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Abstract

As engineers and scientists, we have a host of reasons to understand how structural systems fail. We may be
able to improve the safety of buildings during natural disaster by designing more fracture resistant connec-
tors, to lengthen the life span on industrial machinery by designing it to sustain very large deformation at
high temperatures, or prepare evacuation procedures for populated areas in high seismic zones in the event
of rupture in the earth’s crust. In order to achieve a better understanding of how any of these structures
fail, experimental, theoretical, and computational advances must be made. In this dissertation we will focus
on computational simulation by means of the finite element method and will investigate topological and
physical aspects of adaptive remeshing for two types of structural systems: quasi-brittle and ductile.

For ductile systems, we are interested in modeling the large deformations that occur before rupture of the
material. The deformations can be so large that element distortion can cause lack of numerical convergence.
Thus, we present a remeshing and internal state variable mapping technique to enable large deformation
modeling and alleviate mesh distortion. We perform detailed studies on the Lie-group interpolation and
variational recovery scheme and conclude that the approach results in very limited numerical diffusions and
is applicable for modeling systems with significant ductile distortion.

For quasi brittle systems mesh adaptivity is the central theme as it is for the work on ductile systems.
We investigate two- and three-dimensional problems on CPU and GPU systems with the main goals of ei-
ther improving computational efficiency or fidelity of the final solution. We investigate quasi-brittle fracture
by means of the inter-element extrinsic cohesive zone model approach in which interface elements capable of
separating are adaptively inserted at bulk element facets when and where they are needed throughout the
numerical simulation.

The inter-element cohesive zone model approach is known to suffer from mesh bias. Thus, we utilize polygo-
nal element meshes with adaptive splitting to improve the capability of the mesh to represent experimentally
obtained fracture patterns. The fact that we utilize the efficient linear polygonal elements and only apply
the adaptive element splitting where needed means that we also achieve improved computational efficiency
with this approach.

In the last half of the dissertation, we depart from the use of unstructured meshes and focus on the de-
velopment of hierarchical mesh refinement and coarsening schemes on the structured 4k mesh in two and
three dimensions. In three-dimensions, the size of the problem increases so rapidly that mesh adaptivity
is critical to enable the simulation of large-scale systems. Thus, we develop the topological and physical
aspects of the mesh refinement and coarsening scheme. The scheme is rigorously tested on two benchmark
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problems; both of which shows significant speed up over a uniform mesh implementation and demonstrate
physically meaningful results.

To achieve greater speed up, the adaptive mesh refinement and coarsening scheme on the 2D 4k mesh
is mapped to a GPU architecture. Considerations for the numerical implementation on the massively paral-
lel system are detailed. Further, a study on the impact of the parallelization of the dynamic fracture code is
performed on a benchmark problem, and a statistical investigation reveals the validity of the approach. Fi-
nally, the benchmark example is extended to such that the speicmen dimensions matches that of the original
experimental system. The speedup provided by the GPU allows us to model this large system in a pratical
amount of time and ultimately allows us to investigate differences between the commonly used reduced-scale
model and the actual experimental scale.

This dissertation concludes with a summary of contribution and comments on potential future research
directions. Appendices featuring scripts and codes are also included for the interested reader.
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Chapter 1

Introduction

As engineers and scientists, we have a host of reasons to understand how and why structural systems fail.
The mechanism by which failure occurs can give us greater insight into the overall behavior of the material.
Furthermore, if we can better understand how structures fail, then we may be able to design a safer and
stronger solution.

1.1 Motivation to study fracture and failure

In order to achieve a better understanding of how materials and systems fail, experimental, theoretical, and
computational advances must be made. It is the aim of this work to contribute to the understanding of
fracture and failure through computational simulation.

Motivation for the numerical simulation of fracture and failure is present many fields. Figure 1.1 demon-
strates failure at different scales, from tens of kilometers in seismic fault rupture to micron scales in trabecular
bone subjected to strain loading. From a traditional structural engineering perspective, numerical simulation
of fracture can lead a better understanding of the failure mechanism and thus to improved design protocols.
For example, numerous studies on collapse of the I-35W Mississippi River Bridge in 2007 (Figure 1.1(a))
revealed that the catastrophic collapse was due to fracture of the gusset plates connecting the floor members
to the main truss frame [6, 7]. Study of progressive collapse, such as those of the World Trade Center,
characterize the energy absorption of high rise structures such that collapse under extreme loading could
be interfered [8]. Resistance of high rise buildings to low velocity impact is also of interest; for example,
numerical and material models have been developed to numerically investigate the resistance of architectural
glass to impact from debris during a severe wind storm [9]. Structural collapse has impacts well beyond the
structural system itself; in the case of the bridge collapse for example, traffic flow patterns in Minneapolis
were disrupted due to the abrupt rerouting of 140,000 daily vehicle trips [10].

Related to structural engineering is the study of rupture of the earth’s crust during seismic events (Figure
1.1(b)). The scale of the problem may be much to large for experimental simulation, thus numerical models
provide a means by which an investigation into the failure mechanism is feasible [1, 11–14]. Of course, the
structural response to earthquake events is critical, and models to simulate failure of buildings or fracture
of components have been developed [15, 16]. Furthermore, fracture of roadways and networks during earth-
quakes or environmental effects can have a large negative impact on travelers, thus studies of environmentally
friendly and fracture resistant pavement materials have been underway be several researchers. Experimental
procedures to classify the fracture resistance of asphalt pavements [17–19] have also been investigated numer-
ically [20–22], with new models being developed to capture the complexities associated with the viscoelastic
materials.

Much of our understanding of fatigue failure has come from studies on aerospace structures, such as that
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of Southwest Flight 812 in 2011 [23]. A section of the fuselage skin fractured at the lap joint causing the
vessel to open during flight. Clearly, investigations to better understand the behavior of composite materials
that comprise a plane’s outer shell are warranted. Several researchers have worked to improve the design of
such thin walled structures under ultimate loading conditions both numerically and experimentally [24–28].

From a mechanical perspective, understanding the response of materials under extreme loading conditions,
such as high stress [29] or velocity [30] may enable us to lengthen the life span of industrial machinery. New
experimental techniques, such as the one proposed in [31] give us greater insight into the micro-mechanics of
the failure process of common materials and composites. When classical materials become insufficient for a
certain purpose, design of new materials becomes relevant. When the goal is to design a new material that
will be less likely to fail, it is especially important to understand the mechanisms by which it could break.
The need for structural materials with both high toughness and high strength has been an big area of interest
even though these two properties are often naturally mutually exclusive [32]. A new class of engineering
materials called bulk metallic glasses [33] have been designed to achieve high strength and ductility, making
it one of the toughest known materials [34].

For quite some time, there has been interest in designing bio-inspired materials or even artificial biological
materials. Over 30 years ago, researchers investigated the possibility to design artificial skin in which
the fracture properties are of utmost importance [35]. More recently, bio-inspired adhesive surfaces were
proposed; the material achieves it enhanced adhesion due its ability to trap cracks in the contact regimes [36].
Bio materials that spontaneously bond to living bone can be used as bone substitute, however they typically
have low fracture toughness compared to human bone, thus researches work to developed composite material
with bone-like microstructure through chemical treatment of metals or through polymerization of bioactive
silica [37]. As bone is a quite complex material, many studies have focused on quantifying its mechanical
properties for use in new material design or numerical models [2, 38–41] (Figure 1.1(c)). At a larger scale,
researchers have also numerically examined the fracture pattern and energy evolution of bone subjected to
extreme loading of a firearm [42]. While the connection to fracture simulation may not be immediately
obvious, a medical doctor may need to understand how a blood clot separates in terms of mechanical
properties to prevent a severe embolism. Any change of mechanical properties to the vascular wall, for
example due to calcification, are shown to have an impact on the fracture and failure of coronary stents [43].

1.2 Modeling approaches

This work develops enabling technologies for the predictive simulation of structural failure, and focuses
mainly on dynamic fracture of brittle systems. Before reviewing a number of approaches to model such
behavior, we will first classify the main types of material failure. It is useful to consider three categories of
materials: brittle, semi-brittle and ductile.

In a brittle solid (e.g. silicate glass) the relatively immobile flaws are not particularly large, they occur
primarily on the surface, and vary widely in size, shape and location, as shown in Figure 1.2. Alternatively,
flaws in brittle solids may arise during the preparation of the specimen or due to exposure to thermal
changes [44].

Unlike highly brittle solids, semi-brittle solids feature limited plastic flow during nucleation before the
crack, which resembles that of a brittle material, propagates. The strength of these materials is governed
more so by the yield properties than by the initial flaw distribution. Inelastic material deformation, such as
plasticity in metals, relaxes the stress at the crack tip [44].
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Figures 5a, 5c, 5e, and 5g, results of all used orders of
accuracy O are given for a fixed mesh spacing h = 354 m.
Note that O6 is our reference solution. In Figures 5b, 5d, 5f,
and 5h, the order is fixed to O4, but the mesh spacing varies.
Obviously, theO2 simulation has the largest delay compared
to the reference solution, explaining the large errors of
the low-order runs. Also visible is a significant delay in
the simulation with h = 1061 and O4 (Figures 5b, 5d, 5f,
and 5h). The differences of all other simulations are only
noticeable in the detail views of the rupture front (Figure 5c,
5d, 5g, and 5h). No spurious oscillations occur, independent
of the mesh spacing and the order of accuracy. Furthermore,
no artifacts of the high-order formulation (e.g., overshoots or
undershoots) appear at the discontinuities.

5. The Landers 1992 Earthquake

[32] To demonstrate the potential of the introduced
ADER-DG method on unstructured meshes for simulations
of rupture dynamics in complex fault geometries, we con-
sider the 28 June 1992 Mw7.3 Landers, California, earth-
quake as an example. Our purpose here is not to reexamine
the dynamics of this event in detail, as in many previous
studies [e.g., Olsen et al., 1997; Aochi and Fukuyama, 2002;
Aochi et al., 2003; Fliss et al., 2005] but rather to

illustrate the potential of our method for future studies. We
hence follow the simplified setup introduced by de la Puente
et al. [2009] and extend it to three dimensions, including
topography.
[33] The Landers earthquake occurred on a 60 km long

complex fault system along the western edge of the Eastern
California Shear Zone. Its surface rupture involved at least
parts of four major right-lateral strike-slip fault segments,
breaking successively from south to north the Johnson Val-
ley, Homestead Valley, Emerson, and Camp Rock faults
[Hauksson et al., 1993]. These subparallel main segments
are curved, overlapping, and connected by shorter faults
(e.g., the Kickapoo, or Landers fault, connecting the John-
son Valley and Homestead Valley faults). A fault geometry
comprising six nonplanar fault segments (Figure 6) was
adopted from Aochi and Fukuyama [2002]. Studies based
on guided waves [Li et al., 1994] and analysis of the
aftershock distribution [Hauksson et al., 1993] show that
the surface geometry continues to a depth of at least 10 km.
Source inversion results indicate a vertical dip of the fault
planes [Wald and Heaton, 1994; Cohee and Beroza, 1994;
Cotton and Campillo, 1995]. We hence model the three-
dimensional fault system geometry by extending the sur-
face fault traces vertically into depth. The fault plane starts
below the surface at sea level and extends to 15 km below

Figure 6. Map view of the 1992 Landers earthquake fault system with topography. The red double arrow
indicates the assumed principal stress direction of N22°E. The lateral center of the model domain is the
location of the epicenter at 34.20°N, 116.43°W.
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Figure 1.1: Fracture and failure at different scales (a) Earthquake fault in Landers, California and
3D numerical model (from [1]) (b-top) I35-W Mississippi Bridge failure in 2007 (photo available at
http://www.pbs.org/wgbh/nova/sciencenow/0304/04-whyt-09.html) (b-bottom) bridge failure was due to
fracture of gusset plates at the bolt holes (from National Transportation Safety Board) (c) x-ray of fractured
bone and topographic imaging failure assessment of the human spine under compressive strain (from [2])
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Figure 1.2: SEM micrographs showing flaws present in glass rods (from University of Cam-
bridge Dissemination of IT for the Promotion of Materials Science (DoITPoMS) available at
http://www.doitpoms.ac.uk/tlplib/BD5/results.php)

In ductile solids, the role of plasticity is the dominating factor in crack nucleation. Unlike semi-brittle
solids, dislocations are flexible and can move on and between crystallographic planes. On a tensile specimen
this plastic instability would be realized as a region of reduced cross-section, i.e. neck. In a pure crystal, no
crack nuclei are formed and instead the atoms slide apart. This does not actually occur in real materials
because of the presence of micro-structural defects, which cause cavities to nucleate [3] as shown in Figure
1.3. The initial stage of void nucleation is often the critical step. In order for this to occur, sufficient stress
must be applied to break the interfacial bonds between the particle and the matrix. Once voids are nucleated,
plastic strain and hydrostatic stress cause the voids to grow then fracture propagates by coalescence with
adjacent voids. Another type of ductile failure is cleavage fracture in which a crack rapidly propagates
along a crystallographic plane. The propagation of the crack may behave as though it were brittle, but it
is preceded by ductile crack growth. Cleavage fracture occurs along planes with the lowest packing density
since fewer bonds need to be broken. The crack changes direction each time it crosses a grain boundary as
it seeks the most favorably oriented plane in each grain. Figure 1.4 shows an SEM fractograph of cleavage
fracture in chromium hard plated steel where each facet corresponds to a single grain.

The characterization of a material as being brittle or ductile may be a function of several variables,
e.g. temperature, loading rate, and specimen geometry. It is well known that at low temperatures certain
materials will fail in a brittle way, at high temperatures the failure is ductile, and in between is the ductile
to brittle transition region. The abruptness and location of this transition varies with different material
microstructures. In some steels, for example, the transition temperature is around 0

�C making catastrophic
brittle failure more feasible in colder climates. The specimen geometry can also affect the crack initiation
and propagation mechanism. A plane strain type constraint with hydrostatic stress conditions can transition
to a less confined plane stress configuration [45]. The apparent plane stress conditions will give an artificially
low transition temperature or artificially high fracture toughness. The effect of geometry is also evident
through the phenomenon of crack tunneling. This was observed in a experimentally and in a computational
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Figure 1.3: Cavity formation at particles of amorphous silica in matrix of Cu-Si alloy with 20% elongation
(from [3])

Figure 1.4: SEM fractograph of cleavage fracture in chromium hard plated steel (from
the University of Plymouth Interactive Failure and Fracture Mechanics Resources available at
http://www.tech.plymouth.ac.uk/sme/Interactive_Resources/tutorials/FailureAnalysis/Fractography)
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model of a three pint bend specimen with a sharp initial notch [46]. Substantial plastic deformation at crack
initiation resulted in large gradients of the opening displacement along the initial crack front; the greatest
opening being at the center and diminishing outwards. In this specimen type, a steady state crack profile is
expected after some crack propagation, but this is a function of specimen geometry.

Next we will focus back on brittle failure behavior and discuss some modeling technologies for simulation
of dynamic fracture. Several methods exist to model crack propagation [47] and we will review the more
common approaches here.

1.2.1 Extended/generalized finite element methods - Nodal enrichment

The eXtended finite element method (XFEM) or generalized finite element (GFEM) is utilized for crack
propagation problems to avoid the issues of remeshing necessary with standard cohesive zone approaches
[48–59]. The key idea of the method is that displacement field incorporates a discontinuity as an additional
term in the finite element displacement approximation via discontinuous partitions of unity. The enrichment
is inserted when some criteria is met, loss of hyperbolicity for example [48]. A number of variations on
the types of discontinuities inserted are present in the literature. In [60], for example, a step function
enrichment was utilized in elements that are completely cracked. Later the method was generalized such the
the discontinuity could be arbitrary and could include discontinuities in the derivatives of the displacement
[48]. These methods can have weaknesses in representing many cracks, especially micro-branching, and
interaction between cracks. In a comparative paper with embedded element discontinuities, see Section
1.2.2, the authors concluded that while both methods have similar levels of accuracy, extended finite element
approaches were 1.1 to 2.5 more expensive for a single crack and cost that increases linearly as more cracks
appear in the domain. This additional const is due to the non-condensable degrees of freedom that are added
to the system.

1.2.2 Embedded element discontinuities - Element enrichments

Embedded discontinuity methods have been widely used to model strain localization and crack propagation.
In the case of strong discontinuities, the displacement field is embedded with a discontinuity, whereas in the
weak discontinuity case, the discontinuity is embedded in the strain field. The finite element discretization of
the three field variational problem contains added terms in either the displacement approximation, or strain
approximation, or both. The enhancements to the fields are contained at the element (local) level and can
be condensed out such that the global system of equations only contains the standard degrees of freedom.

Essentially the method is a combination of a discrete approach, where the deformation due to cracking
is contained into a displacement discontinuity, and a smeared approach in which the deformation due to
cracking is distributed over some material volume [61]. The method was developed to address stress locking
issues that arise from a fully smeared approach by improving the kinematics of the highly localized strains.
Weak discontinuities were first introduced in finite elements to represent shear bands through elements
[62–64]. Discrete cracks have been represented by strong discontinuities in which a term is added to the
principle of virtual work to represent the cohesive traction over the displacement discontinuity [65, 66]. In
a comparison paper, [61], the authors classified the different approaches into three broad categories. The
statically optimal symmetric methods cannot represent the kinematics of an open crack, but lead to traction
continuity between the bulk elements and the tractions across the discontinuity. The kinematically optimal
symmetric can represent the kinematics consistently, but do not give traction continuity. And finally the
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statically and kinematically optimal nonsymmetric methods can manage both the consistent kinematics and
traction continuity, but as the name suggests, the tangent stiffness matrices are non symmetric.

1.2.3 Peridynamics

Another class of methods is based on peridynamics models, in which the theory of continuum mechanics is
expressed as an integral equation as opposed to partial differential equations. In the peridynamic theory
a continuum view of material taken in which the material points of the body are continuous and interact
with all other points in its range. Material points interact with each other through a response function. The
nonlinear response function is nonlinear so numerical integration over discretized subdomains is conducted. It
has been used to model dynamic fracture and has shown agreement with experimental results in representing
crack direction and branching [47,67–69]. In [67], the authors show that round off error in the computational
peridynamic model generates asymmetries in crack patterns when the initial model is perfectly symmetric.

1.2.4 Discontinuous Galerkin

The discontinuous Galerkin approach for dynamic fracture problems was developed as an alternative to the
standard cohesive zone approach (see Section 1.2.9 below). One of the main motivations for this approach
is due to the apparent lack of scalability of the standard cohesive zone approach and difficulty in modeling
3D problems [70]. In this thesis, however, we show that the method is in fact scalable to massively parallel
systems and with use of adaptivity 3D problems are successfully simulated.

In the discontinuous Galerkin method the weak form of the governing partial differential equations are
with a continuous polynomial approximation of the field variables is ensure only inside the elements, mean-
ing that they are discontinuous across element interfaces and internal boundaries. Numerical flux terms
are introduced to address the inter-element discontinuity and a stabilization term is added for nonlinear
mechanics problems [70]. Using this formulation, the cohesive approach can also be incorporated. When an
external criterion is met to activate the traction-separation relation, the flux terms to control inter-element
discontinuity are replaced by the integral form of the traction separation relation. A parallel implementation
of the method was used to model 3D dynamic fracture and fragmentation [71]. Further advances with the
discontinuous Galerkin method involve using spacetime elements in which time is treated as an extra dimen-
sion and discretized in much the same way as the spatial dimensions. The spacetime discontinuous Galerkin
method with h-adaptivity has been used to model evolving discontinuities using a cohesive model [72,73].

1.2.5 Molecular dynamics

A physically relevant approach to modeling fracture is through molecular dynamics approach. These meth-
ods are naturally computationally demanding, so they are often coupled with other methods to lessen the
computational burden. Part of the body is modeled using molecular dynamics and the rest is modeled using
continuum mechanics, e.g. finite elements. A main issue in this approach is the communication between the
two parts of the body, the so-called “handshake region.” If not done carefully, spurious behavior in energy
preservation and wave propagation lead to unphysical results. A number of approaches have been developed
to give a gradual transition between the regions [74–78]. However, even with such advances, this approach
is limited in that fracture can only occur in the molecular dynamics region of the domain, see reference [79],
suggesting that additional adaptive features are needed.

7



1.2.6 Element deletion

The element deletion method is perhaps one of the simplest approaches to modeling fracture propagation.
Using the standard finite element method, new crack surfaces are represented by a set of deleted elements.
The elements are deleted by setting their stress to zero such that they have zero material resistance. This is
accomplished through a stress-strain constitutive relation in which the stress tends to zero at high strains.
This approach would be spuriously mesh dependent if adjustments to the stress-strain curve were not met
because the energy released due to deleting an element is proportional to the element size. Thus, the
softening curve needs to be adjusted such that the fracture energy is independent of element size [80]. While
this method is widely used in commercial applications, (e.g. LS-DYNA [81]), it was shown in [80] that it
does not accurately capture crack velocities and patterns even for relatively simple geometries.

1.2.7 Mesh free methods

Mesh free methods provide a representation of the unknown fields in a system based solely on nodes rather
than on elements and nodes. A number of properties make such methods attractive for fracture simulation,
[82] listed them as: natural adaptivity, reduced bias from discretization, improved robustness under large
deformation, smoothness, and multiscale capability. It should be noted that these methods are not entirely
mesh-free as a background grid is necessary to perform numerical integration of the governing equations.
The displacement field at any point x in meshless methods is a linear combination of the contributions of
displacements from a set of nodes in the vicinity of x. A crack is represented by modifying the nodes included
in the neighborhood of x by excluding those separated by the line of discontinuity [82]. An alternative
approach to representing cracks was presented in [83], where a crack is modeled by a discrete set of cracks
that lie on particles. The discrete cracks are represented by a discontinuous enrichment to the displacement
field. While the model has been used to capture dynamic fracture and branching behavior, it does not have
the same level of accuracy in representing the fractured surface as other methods.

1.2.8 Virtual internal bond models

The virtual internal bond model (VIB), represents the microstructure of a material by spatially distributing
cohesive bonds throughout the domain according to a spatial bond density function [82,84]. The Cauchy-Born
rule is used to connect the cohesive behavior at the continuum level with that of the micro-structural level,
meaning that the cohesive-type law is incorporated directly into the constitutive relation of the material.
The strain energy function is constructed to take into account both the elastic and fracture behavior by
equating the strain energy function on the continuum level to the potential energy stored in the cohesive
bonds during deformation. The model was extended to include two different fracture energies for each mode
of fracture in quasi-brittle materials [85].

1.2.9 Cohesive zone models: Present approach

In the cohesive zone model approach, the fracture process zone ahead of the crack tip is approximated by
a nonlinear traction-separation relation. This approach is attractive in its simplicity: the degrading and
softening mechanisms where micro-cracks and voids initiate and coalesce ahead of the crack tip are not
explicitly modeled, rather they are approximated by the cohesive zone [86, 87]. The concept is illustrated
in Figure 1.5. The macro crack tip contains zero tractions and complete separation, then ahead of this

8



point the traction increases and opening decreases. In the simplest sense, the cohesive relation is only a
function of displacement, thus these elements can be incorporated with any type of bulk material model, e.g
hyperelastic [88,89], viscoelastic [90], etc.

Cohesive models are either constructed from a potential or based on heuristic relation. Non potential
based models are generally simple to construct (e.g. bilinear cohesive model, trapezoidal, exponential, etc.),
however the main limitation is that they are not physically based and can lead to incorrect results [91].
Conversely, in potential-based models the normal and tangential tractions are determined by taking the
derivative of the potential with respect to the normal opening and tangential opening, respectively. The
potential function is associated with physically relevant field quantities at the atomistic or continuum level.
A detailed review of different types of cohesive relations can be found in reference [91].

Cohesive elements can be inserted into the mesh before the simulation begins in the so-called intrinsic
model. In this case, the model contains an initial elastic range where opening of the cohesive elements
starts before the critical separation is reached and softening begins. The intrinsic approach is known to
produce artificial compliance in the system [92]. In the extrinsic model, the criteria to activate the elements
is external to the model. Once activated the elements are inserted into the mesh on the fly. The extrinsic
model is known to suffer from time discontinuity between the bulk and cohesive elements at the time of
insertion [4, 93].

Since the mesh topology is changed on the fly in the extrinsic case, additional mesh adaptive procedures
(e.g., refinement and coarsening) can be introduced under the same computational framework. The mesh
topology is not changed for the intrinsic scheme, so adding the computational effort to provide mesh adap-
tivity would be excessive. Secondly, if mesh adaptivity were to be introduced for the intrinsic case, then
internal variables associated with the cohesive model would need to be mapped from the old elements to the
new ones, which is not a trivial problem (see Chapter 2). In the extrinsic model, mesh adaptivity can be
performed before cohesive elements are inserted, thus mapping on the cohesive elements is not necessary.

It should be noted that cohesive elements have an impact on the critical time step in the conditionally
stable explicit time integration scheme. Effectively, the measure of the mesh discretization, l

e

, is governed
by the smaller of the distance between nodes and the domain of dependence of the cohesive zone. When an
intrinsic cohesive model is used the time step needs to be even smaller than for an extrinsic model because
the initial elastic region needs to be resolved.

The impact on the numerical results between the two models has been studied by serval authors. In [92],
the authors explain that the extrinsic model is expected to maintain its velocity if large branching does not
occur. However, micro-branching off of the main crack was prohibited in the study in [92], and it is known
that crack speeds are higher when micro-branching is not present. Furthermore, in [92,94], the authors noted
that macro-branching is present with intrinsic models, but not in extrinsic models for the same problem. The
overall compliance of the problem is higher for the intrinsic case because of the initial elastic region, which is
not present for the extrinsic case. The result of this overall lower compliance is that the stress concentrations
are not evident at crack tips, especially if the initial slope is shallow [94]. This added compliance in the
intrinsic model is not physical and increases with the number of elements insert a priori. If the crack pattern
is known (for example, in fracture that occurs at material interfaces) then the compliance may be low enough
to be permissible. However, for problems in which the crack pattern is unknown (e.g., branching problems
as the ones investigated in this work) the extrinsic model should be employed over the intrinsic model.

When used with standard finite elements, the cohesive model approach requires a sufficiently fine mesh
to capture crack initiation and propagation. Adaptive remeshing may be utilized to provide the appropriate
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Figure 1.5: Schematic of the cohesive zone model approach: the cohesive zone ahead of the macro
crack tip includes voids and micro-cracks which is idealized by a traction separation relationship.
Ahead of the macro crack tip the traction increases and complete separation is present at the macro
crack tip then decreases through length of the cohesive zone. Experimental fracture specimen im-
age from http://makine.dogus.edu.tr/en/?page_id=20 and SEM image of fracture surface from Univer-
sity of Cambridge Dissemination of IT for the Promotion of Materials Science (DoITPoMS) available at
http://www.doitpoms.ac.uk/tlplib/mechanical-testing/results1.php10



level of discretization where needed without making the problem computationally untenable. Even for
problems with extensive fragmentation, remeshing may become too extensive throughout the domain and
results may not be obtainable [80]. In this case, the applicability of the cohesive zone approach is limited.

The range of applicability of the cohesive zone approach is ultimately based on the power of the com-
putational implementation and on the availability of material properties [95]. In the standard cohesive zone
model approach, the bulk elements and the cohesive elements are disjointed. While this gives the approach
some flexibility in the types of material materials that can be modeled, it is also fair to point out that the
disconnect is inconsistent. The standard cohesive zone approach could be seen as a macroscale model suitable
for brittle and quasi brittle fracture [96]. To model very small cracks (sub micron), the constitutive relations
inside the cohesive zone may become inaccurate because the size dependence of irreversible plasticity is not
reflected in this approach. Thus, researchers have developed multiscale cohesive zone model approaches.
In [96], the constitute relation for the bulk and cohesive are modeled together with the Cauchy-Born rule to
yield an atomistically based constitute relation. A finite width compliant cohesive zone is added to model
non uniform, local deformation and the cohesive zone is properly connected to the kinematics of the bulk
material.

Despite some limitations, the standard cohesive zone approach is quite powerful, hence it is the approach
used throughout this thesis. Specifically, we use a potential based, extrinsic cohesive zone model (see Section
3.1.3 for details on the constitutive model). We use adaptive remeshing to provide additional directions
for crack propagations (Chapter 3) and to achieve a sufficiently fine mesh when and where needed in the
simulation (Chapters 4 and 5) . We also utilizes the central difference time integration scheme in our
approach. A small time step is necessary to capture the high frequency behavior associated with brittle
fracture, so an explicit scheme is natural to consider. By enforcing a lumped mass matrix, we arrive at a
fully explicit scheme in which a linear system does not need to be solved at every step. This method is
also advantageous in that it is easily parallelized, which is important for the developments of Chapter 5.
Alternative approaches to the explicit central difference scheme could be explored, however they are outside
the scope of this work. Energy conservation is not assumed in the central different scheme, but loss is
minimal when a sufficiently small time step is used [97]. Energy conservation would be easier to achieve in
an implicit scheme, however when adaptivity is employed the system matrices would need to be assembled
frequently, adding to the computational cost. Hybrid implicit-explicit schemes have been introduced to in
an attempt to take advantage of both approaches, [98,99].

1.3 Contributions

This work is the result of a number of fruitful collaborations. I am grateful for the opportunity to have
worked with so many people with such a broad range of expertise. Our combined knowledge and skills
made the advancements in this document possible. For the purpose of clarity, I will indicate my specific
contributions. I have organized the contribution by chapter.

In addition to the contributions described below, I have worked on a number of other topics that have
resulted in peer reviewed journal publications during my PhD that are not included in this thesis. This
includes: analysis of a nonlinear finite element solution scheme [100], development of an analysis and design
tool considering low temperature cracking of asphalt pavements [21, 90], and geometric investigations of
adaptive refinement of polygonal elements [89].

My specific contributions are as follows:
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Chapter 2: Mapping internal state variables in numerical simulation of ductile failure1

• Automated finite element analysis and internal state variable mapping scheme by developing Python
scripts

• Developed tools to post-process, compare and efficiently visualize results of finite element analyses with
internal state variable mapping

• Direct development and implementation in proprietary research codes used in the Mechanics Depart-
ment at Sandia National Lab

• Evaluated the internal state variable mapping scheme via extensive numerical testing to stress the
algorithms and found little numerical diffusion even in the extreme conditions

Chapter 3: Towards reduction in mesh bias using adaptive splitting of polygonal finite
elements 2

• Developed and implemented adaptive splitting of CVT polygonal finite elements for dynamic fracture
simulation on CCS specimen (equal contributor with D. Spring)

• Quantified geometric properties of structured and unstructured finite element meshes by developing
metrics to measure accurate crack representation

• Showed geometric isotropy and accuracy of unstructured meshes is enhanced with adaptive element
splitting and performs far better than structured meshes

• Developed an algorithm to mesh an arbitrary domain with random polygonal elements (applied to
CCS domain)

• Performed dynamic fracture simulation on CCS specimen using polygonal elements (CVT and random)
with adaptive element splitting

[101]

Chapter 4: Adaptive refinement and coarsening on structured 3D meshes 3

• Connected the physical simulation with its numerical representation in the TopS data structure through
call-back functions

• Developed finite element analysis code to perform 3D simulation with computationally efficient mesh
refinement and coarsening using the topological data structure

• Developed algorithms to locally transfer field variables between 3D mesh discretizations undergoing
refinement or coarsening during dynamic simulation

1A journal paper that includes my contributions on the internal state variable mapping scheme studies is currently in
preparation with collaborators at Sandia National Laboratory

2S. E. Leon, D. W. Spring, and G. H. Paulino. “Reduction in Mesh Bias for Dynamic Fracture Using Adaptive Splitting of
Polygonal Finite Elements.” International Journal for Numerical Methods in Engineering, 100(8): 555–76, 2014. Note: First
two authors are equally contributing.

3S. E. Leon, R. Espinha, W. Celes, G. H. Paulino. “Three-dimensional dynamic cohesive fracture simulation with adaptive
mesh refinement and coarsening.” In preparation.
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• Performed 3D adaptive mesh refinement and coarsening for dynamic fracture applications including a
confined crack and three-point bending specimen

• Demonstrated significant improvements to computational efficiency (with comparable numerical accu-
racy) through evaluation of adaptive mesh refinement and coarsening

Chapter 5: Massively parallel adaptive mesh refinement and coarsening for dynamic fracture
simulations 4

• Determined the relevant fracture mechanics for implementation of the GPU-designed data structure
and algorithms to perform the 2D adaptive mesh refinement and coarsening

• Developed metrics to quantify fracture patterns featuring micro-branches

• Studied the reduced scale micro-branching problem and showed that GPU introduced randomness does
not influence the physically relevant properties of fracture

• Systematically explored geometry, mesh, boundary conditions, material properties to determine input
parameters for physically accurate simulations

1.4 Document outline

The next four chapters of this dissertation detail the advancements made during the course the PhD of
the author. While the work is broad, the common thread linking them together is the presence of mesh
adaptivity as part of the simulation process.

As we will demonstrate in this thesis, remeshing during the simulation process may be necessary for
a variety of reasons, e.g. due to element distortion, moving boundaries, insufficient/excessive level of re-
finement, etc. Whenever elements are inserted or moved in the mesh the internal variables that describe
the state of the material must be transferred from the old mesh to the new one. In Chapter 2, we study
the intricate problem of consistently mapping internal state variables after adaptive remeshing. Next, we
shift the focus to dynamic brittle failure and model the creation of new surfaces in Chapters 3, 4, and 5.
In each chapter we focus on a different methodology, but the common theme among them all is adaptive
remeshing. In Chapter 3, we propose a method to improve the crack patterns using unstructured polygonal
finite elements and local adaptive remeshing technique in which elements are split to allow cracks to propa-
gate through them. We investigate two types of polygonal discretizations and extensively study the element
splitting technique through geometric exercises and physical examples. In the next two body chapters we
focus on increasing computational efficiency of dynamic fracture simulation using adaptive mesh refinement
and coarsening strategies. We move back to a structured mesh because of the convenience of generating a
hierarchal refinement scheme. Of course we lose some of the benefits of the unstructured mesh, but we make
up for the loss with the gains in computational efficiency. Specifically, in Chapter 4, we develop the mesh
refinement and coarsening scheme for three dimensional models. The geometric and physical aspects of local
mesh refinement and coarsening are detailed and the algorithm for executing the strategy is demonstrated.
Using two numerical examples, we show the ability of the method the solve large scale problems in a frac-
tion of the time as a uniform counterpart. Finally, in the last body chapter, we continue to the analogous

4S. E. Leon*, A. Alhadeff*, W. Celes, G. H. Paulino, “Massively parallel adaptive mesh refinement and coarsening for
dynamic fracture simulations.” To be submitted to Engineering with Computers in November, 2014. Note: First two authors
are equally contributing.
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two dimensional mesh refinement and coarsening schemes on a massive parallel platform. Until Chapter
5, all simulations are conducted on CPU systems, but for this work we are interested in developing the
framework to conduct rapid simulations. We move back to 2D systems with adaptive mesh refinement and
coarsening, as the computational resources necessary for 3D systems on the GPU are not yet available. We
perform a host of studies through numerical examples to examine the impact that high performance parallel
programming has on the final fracture results. Because of the speedup provided by the GPU, we have the
ability to examine aspects of the simulation that would otherwise be too computationally cumbersome. This
dissertation closes with a summary of the contributions and a detailed discussion of potential future research
directions that build upon those contributions in Chapter 6. Appendices containing pertinent codes and
scripts are included for the interested reader.

14



Chapter 2

Mapping internal state variables in

numerical simulation of ductile failure

Predictive simulation of failure of ductile structural materials, such as metals and alloys, is an open problem
in the computational mechanics community. Only two years before the completion of this dissertation, Sandia
National Laboratories created the so-called Sandia Challenge to bring members of the mechanics community
together to predict the failure of a geometrically simple but mechanically complex structure [102]. Over
50 scientists from 20 institutions volunteered to participate in the challenge, and published their results in
a special issue of the International Journal of Fracture in 2014 [103–111]. The findings revealed that the
fracture problem is indeed not solved and motivated the need for development of improved understanding
of ductile failure and modeling technologies.

In this chapter we address the problem of ductile failure using the finite element method with remeshing.
When deformations become extremely large, the finite element mesh may become so distorted that the
numerical solution cannot be obtained. We combat this severe distortion by remeshing the domain either
locally in the regions of distortion or globally over the entire mesh.

Ductile materials are described at any point by a set of state variables. In contrast to brittle materials,
the state of a ductile material cannot be determined from the displacement field alone. Thus, in order
accurately represent the material through the remeshing process, the internal variables that describe the
current state of the material must be mapped from the old, distorted mesh, to the new mesh comprised of
well-formed elements.

Mapping internal state variables involves projecting them to the nodes of the old mesh, then interpolating
them to the integration points of the new mesh. Extending variables requires special care to ensure error is
minimized and that the element quantities remain in their original admissible spaces. In the present work,
we focus our attention on the mapping of internal state variables and in particular we examine the method
of Lie-group interpolation with variational recovery, proposed in [112].

The remainder of this chapter is outlined as follows. First, we review the current state of the art for
mapping internal state variables in Section 2.1. Then, the Lie-group interpolation with variational recovery
scheme adopted in this work is described in Section 2.2. Next, the computational framework for analysis and
investigation of this scheme is detailed in Section 2.3. Finally, in Section 2.4a series of studies is performed
on the mapping scheme, and the results lead to some discussion and recommendations about use of the
scheme.

2.1 Review of large deformation modeling

Large deformation processes require special modeling attention; here we will briefly review common finite
element approaches to account for this behavior.
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2.1.1 Large deformation formulations

For solid mechanics applications, Lagrangian formulations are typically utilized to account for finite defor-
mations. In Lagrangian formulations the computational grid (mesh) follows the continuum in its motion
and the grid points are permanently connected to the material points. This is in contrast to an Eulerian
formulation, typically used in fluid mechanics applications, where the computational grid stays fixed and
continuum moves in relation to it. Lagrangian formulations are computationally advantageous, especially
when history dependent material models are utilizes, because the finite element always contains the same
materiel points and expensive convective terms are not present in the formulation. Furthermore in solid
mechanics applications the domain boundaries need to be resolved accurately. This is well handled by La-
grangian formulations, but not for Eulerian formulations. The downside to Lagrangian formulations is that
severe element distortion may result in loss of accuracy or inability to converge numerically. While element
distortion is not an issue in Eulerian formulations because the mesh does not move, the benefits of the
Lagrangian formulations for solid mechanics outweigh the negatives. In the remainder of this section, we
will review the basic types of Lagrangian formulations and discuss two means of handling element distortion
that may arise during the large deformation process [113–116].

The difference in Lagrangian formulations lies in the definition of the reference configuration in which
the integration is performed. In the Total Lagrangian (TL) formulation the reference configuration remains
fixed, while in the Updated Lagrangian (UL) formulation the reference configuration is updated, it is typically
taken as the last converged equilibrium configuration. It should be noted that the reference configuration
for the TL formulation is typically taken as the original undeformed configuration, however in a so-called
staged analysis, the reference configuration may be updated to the initial configuration at the start of an
analysis stage. Both the TL and UL formulations are suitable for finite deformations and strains, and in
principle the TL and UL methods are identical. However, there is some disagreement in the literature as to
which is more suitable for larger deformations [117,118].

In either case, there comes a point when the finite element mesh may become severely distorted and
result in unacceptable levels of discretization error or even cause lack of convergence of the nonlinear solution
algorithm. Several remedies have been explored in the computational mechanics literature, and in fact, this
still represents an open question in the field of large deformation modeling. Applications in which extremely
large deformation makes the analysis impossible with a standard TL or UL formulation include metal powder
forming [119], fluid-solid interaction [115], fault propagation [120], etc.

A first way to handle element distortion is to combine the Lagrangian and Eulerian formulations through
the Arbitrary Eulerian Lagrangian (ALE) formulation. We will not provide the full derivation of the classic
ALE method, which combines the benefits of the Eulerian and Lagrangian approaches, for that the reader is
directed to [115]. The method is commonly used in solid mechanics and for fluid-solid interaction problems.
However it also has applications in large deformation solid mechanics problems in which element distortion
becomes excessive; this is version we will focus on here. In the ALE formulation, two phases are considered:
a Lagrangian phase in which the material points are adjusted with the computational grid, and a convective
phase in which the convective terms (relative velocity between the continuum and grid) are taken into
account. These phases may be done simultaneously [121] as in the classic ALE formulation (referred to as
the unsplit approach) or separately [122, 123] (referred to as the split or Updated ALE approach). In the
split approach the convective phase is left out of the iteration loop. The Lagrangian iterations are performed
inside the loop until equilibrium is reached, then the convective phase is performed outside the loop. This
approach is computationally more efficient than the unsplit approach, because the convective terms only
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need to be computed once per step. In the unsplit ALE approach, quadratic convergence of the nonlinear
solution scheme is lost due to the to the inclusion of the convective terms. However, this comes at the cost
of loss of equilibrium at the end of the step. The convective phase pulls the system out of equilibrium then
extra residual forces are present on the body at the start of the next step. However, this disadvantage has
been show to be insignificant through numerical experiments in [124] in which the author compared the split
and unsplit versions on several benchmark problems.

Alternatively, a purely Lagrangian formulation may be utilized and remeshing performed when element
distortion is excessive. Many authors have investigated remeshing in the context of both the TL and UL
formulations [125–127]. In these applications, remeshing is trigged by some indicator, e.g. strain measure,
volume element quantity, fixed intervals of increments, mesh penetration, etc, and the target mesh is achieved
by an error estimators, such as the Super-convergent Patch Recovery (SPR) [128]. Notice that remeshing
will establish a new reference configuration, for either the TL or UL approach. In the TL approach this
corresponds to the staged analysis, mentioned previously. As part of the remeshing approach, node and
element variables need to be transferred from the old mesh to the new mesh, which is the focus of the
remainder of this Chapter. We start with a review of mapping approaches in the next section.

2.1.2 Mapping internal state variables

Internal state variables may be mapped from one mesh to another in a number of ways, and there exists
a vast literature on the subject. Before reviewing the current state of the practice, we first explain when
mapping of internal state variables is not necessary. In a linear elastic material for example, state variables
are not needed to describe the material state, the displacement field is sufficient. In a typical finite element
formulation, the displacements are nodal quantities that exits at the nodes. Nodal quantities are easily
evaluated anywhere in the domain by virtue of the finite element shape functions. Thus, quantities that are
computed at nodes do not need any mapping other than interpolation by the shape functions. This is in
contrast to element quantities such as damage or stress that live discretely at the integration points; moving
them from integration points to other points in the mesh is nontrivial, and is in fact the focus of this chapter.
We should note that for hyper-elastic models, stresses can be calculated directly from the displacement, and
therefore they do not need to be mapped like an internal state variable. Instead, the displacements can be
interpolated to the nodes of the new mesh, then stresses can be computed from these displacements.

A common approach is to use a combination of extrapolation then interpolation [129], though this method
is known to be non-conservative [130]. That is, element quantities may not belong to their original admissible
spaces after the procedure is conducted. In the extrapolation/interpolation approach, the element quantities
present at integration points are extrapolated to the nodes of the element using the standard finite element
shape functions. The final nodal quantity can then be averaged from the contributions of its adjacent
elements. Furthermore, this procedure will generate volumetric error between the old and new discretizations,
which can cause numerical problems if not minimized [112]. An alternative approach is to simply assign the
node the value from the integration points. Once the quantities are known at the nodes, then the finite
element shape functions are used to interpolate them anywhere in the domain. The integration points in the
new mesh are located with respect to the elements of the old mesh, an inverse mapping is performed to find
the location of the integration point in the parent coordinates of the old mesh, and the shape functions in
the parent domain are used to interpolate the elements nodal quantities to the integration point.

To overcome these and other issues is mapping internal variables (see [129, 131] for a discussion), more
sophisticated mapping procedures have been introduced in the literature. The Hu-Washizu principle is used
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in [132] to derive transfer operators from an extended variational principle for strain localization problems.
The problem is viewed as an evolution in time, where a discontinuity will be present after mapping from
the old mesh to the new mesh in [133]. Then, error estimates between these meshes are used to minimize
the jump. In [131], the authors perform an L2 minimization of the internal state variables between the old
and new mesh, in which the essential computational problem lies in calculating the volume of intersections
between the old and new meshes. The authors present an efficient means to approximate the regions by
solving an appropriately defined minimization problem. Several schemes including L2-projection schemes,
element-oriented local transfer, and patch-oriented transfer are compared in [134]. Additionally, the authors
propose integrating the material law at the nodes directly, such that no transfer is necessary from integration
points that lie inside the element.

As discussed in [134], stress recovery techniques can also be viewed as a means to transfer internal state
variables. For example, the super convergent patch recovery (SPR) technique is commonly used to transfer
data from one mesh to another [128]. A 3D modified version of the SPR with C0, C1, and C2 continuities was
developed to project state variables from integration points to nodes during large plastic deformations [127].

2.2 Lie group interpolation and variational recovery

The method for transferring internal state variables from one mesh (or region within a mesh) to another
studied in this work is that proposed in [112]. The recovery procedure achieves two goals: (i) the error
between the source and target internal variables is minimized in the L2 sense, and (ii) the internal variables
remain in their original admissible spaces.

2.2.1 Projection scheme

The internal variables at the integration points on the source mesh are extended to the nodes of the source
mesh via a global projection scheme. Once the quantities are known at the nodes, then they can be computed
at any point in the mesh through the interpolation. The projection is achieved by means of a three-field
finite element formulation. We begin with the energy functional

� ['] :=

ˆ
⌦

A (F, z) dV �
ˆ

⌦
RB · 'dV �

ˆ
@T ⌦

T · 'dS (2.1)

for a body ⌦ ⇢ R3 subjected to the motion described by the mapping x = ' (X) and body force, B.
The deformation gradient is defined as F := r', A (F, z) is the Helmholtz free-energy density, z is the set
of internal state variables, R is the mass density, and T are the tractions applied to the traction boundary
@

T

⌦. Next we introduce a constraint to the functional to make the source internal variables, z, equal to the
target internal variables, z, through a Lagrange multiplier, �
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The Helmholtz energy is now evaluated with the target internal variables, which is admissible because of
the constraint. Now we make the assumption that the fields belong to a space of square-integrable functions
with square-integrable first derivatives; ' belongs to space U of R3 valued functions, while z and � belong to
space V of Rq valued functions, where q is the number of internal variables. The governing equations result
from minimizing the functional: let ⌘, ⇣ 2 V be test functions for z and �, respectively, while ⇠ 2 U where
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The other two terms are calculated similarly, and the resulting variations are

D� [', z, �] (⇠) =

ˆ
⌦

P : r⇠dV �
ˆ

⌦
RB · ⇠dV �

ˆ
@T ⌦

T · ⇠dS (2.8)

D� [', z, �] (⌘) =

ˆ
⌦

✓
� +

@A

@z

◆
· ⌘dV (2.9)

D� [', z, �] (⇣) =

ˆ
⌦

(z � z) · ⇣dV (2.10)

The function is minimized if these variations all vanish. Next, we approximate the solution by discretizing
the fields and test functions in Equations 2.8-2.10. The original spaces are replaced with finite dimensional
subspaces U
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The finite dimensional fields are given by '
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and the finite dimensional test functions are z
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. Using the Galerkin method, the interpolation functions for the field and test functions are the same.
Hence, N

i

are the interpolation functions for ' and ⇠ and M
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are the interpolation functions for z, ⌘, � and
⇣. Summation convention is implied in the discretized equations above, where '
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and ⇠
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are summed up
to the number of nodes in the source mesh, and z, ⌘, � and ⇣ are summed to the number of nodes in the
target mesh. The discrete fields are first inserted into Equation 2.8
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Figure 2.1: Location of known rotations, R (�1) and R (1), and those to be interpolated/extrapolated R (0)
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The projection of the internal variables from the source to the target mesh is achieved through Equa-
tion 2.16. The shape functions M

i

should be the same order or less than the shape functions N
i

so that
the projection equations may utilize the same integration scheme as the equilibrium equation and that no
additional transfer of variables is necessary.

The projection scheme described here may be done in a global or local sense depending on what portion
of the mesh is changed. If the mesh is only changed locally, e.g., in the vicinity of a crack tip, then the
scheme would only need to transfer variables in that region. If however, the entire body is remeshed, due to
large deformations of the finite elements for example, then the projection scheme would be applied globally.

2.2.2 Lie group interpolation

The second goal of the mapping procedure is to ensure that the internal variables remain in their admissible
spaces after the mapping procedure. Certain internal variables belong to spaces which do not admit addition,
therefore interpolation of these fields may result in a value of the internal variable that does not belong to
the original space.

For example, consider the rotation tensor, which is computed and stored at integration points for certain
material models. If the domain is remeshed during the analysis, then the rotation would need to be transferred
from the integration points of the old mesh to those of the new mesh. Recall that a rotation R satisfies the
properties RR

T

= I and detR = 1. The properties define the special orthogonal Lie group, SO(n), where
n is the dimension of the space. Thus R 2 SO(3) for the three-dimensional case. It would be incorrect to
simply interpolate the rotation at the new node from old nodes, because the resulting value may not be in
SO(3). For example, consider the schematic shown in Figure 2.1, where the rotations R (�1) and R (1) are
known

R (�1) =

2

64
1 0 0

0 0 �1

0 1 0

3

75 , R (1) =

2

64
0 0 1

0 1 0

�1 0 0

3

75

If we use standard interpolation functions directly, then the resulting rotations, R (0) and R (2), will
not be members of SO(3). Let N1 (⇠) =

1
2 (1 � ⇠) and N2 (⇠) =

1
2 (1 + ⇠). The rotations at any point ⇠ are
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R (⇠) = N1 (⇠)R (�1) + N2 (⇠)R (1), then

R (0) =

2
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3

75 , R (2) =

2
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�1.5 �1.5 0.0

3
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Notice that for both R (0) and R (2) detR 6= 1 and RR

T 6= I, therefore R (0) and R (2) are not actually
rotations. This simple example demonstrates that addition is not admitted on rotations, which is is the case
for quantities that belong to a Lie group. To remedy this, a Lie group is mapped to its Lie Algebra via
logarithmic maps, then back to its Lie group through exponential maps. Once a rotation is in the Lie algebra
space, additional is permitted. In the example above, if the rotations are first mapped to their Lie algebra
then interpolated, mapped back to their Lie group, then the resulting rotations will be in SO(3). The Lie
algebra of the special orthogonal group are skew-symmetric matrices, denoted by so(3). We will denote the
rotations in their Lie algebra by r, then
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3

75

r (1) = log {R (1)} =
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3
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We can interpolate and extrapolate using the functions from above to arrive at

r (0) =

2

64
0 0 0.7854

0.0 0 �0.7854

�0.7854 0.7854 0

3

75 , r (2) =

2

64
0 0 2.5632

0.0 0 �0.7854

�2.5632 0.7854 0

3

75

Finally, we can apply the exponential map to take the quantities back to their Lie group

R (0) = exp {r (0)} =

2
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3
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R (2) = exp {r (2)} =

2

64
�0.6121 �0.5374 0.5801
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�0.5801 �0.1934 �0.7913

3
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Now detR = 1 and RR

T

= I for both R (0) and R (2). There are several techniques for performing the
logarithmic and exponential maps [135–137]. For the example shown above, the built in Matlab functions
logm and expm used, which are based on scaling and squaring method combined with Padé approximation
[138].

The internal variable interpolation procedure is accomplished through a combination of the Lie group/Lie
Algebra mapping and the L2-projection. Beginning from a point where the internal variables are known at
the integration points, we perform the logarithmic mapping on those variables that belong to a Lie group.
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It should be noted the variables that do not belong to a Lie group can be interpolated directly, so the
mapping steps are not necessary. Next, the L2-projection scheme is applied to move the element quantities
from integration points of the source mesh to the nodes of the source mesh. With quantities now at the
nodes, they can be computed anywhere through the standard finite element shape functions. The integration
points of the target mesh are located with respect to the source mesh, then the appropriate nodes are used for
interpolation. Finally, the exponential mapping is applied to those quantities that belong to a Lie algebra,
taking them back to their original Lie group.

2.3 Computational framework for analysis of Lie-ground

interposition scheme

In this section we discuss the numerical framework to perform large deformation analysis, remesh after
element distortion, and map internal variables. The analysis is employed via a Total Lagrangian formulation,
in which the problem is formulated with respect to the reference (undeformed) configuration. Once the finite
element mesh is suitably distorted, the analysis is stopped, the domain is remeshed, and pushed back to the
original reference configuration. Thus we have a new mesh on the original reference configuration. Then,
the mapping procedure is invoked as follows:

• Internal state variables belonging to a Lie Group undergo logarithmic mapping to take them into their
corresponding Lie Algebra

• Internal state variables are projected from the integration points of the source mesh to the finite element
nodes of the source mesh using the L2 projection scheme discussed in Section 2.2.1

• Nodal quantities on the source mesh (includes ISVs now) are interpolated to the integration points of
the target mesh using the finite element shape functions

• Internal state variables in their Lie Algebra undergo exponential mapping to take them back into their
original Lie Groups

After remeshing, the elements have the best aspect ratio in the current configuration and the new reference
configuration potentially contains distorted elements. Therefore, we perform the mapping procedure above
in the current configuration by pushing the solution forward through the displacement vector. Once the
mapping is complete we pull back to the reference configuration.

The numerical implementation of this procedure relies on a combination of codes and analysis packages
developed by the SIERRA Solid Mechanics Team of Sandia National Laboratory. The finite element analysis
and L2-projection are conducted using the Adagio production code [139]. Adagio is a Lagrangian, three-
dimensional, implicit code for the analysis of solids and structures. It is suitable for problems with large
deformations and material nonlinearities; the mapping of internal state variables is applicable for such
problems. Furthermore, large systems may be analyzed with the parallel computing environment present in
Adagio. The logarithmic mapping, interpolation scheme, exponential mapping, push forward, and pull back
procedures are implemented in separate research codes, which are currently under development. They are
built upon the Intrepid library, which is a package included in the Trilinos project [140], an open source,
object-oriented software framework for the solution of large-scale, complex multi-physics engineering and
scientific problems. The Intrepid library contains tools for compatible discretization of PDEs. Meshing is
performed with the CUBIT geometry and mesh generation toolkit [141].
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Figure 2.2: Flowchart of Python script for analysis of large deformation process with mapping internal state
variables

In this work, we perform a series of numerical students to gain an understanding of the Lie-group
interpolation scheme for practical applications. The nature of the studies is to perform a kind of “stress
test” on the mapping procedure to examine how it performs in even the most difficult circumstances. It
is computational untenable to perform such studies by hand because dozens of analysis codes need to be
executed for each instance of the remapping procedure. Therefore, we automated the mapping procedure
through a single Python script. All of the analysis modules are called from a single script that is easily
executed by the end user.

Two versions of the script were developed. The first version does not include any remeshing, rather the
source mesh is simply copied to the target mesh. By removing the remeshing step, the mapping procedure
can be examined in detail without interference from changes to the finite element domain. The second
version of the script includes remeshing as part of the procedure. Both versions are used in the numerical
investigations detailed in Section 2.4. A flowchart of each script is shown in Figure 2.2 and the complete
scripts are presented in Appendix A.

The user specifies a few inputs to the scripted procedure:

• Number of analysis intervals

• Number of mapping procedures between each interval

• End time (start time is assumed to be 0.0)
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• Time step

• Number of processors

As an example, the user could specify that analysis is performed from time t1 to t2 over 5 intervals, and
after each interval the problem is remeshed and internal variables mapped to the new mesh 3 times. Since
the number of intervals and mapping procedures is specified by the user, the criteria for remeshing is not
built in to the script and it is assumed that an external criterion will be applied to determine when the mesh
needs to be reconstructed.

Post processing modules

First, visualization of the deformed geometries and fringe plots was performed with Paraview, a multi-
platform data analysis and visualization application. Paraview can analyze extremely large data sets and
using distributed memory computing resources.

Several post processing scripts were developed as part of this work to quantify/visualize the results on
the investigations. One set of post processing scripts involved modifying the input and output files for the
analysis modules. The files utilize the Exodus II data model [142], which is a finite element data file format.
The format offers a common database for multiple application codes, such that new files do not need to
be written for each utility. For example, in this work we use the Exodus II files with Adagio, Cubit, and
Paraview, in addition to the light weight research codes. We wrote several Python scripts and utilized the
Exomerge tool [143] to modify and visualize specific quantities of interest. Exomerge is provides functions
for reading, manipulating, and writing Exodus II files. It is built upon a Python wrapper around the Exodus
II API functions. One type of Python script we developed read two exodus files (using Exomerge), took the
difference, and wrote the results to a new Exodus II file. This allowed us to visualize the differences between
two types of analyses, two steps of the same analysis, before and after the mapping procedure, etc. Since
these scripts were written in Python, they were easily incorporated into the script for automated remeshing
and mapping, see Appendix A.

Additional Python scripts were also written to parse Exodus files and gather data for plotting load-
displacement curves, dissipation curves, etc. in Matlab. Again these parsing scripts utilize the Exomerge
tool. Certain parsing operations could not be performed with the Exomerge tools, so they were done in
a stand alone script. For example, the residuals after each mapping and equilibrium steps could not be
gathered with a straight forward Exodus II API function call, so parsing was done in a newly developed
python script.

2.4 Analysis of the Lie-Group Interpolation Scheme

We aim to understand the Lie-group interpolation scheme discussed previously through a series of numerical
studies. The model problem used in the numerical studies is first described. Next, we detail a series of
numerical studies and discuss the implications of the results for large deformation analysis when element
distortion is handled by remeshing.

2.4.1 Model problem

The numerical studies are performed on a model system of a cylindrical bar with circular-cross section
subjected to uniaxial tension via displacement loading. A slight geometric imperfection is introduced in the
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(a) (b)

Figure 2.3: (a) coarse and (b) fine meshes of model problem for numerical studies

center of the bar to induce necking. Symmetry boundary conditions allow only 1/8 of the problem to be
modeled. The model problem is similar to benchmark studies conducted in other works [122, 124]. Two
discretizations are considered, as shown in Figure 2.3, a coarse mesh of 0 elements across the thickness of
the base and a fine mesh of 20 elements across the thickness. The problem is assumed to be quasi-static,
i.e., without inertial effects. We use a phenomenological plasticity model that captures recrystalization [144].
The specific material parameters are given in [145] and correspond to the precipitation hardened stainless
steel, PH13-8Mo H950.

2.4.2 Mapping without remeshing

To focus the analysis on the mapping scheme, we will first eliminate the remeshing and perform the mapping
scheme from the deformed mesh to itself. This will provide a baseline to evaluate the scheme without the
additional influence of a changing mesh. The coarse mesh is considered for the studies below unless otherwise
noted.

2.4.2.1 Study 1: Two intervals with many mapping procedures

The mapping scheme will change the internal variables, which will move the system out of equilibrium. Thus,
a fundamental question about any mapping procedure is whether or not it is necessary to come back into
equilibrium after mapping. Essentially, this is the same questions as in the split ALE procedure described
in Section 2.1. To study this effect we perform our own numerical experiments. We break the analysis into
two intervals, t = 0 ! 0.125 and t = 0.125 ! 0.25, performing the remapping procedure several times
consecutively without moving forward in time after the first interval. The end time of 0.25 corresponds to a
relatively low strain. We intentionally keep the distortion relatively low so that the mapping scheme is kept
as isolated as possible.
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First we verify that there is no change in the solution when equilibrium is not established after a remap.
In this scenario, the equilibrated fields are projected to the nodes then interpolated to the integration points
of the same mesh, i.e. the mapping procedure is performed, then the fields are immediately projected to the
nodes and interpolated to the integration points once again without coming into equilibrium. We expect
there to be no change in the internal state variables in this scenario since once the fields are projected the
first time, they remain in the same space throughout the mapping procedure. The maximum equivalent
plastic strain is plotted in Figure 2.4. From Figure 2.4(a) it is clear that the internal state variable does not
change after the first mapping, as expected.

Next, the equilibrium step is taken at the end of each mapping step. We expect that the mapping
procedure will pull the solution out of equilibrium, but would like to quantify if this induced residual is
significant. The equilibrium step has an effect on the internal state variable, especially after the first few
mapping procedures, however the effect seems to decrease with more maps. The maximum equivalent plastic
strain is plotted in Figure 2.4(b). An individual model parameter is not necessarily a reliable measure of the
equilibrium of the system, so we instead examine the effect of the mapping procedure with the equilibrium
step on the global residual.

The projection and interpolation steps of any mapping procedure essentially have a smoothing effect on
the state variables. The proposed scheme ensures that internal state variables remain in their admissible
spaces, however the internal variables are nonetheless changed in the mapping procedure, so of course they
are pulled out of equilibrium. With the current implementation, it is not possible to achieve equilibrium
while minimizing error in the projection. In order to achieve both simultaneously, the implementation would
need to reflect the equilibrium requirement in the projection constraint. Due to the computational expense,
we do not enforce this at the moment.

Figure 2.5(a) demonstrates that the mapping procedure does in fact pull the problem out of equilibrium,
thus a zero velocity step (zero velocity on the far-field boundary but internal degrees of freedom are free
to move) is necessary to equilibrate the system. For a visual representation of the residual, we also plotted
its magnitude on the deformed shape of the model problem after the first remapping procedure in Figure
2.5(b). The location of the elevated residual is clearly in the areas of largest deformation, where necking
is beginning. While there are several orders of magnitude difference between the residual after the first
mapping procedure and the equilibrium residual, the residual monotonically decreases to the equilibrium
tolerance in only a few steps. Therefore, if the equilibrium step is not taken after mapping, we do not expect
that there will be a significant an impact on the convergence when moving forward with the analysis. This
finding is in agreement with the split ALE findings.

Educational perspective on script development

During the development and testing of the python script for this study some issues related to the numerical
implementation of the analysis modules were uncovered. For a strictly educational purpose, we will discuss
the process of identifying the presence of the bugs, locating the source of the bugs, and providing a fix.

Linear solver tolerance After the projection steps, certain checks are performed to ensure variables are
in the correct spaces. One such example is on rotation matrices. As discussed in Section 2.2.2 a rotation,
R is a member of SO (3). After logarithmic mapping is performed, the logged rotations are members of
so (3), which are skew symmetric matrices. Thus, one of the checks is to ensure that the logged rotations
are actually skew symmetric.
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Figure 2.4: Maximum equivalent plastic strain after each mapping procedure (a) without an equilibrium
step after the mapping procedure and (b) with an equilibrium step after the mapping procedure
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Figure 2.5: (a) Residual after equilibrium and mapping steps (b) Magnitude of residual plotted on deformed
shape of model problem after first mapping procedure, the green locations indicate areas of higher residuals,
blue are lowest
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Figure 2.6: Dissipation in internal variable (equivalent plastic strain) with consecutive remaps indicates a
problem in one of the analysis modules

Initially, when we attempted to perform multiple remaps without moving forward with the analysis, this
check of skew symmetry failed. This issue led to an investigation into of several components of the analysis
modules. Eventually, we discovered that the problem was with the inputs defining the linear solver in the
analysis module. Originally we attempted to use a parallel iterative solver, however the tolerance on the
solver was too loose, which led to very small numerical errors that propagated throughout results such that
the skew symmetry was not numerically achieved. Rather than changing the tolerance for each problem
individually, we opted to switch to a parallel direct solver, which solved the issue. Another approach would
have been to use a non-parallel solver, however we wanted to take advantage of the multi-core machines and
reduce computational time, so a parallel solver was most practical.

Dissipation in internal variables between consecutive remaps Once the linear solver bug issue was
addressed, we could perform multiple mapping procedures consecutively without moving forward with the
analysis. However, a first examination of the multiple remap process indicated numerical dissipation in the
internal state variables with each mapping procedure. As discussed above, the mapping procedure should
not induce any numerical dissipation after the first time, so we knew this was a problem. The dissipation
in the equivalent plastic strain, shown in Figure 2.6, was quite regular, indicating that the same bug was
likely occurring at every step. Again, several potential causes of the bug were examined, until we narrowed
down that the problem was occurring in the interpolation module. We discovered that the issue was simply
incompatible numbering of integration points between the analysis code, Adagio, and the interpolation
module. While we only show results for hexahedral elements in this thesis, we were simultaneously doing
work on other element types at this time of these studies. It was the process of switching element types that
led us to the realization of the numbering discrepancy. Once this issue was resolved, the results in Figure
2.4(a) were obtained.

2.4.2.2 Study 2: Several intervals with one mapping procedure each

In a second study, we break the analysis from t = 0 ! 0.25 into 1, 10, 25, and 100 intervals and perform
one mapping procedure after each interval. For example, if the analysis is broken into 100 intervals, then
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(a) (b)

Figure 2.7: Equivalent plastic strain at one integration point per element at the end of the analysis, t = 0.25,
for (a) single interval and (b) 100 intervals

the mapping procedure is performed 99 times, at every 0.0025 time steps. No remapping is performed for
the case of one interval. The equivalent plastic strain at one integration per element at t = 0.25 is plotted
in Figure 2.7. We observe numerical dissipation as the number of intervals increases, however the effect
is relatively low, i.e., less than 1% difference in the maximum equivalent plastic strain when the analysis
interval is broken into 100 segments with mapping procedures between each one.

The resulting load-displacement curves are shown in Figure 2.8(a) for the coarse mesh and 1, 10, 25 and
100 intervals. Numerical dissipation is evident through softening of the load-displacement curve, especially
as the displacement increases. The same studies were conducted on the fine mesh and the load-displacement
curve is shown in Figure 2.8(b). While the softening effect is present, it is much less significant than in the
coarse mesh, suggesting that the difference may be due to discretization error.

Clearly splitting the analysis period into 100 intervals in completely impractical, but these results give
us confidence that even in the most severe case the mapping procedure has a minimal effect on the overall
response, provided a suitably fine mesh is used. These studies give us confidence that the mapping procedure
will not induce signifiant error, especially when realistic engineering judgement is employed.

2.4.3 Remeshing and mapping

In the next set of studies, we remesh the domain after some deformation has occurred. To ensure we are
not adding too many levels of complexity at a time, we apply the load for the same amount of time and use
hexahedral elements as in the previous studies. Therefore the only change now is that the mesh is that the
domain is remeshed.

Automation of remeshing

The numerical framework for the automated remapping procedure remains largely the same as in the previous
studies without remeshing. The only difference is that when each interval includes a remeshing step inside of
the mapping procedure. In these studies the time at which remeshing occurs is set a priori by the user. This
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Figure 2.8: Load displacement curve for (a) coarse mesh and (b) fine mesh with no remeshing after each
interval

is not consistent with how remeshing would be performed on an actual application. In that case, remeshing
would be performed when some measure of mesh quality indicating that the element distortion is significant
enough to cause excessive numerical error on the original mesh. Potential metrics could include evaluation
of Lo’s parameter [146], algebraic metrics based on the element Jacobian [147], element internal angles [148],
etc.

For the studies presented in this chapter, the size of the elements remain approximately the same before
and after remeshing, but their locations and shapes will change. The deformed shape (Exodus II filetype) is
passed to the meshing software, Cubit. We specify the size of the mesh using the length of the ligament on
the bottom of the specimen, as shown in Figure 2.9. For the coarse mesh, we specify 10 elements across the
bottom ligament, and we specify 20 elements for the fine mesh. We use the same number of elements across
the bottom ligaments in each of the coarse and fine meshes when we remesh.

Numerical results

For this set of studies we remesh and perform only one mapping procedure between each analysis interval.
Unlike the previous section, we do not investigate the case of several remaps and remeshes without moving
forward with the analysis. Due to limited available computational time, we only examine the case of breaking
the time interval into 25 segments with a remesh and mapping procedure performed between each segment.

The load displacement curves with and without remeshing on the coarse and fine mesh is shown in
Figure 2.10. Consistent with the findings of mapping only, the remeshing and mapping procedure results in
numerical dissipation that is more prevalent in the coarse mesh than in the fine.

These series of studies serve as a proof of concept for the Lie group interpolation and variational recovery
scheme. Even under the worst case scenarios of frequent remeshing and mapping, the scheme performs well
and the global results agree well with the case of a single analysis interval. Therefore when applied to an
actual engineering problem where reasonable judgement is used to decide when to remesh and map, we
are confident that this scheme will perform well. As a follow up to the studies performed for this thesis,
further investigation are warranted and underway as part of an ongoing collaboration between the author
and Sandia National Laboratories. Please see Section 6.2.1 for a discussion of future work related to the
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Figure 2.9: Construction of new mesh on model problem (a) Undeformed configuration is meshed with 10
elements across the bottom ligament (b) Deformed configuration to be remeshed with 10 elements across the
bottom ligament (c) Zoom in of deformed source mesh (d) Deformed domain is remeshed
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Figure 2.10: Load displacement curve for (a) coarse mesh and (b) fine mesh with remeshing after each
interval
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Lie-group interpolation and variational recovery scheme.
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Chapter 3

Towards reduction in mesh bias using

adaptive splitting of polygonal finite

elements

In the previous chapter we addressed issues that may arise when large deformations occur before the onset
of fracture, i.e. creation of new surfaces. Now, we shift our focus to modeling the actual dynamic fracture
process. In this chapter, we present a new technique to reduce mesh bias and improve fracture patterns
using the inter-element cohesive zone model and adaptive splitting of polygonal finite elements.

Before proceeding to the proposed method, we provide an overview of inter-element cohesive fracture in
Section 3.1. This section will also be relevant to future chapters of this dissertation; we provide as much
detail as is needed here and go into more as needed in later chapters. Next, we present the proposed method
using polygonal elements and adaptive element splitting in Section 3.2. Then, in Section 3.3 we evaluate
the geometric qualities of the polygonal element meshes with and without adaptive splitting. Finally, the
performance of polygonal element splitting for cohesive dynamic fracture is investigated with the benchmark
compact compression specimen (CCS) numerical example in Section 3.4.

3.1 Inter-element cohesive fracture

The cohesive zone model approach (see Section 1.2.9) can be incorporated into a number of numerical
frameworks, e.g. extended finite elements, generalized finite elements and inter-element cohesive. In this
work we limit our attention to the inter-element cohesive zone model approach, in which the cohesive elements
are only present at the bulk finite element boundaries. The method has been used with much success to
capture complex crack patterns in dynamic simulations [93, 149–153]. In the following section, we broadly
review the numerical implementation of the inter-element approach and discuss some implications that
motivate the use of polygonal elements.

3.1.1 Mathematical formulation of dynamic cohesive fracture

Consider the case of an arbitrary domain, ⌦, that is subjected to surface tractions, T , along the boundary,
�, and cohesive tractions, T coh, along the fractured surfaces, �

coh, illustrated in Figure 3.1. The equations
of motion are derived using the principle of virtual work, which states

ˆ
⌦

�uT ⇢ü + �"T �d⌦ =

ˆ
�

�uT Td� +

ˆ
�coh

��T T cohd� (3.1)

where ⇢ is the mass density, � is the stress, u is the displacement, ü is the second time derivative of the
displacement (i.e. acceleration), �� is the virtual separation across the fractured surfaces, �u is the virtual
displacement, and �" is the virtual strain. The stress and strain measures used in this work are the 2nd Piola-
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Figure 3.1: Arbitrary domain with applied boundary conditions

Kirchhoff stress tensor and the Green-Lagrange strain tensor, respectively. The effects of body forces and
damping are neglected. The continuous problem is converted to a discrete problem via the standard Galerkin
approximation. Finite deformations are taken into account by means of the total Lagrangian formulation,
in which all quantities are measured with respect to the initial configuration [154].

To evaluate the dynamic response of a system, we use an explicit time integration scheme: the well
known explicit central difference method; which is a subset of the classical Newmark method [155]. After
discretizing Equation 3.1, we can write the general form of the elasto-dynamic equation as

M

¨

u + Ku = f (3.2)

where damping is not considered, M is the mass matrix, K is the stiffness matrix, u is the displacement
vector, ¨

u is the second time derivative of the displacement (acceleration), and f is the vector of external
force (the external loads and cohesive forces are lumped into the f term). The general form of the Newmark
method for the solution of Equation 3.2 is

Mü

n+1

+ Ku

n+1

= f

n+1

(3.3)

u

n+1

= u

n

+ �tu̇
n

+

�t2

2

[(1 � 2�) ü

n

+ 2�ü

n+1

] (3.4)

u̇

n+1

= u̇

n

+ �t [(1 � �) ü

n

+ �ü

n+1

] (3.5)

where the subscript denotes the time step. The choice of parameters � and � determine the accuracy
and stability conditions of the method. Unconditional stability is met when 2�  �  2. If � � 1/2 and
� < �/2, then the method is conditionally stable and the time step must satisfy !�t  ⌦

crit

, where ⌦

crit

is
the critical sampling frequency, given by

⌦

crit

= (

�/2 � �)

1
/2 (3.6)

when damping is not present. We will further examine the time step requirement for dynamic fracture
in Section . The central-difference method is achieved when � =

1/2 and � = 0. Notice that it is only
conditionally stable. The mass matrix is diagonal in order for the central difference method to be explicit,
hence we apply a standard mass lumping technique in which the diagonals of the consistent mass matrix are
calculated and scaled [156, 157]. This method is appropriate for the dynamic fracture simulation because
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(a) (b)

Figure 3.2: Schematic of insertion of extrinsic cohesive elements using a stress-based approach (a) Nodes
with principle stress greater than 90% of the cohesive strength are flagged - shown in red (b) Normal and
tangential tractions are computed at the facets adjacent to the flagged nodes - shown in dashed blue. If the
averaged normal or tangential stress is greater than the respective cohesive strength, then a cohesive element
is inserted along the facet

the resolution of many frequencies is required, therefore a sufficiently small time step is necessary. The high
frequency behavior is captured thanks to the small time step requirement and a linear system does not need
to be solved at every time step so computational time is saved.

3.1.2 Extrinsic cohesive model

Two types of cohesive models exist: the intrinsic and extrinsic approach. In the former case, the cohesive zone
elements are inserted into the domain a priori and their activation criterion is internal to the formulation.
In the extrinsic cohesive zone model, which is the approach utilized in the remainder of this dissertation, the
criteria to insert or activate the cohesive element is external to the constitutive model.

The activation criteria employed in this dissertation is a stress-based criteria. It is implemented as
follows: we first compute stresses at the integration points, then extrapolate to the nodes. Any node with
principle stress greater than 90% of the cohesive strength is flagged for further investigation, as shown in
the schematic in Figure 3.2(a). Normal and tangential components of the tractions along the facets adjacent
to the flagged nodes are computed by averaging the contribution of each node. If the normal or tangential
traction is greater than the normal or tangential cohesive strength, respectively, then the cohesive element
is inserted. This approach has been used in several studies [88, 89,101,153,158], and similar strength-based
approaches have also been used with success [151, 159–161]. Once activated, the interface is governed by a
traction-separation relationship.

The use of an extrinsic cohesive zone model requires on-the-fly mesh modification during the simulation.
The present work uses the consistent topological data structure, TopS [162,163], to efficiently represent the
finite element mesh. More details on the TopS data structure can be found in the next chapter, where it is
used heavily.
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(a) (b)

Figure 3.3: Schematic of a cohesive element being inserted at the new facets of split polygonal element. (a)
The element ahead of the crack tip meets the criteria to be split, indicated by the dashed line. (b) The
polygonal element is split and a cohesive element is inserted at the new facets; the zoomed in region shows
a schematic of the cohesive tractions provided by the PPR model

3.1.3 PPR cohesive constitutive models

When cohesive elements are inserted, a traction separation relation is activated at the interface. The cohesive
constitutive model utilized in this work is the Park-Paulino-Roesler (PPR) potential-based model [164].
This model is derived from a potential, is suitable for mixed mode failure, adheres to necessary boundary
conditions and constraints, and provides flexibility for implementation with other numerical models. The
adaptive insertion of the cohesive element in a split polygonal element is illustrated on the CVT mesh in
Figure 3.3 (a), and a schematic of the PPR tractions is shown in Figure 3.3 (b).

The details of the PPR model will not be shown here as they are well explained in [164] and are not the
focus of this work. Rather, we will briefly discuss the its construction and physical modeling capabilities. In
a potential-based model, the normal and tangential tractions are determined by taking the derivative of the
potential with respect to the normal opening and tangential opening, respectively. The PPR potential was
constructed such that the tractions adhere to the following physically relevant boundary conditions:

• Complete normal failure occurs when the normal separation is greater than the final normal crack
opening width or tangential separation is greater than the final tangential conjugate opening

• Complete tangential failure occurs when the the tangential is greater than the final tangential crack
opening width or normal separation is greater than the final normal conjugate opening

• The area under the traction curve equals the fracture energy in either mode

• The maximum tractions equal the cohesive strengths in either mode

• The maximum tractions occur at the critical opening displacements

The user has control over several parameters to tune the model to the specific material and configuration of
the problem. These parameters are:

• �
n

and �
t

- normal and tangential fracture energies, respectively

• �
max

and ⌧
max

- normal and tangential cohesive strengths, respectively
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Figure 3.4: Traction-separation relations for (a) extrinsic model, normal opening (�
n

= 100N/m, �
max

=

40MPa, ↵ = 5.0), (b) extrinsic model, tangential opening (�
t

= 200N/m, ⌧
max

= 30MPa, � = 1.5)

• ↵ and � - softening shape parameters in the normal and tangential directions, respectively

The normal and tangential traction-separation are plotted in Figure 3.4 for the parameters given in the
figure caption. As mentioned previously, in this example, we assume that the mode I and mode II fracture
properties are the same. To achieve the nearly linear softening curve, we utilize shape parameters of 2.

Additional models for unloading/reloading and contact may be implemented without loss of the PPR
properties. In this work, we utilize a penalty stiffness to handle the contact condition, i.e., when the the
normal cohesive traction is negative. The unloading/reloading relationship is uncoupled, meaning that the
unloading in the normal direction is independent of the unloading in the tangential direction. The traction
separation relations with linear unloading occurring at 20% are shown in Figure 3.5 for the extrinsic case.

Furthermore, one could conceivably include additional physics or even adapt the PPR model as a sim-
ulation is evolving. In the former case, additional physics such as fatigue could be incorporated. Rather
than using a Paris relation approach to modeling fatigue, internal, rate-dependent damage variables that
describe degradation under cyclic loading could be incorporated into the cohesive model. Alternatively, the
PPR could be modified to account from friction by including internal slip rate variables in the description of
the model. The failure behavior of a material may change after the onset of fracture or after some amount
of damage is accumulated. Thus, one could also experiment with adapting the PPR model on the fly.

One consequence of potential-based models is that the work to fracture is independent, i.e., for a given
separation vector, the work of separation is independent of the loading history [165, 166]. However, the
numerical implementation of the PPR model results in a path-dependent work to fracture. This is achieved
because the model is only valid inside an area of influence, which is determined based on input parameters
and is not specified by the user. Outside this zone of influence, the tractions are not derived from the
potential, rather they are set to 0 in order to satisfy the boundary conditions. Thus the model is not strictly
potential-based, and path-dependance can be achieved.

3.1.4 Implementation of inter-element cohesive fracture

A flowchart of the code at a given time step is shown in Figure 3.6. First the nodal displacements are
calculated using data from the previous step according to Equation 3.4. Steps 2-5 are related to the insertion
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Figure 3.5: Traction-separation relations with linear unloading at 20% for (a) extrinsic model, normal
opening (�

n

= 100N/m, �
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= 40MPa, ↵ = 3.0), (b) extrinsic model, tangential opening (�
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of cohesive elements. The check for insertion of cohesive elements is performed at a user-defined interval.
If the current step is an increment of the interval, then the stresses are computed at the nodes. Using the
nodal stresses, the stresses along the facets are then computed. If the stress along the facet is greater than
the cohesive strength, then a cohesive element is insert at that face. Next the internal force vector, i.e.
K

¨

u, is computed in step 6. The cohesive force vector is then computed in step 7 using the PPR traction-
separation relation. Next the nodal velocity and acceleration are computed according to Equations 3.5 and
3.3, respectively. Energy quantities are computed for post-processing needs in step 10. Next, the boundary
conditions are updated. Finally, quantities of interest are printed for post-processing needs before moving
on to the next time step.

3.1.5 Mesh bias in inter-element cohesive fracture

The inter-element cohesive zone modeling approach is known to suffer from mesh bias, as cracks are forced to
propagate along element boundaries [4,92,153]. Unstructured meshes are preferred for fracture applications
because they possess no preferential path directions (i.e. isotropic), which can result in more realistic
crack patterns than their structured counterparts [167, 168]. Methods to create arbitrary meshes for crack
propagation problems have been studied extensively. Ingraffea, Wawrzynek and coworkers, for example, have
developed an algorithm to generate meshes on arbitrary domains for fracture applications [169] and have
recently presented a parallel technique for mesh generation [170]. However, structured meshes have their
benefits too: they can be systematically generated and may possesses a hierarchical subdivision, making them
suitable for refinement schemes. Hence, researchers have used structured meshes with special properties or
additional adaptivity operators in an attempt to gain the benefits of a structured mesh with the isotropy
of an unstructured mesh. The pinwheel mesh possesses the isoperimetric property, meaning that, as the
element sizes tend to zero, it is able to represent any arbitrary crack path [4, 171]. However, applications of
the pinwheel mesh are limited because the convergence of crack lengths and angles exists only in the limit
sense and may not be achieved with practical ranges of mesh size. The 4k mesh with adaptivity operators
proposed in [88] is a practical alternative to the pinwheel mesh. Hence, we will use it for comparison with
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Figure 3.6: Flowchart of extrinsic, cohesive, dynamic fracture code

the present approach.
To reduce bias in the 4k mesh, Paulino et al. [88] proposed the nodal perturbation and edge-swap

topological operators, which utilize the TopS data structure. Nodal perturbation, shown in Figure 3.7, results
in an unstructured geometry by randomly perturbing the internal nodes. The edge-swap operator reduces
undesirable crack patterns by supplying all internal element vertices with the same number of potential crack
directions, shown in Figure 3.8.

3.2 Proposed method to reduce mesh bias in inter-element

cohesive fracture

In order to reduce the mesh bias inherent to the inter-element cohesive model approach, we propose the use
of unstructured polygonal finite element with element splitting employed when and where needed. Polygonal
elements are generated by two different methods, but splitting methodology and numerical implementations
are identical.

3.2.1 Polygonal element mesh generation

Two discretizations are investigated, the Centroidal Voronoi Tessellation (CVT) mesh which is a relatively
regular discretization and a random polygonal mesh, which is similar to the near Maximal Poisson Disk
Sampling (near-MPS) mesh.
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(a) (b)

Figure 3.7: 4k mesh (a) without and (b) nodal perturbation

(a) (b)

Figure 3.8: Potential crack path directions on a 4k mesh where the solid nodes have eight potential crack
directions and the white nodes have only four directions. (a) Bold edges can be swapped; (b) After the
edge-swap operator is applied the dashed edges become available crack directions
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Generation of CVT meshes

The domains are discretized into Centroidal Voronoi Tessellation (CVT) convex polygons with the Poly-
Mesher MATLAB code [148]. The PolyMesher code generates CVT meshes on arbitrary closed domains via
the following procedure:

1. User specifies the number of elements, N

2. N mesh seeds are randomly placed inside the domain (signed distance functions are used to determine
if the seed is inside or outside of the domain)

3. Voronoi cells are generated for each of the seeds

4. The centroids of the Voronoi cells are computed

5. The generating seeds of the Voronoi cells are replaced by the cell centroid

6. Steps 3-6 are repeated until the distance between the generating seed and centroid of the cell are within
a prescribed tolerance

The CVT results in a discretization in which there is little variation in the range of element sizes. We will
compare this type of discretization with a polygonal mesh generated using randomly placed seeds, in which
there is much more variation in element edge size.

Generation of random meshes

It is hypothesized that the CVT mesh will induce some mesh anisotropy [172] , thus we examine a completely
random polygonal element mesh. The PolyMesher MATLAB code is modified to generate a random mesh
with some restrictions for element regularity. Rather than using Lloyd’s algorithm to move the mesh seeds
to the centroid of the Voronoi cell, the seeds are only constrained to be at least a minimum distance away
from all other seeds in the mesh. The procedure is detailed below:

1. User specifies the number of elements, N

2. Seeds are inserted one at a time inside the domain (signed distance functions are used to determine if
the seed is inside or outside of the domain)

3. The distance between the seed inserted in step 2 and all other existing seeds are computed

4. If the seed inserted in step 2 is closer than a prescribed distance to any other seed, it is rejected,
otherwise it is kept

5. Steps 2-4 are repeated until N seeds are present

6. Voronoi cells are generated for each of the seeds

Similar meshes [168] have been utilized in dynamic fracture applications [172].
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3.2.2 Shape functions for polygonal elements

By the virtue of the Galerkin approximation, the same functions are used for the test and trial functions.
Field quantities are determined at any point in the domain via interpolation from nodal quantities. The
separation across the cohesive elements is interpolated using linearly varying shape functions.

In this work, we use Wachspress shape functions [173] that satisfy the desirable properties of shape
functions [174]. Isoparametric mapping is employed to map quantities from a regular n-gon in the reference
coordinate system to the arbitrary convex polygon in the physical coordinate system. The Wachspress shape
functions [174] for a reference n-gon are expressed as

N
i

(⇠) =

↵
i

(⇠)P
n

j=1 ↵
j

(⇠)

(3.7)

where the interpolants ↵
i

are of the form
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and A denotes the area of the triangle made up of the points in its arguments. For example, Figure 3.9
shows a reference hexagon with shaded triangular regions to indicate the areas used in the computation of
↵

i

in the shape function of the node at ⇠
i

evaluated at point ⇠. For a detailed discussion of the construction
and implementation of the Wachspress shape functions for finite element applications, the reader is directed
to [175]. The Wachspress shape functions are generated once, before the fracture simulation begins, and
the necessary quantities (i.e. shape functions and their derivatives evaluated at the integration points) are
stored and accessed on an as-needed basis.

3.2.3 Adaptive splitting through polygonal elements

Crack patterns on polygonal element meshes are quite restricted because each node typically only has a few
facets emanating from it; therefore there are limited possible directions for a crack to propagate from a crack
tip node. In fact, each node of the CVT mesh is connect by only three facets on average. To circumvent
the limited number of potential crack directions, we propose an element splitting operator that increases the
potential crack directions at each crack tip, as illustrated in Figure 3.10.

In addition to allowing the element to be split with any node, we also investigate a case where the nodes
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(a) (b)

(c) (d)

Figure 3.10: Schematic of a crack in a polygonal mesh, where crack faces are illustrated with solid black
lines, the crack tip is indicated by a black circle, and potential crack paths are shown as dashed lines. (a)
Potential crack directions on plain CVT mesh (b) Potential crack directions on CVT mesh with adaptive
splitting employed (c) Potential crack directions on plain near-MPS mesh (d) Potential crack directions on
near-MPS mesh with adaptive splitting employed
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Figure 3.11: Schematic of potential new elements that would result from splitting element between node
1 and (a) node 3, (b) node 4 and (c) node 5. The configuration shown in (b), where the element is split
with node 4, minimizes the difference between the areas, A1 and A2, of the resulting new elements; once an
element is split, the resulting two elements cannot be split again

with which an element may be split are restricted. Since element edge size is directly related to the critical
time step for the explicit dynamic time integrator, this approach may help avoid additional reduction of
the already small time step. More specifically, we chose the node that minimizes the difference in the areas
between the two newly created elements. For example, in Figure 3.11, node 1 is flagged and the element
could be split with either node 3, 4 or 5, as shown in parts (a), (b), and (c), respectively. The resulting areas
are indicted by the shaded regions and labeled, A1 and A2, in Figure 3.11. The element is only allowed
to be split with node 4 because it produces two new elements whose difference in area is minimized when
compared to splitting with node 3 or 5.

Use of the TopS data structure ensures that the splitting operation is computationally efficient (i.e. node
and element identification and connectivity are automatically updated). The original polygonal element is
removed then two new polygonal elements are inserted using appropriate functions available in the TopS
API. Once an element is split, the resulting two elements cannot be split again. Thus, recurring element
splitting is not allowed in the present work.

3.2.3.1 Activation of element splitting

At the same time that the insertion of cohesive elements is checked by the stress-based criterion, bulk
elements are also evaluated for splitting. Each element adjacent to a flagged node is checked for splitting
(recall that a node is flagged if its principal stress greater than 90% of the cohesive strength). Starting from
the flagged node, all adjacent nodes are visited and tractions along the facet that would result between the
crack tip node and adjacent node is computed. The element will actually be split if the average normal
or tangential traction along the facet that would connect the splitting nodes is greater than the normal or
tangential cohesive strength, respectively. If multiple potential facets meet this criteria, then the one with
the highest traction is selected.

3.2.3.2 Transfer of field variables

When an element is split, the original polygonal element is deleted from the model and two new elements
are inserted. Linear polygons are used in this work, so no new nodes are created when elements are split;
therefore, it is not necessary to interpolate new nodal values. If higher order elements were used, mid-side
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Table 3.1: Cases for geometric study comparison

Base Mesh Adaptivity Operators Restrictions
4k none n/a
4k edge swap n/a

perturbed 4k* none n/a
perturbed 4k* edge swap n/a
CVT polygonal none n/a
CVT polygonal element splitting minimize area difference
CVT polygonal element splitting none

Random polygonal none n/a
Random polygonal element splitting minimize area difference
Random polygonal element splitting none
* A value of 30% perturbation was applied to the 4k meshes
in accordance with the recommendation in Paulino et al. [88].

nodal quantities would need to be interpolated from existing nodes. Moreover, since all of the polygons in
the original mesh are convex, then the polygons which result from splitting the element along its nodes are
also convex. Thus, we do not encounter issues of degenerate finite elements.

When the two new elements are inserted their element attributes are initialized and stiffness matrices are
computed. The location of integration points on the new elements are recomputed such that integration is
done in a consistent way among all elements (split polygons and unsplit polygons).

In the current work, we use a bulk material model in which the state of the material is completely
characterized by the displacement field, and cohesive elements are never split. Thus, there is no need to map
history-dependent internal state variables from the original set of integration points to the new set. However,
if a more complex model were used, a technique to map internal state variables, such as that described in
Chapter 2, would be necessary.

3.3 Geometric studies on crack representation

The goal of the extrinsic inter-element cohesive modeling approach is to capture crack patterns that are now
known a priori, thus, the finite element mesh should be able to resolve any crack pattern. In [4], researchers
define spatial convergence of the mesh as the ability of the mesh to represent any crack path in the Hausdorff
distance sense and in the length of the crack sense. They investigate the ’isoperimetric’ pinwheel mesh, which
meets the convergence criteria as the element edges approach zero, through geometric and numerical studies.
In this work however, we are concerned with meshes of practical size, thus we perform geometric studies on
length, angle and Hausdorff distance on the different mesh types shown in Table 3.1.

The 4k mesh is widely used in finite element analysis as they are easily generated and lend themselves
well to mesh refinement and coarsening. To reduce bias in the 4k mesh, Paulino et al. [88] proposed the
nodal perturbation and adaptive edge-swap topological operators. Nodal perturbation, shown in Figure 3.12,
results in an unstructured geometry by randomly perturbing the internal nodes. The edge-swap operator
reduces undesirable crack patterns by supplying all internal element vertices with the same number of
potential crack directions, shown in Figure 3.13.

As indicated in [88], the 4k mesh performs as well or better than the isoperimetric mesh for elements
of practical size. As we show in the following section, the polygonal meshes perform as well or better than
the 4k mesh, which leads us to conclude that while the polygonal meshes have not been shown to have the
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(a) (b)

Figure 3.12: 4k mesh (a) without nodal perturbation and (b) with nodal perturbation

(a) (b)

Figure 3.13: Potential crack path directions on a 4k mesh where the solid nodes have eight potential crack
directions and the white nodes have only four directions. (a) Bold edges can be swapped. (b) After the
edge-swap operator is applied the dashed edges become available crack directions
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isoperimetric property, they are suitable for fracture applications in which the crack direction is now specified
a priori.

3.3.1 Crack length studies

First, we investigate the influence of the mesh influence on representing a crack of a certain length. The
fracture energy, E

f

, required to generate a crack is directly proportional to the crack length, i.e. E
f

= L
c

G
c

,
where L

c

is the crack length and G
c

is the energy release rate. Hence, the length of the crack should not be
altered by the finite element representation such that the fracture energy artificially increases [4].

3.3.1.1 Methodology

We perform studies similar to those of [176]. The shortest distance measured along the finite element edges
between the start point and end point is computed using Dijkstra’s algorithm [177] then compared to the
euclidean distance. Square domains of 2 units by 2 units, where the center node is at point (0, 0) are used
for all studies. The start point is (0, 0) and the end point is chosen as the closest node to the point given
by (r cos ✓, r sin ✓), for ✓ = 0

� to 180

� where r = 1. The domain was selected to be a square in order to
fairly compare the 4k and polygonal element meshes. However, to ensure all paths from ✓ = 0

� to 180

� are
approximately the same, the shortest path algorithm is terminated when the path reaches a node nearest to
the edge of a circle of radius 1.

For illustrative purposes, Figure 3.14 shows the paths of minimum distance for ✓ = 71.6� on a CVT
mesh of a circular domain with and without the restricted element splitting as measured with Dijkstra’s
algorithm. The distance without element splitting is over 23% longer than the Euclidean distance, while the
distance with splitting is less than 4% longer. It should be emphasized that the metric of this study is only
the length of the path and not the distance between the finite element path and a straight line. In section
3.3.3 we perform a study on Hausdorff distance to address this issue. We also emphasize that the example
shown in Figure 3.14 is for illustrative purposes only; the domain used for the studies was rectangular and
the mesh is finer than that shown in the figure.

The deviation in crack length, ⌘, is quantified as the percent difference between the length of the path
created by the finite element edges and the euclidean distance. The deviations for angles ✓ = 0

� to 180

� are
shown in Figure 3.15. A study of mesh refinement revealed that the deviation did not decrease significantly
as the element size decreases, hence we chose a refinement level that allowed for computationally efficient
calculations. Meshes of 10,000 elements are used for all studies. We also report mesh size according to a
non-dimensional metric, �, defined as [176]

� =

1
N

NP
i=1

h
i

L
e

(3.9)

where L
e

is the euclidean distance between the start and end points, N is the total number of edges in
the mesh, and h

i

is the length of edge i. For the meshes used in these studies � ⇡ 1/80. The polygonal
meshes and perturbed 4k meshes are random, so we perform the geometric studies on several meshes.

3.3.1.2 Results

As illustrated in Figure 3.15(a), even with the nodal perturbation and edge swap operators, all of the 4k
meshes suffer from mesh induced anisotropy [176]. Meshes that do not suffer from mesh anisotropy have
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Euclidean distance = 1.0
No splitting distance = 1.2309
Splitting distance = 1.0386

(a)
 

Euclidean distance = 1.0
No splitting distance = 1.2309
Splitting distance = 1.0386

(b)

Figure 3.14: The shortest distance between the start point (0, 0) and end point (cos (71.6�
), sin (71.6�

)),
measured along the finite element edges vs. the euclidean distance for a polygonal mesh with and without
restricted element splitting. (a) Full domain, (b) zoom in of region inside the dotted, grey box in (a).
The circular domain shown here is for illustrative purposes only, the studies were conducted on rectangular
domains with an inscribed circular boundary, as described in the text

approximately equal deviations for all crack mesh angles. Furthermore, it is desirable for the deviation to
also tend to zero such that the energy is not larger than expected.

The random polygonal meshes and CVT meshes without element splitting do not appear to suffer from
mesh anisotropy, as expected, but the deviation is significantly higher than it is in any of the 4k mesh
variations, as illustrated in Figures 3.15(c)-(d) and shown in Table 3.2. When restricted element splitting
is employed, the deviation is reduced to an average value in the range of that of the 4k mesh with nodal
perturbation and edge swap. Notice that the random polygonal element mesh has a lower average deviation
for the cases of no splitting and restricted splitting, however the CVT meshes perform better in this geometric
study when element splitting is unrestricted. This is because the very small edges that are permitted on the
random polygonal element mesh, allowing the crack to propagate to any vertex may not actually improve
the crack direction very much. The edge size on the CVT mesh, however, is regulated by means of the mesh
generation algorithm, so each additional vertex provides more improvement to the crack path than in the
case of the random mesh. Furthermore, we hypothesize that the random mesh is not well suited for element
splitting because of the potential presence of small edges; we attempt to avoid these due to the restrictions
upon the critical time step. We will investigate whether these elements are viable in the next section.

It it worth noting that both polygonal elements mesh with restricted splitting achieve a mean deviation
near that of the k-means mesh studied by Rimoli and Rojas [176] (see Figure 12 in [176]), and a comparable
deviation to the conjugate-directions mesh when unrestricted splitting is allowed. However, as stated earlier,
since the element splitting is done adaptively, the computational storage costs are less than what they would
be for either the k-means or conjugate-directions meshes.

48



  0.02  0.04
  0.06  0.08

  0.1

30°

60°
90°

120°

150°

180° 0°

 

 

4k No swap, NP = 0.0
4k With swap, NP = 0.0

(a)

  0.02  0.04
  0.06  0.08

  0.1

30°

60°
90°

120°

150°

180° 0°

 

 

4k No swap, NP = 0.3
4k With swap, NP = 0.3

(b)

  0.05  0.1
  0.15  0.2

  0.25

30°

60°
90°

120°

150°

180° 0°

 

 

CVT, No splitting
CVT, Restricted splitting
CVT, Unrestricted splitting

(c)

  0.05  0.1  0.15
  0.2

  0.25

30°

60°
90°

120°

150°

180° 0°

 

 

Random, No splitting
Random, Restricted splitting
Random, Unrestricted splitting

(d)

Figure 3.15: Comparison of mesh deviation, ⌘, for meshes with � ⇡ 1/80. Deviations of (a) 4k meshes with
and without edge swap, (b) 4k meshes nodal perturbation factors of 0 and 0.3 with and without edge swap,
(c) CVT meshes without element splitting, with restricted element splitting and with unrestricted element
splitting, (d) random polygonal meshes without element splitting, with restricted element splitting and with
unrestricted element splitting
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Figure 3.16: Comparison of an arbitrary angle and geometric angle, ✓ = 34

�, for (a) unperturbed 4k mesh
with and without edge swapping, (b) perturbed 4k meshes with and without edge swapping

3.3.2 Crack angle studies

Ideally, a finite element mesh would be able to represent cracks at any angle without any predefined crack
direction. While it is impossible to allow completely arbitrary crack propagation in the present framework,
we hypothesize that the unstructured polygonal element meshes will have lower error in representing an
arbitrary crack angle than a structured mesh. This error in crack angle is investigated next.

3.3.2.1 Methodology

We measure the difference between an arbitrary angle ✓ and the corresponding geometric angle, ✓
FE

. Again,
the studies are performed on square domains of 2 units by 2 units with 10,000 elements, where the starting
node is at point (0, 0). The procedure to determine the geometric angle, ✓

FE

, is as follows: from the starting
location, a local search is performed over the edges adjacent to that node. The angle formed by the start
node and the node at the opposite end of the edge is computed. The edge that results in the angle closest
to the target angle is selected and the current location is updated to the node at the opposite end of the
selected edge. Then the same procedure is applied until the end point is reached; the end point is the first
node whose distance to the starting point is greater than or equal to the target radius of one. The series of
nodes and edges from the starting point to the boundary represents the path from which the geometric angle
is determined. A least squares linear fit is applied to the path and the angle is obtained. For illustrative
purposes, Figure 3.16 shows the paths obtained for the case of ✓ = 34

� for a coarse, unperturbed 4k mesh
without edge swapping.

3.3.2.2 Results

The absolute value in the deviations from target angles 0

� to 359

� are plotted in Figure 3.17(a) for the 4k
mesh with and without element splitting, in Figure 3.17(b) for the perturbed 4k mesh with and without
element splitting, in Figure 3.18(a) for the CVT polygonal mesh with and without element splitting and in
Figure 3.18(b) for the random polygonal element mesh with and without element splitting. A single mesh
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Figure 3.17: Absolute value of difference between geometric angle and target angle for radial paths from
from 0

� to 359

� at 1

� increments for (a) 4k without nodal perturbation, (b) 4k with nodal perturbation;
results for the perturbed mesh are averaged from from 100 meshes

was used to calculate the deviations for the unperturbed 4k mesh, while the absolute values in the angle
differences in the randomly perturbed 4k and polygonal meshes results are averaged over 100 meshes. All of
the 4k meshes display mesh bias, where the lowest deviation is for angles of 0

�, 45

�, 90

�, etc., and highest
for angles of 0

� ± 1

�, 45

� ± 1

�, 90

� ± 1

�, etc. The benefit of the edge swap operator is clear when comparing
Figures 3.17(a) and 3.17(b) at 0

�, 90

�, 180

�, and 270

�; however, bias still exists. Conversely, the polygonal
meshes with and without splitting display no mesh bias, and their average deviations are much lower than
those in the 4k meshes. A summary of the deviations from the target angle are shown in Table 3.2. While the
4k meshes have minimum deviations as low as or lower than the polygonal meshes, the range of deviations
for the polygonal meshes is smaller than that of the 4k meshes.

3.3.3 Hausdorff distance studies

The last set of geometric studies examines the distance between the finite element path and a straight line.
A low Hausdorff distance will give the appearance that the finite element path is close to the mathematical
path, which is desirable for fracture applications. The same quantity was investigated in [4, 88].
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Figure 3.18: Absolute value of difference between geometric angle and target angle for radial paths from
from 0

� to 359

� at 1

� increments for (a) CVT polygonal mesh, (b) Random polygonal mesh; results are
averaged from from 100 meshes
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3.3.3.1 Methodology

The paths obtained for the crack angle study are also used to investigate the Hausdorff distance. Given two
curves, P and Q, in the same two-dimensional space, the Hausdorff distance, H, is the maximum of the
minimum distances from all points on curve P , denoted p, to all points on curve Q, denoted q. It is defined
as [178]

H (P, Q) = max (h (P, Q) , h (Q, P )) (3.10)

where
h (P, Q) = max


min

p2P


dist
q2Q

(p, q)

��
. (3.11)

3.3.3.2 Results

The bias in the 4k meshes has already been established, so here we report the occurrence of Hausdorff
distances in the histograms in Figures 3.19(a) - 3.19(d). Again, one mesh was used for the unperturbed
4k mesh case, while 100 were used for the perturbed 4k and polygonal mesh cases. The occurrences are
normalized such that the area of each histogram is one. The distribution of the Hausdorff distances for the
perturbed meshes are smoother than those of the unperturbed 4k mesh; however, there is some tradeoff when
comparing the perturbed and unperturbed 4k meshes. Higher Hausdorff distances occur in the perturbed
case, especially when edge swap is not employed: 95.6% of the Hausdorff distances for the unperturbed case
are below 0.02, but only 42.5% of the distances for the perturbed case fall below this threshold. There is
improvement when edge swap is used: 100% of the Hausdorff distances for the unperturbed case and 98.5%
for the perturbed case are lower than 0.02.

The striking difference comes in the comparison of the 4k meshes to the polygonal meshes. As illustrated
in Figure 3.19(c) the Hausdorff distances for CVT mesh with no splitting, restricted splitting, and unrestricted
splitting are lower and the distribution is tighter than for the 4k meshes. The random polygonal element
meshes behave similarly to the CVT meshes in this study, as shown in Figure 3.19(d). Although, because of
the presence of small edge, the distribution for each case is larger than those of the CVT meshes.

3.3.4 Summary of geometric studies

Table 3.2 summarizes the findings of three geometric studies for the four types of meshes investigated (i.e.
4k, perturbed 4k, CVT polygonal, random polygonal) with two types of adaptivity operators (i.e. edge
swapping on the 4k meshes and element splitting on the polygonal meshed). The polygonal meshes with
element splitting are shown to be superior to 4k meshes with nodal perturbation and adaptive edge-swap
operators in geometric studies. However, because we hypothesize numerical difficulties associated with the
critical time step when small edges are present, we cannot yet make a conclusion as to the applicability of
the element in a dynamic fracture setting. Thus, in the next section we evaluate the performance of each
type of polygonal element on a benchmark dynamic fracture problem.

3.4 Numerical Investigations

In this section, we perform numerical fracture simulation investigations of the two types of polygonal element
discretizations with and without element splitting. We use the benchmark Compact Compression Specimen
(CCS) problem for which published numerical and experimental results exist.
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Figure 3.19: Histograms of Hausdorff distances for radial paths from 0

� to 359

� at 1

� increments for (a)
unperturbed 4k mesh with and without edge swapping, (b) perturbed 4k meshes with and without edge
swapping and (c) CVT polygonal mesh with and without element splitting, (d) random polygonal mesh with
and without element splitting; results for the 4k discretization are obtained from one mesh, while the results
from 100 meshes are averaged for each the perturbed 4k and polygonal discretizations
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Figure 3.20: Schematic of Compact Compression Specimen (CCS) problem, the expected crack pattern
from [4] is shown in blue

3.4.1 Compact Compression Specimen

The CCS specimen is chosen for numerical investigation because (1) the curved domain is readily meshed
with polygons, and (2) the expected crack is curved and could not be captured fully by a structured mesh.

3.4.1.1 Description of problem

A schematic of the problem with the geometry, applied loading, and expected fracture path is shown in
Figure 3.20. In the original experiment, the specimen was impacted with a Hopskins bar at the location
that the velocity load is applied in Figure 3.20. However, to avoid the additional contact formation that
would have been needed to simulate the bar, we opt to apply the velocity load directly to the specimen. The
PMMA material is modeled with an elastic modulus of 5.76 GPa, a Poisson’s ratio of 0.42 and a density of
1180 kg/m3. The fracture properties are adopted from the work of Paulino et al. [88]. For both mode I and
mode II the cohesive strength is 129.6 MPa, fracture energy is 352.3 N/m, and the shape of the softening
curve is nearly linear.

3.4.1.2 Mesh generation

The domain was meshed with both random ad CVT polygonal elements. The following sections detail the
construction of each.

Random polygonal element mesh

The random polygonal element mesh on the CCS domain was constructed in stages to achieve the necessary
level of refinement near the notch tip and at the load application location. A total of 10,000 seeds were
places throughout the domain. The Polymesher code was utilized and adapted for the random polygonal
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elements. The domain was first defined as a series of rectangular and circular domains using the union and
intersection commands available in Polymesher.

First, approximately 5% of the seeds are placed within a small radius of the notch at a minimum distance
apart. Then we begin to move away from the notch and increase the minimum spacing between seeds. 10%
of the total seeds are placed within a slightly larger radius of the notch, then another 30% are placed in the
third radius around the notch. 10% of seeds are inserted in a rectangular region new the load application
location, and 8% of seeds are placed along to boundary of the notch to ensure it is properly resolve. The
remaining 37% of elements are placed throughout the domain at least the critical minimum distance apart
(the final minimum distance is larger than any of the previous minimum distances). An alternative approach
would have been to use a density function to control the placement of the mesh seeds, as was done for the
CVT mesh generation in the next section.

Care also needed to be taken on the boundaries of the domain. At the straight portions of the boundary,
the elements are simply cut to match the boundary. Near the curved edges, especially at the notch tip, nodes
that fell outside/inside the curved boundary were adjusted such that they landed exactly on the boundary.
This adjustment was mostly avoided thanks to the fine mesh resolution at the notch tip.

The final mesh consists of 10,000 linear polygonal elements with 20,200 nodes. The distribution of element
type and edge size is shown in Table 3.3.

A coarser mesh was not used with the random polygonal elements for two reasons: (1) meshing around
the small notch with the random polygonal elements was difficult, dozens of meshes were generated, and
many points around the notch would have needed to be manually adjusted which is undesirable since the
fracture is expected to initiate from this location, (2) Large irregular shaped elements, such as those that
result from the random polygonal mesh generation featured elements with large edges (potentially larger
than those of the CVT mesh) and fracture initiation may not happen because the stress would need to build
up more than is physically reasonable.

CVT polygonal element mesh

The CVT discretization of the CCS domain was generated using the Polymesher software [148]. As for the
random mesh, the domain was was defined by a series of rectangle and circles with the union and intersection
functions. Rather than using a constant density seed density throughout the domain, we defined a density
function to concentrate nodes at the notch tip. Use of the density function results in a mesh with smooth
transitions between the fine mesh of the notch and coarser far field mesh, as illustrated in 3.22. Because of
the small size of the elements around the notch tip and the nature of the CVT algorithm, little adjustment
was needed to ensure the nodes remained on the boundary. The Lloyd’s algorithm tolerance was set at 5e-6.
The final mesh contains 6,000 elements and 11,702 nodes. Other pertinent statistics can be found in Table
3.3. The same mesh is used for the numerical studies with and without element splitting.

From Table 3.3, we notice an important difference between the CVT and random meshes. Iterations of
Lloyd’s algorithm make elements tend towards hexahedron whereas there is no apparent element preference
in the random mesh. While it is not entirely accurate to compare edge sizes (because the random mesh
has more elements) it is worth noting that in order to obtain a random mesh where fracture initiated, the
smallest element size is much smaller than that of the CVT mesh. This is directly related to the time step
and stability requirement, which will be be discussed in more detail in Section 3.4.2.
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(a) (b)

(c) (d)

Figure 3.21: Random polygonal element mesh of CCS domain (a) full domain, (b) zoom in of red region
indicated in subfigure (a), (c) zoom in of blue region indicated in subfigure (b), (d) zoom in of green region
indicated in subfigure (c)
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(a) (b)

Figure 3.22: CVT polygonal element mesh of CCS domain (a) full domain, (b) zoom in of red region indicated
in subfigure (a)

Table 3.3: Summary of mesh statistics for the CCS problem

Random CVT
Number of nodes 20,200 11,702
Number of elements 10,000 6000

3-sided elements 1.4% 0%
4-sided elements 11.1% 0.5%
5-sided elements 26% 20.1%
6-sided elements 29.5% 73.1%
7-sided elements 19.5% 6.3%
8-sided elements 8.6% 0%
9-sided elements and up 3.9% 0%

Minimum edge size 0.01 µm 6.0 µm
Maximum edge size 3.5 mm 5.5 mm
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3.4.2 Simulation results

The results for the each polygonal element on the CCS domain are shown next. While the geometric studies
suggested that unrestricted element splitting on either mesh type will lead to the best fracture pattern, the
simulation results reveal that practical considerations necessary to make the problem tractable prevail.

3.4.2.1 Results on random polygonal element mesh

The random polygonal elements performed very well in the geometric studies, however the same cannot be
said for their performance on an actual numerical simulation. The mesh contains elements with small edges,
which resulted in time step restrictions that made the simulation nearly untenable. Many random meshes
were generated and used to perform the simulation, however the results for each were similar: numerical
instability occurred at some point during the simulation due to the small edge size.

For demonstrative purposes, we show a partial result here. The full wall time would have been nearly
96 hours, however the simulation was not actually completed because of numerical instability encountered
around 72 hours computational time. Results at the early stages of fracture are shown in Figure 3.23. The
red facets show where cohesive elements have been inserted. It should be noted that these elements are
not necessarily open cracks as many of the elements are still in the softening region of the PPR traction-
separation relation. The crack begins in the expected location and propagates appropriately. There are
several cohesive elements inserted shortly after crack nucleation, suggesting that the stress is building up
but the crack cannot progress beyond the softening stage. Eventually, the crack passes the region where
many elements are inserted, however, the direction begins to diverge from that which is expected based on
the previous experiment and numerical results. The expected curvature is not present, so the crack can no
longer propagate. However, stress continues to build up triggering the activation of more cohesive elements.
The separation of excessive cohesive elements and the time step restriction results in numerical instability
shortly after the image shown in Figure 3.23(b).

We chose not to move forward with the random polygonal element mesh with unrestricted or restricted
element splitting. After several attempts at performing the simulation with element splitting on many
different random meshes, the problem became unstable too quickly because of the presence of ill-shaped
elements, which cause too much restriction on the time step. Since the results without splitting already took
so long, adding splitting and further reducing the time step was not practical.

Future development using the random polygonal elements could lead to more practical meshes. For
example, the minimum radius between element seeds could be increased which would lead to more regular
elements. However, this was not pursued in this work because the CVT mesh provided an excellent alternative
given the existence of the mesh generation software.

3.4.2.2 Results with CVT polygonal element mesh

The CVT polygonal element mesh did not perform as well as the random mesh for the cases of no splitting
and restricted splitting, however the regularity of the elements makes them more successful in the CCS
numerical simulation. First, we present the result without splitting in Figure 3.22. Unlike the random mesh,
the CVT mesh did not pose great restrictions on the time step, so the wall time for the simulation was much
more reasonable. Additionally, the lack of small edges protected against numerical instability. While the
simulation executed successfully, the final result is not ideal. When comparing the result without splitting to
the accepted numerical results in the literature, we see a clear lack of curvature in a couple of locations. Due
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(a)

(b)

Figure 3.23: Crack patterns of CCS problem with random polygonal element mesh at (a) 64.02 µsec and (b)
(a) 65.31 µsec
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Lack of 
curvature 

Figure 3.24: Fracture pattern on CCS mesh (zoomed in near the notch tip) with the CVT polygonal element
mesh without element splitting

to the lack of available directions at each node, the crack could not turn in the direction needed. Moreover,
the crack pattern is rather jagged especially as the crack propagates away from the notch tip and into the
region of coarser elements. we can clearly see how allowing the element to split would improve the curvature
and overall crack path. Thus, we move forward with the CVT mesh with adaptive element splitting.

The CVT mesh with restricted adaptive element splitting result is shown in Figure 3.25. Recall that
restricted splitting means that the element can only be split with the node that reduces the difference in
areas between the two resulting polygonal elements. Unlike the case without splitting, we see the appropriate
curvature in the final crack pattern. The crack is also smoother in the region of coarser elements. We also
see some additional softening and micro-cracking near the tail of the crack. It is important to note that
the time step did not need to be adjusted for the restricted splitting case because the element sizes do not
change greatly from the no splitting case.

Finally, we investigate the CVT with unrestricted splitting; the polygonal element can be split along
any node. The result shown in Figure 3.26 is clearly different than that of restricted splitting even though
the base mesh is identical. We postulate that this difference could be due to the fact that the order in
which facets are visited when unrestricted splitting is enabled is different than when splitting is restricted.
Numerical variations will accumulate as quantities are gathered in different orders, which could explain the
difference. This concept is further explained and demonstrated later in this document in Section 5.4, where
we employ parallel computing and can investigate these numerical variations with great efficiency.
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Figure 3.25: Fracture pattern on CCS mesh (zoomed in near the notch tip) with the CVT polygonal element
mesh with restricted element splitting
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Figure 3.26: Fracture pattern on CCS mesh (zoomed in near the notch tip) with the CVT polygonal element
mesh with unrestricted element splitting

Besides the numerical variation, the additional crack directions greatly contributes to the different fracture
pattern. The expected curvature and smooth fracture pattern is present in this result. However, the results
presented was the outcome of several simulation attempts. The unrestricted splitting poses some restriction
on the time step that can lead to numerical instability. Unrestricted splitting may not be computationally
practical. Based on the observations in the geometric and numerical studies, we suggest that the CVT
polygonal elements with restricted element splitting achieve a good balance between improvement to results
over the no splitting case and practicality of the simulation over the unrestricted splitting case.

The use of polygonal elements for dynamic fracture simulation have shown to be very promising. Several
future research directions could be proposed using this work as a start. One extension that utilizes the
element splitting on an adaptively refined CVT mesh was already investigated in [89].

Inspired by the remeshing concept of the previous chapter, local remeshing of the CVT mesh could be
explored. Given the crack direction a region around the current crack tip could be remeshed with polygonal
element such that the facets ahead of the crack tip align with the crack direction. The results in this section
also brought up issues related to the critical time step imposed by the explicit time stepping scheme. Thus,
and additional area of future work would involve incorporating a time step sub-cycling scheme with the
polygonal elements. Please see Sections6.2.3 and 6.2.5 for more details about these potential future research
directions.
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Chapter 4

Adaptive refinement and coarsening on

structured 3D meshes

In order to model the failure of large quasi-brittle systems, fully three-dimensional simulations must be
conducted. Certain physical effects, for example, out of plane stresses and strains, cannot be faithfully
captured with a two dimensional model. Since the ultimate goal of this research is to enable predictive
failure simulation, we move to three dimensional finite elements. However, the computational storage and
cost increases dramatically when a simulation is extended into three dimensions, thus adaptive schemes
become imperative to make the problems computationally tenable.

As indicated in the previous chapter, the 4k mesh in 2D admits some bias, and the same will be the case
for 3D. However, in the interest of making large scale simulations feasible, the first efforts will be focused on
reducing computational cost through an adaptive mesh refinement on the 3D 4k mesh.

4.1 4k structured meshing in three-dimensions

We utilize the 3D extension of the so-called 4k mesh discretization. The 2D version of this mesh was utilized
in the previous chapter for comparison to the 2D polygonal element mesh for dynamic fracture applications.
Here we investigate the 4k mesh, which is well suited for adaptive mesh refinement and coarsening because
of its hierarchical structure.

The 3D 4k mesh is essentially a mesh of hexahedra discretized into 24 tetrahedron, as shown in Figure
4.1. Further subdivisions of the element results in hexahedron of six and 12 tetrahedron. This subdivision
is illustrated in Figure 4.2. First we begin with one hexahedron divided into six tetrahedron (Figure 4.2(a)),
then the six elements are split along the interior edge (as illustrated in Figure 4.3) which results in 12
tetrahedra per hexahedron (4.2(b)). Next, the diagonal edges on the outside of the hexahedra are split
resulting in 24 tetrahedra per hexahedron (4.2(c)). The next subdivision changes the single hexahedron to
2x2 hexahedron each subdivided into six tetrahedra (4.2(d)), then the same process repeats (4.2(e)-(f)). In
this process each discretization has an associated level as shown in Figure 4.2, which contains Levels 0-5. A
refined mesh on a grid can be created very quickly by simply specifying the number of hexahedra in each
direction, then the level of subdivision per hexahedra. Notice that a level of refinement above 2 will increase
the number of underlying hexahedra. For example, if a grid of 10x10x10 hexahedra is specified at level 6,
then the resulting mesh will contain 384,000 tetrahedra finite elements (40x40x40 underlying hexahedron
each comprised of 6 tetrahedra finite elements). This procedure of subdividing the mesh is exactly the
procedure utilized for adaptive mesh refinement and the reverse is used for adaptive mesh coarsening, which
will discussed in detail later in this chapter.

The number of elements in the mesh increases exponentially with additional levels of refinement, and the
rate of increase in the 3D mesh is much greater than that of the 2D mesh, as shown in Figure 4.4. This
growth in number of elements motivates the adaptive mesh refinement scheme. A relatively coarse mesh
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(a) (b) (c)

Figure 4.1: 4k mesh constructed by subdividing a hexahedron into 24 tetrahedra (a) each of the 6 faces of
the hexahedron is divided into 4 tetrahedra (b) exploded view of each face of the hexahedron (c) exploded
view of one face of the hexahedron contains 4 tetrahedra

would be used throughout the domain (i.e., far field regions), then regions with high displacement gradients
(i.e., at crack tips and near application of external loads) would be refined. Then as the cracks propagate,
regions that no longer need a fine discretization can be coarsened.

4.2 Implementation of adaptive cohesive fracture with the TopS

data structure

The use of mesh adaptivity requires on-the-fly mesh modification during the simulation. In order to handle
these mesh modifications, the present work uses the consistent topological data structure, TopS [162, 163],
which allows for efficient modifications to the adjacency relations on an as-needed basis. Adjacency infor-
mation is retrieved and cohesive elements are dynamically inserted in time proportional to the number of
entities retrieved/inserted.

4.2.1 Finite element mesh representation using TopS

Node and element entities are explicitly stored in memory, while edges, vertices, and facets are implicit
entities. From the application point of view, there is no difference between implicit and explicit entities as
they are accessed in the same way. TopS is a complete topological data structure, meaning that from any
entity, the adjacency of all entities can be determined (e.g. from a given node all adjacent nodes, elements,
facets, edges, and vertices can be found). Additional entities, called “uses”, are oriented and indicate the use
of an edge, vertex or facet by an element. The entity definition and storage used in the TopS data structure
makes it applicable for both 2D and 3D mesh representation. Several finite elements are supported by TopS,
including classic elements (e.g., linear and quadratic triangles and quads, linear and quadratic tetrahedron
and bricks, etc.) and 2D linear polygonal elements that may contain any number of nodes. It should be
noted that edges and facets are equivalent and nodes and vertices are equivalent in 2D. Linear and quadratic
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Levels of refinement on a unit cube, each increase in level doubles the number of linear tetrahedral
elements from the previous level. (a) Level 0 - 6 elements, 8 nodes, (b) Level 1 - 12 elements, 9 nodes, (c)
Level 2 - 24 elements, 15 nodes, (d) Level 3 - 48 elements, 27 nodes, (e) Level 4 - 96 elements 35 nodes, (f)
Level 5 - 192 elements 71 nodes (Note that on the exterior level 0 looks identical to level 1, and level 3 looks
identical to level 4 because the splitting occurs on the interior edges as illustrated in Figure 4.3)
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(a) (b) (c)

Figure 4.3: Subdivision of hexahedron from 6 to 12 tetrahedra (a) the six element hexahedron is subdivided
along the interior edge, show as a dashed line (b) a single tetrahedron is isolated and the edge upon which
it will be split is shown by the dashed line (c) new tetrahedra resulting from splitting
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Figure 4.4: Rate of increasing in mesh size for a 2D vs. 3D mesh when all elements in the mesh are refined
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Figure 4.5: Schematic of the client-server approach between the TopS API and the application

cohesive elements are also supported by TopS. The cohesive element is chosen such that it is compatible
with the bulk finite elements.

The Tops data structure can be thought of as a server that is invoked by a client application, which in
this case, is the explicit dynamic finite element analysis engine and fracture code. While the data structure
contains all of the information about finite element mesh geometry and topology, it is completely decoupled
from the client code, so it does not contain any information about the kinematics, mechanics or physics of
the problem. Communication between the server and client is critical and is achieved through the TopS
application programming interface (API) and callback functions. The client application calls the server
through the API functions; for example, the application can add a node to the model by calling API function
topModel_InsertNode. When a node is added, updates to the geometry and topology will be handled by
TopS, but the client application will also need to make updates such as interpolating the nodal displacement
from existing nodes to the new node. The client is notified of these changes through a callback function
which TopS calls during the insertion of a new node. The callback function is implemented in the client code,
giving the developer complete control of what needs to be done when the mesh is modified. A schematic of
the client-server approach is shown in Figure 4.5.

The unoriented mesh entities are equipped with attributes, which are simply void pointers. The client
application may initialize and assign quantities to these attributes as needed. For example, nodal attributes
contain displacement, velocity, mass, etc. and are attached to the topological nodal entity. Thus, when the
client application accesses an entity through the TopS API function, it can also access its attribute and read
or modify the data.
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Figure 4.6: 3D view of crack front, cohesive elements are shown in blue and red, where the red elements are
crack tip elements; the crack tip nodes, un-duplicated nodes on cohesive elements are indicated in red

4.2.2 Automatic crack tip tracking

In the simulation of fracture in 3D, it is necessary to keep track of the crack front. The definition and tracking
of crack tips are essential for the adaptive mesh refinement and coarsening strategy developed in this work.
We use the a priori assumption that regions around crack tips (i.e. regions of high gradient of the primary
field) must be the finest in the simulation [158]. Thus, by tracking the crack tips we are implicitly defining
the regions that must be refined and those than may be coarsened throughout the simulation. The crack
front is defined as cohesive element nodes that are not duplicated. In Figure 4.6, for example, the crack tips
are indicated by the white nodes, which are the the unduplicated nodes of the crack front cohesive elements
in red. Elements whose centroid fall within a spherical regions of a user-defined radius around the crack
tips are subdivided until a user-defined level of refinement is reached (see Section 4.4 for more details on the
refinement scheme). The example in Figure 4.6 contains seven crack tip nodes, thus it would contain seven
regions of refinement. The crack progresses by duplicating nodes on the cohesive elements. Once duplicated,
a node is no longer a crack tip, then the refinement region associated with it is destroyed, and the region may
be coarsened. All of the nodes on the cohesive elements shown in blue in Figure 4.6 have been duplicated,
thus none of them are crack tips elements around them may be coarsened (see Section 4.5 for more details
on the coarsening scheme). Figure 4.7 shows an example of the active and inactive refinement regions,
where elements outside the active refinement regions elements may be coarsened. Notice that elements near
the cohesive elements are not fully coarsened. In order to avoid transfer of interval instate variables and
coarsening of the crack path, we do not coarsen out cohesive elements in this work. Therefore, to maintain
mesh compatibility, it is necessary to have a transition zone between the refined cohesive elements and coarse
bulk elements, which is shown in Figure 4.7(b).

Given our definition of the crack tips, we track the crack front in the dynamic problem with the 3D 4k
refinement manager of the TopS data structure. Essentially the refinement manager stores the nodal location
of crack tips and allows the application code to refine or coarsen the mesh based on the regions defined by the
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Refinement region associated 
with indicated node 

Region is not coarsened due 
to presence of cohesive 
elements 

(a)

(b)

Figure 4.7: Active and inactive crack tip regions identified by the ToPS refinement manager (a) All crack
tip nodes have an active spherical region of refinement associated with them and any region outside the
refinement regions is inactive and coarsened as much as possible. Regions around cohesive elements will
never be fully coarsened because cohesive elements stay at the most refined level and bulk elements around
them must transition from fine to coarse. (b) Resulting mesh with refinement regions only at the crack tips
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crack tips. The application creates the refinement manager, which will be associated with the TopS model
(i.e. the finite element mesh), and enables crack tip tracking using the appropriate API functions. Then, it
registers the call back functions described below, which are necessary for automatic crack tip tracking. The
C implementation of the callback functions is given in Appendix B.

• topRefinement4K3D_SetMustCreateRegionCb

– This callback function is invoked when a crack tip node (i.e unduplicated node on a cohesive
element) is identified by TopS. The application notifies TopS if a refinement region should be
created for this node. If so, the application assigns the refinement radius and level (e.g. smallest
element size).

• topRefinement4K3D_SetNodeCb

– Whenever a new node is inserted due to refinement this callback function is called so that the
application code can add the node to the model and appropriately handle the transfer of data
from the existing nodes to this new one. See Section 4.4.3 for more details on the insertion of new
nodes into the model.

• topRefinement4K3D_SetMustDestroyRegionCb

– This callback function is called when a previous crack tip node is duplicated, thus it is no longer
a crack tip. The application indicates to TopS whether the refinement region associated with the
node may be destroyed or not.

• topRefinement4K3D_SetCanCollapseNodeCb

– If a previously refined node lies outside of an active refinement region it may be removed and its
adjacent elements coarsened. In this callback function, the application notifies TopS if the node
may in fact be removed. See section 4.5.3 for details on the criteria to coarsen a patch of elements.

• topRefinement4K3D_SetMergeElemCb

– This callback function is invoked when a node has already been marked for removal in the topRe-
finement4K3D_SetCanCollapseNodeCb callback. Here, the application handles transferring data
from the old, refined nodes and elements to the new, coarse ones. See section 4.5.3 for details on
the transfer of data between the fine and coarse mesh.

The automatic crack tip tracking can only occur when cohesive elements are inserted. Thus, after a co-
hesive element is inserted, the application is responsible to update the mesh by calling the TopS API
functions topRefinement4K3D_UpdateMeshCoarsening and topRefinement4K3D_UpdateMeshRefinement.
These functions activate the crack tip tracking and refine and coarsen the mesh as indicated by the applica-
tion’s responses to the callback functions listed above.
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4.2.3 Numerical implementation

The explicit dynamic extrinsic cohesive fracture framework is implemented in the C programming language.
The TopS source code is implemented in C++, however the API is available for C/C++ applications.
Although this type of application is well suited for an object-oriented framework, the current version is non-
object oriented (as evident by the use of the C programming language). However, the code uses structures
heavily so that a list of variables is stored on the same block of memory and accessed through a single
pointer. The structures are primarily used to store attributes of model entities, i.e. node attribute, bulk
element attribute, cohesive element attribute. For example, the nodal attribute holds information such as
the nodal mass, displacement, velocity, acceleration, stresses, strains, force vectors, and various flags. The
application code allocates space for attributes when the associated entity is added to the TopS model. Then
the attribute is initialized and attached to the TopS model. When an entity is removed from the model, the
application is responsible for destroying the attributes and freeing the memory allocated for them. Since
the models become quite large in 3D the memory demands are quite high, thus memory must be used
conservatively and responsibly (e.g. all allocated memory is freed such that no memory leaks are present).

The serial application code is outlined in Algorithm 1. The first eight lines of the code are associated
with allocating space, initializing variables, and building the model. Similarly, the last three lines are related
to destroying the allocated memory. The majority of the application code is contained inside the while loop
shown from lines 10-37 in Algorithm 1. This is the numerical implementation of the Central-Difference time
integration scheme discussed in Section 3.1.1 of the previous chapter. We will focus on the crack propagation
and resulting mesh modification portion of the code, which is contained to lines 12-30 in Algorithm 1.

The user specifies the increment at which cohesive elements may be inserted. For most of our applications,
we allow cohesive elements to be inserted every 10 steps based on the recommendation in [153]. When
one of these increments is reached, the activation criteria for insertion of cohesive elements is evaluated.
Strength criteria is most often utilized for quasi-brittle fracture applications as this is physically relevant
and straightforward to implement. The stress criteria we have implemented here is implemented in the same
way as it was for the 2D investigation of the previous chapter. Inserting cohesive element changes the mesh
topology and requires transfer of field variables. To avoid successive and expensive changes to the mesh, we
first gather all of the facets that meet the activation criteria in a particular step, then revisit those facets to
insert cohesive elements. In this way, all of the mesh changes are made after the evaluation of the activation
criteria. The insertion of cohesive elements begins a series of call back function calls, during which TopS
changes the topology to reflect node duplication and the application transfers necessary data to keep the
physical model consistent. More details on the callback functions for the insertion of cohesive elements can
be found in Section 4.3. After cohesive elements are inserted, the application signals TopS to detect crack
tips and coarsen and refine the mesh appropriately. Sections 4.4 and 4.5 have the detailed information on the
call back and API function calls that occur after new crack tips are detected for refinement and coarsening,
respectively. Finally, once the mesh topology is updated and field variables are transferred as needed, the
mass and stiffnesses of the new mesh entities are computed. The dynamic time integration loop is then
completed and proceeds to the next step until the maximum number of steps is reached.

4.3 Adaptive insertion of cohesive elements in 3D

Numerical implementation of the extrinsic cohesive zone model requires that cohesive elements are inserted
on an as-needed basis, thereby dynamically changing the number of elements, nodes, and connectivity in
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Algorithm 1 C Implementation of adaptive cohesive fracture code

1 Create and i n i t i a l i z e TopS model and model a t t r i bu t e
2 Read input f i l e
3 Build model
4 Create Refinement Manager
5 Reg i s t e r c a l l back func t i on s f o r i n s e r t i o n o f cohe s i v e e lements
6 Reg i s t e r c a l l back func t i on s f o r mesh re f inement
7 Reg i s t e r c a l l back func t i on s f o r mesh coar s en ing
8 Enable crack t i p t rack ing
9

10 While cur rent s tep < max s t ep s
11 Update d i sp lacements
12 I f s tep = number o f s t ep s to check i n s e r t i o n o f cohe s i v e e lements
13 Compute s t r e s s at nodes
14 I f p r i n c i p l e s t r e s s > 90% of cohe s i v e s t r ength
15 Flag node
16 End I f
17 For each f l a gged node
18 Compute normal s t r e s s a long adjacent f a c e t s
19 I f normal s t r e s s > normal cohe s i v e s t r ength
20 I n s e r t cohe s i v e element ( See s e c t i o n 4 . 3 )
21 End
22 End For
23 I f c ohe s i v e e lements were i n s e r t e d
24 Update mesh coar s en ing ( See s e c t i o n 4 . 5 )
25 Update mesh re f inement ( See s e c t i o n 4 . 4 )
26 Calcu la te s t i f f n e s s and mass matr i ce s o f new elements
27 Calcu la te mass o f new nodes
28 Apply boundary cond i t i on s to new nodes
29 End I f
30 End I f
31 Compute i n t e r n a l f o r c e vec to r
32 Compute cohe s i v e f o r c e vec to r
33 Update v e l o c i t i e s and a c c e l e r a t i o n s
34 Compute energy
35 Update boundary cond i t i on s
36 Write output
37 End While
38
39 Disab le crack t i p t ra ck ing
40 Destroy re f inement manager
41 Destroy model and model a t t r i b u t e s
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Figure 4.8: Nodes are flagged (shown in red) when the principle stress exceeds 90% of the cohesive strength
of the material, then adjacent edges (shown in dashed blue) are visited and stresses along them are computed
to determine if a cohesive element should be inserted

the mesh [152, 179]. Without an efficient way to manage the changing mesh, the computations associated
with large scale adaptive, dynamic failure simulation would quickly become untenable. Thus, the TopS data
structure was designed to provide efficient retrieval and modification of mesh entities [163].

Insertion of cohesive elements involves duplicating the nodes of the adjacent bulk elements and adding
interface elements to the mesh. However, all adjacent nodes are not necessarily duplicated, so a systematic
procedure for determining which nodes to duplicate is necessary. The systematic procedure described in [163]
will be explained here by example . Consider the portion of a 3D mesh shown in Figure4.9(a), where a
cohesive element is inserted at the facet between the red and blue elements. In figure 4.9(b) the mesh has
been pulled apart to show the relevant oriented and unoriented entities. The facet, labeled f1 in Figure 4.9(b)
is bounded by the purple dashed edges. When the cohesive element is inserted, the adjacency information
is updated accordingly and E1 and E4 are no longer adjacent. Through this example, we will determine if
edge 1, labeled e1, should be duplicated.

Start by examining the first interfacing element to the new cohesive element, labeled E1. Next, access
this element’s interfacing facet-use, which is labeled fu 1(1). The first integer in the label is the facet-use
number of the element (each brick element has six facet uses) and the integer in parentheses corresponds to
the element number to which the facet use belongs. So, fu 3(2) would be facet-use 3 on element 2. Then,
from fu 1(1), obtain the first edge-use labeled eu 1(1). From this edge-use, all other uses of the same edge,
i.e., eu(4)2, eu(3)3, and eu(2)4, are obtained through a local search of edge-uses associated with fu(1)1 [162].
The elements associated with each of these edge-uses are visited. If element, E4, is not reached, then edge 1 is
duplicated. However, in this cace, E4 is reached, so the edge is not duplicated. Clearly if e1 was a boundary
edge or if elements adjacent to it were already separated, then it would be duplicated. This procedure is
carried out for all other edge-uses of fu1 to determine if the remaining edges of f1 need to be duplicated. An
analogous procedure is carried out for node duplication. We rely on this node duplication for the definition
of the crack tip in fracture simulations. A crack tip is identified as an unduplicated node on a cohesive
element.

Using the procedure described above, Paulino et al. [163] have demonstrated that cohesive elements
are dynamically inserted in time proportional to the number of entities inserted. Moreover, adjacency
information is retrieved in proportional time.
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Figure 4.9: Insertion of a cohesive element in a 3D mesh (a) cohesive element is inserted at the purple facet
between the blue and red elements, (b) mesh is blow up and entities separated

Before the simulation begins, the application registers the node duplication call back function (see Algo-
rithm 1), which is called by TopS each time a node is duplicated. Inside the callback function the new node
is assigned a nodal ID, and the attributes from the original node are simply copied to the new node. Any
unduplicated nodes on cohesive elements are identified the by refinement manager as potential crack tips
around which the mesh may be adaptively refined.

4.4 Adaptive mesh refinement

Adaptive mesh refinement greatly reduces the computation storage and processing time requirements for the
dynamic fracture simulation. We address the main geometric and physical aspects of adaptively refining the
3D 4k mesh and detail the numerical implementation into the application code.

4.4.1 Geometric aspects of adaptive mesh refinement

Given a point in space and radius, all elements whose centroids fall within the sphere are refined to a level
specified by the client application. The maximum level of refinement may be set at the time the refinement
region is created by the TopS refinement manager, however for this work we utilize a constant minimum
level of refinement for all regions. The algorithm for refinement consists of inserting a node a the mid point
of the longest edge of an element, then dividing all adjacent elements with their existing nodes and the
newly inserted node. Depending on the configuration of the mesh, splitting an edge may result in 2, 4, 6,
or 8 adjacent elements being split. As shown in Figure 4.10(a), when the hexahedra contains 6 elements,
the longest edge is the interior edge, and when it is split 6 adjacent elements are split. For the case of 12
elements per hexahedra, as shown in Figure 4.10(b), the longest edges are the diagonals on the outside of
the hexahedron. Notice that if the hexahedron is on the boundary then only 2 elements will be split, but if
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Figure 4.10: Splitting along longest edge in a patch

the hexahedron is internal to the mesh, then 4 elements will be split. Finally, if the hexahedron contains 24
elements, the longest edges are the edges of the hexahedron. Notice that if the edge is internal to the mesh,
then 8 elements will be split. If the edge is on a boundary face of the mesh then 4 elements will be split,
and if the edge is a boundary edge of the mesh then only 2 elements will be split.

A transition region between the fully refined elements to coarse elements ensures that the mesh maintains
its conformity. Figure 4.11 shows a sample mesh where adaptive refinement has been applied at the center
node to level 11. The elements that fall within the refinement radius are fully refined and shown in red. The
coarse outside the region remain at level 0 and are shown in grey. The transition region maintains conformity
between the fine and coarse elements and is shown in blue.

4.4.2 Implementation of adaptive mesh refinement with the TopS data
structure

Each time a cohesive element is dynamically inserted to the mesh, the crack tips location change and the
discretization of the problem must be changed accordingly. As described in Section 4.2.2, the application
code utilizes the crack tip refinement manger of TopS to automatically track crack tips.

A flow chart of the procedure is shown in Figure 4.12 and it will be described here. After inserting
cohesive elements and updating mesh coarsening (see Section 4.5), the application calls the TopS API function
topRefinement4K3D_UpdateMeshRefinement to identify the new crack tips and potentially refine the mesh
around them. TopS calls Callback_CrackTipRefine, which is implemented in the client application, and
passes the location of a potential new crack tip. The application code notifies TopS if the region around this
node should be refined. In the present implementation, the client confirms that all potential crack tip nodes
are in fact crack tips, and allows refinement about all of them. After the client confirms that a node is a crack
tip and should be refined, then TopS makes the geometric and topological changes to that region of the mesh.
In doing so, TopS creates new elements and new nodes then calls Callback_InsertNode so that the client
can update the field quantities as described in section 4.4.3. TopS passes the new node and its nodal data to
the client application to Callback_InsertNode, which is implemented in the client application. Inside the
client application the new node is assigned a node ID, then the elements adjacent to the node are gathered
using the iterator, topNodeElemItr. These elements will also be newly added to the mesh (for the case of
the Tetra 4 elements), so they are assigned element IDs. For each new element, the client application saves
its parent element, i.e. the old element that was divided to get the new element, ignoring duplicates. The
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(a) (b)

Figure 4.11: Mesh refined only in a select region to level 11. The elements that a fully refined to level 11 are
shown in red, the coarse elements at level 0 are shown in grey, and the transition region of partially refined
elements between levels 0 and 11 are shown in blue. (a) All levels (b) Transition region removed

parent elements are utilized to transfer field quantities to the new nodes, which will be described in Section
4.4.3.

4.4.3 Physical aspects of adaptive mesh refinement

Mesh refinement adds new nodes and elements to the finite element model; essentially we are performing local
remeshing. As discussed in detail in Chapter 2, when remeshing occurs care must be taken in transferring
node and element quantities from the old to the new mesh. In the work of this chapter we first concerned
with simulating fracture in quasi-brittle materials where the bulk material model is elastic. Therefore, we
do not have internal state variables in the bulk elements that must be mapped from the integration points
of one mesh to another. We also do not map cohesive zone state variables that live at the integration points
of the cohesive zone element. Mesh refinement is always done before cohesive elements are inserted, and
the maximum depth of refinement is set from the beginning of the simulation, so cohesive elements are
never refined, therefore mapping of their state variables is unnecessary. For more complex material models
or continued refinement, however, internal state variables must be transferred. Therefore, the only variable
that needs to be mapped here are nodal quantities. The state of the bulk material is completely characterized
by the displacement field, so in fact, we only transfer the nodal displacements when new nodes and elements
are inserted.

The nodes of new element’s parent element are used to interpolate the displacement field using the
standard finite element shape functions. A schematic showing the newly created node and elements and
their parent elements is shown in Figure 4.13. The displacement of the white node is interpolated from the
nodes of either of the light grey parent elements (only one of the parent elements is needed). Linear elements
in a 4k grid are used in initial work, so the new nodes are only inserted at the midpoint of edges existing
element edges. Therefore interpolation of new nodal quantities reduces to a simple averaging of the nodal
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Figure 4.12: Flowchart of procedures to perform adaptive mesh refinement
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Figure 4.13: Schematic of refinement showing process, (a) two grey elements are refined by (b) insertion of
new node, (c) grey (parent) elements are deleted new (child) elements are inserted

quantities at the ends of of the edge. However, we chose to keep the implementation general to allow for a
straightforward extension to quadratic 4k elements or even to a non hierarchical refinement scheme.

In addition to transferring nodal data, we also transfer some element level data. Certain element flags
that indicate a state of an element are transferred from the parent to the child element. Boundary conditions
are copied (or interpolated if appropriate) from the parent element to the child element. We also store the
level of refinement of elements; the child’s level of refinement is simply one level greater than the parent’s
level. Finally, the stiffness and mass matrices for the new elements are calculated, and new element mass
matrices are used to compute the nodal masses.

4.5 Adaptive mesh coarsening

Additional computational savings are earned when adaptive mesh coarsening is included in the dynamic
fracture simulation. We address the main geometric and physical aspects of adaptively coarsening the 3D
4k mesh and detail the numerical implementation into the application code.

4.5.1 Geometric aspects of adaptive mesh coarsening

Once a crack tip advances, the refinement region associated with the node is destroyed and the elements
associated with it are eligible for mesh coarsening. So essentially, any element that is no longer with a
radius of refinement of a current crack tip is eligible for coarsening. Just as refinement was conducted in a
level-by-level approach, coarsening is done the same way, but in reverse. Coarsening begins with elements
at the highest level of refinement and moves down one level of refinement at a time. Coarsening checks will
continue level-by-level until the elements reach refinement level 0 or until they no longer meet the criteria
for mesh coarsening, which will be discussed in the next section. Due to stringent physical requirements
on the activation of mesh coarsening, it is quite rare that a will a patch of elements actually be coarsened
down to level 0. Elements are coarsened by removing nodes. Depending on the configuration of a patch of
elements, a node may have 4, 8, 12, or 16 adjacent elements. Each of these configurations is shown in Figures
4.14-4.17,where airs of red and blue elements are shown and are coarsened to green elements. Coarsening a
patch of elements only changes the connectivity internal to the patch, adjacent elements do not need to be
updated if a node is removed.
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Figure 4.14: Case 1 for mesh coarsening: a patch of elements on a boundary is coarsened from (a) 4 elements
to (b) 2 elements by removing the grey node. 2 pairs of red and blue elements are coarsened to 2 green
elements

(a) (b)

Figure 4.15: Case 2 for mesh coarsening: a diamond shaped patch of (a) 8 elements is coarsened to (b) 4
elements by removing the internal grey node. 4 pairs of red and blue elements are coarsened to 4 green
elements
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Figure 4.16: Case 3 for mesh coarsening: a hexahedron of (a) 12 elements is coarsened to (b) 6 elements by
removing the internal grey node. 6 pairs of red and blue elements are coarsened to 6 green elements

(a) (b)

Figure 4.17: Case 4 for mesh coarsening: a diamond shaped patch of (a) 16 elements is coarsened to (b)
8 elements by removing the internal grey node. 8 pairs of red and blue elements are coarsened to 8 green
elements
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4.5.2 Implementation of adaptive mesh coarsening with the TopS data
structure

Adaptive mesh coarsening is activated after cohesive elements are inserted in the mesh. A flow chart
of the procedure indicating the work done by the application code, TopS, and the callback functions
is shown in Figure 4.18. Notice that adaptive mesh coarsening takes place before adaptive mesh re-
finement, as indicated by the grey boxes in Figures 4.12 and 4.18, to avoid refining and coarsening the
same regions many times. After inserting cohesive elements, the application calls the TopS API function
topRefinement4K3D_UpdateMeshCoarsening to identify previous refinement regions (i.e. crack tips) and
release them for coarsening. Tops calls Callback_CanCollapseNode from which the application notifies
TopS if the region can be released for coarsening. In the current implementation, the application releases all
non-crack tip regions for coarsening. However, coarsening will not actually occur unless the patch of elements
meets the coarsening criteria, so there is no harm in physically changing the problem by releasing elements.
Next, TopS calls Callback_CanCollapseNode, and passes the node that could be removed, the patch of
elements that would be coarsened, and the the final coarsened elements (if the coarsening criteria were to
be met). The application code notifies TopS if the node may be removed and elements coarsened using the
strain criteria discussed in Section 4.5.3. Then, TopS makes the geometric and topological changes to that
region of the mesh. In doing so, TopS deletes nodes and elements and calls a callback function for each
operation. In Callback_MergeElements the client copies element data from the old refinement elements to
the new coarse elements, assigns IDs to the new elements, and frees the memory associated with the deleted
elements’ attributes. Then in Callback_RemoveNode the client simply frees the memory associated with the
deleted node’s attribute.

4.5.3 Physical aspects of adaptive mesh coarsening

We adopt a local strain error criteria to determine if a patch should be coarsened [158, 180]. In the Can
Collapse Node callback function, discussed in the previous section, the application computes the strain
on the patch of elements comprised of the refined elements and the coarse elements. To maintain some
computational efficiency, the strain is only computed on the patch and does not take in to account the entire
mesh or larger encompassing region. The error is simply the norm of the difference of the strains, i.e.,

e
patch

= k"
refined

� "
coarsened

k . (4.1)

If the error is less than a user-prescribed tolerance, then the node is removed and the elements are
coarsened. Since the coarsening scheme removes nodes from the model, there is a reduction in the finite
element space and the coarse element representation will not be able to exactly represent the fine field. Thus,
the tolerance level must be chosen carefully, such that too much information is not lost. Parametric studies
to determine appropriate tolerance levels are performed on the numerical examples in Section 4.6.2. In the
interest of gain computational efficiency, we accept some of loss in accuracy due to coarsening, but we ensure
it is reasonable with a carefully selected tolerance.

Since we use linear tetrahedra is this work, it is not necessary to transfer any nodal variables from the
fine patch to the coarse patch, we simply remove the node if the strain error meets the tolerance criteria.
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Figure 4.18: Flowchart of procedures to perform adaptive mesh coarsening
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Figure 4.19: Mesh coarsening results in removal of nodes and replacement of elements. (a) Original, refined
patch of 4 elements, e1, e2, e3, e4 contains 6 nodes (b) Coarsened patch contains 2 elements, E1 and E2,
and 5 nodes
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4.6 Numerical simulations

Next, we investigate two benchmark examples to gain some insight into the 3D adaptive mesh refinement
and coarsening schemes developed in this chapter. Verification of the implementation on problems with
known experimental or numerical results will give confidence that our fracture simulation framework could
be used in a predictive setting. All examples in this chapter were simulated on the Trestles super computer,
which is part of the fleet of XSEDE high performance computing machines. Each compute node contains
four sockets, each with a 8-core 2.4 GHz AMD Magny-Cours processor, for a total of 32 cores per node
and 10,368 total cores for the system. Each node has 64 GB of DDR3 RAM, with a theoretical memory
bandwidth of 171 Gb/s. Before discussing the numerical results, however, we will first discuss some details
related to visualization of the 3D adaptive fracture results.

4.6.1 Post-processing and visualization

Visualization of large data sets is quite cumbersome and is not easily handled by all finite element visu-
alization software, thus it is imperative that appropriate post-processing software is selected. We use the
ParaView software, an open-source multi-platform data analysis and visualization application developed by
Los Alamos and Sandia National Laboratories [181]. Specifically, we use the ParaView Desktop Interface
which is available for multiple operating systems and provides users the means to easily open and visualize
large data sets.

ParaView is equipped with readers for an array of file types from common structural engineering software
kits. Since all of the work in this dissertation is done with user-developed codes, we choose to write our
output in the simple VTK (Visual Toolkit) file format. A useful resource for writing VTK files can be found
in [182].

With the VTK files, we can easily visualize the deformed finite element mesh and any scalar, vector,
or tensor quantity on the mesh nodes or elements. Many element types are supported, and many may be
visualized at the same time. For example, we commonly plot tetrahedron (3D bulk elements) and triangles
(2D interface elements) at the same time. The visualization tools including the slice, clip and threshold are
used frequently to interpret results that would otherwise be impossible to visualize on a 3D geometry. For
example, to visualize the crack pattern, we plot the cohesive elements with a normal separation above a
certain value using the threshold tool.

Even with powerful rendering software, visualization of the mesh refinement and coarsening scheme in
3D can be difficult. To aid in understanding the geometrics and subsequent physical consequences of refining
and coarsening, we 3D printed a number of tetrahedral elements at different levels of refinement, as shown
in Figure 4.20. The elements needed to be represented by the STL file format in order for the 3D printer to
generate the final objects. We used open-source software to generate the STL files, starting from the standard
VTK. From Paraview, the files were exported to the X3D file format and opened in the 3D graphics and
animation software, Blender. From there, they were converted to STL files that were sent to the 3D printer.

4.6.2 Confined crack

The first problem we examine is beam with an initial notch subjected to tensile strain loading. The insertion
of cohesive elements is confined to a single plane, which corresponds to the plane of the initial notch. The
two-dimensional version of this problem was also investigated in [158] for verification of adaptive topological
operators. A schematic of the 3D specimen with the dimensions, loading, and boundary conditions is shown
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Figure 4.20: 3D printed tetrahedra: red - level 2, blue - level 3, orange - level 4, green - level 5, yellow - level
6. The black hexahedron is equivalent to 24 red, 48 blue, 96 orange, 192 green, or 384 yellow tetrahedra.
(a) The black hexahedron with top face removed, the white dashed line indicates the space where one red
tetrahedra would fit. The hexahedron is shown with 2 blue tetrahedra, 4 orange tetrahedra, and 4 green
tetrahedra. (b) A red tetrahedra (level 2) next to pairs of yellow tetrahedra (level 6). (c) The yellow
tetrahedra are oriented, and the left “sides” are pictured; the blue tetrahedra are also oriented, as evident
from their position in (a)
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Figure 4.21: Schematic of confined notched beam subjected to strain loading

in Figure 4.21. The linear elastic bulk material has a modulus of 3.25e9 Pa, Poisson ratio of 0.3, density
of 1190 kg/m

3. The fracture properties are the same in all modes: fracture energy of 352 N/m, cohesive
strength of 324e6 Pa, softening shape parameter of 2, and unloading shape parameter of 1. The specimen is
loaded with a strain of 0.045 in the y-direction, as shown in Figure 4.21, and out of plane deformation (i.e.
z-direction) is restricted.

This problem will give us insight into several aspects of the 3D adaptive framework, namely it will allow
for

• verification of the accuracy of the implementation

• comparison of the AMR and AMR+C to a case of fully uniform refinement

• investigation into the effects of transitioning from a coarse to fine mesh through parameterization of
the initial element size

• examination of 3D effects through parameterization of the specimen thickness

• examination of the accumulation of error in mesh coarsening through parameterization of coarsening
tolerance

The cases we investigated are listed in Table 4.1. On the thick specimen with the coarse initial grid, the
domain is comprised of 40⇥4⇥2 hexahedron, each of which is at Level 0 refinement meaning that it contains
6 tetrahedron. Therefore, the initial coarse grid contains 1920 tetrahedral elements of maximum edge size
50 µm. In the fully refined case all elements are refined to Level 11 resulting in a fine grid of 320 ⇥ 32 ⇥ 16

hexahedron, each of which contains 24 tetrahedron of maximum edge size 6.25 µm. The fully refined mesh
contains 3,932,160 elements. In the adaptive cases the initial coarse grid is utilized then a region of radius
50 µm is refined to Level 11, which results in 95,408 tetrahedral elements. The finer initial grid contains
80 ⇥ 8 ⇥ 4 hexahedron with a region of radius 50 µm refined to Level 8 resulting in 112,064 tetrahedral
elements of maximum edge size 25 µm. The finest level of initial refinement contains an initial grid of
160 ⇥ 16 ⇥ 8 hexahedron with a region of radius 50 µm refined to Level 5 resulting in 216,768 tetrahedral
elements of maximum edge size 12.5 µm. The thinner specimens are constructed in a similar manner. In all
cases, the number of elements will increase as cohesive elements are inserted. However, only in the AMR and
AMR+C cases will the number of bulk elements increase as the simulation progresses. The initial meshes on
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thick specimens with a coarser initial mesh are shown in Figure 4.22 for illustrative purposes, and the mesh
statistics for all cases investigated are shown in Table 4.1. The progression of the propagation using AMR
and AMR+C are shown on the thick specimen in Figure 4.23.

Ideally, the numerical results with adaptivity would be identical to those of a uniform refinement. Of
course this is not possible from a numerical perspective, so we evaluate the differences and examine the costs
and benefits of AMR and AMR+C. We first check the velocity of the crack tip on the thicker specimen
and compare the uniform refinement, where all elements have a long edge length of 6.25µm to AMR with
an initial coarse mesh of edge size 12.5µm, 25µm and 50µm. As shown in Figure 4.24, the coarsest level
of refinement results in a crack tip velocity that is significantly slower than the finer cases, ~7.8e4 m/s for
the coarser case compared to ~25 m/s for the finer cases. Based on these results, we see that care must be
taken to create an initial discretization that is sufficiently fine to accurately capture the wave speed of the
materials. We note that specimen thickness had little difference on the crack tip velocity, but load is applied
uniformly through the thickness so this is expected.

Now, given a sufficiently fine initial mesh, we compare the crack tip position versus time for the uniform,
AMR and AMR+C cases. As shown in Figure 4.25, the addition of mesh coarsening does not have an impact
on the velocity, no matter what how stringent the coarsening tolerance.

We also examine the energy evolution of the AMR and AMR+C. We observe some in loss total energy of
the AMR and AMR+C when compared to the uniform refinement, but this diminishes when a finer initial
mesh is used and the transition between the coarsest elements and finest elements is small. Greater loss
when a more relaxed tolerance is used on the AMR+C, as expected, so a decision between computational
efficiency and numerical accuracy must be made by the user, we recommend a value in strain error between
0.001 and 0.0001 to maintain a reasonable level of accuracy from an energy perspective.

For visualization purposes, we also compare the stress on the uniform, AMR and AMR+C mesh part
way through the simulation in Figure 4.27. Near the crack tip the resolution of all three cases is similar, the
main difference is slightly away from the crack tip. The AMR and AMR+C cases do not resolve the stress
in quite as much detail, however we are willing to sacrifice this for the gains in computational time, which
we will discuss next.

The AMR and AMR+C provide a great savings in computational time, however there is a tradeoff in
where the computational time is spent. When adaptivity is employed, there are fewer element and node
calculations throughout the simulation. When we employ AMR, the rate of the wall time slows as the
simulation progresses because we are continuously adding elements without removing them. Note, that we
are discussing the rate of the wall time, not the simulation time. The velocity of the crack is not changed as
discussed previously, but the time to run simulation is impacted by the adaptivity. The AMR+C alleviates
the rate of slowing of the AMR because elements and nodes are deleted as the simulation progress, so not
as many calculations are needed as in the AMR case. However, not all of that time is gained because
with the AMR+C we perform more computations to check on strain error on patches of elements. If a
stringent tolerance is used, then many of patches will not be coarsened. Thus, we only add time to the AMR
case by performing strain error comparison calculations without making the problem size smaller. This is
demonstrated in Figure 4.28, which shows the crack tip position versus wall time. The total time for the
uniform case is significantly higher than any of the adaptive cases and the rate of insertion is close to linear.
However, in the AMR case or AMR+C case with a stringent tolerance, the rate at which cohesive elements
are inserted with respect to the wall time decreases as more bulk elements are inserted and not removed. The
rate of insertion remains closer to constant with a looser tolerance on the coarsening. Notice than when the
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(a)

(b) (c)

(d) (e)

Figure 4.22: Initial meshes for the 0.1mm thick notched beam specimen. (a) Coarse grid which is the basis
for each case investigated (b) Fully refined case where all elements of the coarse grid are refined to Level 11
(c) Zoom in around crack tip of fully refined case (d) AMR and AMR+C case where elements in the region
of the notch tip are refined to Level 11 (e) Zoom in around crack tip of AMR and AMR+C case
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(a)

(b)

Figure 4.23: Finite element mesh of the 0.1 mm thick specimen at 210 nanoseconds (7000 steps) on the (a)
AMR with coarse initial mesh (b) AMR+C with initial mesh of resolution 50 µm and coarsening tolerance
of 0.01
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Figure 4.24: Comparison of velocity on 0.1mm thick specimen for various levels of coarse level refinement
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Figure 4.25: Crack tip position versus simulation time for the 0.1 mm thick specimen
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Figure 4.26: Energy evolution for the confined crack problem on the 0.1 mm thick specimen with an initial
coarse mesh resolution of 12.5 µm. The coarsening tolerance for the AMR+C case is 0.001. (Add figure of
finer initial mesh with AMR and AMR+C)
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(a)

(b)

(c)

Figure 4.27: Stress �
yy

at 15 nanoseconds (500 steps) on the 0.1 mm thick specimen with a (a) uniform
mesh (b) AMR with fine mesh and (c) AMR+C with initial mesh of resolution 12.5 µm and a coarsening
tolerance of 0.01, shown on the x-y face of 3D meshes

94



0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

Crack tip position (mm)

W
a
ll 

tim
e
 (

m
in

u
te

s)

 

 

Uniform
AMR
AMR+C tol = 0.01
AMR+C tol = 0.005
AMR+C tol = 0.001
AMR+C tol = 0.0005
AMR+C tol = 0.0001

Figure 4.28: Crack tip position versus wall time for the 0.1 mm thick specimen with AMR and AMR+C
with the loosest coarsening tolerance of 0.01. (Just for demonstrative purposes)

tolerance is tighter than 0.001 the total wall time is longer and rate of insertion slower than even the AMR
case even though the final numbers of elements and nodes are lower (see Table 4.1 for number of elements
and nodes).

Lastly, we examine the evolution of memory usage as the crack propagates. For the uniform case, the
memory usage stays mostly constant except for the minimal insertion of cohesive elements. The AMR+C
with a relaxed tolerance is the most memory efficient as the memory associated with elements and nodes
(and their attributes) is freed often. Memory for the AMR and AMR+C with a tight tolerance continually
increases throughout the simulation since elements and nodes are either not deleted at all or not deleted often.
This is an important practical consideration when allocating memory for AMR problems; it is necessary to
estimate the final model size and memory demands to avoid exceeding memory allowances.

The results with the uniform refinement, AMR, and AMR+C on the confined crack problem give confi-
dence that the implementation is working properly and can be extended to a fully unconstrained, mixed-mode
problem. The main challenges of three-dimensional adaptivity were addressed in this problem. Briefly, those
challenges are

• tracking multiple crack tips to manage regions of refinement,

• transferring the displacement field from the coarse regions to the fine regions, and

• evaluating error in coarsening from fine regions to coarse regions.

Even though the crack is planar, each node at the crack front is a crack tip that has an associated region of
refinement. The number of crack tips and therefore refinement regions is the number of nodes that span the
width of the beam in this example. Therefore, the crack tip tracking methodology utilized for the problem
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Figure 4.29: Model size versus time for the 0.1 mm thick specimen with (a) uniform refinement (b) AMR
(c) AMR+C with coarsening tolerance of 0.01 (d) AMR+C with coarsening tolerance of 0.0001
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is suitable when the crack is unconstrained and multiple crack fronts are present. Moreover, the transfer of
data between discretizations is completely independent of the mode of fracture or confinement of cracking,
therefore, the same methodology can be utilized in more complicated problems.

4.6.3 Three point bend notched beam

The second example we investigate is that three point bend (TPB) problem. A schematic of the problem and
expected fracture behavior is shown in Figure 4.30. The rectangular domain has an off-center notch through
the thickness at the bottom of the specimen and a velocity load at the top center. Previous studies have
investigated the degree of mode mixity that occurs as the notch location varies [153,183]. Beyond a certain
distance from center the, crack does not initiate from the notch and instead initiates below the application of
the load as a primarily mode I crack. When close enough, the crack initiates from the notch and propagates
up and across towards the load application locations, i.e. mixed mode.

Different types of mesh discretization were also investigated in [153]. Structured and unstructured meshes
were investigated and, as expected, the unstructured meshes performed better at capturing the true fracture
pattern. In the present work, we are concerned with the structured 4k mesh because it allows for efficient
mesh refinement and coarsening. Thus, we realize that the resulting fracture pattern on the structured
mesh will not be as realistic as one on an unstructured mesh, however since we are most concerned with
computational speedup, we accept some loss in accuracy of the crack pattern.

In previous investigations of this problem, uniform discretization are employed where a finer discretization
is utilized in the region of the expected fracture path. This is in contrast to the approach taken in this
work where we initially discretize the domain with a coarse mesh and use adaptive refinement to achieve
the necessary level of refinement where needed. Based on the recommendation in [153] and an extensive
parametric study conducted for this work, we selected the smallest element size as 2mm. We investigated
using smaller levels of refinement, however due to limitations of computational resources, smaller elements
were not feasible. If we were to use a uniform level of refinement, a smaller element size would have required
more RAM than was available with the given resources, which could have been overcome by the AMR+C
because significantly less RAM is required. For example, if the mesh were to be discretized with 224x72x24
4k patches or 9,805,824 elements the entire model, including overhead, would have required approximately
47 GB of RAM, but the AMR+C version would have required only 610 MB of RAM at the start of the
simulation. Unfortunately, even with AMR+C the finer model was not possible to execute because the time
step restriction made the over all wall time greater than 48 hours, which is the run time limit of the super
computing resources available for this study. Therefore, given these limitations, we choose a coarser mesh
so that we could evaluate the AMR+C scheme in a mixed mode setting.

The specimen is discretized into two different initial meshes with the same level of fine discretization at
the crack tips:

• Coarse far-field mesh: 28⇥9⇥3 with refinement to level 8 (2mm element size) in a radius of 6mm
around a crack tip

• Fine far-field mesh: 56⇥18⇥6 with refinement to level 5 (2mm element size) in a radius of 6mm around
a crack tip

In total, we investigate four cases: coarse far-field mesh with AMR and AMR+C and the fine far-field mesh
with AMR and AMR+C. The displacement field and final meshes for all cases are shown in Figure 4.31.
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Figure 4.30: Three-point-bend beam (TPB) specimen schematic with expected fracture pattern shown in
blue

(a) (b)

(c) (d)

Figure 4.31: Displacement field at 0.0072 sec on coarse initial mesh with (a) AMR (b) AMR+C and at
0.0071 sec on fine initial mesh with (c) AMR (d) AMR+C

The displacement fields and crack patterns for each case are similar as evident by the refinement pattern
and displacement discontinuity across the crack pattern. The crack kinks from mode I to mixed mode at
the same location in all cases, but in the finer cases, the second kink occurs later than it does for the coarser
cases.

To visualize the crack pattern, we plotted the fully opened cohesive elements and cohesive elements that
are partially opened in Figure 4.32. The difference in crack patterns between the fine and coarse far-field
meshes are evident here. Cohesive elements are considered fully open if the opening in the tangential direction
at one of the facet’s integration points is greater than the final normal or tangential opening, respectively.
The percentage of opening for those elements that are not past the maximum final opening is also plotted in
Figure 4.32. The percentage of damage is simple the ratio of opening of the element to the final opening. This
quantity could be thought of as a damage parameter; aggregating the damage of all cohesive elements could
indicate the damage of the entire specimen. Clearly, many more elements are inserted than are completely
separated, these inserted elements are in the process of dissipating energy and represent micro-branching
that limits the crack speed.

98



(a) (b)

(c) (d)

Figure 4.32: Damage of cohesive elements for the TPB specimen (a) fully open elements and (c) all cohesive
elements of coarse initial mesh and (c) fully open elements and (d) all cohesive elements of fine initial mesh
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Figure 4.33: Insertion of cohesive elements versus time for the AMR and AMR+C of the TPB specimen
with the coarse far field mesh and fine far field mesh

In general, it takes less time on the fine far-field mesh for the stress to build to a sufficient level to initiate
cracking. The insertion of cohesive elements versus time is shown in Figure 4.33 for all cases. Notice that
the overall behavior is the same for all cases; the majority of the simulation is spent building up stress at
the notch tip, then once fracture initiates, the crack propagates relatively quickly.
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Chapter 5

Massively parallel adaptive mesh

refinement and coarsening for dynamic

fracture simulations

We aim to develop the computational tools to enable large scale simulation and in this chapter, we do so
through processing on GPUs, which can give massive speedup over even parallel CPU implementations.
In the previous chapters of this dissertation, the failure and fracture simulations were performed on CPU
systems. While we have access to large amounts of memory and hard disk space on a CPU system, we
are ultimately limited by the computational speed of the processor. In the large deformation simulations of
Chapter 2 we utilize perform some of the computations in parallel, but only have access to a limited number
of processors, so the speedup is not great. For the case of the fracture simulations of Chapters 3 and 4 we
have only a single a processor. Now, we focus on porting the adaptive simulations we have discussed in
the previous two chapters to the massively parallel Graphical Processing Unit (GPU). Since computational
programming on the GPU poses several challenges that are not present on a CPU system, this work begins
with 2D adaptive simulations and saves the extension to 3D adaptive systems for a future investigation (see
Section 6.2.6 for further discussion).

While the GPU can perform operations very quickly (e.g. floating point operations such as those associ-
ated with dynamic fracture simulation), the size of the system is extremely limited and does not immediately
lend itself to large systems. The fracture problems we are investigating here are inherently large, so we de-
velop an adaptive refinement and coarsening scheme (AMR+C) suitable for the GPU architecture to ensure
only the most important information is stored during the simulation. The AMR+C will allow for analysis
of much larger systems than that of an equivalent uniform mesh as we only use the finest level or refine-
ment where necessary. Performing adaptivity on the GPU is not a straightforward task though, as a new
mesh representation data structure, finite element calculation framework, and refinement and coarsening
algorithms are necessary.

Before going into the details of adaptive mesh refinement and coarsening for dynamic fracture applica-
tions, it is useful to first provide a background of the GPU architecture. In Section 5.1 we discuss the unique
features of the GPU that make it a challenging platform on which to develop finite element software, yet
allows for massive performance when careful consideration is taken. Next we provide an overview of related
work in the archival literature in Section 5.2, much of which provided a foundation and inspiration for the
work developed here. Our methodology for conducting adaptive mesh modification for dynamic fracture
simulation, including the physical basis for the work and computational implementation, is discussed in
great detail in the Section 5.3. Equipped with a computational framework to conduct large scale fracture
simulation quickly, we explore some numerical investigations in Section 5.4. We simulate benchmark prob-
lems with accepted results in the literature, but investigate features of the GPU implementation that have
yet to be explored. Future directions for this work can be found in the final chapter of this dissertation.
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5.1 GPU architecture

In order to discuss the GPU architecture, it is useful to compare it to a CPU system. CPUs are a multi-core
system, which are optimized for serial programming with sophisticated control logic and access to ample
cache memory. However, neither control logic nor access to memory improve the peak calculation speed, and
by about 2003 software developers were making more advances than could be supported with the existing
hardware. The speed of an individual CPU is ultimately limited by energy consumption and heat-dissipation
issues, leading developers moved to many-core environment of the GPU. The many-core approach focuses
on execution throughput of parallel applications. The GPU is comprised of a large number of small cores,
so computationally intensive parts of a code can be moved to the GPU where it can be divided. Moreover,
many-core systems have up to 10 times higher memory bandwidth than multi-core systems, making it possible
to move data in and out of its memory much faster. Much of the GPU development has been motivated
by the gaming industry in which massive numbers of floating point operations are required. In order to
accommodate this demand, developers optimize codes for execution throughput of a massive number of
threads; more chip area is given for floating point operations rather than to memory to increase throughput.
To summarize, GPUs are well-suited for problems involving a large number of floating point calculations,
thus they are not universally faster than CPU systems as certain applications are simply not suited for
them [184]. In general the developer must take great care to ensure that the benefits of the GPU outweigh
the constraints for a particular application, or the performance can suffer greatly.

The work here is performed on a GPU using NVIDIA’s CUDA (Compute Unified Device Architecture)
framework. A CUDA capable GPU is organized into an array of highly threaded streaming multiprocessors
(SMs). Two or more SMs form a building block, the specific number depends on the architecture of the sys-
tem, Each SM in a building block is comprised of streaming processors (SPs) that share a set of instructions.
Each SP is massively threaded, so it can run thousands of threads per application.

The CUDA programming system consists of the host, which is the CPU, and the device, which is the
GPU. The program is organized such that some of the application is executed on the host, while the parallel
capable code is executed on the device. The device code is activated through functions, called kernels, which
generate a large number of threads to perform the parallel computations. All threads execute the same code,
which is an instance of single-program, multiple-data (SPMD) parallel programming style. The threads
generated in a particular kernel call are organized as follows: the first level is an array of blocks, where each
block is identified by its coordinate. Moving one level lower, each block contains a two-dimensional or three-
dimensional array threads, which are identified by their thread ID. All thread blocks have the same number
of threads. Each block may contain up to 512 or 1024 threads depending on the GPU compute capability
and hardware, and the entire grid may contain thousands or millions of threads. A challenge in GPU
programming is to create enough threads to fully utilize the hardware. A schematic of the grid-block-thread
organization is shown in Figure 5.1.

Another challenge associated with GPU computing is related to memory access. In addition to the
device memory, the host also has memory; communication between the host and device memory is critical.
A summary of the different types of GPU memory are:

• Global memory is located off-chip and all device threads can read/write from/to it. The amount of
space in global memory is considerable, however access to it is relatively slow. The host can transfer
data to and from global memory.

• Like global memory, constant memory allows read only access to the device threads, but the host has

102



Grid!

Block (0,0)!

Thread 
(0,0,0)!

Thread !
(1,0,0)!

Thread 
(2,0,0)!

(0,1,0)! (1,1,0)! (2,1,0)!

(0,0,1)! (1,0,1)! (2,0,1)!

Block (0,1)!

Thread 
(0,0,0)!

Thread !
(1,0,0)!

Thread 
(2,0,0)!

(0,1,0)! (1,1,0)! (2,1,0)!

(0,0,1)! (1,0,1)! (2,0,1)!

Block (1,0)!

Thread 
(0,0,0)!

Thread !
(1,0,0)!

Thread 
(2,0,0)!

(0,1,0)! (1,1,0)! (2,1,0)!

(0,0,1)! (1,0,1)! (2,0,1)!

Block (1,1)!

Thread 
(0,0,0)!

Thread !
(1,0,0)!

Thread 
(2,0,0)!

(0,1,0)! (1,1,0)! (2,1,0)!

(0,0,1)! (1,0,1)! (2,0,1)!

Figure 5.1: Schematic of grid with 2 ⇥ 2 blocks of 3 ⇥ 2 ⇥ 2 threads each

both read and write access.

• All threads on a block have read and write access to the shared memory. Threads from a different
block do not have access to shared memory of other blocks. Similarly, the host does not have access
to shared memory.

• Each thread has register memory which it can read and write to. Other threads do not have access to
another thread’s register memory. Similarly, the host does not have access to register memory.

Memory is allocated on the host with the standard C malloc() command and in a similar way on the device
with cudaMalloc(). Device space is allocated in global memory, then cudaMemcpy() can be used to move
the data in one of four ways: host to host, host to device, device to host, device to device.

5.2 Review of related work

In the past decade, researchers have been porting multi-core applications to many-core systems for increased
performance. See [185] for an overview of the state of the practice and trends an GPU computing. In the
field of finite elements, recent efforts have been focused on linear system assembly, storage, and solution.
Researchers in [186] propose an iterative technique to generate space matrices on several GPUs in order to
overcome limited storage space. Memory issues are also addressed in [187], where techniques for assembling
finite element matrices are explored. Solution of linear systems is also non-trivial, especially on GPUs. To
address this, the authors of [188] proposes a massively parallel Cholesky factorization technique for use on
GPUs.
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Multi-core dynamic fracture simulations have been studied by several authors in the past. For example,
researchers [161] investigate cohesive dynamic fracture in a parallel CPU environment ParFUM framework
[189]. The cohesive elements require an external activation criteria and do not feature the initial elastic
slope present in the intrinsic model, the interface elements are present at all facets before the start of the
simulation. Nodes at all facets are duplicated from the beginning, but the traction separation relationship
is not activated until the external stress-based criteria is met. In this way, the work is more similar to an
intrinsic implementation because the mesh connectivity does not change as the problem evolves.

In a related work, authors in [71] also pre-insert externally active cohesive elements into the domain.
They use a discontinuous Galerkin approach, and because the mesh topology does not change, they are able
to attain scalability of the parallel implementation.

More recently, fully extrinsic dynamic fracture simulation was achieved in [190]. The work is based on
the ParTopS data structure, the parallel version of TopS discussed in the previous chapters, and supports
insertion of extrinsic cohesive elements on-the-fly.

Fracture simulation using the many-core GPU environment and adaptive finite element mesh operations
are not well documented in the literature. To the best knowledge of the author, adaptive dynamic fracture
simulation on GPUs has not been investigated. Adaptivity has been explored in other fields, for example
cartesian meshes are generated on the GPU for computational fluid dynamics applications resulting in
speedup of up to 36 for large meshes [191]. Dynamic fracture with the extrinsic cohesive zone model on
a uniform mesh is investigated and implemented in [192], and serves as the motivation and foundation on
which the proposed adaptive GPU fracture is based.

5.3 Adaptive mesh modification on Graphical Processing Units

Mesh adaptivity is important in the context of finite element applications, as it enables larger simulations
to be performed in less computational time. Of course, adaptivity has been widely utilized in the context of
material fracture and failure modeling, which has been demonstrated throughout the course of this thesis.
However, mesh adaptivity and hierarchical schemes are also utilized in other fields such as modeling electronic
chip packages [193], large-eddy simulations [194], and astrophysical thermonuclear flash [195], just to name
a few. We continue the focus of this work on dynamic fracture simulation and develop the data structure
and algorithm for adaptive modification of the finite element mesh, namely mesh refinement and coarsening.
First, we present the data structure followed by the methodology for computing finite element calculations
on the GPU. The next two subsections detail the algorithms for adaptive insertion of cohesive elements and
adaptive mesh refinement and coarsening, respectively.

5.3.1 Data structure for 4k adaptive finite element mesh representation

An efficient data structure is critical in adaptive fracture applications. From a data representation perspec-
tive, the implications of inserting a cohesive element or refining or coarsening a region of the mesh involves
dynamically changing the size of the node/element representation and updating adjacency relations. If this
is not done in an efficient way with respect to computational processing time, then the cost of solving even
a small problem could be dominated by upkeep of the mesh representation instead of on the structural
mechanics computations [196–198].

In parallel computations, especially on the GPU, it is common that a data structure is tailored very
specifically for the application of interest [199, 200]. Several data structures have been devised including
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those for dynamic fracture with adaptive insertion of cohesive elements and adaptive topological operators
on a serial CPU platform [162], dynamic fracture with adaptive insertion of cohesive elements on a parallel
CPU platform [190], and dynamic fracture with adaptive insertion of cohesive elements on a massively parallel
GPU platform [192]. However, none of these previous approaches are appropriate for the present work of
adaptivity on a GPU platform for a variety of reasons. First, data structures for serial platforms are not
equipped to handle issues of concurrency which is critical in parallel simulations. Secondly, the CPU data
structures (for serial or parallel platforms) do not have nearly the space restrictions as that of a GPU; we
need to store far fewer entities explicitly on the GPU and instead derive them each time they are accessed.
Finally, problems in which the bulk mesh remains constant throughout the simulation does not pose the
challenges of constant insertion and deletion of variables in the data structure, as we have in the adaptive
simulations proposed here.

Therefore, given the requirements of the adaptive simulation and limitations imposed by the GPU archi-
tecture, we propose a simple and inexpensive data structure for representation of an evolving 4k structured
finite element mesh. The data structure consists of node and element tables with some basic adjacencies and
information necessary for the hierarchical refinement and coarsening scheme. A schematic of a sample mesh
and corresponding data structure representations is shown in Figure 5.2; we will refer back to this figure
several times in the next few section to aid discussion.

The sample coarse mesh is partially refined in three steps, as shown in Figure 5.2(a) and the corresponding
nodal number of the final mesh is shown in Figure 5.2(b). All of the data necessary to store this adaptive
mesh is contained in the node table (Figure 5.2(d)) and element table (5.2(e)). Notice that each row of the
node table contains x-y coordinate and an adjacent bulk element of the node. The bulk element associated
with each node is used for traversal of adjacent entities to gather adjacency not explicitly stored on an
as needed basis. For bulk elements, each row of the element table contains the nodal connectivity for the
quadratic triangular elements and the ids of elements opposite each vertex, which are used in a similar fashion
as the adjacent element in the nodal table, e.g. to construct adjacency information on the fly. Additional
information necessary for mesh refinement and coarsening is also stored in the element table. We showed
the nodal and element IDs as entities of the node and element tables in the schematic, however this is only
for demonstrative purposes, the IDs are implied by the index of the array. Cohesive elements are also stored
in the element table (although none are shown in Figure 5.2). Their rows contain only the list of six nodes
that define the element, and adjacency information. We do not refine or coarsen cohesive elements, so the
additional information is not necessary.

As bulk elements are subdivided, they are assigned a new level of refinement; elements at level 0 are
shown in white, elements at level 1 are shown in light grey, and elements at level 2 are shown in dark grey.
These levels are stored in the element table as shown in Figure 5.2(e).

In addition to the element level information, we also adopt a facet labeling technique in which new facets
resulting from mesh refinement are assigned a label with a number equal to one more than its adjacent
facets. For example, when the simulation begins, the facets of each element are labeled 0, then the new
facets resulting from one level of refinement are labeled 1, next new facets resulting from a second level of
refinement are labeled 2, and so on. The facet labels are shown on the schematic in Figure 5.2(c) and as a
column of the element table in Figure 5.2(e).

Finally, we must keep a history of the coarse element from which finer elements came so that we can revert
back to coarse elements when needed. To accomplish this, we store the ID of the coarse element (parent)
from which two elements (children) emerge during refinement from level n to level n + 1; the reference
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Figure 5.2: Schematic of GPU data structure for adaptive 4k mesh (a) progression of mesh refinement and
element labeling, (b) node numbering on refined mesh, (c) facets labels indicating order of refinement on
refined mesh, (d) node table showing node ids, coordinates, and adjacent element, (e) element table showing
element id, nodal connectivity, adjacent elements, reference level, level of refinement, and facet labels
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Figure 5.3: (a) Refinement of elements 1, 2 and 3 from level 0 (white) to level 2 (dark grey), (b) Binary tree
representation of refinement

element is stored in the element table shown in Figure 5.2(e). To move back from a refined element back up
to its parent element we also the history of mesh refinement in a binary tree, shown in Figure 5.3. When an
element is split, the resulting elements are children of the original element in the tree. Coarsening involves
moving back up the tree.

When coarsening the mesh, elements and nodes are removed from the tables, which results in “holes” in
the data structure. Rather than collapsing the data structure by renumbering the mesh entities (we explored
this approach but concluded that it was too computationally expensive for the present application), we opt
to fill the holes the next time a node or element is inserted into the mesh. Thus we need to keep track of
unused node and element IDs, which we do through a node and element stack. When new nodes/elements
are added to the mesh, we first insert them at the indices stored in the respective stack. Then once the stack
is empty we add nodes/elements by creating new entities in the node/element tables, respectively. We avoid
coarsening of cohesive elements, therefore there is no need to store additional information for adaptivity.

5.3.2 Node and element calculations on GPU

In parallel finite element simulations, it is critical to avoid concurrently writing to the same location in
memory. For example, node quantities (e.g. displacements) are composed of contributions from adjacent
elements. Writing conflicts will arise if multiple elements are updating a node at the same time. Typically,
this issue is handled with graph coloring schemes, such as that proposed in [201], whereby the color groups
are visited in a serial fashion, and one thread is launched per element in that color group. This is usually done
once at the start and absorbed in the overhead cost as it is a relatively expensive operation for arbitrary
meshes. In the adaptive simulation, however, the number of bulk elements and their connectivity will
change. Therefore the coloring algorithm would need to be executed every time a bulk element was removed
or inserted, which would be computationally inefficient even on the GPU.

Our solution for the adaptive simulation is to sweep the nodes (one thread per node) and gather infor-
mation from its adjacent elements, rather than sweeping elements (one thread per element) and updating its
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adjacent nodes. The data structure discussed in Section 5.3.1 allows for quick access the elements adjacent
to the nodes. Using the node-based calculations, elements will be visited concurrently, as nodes within a
close vicinity will share adjacent elements. However, since data will only be read from the element entities,
the issue of concurrent writing is not present. The efficiency of this approach is similar to that of the element
sweep approach. When mesh refinement and coarsening are enabled, this approach leads to some variation
in final crack patterns and results from one simulation to another. While this variation is not incorrect it
warrants some investigation, which is conducted via numerical experiment in Section 5.4.

5.3.3 Adaptive insertion of cohesive elements

The extrinsic cohesive model employed in this work requires an external criteria to activate (i.e. insert)
the traction-separation relation associated with the cohesive element. A number of approaches have been
utilized to activate the elements including strength/stress, strain, velocity, numerical instability, etc. We will
assume that elements have been activated for the following discussion. When cohesive elements are inserted
into the mesh, the nodes along the insertion facet are duplicated. The cohesive element is defined by the
original nodes along the facet (three in this case of quadratic triangular elements) plus the additional nodes
resulting from duplication.

As mentioned in Section 5.3.2, we do not utilize a graph coloring scheme in this work. One of the
implications of our node-based approach is that we cannot use previous strategies, such as those adopted
in [190, 192], to insert cohesive elements at bulk element facets. Instead we utilize a two-step node sweep
strategy, which is analogous to the update scheme discussed in Section 5.3.2.

In the first step, we launch one thread per cohesive element to be inserted. The cohesive elements are
added to the element table but the nodes are not yet duplicated or added to the node table. Once all of the
elements are inserted we begin the second step.

One thread per node belonging to a cohesive element is launched to determine if it needs to be duplicated.
All nodes defining the cohesive element are duplicated except those at the end of a series of cohesive elements
[163], hence non-duplicated nodes are used to define the crack tip. This algorithm does not cause issues of
concurrent writing because each thread is responsible for duplicating its own node.

5.3.4 Adaptive mesh refinement and coarsening

One of the main contributions of this work is the development and implementation of the 4k refinement and
coarsening scheme on the GPU. The criteria for which is similar to that of [158] and is brevity reviewed here
before describing the GPU implementation.

Multiple crack tips may emerge as the quasi-brittle fracture simulation evolves in time (recall that the
definition of a crack tip is the non-duplicated node of a cohesive element). These crack tips are necessary
to perform adaptive mesh refinement, as we use the a priori assumption that regions around crack tips (i.e.
high gradient of the displacement field) must be the finest in the simulation. Given a crack tip, elements that
fall within a user-specified radius are refined according to the hierarchical 4k scheme to a user-defined level.
To avoid complicated transfer of internal state variables associated with the nonlinear cohesive elements, this
refinement strategy prohibits cohesive elements from being refined or coarsened. Thus, cohesive elements
may only be inserted at elements that are already refined to the highest level. This assumption is generally
acceptable, as we expect cracks to initiate from areas that are fully refined, e.g. initial defects, notch, or
crack tip.
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Figure 5.4: Marked opposite elements (a) elements with at least one node inside the refinement region are
marked, (b) elements adjacent a marked element’s hypotenuse are also marked

For adaptive mesh coarsening, we can deduce that in regions far away from the crack tip, a coarser mesh is
sufficient. However, unlike refinement, the coarsening criteria is not based on an element’s geometric position
relative to the crack tip. Rather, it is based on convergence of the norm of the strain of the coarsened mesh
to that of the refined mesh. The error between the norm of the strain in a patch of the refined 4k element is
compared to the norm of the strain in the same patch but with coarse elements. If the error is less than a
certain threshold, 2% in this study, then the patch is refined. Since the finite element space is becoming less
rich, energy conservation is not expected, however the loss is minimal and justified by the gain in memory
and processing time.

The algorithm to refine bulk elements in a certain region of a 4k mesh is a multi-step procedure described
as follows and corresponds to Algorithm 2. Before proceeding, we will clarify the notation we use in Algorithm
2; <<< x >>> indicates is kernel call is being made where x indicates the number of threads launched. First
groups of cells (4k patches) are visited to determine if they overlap a current refinement region, if so, the
cell is marked (line 2 in Algorithm 2). Next, we move to the element and start with a kernel call where to
visit each bulk element by launching one thread per element. If the midpoint of at least one facet of the
element lies inside the refinement region, then the element is marked for refinement (lines 4-5 in Algorithm
2). In the next kernel call, for each marked element we also mark the element adjacent to the hypotenuse
of the originally marked element (lines 7-8 in Algorithm 2). This is illustrated in Figure 5.4, where the
facets between elements 2 and 1 and elements 2 and 3 have at least one node that falls within the radius of
refinement shown as the light grey semi-circle, so all three elements are marked. Element 0 is adjacent to
the hypotenuse of marked element 1, so it is also marked.

In the next kernel call we launch one thread per marked element and split it according to the 4k hier-
archical refinement strategy, i.e. split the element along its longest edge [202]. It is useful to note that the
first two nodes in a row of the element table are the corner nodes that define the hypotenuse of the element
(see Figure 5.2(e)), thus the longest facet of an element is directly accessible and does not require additional
calculations. New nodes/elements are created in this step by either adding them to the node/element tables
or by reusing node/element IDs from their respective stacks (line 10 in Algorithm 2). The last kernel up-
dates adjacency of the newly added elements in the element table (line 11 in Algorithm 2). This procedure
is continued until all elements inside the refinement region reach the level prescribed by the user.

The refinement scheme is demonstrated from a topological perspective in Figure 5.5. The domain contains
an initial notch which is refined. In the next step cohesive elements are inserted (notice that they are also
inserted along facets of fully refined elements) and the crack tip nodes are updated. The new regions of
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Algorithm 2 Kernel based algorithm to perform adaptive mesh refinement

1 RefineCUDA ()

2 MarkRefinedRegionCells <<<numCells >>>

3 do {

4 MarkElements <<<numElements >>>

5 numMarkedElements = ScanMarkedElements <<<numElements >>>

6 do {

7 MarkNeighbors <<< numMarkedElements >>>

8 numMarkedNeighbors = ScanMarkedNeighbors <<<numElements >>>

9 } while numMarkedNeighbors != 0

10 SplitFacets <<<totalNumMarkedElements >>>

11 Update adjacency <<< totalNumMarkedElements >>>

12 } while there are marked elements

13 end RefineCUDA

refinement are shown with orange circles around the new crack tips. The elements that fall within the
refinement radius any of the crack tips is marked for refinement. Elements adjacent to the hypotenuse of a
marked element are also marked. Finally marked elements are refined until the desired level of refinement
is reached and elements just outside the refinement region are refined to an intermediate level to ensure
compatibility with the coarser elements.

The parallel coarsening algorithm is essentially the reverse of the refinement, however the implementation
on the GPU must be done in such as way to ensure concurrency is avoided. As with the refinement algorithm,
we first mark cells that are outside current refinement regions (line 2 in Algorithm 3). Then, one thread per
bulk element is launched. The bulk elements are marked if the mid points of all of its facets are outside of
an existing refinement region (lines 4-5 in Algorithm 3). After bulk elements are marked, then the nodes are
visited through a kernel call launching one thread per node. The node is marked for coarsening if (1) four
of its adjacent bulk elements were marked as being outside a refinement region, and (2) two of the facets
emanating from it are labeled with values greater than than that of any other facets on adjacent elements
(lines 9-10 in Algorithm 3).

Once a node is marked for coarsening, we check that it meets the coarsening criteria. If so, then a kernel
call is used to update the adjacent elements’ reference element (line 11 in Algorithm 3). Finally the element
is coarsened, which involves updating the adjacent element to the node in the node table, the nodes defining
the adjacent elements, the elements opposite to the corner nodes of the adjacent elements in the element
table, the level of refinement of the adjacent elements (line 12 in Algorithm 3).

5.4 Numerical investigations

The adaptive mesh refinement and coarsening scheme implemented here is applicable for many types of
fracture problems, however the benefits of the approach are most realized for problems dominated by few
cracks. Consider the contrary example of pervasive fracture problems [172]. All or most of domain needs high
levels of mesh refinement to capture the fracture behavior, thus an adaptive refinement scheme would not have
any effect. The following investigations are intended to examine implications of the GPU implementation
on the physics of the problem, push the limits of the GPU to determine the maximum problem size that can
be simulated, and to explore the response of systems through parametric studies in an efficient manner.
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Figure 5.5: 4k refinement scheme (a) Mesh is initially refined around the notch tip. (b) Cohesive elements
are inserted along facets of fully refined elements, new crack tips are identified and new refinement regions
associated with each crack tip are created. Elements to be refined for all crack tips are collected simultane-
ously, as opposed to one crack tip at a time (c) Elements within the refinement region are marked (black ’x’)
and elements adjacent to the hypotenuse of a marked element are marked (grey ’x’) (d) Marked elements
are refined to the full level and transition region refined to ensure element compatibility

Algorithm 3 Kernel based algorithm to perform adaptive mesh coarsening

1 CoarsenCUDA ()

2 MarkCoarsenRegionCells <<<numCells >>>

3 do {

4 MarkElements <<<numElements >>>

5 numMarkedElements = ScanMarkedElements <<<numElements >>>

6 if numMarkedElements == 0 then {

7 break

8 }

9 MarkNodes <<<numNodes >>>

10 numMarkedNodes = ScanMarkedNodes <<<numNodes >>>

11 UpdateReferenceTable <<<numMarkedNodes >>>

12 Coarsen <<<numMarkedNodes >>>

13 } while there are marked elements

14 end CoarsenCUDA
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Figure 5.6: Reduced scale micro-branching problem geometry, loading conditions, and material properties

5.4.1 Reduced-scale micro-branching specimen

We verify the implementation of the adaptive scheme on the GPU through a series of numerical investigations
on a well-known micro-branching problem. This model problem is inspired by the experimental work of [203]
and has been simulated by many authors [88,89,153,190]. Similar to the previous investigations, we utilize a
reduced scale model for direct comparison purposes. Later we will address the issue of the full scale model.
The problem features few major cracks, which makes it a good candidate for the adaptive scheme, and several
minor cracks that results in a complex fracture pattern. The simple geometry and loading conditions of the
reduced scale model are shown in Figure 5.6. For the reduced scale model, we use the material parameters
suggested in [153]. Due to the reduction of the model size and known issues related to representing an
experimental system on a numerical model, we adopt the following: Young’s Modulus of 3.24e9 Pa, density
of 1190 kg/m

3, and a Poisson ratio of 0.3 for the bulk elements and a fracture energy of 352.3 N/m and cohesive
strength of 129.6e6 Pa for the cohesive elements. The shape of the softening curve is linear, as given by
the PPR shape parameter of 2 in each opening direction. Unloading is assumed to occur linearly back to
the origin, i.e. permanent deformation is not sustained. To prevent interpenetration of materials, a penalty
stiffness is applied if cohesive tractions become negative.

First, it is useful to compare the results using AMR and AMR+C to that of an equivalent uniformly
refined mesh. For the reduced scale model, the uniform mesh is comprised of 192⇥48 4k patches, or 36,864
T6 elements. The AMR and AMR+C enabled meshes are initially discretized into 48⇥12 4k patches, or
2,304 T6 elements, then adaptively refined to a level 4 in the region of the crack tips. Elements are removed
in the AMR+C case in regions aways from the crack tips when the root mean error in the strain on a patch
of elements falls below the user defined threshold of 0.01.

The final crack patterns for each case are shown in Figure 5.7. The finite element meshes are visible
and various levels of refinement are clear in the AMR and AMR+C cases. Cohesive elements that are open
greater than a certain threshold of the critical opening distance in either the normal or tangential direction
are are plotted in blue, and elements that are present in the model but not open greater than the threshold
in either direction are plotted in red. The threshold by which a cohesive element is considered open is
important when quantifying the fracture pattern. For visualization purposes, we show the fracture pattern
with the relatively low threshold of 10%, but in the quantifications reported later in this section we also
examine a higher threshold.
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Figure 5.7: Final crack pattern for the reduced scale micro-branching problem for (a) uniform mesh (b)
AMR enabled mesh (c) AMR+C enabled mesh. Cohesive elements opened greater than 10% of the normal
or tangential critical opening distance are shown in blue, other cohesive elements are shown in red
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Table 5.1: Comparison of final quantities between Uniform, AMR and AMR+C simulations

Crack tip Total crack Num Avg. Brach
Tol Mesh type Elements Nodes velocity length Branches Length
0.1 Uniform 36,864 76,268 777.5 m/s 0.034 m 2 2.2e-4
0.1 AMR* 13,277 28,506 754.3 m/s 0.036 m 1 5.2e-4
0.1 AMR+C* 8,303 18,296 755.5 m/s 0.039 m 2 5.1e-4
0.75 Uniform 36,864 76,268 777.5 m/s 0.019 m 14 4.6e-4
0.75 AMR* 13,277 28,506 754.3 m/s 0.021 m 19 4.1e-4 m
0.75 AMR+C* 8,303 18,296 755.5 m/s 0.021 m 20 4.7e-4 m
* The AMR and AMR+C quantities are averaged over 20 simulations

Table 5.1 shows the final number of elements and nodes (after adaptivity and insertion of cohesive
elements) and quantitative differences between the simulations, namely the crack tip velocity, total crack
length, and number of branches off the main crack. The crack tip velocity is computed by performing a
linear regression of the crack tip versus time, where the crack tip is defined at the right-most non duplicated
node of a cohesive element. The crack tip velocity is quite stable throughout the simulation, so the linear
regression agrees well with the raw data. Notice that the crack tip velocity is the same for both tolerances,
because by our definition the crack tip for the purposes of the velocity calculation is independent of the
amount of element opening. The total crack length is total distance covered by all of the cohesive elements
open greater than a certain fraction of the critical normal or tangential opening length (denoted Tol in Table
5.1). We see good quantitative agreement between the uniform, AMR and AMR+C cases in terms of the
crack tip velocity and total crack length.

The number and length of branches was post-processed using a simple algorithm performed on the final
fracture pattern. Starting from the notch tip node, the main branch is detected by traversing cohesive
elements using the adjacency information stored in the data structure. The main branch consists of the
path of full open elements that reach the right end of the specimen. Once the main crack is detected, the
secondary branches are found by again traversing the main crack. At every point where the crack branches,
the path is followed using adjacent information until it terminates. Primary branches are those with the
longest length emanating from the main branch. A shorter branch emanating from a primary branch is
denoted as a secondary branch, see Figure 5.8. This algorithm excludes cohesive elements that are not
connected to the main crack. We chose this approach so that the process of counting branches would be
controlled and consistent between specimens. The procedure of quantifying number and length of branches
is too subjective to be evaluated by a visual inspection. There is quite a difference in the number and average
length of branches and between the uniform, AMR and AMR+C cases. We report this information, because
when visualizing a fracture pattern, one often focuses on the number and length of branches, however this
data can be misleading, because it is not an accurate representation of the crack velocity or the total crack
length, which includes the main crack and the many kinks it may have, as illustrated in Figure 5.8. Instead,
we choose total crack length as the important quantity on which to compare the cases because it is directly
related to the total energy released during the fracture process, and this is quantity that should remain
similar between different numerical representations of the same process.

The quantities shown in Table 5.1 for the AMR and AMR+C cases are average over 20 simulations. This
is because the massively parallel nature of the adaptivity in GPU implementation introduces some variation
into the fracture simulation. We will explain this through a simple refinement example. In Figure 5.9, the
patch of four, grey elements is refined to the patch of eight, colored elements. The order in which these
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           Main crack 
           Crack branch 
           Secondary branch   Kink in  

main crack 

Figure 5.8: Details of crack branching including kink in the main crack, crack branches, and secondary
branches

refinement 

Figure 5.9: A coarse mesh patch of four grey elements is refined to a patch of 8 colored elements; the order
in which the color elements contributions are added to the node will vary from one simulation to the the
next

elements are inserted is random, meaning that in one simulation the green element may be inserted first,
and in a second simulation the red element may be first, and so on. Recall that avoid graph coloring and
concurrency issues, we traverse nodes and gather necessary data from elements as opposed to traversing
elements and writing to nodes. This traversal is accomplished by first visiting the adjacent element to the
white node, then by visiting the element opposite its corner node, and from the next element we visit the
element opposite its corner node, and so on until we reach the first visited element. So, since the order in
which the elements are inserted is not constant from one simulation to the next, the first element visited
and subsequent order of traversal is also not constant. Since we only have a certain level of accuracy in
floating point operations, we cannot, in general, guarantee A + B 6= B + A. So when computing quantities
on the white node, we may pull date in one simulation from the green element, then dark blue, then orange,
then cyan, then light blue, then pink, then purple, then red; and in another simulation we may pull from
purple, then red, then light blue, then pink, then orange, then cyan, then green, then dark blue, etc. These
variations accumulate over all of the computations, nodes, time steps, etc. and the result is a a variation in
final fracture patterns.
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Table 5.2: Variation in crack tip velocity, energy released, and occurrence of branching for 20 simulations of
each the AMR and AMR+C enabled meshes

Tol = 0.1 Tol = 0.75
AMR AMR+C AMR AMR+C

Total crack length Mean 0.036 m 0.039 m 0.021 m 0.021 m
Standard deviation 8.8e-4 m 6.8e-4 m 9.2e-4 m 9.4e-4 m

Number of branches Mean 17 19 1 2
Standard deviation 3 4 1 1

Average branch length Mean 5.2e-4 5.1e-4 4.1e-4 m 4.7e-4 m
Standard deviation 4.2e-4 4.6e-4 4.2e-4 6.1e-4

It should be noted that we also examined an implementation in which the order of element/nodal compu-
tations is prescribed and the same from one simulation to another and verified that the results are identical.
This does not imply that the implementation with no variation is correct and the one with variation is
incorrect. The same randomness is present in the consistent implementation and if we chose to access the
elements in a different order, we would have a similar effect as the implementation with variation. We chose
to pursue the implementation that introduces randomness because it is much more computationally efficient.

Using the reduced scale micro-branching problem, we investigate the impact that the randomness has
on the final result. We performed the simulation 20 times on each of an AMR and AMR+C enabled mesh,
then quantified the variation in fracture patterns in Table 5.2.

As before, we notice a large difference in the number of crack branches especially for the low crack
tolerance, which emphasizes the point that number of branches is not an ideal measure to by which to compare
fracture patterns resulting from the same process, e.g. same geometry, material properties, and loading
conditions. The variance on the total crack length is quite low, suggesting that the variation caused by the
numerical implementation is low. The crack tip velocity also shows low variation amongst the 20 iterations,
for the AMR and AMR+C cases the crack tip velocities are 754.3±9.8 m/s and 755.6±10.1 m/s, respectively.
Additionally, the total energy released during the fracture process is quite comparable, 75.0 ± 2.6 N/m and
77.0±2.0 N/m for the AMR and AMR+C cases, respectively. The total energy released considers all cohesive
elements, regardless of their amount of opening, thus this quantity is also independent of the threshold.

We observe some other additional fracture pattern characteristics. The branch spacing is fairly regular
among all simulations and the main cracks kinks about 3-6 times during the simulation. Most of the branches
are 1-3 elements in length, then the frequency drops significantly, as shown in Figure 5.10. Secondary
branches occurred in about half of the adaptive. Thus we concluded that the variation caused by the
massively parallel GPU implementation is not significant.

The variation caused by the GPU could alternatively be viewed as a way to induce randomness into the
numerical model, which in other similar studies was achieved by perturbing a structured mesh [88] or by
using a completely random mesh [89]. The adaptive GPU implementation allows the use of structured mesh
with variability that would be expected of a random mesh.

Finally, we compare the computational time of the proposed scheme with other platforms (serial CPU,
single GPU) and different types of implementation (adaptive vs. non-adaptive). The serial CPU versions
were run on a .3 GHz Intel Core i5 processor and the GPU version implemented here was done on a GeForce
GTX TITAN with 2688 CUDA cores and 6Gb memory. To the best of the authors’ knowledge there has
been no other implementation of an adaptive mesh refinement and coarsening scheme done on a parallel
platform. Table 5.3 shows the run times and speedups over the serial implementation without adaptivity.
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Figure 5.10: Histogram of branch lengths over 20 simulations for the (a) AMR enabled meshes with an open
crack tolerance of 75% of critical normal opening, (b) AMR+C enabled meshes with an open crack tolerance
of 75% of critical normal opening, (c) AMR enabled meshes with an open crack tolerance of 10% of critical
normal opening and (d) AMR+C enabled meshes with an open crack tolerance of 10% of critical normal
opening

Table 5.3: Comparison of wall time of the reduced scale micro-branching problem on different platforms
(The speed up factor is shown with respect to the no adaptivity case on the serial CPU)

Platform Implementation Wall time Speed Up Factor
Serial CPU No adaptivity 1,196 sec –
Serial CPU AMR 83 sec 14
Serial CPU AMR+C 57 sec 21
Single GPU No adaptivity 12 sec 100
Single GPU AMR 18 sec 66
Single GPU AMR+C 20 sec 60
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0.2 m 

0.05 m 

0.025 m 

ε = 0.003-0.005 

Figure 5.11: Geometry of full scale micro-branching problem

Of course, the GPU is much faster than the serial CPU, thus adaptivity also performs faster on the
GPU than the CPU. It is interesting to note that the cases of adaptivity on the GPU actually take longer
than the uniform case. This is because for this small problem, the percentage of time spent on updates
related to adaptive mesh refinement and coarsening on the GPU is greater than that spent on the finite
element calculations. When the problem is larger on the GPU, then we begin to see a difference in wall time
between the uniform and adaptive simulations. More important, however, is that the size of the problem is
severely limited for the uniform case on the GPU; this limitation is alleviated by adaptivity, which makes
large problems feasible because we store much less information than we would on a uniform mesh. So, we
may not achieve a large speedup between the uniform and adaptive cases on the GPU, but adaptivity gives
the ability to examine problems that we could not be able to simulate otherwise.

5.4.2 Full scale micro-branching specimen

Next, we are interested in comparing the fracture pattern from the reduced scale model with that of the
actual experimental set-up proposed in [203]. The full scale problem size has dimensions 50 ⇥ 200 mm (12.5
times larger than the reduced scale case from the previous section), as shown in Figure 5.11. Previous
numerical simulations of this work using the inter-element cohesive zone model have only simulated reduced
scale problems due to limitations of computation resources and sophisticated algorithms [158,190,204]. The
adaptivity algorithm implemented on the GPU architecture makes simulation of this full scale problem
possible. We should note, that even with the GPU and adaptive mesh refinement, computational times for
the following simulations were very high: up to 14 hours for each of the results shown here.

In scaling up the problem, not only does the geometry of the specimen change, but also the applied load
and material properties [82]. For the full scale model, the goal was to keep the numerical representation as
close to the experiment. Thus specimen dimensions are those of the experiment, and the material properties
are those of PMMA, the material used in the experiment. The Young’s Modulus is 3.24e9 Pa, the density is
1190 kg/m

3, and the Poisson ratio is 0.3 for the bulk elements, while and a fracture energy of 352.3 N/m and
cohesive strength of 62.1e6 Pa is used for the cohesive elements. As before, linear softening, linear unloading
back to the origin, and a penalty stiffness to prevent interpenetration are utilized. We examined a range of
externally applied loads: a low strain of 0.003, mid strain of 0.004, and a high strain of 0.005, which are
similar to the loads applied in the experiment.
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The difference between the full scale and the reduced scale model is the applied load and the cohesive
strength. For the reduced scale model, the loading was increased such that the strain energy per unit length
felt by the specimen would match that of the experiment. The adjustment of the material properties for
the reduced scale model, namely the cohesive strength, is not as straightforward as has been demonstrated
by other authors [153, 204]. A cohesive strength that is too large means that fracture never initiates, while
a low strength results in the insertion of an excessive number of cohesive elements, which is not physically
realistic. Thus, we used the value recommended in [153] and [190]. However, for the full scale problem, we
do not adjust the material properties, and use the experimentally obtained cohesive strength of PMMA.

The model is initially discretized with 300 ⇥ 75 4k mesh patches, or 90,000 elements. We use the AMR
to sufficiently reduce the element size at the notch tip. Note that a uniform mesh of comparable size
would contain 1,440,000 elements, which is well beyond the size capacity of the GPU, thus the adaptivity is
essential. The fracture patterns for three different strains are shown in Figure 5.12. Here we plot cohesive
elements that have opened more the 75% of the critical opening distance. The numerical results obtained
here agree well with those shown in the original experiment [203]. At lower strains the fracture surface is
smoother and features one predominate crack. As the load increases, branches appear and the fractured
surface becomes rougher. Finally, at the highest strain, many branches are present and are increased in
length. The velocities of the three cases also increase with increased applied strain. In the lowest strain
case, the velocity is relatively stable and lower than the higher strain cases. As the strain increases so do
the velocity and the oscillation of the crack tip velocity.

The details of the crack pattern and the adaptive mesh refinement scheme are shown in Figure 5.13 for
the low strain case. Elements that are open less than 75% of the critical opening distance are shown in the
zoom-in view in red. Notice that in relation to the crack branch, the branches comprised of partially open
elements are quite small. The details of the refinement scheme are clear, elements within the user defined
radius of a crack tip are refined. The radius of refinement is sufficiently large such that new cohesive elements
will be inserted within the bounds of the refined elements.

When comparing the reduced scale model results and the full scale model results, we notice some qual-
itative similarities, but the details are not evident in the smaller model. Thus, whenever possible, it is
recommended to use a numerical model that closely resembles the actual experiment. However, in many
cases, that is not entirely feasible due to lack of access to powerful and sophisticated computational resources.

The numerical studies performed here were on homogenous domains, which made implementation on
the GPU simpler because a single set of material properties could be stored for the entire model. It is,
however, possible to change the implementation such that each node has independent material properties.
An investigation of this nature is under development for a domain containing a weak interface, inspired by
the experimental study in [205].
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Figure 5.12: Final fracture patterns for full scale micro-branching problem with an externally applied strain
of (a) 0.003, (b) 0.004, and (c) 0.005
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Figure 5.13: Detailed view of fracture pattern for the full scale micro-branching problem with an externally
applied strain of 0.003
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Chapter 6

Conclusion

Numerical simulation of fracture and failure is well established field in which a host of researchers and prac-
titioners have contributed. Despite the decades of work on the topic, there still exist substantial challenges
in computational modeling of practical systems. The contributions of this work are partially in the area
of ductile failure and partially brittle fracture. In the former, failure is characterized by extremely large
deformations before the creation of new surfaces. The difficulty in modeling such systems is that numeri-
cal instability is encountered before failure actually occurs. To this effect, we investigate an interpolation
scheme that allows for effective transfer of internal state variables after remeshing is performed as needed
in the simulation. The majority of this dissertation focuses on brittle failure, which is defined as creation
of new surfaces in the domain. We perform our studies and investigations of dynamic fracture using the
inter-element extrinsic cohesive model approach and the PPR potential-based cohesive model to represent
crack propagation [164]. Again, mesh adaptivity is at the crux of the contributions. However, unlike the
work on ductile failure where we investigate the means to physically handle mesh adaptivity without focusing
on the topological changes to the mesh, in the work on brittle fracture, we actually develop the techniques
to perform mesh adaptivity from the topological and physical perspectives. Efficient mesh representation is
essential when the mesh changes on the fly, so this work utilizes the TopS data structure or variations upon
to perform changes to the mesh as the simulation is progressing [153, 162]. This thesis places heavy focus
on the computational aspects of mesh adaptation (i.e. adaptive mesh refinement and coarsening in three
dimensions and GPU-based adaptive mesh refinement and coarsening), which is a critical component to en-
abling large scale failure simulation. In the remainder of this chapter, we summarize the main contributions
of this dissertation, then we elaborate on potential future research directions.

6.1 Summary of contributions

As stated in the introduction, this work is the product of a number of fruitful collaborations. The individual
contributions from the author were detailed in Section 1.3, and here the main contributions of this thesis as
a whole for the simulation of fracture and failure are detailed:

• Mesh adaptivity improves the fidelity of the simulation results in modeling either failure by means of
excessive deformation in ductile systems or by creation of new surfaces in brittle systems. In many
cases, we have shown that adaptivity is necessary to perform the simulation.

• The Lie-group interpolation and variational recovery scheme is investigated in great detail on a model
problem. We use severe cases to test the proposed algorithm and find only minor loss due to numerical
diffusion. This suggests that the approach will be favorable when applied used as intended for practical
problems.
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• Studies on adaptive splitting of polygonal elements reveals that geometric considerations are not suffi-
cient to determine if a mesh and element type perform well in dynamic fracture simulations. Through
numerical simulations, we show that a tradeoff between geometric and computational considerations
is necessary. We concluded that the adaptive restricted splitting of CVT polygonal element meshes
scheme are best suited for 2D dynamic fracture problems.

• Development of 3D adaptive mesh refinement and coarsening scheme yields the ability to simulate
problems that would otherwise be untenable because of limitations of computational resources. Im-
provement of the TopS data structure and specialized development for 3D adaptivity on 4k meshes
leads to an efficient and clean implementation of refinement and coarsening that could be utilized in a
variety of applications.

• Investigation of adaptive mesh refinement and coarsening schemes for dynamic fracture simulation on
the massively parallel GPU architecture reveals insight into the numerical simulation that otherwise
have not been investigated. While slight variation during floating point operations leads to fracture
patterns that appear very different, we showed that they are statistically similar and give confidence
in this and other similar implementations.

6.2 Future research directions

Several research directions are possible given the developments made in this dissertation. The proposals
detailed in this section build on the work established in this document.

6.2.1 Future investigations and applications of Lie-group interpolation and
variational recovery scheme

The fundamental investigations presented in Chapter 2 on mapping internal state variables using the Lie-
group interpolation and variational recovery scheme gave us confidence that the approach is numerically
sound and is applicable for a larger range of applications. A first extension of the work would be to examine
how long the load can be applied before errors propagate and lead to a lack of numerical convergence.
Hexahedra elements are utilized in this work, however, remeshing complicated domains with these elements
is not straightforward. Thus there is a push to use tetrahedral elements instead.

Some initial work was done on the tetrahedral elements to evaluate their effectiveness in large deforma-
tions. The first investigation was to project a linear field from five integration points of quadratic tetrahedral
elements to the ten nodes. However, five integration points cannot be consistently projected because the
projection matrix cannot be integrated, 11 integration points are needed. Thus resulted in oscillatory fields,
which is evident in Figure 6.1(a). Next we utilized a linear projection and constant pressure to avoid volu-
metric locking. The stress field became more smooth, as shown in Figure 6.1(b), but the results are still not
ideal. Next, a different type of tetrahedral element was examined, the composite tetrahedral element that
contains 10 nodes and utilizes multilinear shape functions and constant pressure to avoid locking. Figure
6.1(c) shows the nodal stress projected to the nodes using the composite tetrahedral elements. The composite
tetrahedral results in the field that is qualitatively closest to what is expected, however, more development
on the element formulation is still needed. For the composite tetrahedron to be utilized in the interpolation
and recovery scheme, the nodal fields would be interpolated by the composite tetrahedral shape functions,
and the element fields would be projected by the tet4 shape functions.

123



(a)! (b)! (c)!

Figure 6.1: Stress field after projection from integration points to nodes of Tet10 elements using (a) quadratic
projection (b) linear projection (c) composite linear projection

Once the composite tetrahedral elements are fully developed and the tensile bar specimen simulated, the
attention can move to the large application of interest, which is that of a laser weld in tough metals. In
tensile testing of a laser butt weld, failure is characterized by necking first and creation of new surfaces are
a secondary effect. The experimental results shown in Figure 6.2 demonstrate that massive deformations
occur before any new surfaces are created. This behavior is hypothesized to be due to the presence of voids
in the material; their size and distribution is thought to contribute to the behavior. First attempts to model
the butt weld with voids present were not successful because massive deformations in the finite elements
resulted in lack of convergence, as seen in Figure 6.3. Thus, the remesh and mapping scheme with tetrahedral
elements could be utilized to model the behavior of the laser weld as an attempt to capture the experimental
results.

6.2.2 Investigation of activation criteria for extrinsic cohesive elements

In chapters 3-5, extrinsic cohesive zone elements are activated when the averaged tractions along an facet
are greater than the material cohesive strength. To summarize, we first compute stresses at the integration
points, then extrapolate to the nodes. Normal and tangential components of the tractions along the facet
are computed. They are computed by averaging the contribution of each node. If the normal or tangential
traction is greater than the normal or tangential cohesive strength, respectively, then the cohesive element
is inserted. This approach has been used in several studies [88, 89,101,153,158], and similar strength-based
approaches have also been used with success [151,159–161].

As a future investigation, one could explore different criteria to insert extrinsic cohesive elements along
bulk element boundaries. First, rather than only using a single stress as an indicator and combination of
stresses could be assessed as in the Mohr-Coulomb failure criterion, given by

⌧ = � tan (�) + c

This creates a failure envelope where ⌧ is the shear strength, � is the normal strength, c is the intercept
with the ⌧ axis, and � is the slope. While still strength-based, this type of failure criterion takes into account
the interplay between the normal and tangential strength, rather than just evaluating them separately.

Loss of ellipticity is another flavor of activation criteria that has been widely studied in the analysis of
material instability [206, 207]. Similarly, in dynamic fracture simulation loss of hyperbolicity has been an
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Figure 6.2: Experimental load versus displacement curve of 304L butt weld

Figure 6.3: Experimental load versus displacement curve of 304L butt weld with simulated results over-
laid. The voids in the material impact the overall behavior, however, current modeling attempts have been
unsuccessful due to large distortions in the finite elements
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indicator [48,84]. Th ellipticity condition is summarized as

(m ⌦ n) : C : (m ⌦ n) � 0, 8m, n 2 R3 (6.1)

where C is the elasticity tensor and m and n are unit vectors. We can define

A = n · C · n (6.2)

then the ellipticity condition becomes

m · A · m > 0, where m 2 R3, kmk = 1 (6.3)

which is satisfied when
detA > 0. (6.4)

The challenge lies in determining the direction of the loss of ellipticity, for which the vector n is parame-
terized. Then detA becomes a function of the parameters of n, and the ellipticity condition is a minimization
problem that can be solved with standard techniques. In the case of interfacial cohesive fracture, there are a
finite number of possible directions for fracture initiation, which are given by the facets in the finite element
mesh. Therefore the ellipticity condition in 6.4 does not need to be parameterized, instead all of the possible
fracture directions could be evaluated.

In the previous discussion the activation of cohesive elements was assumed to be the same at all points
in the simulation (i.e. during crack initiation, propagation, and branching). However, one could explore
different criteria for crack initiation than for crack branching.It is known that the crack tip velocity is limited
by the wave speed of the material; in experimental systems micro-branching off the main crack serves as a
mechanism to limit the speed [203]. In [53], researchers used the crack tip velocity as a criteria to initiation
crack branching and ultimately limit the speed of the main crack. A weakness of the method employed
in [53] is that it allowed for only y-type branches. A more sophisticated method could be developed in which
the crack velocity activates branching, but the direction and length of the branches could be calculated using
other means.

6.2.3 Automatic remeshing around crack tips

While the scope of the work presented in this dissertation was broad, a common theme running through all of
the chapters was the notion of mesh adaptivity. We have seen the great computational benefit that adaptive
mesh refinement can have on simulations of any size, and how local modification of polygonal element meshes
results in improved fracture patterns over structured meshes. Thus, a natural extension and coalescence of
the work presented in this chapter is adaptive remeshing of unstructured meshes. Straightforward subdivision
of the polygonal element meshes with adaptive element splitting has already been investigated in [89]. So, a
further extension we propose here is to completely remesh the crack tip, rather than hierarchically refining
the polygons or the 4k patches.

A meshing technique of this nature has recently been developed [208] in which a planar curved domain is
meshed with triangular elements by transforming a background mesh to conform the the domain boundary.
This method is also appropriate for evolving domains in which the same background mesh (the so-called
“universal mesh”) is utilized to triangulate many instances of the domain. Quasi-static curvilinear crack
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propagation in two dimensions has recently been simulated using this meshing approach [209].
A similar technique has been developed by [210] (collaborators on the work presented in this dissertation)

for quadrilateral and triangular element meshes. In their approach, the mesh can be generated around an
arbitrary line (e.g. crack or notch) in the mesh. This is demonstrated in Figure 6.4 on a simply geometry
with a random and complex fracture pattern around which the mesh is generated. After the nodes are
moved, the quality of mesh is likely degraded, so a smoothing algorithm is run to improve the modified
and adjacent elements. Finally, the mesh may be converted to a quadrilateral mesh using the clustering
algorithm proposed by [211].

The approach requires an initial triangular mesh of the problem domain without the constraints. Araujo
and Celes [210] investigated a triangular Delaunay mesh and a 4k mesh as a starting point although any
initial triangular is applicable. Next, the constraints are inserted one at a time and the mesh adjusted for
one constraint before the next is inserted. First the end points of the constraint polyline are inserted and the
nodes of the initial mesh are adjusted such that they are coincident. Next, an iterative procedure modifies
the mesh such that the polyline is represented by mesh nodes to a tolerance.

While the meshing capability is present, the approach has not been utilized in an actual fracture appli-
cation. In order to make this approach viable, a few assumptions related to the crack propagation criteria
would need to be modified. First, the approach used throughout this dissertation assumes that the crack can
only propagate to a fixed number of points through element facets. If arbitrary remeshing is possible, then
the actual crack direction can be realized. Using a stress based approach for brittle materials, the direction
and magnitude of the principle stress at the crack tip could be determined. If this stress is greater than the
cohesive strength, then the area would be remeshed around the constraint of the new crack increment. Using
the current extrinsic cohesive zone model approach, the cohesive element would be inserted by duplicating
the nodes on the newly added constraint facet.

The work under development could also be extended to polygonal element meshes. Ideally, the new
criteria for crack propagation, it is clear that the necessity for element splitting no longer exists because the
crack direction would be determined independent of the mesh orientation ahead of the crack tip. However,
it may not be computationally feasible to remesh the regions ahead of crack tips or globally throughout the
domain every time the crack advances. Thus, we can imagine a hybrid approach in which a region ahead of
the crack tip is remeshed at a certain number of time step intervals, for example, then the element splitting
could still be utilized to capture the change in direction of the crack propagation in between remeshing steps.

The proposed remeshing algorithm is applied to the entire mesh (e.g. the entire mesh is regenerated every
time the crack advances). However, to improve computational costs, the mesh should only be changed locally
in regions near crack tips or where a greater mesh resolution is necessary. Thus, a additional component of
this proposed work would be to develop an algorithm to perform the non hierarchical remeshing on subregions
of the mesh while maintaining nodal compatibility with the regions of the mesh that are not modified.

Whether the remeshing is performed on a local or global basis, the user needs to specify the target
element size. In the work presented in this thesis, the element sizes were determined based on a a-priori
assumptions and parametric studies of mesh refinement. However, to make the simulations more robust and
predictive, the size of the elements should be calculated based on information of the state of the system.
Error estimators may be used to achieve this target element size. In previous works, researchers used
error indicators based on interpolation error estimates to adaptively refine and coarsen a mesh to capture
anisotropic damage [212]. Khoei and coworkers have modeled three-dimensional crack propagation in quasi-
static problems. Error indicators in the stress field indicate the target mesh size, then adaptive remeshing is
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region was generated using mapping procedures (that in general generates good quality meshes), whenever possible,
or Delaunay triangulation followed by conversion-to-quadrilateral procedure.

Fig. 6: Geological section domain

For comparison, all triangular meshes have approximately the same number of elements; this also applies for
the quadrilateral meshes. Figure 7 shows the achieved triangular meshes and Figure 8 shows the mesh achieved by
Triangle [26], generated using a no-small-angle parameter set to 30 degrees.

(a) Delaunay based (18,549 triangles)

(b) 4-8 based (18,864 triangles)

Fig. 7: Generated triangular meshes using di�erent initial meshes.

We analyse the quality of the generated triangular meshes measuring the Lo parameter and vertex valence. Figure 9
depicts the achieved results. Note that both meshes generated using our proposal (from Delaunay or 4-8 pattern)
present good overall quality; only a few number of elements present Lo parameter below 0.7, and less then 0.5% of
the vertices has valence 9. Naturally, the 4-8-based mesh resulted in mesh with several elements with valence 4 and
8, while the Delaunay-based mesh presents better vertex valence statistics, presenting final numbers quite close to the

(a)
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For comparison, all triangular meshes have approximately the same number of elements; this also applies for
the quadrilateral meshes. Figure 7 shows the achieved triangular meshes and Figure 8 shows the mesh achieved by
Triangle [26], generated using a no-small-angle parameter set to 30 degrees.
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Fig. 7: Generated triangular meshes using di�erent initial meshes.
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(a) Delaunay-based (43,882 quadrilaterals)

(b) 4-8-based (45,122 quadrilaterals)

Fig. 10: Generated quadrilateral meshes using our proposal with di�erent initial meshes.

Fig. 11: Quadrilateral mesh generated by SIGMA (45,082 quadrilaterals).

very e�cient, robust, good-quality, and automated mesh generator. Needless to say, our proposal is quite appropriate
to modify an existing mesh due to the insertion of new constraints.

Our future plans include the investigation of other topological operators for reducing mesh distortion. Also, as
demonstrated by previous works, a post-processing phase may be employed in order to improve mesh quality. Our
main goal is the generation of 3D meshes, and we believe the deferred constraint insertion strategy presented in this
paper is also promising for 3D domains.
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C. Araújo and W. Celes / Procedia Engineering 00 (2014) 000–000 11

(a) Delaunay-based (43,882 quadrilaterals)

(b) 4-8-based (45,122 quadrilaterals)

Fig. 10: Generated quadrilateral meshes using our proposal with di�erent initial meshes.

Fig. 11: Quadrilateral mesh generated by SIGMA (45,082 quadrilaterals).

very e�cient, robust, good-quality, and automated mesh generator. Needless to say, our proposal is quite appropriate
to modify an existing mesh due to the insertion of new constraints.

Our future plans include the investigation of other topological operators for reducing mesh distortion. Also, as
demonstrated by previous works, a post-processing phase may be employed in order to improve mesh quality. Our
main goal is the generation of 3D meshes, and we believe the deferred constraint insertion strategy presented in this
paper is also promising for 3D domains.

Acknowledgment

The authors thank the support provided by the Tecgraf Institute at PUC-Rio, which is mainly funded by the
Brazilian oil company, Petrobras. The second author also thank the Brazilian National Council for Scientific and
Technological Development (CNPq) for the financial support to conduct this research. The constrained Delaunay
triangulation was generated using Triangle, created at Carnegie Mellon University as part of the Quake project
(http://www.cs.cmu.edu/ quake/triangle.html).

(d)
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performed before the crack propagates [127, 213–215]. A hierarchical adaptivity approach is taken in [216]
to drive crack propagation based on a posteriori error estimations in two dimensions. The previous works
featured h-adaptivity, whereby the mesh is locally refined or coarsened, i.e., the number of elements and
nodes change. Alternatively, r-adaptivity could also be used in fracture simulation. In this approach, the
mesh is moved but no elements or nodes are added. For example, brittle fracture is simulated in [217] by
adaptively aligning the element facets with the crack propagation direction.

6.2.4 Polyhedra finite elements for dynamic fracture simulation

While the adaptive splitting of polygonal elements in two dimensions presented in Chapter 3 is not conducive
to three-dimensional fracture on polyhedral elements, we indicate some directions to be pursued to achieve
that goal. For instance, recently, the Wachspress shape functions, together with their gradients, have been
derived in 3D [218] and either those or other related interpolants [219] could serve as a starting point. The
geometrical treatment regard- ing three-dimensional splitting and element redefinition may incorporate some
of the computational geometry ideas developed at Sandia National Laboratory [220] and in reference [221].
Alternatively, new interpolants may open avenues for the three-dimensional treatment of fracture surfaces
on poly- topes. In this regard, the virtual element method (VEM) may be explored. Recently, the VEM
has been implemented to treat elastic problems without cracks [222], and thus, one could build upon this
work to incorporate new crack surfaces where and when needed, which could take advantage of the adaptive
features offered by the VEM [223,224].

6.2.5 Adaptive time stepping for explicit dynamic fracture

A critical issue in explicit dynamic simulations, like the ones performed in Chapters 3-5 of this dissertation,
is that of the critical time step. It is well known that the time step for the dynamic simulation is limited
by the CFL condition [225]. Intuitively, the CFL condition states that the distance traveled by a wave in
one time step must be less than the spatial time step, or in other words, the numerical wave speed must
be at least as fast as the physical wave speed. In the simulation of brittle fracture, we have seen that we
need quite a very small element size around the crack tip and other areas of high gradient in the domain.
However, with the use of adaptive mesh refinement and coarsening techniques, the mesh is coarse in regions
away from the crack tip. Since we are using a uniform time step throughout the spatial domain, the time
step associated with the largest elements is much smaller than is necessary according to the CFL condition.
This leads to the idea to add an additional level of adaptivity to the simulation: vary the time step spatially
throughout the mesh based on the minimum element size of the region. Techniques of temporal adaptivity,
which the domain is subdivided and different time steps applied at different regions of the mesh have been
proposed in the literature, but the extension to the the extrinsic fracture simulation has yet to be done to
the best knowledge of the author.

The previous work of [5, 226] proposed methods for adaptive temporal and spatial grid spacing. For a
simple case of one spatial dimension, the idea is illustrated in Figure 6.5. The mesh is spatially refined in the
middle of mesh. In the approach used through this dissertation, the time stepping was done in accordance
with Figure 6.5(a) where the time step (�t

A

) is the same everywhere throughout the spatial mesh. However,
the proposed approach would follow that of Figure 6.5(b) where the small time step is only used at the fine
elements (�t

B

) and a larger time step is utilized for the coarser spatial mesh (�t
A

). Of course, we need to
take care to transfer information between the coarse and fine time steps. Displacements are calculated at
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Figure 6.5: Temporal adaptivity illustrated on a one-dimensional spatial mesh (a) a uniform time step is
used throughout the domain (b) a smaller time step is used in areas of mesh refinement (�t

B

) and a larger
time step is used in the other areas (�t

A

). Figure adapted from [5]

auxiliary points that exist between the fine time steps and coarse time steps.
Other new approaches may be of use in developing an adaptive time stepping scheme. Prakash and

Hjelmstad [227] for example, have developed a multi-time-step coupling method in which the entire domain
is divided into smaller subdomains. Essentially, each subdomain is treated and solved separately, meaning
that each one may be integrated using a different critical time step based on its smallest element size. In order
to assemble the domain after the subdomains are computed, internal forces are computed then subdomains
are updated to account for the internal forces coming from neighboring subdomains such that continuity of
velocity at interfaces is achieved. Combescure and Gravouil [228] demonstrated good agreement between a
multi-time-step coupling scheme and a standard time stepping scheme, however the approach has not been
incorporated into a problem in which the spatial mesh also changes with time. While significant development
would be necessary, an adaptive time stepping approach based on spatial discretization would provide greater
flexibility and computational efficiency in the context of the adaptive spatial mesh refinement and coarsening
algorithms.

6.2.6 Three dimensional adaptive mesh refinement and coarsening on
graphical processing units

Based on the mesh adaptivity on the GPU work done in Chapter 5, some extensions are clear. First the work
was conducted in two dimensions, so an extension to three dimensions is obvious. However, given the current
implementation on a single GPU, the size of the problem is greatly limited due to the GPU architecture and
access to memory. See Section 5.1 for a discussion of the GPU architecture and resulting memory access
issues. Also, recall that the reason AMR+C was performed on the GPU in the first place was not because
the simulation time was too great with a uniform mesh, but because the space requirements were so great
that a large scale problem could not actually be represented. Thus, in order to perform adaptivity in 3D,
the implementation would need to be transferred to multiple GPUs so that there is access to more memory.

A natural first step would be to start with a uniform mesh and adaptive insertion of cohesive elements
in 3D on multiple GPUs. In this way, different parts of the model would be simulated on different GPUs.
Thus, the simulations parameters that take the most memory (e.g. stiffness and mass matrix) are stored
separately for each part of the model on its respectively GPU. A uniform mesh would likely utilize a graph
coloring scheme, which would need to be handled first on a CPU. Since the CPU memory space is not an
issue as it is on the GPU, we can simply gather this computational time as overhead before the simulation
begins. This extension is currently underway in the coauthors of the work presented in Chapter 5. Next,

130



adaptivity would be incorporated with the 3D simulation on multiple GPUs. As was the case for the 2D
adaptivity, the coloring scheme would not be appropriate on multiple GPUs, thus a nodal scheme would
need to be developed as it was in Chapter 5.
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Appendix A

Scripted procedures for remeshing and

mapping internal state variables

The procedure to map internal state variables was scripted using python. All of the analysis modules are
called from a single script that is easily executed by the end user. Two versions of the script are included
here for reference. First, the script to map internal state variables from the source mesh to the target mesh,
where the target mesh is the same as the source mesh is presented in Section A.1. Next, the script to map
internal state variables from the source mesh to a new target mesh is presented in Section A.2.Additionally,
an example of one of the post-processing scripts is included in Section A.3.

A.1 Python script for mapping internal state variables without

remeshing

1 from exodus import exodus

2 import exomerge

3 import os

4 import io

5 import sys

6
7 # global variables - user inputs (may be edited here or in command line)

8 adagio = ’/localhome/sleon/sierra/bin/adagio ’

9 sierra_in = ’sierra_in.i’

10 template = ’template.i’

11 init_mesh = ’hexes_fine.g’

12 nintervals = 10

13 nremaps = 1

14 etime = 0.25

15 dt = 0.0025

16 nproc = 20

17
18 # support functions

19 def renameFields(filename) :

20 #print ’renaming file ’ + filename

21 model = exomerge.import_model(filename)

22
23 nGPs = 8

24 endings = [’xx ’, ’xy’, ’yy ’, ’yz ’, ’zx’, ’zz ’]

25 for i in range(len(endings)) :
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26 for j in range(nGPs) :

27 old_stretch = ’exp_log_left_stretch_ ’ + endings[i] + ’_’ + str(j+1)

28 new_stretch = ’left_stretch_ ’ + endings[i] + ’_’ + str(j+1)

29 model.rename_element_field(old_stretch , new_stretch)

30
31 remove_stretch = ’log_left_stretch_ ’ + endings[i] + ’_’ + str(j+1)

32 model.delete_element_field(remove_stretch)

33
34 endings = [’xx ’, ’xy’, ’xz ’, ’yx ’, ’yy’, ’yz ’, ’zx’,’zy’, ’zz ’]

35 for i in range(len(endings)) :

36 for j in range(nGPs) :

37 old_rotation = ’exp_log_rotation_ ’ + endings[i] + ’_’ + str(j+1)

38 new_rotation = ’rotation_ ’ + endings[i] + ’_’ + str(j+1)

39 model.rename_element_field(old_rotation , new_rotation)

40 remove_rotation = ’log_rotation_ ’ + endings[i] + ’_’ + str(j+1)

41 model.delete_element_field(remove_rotation)

42
43 model.export(filename)

44
45 def nameFile (type , nAnalysis , nRemap) :

46 if (nRemap == 0) :

47 filename = type + ’.’ + str(nAnalysis)

48 else :

49 filename = type + ’_remap ’ + str(nRemap) + ’.’ + str(nAnalysis)

50 return filename

51
52 def copyFile (copyfrom , copyto) :

53 os.system(’cp ’ + copyfrom + ’ ’ + copyto)

54
55 def modifyInputFile_DB (filename , exo_in , exo_out , sm_dat) :

56 old_text = [’Database name = {exo_in}’, ’stream name = {sm_dat}’,\

57 ’Database name = {exo_out}’]

58 new_text = [’ Database name = ’ + exo_in + ’\n’, \

59 ’ stream name = ’ + sm_dat + ’\n’, \

60 ’ Database name = ’ + exo_out + ’\n’]

61 editLine(filename , old_text , new_text , len(old_text))

62
63 def editLine (filename , old_text , new_text , nreplace) :

64 with open(filename , ’r’) as file:

65 data = file.readlines ()

66
67 j = 0

68 for i in range(len(data)) :

69 if old_text[j]. lower() in data[i]. lower () :

70 data[i] = new_text[j]

71 j+=1

72 if j == nreplace:
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73 break

74 if j != nreplace:

75 print sierra_in + ’ not modified correctly ’

76 exit (1)

77
78 with open(filename , ’w’) as file:

79 file.writelines(data)

80
81 def callSierra(nproc , sm_in , sm_log , start_time , end_time , dt, read_time , do_proj ,

82 do_init , reg_step , equilibrium_step):

83 sm_run = ’sierra -j ’ + str(nproc) + ’ ’ + adagio +’ -i ’ + sm_in + \

84 ’ --logfile ’ + sm_log + ’ --aprepro --define ’ + \

85 ’"start_time=’ + str(start_time) + ’ end_time=’ +

86 str(end_time) + ’ dt=’ + str(dt) + ’ read_time=’ + \

87 str(read_time) + ’ projection=’ + str(do_proj) + ’ initialize=’ + \

88 str(do_init) + ’ reg_step=’ + str(reg_step) + \

89 ’ equilibrium_step=’ + str(equilibrium_step) + ’"’

90 cmdLine(sm_run , ’sierra_ ’+str(nrun) +’_out ’)

91
92 def callLogVars (exo_in , exo_out , sm_in , exp_flag = 0) :

93 if exp_flag == 0 :

94 log_run = ’./logVars -source ’ + exo_in + ’ -out ’ + \

95 exo_out + ’ -cmd ’ + sm_in

96 else :

97 log_run = ’./logVars -exp -source ’ + exo_in + ’ -out ’ + \

98 exo_out + ’ -cmd ’ + sm_in

99 cmdLine(log_run , ’logVars_out ’)

100 return exo_out

101
102 def callPushForward (exo_in , exo_out) :

103 push_run = ’./ pushforwardMesh -source_e ’ + exo_in + ’ -target_e ’ + exo_out

104 cmdLine(push_run , ’pushforward_out ’)

105 return exo_out

106
107 def callInterpolate (exo_in , target , exo_out , sm_in) :

108 interp_run = ’./ interpolateVars -source_e ’ + exo_in + \

109 ’ -target_g ’ + target + ’ -target_e ’ + exo_out + \

110 ’ -source_i ’ + sm_in + ’ -target_i ’ + sm_in

111 cmdLine (interp_run , ’interpolate_out ’)

112 return exo_out

113
114 def callPullBack (exo_in , exo_out) :

115 pull_run = ’./ pullbackMesh -source_e ’ + exo_in + ’ -target_e ’ + exo_out

116 cmdLine (pull_run , ’pullback_out ’)

117 return exo_out

118
119 def cmdLine (str , filename) :
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120 print str + ’\n’

121 os.system(str + ’ >>console.txt ’)

122
123 # main script if __name__ == "__main__ ":

124 # read inputs

125 if len(sys.argv) != 6 :

126 print ’usage python auto_remap.py [num intervals] ’ + \

127 ’[num remaps] [end time] [time step] [num processors]’

128 try :

129 user_in = input (’use default values? (1 = yes , 0 = no)’ + \

130 ’ [num intervals = ’ + str(nintervals) + ’] ’ + \

131 ’ [num remaps = ’ + str(nremaps) + ’]’ + \

132 ’ [end time = ’ + str(etime) + ’]’ + \

133 ’ [time step = ’ + str(dt) + ’]’ + \

134 ’ [num processors = ’ + str(nproc) + ’]’ + ’\n’)

135 except :

136 print ’Invalid input. Rerun and specify input values ,

137 or rerun and accept default values.’

138 exit (1)

139
140 try:

141 use_default = int(user_in)

142 except :

143 print ’Invalid input. Rerun and specify input values ,

144 or rerun and accept default values.’

145 exit (1)

146
147 if use_default != 1 :

148 print ’exiting auto_remap , restart with correct user inputs ’

149 exit (1)

150 else :

151 nintervals = int(sys.argv [1])

152 nremaps = int(sys.argv [2])

153 etime = float(sys.argv [3])

154 dt = float(sys.argv [4])

155 nproc = int(sys.argv [5])

156
157 int_time = etime/nintervals # length of each interval

158 nrun = 0

159 nremap = 0

160 tremap = 0

161
162 for i in range(nintervals -1):

163 nrun = i+1;

164
165 # run analysis from t = st to et

166 print ’\nAnalsyis ’ + str(nrun) + ’\n----------------------------’
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167 if i==0:

168 exo_in = init_mesh

169 do_init = 0

170 else:

171 exo_in = exo_out

172 do_init = 1

173
174 int_start = i*int_time;

175 int_end = (i+1)*int_time

176 read_time = int_start

177 filename = ’analysis.’ + str(nrun)

178 exo_out = filename + ’.e’

179 sm_log = filename + ’.log ’

180 sm_dat = filename + ’.dat ’

181 do_proj = 0

182 reg_step = 1

183 equilibrium_step = 0

184 copyFile (template , sierra_in)

185 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

186 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt ,

187 read_time , do_proj , do_init , reg_step , equilibrium_step)

188
189 # Remap nremaps times

190 for j in range(nremaps):

191 nrun = i+1

192 nremap = j+1

193 tremap += 1

194
195 print ’\nRemap ’ + str(nremap) + ’ on Analysis ’ + \

196 str(nrun) + ’\n----------------------------’

197
198 # perform logaritmic map on flagged variables

199 exo_in = exo_out

200 exo_out = nameFile(’log ’, nrun , nremap) + ’.e’

201 exo_out = callLogVars (exo_in , exo_out , sierra_in)

202
203 # project element variables to nodes

204 int_start = int_end -dt;

205 read_time = int_end

206 exo_in = exo_out

207 filename = nameFile(’projection ’, nrun , nremap)

208 exo_out = filename + ’.e’

209 sm_log = filename + ’.log ’

210 sm_dat = filename + ’.dat ’

211 do_proj = 1

212 do_init = 1

213 reg_step = 0
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214 equilibrium_step = 0

215 copyFile (template , sierra_in)

216 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

217 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt ,

218 read_time , do_proj , do_init , reg_step , equilibrium_step)

219
220 # push forward to current configuration

221 exo_in = exo_out

222 exo_out = nameFile(’pushforward ’, nrun , nremap) + ’.e’

223 exo_out = callPushForward(exo_in , exo_out)

224
225 # interpolate nodal variables from old mesh to new mesh

226 exo_in = exo_out

227 target = exo_out # with no remesh

228 exo_out = nameFile(’interpolation ’, nrun , nremap) + ’.e’

229
230 # pull back to reference configuration

231 exo_in = exo_out

232 exo_out = nameFile(’pullback ’, nrun , nremap) + ’.e’

233 exo_out = callPullBack (exo_in , exo_out)

234
235 # perform exponential map on flagged variables

236 exo_in = exo_out

237 exo_out = nameFile(’exponentiation ’, nrun , nremap) + ’.e’

238 exo_out = callLogVars(exo_in , exo_out , sierra_in , 1)

239
240 # rename variables if another remap is next

241 renameFields(exo_out)

242
243 # zero velocity step to bring back in to equilibrium

244 if j!=nremaps -1 :

245 print ’equilibrium step after remapping ’

246 int_start = int_end -dt

247 read_time = int_end

248 exo_in = exo_out

249 filename = nameFile(’equilibrium ’, nrun , nremap)

250 exo_out = filename + ’.e’

251 sm_log = filename + ’.log ’

252 sm_dat = filename + ’.dat ’

253 do_proj = 0

254 do_init = 1

255 reg_step = 0

256 equilibrium_step = 1

257 copyFile (template , sierra_in)

258 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

259 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt ,

260 read_time , do_proj , do_init , reg_step , equilibrium_step)

151



261
262 # perform zero velocity step to come back into equilibrium

263 print ’equilibrium step ’

264 int_start = int_end -dt

265 read_time = int_end

266 exo_in = exo_out

267 filename = nameFile(’equilibrium ’, nrun , nremap)

268 exo_out = filename + ’.e’

269 sm_log = filename + ’.log ’

270 sm_dat = filename + ’.dat ’

271 do_proj = 0

272 do_init = 1

273 reg_step = 0

274 equilibrium_step = 1

275 copyFile (template , sierra_in)

276 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

277 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt , read_time ,

278 do_proj , do_init , reg_step , equilibrium_step)

279
280 # run analysis for last time

281 if nrun ==0 :

282 int_start = 0

283 int_end = etime

284 nrun = 1

285 exo_in = init_mesh

286 do_init = 0

287 else :

288 int_start = (i+1)*int_time;

289 int_end = (i+2)*int_time

290 nrun = i + 2

291 exo_in = exo_out

292 do_init = 1

293 read_time = int_start

294 print ’\nAnalsyis ’ + str(nrun) + ’\n----------------------------’

295 filename = ’analysis.’ + str(nrun)

296 exo_out = filename + ’.e’

297 sm_log = filename + ’.log ’

298 sm_dat = filename + ’.dat ’

299 do_proj = 0

300 reg_step = 1

301 equilibrium_step = 0

302 copyFile (template , sierra_in)

303 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

304 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt ,

305 read_time , do_proj , do_init , reg_step , equilibrium_step)
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A.2 Python script for mapping internal state variables with

remeshing

1 from exodus import exodus

2 import exomerge

3 import os

4 import io

5 import sys

6
7 # global variables - user inputs (may be edited here or in command line)

8 adagio = ’/localhome/sleon/sierra/bin/adagio ’

9 cubit_cmd = ’cubit_new 13.1_64 ’

10 sierra_in = ’sierra_in.i’

11 template = ’template.i’

12 cubit_jou = ’remesh.jou ’

13 cubit_template = ’cubit_template.jou ’

14 init_mesh = ’hexes_fine.g’

15 nintervals = 10

16 nremaps = 1

17 etime = 0.25

18 dt = 0.0025

19 nproc = 20

20
21 # support functions

22 def renameFields(filename) :

23 #print ’renaming file ’ + filename

24 model = exomerge.import_model(filename)

25
26 nGPs = 8

27 endings = [’xx ’, ’xy’, ’yy ’, ’yz ’, ’zx’, ’zz ’]

28 for i in range(len(endings)) :

29 for j in range(nGPs) :

30 old_stretch = ’exp_log_left_stretch_ ’ + endings[i] + ’_’ + str(j+1)

31 new_stretch = ’left_stretch_ ’ + endings[i] + ’_’ + str(j+1)

32 model.rename_element_field(old_stretch , new_stretch)

33
34 remove_stretch = ’log_left_stretch_ ’ + endings[i] + ’_’ + str(j+1)

35 model.delete_element_field(remove_stretch)

36
37 endings = [’xx ’, ’xy’, ’xz ’, ’yx ’, ’yy’, ’yz ’, ’zx’,’zy’, ’zz ’]

38 for i in range(len(endings)) :

39 for j in range(nGPs) :

40 old_rotation = ’exp_log_rotation_ ’ + endings[i] + ’_’ + str(j+1)

41 new_rotation = ’rotation_ ’ + endings[i] + ’_’ + str(j+1)

42 model.rename_element_field(old_rotation , new_rotation)

43 remove_rotation = ’log_rotation_ ’ + endings[i] + ’_’ + str(j+1)
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44 model.delete_element_field(remove_rotation)

45
46 model.export(filename)

47
48 def nameFile (type , nAnalysis , nRemap) :

49 if (nRemap == 0) :

50 filename = type + ’.’ + str(nAnalysis)

51 else :

52 filename = type + ’_remap ’ + str(nRemap) + ’.’ + str(nAnalysis)

53 return filename

54
55 def copyFile (copyfrom , copyto) :

56 os.system(’cp ’ + copyfrom + ’ ’ + copyto)

57
58 def modifyInputFile_DB (filename , exo_in , exo_out , sm_dat) :

59 old_text = [’Database name = {exo_in}’, ’stream name = {sm_dat}’,\

60 ’Database name = {exo_out}’]

61 new_text = [’ Database name = ’ + exo_in + ’\n’, \

62 ’ stream name = ’ + sm_dat + ’\n’, \

63 ’ Database name = ’ + exo_out + ’\n’]

64 editLine(filename , old_text , new_text , len(old_text))

65
66 def editLine (filename , old_text , new_text , nreplace) :

67 with open(filename , ’r’) as file:

68 data = file.readlines ()

69
70 j = 0

71 for i in range(len(data)) :

72 if old_text[j]. lower() in data[i]. lower () :

73 data[i] = new_text[j]

74 j+=1

75 if j == nreplace:

76 break

77 if j != nreplace:

78 print sierra_in + ’ not modified correctly ’

79 exit (1)

80
81 with open(filename , ’w’) as file:

82 file.writelines(data)

83
84 def callSierra(nproc , sm_in , sm_log , start_time , end_time , dt, read_time , do_proj ,

85 do_init , reg_step , equilibrium_step):

86 sm_run = ’sierra -j ’ + str(nproc) + ’ ’ + adagio +’ -i ’ + sm_in + \

87 ’ --logfile ’ + sm_log + ’ --aprepro --define ’ + \

88 ’"start_time=’ + str(start_time) + ’ end_time=’ +

89 str(end_time) + ’ dt=’ + str(dt) + ’ read_time=’ + \

90 str(read_time) + ’ projection=’ + str(do_proj) + ’ initialize=’ + \
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91 str(do_init) + ’ reg_step=’ + str(reg_step) + \

92 ’ equilibrium_step=’ + str(equilibrium_step) + ’"’

93 cmdLine(sm_run , ’sierra_ ’+str(nrun) +’_out ’)

94
95 def callCubit (cubit_in) :

96 cubit_run = cubit_cmd + ’ -nographics -nojournal ’ + cubit_in

97 cmdLine (cubit_run)

98
99 def callLogVars (exo_in , exo_out , sm_in , exp_flag = 0) :

100 if exp_flag == 0 :

101 log_run = ’./logVars -source ’ + exo_in + ’ -out ’ + \

102 exo_out + ’ -cmd ’ + sm_in

103 else :

104 log_run = ’./logVars -exp -source ’ + exo_in + ’ -out ’ + \

105 exo_out + ’ -cmd ’ + sm_in

106 cmdLine(log_run , ’logVars_out ’)

107 return exo_out

108
109 def callPushForward (exo_in , exo_out) :

110 push_run = ’./ pushforwardMesh -source_e ’ + exo_in + ’ -target_e ’ + exo_out

111 cmdLine(push_run , ’pushforward_out ’)

112 return exo_out

113
114 def callInterpolate (exo_in , target , exo_out , sm_in) :

115 interp_run = ’./ interpolateVars -source_e ’ + exo_in + \

116 ’ -target_g ’ + target + ’ -target_e ’ + exo_out + \

117 ’ -source_i ’ + sm_in + ’ -target_i ’ + sm_in

118 cmdLine (interp_run , ’interpolate_out ’)

119 return exo_out

120
121 def callPullBack (exo_in , exo_out) :

122 pull_run = ’./ pullbackMesh -source_e ’ + exo_in + ’ -target_e ’ + exo_out

123 cmdLine (pull_run , ’pullback_out ’)

124 return exo_out

125
126 def cmdLine (str , filename) :

127 print str + ’\n’

128 os.system(str + ’ >>console.txt ’)

129
130 # main script if __name__ == "__main__ ":

131 # read inputs

132 if len(sys.argv) != 6 :

133 print ’usage python auto_remap.py [num intervals] ’ + \

134 ’[num remaps] [end time] [time step] [num processors]’

135 try :

136 user_in = input (’use default values? (1 = yes , 0 = no)’ + \

137 ’ [num intervals = ’ + str(nintervals) + ’] ’ + \
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138 ’ [num remaps = ’ + str(nremaps) + ’]’ + \

139 ’ [end time = ’ + str(etime) + ’]’ + \

140 ’ [time step = ’ + str(dt) + ’]’ + \

141 ’ [num processors = ’ + str(nproc) + ’]’ + ’\n’)

142 except :

143 print ’Invalid input. Rerun and specify input values ,

144 or rerun and accept default values.’

145 exit (1)

146
147 try:

148 use_default = int(user_in)

149 except :

150 print ’Invalid input. Rerun and specify input values ,

151 or rerun and accept default values.’

152 exit (1)

153
154 if use_default != 1 :

155 print ’exiting auto_remap , restart with correct user inputs ’

156 exit (1)

157 else :

158 nintervals = int(sys.argv [1])

159 nremaps = int(sys.argv [2])

160 etime = float(sys.argv [3])

161 dt = float(sys.argv [4])

162 nproc = int(sys.argv [5])

163
164 int_time = etime/nintervals # length of each interval

165 nrun = 0

166 nremap = 0

167 tremap = 0

168
169 for i in range(nintervals -1):

170 nrun = i+1;

171
172 # run analysis from t = st to et

173 print ’\nAnalsyis ’ + str(nrun) + ’\n----------------------------’

174 if i==0:

175 exo_in = init_mesh

176 do_init = 0

177 else:

178 exo_in = exo_out

179 do_init = 1

180
181 int_start = i*int_time;

182 int_end = (i+1)*int_time

183 read_time = int_start

184 filename = ’analysis.’ + str(nrun)
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185 exo_out = filename + ’.e’

186 sm_log = filename + ’.log ’

187 sm_dat = filename + ’.dat ’

188 do_proj = 0

189 reg_step = 1

190 equilibrium_step = 0

191 copyFile (template , sierra_in)

192 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

193 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt ,

194 read_time , do_proj , do_init , reg_step , equilibrium_step)

195
196 # Remap nremaps times

197 for j in range(nremaps):

198 nrun = i+1

199 nremap = j+1

200 tremap += 1

201
202 print ’\nRemap ’ + str(nremap) + ’ on Analysis ’ + \

203 str(nrun) + ’\n----------------------------’

204
205 # perform logaritmic map on flagged variables

206 exo_in = exo_out

207 exo_out = nameFile(’log ’, nrun , nremap) + ’.e’

208 exo_out = callLogVars (exo_in , exo_out , sierra_in)

209
210 # project element variables to nodes

211 int_start = int_end -dt;

212 read_time = int_end

213 exo_in = exo_out

214 filename = nameFile(’projection ’, nrun , nremap)

215 exo_out = filename + ’.e’

216 sm_log = filename + ’.log ’

217 sm_dat = filename + ’.dat ’

218 do_proj = 1

219 do_init = 1

220 reg_step = 0

221 equilibrium_step = 0

222 copyFile (template , sierra_in)

223 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

224 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt ,

225 read_time , do_proj , do_init , reg_step , equilibrium_step)

226
227 # push forward to current configuration

228 exo_in = exo_out

229 exo_out = nameFile(’pushforward ’, nrun , nremap) + ’.e’

230 exo_out = callPushForward(exo_in , exo_out)

231
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232 # remesh

233 copyFile(cubit_template , cubit_jou)

234 filename = nameFile(’remesh ’, nrun , nremap)

235 new_mesh = filename + ’.g’

236 modifyJournalFile (cubit_jou , nremap , nrun , new_mesh)

237 callCubit (cubit_jou)

238
239 # interpolate nodal variables from old mesh to new mesh

240 exo_in = exo_out

241 target = new_mesh

242 exo_out = nameFile(’interpolation ’, nrun , nremap) + ’.e’

243 exo_out = callInterpolate (exo_in , target , exo_out , sierra_in)

244
245 # pull back to reference configuration

246 exo_in = exo_out

247 exo_out = nameFile(’pullback ’, nrun , nremap) + ’.e’

248 exo_out = callPullBack (exo_in , exo_out)

249
250 # perform exponential map on flagged variables

251 exo_in = exo_out

252 exo_out = nameFile(’exponentiation ’, nrun , nremap) + ’.e’

253 exo_out = callLogVars(exo_in , exo_out , sierra_in , 1)

254
255 # rename variables if another remap is next

256 renameFields(exo_out)

257
258 # zero velocity step to bring back in to equilibrium

259 if j!=nremaps -1 :

260 print ’equilibrium step after remapping ’

261 int_start = int_end -dt

262 read_time = int_end

263 exo_in = exo_out

264 filename = nameFile(’equilibrium ’, nrun , nremap)

265 exo_out = filename + ’.e’

266 sm_log = filename + ’.log ’

267 sm_dat = filename + ’.dat ’

268 do_proj = 0

269 do_init = 1

270 reg_step = 0

271 equilibrium_step = 1

272 copyFile (template , sierra_in)

273 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

274 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt ,

275 read_time , do_proj , do_init , reg_step , equilibrium_step)

276
277 # perform zero velocity step to come back into equilibrium

278 print ’equilibrium step ’
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279 int_start = int_end -dt

280 read_time = int_end

281 exo_in = exo_out

282 filename = nameFile(’equilibrium ’, nrun , nremap)

283 exo_out = filename + ’.e’

284 sm_log = filename + ’.log ’

285 sm_dat = filename + ’.dat ’

286 do_proj = 0

287 do_init = 1

288 reg_step = 0

289 equilibrium_step = 1

290 copyFile (template , sierra_in)

291 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

292 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt , read_time ,

293 do_proj , do_init , reg_step , equilibrium_step)

294
295 # run analysis for last time

296 if nrun ==0 :

297 int_start = 0

298 int_end = etime

299 nrun = 1

300 exo_in = init_mesh

301 do_init = 0

302 else :

303 int_start = (i+1)*int_time;

304 int_end = (i+2)*int_time

305 nrun = i + 2

306 exo_in = exo_out

307 do_init = 1

308 read_time = int_start

309 print ’\nAnalsyis ’ + str(nrun) + ’\n----------------------------’

310 filename = ’analysis.’ + str(nrun)

311 exo_out = filename + ’.e’

312 sm_log = filename + ’.log ’

313 sm_dat = filename + ’.dat ’

314 do_proj = 0

315 reg_step = 1

316 equilibrium_step = 0

317 copyFile (template , sierra_in)

318 modifyInputFile_DB (sierra_in , exo_in , exo_out , sm_dat)

319 callSierra(nproc , sierra_in , sm_log , int_start , int_end , dt ,

320 read_time , do_proj , do_init , reg_step , equilibrium_step)
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A.3 Python script to diff two Exodus II files

1 from exodus

2 import exodus

3 import exomerge

4 import numpy

5
6 file1 = ’analysis .1.e’

7 file2 = ’equilibrium .1.e’

8 newfile = ’diff.e’

9
10 # copy an old model to a new model in exomerge

11 newmodel = exomerge.import_model(file1 , timesteps=’last ’)

12
13 # rename all element fields

14 elem_fields = newmodel.get_element_field_names ()

15 for i in range(len(elem_fields )) :

16 newmodel.rename_element_field(elem_fields[i], ’d’ + elem_fields[i])

17
18 # rename all node fields

19 node_fields = newmodel.get_node_field_names ()

20 for i in range(len(node_fields )) :

21 newmodel.rename_node_field(node_fields[i], ’d’ + node_fields[i])

22
23 # add displacement so paraview can read it

24 newmodel.create_node_field(’displacement_x ’)

25 newmodel.create_node_field(’displacement_y ’)

26 newmodel.create_node_field(’displacement_z ’)

27
28 # rename all global fields

29 global_fields = newmodel.get_global_variable_names ()

30 for i in range(len(global_fields )) :

31 newmodel.rename_global_variable(global_fields[i], ’d’ + global_fields[i])

32
33 # save new model

34 newmodel.export_model(filename=newfile)

35
36 # import models into exodus

37 model1 = exodus(file1 , mode=’r’)

38 model2 = exodus(file2 , mode=’r’)

39 newmodel = exodus(newfile , mode=’a’)

40
41 # get last times

42 last1 = model1.num_times ()

43 last2 = model2.num_times ()

44
45 # diff node variables
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46 node_vars = model1.get_node_variable_names ()

47 for i in range(len(node_vars )) :

48 val1 = model1.get_node_variable_values(node_vars[i], last1)

49 val2 = model2.get_node_variable_values(node_vars[i], last2)

50
51 dval = []

52 for j in range(len(val1)) :

53 dval.append(val2[j]-val1[j])

54
55 newmodel.put_node_variable_values(’d’ + node_vars[i], 1, dval)

56
57 # add original displacement back , so quantities can be viewed on deformed shape

58 newmodel.put_node_variable_values(’displacement_x ’, 1,

59 model1.get_node_variable_values(’displacement_x ’, last1))

60 newmodel.put_node_variable_values(’displacement_y ’, 1,

61 model1.get_node_variable_values(’displacement_y ’, last1))

62 newmodel.put_node_variable_values(’displacement_z ’, 1,

63 model1.get_node_variable_values(’displacement_z ’, last1))

64
65 # diff element variables

66 elem_vars = model1.get_element_variable_names ()

67 for i in range(len(elem_vars )) :

68 val1 = model1.get_element_variable_values (1, elem_vars[i], last1)

69 val2 = model2.get_element_variable_values (1, elem_vars[i], last2)

70
71 dval = []

72 for j in range(len(val1)) :

73 dval.append(val2[j]-val1[j])

74
75 newmodel.put_element_variable_values (1, ’d’ + elem_vars[i], 1, dval)

76
77 # diff global variables

78 global_vars = model1.get_global_variable_names ()

79 for i in range(len(global_vars )) :

80 val1 = model1.get_global_variable_value(global_vars[i], last1)

81 val2 = model2.get_global_variable_value(global_vars[i], last2)

82
83 dval = val2 -val1

84
85 newmodel.put_global_variable_value(’d’ + global_vars[i], 1, dval)

86
87 # close model

88 model1.close()

89 model2.close()

90 newmodel.close()
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Appendix B

Callback functions for adaptive mesh

refinement and coarsening

These callback functions are necessary for communication between the TopS data structure and the appli-
cation code during refinement and coarsening of the mesh. The C code for the refinement callback is given
in Section B.1 and the series of callback and application functions for coarsening are given in Section B.2.

B.1 Callback functions for adaptive refinement of 3D 4k mesh

The following call back function is called by TopS each time a new node is inserted due to adaptive refinement
of the 3D 4k mesh. Please see section 4.4 for details on the implementation.

1 void Callback_InsertNode (TopRefinement4K3D* refinement , TopNode node , void*

userdata) {

2
3 int intCount = 0;

4 int i;

5 TopModel* model;

6 ModelAtt* mAtt = (ModelAtt *) userdata;

7 NodeAtt* nAtt;

8 ElemAtt* eAtt;

9 ElemAtt*

10 parentAtt;

11 TopNodeElemItr* nElemItr;

12 TopElement elem , parentElem;

13 TopElement interpElems [8];

14 TopElement interpNodes [4];

15
16 // get model associated with the refinement manager

17 model = topRefinement4K3D_GetModel (refinement);

18
19 // Assign a node id if node does not have one

20 if (topNode_GetId (model , node) == -1) {

21 mAtt ->nodeIds ++;

22 topNode_SetId (model , node , mAtt ->nodeIds);

23 } else {

24 printf ("New node already has an ID \n");

25 exit (1);

26 }

27
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28 // Assign nodal attribute

29 nAtt = (NodeAtt *) malloc(sizeof(NodeAtt));

30 assert(nAtt);

31 initNodeAtt(nAtt);

32 topNode_SetAttrib (model , node , nAtt);

33
34 // Traverse elements incident to this new node

35 nElemItr = topModel_CreateNodeElemItr(model , node);

36 for (topNodeElemItr_Begin(nElemItr); topNodeElemItr_IsValid(nElemItr);

37 topNodeElemItr_Next(nElemItr)) {

38 elem = topNodeElemItr_GetCurr(nElemItr);

39 eAtt = (ElemAtt *) malloc(sizeof(ElemAtt));

40
41 // initialize new elements ’ attributes

42 initElemAtt (eAtt);

43 topElement_SetAttrib (model , elem , eAtt);

44 eAtt ->flag_refined = 1;

45
46 // Assign new element ID

47 if (topElement_GetId(model , elem)==-1) {

48 mAtt ->elemIds ++;

49 topElement_SetId (model ,elem , mAtt ->elemIds);

50 } else {

51 printf ("new element already has an ID = %d\n", topElement_GetId(model ,

elem)); }

52
53 // call get parent element

54 parentElem = topRefinement4K3D_GetParentElem (refinement , elem);

55
56 // get the parent attribute

57 parentAtt = (ElemAtt *) topElement_GetAttrib(model , parentElem);

58
59 // set the refinement level of the new element

60 eAtt ->refinement_level = parentAtt ->refinement_level +1;

61
62 // check if a cohesive element is being split

63 if (topElement_IsCohesive(model , parentElem)) {

64 printf ("Error: Cohesive element being split\n");

65 exit (1);

66 }

67
68 // save elements for interpolations

69 if (intCount == 0) {

70 interpElems[intCount] = parentElem;

71 intCount ++;

72 }
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73 if (topElement_GetId(model , interpElems[intCount -1]) != topElement_GetId(

model , parentElem) ) {

74 interpElems[intCount] = parentElem;

75 intCount ++;

76 }

77 } // end of node -element iterator

78 topNodeElemItr_Destroy(nElemItr);

79
80 // choose first element for interpolation (interpElems [0])

81 for (i=0; i<nelnode; i++) {

82 interpNodes[i] = topElement_GetNode(model , interpElems [0], i);

83 }

84 elemInterpolate (model , node , interpNodes);

85
86 // delete parent element attribute (TopS deletes elements)

87 for (i=0; i<intCount; i++) {

88 eAtt = (ElemAtt *) topElement_GetAttrib (model , interpElems[i]);

89 free(eAtt);

90 }

91 }
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B.2 Callback functions for adaptive coarsening of 3D 4k mesh

The following series of call back functions are called by TopS to coarsen regions of the 3D 4k mesh. Please
see section 4.5 for details on the implementation.

B.2.1 CallBack_CanCollapseNode

1 int CallBack_CanCollapseNode (TopRefinement4K3D* r,

2 TopNode node ,

3 int nelems ,

4 const TopElement elems1[],

5 const TopElement elems2[],

6 const TopElement

7 candidate_elems [],

8 void* userdata) {

9
10 int i,j,n;

11 double error;

12 ModelAtt* mAtt = (ModelAtt *) userdata;

13 TopModel* model; model = topRefinement4K3D_GetModel (r);

14 TopElement* e1;

15 TopElement* e2;

16 TopElement* e3;

17
18 e1 = (TopElement *) calloc(nelems , sizeof(TopElement));

19 e2 = (TopElement *) calloc(nelems , sizeof(TopElement));

20 e3 = (TopElement *) calloc(nelems , sizeof(TopElement));

21
22 for (i=0; i<nelems; i++) {

23 e1[i] = elems1[i];

24 e2[i] = elems2[i];

25 e3[i] = candidate_elems[i];

26 }

27
28
29 // calculate strain on original and new patches

30 error = getPatchStrainError (model , mAtt , e3, e1, e2 , nelems);

31
32 free(e1);

33 free(e2);

34 free(e3);

35
36 if (error < mAtt ->AMC_tol) {

37 mAtt ->nElemsRemoved += nelems;

38 return 1;

39 } else {

40 return 0;
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41 }

42 }

B.2.2 Callback_MergeElements

1 void Callback_MergeElements (TopModel* model , TopElement old_el [2],

2 TopElement new_el , void* data) {

3
4 int i;

5 int nodeid;

6 ElemAtt* eAtt_new;

7 ElemAtt *eAtt_old [2];

8 ModelAtt* mAtt = (ModelAtt *) data;

9
10 // assign new element ID for new merged element

11 if (topElement_GetId(model , new_el)==-1) {

12 mAtt ->elemIds ++;

13 topElement_SetId (model ,new_el , mAtt ->elemIds);

14 } else {

15 printf ("new element already has an ID = %d\n", topElement_GetId(model ,

new_el));

16 }

17
18 // initialize new element ’s attributes

19 eAtt_new = (ElemAtt *) malloc(sizeof(ElemAtt));

20 initElemAtt (eAtt_new);

21 topElement_SetAttrib (model , new_el , eAtt_new);

22 eAtt_new ->flag_coarsened = 1;

23
24 // copy old element attributes to new element

25 eAtt_old [0] = (ElemAtt *) topElement_GetAttrib (model , old_el [0]);

26 eAtt_old [1] = (ElemAtt *) topElement_GetAttrib (model , old_el [1]);

27 eAtt_new ->refinement_level = eAtt_old [0]-> refinement_level -1;

28 topElement_SetAttrib (model , old_el [0], NULL);

29 topElement_SetAttrib (model , old_el [1], NULL);

30 free (eAtt_old [0]);

31 free (eAtt_old [1]);

32 }

B.2.3 Callback_RemoveNode

1 void Callback_RemoveNode (TopModel* model , TopNode node , void* data) {

2 NodeAtt* nAtt_old = (NodeAtt *) topNode_GetAttrib (model , node);

3 topNode_SetAttrib (model , node , NULL);

4 free (nAtt_old);

5 }

B.2.4 getPatchStrainError
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1 double getPatchStrainError (TopModel* model , ModelAtt *mAtt ,

2 TopElement* coarseElems , TopElement* fineElems1 ,

3 TopElement* fineElems2 , int numElemPairs) {

4
5 int i;

6 double error;

7 double *stress_coarse; // element stress [xx , yy, zz, xy , yz , zx]

8 double *stress_fine1; // element stress [xx , yy, zz, xy , yz, zx]

9 double *stress_fine2; // element stress [xx , yy, zz, xy , yz, zx]

10 double *strain_coarse; // element strain [xx , yy, zz, xy , yz , zx]

11 double *strain_fine1; // element strain [xx , yy, zz, xy , yz, zx]

12 double *strain_fine2; // element strain [xx , yy, zz, xy , yz, zx]

13 double *strain_diff1; // diff btwn strain field on coarse element and one

fine elem pair

14 double *strain_diff2; // diff btwn strain field on coarse element and one

fine elem pair

15 double norm_diff1;

16 double norm_diff2;

17
18
19 // allocate space

20 stress_coarse = createDoubleArray (nstrains , 1);

21 stress_fine1 = createDoubleArray (nstrains , 1);

22 stress_fine2 = createDoubleArray (nstrains , 1);

23 strain_coarse = createDoubleArray (nstrains , 1);

24 strain_fine1 = createDoubleArray (nstrains , 1);

25 strain_fine2 = createDoubleArray (nstrains , 1);

26 strain_diff1 = createDoubleArray (nstrains , 1);

27 strain_diff2 = createDoubleArray (nstrains , 1);

28
29 error = 0;

30 for (i=0; i<numElemPairs; i++) {

31 // get element strains

32 elemStressStrain (model , mAtt , coarseElems[i], stress_coarse ,

strain_coarse);

33 elemStressStrain (model , mAtt , fineElems1[i], stress_fine1 , strain_fine1);

34 elemStressStrain (model , mAtt , fineElems2[i], stress_fine2 , strain_fine2);

35
36 // get difference between strain fields on coarse and fine elements

37 addVectors (strain_diff1 , strain_coarse , strain_fine1 , nstrains , -1.0);

38 norm_diff1 = dotProduct (strain_diff1 , strain_diff1 , nstrains);

39 error += norm_diff1;

40 addVectors (strain_diff2 , strain_coarse , strain_fine2 , nstrains , -1.0);

41 norm_diff2 = dotProduct (strain_diff2 , strain_diff2 , nstrains);

42 error += norm_diff2;

43 }

44
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45 // destroy matrices

46 destroyDoubleArray(stress_coarse);

47 destroyDoubleArray(stress_fine1);

48 destroyDoubleArray(stress_fine2);

49 destroyDoubleArray(strain_coarse);

50 destroyDoubleArray(strain_fine1);

51 destroyDoubleArray(strain_fine2);

52 destroyDoubleArray(strain_diff1);

53 destroyDoubleArray(strain_diff2);

54
55 return error;

56 }
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