investigation of mapping internal state Study of the effect of GPU implementation on
variables 2D adaptive dynamic fracture

70




Contributions

Addressed in this presentation:

1.S. E. Leon*, D. W. Spring*, and G. H. Paulino. “Reduction in mesh bias for dynamic fracture using adaptive splitting of
polygonal finite elements.” International Journal for Numerical Methods in Engineering, 100(8): 555-76, 2014.

2.S. E. Leon, R. Espinha, W. Celes, W. and G. H. Paulino. “Adaptive refinement and coarsening on structured 3D
meshes” In preparation.

3.S. E. Leon*, A. Alhadeff*, W. Celes, and G. H. Paulino. “Massively parallel adaptive mesh refinement and coarsening
for dynamic fracture simulations .” In preparation.

4.]). M. Emery, J. Foulk, S. E. Leon, A. Mota, J. Ostein, W. C. Sun, M. Veilleux. “Mapping internal state variables for large
deformation simulation in preparation.” In preparation.

Not covered in this presentation:

5. D. W. Spring, S. E. Leon, and G. H. Paulino. “Unstructured Polygonal Meshes with Adaptive Refinement for the
Numerical Simulation of Dynamic Cohesive Fracture.” International Journal of Fracture, 2014.

6.S. E. Leon, E. N. Lages, C. N. Araujo, and G. H. Paulino. “On the effect of constraint parameters on the generalized
displacement control method.” Mechanics Research Communications 56 (March 1, 2014): 123-29.

7.S. E. Leon, G. H. Paulino, A. Pereira, I. F. M. Menezes, and E. N. Lages. “A Unified Library of Nonlinear Solution
Schemes.” Applied Mechanics Reviews 64, no. 4 (2011): 040803.

8. E. V. Dave, S. E. Leon, and K. Park. “Thermal Cracking Prediction Model and Software for Asphalt Pavements.” T&DI
Congress 2011 Integrated Transportation and Development for a Better Tomorrow, 2011, 667-76.

9. E. V. Dave, W. G. Buttlar, S. E. Leon, B. Behnia, and G. H. Paulino. “llliTC — Low-Temperature Cracking Model for
Asphalt Pavements.” Road Materials and Pavement Design 14, no. 2 (2013): 57-78.

71




Mentors, colleagues, and friends: Thank you for
your support!

Glaucio H. Paulino, Waldemar Celes, Ahmed Elbanna, Jay Foulk, Iwona Jasiuk, Petros Sofronis

Rodrigo, Andrei, Anderson, Nobre, lvan, Adeildo, Viviane

Cam, Kyoungsoo, Eshan, Daniel, Marco, Luis, Lauren, Daiane, Heng, Junho, Will, Emily,
Maryam, Evgueni, Arun, Ludimar, Chris, Tam, Ying, Tomas, Shelly, Tuo

Evan, Ashley, Danny, Zach, Kelley, Gabbie

Sam, Liz, Danielle, Ritu, Jin, Angeli, Neera, Ashley, Marybeth, Meredith, Jackie, Jamie
Wendy, Fritz, Jake, Carly, and Wylie

72






