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Figure 18. (a) Smooth notch using element splitting and (b) ragged notch without splitting

and large macrobranching occurs. The presence of this large macrobranch is nonphysical, and even
leads to some fragmentation in this region.

4.2. Pressure loaded cylinder

To further explore the applicability of polygonal elements for fracture simulation, we examine
the fragmentation of a cylinder with an internal impact pressure. This problem is particularly
suitable to the use of randomly generated polygonal elements, as meshing the domain with a
structured mesh can induce fracture patterns [45]; where the fragments occur as a result of the
meshing strategy and not as a result of the mechanics. The thick cylinder has an internal radius
of 80mm and outer radius of 150mm, as illustrated in Figure 19a. The applied pressure increases
linearly from 0MPa to 400MPa over the course of 1µs then decreases exponentially according to
P (t) = 400e(�(t�1)/100), as illustrated Figure 19b. The material has an elastic modulus of 210GPa,
a Poisson’s ratio of 0.3 and a density of 7850 kg/m3. The cohesive strength, fracture energy, and
shape parameter are 850MPa, 2000N/m and 2, respectively.
Previous numerical investigations of this problem have been conducted [46, 47, 1]. Rabczuk and
Belytschko [46] use a mesh free cracking-nodes method, and observe that the number of large and
small fragments are consistent, regardless of the number of particles used to model the geometry.
Song and Belytschko [47] use a cracking node method within the finite element framework. In order
to break the mesh induced symmetry in their model, they perturb the elastic modulus throughout the
model by ±5%. They also show that the number of fragments is consistent through mesh refinement,
and are on the order of 20 fragments. Zhou and Molinari [45] implement the same problem in 3D.
They propose a method of overcoming mesh dependency by distributing the cohesive strength based
on a modified weakest link Weibull distribution. The larger the finite element is in their mesh, the
lower the cohesive strength associated with that element. Without this method, they displayed crack
initiation in the interior of the cylinder. Paulino et al [1], use an edge swap operator (see Section 3.2)
to increase the number of fracture paths in their finite element mesh. To overcome the symmetry in
their model they implement nodal perturbation, but also impose restrictions on the location of crack
initiation, so that cracks don’t initiate in the interior of the cylinder.
No external method (e.g. perturbation) is required to break mesh symmetry in the framework of
polygonal elements because the mesh is inherently random, and no restrictions are placed on the
initiation of fracture. The domain is discretized at three levels of refinement, 5,000, 10,000 and
20,000 elements, and we investigate cases with and without element splitting. The results, illustrated
in Figure 20, display the benefits of element splitting. For a mesh refinement of 5,000 elements, the
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Figure 5.11: Final fracture patterns for full scale micro-branching problem with an externally applied strain
of (a) 0.003, (b) 0.004, and (c) 0.005.
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Figure 4.31: Damage of cohesive elements for the TPB specimen (a) fully open elements and (c) all cohesive
elements of coarse initial mesh and (c) fully open elements and (d) all cohesive elements of fine initial mesh
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Mathema%cal	  formula%on	  for	  dynamic	  fracture	  

NeglecPng	  body	  forces	  and	  damping,	  the	  principle	  of	  virtual	  work	  of	  the	  dynamic	  
fracture	  problem	  states:	  
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Consider	  the	  case	  of	  an	  arbitrary	  domain	  
that	  is	  subjected	  to	  surface	  tracPons,	  
along	  the	  boundary	  and	  cohesive	  
tracPons	  along	  the	  fractured	  surfaces	  
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Compare	  three	  2D	  mesh	  discre%za%ons	  for	  
dynamic	  fracture	  simula%on	  
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(a) (b)

Figure 9. 4k mesh (a) without and (b) nodal perturbation

(a) (b)

Figure 10. Potential crack path directions on a 4k mesh where the solid nodes have eight potential crack
directions and the white nodes have only four directions. (a) Bold edges can be swapped. (b) After the

edge-swap operator is applied the dashed edges become available crack directions.

easily generated and lend themselves well to mesh refinement and coarsening. To reduce bias in the
4k mesh, Paulino et al. [1] proposed the nodal perturbation and edge-swap topological operators.
Nodal perturbation, shown in Figure 9, results in an unstructured geometry by randomly perturbing
the internal nodes. The edge-swap operator reduces undesirable crack patterns by supplying all
internal element vertices with the same number of potential crack directions, shown in Figure 10. We
compare the polygonal elements meshes with and without element splitting enabled to 4k meshes
with and without nodal perturbation and with and without edge swapping .
The polygonal meshes used throughout this work are constructed using the CVT. To investigate
possible bias on the CVT mesh, the geometric studies below were also performed on meshes whose
seeds were generated by Maximal Poisson-disk Sampling (MPS) [15, 4]. No significant difference
was observed between the CVT meshes and the MPS meshes, therefore the MPS results are omitted
for brevity.
First, crack length is investigated. The fracture energy, Ec, required to generate a crack is directly
proportional to the crack length, i.e. Ef = LcGc, where Lc is the crack length and Gc is the energy
release rate. Hence, the length of the crack should not be altered by the finite element representation
such that the fracture energy artificially increases [5]. We perform studies similar to those of [9],
in which the shortest distance between the start point and end point is computed, where the crack
path is measured along the finite element edges, and compared to the euclidean distance. Square
domains of 2 units by 2 units, where the center node is at point (0, 0) are used for all studies.
The start point is (0, 0) and the end point is chosen as the closest node to the point given by
(r cos (�), r sin (�)), for � = 0� to 180� where r = 1. The shortest distance along the finite element
edges is computed with Dijkstra’s algorithm [38]. We compare an unperturbed 4K mesh with and
without edge swapping, a perturbed 4K mesh with and without edge swapping, and a polygonal
mesh with and without element splitting. A value of 30% perturbation was applied to the 4k meshes
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easily generated and lend themselves well to mesh refinement and coarsening. To reduce bias in the
4k mesh, Paulino et al. [1] proposed the nodal perturbation and edge-swap topological operators.
Nodal perturbation, shown in Figure 9, results in an unstructured geometry by randomly perturbing
the internal nodes. The edge-swap operator reduces undesirable crack patterns by supplying all
internal element vertices with the same number of potential crack directions, shown in Figure 10. We
compare the polygonal elements meshes with and without element splitting enabled to 4k meshes
with and without nodal perturbation and with and without edge swapping .
The polygonal meshes used throughout this work are constructed using the CVT. To investigate
possible bias on the CVT mesh, the geometric studies below were also performed on meshes whose
seeds were generated by Maximal Poisson-disk Sampling (MPS) [15, 4]. No significant difference
was observed between the CVT meshes and the MPS meshes, therefore the MPS results are omitted
for brevity.
First, crack length is investigated. The fracture energy, Ec, required to generate a crack is directly
proportional to the crack length, i.e. Ef = LcGc, where Lc is the crack length and Gc is the energy
release rate. Hence, the length of the crack should not be altered by the finite element representation
such that the fracture energy artificially increases [5]. We perform studies similar to those of [9],
in which the shortest distance between the start point and end point is computed, where the crack
path is measured along the finite element edges, and compared to the euclidean distance. Square
domains of 2 units by 2 units, where the center node is at point (0, 0) are used for all studies.
The start point is (0, 0) and the end point is chosen as the closest node to the point given by
(r cos (�), r sin (�)), for � = 0� to 180� where r = 1. The shortest distance along the finite element
edges is computed with Dijkstra’s algorithm [38]. We compare an unperturbed 4K mesh with and
without edge swapping, a perturbed 4K mesh with and without edge swapping, and a polygonal
mesh with and without element splitting. A value of 30% perturbation was applied to the 4k meshes
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easily generated and lend themselves well to mesh refinement and coarsening. To reduce bias in the
4k mesh, Paulino et al. [1] proposed the nodal perturbation and edge-swap topological operators.
Nodal perturbation, shown in Figure 9, results in an unstructured geometry by randomly perturbing
the internal nodes. The edge-swap operator reduces undesirable crack patterns by supplying all
internal element vertices with the same number of potential crack directions, shown in Figure 10. We
compare the polygonal elements meshes with and without element splitting enabled to 4k meshes
with and without nodal perturbation and with and without edge swapping .
The polygonal meshes used throughout this work are constructed using the CVT. To investigate
possible bias on the CVT mesh, the geometric studies below were also performed on meshes whose
seeds were generated by Maximal Poisson-disk Sampling (MPS) [15, 4]. No significant difference
was observed between the CVT meshes and the MPS meshes, therefore the MPS results are omitted
for brevity.
First, crack length is investigated. The fracture energy, Ec, required to generate a crack is directly
proportional to the crack length, i.e. Ef = LcGc, where Lc is the crack length and Gc is the energy
release rate. Hence, the length of the crack should not be altered by the finite element representation
such that the fracture energy artificially increases [5]. We perform studies similar to those of [9],
in which the shortest distance between the start point and end point is computed, where the crack
path is measured along the finite element edges, and compared to the euclidean distance. Square
domains of 2 units by 2 units, where the center node is at point (0, 0) are used for all studies.
The start point is (0, 0) and the end point is chosen as the closest node to the point given by
(r cos (�), r sin (�)), for � = 0� to 180� where r = 1. The shortest distance along the finite element
edges is computed with Dijkstra’s algorithm [38]. We compare an unperturbed 4K mesh with and
without edge swapping, a perturbed 4K mesh with and without edge swapping, and a polygonal
mesh with and without element splitting. A value of 30% perturbation was applied to the 4k meshes
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proportional to the crack length, i.e. Ef = LcGc, where Lc is the crack length and Gc is the energy
release rate. Hence, the length of the crack should not be altered by the finite element representation
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(a) (b)
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Figure 3.8: Schematic of a crack in a polygonal mesh, where crack faces are illustrated with solid black
lines, the crack tip is indicated by a black circle, and potential crack paths are shown as dashed lines. (a)
Potential crack directions on plain CVT mesh (b) Potential crack directions on CVT mesh with adaptive
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Figure 8. Schematic of potential new elements that would result from splitting element between node 1 and
(a) node 3, (b) node 4 and (c) node 5. The configuration shown in (b), where the element is split with node

4, minimizes the difference between the areas, a1 and a2, of the resulting new elements.

3.1. Methodology

Cracks are advanced by inserting extrinsic cohesive zone elements when and where they are needed
during the dynamic fracture simulation. At the same time that the insertion of cohesive elements is
checked, bulk elements are also evaluated for splitting. To start the procedure, stresses are computed
at nodes, and nodes with principal stress greater than ninety percent of the cohesive strength are
flagged. The flagged nodes are used to identify (1) potential elements to be split and (2) potential
facets along which to insert cohesive elements.
Each element adjacent to a flagged node is checked for splitting, which only occurs between existing
nodes. Starting from the flagged node, the element may be split using the node that minimizes the
difference in the areas between the two newly created elements. For example, in Figure 8, node 1 is
flagged and the element could be split with either node 3, 4 or 5. The resulting areas are indicted by
the shaded regions and labeled, a1 and a2, in Figure 8. This approach is taken to avoid elements of
bad quality, which perform poorly in finite element applications. The element would be split with
node 4 because it produces two new elements whose difference in area is minimized when compared
to splitting with node 3 or 5. Finally, the element is split if the the average traction along the facet
that would connect the splitting nodes is greater than the cohesive strength.
Use of the TopS data structure, discussed in Section 2.3, ensures that the splitting operation is
computationally efficient. The original polygonal element is removed then two new polygonal
elements are inserted using appropriate functions available in the TopS API. Linear polygons are
used in this work, so no new nodes are created when elements are split; therefore, it is not necessary
to interpolate new nodal values. If higher order elements were used, mid-side nodal quantities would
need to be interpolated from existing nodes. Moreover, since all of the polygons in the original
mesh are convex [23], then the polygons which result from splitting the element along its nodes are
guaranteed to be convex. Thus, we do not encounter issues of degenerate finite elements.
After elements are split, each facet that is adjacent to a flagged node is checked for insertion of
a cohesive element. The average traction along the facet is calculated, and if it is greater than the
cohesive strength, the cohesive element is inserted. Since the criteria for splitting an element and
the criteria for inserting a cohesive element are the same, then all split elements will have a cohesive
element inserted along the new facet.

3.2. Geometric studies on crack length and angle

To investigate the quality of the crack paths produced by finite element meshes, we perform
comparison studies on crack lengths and angles between 4k meshes and the polygonal element
meshes proposed here. 4k structured meshes are widely used in finite element analysis as they are
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during the dynamic fracture simulation. At the same time that the insertion of cohesive elements is
checked, bulk elements are also evaluated for splitting. To start the procedure, stresses are computed
at nodes, and nodes with principal stress greater than ninety percent of the cohesive strength are
flagged. The flagged nodes are used to identify (1) potential elements to be split and (2) potential
facets along which to insert cohesive elements.
Each element adjacent to a flagged node is checked for splitting, which only occurs between existing
nodes. Starting from the flagged node, the element may be split using the node that minimizes the
difference in the areas between the two newly created elements. For example, in Figure 8, node 1 is
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the shaded regions and labeled, a1 and a2, in Figure 8. This approach is taken to avoid elements of
bad quality, which perform poorly in finite element applications. The element would be split with
node 4 because it produces two new elements whose difference in area is minimized when compared
to splitting with node 3 or 5. Finally, the element is split if the the average traction along the facet
that would connect the splitting nodes is greater than the cohesive strength.
Use of the TopS data structure, discussed in Section 2.3, ensures that the splitting operation is
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elements are inserted using appropriate functions available in the TopS API. Linear polygons are
used in this work, so no new nodes are created when elements are split; therefore, it is not necessary
to interpolate new nodal values. If higher order elements were used, mid-side nodal quantities would
need to be interpolated from existing nodes. Moreover, since all of the polygons in the original
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guaranteed to be convex. Thus, we do not encounter issues of degenerate finite elements.
After elements are split, each facet that is adjacent to a flagged node is checked for insertion of
a cohesive element. The average traction along the facet is calculated, and if it is greater than the
cohesive strength, the cohesive element is inserted. Since the criteria for splitting an element and
the criteria for inserting a cohesive element are the same, then all split elements will have a cohesive
element inserted along the new facet.
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To investigate the quality of the crack paths produced by finite element meshes, we perform
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Figure 12. Comparison of mesh deviation, ⌘. (a) Deviations of 4k meshes nodal perturbation factors of 0
and 0.3, with and without edge swap, and (b) Deviations of polygonal meshes with and without element

splitting.
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Figure 13. Comparison of an arbitrary angle and geometric angle, ✓ = 34

�, for (a) unperturbed 4k mesh with
and without edge swapping, (b) perturbed 4k meshes with and without edge swapping

deviations for the unperturbed 4k mesh, while the randomly perturbed 4k and polygonal mesh
results are averaged over 100 meshes. All of the 4k meshes display mesh bias, where the lowest
deviation is for angles of 0

�, 45

�, 90

�, etc., and highest for angles of 0

� ± 1

�, 45

� ± 1

�, 90

� ± 1

�,
etc. The benefit of the edge swap operator is clear when comparing Figures 14(a) and 14(b) at
0

�, 90

�, 180

�, and 270

�; however, bias still exists. Conversely, the polygonal mesh with or without
splitting displays no mesh bias, and the average deviation is much lower than those of the 4k meshes.
The minimum, maximum and average deviations from the target angle are shown in Table I. While
the 4k meshes have minimum deviations as low or lower than the polygonal meshes, the range of
deviations (i.e. difference between maximum and minimum) for the polygonal meshes is smaller
than that of the 4k meshes.
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Figure 3.13: Comparison of mesh deviation, ⌘, for meshes with � ⇡ 1/80. Deviations of (a) 4k meshes with
and without edge swap, (b) 4k meshes nodal perturbation factors of 0 and 0.3 with and without edge swap,
(c) CVT meshes without element splitting, with restricted element splitting and with unrestricted element
splitting, (d) random polygonal meshes without element splitting, with restricted element splitting and with
unrestricted element splitting
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Figure 16. (a) Geometry of CCS test and (b) impact velocity with respect to time.

(a) (b)

Figure 17. (a) Full mesh of CCS and (b) refined mesh around notch.

the notch tip, the density function in this location is increased. The domain is discretized with 6000
polygonal elements with elements graded in the region surrounding the initial notch, as illustrated
in Figure 17.

The PMMA material is modeled with an elastic modulus of 5.76GPa, Poisson’s ratio of 0.42 and
a density of 1180 kg/m3. The cohesive input parameters are adapted from the work of Paulino
et al. [1]. The cohesive strength (⇥max), fracture energy (⇤n), and shape parameter (�)are set as
129.6MPa, 352.3N/m and 2, respectively. The normal and tangential separation parameters are
set equal to one another.

The problem is simulated for a polygonal mesh without element splitting, then again on the same
polygonal mesh with element splitting enabled. The crack paths for both simulations are illustrated
in Figure 18. When element splitting is enabled, 51 elements are split. The crack path is smooth and
follows the trajectory observed experimentally [39, 40], and those published in the literature [5, 44].
When element splitting is not enabled, we observe a much rougher crack surface. In the fine region
around the notch tip, the crack paths are similar for both cases, and follow similar lines. But, once
the crack propagates into the coarse mesh, the crack path without splitting enabled becomes rough,
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Figure 17. (a) Geometry of CCS test and (b) impact velocity with respect to time.

(a) (b)

Figure 18. (a) Full mesh of CCS and (b) refined mesh around notch.

are split, alleviating much of the mesh induced bias and resulting in a smoother fracture surface.
The fracture energy dissipated by the cohesive elements for each case is compared at a time of
100µs. The case without element splitting dissipates 5.001N/m; whereas the case with element
splitting dissipates 4.628N/m. The crack trajectory for the splitting case agrees well with reported
experimental results [58] and numerical results published in the literature [7].

4.2. Pressure loaded cylinder

To further explore the applicability of polygonal elements with element splitting for fracture
simulation, we examine the fragmentation of a cylinder with an internal impact pressure. This
problem is particularly suitable for the use of unstructured meshes as structured meshes can induce
undesirable fracture patterns; see [59] for a discussion of unsatisfactory results obtained due to
mesh dependency for the pressure loaded cylinder. The thick cylinder has an internal radius of
80 mm and outer radius of 150 mm, as illustrated in Figure 20(a). The applied pressure increases
linearly from 0 MPa to 400 MPa over the course of 1 µs then decreases exponentially according
to P (t) = 400e(�(t�1)/100), as illustrated Figure 20(b). The material has an elastic modulus of
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the notch tip, the density function in this location is increased. The domain is discretized with 6000
polygonal elements with elements graded in the region surrounding the initial notch, as illustrated
in Figure 17.

The PMMA material is modeled with an elastic modulus of 5.76GPa, Poisson’s ratio of 0.42 and
a density of 1180 kg/m3. The cohesive input parameters are adapted from the work of Paulino
et al. [1]. The cohesive strength (⇥max), fracture energy (⇤n), and shape parameter (�)are set as
129.6MPa, 352.3N/m and 2, respectively. The normal and tangential separation parameters are
set equal to one another.

The problem is simulated for a polygonal mesh without element splitting, then again on the same
polygonal mesh with element splitting enabled. The crack paths for both simulations are illustrated
in Figure 18. When element splitting is enabled, 51 elements are split. The crack path is smooth and
follows the trajectory observed experimentally [39, 40], and those published in the literature [5, 44].
When element splitting is not enabled, we observe a much rougher crack surface. In the fine region
around the notch tip, the crack paths are similar for both cases, and follow similar lines. But, once
the crack propagates into the coarse mesh, the crack path without splitting enabled becomes rough,
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Figure 19. Finite element mesh of the compact compression specimen: (a) full specimen; (b) detail with
NP=0.0; and (c) detail with NP=0.3.

80!s, and the cohesive element experiences complete failure at 90!s. Averaged crack velocity is
approximately 110 m/s. The crack path of the computational simulation is illustrated in Figure 20.
During simulation, 19 ES operations are requested, and the crack path is generally smooth because
of the use of the ES operator. Additionally, the crack initiation angle is close to 45◦, which
corresponds to the experimental observation. After the initiation, the crack propagation direction
changes along the vertical direction, which is similar to the previous computation by Menouillard
et al. [44].
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the notch tip, the density function in this location is increased. The domain is discretized with 6000
polygonal elements with elements graded in the region surrounding the initial notch, as illustrated
in Figure 17.

The PMMA material is modeled with an elastic modulus of 5.76GPa, Poisson’s ratio of 0.42 and
a density of 1180 kg/m3. The cohesive input parameters are adapted from the work of Paulino
et al. [1]. The cohesive strength (⇥max), fracture energy (⇤n), and shape parameter (�)are set as
129.6MPa, 352.3N/m and 2, respectively. The normal and tangential separation parameters are
set equal to one another.

The problem is simulated for a polygonal mesh without element splitting, then again on the same
polygonal mesh with element splitting enabled. The crack paths for both simulations are illustrated
in Figure 18. When element splitting is enabled, 51 elements are split. The crack path is smooth and
follows the trajectory observed experimentally [39, 40], and those published in the literature [5, 44].
When element splitting is not enabled, we observe a much rougher crack surface. In the fine region
around the notch tip, the crack paths are similar for both cases, and follow similar lines. But, once
the crack propagates into the coarse mesh, the crack path without splitting enabled becomes rough,
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Figure 19. Finite element mesh of the compact compression specimen: (a) full specimen; (b) detail with
NP=0.0; and (c) detail with NP=0.3.

80!s, and the cohesive element experiences complete failure at 90!s. Averaged crack velocity is
approximately 110 m/s. The crack path of the computational simulation is illustrated in Figure 20.
During simulation, 19 ES operations are requested, and the crack path is generally smooth because
of the use of the ES operator. Additionally, the crack initiation angle is close to 45◦, which
corresponds to the experimental observation. After the initiation, the crack propagation direction
changes along the vertical direction, which is similar to the previous computation by Menouillard
et al. [44].
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Nodes	  of	  bulk	  elements	  are	  duplicated	  when	  
cohesive	  elements	  are	  inserted	  	  
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Random	  polygonal	  elements	  are	  not	  reliable	  for	  
dynamic	  fracture	  simula%on	  
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CVT	  polygonal	  elements	  with	  spliFng	  provide	  
excellent	  results	  for	  CCS	  test	  
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(a)

(b)

Figure 20. Crack path of CCS simulation results.

8.2. Microbranching experiments and simulations

Microbranching experiments were performed by Sharon et al. [45, 46] to investigate microbranching
instability. Specimens are PMMA sheets having a thickness of either 0.8 or 3 mm, a width of
50–200mm and a length of 200–400mm. The initial stress of !0 =10–18MPa is applied by
clamping the top and the bottom of a PMMA sheet. When a sharp crack is created by a razor
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Figure 3.26: Fracture pattern on CCS mesh (zoomed in near the notch tip) with the CVT polygonal element
mesh with unrestricted element splitting

over the no splitting case and practicality of the simulation over the unrestricted splitting case.
The use of polygonal elements for dynamic fracture simulation have shown to be very promising. Several

future research directions could be proposed using this work as a start. One extension that utilizes the
element splitting on an adaptively refined CVT mesh was already investigated in [138].

Inspired by the remeshing concept of the previous chapter, local remeshing of the CVT mesh could be
explored. Given the crack direction a region around the current crack tip could be remeshed with polygonal
element such that the facets ahead of the crack tip align with the crack direction. The results in this section
also brought up issues related to the critical time step imposed by the explicit time stepping scheme. Thus,
and additional area of future work would involve incorporating a time step sub-cycling scheme with the
polygonal elements. Please see Sections6.2.2 and 6.2.3 for more details about these potential future research
directions.
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Lack of 
curvature 

Figure 3.24: Fracture pattern on CCS mesh (zoomed in near the notch tip) with the CVT polygonal element
mesh without element splitting

elements. However, this was not pursued in this work because the CVT mesh provided an excellent alternative
given the existence of the mesh generation software.

3.4.3.2 Results with CVT polygonal element mesh

The CVT polygonal element mesh did not perform as well as the random mesh for the cases of no splitting
and restricted splitting, however the regularity of the elements makes them more successful in the CCS
numerical simulation. First, we present the result without splitting in Figure 3.19. Unlike the random mesh,
the CVT mesh did not pose great restrictions on the time step, so the wall time for the simulation was much
more reasonable. Additionally, the lack of small edges protected against numerical instability. While the
simulation executed successfully, the final result is not ideal. When comparing the result without splitting to
the accepted numerical results in the literature, we see a clear lack of curvature in a couple of locations. Due
to the lack of available directions at each node, the crack could not turn in the direction needed. Moreover,
the crack pattern is rather jagged especially as the crack propagates away from the notch tip and into the
region of coarser elements. we can clearly see how allowing the element to split would improve the curvature
and overall crack path. Thus, we move forward with the CVT mesh with adaptive element splitting.

The CVT mesh with restricted adaptive element splitting result is shown in Figure 3.25. Recall that
restricted splitting means that the element can only be split with the node that reduces the difference in

58
Figure 3.25: Fracture pattern on CCS mesh (zoomed in near the notch tip) with the CVT polygonal element
mesh with restricted element splitting

areas between the two resulting polygonal elements. Unlike the case without splitting, we see the appropriate
curvature in the final crack pattern. The crack is also smoother in the region of coarser elements. We also
see some additional softening and micro-cracking near the tail of the crack. It is important to note that
the time step did not need to be adjusted for the restricted splitting case because the element sizes do not
change greatly from the no splitting case.

Finally, we investigate the CVT with unrestricted splitting; the polygonal element can be split along
any node. The result shown in Figure 3.26 is clearly different than that of restricted splitting even though
the base mesh is identical. We postulate that this difference could be due to the fact that the order in
which facets are visited when unrestricted splitting is enabled is different than when splitting is restricted.
Numerical variations will accumulate as quantities are gathered in different orders, which could explain the
difference. This concept is further explained and demonstrated later in this document in Section 5.4, where
we employ parallel computing and can investigate these numerical variations with great efficiency.

Besides the numerical variation, the additional crack directions greatly contributes to the different fracture
pattern. The expected curvature and smooth fracture pattern is present in this result. However, the results
presented was the outcome of several simulation attempts. The unrestricted splitting poses some restriction
on the time step that can lead to numerical instability. Unrestricted splitting may not be computationally
practical. Based on the observations in the geometric and numerical studies, we suggest that the CVT
polygonal elements with restricted element splitting achieve a good balance between improvement to results
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(a) (b)

Figure 18. (a) Smooth notch using element splitting and (b) ragged notch without splitting

and large macrobranching occurs. The presence of this large macrobranch is nonphysical, and even
leads to some fragmentation in this region.

4.2. Pressure loaded cylinder

To further explore the applicability of polygonal elements for fracture simulation, we examine
the fragmentation of a cylinder with an internal impact pressure. This problem is particularly
suitable to the use of randomly generated polygonal elements, as meshing the domain with a
structured mesh can induce fracture patterns [45]; where the fragments occur as a result of the
meshing strategy and not as a result of the mechanics. The thick cylinder has an internal radius
of 80mm and outer radius of 150mm, as illustrated in Figure 19a. The applied pressure increases
linearly from 0MPa to 400MPa over the course of 1µs then decreases exponentially according to
P (t) = 400e(�(t�1)/100), as illustrated Figure 19b. The material has an elastic modulus of 210GPa,
a Poisson’s ratio of 0.3 and a density of 7850 kg/m3. The cohesive strength, fracture energy, and
shape parameter are 850MPa, 2000N/m and 2, respectively.
Previous numerical investigations of this problem have been conducted [46, 47, 1]. Rabczuk and
Belytschko [46] use a mesh free cracking-nodes method, and observe that the number of large and
small fragments are consistent, regardless of the number of particles used to model the geometry.
Song and Belytschko [47] use a cracking node method within the finite element framework. In order
to break the mesh induced symmetry in their model, they perturb the elastic modulus throughout the
model by ±5%. They also show that the number of fragments is consistent through mesh refinement,
and are on the order of 20 fragments. Zhou and Molinari [45] implement the same problem in 3D.
They propose a method of overcoming mesh dependency by distributing the cohesive strength based
on a modified weakest link Weibull distribution. The larger the finite element is in their mesh, the
lower the cohesive strength associated with that element. Without this method, they displayed crack
initiation in the interior of the cylinder. Paulino et al [1], use an edge swap operator (see Section 3.2)
to increase the number of fracture paths in their finite element mesh. To overcome the symmetry in
their model they implement nodal perturbation, but also impose restrictions on the location of crack
initiation, so that cracks don’t initiate in the interior of the cylinder.
No external method (e.g. perturbation) is required to break mesh symmetry in the framework of
polygonal elements because the mesh is inherently random, and no restrictions are placed on the
initiation of fracture. The domain is discretized at three levels of refinement, 5,000, 10,000 and
20,000 elements, and we investigate cases with and without element splitting. The results, illustrated
in Figure 20, display the benefits of element splitting. For a mesh refinement of 5,000 elements, the
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Increased	  computaPonal	  efficiency	  –	  
3D	  refinement	  and	  coarsening	  
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Figure 5.11: Final fracture patterns for full scale micro-branching problem with an externally applied strain
of (a) 0.003, (b) 0.004, and (c) 0.005.
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leads to some fragmentation in this region.

4.2. Pressure loaded cylinder

To further explore the applicability of polygonal elements for fracture simulation, we examine
the fragmentation of a cylinder with an internal impact pressure. This problem is particularly
suitable to the use of randomly generated polygonal elements, as meshing the domain with a
structured mesh can induce fracture patterns [45]; where the fragments occur as a result of the
meshing strategy and not as a result of the mechanics. The thick cylinder has an internal radius
of 80mm and outer radius of 150mm, as illustrated in Figure 19a. The applied pressure increases
linearly from 0MPa to 400MPa over the course of 1µs then decreases exponentially according to
P (t) = 400e(�(t�1)/100), as illustrated Figure 19b. The material has an elastic modulus of 210GPa,
a Poisson’s ratio of 0.3 and a density of 7850 kg/m3. The cohesive strength, fracture energy, and
shape parameter are 850MPa, 2000N/m and 2, respectively.
Previous numerical investigations of this problem have been conducted [46, 47, 1]. Rabczuk and
Belytschko [46] use a mesh free cracking-nodes method, and observe that the number of large and
small fragments are consistent, regardless of the number of particles used to model the geometry.
Song and Belytschko [47] use a cracking node method within the finite element framework. In order
to break the mesh induced symmetry in their model, they perturb the elastic modulus throughout the
model by ±5%. They also show that the number of fragments is consistent through mesh refinement,
and are on the order of 20 fragments. Zhou and Molinari [45] implement the same problem in 3D.
They propose a method of overcoming mesh dependency by distributing the cohesive strength based
on a modified weakest link Weibull distribution. The larger the finite element is in their mesh, the
lower the cohesive strength associated with that element. Without this method, they displayed crack
initiation in the interior of the cylinder. Paulino et al [1], use an edge swap operator (see Section 3.2)
to increase the number of fracture paths in their finite element mesh. To overcome the symmetry in
their model they implement nodal perturbation, but also impose restrictions on the location of crack
initiation, so that cracks don’t initiate in the interior of the cylinder.
No external method (e.g. perturbation) is required to break mesh symmetry in the framework of
polygonal elements because the mesh is inherently random, and no restrictions are placed on the
initiation of fracture. The domain is discretized at three levels of refinement, 5,000, 10,000 and
20,000 elements, and we investigate cases with and without element splitting. The results, illustrated
in Figure 20, display the benefits of element splitting. For a mesh refinement of 5,000 elements, the
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3D	  simula%on	  
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•  Linear	  tetrahedral	  elements	  with	  edge	  length	  of	  6.25μm	  results	  in	  3,932,160	  
elements	  &	  852,359	  nodes	  

•  Simulate	  for	  2	  μsec	  with	  dt	  =	  4e-‐10	  seconds	  =	  5000	  steps	  
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Adap%ve	  mesh	  refinement	  and	  coarsening	  
algorithms	  improve	  computa%onal	  efficiency	  
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The	  mesh	  is	  represented	  by	  a	  complete	  and	  
compact	  topological	  data	  structure,	  TopS	  
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•  The	  applicaPon	  has	  access	  to	  all	  enPPes	  and	  all	  adjacencies	  
•  Node	  and	  elements	  are	  stored	  explicitly,	  the	  rest	  are	  stored	  implicitly	  and	  can	  be	  

retrieved	  on	  the	  fly	  
•  Oriented	  enPPes	  used	  to	  perform	  local	  searched	  when	  obtaining	  adjacency	  informaPon	  

Celes,	  W.,	  G.	  H.	  Paulino,	  and	  R.	  Espinha.	  IJNME	  64,	  no.	  11	  (2005):	  1529–1556.	  	  
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In	  numerical	  simula%on	  automa%c	  crack	  %p	  
tracking	  modifies	  mesh	  discre%za%on	  on	  the	  fly	  
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Crack	  Pp	  nodes	  
are	  unduplicated	  
nodes	  of	  cohesive	  
elements	  



As	  cracks	  propagate	  regions	  around	  the	  crack	  %ps	  
are	  refined,	  and	  others	  are	  coarsened	  
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Refinement	  region	  associated	  
with	  indicated	  node	  

Region	  is	  not	  coarsened	  due	  to	  
presence	  of	  cohesive	  elements	  



Geometric	  aspects	  of	  the	  hierarchical	  3D	  4k	  mesh	  
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Coarse	  region	  contains	  hexahedra	  
comprised	  of	  6	  tetrahedra	  



Geometric	  aspects	  of	  the	  hierarchical	  3D	  4k	  mesh	  
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Fine	  region	  contains	  hexahedra	  
comprised	  of	  24	  tetrahedra	  



Mesh	  refinement	  is	  executed	  by	  means	  of	  the	  
automa%c	  crack	  %p	  cracking	  

34	  

Refine	  elements	  by	  splijng	  along	  longest	  edge:	  Insert	  a	  node	  at	  the	  midpoint	  of	  the	  
longest	  edge	  and	  updaPng	  connecPvity	  accordingly	  

If	  an	  element	  falls	  inside	  an	  
acPve	  crack	  Pp	  region,	  refine	  
to	  user-‐specified	  depth	  



As	  TopS	  updates	  the	  mesh,	  the	  applica%on	  updates	  
the	  physical	  model	  via	  callback	  func%ons	  
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TopS	  

Server	  

Fracture	  code	  (applicaPon)	  

Client	  

API	  func%ons	  

Callback	  func%ons	  



Communica%on	  between	  TopS	  and	  applica%on	  
during	  mesh	  refinement	  
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TopS	  noPfies	  the	  client	  when	  a	  new	  node	  is	  inserted.	  The	  client	  iniPalizes	  the	  new	  node	  and	  
interpolates	  its	  displacement	  field	  from	  neighboring	  nodes	  using	  standard	  finite	  element	  
shape	  funcPons	  of	  parent	  (grey)	  elements.	  

4.3 Three dimensional adaptive topological operators
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calls*Get&Parent**

Applica'on* Callback*(Implemented*
in*Applica'on)* TopS*

TopS*returns*
parent*

element*of*
new*element*

Applica'on*
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nodes*on*parent*

element*to*collect*for*
interpola'on*

Figure 31: Refinement procedure showing communication between TopS and the client application
through API and callback functions.

(a) (b) (c)

Figure 32: Schematic of refinement showing process, (a) two grey elements are refined by (b)
insertion of new node, (c) grey (parent) elements are deleted new (child) elements are inserted.
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Aser	  the	  cracks	  have	  propagated,	  the	  applicaPon	  calls	  the	  
UpdateMeshRefinement	  FuncPon	  	  

TopS	  idenPfies	  new	  crack	  	  Pps	  and	  begins	  refining	  
elements	  that	  fall	  within	  the	  refinement	  regions	  



Mesh	  coarsening	  is	  executed	  by	  means	  of	  the	  
automa%c	  crack	  %p	  cracking	  
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Regions	  not	  eligible	  
for	  coarsening	  

Nodes	  outside	  current	  
refinement	  regions	  are	  
eligible	  to	  be	  removed.	  

4.5.2 Implementation of adaptive mesh coarsening with the TopS data
structure

Adaptive mesh coarsening is activated after cohesive elements are inserted in the mesh. A flow chart
of the procedure indicating the work done by the application code, TopS, and the callback functions
is shown in Figure 4.18. Notice that adaptive mesh coarsening takes place before adaptive mesh re-
finement, as indicated by the grey boxes in Figures 4.12 and 4.18, to avoid refining and coarsening the
same regions many times. After inserting cohesive elements, the application calls the TopS API function
topRefinement4K3D_UpdateMeshCoarsening to identify previous refinement regions (i.e. crack tips) and
release them for coarsening. Tops calls Callback_CanCollapseNode from which the application notifies
TopS if the region can be released for coarsening. In the current implementation, the application releases all
non-crack tip regions for coarsening. However, coarsening will not actually occur unless the patch of elements
meets the coarsening criteria, so there is no harm in physically changing the problem by releasing elements.
Next, TopS calls Callback_CanCollapseNode, and passes the node that could be removed, the patch of
elements that would be coarsened, and the the final coarsened elements (if the coarsening criteria were to
be met). The application code notifies TopS if the node may be removed and elements coarsened using the
strain criteria discussed in Section 4.5.3. Then, TopS makes the geometric and topological changes to that
region of the mesh. In doing so, TopS deletes nodes and elements and calls a callback function for each
operation. In Callback_MergeElements the client copies element data from the old refinement elements to
the new coarse elements, assigns IDs to the new elements, and frees the memory associated with the deleted
elements’ attributes. Then in Callback_RemoveNode the client simply frees the memory associated with the
deleted node’s attribute.

4.5.3 Physical aspects of adaptive mesh coarsening

We adopt a local strain error criteria to determine if a patch should be coarsened [10,109]. In the Can Collapse
Node callback function, discussed in the previous section, the application computes the strain on the patch
of elements comprised of the refined elements and the coarse elements. To maintain some computational
efficiency, the strain is only computed on the patch and does not take in to account the entire mesh or larger
encompassing region. The error is simply the norm of the difference of the strains, i.e.,

e
patch

= k"
refined

� "
coarsened

k . (4.1)

If the error is less than a user-prescribed tolerance, then the node is removed and the elements are
coarsened. Since the coarsening scheme removes nodes from the model, there is a reduction in the finite
element space and the coarse element representation will not be able to exactly represent the fine field. Thus,
the tolerance level must be chosen carefully, such that too much information is not lost. Parametric studies
to determine appropriate tolerance levels are performed on the numerical examples in Section 4.6.2. In the
interest of gain computational efficiency, we accept some of loss in accuracy due to coarsening, but we ensure
it is reasonable with a carefully selected tolerance.

Since we use linear tetrahedra is this work, it is not necessary to transfer any nodal variables from the
fine patch to the coarse patch, we simply remove the node if the strain error meets the tolerance criteria.
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The	  node	  will	  be	  removed	  if	  the	  norm	  of	  
the	  difference	  in	  the	  strain	  between	  the	  
original	  refined	  patch	  and	  the	  potenPal	  
coarse	  patch	  is	  less	  than	  a	  certain	  
threshold.	  	  



Communica%on	  between	  TopS	  and	  applica%on	  
during	  mesh	  coarsening	  
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Aser	  the	  cracks	  have	  propagated,	  the	  applicaPon	  calls	  the	  
UpdateMeshCoarsening	  FuncPon	  	  

TopS	  idenPfies	  old	  refinement	  regions	  and	  asks	  the	  applicaPon	  if	  
the	  patches	  associated	  these	  nodes	  can	  be	  coarsened	  

4 to 2 
8 to 4 

12 to 6 16 to 8 

The	  applicaPon	  computes	  the	  strain	  on	  the	  refined	  and	  coarsened	  patch	  to	  determine	  if	  the	  
error	  threshold	  is	  met.	  	  

To	  maintain	  conformity	  of	  the	  mesh,	  all	  elements	  adjacent	  to	  the	  node	  to	  be	  removed	  are	  
considered	  in	  the	  patch.	  



Benchmark	  problem	  to	  inves%gate	  AMR+C	  
schemes	  
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Specimen	  thickness:	  0.05-‐0.01	  mm	  
Coarse	  mesh	  resoluPon:	  12.5-‐50	  μm	  
Coarsening	  strain	  error	  tolerance:	  0.01-‐0.0001	  

AMR,	  AMR+C	  

Uniform	  

Crack	  confined	  to	  
doqed	  red	  line	  

2	  mm	  
0.2	  mm	  



Refinement	  saves	  computa%onal	  %me	  and	  space,	  
coarsening	  is	  dependent	  on	  criteria	  
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AMR+C tol = 0.01
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Figure 4.28: Model size versus time for the 0.1 mm thick specimen with (a) uniform refinement (b) AMR
(c) AMR+C with coarsening tolerance of 0.01 (d) AMR+C with coarsening tolerance of 0.0001
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Figure 4.28: Model size versus time for the 0.1 mm thick specimen with (a) uniform refinement (b) AMR
(c) AMR+C with coarsening tolerance of 0.01 (d) AMR+C with coarsening tolerance of 0.0001
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Velocity	  changes	  with	  level	  of	  refinement,	  but	  is	  
consistent	  for	  different	  coarsening	  criteria	  
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Figure 4.23: Comparison of velocity on 0.1mm thick specimen for various levels of coarse level refinement
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Figure 4.24: Crack tip position versus simulation time for the 0.1 mm thick specimen
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Figure 4.24: Crack tip position versus simulation time for the 0.1 mm thick specimen
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PropagaPon	  is	  faster	  in	  finer	  far-‐field	  
mesh	  

Refinement	  and	  coarsening	  do	  not	  have	  
an	  impact	  on	  the	  crack	  front	  velocity	  

Varia%on	  in	  size	  of	  coarse	  elements	  	   Varia%on	  in	  coarsening	  tolerance	  

Leon,	  S.	  E.,	  Espinha,	  R.,	  Celes,	  W.	  and	  Paulino,	  G.	  H.	  “AdapPve	  refinement	  and	  coarsening	  on	  structured	  3D	  meshes”	  In	  preparaPon.	  



A	  second	  benchmark	  problem	  demonstrates	  the	  
use	  of	  the	  method	  for	  mixed	  mode	  problems	  
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v = 0.5 m/s

6.4mm

x

y

z

19.2 cm

22.4 cm

2.4 cm

2.0 cm

7.2 cm

Model	  size	  and	  run	  Pme	  restricPons	  make	  this	  problem	  computaPonally	  challenging:	  
•  Uniform	  refinement	  of	  224x24x72	  4k	  patches	  ≈	  10	  million	  elements	  ≈	  47	  GB	  of	  RAM	  
•  AMR+C	  iniPal	  refinement	  ≈	  610	  MB	  of	  RAM	  iniPally,	  but	  takes	  over	  48	  hours	  	  
•  Choose	  a	  coarser	  level	  of	  refinement	  to	  make	  this	  possible	  
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Three	  point	  bend	  simula%on	  

v = 0.5 m/s



TPB	  Results	  
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Figure 4.32: Insertion of cohesive elements versus time for the AMR and AMR+C of the TPB specimen
with the coarse far field mesh and fine far field mesh
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(a) (b)

(c) (d)

Figure 4.31: Damage of cohesive elements for the TPB specimen (a) fully open elements and (c) all cohesive
elements of coarse initial mesh and (c) fully open elements and (d) all cohesive elements of fine initial mesh
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Figure 4.31: Damage of cohesive elements for the TPB specimen (a) fully open elements and (c) all cohesive
elements of coarse initial mesh and (c) fully open elements and (d) all cohesive elements of fine initial mesh
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Displacement	  field	  with	  mesh	  detail	  
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Figure 4.32: Insertion of cohesive elements versus time for the AMR and AMR+C of the TPB specimen
with the coarse far field mesh and fine far field mesh
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Significant	  Pme	  is	  necessary	  for	  build	  up	  of	  stress,	  then	  
fracture	  occurs	  relaPvely	  quickly	  

(a) (b)

(c) (d)

Figure 4.31: Damage of cohesive elements for the TPB specimen (a) fully open elements and (c) all cohesive
elements of coarse initial mesh and (c) fully open elements and (d) all cohesive elements of fine initial mesh
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Figure 4.31: Damage of cohesive elements for the TPB specimen (a) fully open elements and (c) all cohesive
elements of coarse initial mesh and (c) fully open elements and (d) all cohesive elements of fine initial mesh
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Many	  cohesive	  elements	  are	  inserted	  but	  not	  all	  are	  
completely	  separated	  

Opening	  



If	  the	  material	  model	  contains	  Internal	  State	  
Variables,	  we	  must	  map	  them	  to	  the	  new	  mesh	  
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Element	  variables	  on	  
original	  elements	  

Variables	  need	  to	  be	  
transferred	  to	  new	  elements	  



Project	  element	  variables	  from	  one	  mesh	  to	  
another	  by	  minimizing	  the	  error	  between	  them	  

Mota,	  A.,	  Sun,	  W.,	  OsPen,	  J.	  T.,	  Foulk,	  J.	  W.,	  &	  Long,	  K.	  N.	  (2013).	  ComputaPonal	  Mechanics.	  	   46	  



Certain	  element	  variables	  can	  not	  be	  projected	  
directly	  –	  example	  rota%on	  matrices	  
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R1	   R2	  

R=?	  Given	  rotaPons	  at	  two	  points,	  find	  
the	  rotaPon	  at	  some	  other	  point:	  

In	  order	  to	  produce	  a	  variable	  that	  belongs	  to	  a	  Lie	  group	  we	  can	  map	  it	  to	  its	  Lie	  
Algebra	  where	  addiPon	  is	  admiqed.	  The	  Lie	  Algebra	  of	  SO	  are	  skew-‐symmetric	  
matrices,	  so(3)	  

logR = r 2 so (3) =

�
B = M (n)

��B = �BT
 

Polynomial	  interpolaPon	  of	  rotaPons	  does	  not	  make	  sense	  because	  rotaPons	  belong	  
to	  a	  mulPplicaPve	  group,	  specifically	  the	  Special	  Orthogonal,	  SO(3),	  Lie	  Group	  

R 2 SO (3) =
n

A 2 M (n)
�

�

�

AAT = I, detA = 1
o

R 6= R1 +R2

2



Lie	  group	  interpola%on	  and	  L2	  error	  minimizing	  
projec%on	  
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Lie	  Group	  



Lie	  group	  interpola%on	  and	  L2	  error	  minimizing	  
projec%on	  

49	  Logarithmic	  mapping	  

Lie	  Group	   Lie	  Algebra	  



Lie	  group	  interpola%on	  and	  L2	  error	  minimizing	  
projec%on	  
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Lie	  group	  interpola%on	  and	  L2	  error	  minimizing	  
projec%on	  
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Uniaxial	  tension	  of	  a	  smooth	  bar	  is	  used	  to	  
inves%gate	  the	  remeshing	  and	  mapping	  procedure	  
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Numerical	  study	  1:	  Mapping	  without	  remeshing	  
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Some	  diffusion	  in	  the	  internal	  state	  variables	  is	  present	  
when	  many	  remaps	  are	  performed	  	  
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Equivalent	  plasPc	  strain	  in	  fine	  mesh	  at	  one	  
integraPon	  point	  per	  element	  at	  end	  of	  analysis	  

Reference	  -‐	  
No	  remapping	  

Remap	  100	  Pmes	  between	  
t	  =	  0	  and	  t=0.25	  



The	  loss	  is	  less	  prevalent	  in	  a	  fine	  mesh	  than	  in	  a	  
coarser	  mesh	  
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Numerical	  study	  2:	  Mapping	  and	  remeshing	  
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Some	  loss	  is	  present	  in	  the	  load-‐displacement	  curve,	  but	  
it	  reduces	  with	  mesh	  refinement	  
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The	  adap%ve	  schemes	  explored	  in	  this	  work	  result	  in:	  
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Improved	  soluPons	  over	  non	  adapPve	  
schemes	  –	  Adap%ve	  polygonal	  spliFng	  
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(a) (b)

Figure 18. (a) Smooth notch using element splitting and (b) ragged notch without splitting

and large macrobranching occurs. The presence of this large macrobranch is nonphysical, and even
leads to some fragmentation in this region.

4.2. Pressure loaded cylinder

To further explore the applicability of polygonal elements for fracture simulation, we examine
the fragmentation of a cylinder with an internal impact pressure. This problem is particularly
suitable to the use of randomly generated polygonal elements, as meshing the domain with a
structured mesh can induce fracture patterns [45]; where the fragments occur as a result of the
meshing strategy and not as a result of the mechanics. The thick cylinder has an internal radius
of 80mm and outer radius of 150mm, as illustrated in Figure 19a. The applied pressure increases
linearly from 0MPa to 400MPa over the course of 1µs then decreases exponentially according to
P (t) = 400e(�(t�1)/100), as illustrated Figure 19b. The material has an elastic modulus of 210GPa,
a Poisson’s ratio of 0.3 and a density of 7850 kg/m3. The cohesive strength, fracture energy, and
shape parameter are 850MPa, 2000N/m and 2, respectively.
Previous numerical investigations of this problem have been conducted [46, 47, 1]. Rabczuk and
Belytschko [46] use a mesh free cracking-nodes method, and observe that the number of large and
small fragments are consistent, regardless of the number of particles used to model the geometry.
Song and Belytschko [47] use a cracking node method within the finite element framework. In order
to break the mesh induced symmetry in their model, they perturb the elastic modulus throughout the
model by ±5%. They also show that the number of fragments is consistent through mesh refinement,
and are on the order of 20 fragments. Zhou and Molinari [45] implement the same problem in 3D.
They propose a method of overcoming mesh dependency by distributing the cohesive strength based
on a modified weakest link Weibull distribution. The larger the finite element is in their mesh, the
lower the cohesive strength associated with that element. Without this method, they displayed crack
initiation in the interior of the cylinder. Paulino et al [1], use an edge swap operator (see Section 3.2)
to increase the number of fracture paths in their finite element mesh. To overcome the symmetry in
their model they implement nodal perturbation, but also impose restrictions on the location of crack
initiation, so that cracks don’t initiate in the interior of the cylinder.
No external method (e.g. perturbation) is required to break mesh symmetry in the framework of
polygonal elements because the mesh is inherently random, and no restrictions are placed on the
initiation of fracture. The domain is discretized at three levels of refinement, 5,000, 10,000 and
20,000 elements, and we investigate cases with and without element splitting. The results, illustrated
in Figure 20, display the benefits of element splitting. For a mesh refinement of 5,000 elements, the

Copyright c� 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

Increased	  computaPonal	  efficiency	  –	  
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Figure 5.11: Final fracture patterns for full scale micro-branching problem with an externally applied strain
of (a) 0.003, (b) 0.004, and (c) 0.005.
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and large macrobranching occurs. The presence of this large macrobranch is nonphysical, and even
leads to some fragmentation in this region.

4.2. Pressure loaded cylinder

To further explore the applicability of polygonal elements for fracture simulation, we examine
the fragmentation of a cylinder with an internal impact pressure. This problem is particularly
suitable to the use of randomly generated polygonal elements, as meshing the domain with a
structured mesh can induce fracture patterns [45]; where the fragments occur as a result of the
meshing strategy and not as a result of the mechanics. The thick cylinder has an internal radius
of 80mm and outer radius of 150mm, as illustrated in Figure 19a. The applied pressure increases
linearly from 0MPa to 400MPa over the course of 1µs then decreases exponentially according to
P (t) = 400e(�(t�1)/100), as illustrated Figure 19b. The material has an elastic modulus of 210GPa,
a Poisson’s ratio of 0.3 and a density of 7850 kg/m3. The cohesive strength, fracture energy, and
shape parameter are 850MPa, 2000N/m and 2, respectively.
Previous numerical investigations of this problem have been conducted [46, 47, 1]. Rabczuk and
Belytschko [46] use a mesh free cracking-nodes method, and observe that the number of large and
small fragments are consistent, regardless of the number of particles used to model the geometry.
Song and Belytschko [47] use a cracking node method within the finite element framework. In order
to break the mesh induced symmetry in their model, they perturb the elastic modulus throughout the
model by ±5%. They also show that the number of fragments is consistent through mesh refinement,
and are on the order of 20 fragments. Zhou and Molinari [45] implement the same problem in 3D.
They propose a method of overcoming mesh dependency by distributing the cohesive strength based
on a modified weakest link Weibull distribution. The larger the finite element is in their mesh, the
lower the cohesive strength associated with that element. Without this method, they displayed crack
initiation in the interior of the cylinder. Paulino et al [1], use an edge swap operator (see Section 3.2)
to increase the number of fracture paths in their finite element mesh. To overcome the symmetry in
their model they implement nodal perturbation, but also impose restrictions on the location of crack
initiation, so that cracks don’t initiate in the interior of the cylinder.
No external method (e.g. perturbation) is required to break mesh symmetry in the framework of
polygonal elements because the mesh is inherently random, and no restrictions are placed on the
initiation of fracture. The domain is discretized at three levels of refinement, 5,000, 10,000 and
20,000 elements, and we investigate cases with and without element splitting. The results, illustrated
in Figure 20, display the benefits of element splitting. For a mesh refinement of 5,000 elements, the
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Adap%ve	  fracture	  simula%on	  on	  a	  GPU	  

•  A	  GPU	  is	  a	  massively	  parallel	  system,	  could	  run	  thousands	  of	  threads	  at	  once	  
•  GPU	  fracture	  achieved	  speed	  up	  over	  the	  CPU	  implementaPon	  
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A DEMONSTRATION OF THE INT. J. NUMER. METH. ENGNG CLASS FILE 29

Table VII. Simulation and mesh parameters and results (GPU speedup and GPU and CPU time) for a T6
mesh and its refined version.

No. of bulk elements Timestep CPU time GPU time Speedup
36,864 2.0e-9 410.181 s 11.788 s 34.8

147,456 0.5e-9 6,537.839 s 153.809 s 42.5

Figure 21. T6 FEM mesh with 36,864 bulk elements at the end of the fragmentation simulation.

Figure 22. Refined T6 FEM mesh with 147,456 bulk elements at the end of the fragmentation simulation.
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GPU	  is	  significantly	  faster	  than	  CPU	  implementa%ons	  
and	  AMR+C	  make	  larger	  problems	  feasible	  
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Reduced	  scale	  =	  16	  mm	  x	  4	  mm	  
Full	  scale	  =	  0.2	  m	  x	  0.05	  m	  	  	  

Full	  scale	  problem	  is	  not	  possible	  with	  uniform	  
refinement	  on	  the	  GPU	  due	  to	  memory	  
restricPons	  



Adap%ve	  mesh	  refinement	  and	  coarsening	  on	  a	  
GPU	  
•  In	  order	  to	  avoid	  the	  race	  condiPon,	  previous	  works	  have	  used	  a	  graph	  coloring	  

scheme	  	  
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KernelCall<<<n>>> ...KernelCall<<<n>>> KernelCall<<<n>>> KernelCall<<<n>>> KernelCall<<<n>>> 

(2)

Figure 11. (1) Bulk elements are re-arranged in color groups (preferable balanced) and the same kernel per
color group is called to avoid writing conflicts. (2) Example of a colored T6 structured mesh (3) and using
the colored mesh and scatter strategy to update nodal masses of the group of elements in the current color in

parallel.

6.2. Pre-processing and update
A pseudo-code of the parallel simulation is shown on Table III. In the pre-processing phase, also
executed on the GPU, we need to compute the stiffness matrix and the lumped mass matrices
associated to each element, and then update the nodal masses. Building the stiffness matrix requires
one thread per element but with no color subdivision scheme since we write directly in per-element
memory space. The same kernel computes each element’s lumped mass matrix. The last kernel
in the pre-processing phase updates the nodal masses with the lumped mass matrix by using the
previously discussed parallel algorithm, invoking a kernel per color group. We use constant memory
for storing material attributes that are constant during the entire simulation. Cache hits when fetching
these attributes during stress and other force computations will help to increase performance since
threads in the same warp access the same value at the same time.
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Adap%ve	  mesh	  refinement	  and	  coarsening	  on	  a	  
GPU	  
•  In	  order	  to	  avoid	  the	  race	  condiPon,	  previous	  works	  have	  used	  a	  graph	  coloring	  

scheme	  	  
•  However,	  it	  is	  too	  expensive	  to	  color	  the	  mesh	  every	  Pme	  the	  number	  of	  

elements	  change	  
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Figure 11. (1) Bulk elements are re-arranged in color groups (preferable balanced) and the same kernel per
color group is called to avoid writing conflicts. (2) Example of a colored T6 structured mesh (3) and using
the colored mesh and scatter strategy to update nodal masses of the group of elements in the current color in

parallel.

6.2. Pre-processing and update
A pseudo-code of the parallel simulation is shown on Table III. In the pre-processing phase, also
executed on the GPU, we need to compute the stiffness matrix and the lumped mass matrices
associated to each element, and then update the nodal masses. Building the stiffness matrix requires
one thread per element but with no color subdivision scheme since we write directly in per-element
memory space. The same kernel computes each element’s lumped mass matrix. The last kernel
in the pre-processing phase updates the nodal masses with the lumped mass matrix by using the
previously discussed parallel algorithm, invoking a kernel per color group. We use constant memory
for storing material attributes that are constant during the entire simulation. Cache hits when fetching
these attributes during stress and other force computations will help to increase performance since
threads in the same warp access the same value at the same time.
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Adap%ve	  mesh	  refinement	  and	  coarsening	  on	  a	  
GPU	  

•  We	  will	  employ	  a	  node-‐by-‐node	  implementaPon,	  rather	  than	  an	  element	  by	  
element	  approach,	  so	  no	  coloring	  is	  necessary	  
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Figure 5. A special-purpose simplified data structure with mesh parameters of a T6 mesh.

With our data structure, we are able to perform the following computational patterns (see Figure
6): a node can be updated based on its own information; a bulk element can be udpated based on its
own information; a bulk element can be updated based on information of its nodes; and a node can
be updated based on information of its incident bulk elements. For the last pattern, it is necessary
to store a bulk element identifier for each node so as to start traversing its incident elements. In
our implementation, we do not store it because we use this computational pattern by sweeping the
bulk elements first. This only works for global computation (that is, applied on all nodes of the bulk
elements, see Section 5.2). For each node of a bulk element, we traverse its incident elements. Not
storing a bulk element id for each node also allows us to save GPU memory.

(a) (b) (c) (d)

Figure 6. Simulation’s computational patterns. (a) a node can be updated based on its own information; (b)
a bulk element can be udpated based on its own information; (c) a bulk element can be updated based on
information of its nodes; and (c) a node can be updated based on information of its incident bulk elements.
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Launch	  one	  thread	  per	  
node	  and	  gather	  
contribuPons	  from	  each	  
of	  its	  adjacent	  elements	  

•  Also	  requires	  changes	  to	  the	  data	  structure	  in	  order	  to	  account	  for	  the	  changing	  
number	  of	  bulk	  elements	  



A	  node	  and	  element	  table	  contains	  the	  necessary	  
informa%on	  for	  AMR+C	  on	  the	  structured	  mesh	  
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The	  AMR+C	  GPU	  implementa%on	  makes	  the	  
varia%on	  of	  the	  numerical	  solu%on	  evident	  
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refinement	  

The	  order	  in	  which	  the	  
new	  elements	  are	  
inserted	  are	  random.	  
So,	  the	  way	  their	  
contribuPons	  are	  added	  
to	  the	  white	  node	  will	  
be	  different	  from	  one	  
simulaPon	  to	  the	  next	  

unode=	  ue1+ue2+ue3+ue4+ue5+ue6+ue7+ue8	  	  

unode=	  ue1+ue2+ue3+ue4+ue5+ue6+ue7+ue8	  	  

unode=	  ue1+ue2+ue3+ue4+ue5+ue6+ue7+ue8	  	  

or	  

or	  

or	  …	  

A+B≠B+A	  



Adap%ve	  results	  on	  GPU	  appear	  quite	  different	  
from	  one	  simula%on	  to	  another	  
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AMR	   AMR+C	  



Study	  of	  physically	  relevant	  proper%es	  reveals	  
minimal	  influence	  from	  randomness	  
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           Main crack 
           Crack branch 
           Secondary branch   Kink in  

main crack 

Figure 5.8: Details of crack branching including kink in the main crack, crack branches, and secondary
branches

be different. The impact on the simulation is realized when nodal quantities are computed. Recall that
avoid graph coloring and concurrency issues, we traverse nodes and gather necessary data from elements
as opposed to traversing elements and writing to nodes. When we gather information onto a node from a
neighboring element, the random order in which the elements were inserted affects the order in which we visit
the elements adjacent to a node. Since we only have a certain level of accuracy in floating point operations,
we cannot, in general, guarantee A + B 6= B + A. So, when computing quantities on a node 1, we may pull
data from elements 100, 101, 102 and 103 in one simulation, and from elements 101, 100, 103, 102 in a second
simulation, which is not equal in a precise sense. These variations accumulate over all of the computations,
nodes, time steps, etc. and the result is a a variation in final fracture patterns.

It should be noted that we also examined an implementation in which the order of element/nodal compu-
tations is prescribed and the same from one simulation to another and verified that the results are identical.
This does not imply that the implementation with no variation is correct and the one with variation is
incorrect. The same randomness is present in the consistent implementation and if we chose to access the
elements in a different order, we would have a similar effect as the implementation with variation. We chose
to pursue the implementation that introduces randomness because it is much more computationally efficient.

Using the reduced scale micro-branching problem, we investigate the impact that the randomness has
on the final result. We performed the simulation 20 times on each of an AMR and AMR+C enabled mesh,
then quantified the variation in fracture patterns in Table 5.2.

As before, we notice a large difference in the number of crack branches especially for the low crack
tolerance, which emphasizes the point that number of branches is not an ideal measure to by which to compare
fracture patterns resulting from the same process, e.g. same geometry, material properties, and loading
conditions. The variance on the total crack length is quite low, suggesting that the variation caused by the
numerical implementation is low. The crack tip velocity also shows low variation amongst the 20 iterations,
for the AMR and AMR+C cases the crack tip velocities are 754.3±9.8 m/s and 755.6±10.1 m/s, respectively.
Additionally, the total energy released during the fracture process is quite comparable, 75.0 ± 2.6 N/m and
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Post	  processing	  algorithm	  traces	  the	  final	  
crack	  path	  of	  open	  elements	  and	  idenPfies	  
branches	  

A	  cohesive	  element	  is	  considered	  open	  if	  
the	  separaPon	  between	  nodes	  is	  greater	  
than	  a	  user-‐defined	  threshold	  

Total	  crack	  length	  	  
(energy	  released):	  

1.5%	  -‐	  4.5%	  
Number	  of	  branches:	  

20%	  -‐	  100%	  
Length	  of	  branches:	  

80%	  -‐	  130%	  

Varia%on	  for	  AMR	  and	  AMR+C	  with	  both	  thresholds	  

Leon,	  S.	  E*.,	  Alhadeff,	  A.*,	  W.	  Celes,	  and	  G.	  H.	  Paulino.	  “Massively	  parallel	  adapPve	  mesh	  refinement	  and	  coarsening	  for	  dynamic	  fracture	  
simulaPons	  .”	  In	  preparaPon.	  
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Figure 5.11: Final fracture patterns for full scale micro-branching problem with an externally applied strain
of (a) 0.003, (b) 0.004, and (c) 0.005.
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412,363	  Bulk	  Elements	  
17,565	  Cohesive	  Elements	  

856,473	  Nodes	  

Adap%vity	  on	  GPU	  makes	  the	  larger	  scale	  version	  
of	  the	  problem	  computa%onally	  tenable	  
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Figure 5.11: Final fracture patterns for full scale micro-branching problem with an externally applied strain
of (a) 0.003, (b) 0.004, and (c) 0.005.
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Figure 5.11: Final fracture patterns for full scale micro-branching problem with an externally applied strain
of (a) 0.003, (b) 0.004, and (c) 0.005.
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alized as 2D, the plates used are of finite thickness. All
comparisons between the crack’s profile and velocity were
made using measurements taken adjacent to the plane where
the velocity measurements were performed. Additional mea-
surements of the fracture surface profiles and surface rough-
ness were performed by means of an X-Z scanning profilo-
meter with a resolution of 0.1 mm in the Y direction. Both
the optical and profilometer measurements were correlated
with the velocity measurements.

III RESULTS

The instability is apparent in the three different types of
diagnostics performed: velocity measurements, measure-
ments of the fracture surface, and the optical measurements
taken in the X-Y plane. As we shall see, these three aspects
of the instability are interrelated. We can follow their devel-
opment as either a function of the mean velocity or of the
energy flux to the crack tip, G . In Fig. 3 we present a typical
velocity measurement of a crack in a PMMA plate. After a
nearly instantaneous jump to an initial velocity ~typically
between 0.1 and 0.2VR) the crack accelerates smoothly until
reaching the critical velocity, vC5340m/s ~or 0.36VR). As

the crack velocity exceeds vc , it develops strong oscilla-
tions, which increase in amplitude with the mean velocity of
the crack.
A series of velocity measurements at v,vc , v;vc , and

v.vc are presented in Fig. 4~a!. Examining the fracture sur-
face formed at these velocities @Fig. 4~b!#, one finds that as
long as the crack velocity is below vc , the fracture surface is
‘‘mirrors’’ like with no apparent features at scales larger than
1 mm. As the crack velocity reaches the critical velocity,
small localized features appear on the fracture surface. At
higher velocities these surface feature coalesce and evolve
into a periodic riblike pattern with the spacing between ribs
on the order of 1 mm. On this scale PMMA is entirely amor-
phous.
Scanning the fracture surface in the X-Y plane @Fig. 4~c!#,

one finds that below vc fracture is described by a single
crack. At v;vc small side branches appear. These grow
larger as the mean velocity of the crack increases. In Ref. 13
the instability threshold of vc5340 m/s for the onset of both
velocity oscillations and the appearance of surface structure
was shown to be independent of the sample thickness, lateral
dimensions of the plate, the surrounding atmosphere, and the
external loading. In Fig. 5 we demonstrate that the same
threshold exists for the onset of microbranching. As the
sample loading is increased, the acceleration and the maxi-
mal velocity may increase but the appearance of both struc-
ture on the fracture surface and microbranches will always
occur at the same threshold of vc5340610 m/s.

A. Characterization of the branching instability

Looking at pictures of the fracture surface when the insta-
bility is well developed @see Fig. 4~b!#, we note the charac-
teristic pattern that is created on the fracture surface. Careful
examination of the spacing between the ribs on the fracture
surface indicates that the ‘‘wavelength’’ of the patterns is not
constant but is instead a linear function of the mean velocity.
As observed in Ref. 13, the instability has a well-defined
time scale as shown in Fig. 6 where we present a power
spectrum of the crack velocity fluctuations. Although the

FIG. 3. A typical measurement of the velocity of a crack tip as
a function of time. After an initial jump to about 150 m/s, the crack
accelerates smoothly up to the critical velocity of vc510m/s.
Above vc strong oscillations in the velocity of the crack are ob-
served.

FIG. 4. Three aspects of the evolution of the
branching instability as the crack propagates from
left to right. ~a! The velocity of the crack is a
smooth function of time for v5300 m/s ,vc
~left!, at v5400 m/s ;vc the crack velocity starts
to oscillate ~center!, the oscillation amplitudes in-
crease at higher velocity ~right!. ~b! For v5300
m/s,vc the fracture surface is smooth ~left!, at
v;400 m/s small regions of different texture are
distributed along the surface ~center!. At v;400
m/s small regions of different texture are distrib-
uted along the surface ~center!. At v;600 m/s
these regions coalesce, forming a periodic pattern
with wavelength on the order of 1 mm ~right!. ~c!
A single crack is observed ~left! for v,vc . Mi-
crobranches appear at v>vc ~center!, and in-
crease in length at higher velocities ~right!.
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alized as 2D, the plates used are of finite thickness. All
comparisons between the crack’s profile and velocity were
made using measurements taken adjacent to the plane where
the velocity measurements were performed. Additional mea-
surements of the fracture surface profiles and surface rough-
ness were performed by means of an X-Z scanning profilo-
meter with a resolution of 0.1 mm in the Y direction. Both
the optical and profilometer measurements were correlated
with the velocity measurements.

III RESULTS

The instability is apparent in the three different types of
diagnostics performed: velocity measurements, measure-
ments of the fracture surface, and the optical measurements
taken in the X-Y plane. As we shall see, these three aspects
of the instability are interrelated. We can follow their devel-
opment as either a function of the mean velocity or of the
energy flux to the crack tip, G . In Fig. 3 we present a typical
velocity measurement of a crack in a PMMA plate. After a
nearly instantaneous jump to an initial velocity ~typically
between 0.1 and 0.2VR) the crack accelerates smoothly until
reaching the critical velocity, vC5340m/s ~or 0.36VR). As

the crack velocity exceeds vc , it develops strong oscilla-
tions, which increase in amplitude with the mean velocity of
the crack.
A series of velocity measurements at v,vc , v;vc , and

v.vc are presented in Fig. 4~a!. Examining the fracture sur-
face formed at these velocities @Fig. 4~b!#, one finds that as
long as the crack velocity is below vc , the fracture surface is
‘‘mirrors’’ like with no apparent features at scales larger than
1 mm. As the crack velocity reaches the critical velocity,
small localized features appear on the fracture surface. At
higher velocities these surface feature coalesce and evolve
into a periodic riblike pattern with the spacing between ribs
on the order of 1 mm. On this scale PMMA is entirely amor-
phous.
Scanning the fracture surface in the X-Y plane @Fig. 4~c!#,

one finds that below vc fracture is described by a single
crack. At v;vc small side branches appear. These grow
larger as the mean velocity of the crack increases. In Ref. 13
the instability threshold of vc5340 m/s for the onset of both
velocity oscillations and the appearance of surface structure
was shown to be independent of the sample thickness, lateral
dimensions of the plate, the surrounding atmosphere, and the
external loading. In Fig. 5 we demonstrate that the same
threshold exists for the onset of microbranching. As the
sample loading is increased, the acceleration and the maxi-
mal velocity may increase but the appearance of both struc-
ture on the fracture surface and microbranches will always
occur at the same threshold of vc5340610 m/s.

A. Characterization of the branching instability

Looking at pictures of the fracture surface when the insta-
bility is well developed @see Fig. 4~b!#, we note the charac-
teristic pattern that is created on the fracture surface. Careful
examination of the spacing between the ribs on the fracture
surface indicates that the ‘‘wavelength’’ of the patterns is not
constant but is instead a linear function of the mean velocity.
As observed in Ref. 13, the instability has a well-defined
time scale as shown in Fig. 6 where we present a power
spectrum of the crack velocity fluctuations. Although the

FIG. 3. A typical measurement of the velocity of a crack tip as
a function of time. After an initial jump to about 150 m/s, the crack
accelerates smoothly up to the critical velocity of vc510m/s.
Above vc strong oscillations in the velocity of the crack are ob-
served.

FIG. 4. Three aspects of the evolution of the
branching instability as the crack propagates from
left to right. ~a! The velocity of the crack is a
smooth function of time for v5300 m/s ,vc
~left!, at v5400 m/s ;vc the crack velocity starts
to oscillate ~center!, the oscillation amplitudes in-
crease at higher velocity ~right!. ~b! For v5300
m/s,vc the fracture surface is smooth ~left!, at
v;400 m/s small regions of different texture are
distributed along the surface ~center!. At v;400
m/s small regions of different texture are distrib-
uted along the surface ~center!. At v;600 m/s
these regions coalesce, forming a periodic pattern
with wavelength on the order of 1 mm ~right!. ~c!
A single crack is observed ~left! for v,vc . Mi-
crobranches appear at v>vc ~center!, and in-
crease in length at higher velocities ~right!.
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alized as 2D, the plates used are of finite thickness. All
comparisons between the crack’s profile and velocity were
made using measurements taken adjacent to the plane where
the velocity measurements were performed. Additional mea-
surements of the fracture surface profiles and surface rough-
ness were performed by means of an X-Z scanning profilo-
meter with a resolution of 0.1 mm in the Y direction. Both
the optical and profilometer measurements were correlated
with the velocity measurements.

III RESULTS

The instability is apparent in the three different types of
diagnostics performed: velocity measurements, measure-
ments of the fracture surface, and the optical measurements
taken in the X-Y plane. As we shall see, these three aspects
of the instability are interrelated. We can follow their devel-
opment as either a function of the mean velocity or of the
energy flux to the crack tip, G . In Fig. 3 we present a typical
velocity measurement of a crack in a PMMA plate. After a
nearly instantaneous jump to an initial velocity ~typically
between 0.1 and 0.2VR) the crack accelerates smoothly until
reaching the critical velocity, vC5340m/s ~or 0.36VR). As

the crack velocity exceeds vc , it develops strong oscilla-
tions, which increase in amplitude with the mean velocity of
the crack.
A series of velocity measurements at v,vc , v;vc , and

v.vc are presented in Fig. 4~a!. Examining the fracture sur-
face formed at these velocities @Fig. 4~b!#, one finds that as
long as the crack velocity is below vc , the fracture surface is
‘‘mirrors’’ like with no apparent features at scales larger than
1 mm. As the crack velocity reaches the critical velocity,
small localized features appear on the fracture surface. At
higher velocities these surface feature coalesce and evolve
into a periodic riblike pattern with the spacing between ribs
on the order of 1 mm. On this scale PMMA is entirely amor-
phous.
Scanning the fracture surface in the X-Y plane @Fig. 4~c!#,

one finds that below vc fracture is described by a single
crack. At v;vc small side branches appear. These grow
larger as the mean velocity of the crack increases. In Ref. 13
the instability threshold of vc5340 m/s for the onset of both
velocity oscillations and the appearance of surface structure
was shown to be independent of the sample thickness, lateral
dimensions of the plate, the surrounding atmosphere, and the
external loading. In Fig. 5 we demonstrate that the same
threshold exists for the onset of microbranching. As the
sample loading is increased, the acceleration and the maxi-
mal velocity may increase but the appearance of both struc-
ture on the fracture surface and microbranches will always
occur at the same threshold of vc5340610 m/s.

A. Characterization of the branching instability

Looking at pictures of the fracture surface when the insta-
bility is well developed @see Fig. 4~b!#, we note the charac-
teristic pattern that is created on the fracture surface. Careful
examination of the spacing between the ribs on the fracture
surface indicates that the ‘‘wavelength’’ of the patterns is not
constant but is instead a linear function of the mean velocity.
As observed in Ref. 13, the instability has a well-defined
time scale as shown in Fig. 6 where we present a power
spectrum of the crack velocity fluctuations. Although the

FIG. 3. A typical measurement of the velocity of a crack tip as
a function of time. After an initial jump to about 150 m/s, the crack
accelerates smoothly up to the critical velocity of vc510m/s.
Above vc strong oscillations in the velocity of the crack are ob-
served.

FIG. 4. Three aspects of the evolution of the
branching instability as the crack propagates from
left to right. ~a! The velocity of the crack is a
smooth function of time for v5300 m/s ,vc
~left!, at v5400 m/s ;vc the crack velocity starts
to oscillate ~center!, the oscillation amplitudes in-
crease at higher velocity ~right!. ~b! For v5300
m/s,vc the fracture surface is smooth ~left!, at
v;400 m/s small regions of different texture are
distributed along the surface ~center!. At v;400
m/s small regions of different texture are distrib-
uted along the surface ~center!. At v;600 m/s
these regions coalesce, forming a periodic pattern
with wavelength on the order of 1 mm ~right!. ~c!
A single crack is observed ~left! for v,vc . Mi-
crobranches appear at v>vc ~center!, and in-
crease in length at higher velocities ~right!.
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alized as 2D, the plates used are of finite thickness. All
comparisons between the crack’s profile and velocity were
made using measurements taken adjacent to the plane where
the velocity measurements were performed. Additional mea-
surements of the fracture surface profiles and surface rough-
ness were performed by means of an X-Z scanning profilo-
meter with a resolution of 0.1 mm in the Y direction. Both
the optical and profilometer measurements were correlated
with the velocity measurements.

III RESULTS

The instability is apparent in the three different types of
diagnostics performed: velocity measurements, measure-
ments of the fracture surface, and the optical measurements
taken in the X-Y plane. As we shall see, these three aspects
of the instability are interrelated. We can follow their devel-
opment as either a function of the mean velocity or of the
energy flux to the crack tip, G . In Fig. 3 we present a typical
velocity measurement of a crack in a PMMA plate. After a
nearly instantaneous jump to an initial velocity ~typically
between 0.1 and 0.2VR) the crack accelerates smoothly until
reaching the critical velocity, vC5340m/s ~or 0.36VR). As

the crack velocity exceeds vc , it develops strong oscilla-
tions, which increase in amplitude with the mean velocity of
the crack.
A series of velocity measurements at v,vc , v;vc , and

v.vc are presented in Fig. 4~a!. Examining the fracture sur-
face formed at these velocities @Fig. 4~b!#, one finds that as
long as the crack velocity is below vc , the fracture surface is
‘‘mirrors’’ like with no apparent features at scales larger than
1 mm. As the crack velocity reaches the critical velocity,
small localized features appear on the fracture surface. At
higher velocities these surface feature coalesce and evolve
into a periodic riblike pattern with the spacing between ribs
on the order of 1 mm. On this scale PMMA is entirely amor-
phous.
Scanning the fracture surface in the X-Y plane @Fig. 4~c!#,

one finds that below vc fracture is described by a single
crack. At v;vc small side branches appear. These grow
larger as the mean velocity of the crack increases. In Ref. 13
the instability threshold of vc5340 m/s for the onset of both
velocity oscillations and the appearance of surface structure
was shown to be independent of the sample thickness, lateral
dimensions of the plate, the surrounding atmosphere, and the
external loading. In Fig. 5 we demonstrate that the same
threshold exists for the onset of microbranching. As the
sample loading is increased, the acceleration and the maxi-
mal velocity may increase but the appearance of both struc-
ture on the fracture surface and microbranches will always
occur at the same threshold of vc5340610 m/s.

A. Characterization of the branching instability

Looking at pictures of the fracture surface when the insta-
bility is well developed @see Fig. 4~b!#, we note the charac-
teristic pattern that is created on the fracture surface. Careful
examination of the spacing between the ribs on the fracture
surface indicates that the ‘‘wavelength’’ of the patterns is not
constant but is instead a linear function of the mean velocity.
As observed in Ref. 13, the instability has a well-defined
time scale as shown in Fig. 6 where we present a power
spectrum of the crack velocity fluctuations. Although the

FIG. 3. A typical measurement of the velocity of a crack tip as
a function of time. After an initial jump to about 150 m/s, the crack
accelerates smoothly up to the critical velocity of vc510m/s.
Above vc strong oscillations in the velocity of the crack are ob-
served.

FIG. 4. Three aspects of the evolution of the
branching instability as the crack propagates from
left to right. ~a! The velocity of the crack is a
smooth function of time for v5300 m/s ,vc
~left!, at v5400 m/s ;vc the crack velocity starts
to oscillate ~center!, the oscillation amplitudes in-
crease at higher velocity ~right!. ~b! For v5300
m/s,vc the fracture surface is smooth ~left!, at
v;400 m/s small regions of different texture are
distributed along the surface ~center!. At v;400
m/s small regions of different texture are distrib-
uted along the surface ~center!. At v;600 m/s
these regions coalesce, forming a periodic pattern
with wavelength on the order of 1 mm ~right!. ~c!
A single crack is observed ~left! for v,vc . Mi-
crobranches appear at v>vc ~center!, and in-
crease in length at higher velocities ~right!.
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alized as 2D, the plates used are of finite thickness. All
comparisons between the crack’s profile and velocity were
made using measurements taken adjacent to the plane where
the velocity measurements were performed. Additional mea-
surements of the fracture surface profiles and surface rough-
ness were performed by means of an X-Z scanning profilo-
meter with a resolution of 0.1 mm in the Y direction. Both
the optical and profilometer measurements were correlated
with the velocity measurements.

III RESULTS

The instability is apparent in the three different types of
diagnostics performed: velocity measurements, measure-
ments of the fracture surface, and the optical measurements
taken in the X-Y plane. As we shall see, these three aspects
of the instability are interrelated. We can follow their devel-
opment as either a function of the mean velocity or of the
energy flux to the crack tip, G . In Fig. 3 we present a typical
velocity measurement of a crack in a PMMA plate. After a
nearly instantaneous jump to an initial velocity ~typically
between 0.1 and 0.2VR) the crack accelerates smoothly until
reaching the critical velocity, vC5340m/s ~or 0.36VR). As

the crack velocity exceeds vc , it develops strong oscilla-
tions, which increase in amplitude with the mean velocity of
the crack.
A series of velocity measurements at v,vc , v;vc , and

v.vc are presented in Fig. 4~a!. Examining the fracture sur-
face formed at these velocities @Fig. 4~b!#, one finds that as
long as the crack velocity is below vc , the fracture surface is
‘‘mirrors’’ like with no apparent features at scales larger than
1 mm. As the crack velocity reaches the critical velocity,
small localized features appear on the fracture surface. At
higher velocities these surface feature coalesce and evolve
into a periodic riblike pattern with the spacing between ribs
on the order of 1 mm. On this scale PMMA is entirely amor-
phous.
Scanning the fracture surface in the X-Y plane @Fig. 4~c!#,

one finds that below vc fracture is described by a single
crack. At v;vc small side branches appear. These grow
larger as the mean velocity of the crack increases. In Ref. 13
the instability threshold of vc5340 m/s for the onset of both
velocity oscillations and the appearance of surface structure
was shown to be independent of the sample thickness, lateral
dimensions of the plate, the surrounding atmosphere, and the
external loading. In Fig. 5 we demonstrate that the same
threshold exists for the onset of microbranching. As the
sample loading is increased, the acceleration and the maxi-
mal velocity may increase but the appearance of both struc-
ture on the fracture surface and microbranches will always
occur at the same threshold of vc5340610 m/s.

A. Characterization of the branching instability

Looking at pictures of the fracture surface when the insta-
bility is well developed @see Fig. 4~b!#, we note the charac-
teristic pattern that is created on the fracture surface. Careful
examination of the spacing between the ribs on the fracture
surface indicates that the ‘‘wavelength’’ of the patterns is not
constant but is instead a linear function of the mean velocity.
As observed in Ref. 13, the instability has a well-defined
time scale as shown in Fig. 6 where we present a power
spectrum of the crack velocity fluctuations. Although the

FIG. 3. A typical measurement of the velocity of a crack tip as
a function of time. After an initial jump to about 150 m/s, the crack
accelerates smoothly up to the critical velocity of vc510m/s.
Above vc strong oscillations in the velocity of the crack are ob-
served.

FIG. 4. Three aspects of the evolution of the
branching instability as the crack propagates from
left to right. ~a! The velocity of the crack is a
smooth function of time for v5300 m/s ,vc
~left!, at v5400 m/s ;vc the crack velocity starts
to oscillate ~center!, the oscillation amplitudes in-
crease at higher velocity ~right!. ~b! For v5300
m/s,vc the fracture surface is smooth ~left!, at
v;400 m/s small regions of different texture are
distributed along the surface ~center!. At v;400
m/s small regions of different texture are distrib-
uted along the surface ~center!. At v;600 m/s
these regions coalesce, forming a periodic pattern
with wavelength on the order of 1 mm ~right!. ~c!
A single crack is observed ~left! for v,vc . Mi-
crobranches appear at v>vc ~center!, and in-
crease in length at higher velocities ~right!.
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alized as 2D, the plates used are of finite thickness. All
comparisons between the crack’s profile and velocity were
made using measurements taken adjacent to the plane where
the velocity measurements were performed. Additional mea-
surements of the fracture surface profiles and surface rough-
ness were performed by means of an X-Z scanning profilo-
meter with a resolution of 0.1 mm in the Y direction. Both
the optical and profilometer measurements were correlated
with the velocity measurements.

III RESULTS

The instability is apparent in the three different types of
diagnostics performed: velocity measurements, measure-
ments of the fracture surface, and the optical measurements
taken in the X-Y plane. As we shall see, these three aspects
of the instability are interrelated. We can follow their devel-
opment as either a function of the mean velocity or of the
energy flux to the crack tip, G . In Fig. 3 we present a typical
velocity measurement of a crack in a PMMA plate. After a
nearly instantaneous jump to an initial velocity ~typically
between 0.1 and 0.2VR) the crack accelerates smoothly until
reaching the critical velocity, vC5340m/s ~or 0.36VR). As

the crack velocity exceeds vc , it develops strong oscilla-
tions, which increase in amplitude with the mean velocity of
the crack.
A series of velocity measurements at v,vc , v;vc , and

v.vc are presented in Fig. 4~a!. Examining the fracture sur-
face formed at these velocities @Fig. 4~b!#, one finds that as
long as the crack velocity is below vc , the fracture surface is
‘‘mirrors’’ like with no apparent features at scales larger than
1 mm. As the crack velocity reaches the critical velocity,
small localized features appear on the fracture surface. At
higher velocities these surface feature coalesce and evolve
into a periodic riblike pattern with the spacing between ribs
on the order of 1 mm. On this scale PMMA is entirely amor-
phous.
Scanning the fracture surface in the X-Y plane @Fig. 4~c!#,

one finds that below vc fracture is described by a single
crack. At v;vc small side branches appear. These grow
larger as the mean velocity of the crack increases. In Ref. 13
the instability threshold of vc5340 m/s for the onset of both
velocity oscillations and the appearance of surface structure
was shown to be independent of the sample thickness, lateral
dimensions of the plate, the surrounding atmosphere, and the
external loading. In Fig. 5 we demonstrate that the same
threshold exists for the onset of microbranching. As the
sample loading is increased, the acceleration and the maxi-
mal velocity may increase but the appearance of both struc-
ture on the fracture surface and microbranches will always
occur at the same threshold of vc5340610 m/s.

A. Characterization of the branching instability

Looking at pictures of the fracture surface when the insta-
bility is well developed @see Fig. 4~b!#, we note the charac-
teristic pattern that is created on the fracture surface. Careful
examination of the spacing between the ribs on the fracture
surface indicates that the ‘‘wavelength’’ of the patterns is not
constant but is instead a linear function of the mean velocity.
As observed in Ref. 13, the instability has a well-defined
time scale as shown in Fig. 6 where we present a power
spectrum of the crack velocity fluctuations. Although the

FIG. 3. A typical measurement of the velocity of a crack tip as
a function of time. After an initial jump to about 150 m/s, the crack
accelerates smoothly up to the critical velocity of vc510m/s.
Above vc strong oscillations in the velocity of the crack are ob-
served.

FIG. 4. Three aspects of the evolution of the
branching instability as the crack propagates from
left to right. ~a! The velocity of the crack is a
smooth function of time for v5300 m/s ,vc
~left!, at v5400 m/s ;vc the crack velocity starts
to oscillate ~center!, the oscillation amplitudes in-
crease at higher velocity ~right!. ~b! For v5300
m/s,vc the fracture surface is smooth ~left!, at
v;400 m/s small regions of different texture are
distributed along the surface ~center!. At v;400
m/s small regions of different texture are distrib-
uted along the surface ~center!. At v;600 m/s
these regions coalesce, forming a periodic pattern
with wavelength on the order of 1 mm ~right!. ~c!
A single crack is observed ~left! for v,vc . Mi-
crobranches appear at v>vc ~center!, and in-
crease in length at higher velocities ~right!.
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Figure 3.13: Comparison of mesh deviation, ⌘, for meshes with � ⇡ 1/80. Deviations of (a) 4k meshes with
and without edge swap, (b) 4k meshes nodal perturbation factors of 0 and 0.3 with and without edge swap,
(c) CVT meshes without element splitting, with restricted element splitting and with unrestricted element
splitting, (d) random polygonal meshes without element splitting, with restricted element splitting and with
unrestricted element splitting
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4.3 Three dimensional adaptive topological operators
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Figure 31: Refinement procedure showing communication between TopS and the client application
through API and callback functions.

(a) (b) (c)

Figure 32: Schematic of refinement showing process, (a) two grey elements are refined by (b)
insertion of new node, (c) grey (parent) elements are deleted new (child) elements are inserted.
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Figure 32: Schematic of refinement showing process, (a) two grey elements are refined by (b)
insertion of new node, (c) grey (parent) elements are deleted new (child) elements are inserted.
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(a)

(b)

(c)

Figure 5.11: Final fracture patterns for full scale micro-branching problem with an externally applied strain
of (a) 0.003, (b) 0.004, and (c) 0.005.
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