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4Seemingly Similar Composites Can Display Remarkably 
Different Behavior

Bergström JS, Boyce MC, Mechanical behavior of particle filled elastomers, Rubber Chemistry and Technology, vol. 72, pp. 633-656, 1998.

Ramier J, Chazeau L, Gauthier C, Influence of silica and its different surface treatments on the vulcanization process of silica filled SBR, Rubber Chemistry and
Technology, vol. 80, pp. 183-193, 2007.

Ramier J, Comportement mécanique d’élastomères chargés, influence de l’adhésion charge – polymère, influence de la morphologie.  PhD Dissertation, L’Institut
National des Sciences Appliquées de Lyon, 2004. 
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Inclusion

Matrix

Polymer chain mobility

Qu M, Deng F, Kalkhoran SM, Gouldstone A, Robisson A, Van Vliet KJ, 2011. Nanoscale visualization and multiscale mechanical implications of bound rubber 
interphases in rubber-carbon black nanocomposites. Soft Matter. Vol. 7, pp. 1066-1077.

When a particle is embedded in an 
elastomer, the polymer chains in the 
elastomer tend to anchor onto the 
surface of the particle.

5Inclusions Tend to Restrict Polymer Chain Mobility
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The effective modulus of the elastomer in the vicinity of the particles can be on the order 
of ten times greater than that in the bulk of the elastomer. 



6A Computational Framework Using RUCs

 Particles and their associated interphases are placed within the microstructure
in a random, periodic manner, using random sequential adsorption.

 The particles are placed in such a manner that the microstructure is periodic.

 We consider both monodisperse and polydisperse distributions of particles.

80 polydisperse
particles

30 monodisperse 
particles

Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O, Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects. Journal of 
the Mechanics and Physics of Solids, Vol. 80, pp. 37-67, 2015



Monodisperse Polydisperse
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Distance between particle 
and boundary

7Algorithm for Constrained Random Particle Placement 

 Particle sizes are prescribed and their locations are selected in a random but
constrained manner.

Feder J, 1980. Random sequential adsorption. Journal of Theoretical Biology, Vol. 87, pp. 237–254. 

Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O, Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects. Journal of 
the Mechanics and Physics of Solids, Vol. 80, pp. 37-67, 2015
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8Discretization and Isotropy Assessment

 A mesh containing approximately 200,000 bulk elements is used to discretize the domain.

x

y

z

100,000 elements 200,000 elements 300,000 elements

 We use a sufficient constitutive approach to assess the isotropy of the microstructures.
In an isotropic material, the average Cauchy stress tensor,  𝛔 =  𝐒 𝐅T and average left
Green-Cauchy strain tensor  𝐁 =  𝐅 𝐅T are coaxial, where:

 𝐅 =  

𝑖

𝑁𝑒𝑙𝑒𝑚
𝑉𝑖
𝑉Ω

𝐅𝑒𝑙𝑒𝑚  𝐒 =  

𝑖

𝑁𝑒𝑙𝑒𝑚
𝑉𝑖
𝑉Ω

𝐒𝑒𝑙𝑒𝑚

The angle between the principal axes of the stress and strain measures are zero for a
purely isotropic material, and should be close to zero for the RUCs we consider.

Schrӧberl J, 1997. NETGEN - an advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science, Vol. 1, pp. 41–52.

Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O, Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects. Journal of 
the Mechanics and Physics of Solids, Vol. 80, pp. 37-67, 2015



9Representative Polydisperse Microstructures

Daniel W. Spring. “Failure Processes in Soft and Quasi-Brittle Materials with Nonhomogeneous Microstructures.” PhD Dissertation, Department of Civil and 
Environmental Engineering, UIUC, 2015.

No Interphase  𝑡 𝑟𝑝 = 0.1  𝑡 𝑟𝑝 = 0.2

𝑐𝑝 = 10%

𝑐𝑝 = 20%
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10Verification with Theoretical Solution by Goudarzi et al. 
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𝑐𝑖  𝜇−𝜇𝑖 𝜇𝑖𝑞1+𝑞4 𝜇 −𝑐𝑝 𝜇𝑖
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𝑐𝑖
𝑞3 𝑙𝑛 1 − 𝑐𝑖 − 𝑐𝑝

5/2  𝜇

𝜇𝑚
= 0

Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O, Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects. Journal of 
the Mechanics and Physics of Solids, Vol. 80, pp. 37-67, 2015

For an isotropic incompressible filled elastomer with a Gaussian matrix, the 
effective stored-energy takes the following form:  

𝑞1 = 38𝑘10 + 225𝑘7 − 336𝑘5 + 200𝑘3 + 48

𝑞2 = 89𝑘10 + 75𝑘7 − 168𝑘5 + 100𝑘3 − 96

𝑞3 = 48𝑘10 − 300𝑘7 + 504𝑘5 − 300𝑘3 + 48

𝑞4 =
4 𝑘 − 1 3 2𝑘3 + 3 4𝑘6 + 16𝑘5 + 40𝑘4 + 55𝑘3 + 40𝑘2 + 16𝑘 + 4

𝑘2 + 𝑘 + 1

𝑘 = 1 +
𝑡

𝑟
= 1 +

𝑐𝑖
𝑐𝑝

1/3

with



The Computed Effective Moduli Agree Well with Theory

We investigate the effective modulus of the composite, and compare our 
computational results with the theoretical solution.

Monodisperse Polydisperse 

11

Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O, Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects. Journal of 
the Mechanics and Physics of Solids, Vol. 80, pp. 37-67, 2015



12Interphases Provide an Explanation for the Wide Range 
of Experimentally Observed Effective Moduli

When we overlay the numerically computed effective moduli, we capture a wide range of
the experimentally observed moduli.

Daniel W. Spring. “Failure Processes in Soft and Quasi-Brittle Materials with Nonhomogeneous Microstructures.” PhD Dissertation, Department of Civil and 
Environmental Engineering, UIUC, 2015.
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13Finite Deformation Response - Comparison with Theory

Uniaxial Tension Simple Shear

Comparison between theoretical and numerical results, 𝑐𝑝 = 0.15.

The presence of interphases has a comparable influence on the stiffness of the elastomer 
as does the presence of the particles alone.

Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O, Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects. Journal of 
the Mechanics and Physics of Solids, Vol. 80, pp. 37-67, 2015



14Validation with FD Experimental Data from the Literature

Mullins L, Tobin NR, 1965. Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced 
vulcanized rubber. Journal of Applied Polymer Science, Vol. 9, pp. 2993-3009

Jha V. “Carbon black filler reinforcement of elastomers.” Ph.D. dissertation, Department of Materials, Queen Mary, University of London, 2008

Daniel W. Spring. “Failure Processes in Soft and Quasi-Brittle Materials with Nonhomogeneous Microstructures.” PhD Dissertation, Department of Civil and 
Environmental Engineering, UIUC, 2015.

𝑐𝑝 = 0.2085  𝑡 𝑟 = 0.2
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16Interfacial Failure Occurs Under Large Applied Strains

1Lahiri J, Paul A, Effect of interface on the mechanical behavior of glass bead-filled PVC. Journal of Materials Science, Vol. 20, pp. 2253–2259, 1985.
2Bai S-L , Chen J, Huang Z, Yu Z, The role of the interfacial strength in glass bead filled HDPE. Journal of Materials Science Letters, Vol. 19, pp. 1587–1589, 2000.
3Thio YS, Argon AS, Cohen RE, Role of interfacial adhesion strength on toughening polypropylene with rigid particles. Polymer, Vol. 45, pp. 3139–3147, 2004.
4Renner K, Micromechanical deformation process in polymer composites, Ph.D. thesis, Budapest University of Technology and Economics, 2010.
5Zhuk AV, Knunyants NN, Oshmyan VG, Topolkaraev VA, Berlin AA, Debonding microprocesses and interfacial strength in particle-filled polymer materials. Journal
of Materials Science, Vol. 28, pp. 4595–4606, 1993.

1 2 5

3
4

Several experimental investigations have shown the clear localization of damage 
(interfacial debonding) around stiff inclusions, at large strains.



17Cohesive Elements Account for Interfacial Debonding

Intrinsic cohesive elements are inserted between each particle and its corresponding
interphase to account for interfacial debonding.

 The cohesive elements have zero thickness and, upon separation, impart a traction to 
the adjacent bulk elements

Spring DW, Paulino GH, A growing library of three-dimensional cohesive elements for use in ABAQUS. Engineering Fracture Mechanics, Vol. 126, pp. 190-216, 2014. 

 The cohesive elements are implemented as a user supplied subroutine in a commercial
finite element analysis software package
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The cohesive model is defined by a potential function

𝚿 Δ𝑛, Δ𝑡 = min 𝜙𝑛, 𝜙𝑡 + Γ𝑛 1 −
Δ𝑛

𝛿𝑛

𝛼 𝑚

𝛼
+

Δ𝑛

𝛿𝑛

𝑚
+ 𝜙𝑛 − 𝜙𝑡

× Γ𝑡 1 −
Δ𝑡

𝛿𝑡

𝛽 𝑛

𝛽
+ Δ𝑡 𝛿𝑡

𝑛
+ 𝜙𝑡 − 𝜙𝑛

From the cohesive potential, one can determine the traction-separation relations by taking
the respective derivatives.

𝑇𝑛 Δ𝑛, Δ𝑡 =
𝜕𝚿

𝜕Δ𝑛
,

𝑇𝑡 Δ𝑛, Δ𝑡 =
𝜕𝚿

𝜕Δ𝑡
,

Park K, Paulino GH, Roesler JR, 2009. A unified potential-based cohesive model for mixed-mode fracture. Journal of the Mechanics and Physics of Solids. Vol. 
57, No. 6, pp. 891-908. 
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19A New Coupled Cohesive-Friction Model

𝑇𝐹 = 𝜇𝜅 Δ𝑡 𝑇𝑛 , if   𝑇𝑛 < 0 and ∆𝑡> 𝜆𝑡𝛿𝑡𝜅 Δ𝑡 = 1 −
𝑇𝑡 0,Δ𝑡

𝐷0Δ𝑡

𝑠

𝐷0 =
Γ𝑡

𝛿𝑡
𝑛 1 − 𝜆𝑡

𝛽 𝑛

𝛽
+ 𝜆𝑡

𝑛−1
− 𝛽 1 − 𝜆𝑡

𝛽−1 𝑛

𝛽
+ 𝜆𝑡

𝑛
Γ𝑛

𝑚

𝛼

𝑚
+ 𝜙𝑛 − 𝜙𝑡

1

𝜆𝑡𝛿𝑡

The above contribution is general. However, we derived a new friction model to be coupled 
specifically to the PPR cohesive model, and to adjust as the cohesive model adjusts:

To account for friction at the interface, we developed a new coupled cohesive-friction 
model. The contribution of friction to the tangential force is defined as:

where:
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Spring DW, Paulino GH, Computational homogenization of the debonding of particle reinforced elastomers: The role of interphases in interfaces. Under Review.
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Spring DW, Paulino GH, Computational homogenization of the debonding of particle reinforced elastomers: The role of interphases in interfaces. Under Review.



21Influence of Friction on the Global Response

Frictional forces contribute little to the macroscopic constitutive response of the composite. 

Previous investigations have neglected the influence of friction. We verify this assumption 
in uniaxial tension.

Stress Field Deformed Geometry

𝑐𝑝 = 0.10  𝑡 𝑟 = 0.2 𝜇𝑖 = 10 × 𝜇𝑚 = 10.0𝑀𝑃𝑎

Spring DW, Paulino GH, Computational homogenization of the debonding of particle reinforced elastomers: The role of interphases in interfaces. Under Review.

Matouš K, Geubelle, PH, Multiscale modelling of particle debonding in reinforced elastomers subjected to finite deformations. International Journal for Numerical 
Methods in Engineering. Vol. 65, pp. 190-223, 2006.



22Experimental Validation with Interfacial Debonding

𝑐𝑝 = 0.26  𝑡 𝑟 = 0.2

UM-2: 𝜇𝑚 = 0.54𝑀𝑃𝑎
𝜇𝑖 = 3 × 𝜇𝑚 = 1.62𝑀𝑃𝑎

A-50: 𝜇𝑚 = 2.1𝑀𝑃𝑎
𝜇𝑖 = 2 × 𝜇𝑚 = 4.2𝑀𝑃𝑎

Matrix: 𝜇𝑚 = 0.54𝑀𝑃𝑎

*Suzuki N, Ito M, Yatsuyanagi F, Effect of rubber filler interactions on deformation behavior of silica filled SBR systems. Polymer. Vol. 46, pp. 193-201, 2005. 

**Yatsuyanagi F, Suzuki N, Ito M, Kaidou H, Effect of surface chemistry of silica particles on the mechanical properties of silica filled Styrene-Butadiene rubber 
systems. Polymer Journal. Vol. 34, pp. 332-339, 2002. 

Lopez-Pamies O, A new I1-based hyperelastic model for rubber elastic materials. Comptes Rendus Mecanique Vol. 38, pp. 3–11, 2010. 

where
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  1J if

Cohesive: 𝜙 = 1.0𝑁/𝑚 𝜎max = 0.5𝑀𝑃𝑎



 The presence of interphases has a comparable influence on the stiffness of the elastomer
as does the presence of the particles alone.

 The presence of interphases and interfacial debonding explains the wide range of
experimentally observed deviations in behavior in particle reinforced composites.

 The overall stiffness of the composite is more sensitive to the interphase thickness than
to the interphase modulus.

 Interfacial debonding can be included through the use of cohesive elements.

 Frictional effects are negligible in tension induced debonding.

 Recognizing the role and main factors influencing interfacial adhesion and proper surface
modification may lead to significant progress in many fields of research and development,
as well as related technologies.

23Remarks

Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O, Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects. Journal of 
the Mechanics and Physics of Solids, Vol. 80, pp. 37-67, 2015.

Spring DW, Paulino GH, A growing library of three-dimensional cohesive elements for use in ABAQUS. Engineering Fracture Mechanics, Vol. 126, pp. 190-216, 2014. 

Spring DW, Paulino GH, Computational homogenization of the debonding of particle reinforced elastomers: The role of interphases in interfaces. Under Review.
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Dynamic Material Failure is Commonplace in Engineering

25

Examples of dynamic failure in an engineering application:

There is a wide spectrum of failure behavior:

Single/Dominant
Cracks

Pervasive Cracking 
and Fragmentation

Range of fracture behavior

Crack Branching Crack Coalescence

swanston.com wellcoll.nl

Seismic Design

usgs.gov

Oil & Gas Extraction

mlive.com

Renewable Energy

telegraph.co.uk
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The code is implemented in C, and uses the TopS data structure to handle the background
data management.

Create model

Read input file

Conduct explicit 
time integration

Initialize 
model data

Write output

Delete model

Dynamic Fracture Code - Overview

0
1

2
3

x 10
-3

0
0.005

0.01

0

10

20

30

40


t
 (mm)

n
 (mm)

T
ra

ct
io

n
 (

M
P

a)
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(Continuum Behavior)

Dynamically Inserted 
Cohesive Elements

Traction-Separation Relation

Explicit time integration for the extrinsic fracture code

Initialization: displacements (𝐮0), velocity (  𝐮0), acceleration (  𝐮0) 

for 𝑛 = 0 to 𝑛𝑚𝑎𝑥 do 

Update displacement: 𝐮𝑛+1 = 𝐮𝑛 + ∆𝑡  𝐮𝑛 + ∆𝑡2/2  𝐮𝑛
Check the insertion of cohesive elements 

Update acceleration:  𝐮𝑛+1 = 𝐌−1 𝐑𝑛+1
ext + 𝐑𝑛+1

coh − 𝐑𝑛+1
int

Update velocity:  𝐮𝑛+1 =  𝐮𝑛 + ∆𝑡/2  𝐮𝑛 +  𝐮𝑛+1
Update boundary conditions 

end for

Celes W, Paulino GH, Espinha R, A compact adjacency-based topological data structure for finite element mesh representation. International Journal for Numerical 
Methods in Engineering, vol. 64, pp. 1529-1556, 2005.



27Unstructured Meshes for Dynamic Cohesive Fracture 

One of the primary critiques of the cohesive element method is its mesh dependency.

Structured meshes may artificially bias fracture behavior, presenting preferred paths for
cracks to propagate along.

Polygonal meshes are isotropic, but have a limited number of crack paths at each node.

Zhang Z, Paulino GH, Celes W, 2007. Extrinsic cohesive zone modeling of dynamic fracture and microbranching instability in brittle materials. International Journal 
for Numerical Methods in Engineering. vol. 72, pp. 893-923. 

Spring DW, Leon SE, Paulino GH, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. International 
Journal of Fracture, Vol. 189, pp. 33-57, 2014.

Polygonal Mesh

~3

4k Mesh

45°

45°

45°
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Dijkstra’s algorithm is used to compute the shortest path between two points in the mesh.

How to Quantify Mesh Isotropy/Anisotropy (Mesh Bias)

The path deviation is computed as:

Dijkstra EW, A note on two problems in connexion with graphs. Numerische Mathematik. Vol. 1, pp. 269–227, 1959.

Rimoli JJ, Rojas JJ, Meshing strategies for the alleviation of mesh-induced effects in cohesive element models. International Journal of Fracture, 
DOI:10.1007/s10704-015-0013-6

Spring DW, Leon SE, Paulino GH, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. International 
Journal of Fracture, Vol. 189, pp. 33-57, 2014.
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29Quantifying Mesh Isotropy/Anisotropy

A study was conducted on the path deviation over a range of 180°

The structured 4k mesh is anisotropic, while the unstructured polygonal discretization is 
isotropic. However, the path deviation in the polygonal mesh is significantly higher that 
that in the structured mesh. 

4k Mesh Polygonal Mesh

Rimoli JJ, Rojas JJ, Meshing strategies for the alleviation of mesh-induced effects in cohesive element models. International Journal of Fracture, 
DOI:10.1007/s10704-015-0013-6

Leon SE*, Spring DW*, Paulino GH, Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. International Journal for 
Numerical Methods in Engineering, Vol. 100, pp. 555-576, 2014.
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30Element-Splitting Operator for Reducing Mesh Bias

In order to reduce the path deviation in the unstructured polygonal mesh, we propose
using an element-splitting topological operator to increase the number of fracture paths
at each node in the mesh.

Leon SE*, Spring DW*, Paulino GH, Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. International Journal for 
Numerical Methods in Engineering, Vol. 100, pp. 555-576, 2014.

We restrict elements to be split 
along the path which minimizes 
the difference between the areas 
of the resulting split elements. 

All Potential Paths Allowable Paths Split Element

Triple 
junction

The propagating crack now has twice as many paths on which it could travel at each node.

 1
A

 1
A

 1
A

 2
A  2

A
 2

A



Adaptive Refinement Operator for Reducing Mesh Bias

Additionally, we propose the use of an adaptive refinement operator, wherein each
polygon around the crack tip is removed and replaced with a set of unstructured quads;
which meet at the centroid of the original polygon.

Spring DW, Leon SE, Paulino GH, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. International 
Journal of Fracture, Vol. 189, pp. 33-57, 2014.

31

Unrefined Mesh Refined Mesh

The mesh is adaptively refined in front of the propagating crack-tip.



32Quantification of Improvement in Path Deviation
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Leon SE*, Spring DW*, Paulino GH, Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. International Journal for 
Numerical Methods in Engineering, Vol. 100, pp. 555-576, 2014.

Spring DW, Leon SE, Paulino GH, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. International 
Journal of Fracture, Vol. 189, pp. 33-57, 2014.

Meshing Strategy Average Standard Deviation Improvement

Polygonal 0.1931 0.0013 -

Polygonal with Splitting 0.0445 0.0009 77%

Polygonal with Refinement 0.0698 0.0021 64%

Polygonal with Refinement and Splitting 0.0171 0.0004 91%
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33Example: Dominant Crack with Microbranching

Sharon E, Fineberg J, Microbranching instability and the dynamic fracture of brittle materials. Physical Review B, vol. 54, pp. 7128-7139, 1996.

Spring DW, Leon SE, Paulino GH, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. International 
Journal of Fracture, Vol. 189, pp. 33-57, 2014.

Conductive Layer

𝜎∞

𝜎∞

L

Experimental setup and results:

Numerical model:

Fracture Pattern

𝐸 3.24𝐺𝑃𝑎

𝜌 1190  𝑘𝑔 𝑚3

𝜙 352.4  𝑁 𝑚

𝜎 129.6𝑀𝑃𝑎

𝛼 2

2 𝑚𝑚

16 𝑚𝑚

4
𝑚
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Initial notch

PMMA Properties



34Fracture Patterns: Influence of Meshing Strategy

Adaptively refined unstructured meshes produce a smooth crack path with large
macrobranches and a uniform distribution of microbranching.

The adaptively refined meshes produce results in good agreement with experiments.

Coarse 
Polygonal

Element-
Splitting

Adaptively 
Refined

Spring DW, Leon SE, Paulino GH, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. International 
Journal of Fracture, Vol. 189, pp. 33-57, 2014.



35Influence of Meshing Strategy on the Crack-Tip Velocity

Numerical Results

Adaptively 
Refined Mesh

Coarse 
Polygonal Mesh
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Experimental Result

Sharon E, Fineberg J, Microbranching instability and the dynamic fracture of brittle materials. Physical Review B, vol. 54, pp. 7128-7139, 1996.

Spring DW, Leon SE, Paulino GH, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. International 
Journal of Fracture, Vol. 189, pp. 33-57, 2014.



36Comparison of Computational Cost

Spring DW, Leon SE, Paulino GH, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. International 
Journal of Fracture, Vol. 189, pp. 33-57, 2014.

Case Elements Nodes Cost (min) Iterations to Fracture Cost/Iteration (10-3 s)

1 4,000 7,188 21.5 28,200 45.7

2 4,000 7,188 20.8 23,000 54.3

3 4,000 7,188 19.1 21,000 54.6

Polygonal Element-Splitting Adaptive Refinement

Case 1 Case 2 Case 3



37Remarks

 Unstructured polygonal meshes produce an isotropic discretization of the problem domain.

 Without careful design considerations, polygonal meshes are inherently poorly suited to
dynamic fracture simulation with the cohesive element method.

 The newly proposed topological operators are designed to increase the number of paths a
crack can propagate along, and result in a meshing strategy on par with the best, fixed
meshing strategy available in the literature.

 The adaptive refinement with element splitting scheme increases the problem size, but can
decrease the computational cost.

 By combining geometrically and topologically unstructured methods, the model is truly
random and reduces numerically induced restrictions. Thus, reducing uncertainty in numerical
simulations.

Leon SE*, Spring DW*, Paulino GH, Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. International Journal for 
Numerical Methods in Engineering, Vol. 100, pp. 555-576, 2014.

Spring DW, Leon SE, Paulino GH, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. International 
Journal of Fracture, Vol. 189, pp. 33-57, 2014.
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39Pervasive Fracture and Fragmentation in 3D

Pervasive cracking and fragmentation comprises the entire spectrum of fracture behavior.

 Crack branching

 Crack coalescence

 Complete fragmentation

 Sensitivity to material heterogeneity

 Any structure introduced to the mesh 
will bias fragmentation behavior

Characteristics Issues

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.

Similar to our study of mesh bias in 2D dynamic fracture, we developed a 3D dynamic 
fracture code to investigate these issues in pervasive fragmentation.
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 Most materials contain heterogeneity (or defects) at the microscale.

Weibull W, 1939. A statistical theory of the strength of materials, Proceedings of the Royal Academy of Engineering Sciences, Vol. 151, pp. 1–45.

Sensitivity to Material Heterogeneity

 Defects naturally arise in materials due to grain boundaries, voids, or inclusions. 

 Defects may also be introduced through the act of processing or machining the 
material. 

 Microscale defects constitute potential regions where stresses can concentrate and 
lead to damage or failure.



𝜎𝑚𝑖𝑛 = 264𝑀𝑃𝑎, 𝜆 = 50,  𝑚 = 2

41Constitutively Unstructured Through a Statistical 
Distribution of Material Properties

The material strength is assumed to follow a modified Weibull distribution:

𝜎 = 𝜎𝑚𝑖𝑛 + 𝜆 −ln 1 − 𝜌
 1 𝑚
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42Structured Artifacts in Automatically Generated Meshes

 Automatic mesh generators often conduct additional post-processing of the mesh; to 
remove elements with degenerate edges and sliver elements. 

 In some cases, this additional post-processing leads these (initially random) meshes to 
contain an underlying structure. 

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.

 To remove this structure, we propose using the technique of nodal perturbation.



43Geometrically Unstructured Through Nodal Perturbation

 We conduct a set of geometric studies to quantify the effect of the magnitude of the
nodal perturbation factor on the quality of the mesh.

 Our investigation indicates that a nodal perturbation factor of 0.4 is most suited to 3D
meshes – producing a high level of unstructuredness, while maintaining element quality.

 Nodes are randomly perturbed by a 
multiple of dmin:

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.

dmin

NP = 0.0 (Unperturbed) NP = 0.2

NP = 0.4 NP = 0.6

Nodal Perturbation:

𝐗𝑛 = 𝐗𝑜 + dmin × NP × 𝐧random



44Example: Radial Fragmentation of a Hollow Sphere

Here, we consider the pervasive fragmentation of a hollow sphere with symmetric
boundary conditions.

𝐸 = 370 𝐺𝑃𝑎 𝜌 = 3900  𝑘𝑔 𝑚3

𝜙 = 50  𝐽 𝑚2 𝜎𝑚𝑖𝑛 = 264 𝑀𝑃𝑎
~100,000 Elements

~25,000 Nodes 

The sphere is impacted with an impulse load, which is converted to an initial nodal velocity 

9.25mm

0.75mm

𝐯𝟎 𝑥, 𝑦, 𝑧 =  ε𝐱

Sarah Levy, “Exploring the physics behind dynamic fragmentation through parallel simulations.“ PhD. Dissertation, Ecole Polytechnique Federale de Lausanne, 2010.

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.



45Regularization Through Geometric Features

We investigate the influence of idealized surface features, namely bumps and dimples, on
the fragmentation behavior of the hollow sphere.

Bumps or ProtrusionsDimples or Depressions

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.



46Geometric Features Can Be Used to Regularize 
Fragmentation Patterns

Dimples BumpsSmooth

 The initial impact velocity is set at:    𝐯0 𝑥, 𝑦, 𝑧 = 2500𝐱

 Similar trends are observed at higher impact velocities and with different statistical 
distributions of material strength.

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.



2mm

CP = Core Part
OL = Outer Layer

47Example: Kidney Stone Fragmentation by Direct Impact

This example considers the direct impact of a kidney stone. We use this example to
investigate the use functionally graded materials to regularize fragmentation behavior.

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.

Caballero A, Molinari JF, Finite element simulations of kidney stones fragmentation by direct impact: Tool geometry and multiple impacts. International Journal of 
Engineering Science, vol. 48, pp. 253-264, 2010. 

Zhong P, Chuong CJ, Goolsby RD, Preminger GM, Microhardness measurements of renal calculi: Regional differences and effects of microstructure. Journal of 
Biomedical Materials Research, vol. 26, pp. 1117-1130, 1992. 

COM:    𝐸 = 25.16 𝐺𝑃𝑎 𝜌 = 2038  𝑘𝑔 𝑚3

𝜙 = 0.735  𝐽 𝑚2 𝜎 = 1.0 𝑀𝑃𝑎

CA:        𝐸 = 8.504 𝐺𝑃𝑎 𝜌 = 1732  𝑘𝑔 𝑚3

𝜙 = 0.382  𝐽 𝑚2 𝜎 = 0.5 𝑀𝑃𝑎

Materials considered:

COM: calcium oxalate monohydrate      
CA: carbonate apatite

𝑟 = 10𝑚𝑚

𝑟 = 0.325𝑚𝑚



48Fragmentation of a Homogeneous Stone

To develop a baseline, we first consider the fragmentation of a homogeneous stone with
different levels of variation in material properties.

CA CA(50)/COM(50) COM

Small 
variation

Large
variation

CA:        𝐸 = 8.504 𝐺𝑃𝑎 𝜌 = 1732  𝑘𝑔 𝑚3 COM:    𝐸 = 25.16 𝐺𝑃𝑎 𝜌 = 2038  𝑘𝑔 𝑚3

𝜙 = 0.382  𝐽 𝑚2 𝜎 = 0.5 𝑀𝑃𝑎 𝜙 = 0.735  𝐽 𝑚2 𝜎 = 1.0 𝑀𝑃𝑎

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.
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Next, we show that fragmentation behavior can be regularized by modelling the graded
distribution of material in the stone.

Soft Inner Core Soft Inner Core Hard Inner Core

Fragmentation of a Functionally Graded Stone

CA:        𝐸 = 8.504 𝐺𝑃𝑎 𝜌 = 1732  𝑘𝑔 𝑚3 COM:    𝐸 = 25.16 𝐺𝑃𝑎 𝜌 = 2038  𝑘𝑔 𝑚3

𝜙 = 0.382  𝐽 𝑚2 𝜎 = 0.5 𝑀𝑃𝑎 𝜙 = 0.735  𝐽 𝑚2 𝜎 = 1.0 𝑀𝑃𝑎

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.



50Remarks

 The cohesive element method constitutes a framework which allows us to capture the full
spectrum of fracture mechanisms.

 A statistical distribution of material properties can be used to account for microscale defects
and inhomogeneities.

 A random perturbation of the nodes reduces structure created by automatic mesh generators.

 By incorporating constitutive and geometric heterogeneity in the model we can reduce
numerically induced artifacts into the simulated results and increase the certainty in our
simulations.

 We can use simple geometric and constitutive design features to regularize pervasive fracture
and fragmentation behavior in three-dimensions.

Spring DW, Paulino GH, Numerical unstructuring as a means for achieving pervasive fracture and fragmentation in three-dimensions. In Preparation.
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