
© 2015 Daniel W. Spring



FAILURE PROCESSES IN SOFT AND QUASI-BRITTLE MATERIALS WITH
NONHOMOGENEOUS MICROSTRUCTURES

BY

DANIEL W. SPRING

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Civil Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Glaucio H. Paulino, Chair and Director of Research
Professor Iwona Jasiuk
Professor William G. Buttlar
Professor Oscar Lopez-Pamies
Professor Ahmed E. Elbanna
Professor Kyoungsoo Park, Yonsei University



Abstract

Material failure pervades the fields of materials science and engineering; it occurs at various

scales and in various contexts. Understanding the mechanisms by which a material fails

can lead to advancements in the way we design and build the world around us. For ex-

ample, in structural engineering, understanding the fracture of concrete and steel can lead

to improved structural systems and safer designs; in geological engineering, understanding

the fracture of rock can lead to increased efficiency in oil and gas extraction; and in bi-

ological engineering, understanding the fracture of bone can lead to improvements in the

design of bio-composites and medical implants. In this thesis, we numerically investigate a

wide spectrum of failure behavior; in soft and quasi-brittle materials with nonhomogeneous

microstructures considering a statistical distribution of material properties.

The first topic we investigate considers the influence of interfacial interactions on the

macroscopic constitutive response of particle reinforced elastomers. When a particle is em-

bedded into an elastomer, the polymer chains in the elastomer tend to adsorb (or anchor)

onto the surface of the particle; creating a region in the vicinity of each particle (often re-

ferred to as an interphase) with distinct properties from those in the bulk elastomer. This

interphasial region has been known to exist for many decades, but is primarily omitted in

computational investigations of such composites. In this thesis, we present an investigation

into the influence of interphases on the macroscopic constitutive response of particle filled

elastomers undergoing large deformations. In addition, at large deformations, a localized

region of failure tends to accumulate around inclusions. To capture this localized region

of failure (often referred to as interfacial debonding), we use cohesive zone elements which

follow the Park-Paulino-Roesler traction-separation relation. To account for friction, we

present a new, coupled cohesive-friction relation and detail its formulation and implementa-

tion. In the process of this investigation, we developed a small library of cohesive elements

for use with a commercially available finite element analysis software package.

Additionally, in this thesis, we present a series of methods for reducing mesh dependency

in two-dimensional dynamic cohesive fracture simulations of quasi-brittle materials. In this

setting, cracks are only permitted to propagate along element facets, thus a poorly designed

ii



discretization of the problem domain can introduce artifacts into the fracture behavior.

To reduce mesh induced artifacts, we consider unstructured polygonal finite elements. A

randomly-seeded polygonal mesh leads to an isotropic discretization of the problem domain,

which does not bias the direction of crack propagation. However, polygonal meshes tend

to limit the possible directions a crack may travel at each node, making this discretization

a poor candidate for dynamic cohesive fracture simulations. To alleviate this problem, we

propose two new topological operators. The first operator we propose is adaptive element-

splitting, and the second is adaptive mesh refinement. Both operators are designed to

improve the ability of unstructured polygonal meshes to capture crack patterns in dynamic

cohesive fracture simulations. However, we demonstrate that element-splitting is more suited

to pervasive fracture problems, whereas, adaptive refinement is more suited to problems

exhibiting a dominant crack.

Finally, we investigate the use of geometric and constitutive design features to regularize

pervasive fragmentation behavior in three-dimensions. Throughout pervasive fracture simu-

lations, many cracks initiate, propagate, branch and coalesce simultaneously. Because of the

cohesive element method’s unique framework, this behavior can be captured in a regularized

manner. In this investigation, unstructuring techniques are used to introduce randomness

into a numerical model. The behavior of quasi-brittle materials undergoing pervasive frac-

ture and fragmentation is then examined using three examples. The examples are selected to

investigate some of the significant factors influencing pervasive fracture and fragmentation

behavior; including, geometric features, loading conditions, and material gradation.
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Chapter 1

Introduction

Material failure pervades the fields of materials science and engineering; it occurs at various

scales and in various contexts. Understanding the mechanisms by which a material fails can

lead to advancements in the way we design and build the world around us. For example,

in structural engineering, understanding the fracture of concrete and steel can lead to im-

proved structural systems and safer designs; in geological engineering, understanding the

fracture of rock can lead to increased efficiency in oil and gas extraction; and in biologi-

cal engineering, understanding the fracture of bone can lead to improvements in the design

of bio-composites and medical implants. Some examples of material failure influencing an

engineering application are illustrated in Figure 1.1.

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Some examples of material failure in the fields of materials science and engineering: (a) trans-
granular fracture in a crystalline material (und.nodak.com), (b) turbine failure due to extreme weather (tele-
graph.co.uk), (c) seismic collapse (nrc.gov), (d) fracking to increase efficiency in gas extraction (mlive.com),
(e) bone fracture (pixshark.com), and (f) structural failure resulting in loss of life (comsol.com).

In addition to the prevalence of failure, there is also a wide range of failure mechanisms.

In some cases, failure occurs due to a dominant crack, while in other cases, failure is catas-
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trophic, causing pervasive damage to occur throughout a material. Between these two ends

of the failure spectrum, crack branching and crack coalescence mechanisms arise, as illus-

trated in Figure 1.2. In this thesis we discuss the full spectrum of fracture behavior; in both

two and three dimensions; in both quasi-static and dynamic loading conditions; and in both

soft and quasi-brittle materials.

Single/Dominant
Cracks

Pervasive Cracking 
and Fragmentation

Range of fracture behavior

Crack Branching Crack Coalescence

Figure 1.2: Range of fracture behavior. From problems dominated by a single crack, through crack branching
and coalescence, to pervasive cracking and complete fragmentation.

In this introductory chapter, we briefly describe the fracture processes of materials, and

discuss some of the prevalent methods for simulating fracture. Additionally, we situate

and motivate the particular problems investigated in this thesis. At the conclusion of this

chapter, we outline the scope of the current work and the organization of the topics in each

of the remaining chapters.

1.1 Characterization of fracture

Fracture mechanics refers to the modeling of the singular stress fields present in the equilib-

rium solutions for cracked homogeneous linear elastic isotropic materials. The assumption of

linear elastic fracture mechanics (LEFM) is useful in some applications; however, physically

realistic fracture mechanics is not linear. In real material microstructures, microcracks and

voids form, developing an inelastic zone of damage in front of the crack-tip, as illustrated

in Figure 1.3(a). The size and extent of this zone of inelastic damage dictates the fracture

process, and ultimately the manner in which the structure may fail.

In general, the fracture of all materials can be classified as either brittle, quasi-brittle, or

ductile. The specific classification depends on the ratio of the relative size of the fracture

process zone (or nonlinear softening zone), and the nonlinear hardening zone, with respect

to the specimen size, as illustrated in Figure 1.3(b). In brittle materials, both the fracture

process zone and the nonlinear hardening zone are small, and LEFM principals are often

2



applicable. In quasi-brittle materials, the fracture process zone is much larger than the

nonlinear hardening zone. Finally, in ductile materials, the nonlinear hardening zone is

much larger than the fracture process zone, and elasto-plastic fracture mechanics principals

are often applicable.

(a) (b) (c) 

Crack-tip

Cohesive zone
Voids and 
micro-cracks

Crack-tip
Fracture 
process zone

Nonlinear 
hardening zone

Figure 1.3: Schematics of: (a) the inelastic zone of damage in front of the crack-tip; (b) the softening fracture
process zone and nonlinear hardening zone; and (c) the cohesive zone used to represent the inelastic zone of
damage.

In the fracture process zone, the material softens, as a result of void growth and microcrack

formation. Conceptually, the fracture process zone can be approximated by a cohesive

zone [1, 2], as illustrated in Figure 1.3(c). The constitutive relation of the material in the

cohesive zone can be described by a traction-separation relation (otherwise referred to as a

cohesive zone model). The particular shape of the traction-separation relation defines the

characteristics of the fracture process zone, thus, it is material dependent.

1.2 Summary of numerical methods for simulating fracture

Analytical solutions to fracture problems are often limited in application. Most analytical

solutions are tabulated for specific geometries with specific boundary conditions [3, 4], and

often rely on the assumption that the crack lies in an infinite domain. To model fracture in

an arbitrary geometry with arbitrary boundary conditions (prominent in real world applica-

tions), numerical simulation is the method of choice. While fracture has been simulated in

complicated, realistic structures for decades, many of the prevalent methods still suffer lim-

itations in computational ease of use, speed, accuracy, and physical resolution. Moreover,

many of the prominent methods cannot readily handle inhomogeneous composite struc-

tures, or nonlinear materials. As a consequence, in this thesis, we focus on the finite element

method; which is intrinsically able to handle heterogeneity and nonlinearity. Although we

3



focus on the finite element method to simulate fracture, numerous alternative approaches

have been proposed in the literature. In this section, we give an overview of some of the

more prevalent numerical methods for simulating fracture. First, we give a general overview

of the finite element method, then discuss a sampling of the many alternative methods.

1.2.1 Finite Element Method

The finite element method (FEM) computes the approximate solution to a partial differen-

tial or integral equation. When complex materials, boundary condition or geometries are

modeled, these equations become difficult to solve analytically. The FEM is able to solve

these complex problems in a regularized manner, in a reasonable amount of time, and with

a relatively small amount of work. The basis for the finite element method can be derived

from the principle of virtual work, expressed in the linear setting as:∫
Ω

δεTσdΩ =

∫
Γ

δuTTdΓ +

∫
Ω

δuTbdΩ, (1.1)

where Ω is an arbitrary domain, subjected to surface tractions, T, along its boundary, Γ.

Moreover, σ denotes the stresses, b denotes the body forces; u is the displacement, δu is

the virtual displacement, and δε is the virtual strain.

The idea behind the finite element method is that the integral over the entire domain is

approximately equivalent to the sum of the integrals taken over a finite number of smaller

sub-domains known as “elements”. Each element is defined by a set of nodes, connectivities,

and element shape functions. The discretization of the principle of virtual work (1.1), using

the standard Galerkin approximation [5], takes the following form:(∫
Ωe

BT
e DBeuedΩe −

∫
Ωe

NT
e bedΩe −

∫
Γe

NT
e tedΓe

)
δuT

e = 0, (1.2)

where Ωe is the element domain, Ne is a matrix containing local element shape functions,

Be is a matrix relating the element strains to the element displacements, D is an elasticity

matrix, and ue and δue are the nodal displacement and virtual displacement vectors, respec-

tively. Since Equation 1.2 holds for any virtual displacement, the first term must be equal

to zero. We can then define the element-wise components of the stiffness matrix and force

vector as:

Ke =

∫
Ωe

BT
e DBedΩe, (1.3)
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Fe =

∫
Ωe

NT
e bedΩe +

∫
Γe

NT
e tedΓe. (1.4)

The element level components of the stiffness matrix and force vector can be assembled,

which leads to a global system of algebraic equations for the unknown displacements over

the entire domain [5, 6].

To capture fracture within the finite element method, special purpose cohesive elements

are included within the formulation to describe the constitutive relation in the cohesive zone

ahead of the crack-tip, as illustrated in Figure 1.3(c). Each cohesive element is inserted along

the facet joining two bulk finite elements in the direction of potential crack propagation.

Thus, the cohesive elements are one dimension smaller than the bulk elements (i.e. in 2D,

cohesive elements are 1D, and in 3D, cohesive elements are 2D). A further discussion on

cohesive elements will be included in Section 1.3.

1.2.2 Extended or Generalized Finite Element Method

The extended FEM (XFEM) or generalized FEM (GFEM) enriches the solution space of the

standard finite element method. In particular, discontinuous enrichment functions are used

to represent the crack surface and singular enrichment functions are used to represent the

crack-tip. A key advantage of the extended FEM is that the bulk finite element mesh does not

need to be updated to track the crack path. However, the discontinuity in the element shape

functions effectively splits the element; which requires a lot of heuristic manipulations, and

can present numerical integration and time-stepping issues in dynamic fracture simulations

[7]. To avoid this, some researchers recommend applying restrictions to the locations at

which an element can be split. For example, Remmers et al. [8] require that the element can

not be split if it causes the split element to be less than 10% the area of the original element.

In three dimensions, the extended FEM has proven useful in modeling fracture problems

dominated by a single crack [9, 10, 11]. However, when faced with the full spectrum of

fracture behavior, the extended FEM can become prohibitively complicated [12].

1.2.3 Boundary Element Method

The boundary element method (BEM) [13, 14] eliminates the need to discretize the interior

of the domain, but instead represents the domain with a mesh around the boundary. In

doing so, it requires fewer elements, resulting in a cost efficient method. The BEM has

shown great promise in solving linear elastic, isotropic problems, but is not an effective
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method for modeling anisotropic or nonlinear problems [11, 15]. Techniques have been

proposed to overcome the difficulties in solving problems containing anisotropic materials

[16], however, the efficiency of the BEM is lost due to the complex nature of these solutions.

Within dynamic fracture simulations, multiple cracks initiate, branch, coalesce and fragment;

characteristics which the BEM is currently unable to capture [11].

1.2.4 Discontinuous Galerkin Methods

The discontinuous Galerkin (DG) method seeks an elementwise-continuous polynomial ap-

proximation of the field variables over the chosen discretization [17]. Consequently, the

approximation of the field variables is discontinuous across element interfaces. The main

idea of the DG method is to use numerical flux terms to address the inter-element discon-

tinuities. There have been a variety of proposed numerical flux terms in the literature, a

review of many of the prominent flux terms, and their influence on numerical consistency

and stability, can be found in [18].

The DG framework has been extended to account for dynamic fracture behavior [17]. In a

similar fashion to that used in the FEM, to capture fracture within the DG framework, cracks

are nucleated at the interface between two bulk elements. Upon the nucleation of a crack,

the DG flux terms are no longer present in the formulation, and are replaced with a traction-

separation relation which governs the fracture process of the material. This approach has

shown to be scalable [19], and suitable for simulating pervasive fragmentation problems in

three-dimensions [17]; much like the finite element method [20]. An extension of the DG

method considers the discretization of spacetime domains and the use of basis functions

that are fully discontinuous across all spacetime element boundaries [21]. This extension,

known as the spacetime discontinuous Galerkin (SDG) method, has been used to investigate

problems in dynamic cohesive fracture [22, 23].

1.2.5 Meshless Methods

The previously discussed methods discretize the problem domain into elements, and in-

terpolate the unknown fields using element-based shape functions. Alternatively, meshless

methods represent the unknown fields with nodal information [24]. By increasing the number

of nodes dispersed in a region, a higher resolution of information in that region is obtained.

Thus, nodes are typically clustered around the critical portions of the domain; which, in

fracture problems, is the crack-tip. Each node is contained within a nodal-support region,
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and a weight function is defined over each nodal-support region. The spacing of the nodes is

such that each point in the domain is covered by at least three distinct weight functions. The

resulting global fields are then interpolated from nodal information using a Moving Least

Squares fitting procedure [25].

Examples of meshless methods include the Diffuse Element Method [26], the Element

Free Galerkin method [27, 28, 29], the Reproducing Kernel Method [30], the Meshless Lo-

cal Petrov-Galerkin method [31], the cracked particles method [32], and the Material Point

Method [33]. Although meshless methods have shown some promise in modeling problems

where fracture is dominated by a single crack, many of them still suffer from volume dele-

tion during pervasive fracture and fragmentation problems. As the continuum material

fragments, it evolves into a collection of spheres; which have a theoretical maximum packing

limit of 74% [12], leading to a nonphysical loss of volume in the model.

1.2.6 Peridynamics

Peridynamics is a model which represents a material by a network of nodes [34]. Each

node interacts with every other node located within a local neighborhood called a horizon.

The pair-wise force interactions between nodes contain all the constitutive properties of the

material being modeled. Damage is incorporated into a pair-wise force function by allowing

the bonds to break once a certain critical elongation is reached. Once a bond is broken, the

force is distributed to the other bonds. This process of bond breaking and load redistribution

is the mechanism by which cracks initiate and propagate in the peridynamics model. The

peridynamics model has been used to simulate dynamic cracks in brittle materials [35, 36],

and is capable of capturing crack branching behavior consistent with experiments.

Recently, criticism has been raised on the use and applicability of the peridynamics model

[37]. One criticism arises from the use of pair-wise force functions, analogous to interatomic

potentials, to describe the interactions between particles which are not nearest neighbors.

In heterogeneous materials, at scales larger than 3nm, these interactions are inconsequential

[37]. Instead, at these larger scales, interactions between particles which are not nearest

neighbors occur through normal and shear forces in the contacts, not through potential-

based pair-wise forces [37]. However, peridynamics is frequently applied to problems at

these larger scales [38, 39, 40]. An additional criticism arises when a node is close to the

boundary of the domain, and its horizon extends outside the boundary. To account for this

in the peridynamics model, a non-physical adjustment is incorporated which results in an

effectively softer material near the boundary [37, 36]. This issue is so well recognized that
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it has been termed the “skin effect” in peridynamics models [36].

1.3 Classification and characterization of cohesive fracture

As discussed in the previous sections, in this thesis, we investigate failure processes using

the finite element method, and use cohesive zone elements to represent the inelastic zone

of damage in the region of failure. The constitutive response of a cohesive element follows

a cohesive model. The cohesive model should be compatible with, but is selected indepen-

dently of, the constitutive model of the bulk elements. This section describes the primary

classification subsets of the prevalent cohesive models in the literature.

1.3.1 Potential-based vs. non-potential-based cohesive models

There are two distinct groups of cohesive zone models proposed in the literature. The first

group consists of non-potential-based models. These models do not require the development

of a symmetric system, thus they are relatively easy to develop [41]. Some examples of

non-potential-based models are the linear [42], bilinear [43], trilinear [44], and trapezoidal

[45] softening models. Alternatively, potential-based models are derived from a potential

function; which completely characterizes the fracture behavior. The first derivatives of the

potential correspond to the normal and shear component of traction, whereas the second

derivatives correspond to the components of the material tangent modulus for the selected

potential. In this case, since the tangent stiffness matrix is derived from a potential func-

tion, it is symmetric. There have been many potential functions proposed in the literature,

including some with specific polynomial orders [46, 47], some with exponential expressions

[48, 49, 50], and even one with general polynomial order [51].

1.3.2 Intrinsic vs. extrinsic cohesive models

Within each group of cohesive zone models (potential-based and non-potential-based) there

are two subsets of traction-separation relations. Elements with intrinsic cohesive models

are inserted, a priori, into a mesh and have a traction-separation relation which consists of

both an initial elastic range and a softening range. This initial elastic range can create an

artificial compliance in the mesh and may lead to non-physical results [52, 53, 54], thus they

are primarily used in problems where the location of material failure is known, or specified,

beforehand. On the other hand, extrinsic cohesive elements are inserted adaptively into a

8



mesh [55, 56, 57], and are useful in problems where the fracture path is not known prior to

the start of the simulation. The traction-separation relation corresponding to an extrinsic

cohesive model does not contain an initial elastic range and thus does not cause issues of

artificial compliance. Sample intrinsic and extrinsic traction-separation relations, derived

from the potential-based Park-Paulino-Roesler cohesive model [51], are illustrated in Figure

1.4.
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Figure 1.4: Cohesive models representative of: (a) intrinsic softening in the normal direction; (b) intrinsic
softening in the tangential direction; (c) extrinsic softening in the normal direction; and (d) extrinsic softening
in the tangential direction. The models are derived from the Park-Paulino-Roesler cohesive model [51] with
the following fracture properties: normal energy = 100N/m, strength = 40MPa, shape parameter = 5, and
initial slope indicator = 0.15; and tangential energy = 200N/m, strength = 30MPa, shape parameter = 2,
and initial slope indicator = 0.25.
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1.3.3 Mesh dependency

One of the primary critiques of the cohesive element method is its inherent mesh dependency

[58]. Since cohesive elements are only permitted to be inserted along facets joining two bulk

finite elements, if the initial mesh is designed poorly it may artificially influence the fracture

behavior. In some instances, when fracture paths are known a priori, cohesive elements may

be used to represent failure without influence from the mesh. For example, in this thesis,

we use intrinsic cohesive elements to model particle debonding. In this example, failure only

occurs between a particle and the matrix, or interphase, surrounding the particle; therefore,

the size and extent of the region of failure is not influenced by the bulk mesh. However, in

the dynamic fracture of brittle materials, fracture patterns are not known beforehand. In

this instance, the underlying mesh can significantly influence the fracture behavior. Since

this is an important issue in the cohesive element approach to fracture, we will investigate

the influence of mesh dependency in dynamic fracture simulations in both two- and three-

dimensions in Chapters 5 and 6, respectively.

1.4 Interface and interphase effects in particle reinforced

composites

One of the topics we explore in depth in this thesis is that of particle reinforced composites.

There are four primary factors which influence the macroscopic constitutive response of par-

ticle reinforced composites: component properties, component concentrations, interphases,

and interfacial debonding. Interphases are often a byproduct of surface treatments applied

to the particles to control agglomeration. Alternatively, in polymer based materials such as

carbon-black reinforced rubber, an interphase or “bound rubber” phase often occurs at the

particle-matrix interface. For example, when an inclusion is embedded into an elastomeric

matrix, the polymer chains in the elastomer tend to adsorb (or anchor) onto the surface of

the inclusion. This behavior results in an interphasial region in the vicinity of each particle

wherein the mobility of the polymer chains is restricted, as illustrated in Figure 1.5. The

composition and extent of this region is influenced by a number of factors; including the

surface area and surface treatment of the inclusion phase, as well as the level of mixing and

age of the composite [59, 60]. For example, Ramier et al. [61, 62] recently conducted a

series of experiments on consistently prepared specimens, with different surface treatments

applied to the particles in each specimen. Their investigation focused on the influence of the

different surface treatments on the cross-linking in the matrix. Their results indicated that

10



treating the surface of the particles significantly alters the large deformation constitutive

response of the composite. Representative results from their investigation are depicted in

Figure 1.6.

Polymer chain mobility

Inclusion

Matrix

Figure 1.5: Schematic of the polymer chain mobility in an elastomeric matrix with particle inclusions.
Experimental image extracted from Ramier [62].

Additionally, studies on the failure of particle reinforced composites indicate that, at large

strains, a localized region of failure (or interfacial debonding) forms around particle inclu-

sions [63, 64, 65, 66, 67]. Ramier et al. also observed this interfacial debonding behavior

in many of their experiments [61, 62]. Globally, interfacial debonding is seen to signifi-

cantly soften the response of the composite, as illustrated in Figure 1.6(b). In this thesis,

we use computational homogenization techniques to develop a fully three-dimensional com-

putational framework capable of capturing these microscale features, and investigate their

influence on the macroscale constitutive response of particle reinforced composites. In this

framework, we model interphases explicitly and use cohesive elements to capture interfacial

debonding.

The numerical investigation of interfacial debonding using the cohesive element method

was pioneered by Needleman in 1987 [46]. In his investigation, intrinsic cohesive elements

were used to capture the full range of particle debonding behavior, from void nucleation to

full decohesion. To date, most investigations of interfacial debonding have been conducted

using two-dimensional and simplified three-dimensional models. In two dimensions, the plain

strain assumption is often employed to model fiber inclusions. Zhong and Knauss [68, 69]

used linear softening cohesive elements to investigate debonding in fiber-reinforced compos-

ites with structured microstructures. They focused on the tensile response of the composites,

and studied the influence of various factors; including particle size, shape and distribution.

Moraleda et al. [70] used a linear softening cohesive relation to study the influence of interfa-

cial debonding on the tensile response of fiber-reinforced elastomers. They considered both a
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Figure 1.6: Experimentally obtained uniaxial stress-strain response of styrene-butadiene rubber filled with
a 20% concentration of silica particles with different surface treatments (Si, AC25, AC50, AC75, AC100,
AC125, AR1, AR3, AR8, and AR16); which results in different types of interphases, and hence different
macroscopic constitutive responses. (a) Perfectly bonded interphases, and (b) interphases with interfacial
debonding. Data extracted from Ramier [62].

single particle microstructure and a microstructure with a random distribution of monodis-

perse particles. Inglis et al. [71] used two-dimensional models to investigate debonding in

polydisperse microstructures containing a high concentration of particulates. Brassart et al.

[72] used the same numerical framework as Inglis et al. to capture the debonding of rigid

inclusions under axisymmetric tension. They considered periodic unit cells with a random

distribution of up to ten monodisperse particles.

However, to accurately capture the effect of spherical particle inclusions, fully three-

dimensional modeling is necessary. Matouš and Geubelle [73, 74] used an effective displace-

ment, exponential softening, cohesive relation to study the debonding of spherical particles.

In their fully three-dimensional investigation, they considered both a single particle mi-

crostructure and a four-particle microstructure. In their investigation of the four-particle

microstructure, they used a slight perturbation in the position of the particles. Through

these simplified microstructures they were able to demonstrate the significant influence of

interfacial debonding on the macroscopic constitutive response of these composites.

One common feature among all of the investigations mentioned above is that none of them

consider the influence of interphases. While it has been shown experimentally that inter-

phases significantly alter the macroscopic response of particle reinforced composites, their

inclusion in computational models is widely omitted. There are four primary factors which

influence the macroscopic response of particle reinforced composites: component properties,

component concentrations, interphases, and interfacial debonding. In this thesis, we inves-

tigate the interplay between the four factors and attempt to quantify their influence on the

12



macroscopic constitutive response of these composite materials under both small and large

deformations in both linear elastic and hyperelastic materials.

1.5 Thesis scope and organization

The objective of this thesis is to investigate the full spectrum of failure behavior, using the

cohesive element method. First, we develop a computational framework to investigate the

constitutive response of particle reinforced composites, considering the influence of physi-

cally meaningful interphases and interfacial debonding. Next, we develop two new topologi-

cal operators for unstructured polygonal discretizations, to reduce mesh induced artifacts in

dynamic cohesive fracture simulations in two-dimensions. Finally, in three-dimensions, we

use unstructuring methods to investigate and regularize the pervasive fracture and fragmen-

tation of quasi-brittle materials under extreme loading scenarios.

The remainder of the thesis is organized as follows. Chapter 2 discusses the significance of

perfectly bonded, microscale interphases on the macroscale constitutive response of particle

reinforced elastomers. We first discuss the relevant theoretical frameworks which have been

proposed to capture the large deformation response of these composites; giving particular

attention to a recently developed framework by Goudarzi et al. [75]. We then develop a

computational framework capable of capturing the influence of interphases. The computa-

tional framework is verified and validated with theoretical and experimental results available

in the literature. Chapter 3 presents the formulation and implementation of a small library

of three-dimensional cohesive elements for use in a commercial finite element analysis soft-

ware package. This contribution was written from an educational perspective, and, for wider

dissemination, is accompanied with a sample source code in Appendix B. Next, we combine

the three-dimensional cohesive elements with the computational framework developed in

Chapter 2 to investigate the role of interphases and interfacial debonding on the constitutive

response of particle reinforced composites in Chapter 4.

In the remaining chapters of the thesis, we switch our focus from quasi-static failure with

intrinsic cohesive elements to dynamic failure with adaptively inserted, extrinsic cohesive

elements. First, in Chapter 5, we explore the benefits of using polygonal finite elements for

simulating dynamic cohesive fracture. In order to reduce mesh induced bias in the geometri-

cally restrictive polygonal meshes, we develop two new topological operators. We discuss the

implementation of the new operators, and quantify their improvement on fracture behavior

through a geometric study and five numerical examples. The examples are selectively cho-

sen to represent the full range of fracture behavior in quasi-brittle materials; from problems
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failing due to a dominant crack to problems failing due to pervasive fragmentation. Finally,

in Chapter 6, we use both geometric and constitutive unstructuring methods to investigate

and regularize the pervasive fracture and fragmentation of quasi-brittle materials under ex-

treme loading conditions in three-dimensions. Additionally, in this chapter, we present a

new meshing strategy which addresses many of the outstanding mesh induced issues ob-

served while conducting the work in this thesis. Finally, a summary of the main conclusions

of this work, and a number of directions in which this work could be extended, is presented

in Chapter 7.
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Chapter 2

Particle Reinforced Elastomers and the Significance of
Interphases

The objective of the next three chapters is to develop and implement a computational frame-

work for modeling the constitutive response of particle reinforced elastomers, considering the

influence of both interphases and interfacial debonding. In this chapter, we limit our inves-

tigation to the influence of perfectly bonded interphases. In the subsequent chapter, we

develop a small library of cohesive elements suitable for capturing the behavior of interfacial

debonding. In Chapter 4, we combine the work in this chapter and the next, to investigate

the combined influence of both interphases and interfacial debonding on the macroscopic

constitutive response of particle reinforced elastomers.

This chapter motivates the inclusion of interphases in the numerical analysis of particle

reinforced elastomers. The presence of interphases surrounding particle inclusions is a well

established occurrence; however, their incorporation in both theoretical and computational

frameworks which aim to capture the full range of behavior of these composites, is often

omitted. In this chapter, we provide a brief summary of the experimental and theoretical

work that has been done on this topic. Additionally, we outline a recently developed, fully

nonlinear theoretical framework which accounts for the presence of perfectly bonded inter-

phases in particle reinforced elastomers. Finally, we present a computational framework

capable of capturing the behavior of such composites, and investigate the influence of many

significant microstructural features; including, constituent properties and concentrations.

For the most generality, we consider both monodisperse and polydisperse microstructures in

both the small deformation and large deformation regimes. The computational framework

is verified and validated with theoretical and experimental results available in the literature.

2.1 Introduction

When a particle is embedded into an elastomeric matrix, the polymer chains in the elastomer

tend to adsorb (or anchor) onto the surface of the particle; either by means of a chemical

reaction or by an act of interdiffusion of the component materials [59, 76]. This behavior
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results in an interphasial region in the vicinity of each particle with distinct properties from

both those of the matrix and those of the particle. This interphase region plays a key role

in all particulate filled composites, regardless of the type, or structure, of the components.

In some cases, interphases are concluded to be the primary factor controlling the properties

of a composite [76, 77]; thus, their investigation is of utmost importance to the future

development and advancement of such composites.

While interphases have been known to exist for many decades [78, 79, 80, 81, 82], their

visualization and experimental characterization has only recently become possible. In 2004,

Mäder and Gao [83] used scanning force microscopy to observe the modulus profile in the in-

terphasial region surrounding fibers embedded in an elastomeric matrix. They demonstrated

that the stiffness of the interphase depends on the composition and surface treatment of the

fiber. More recently, Qu et al. [84] experimentally visualized and characterized the behav-

ior of the material at the particle-elastomer interface. They used atomic force microscopy

to conduct in-situ imaging of particle-elastomer interactions. They demonstrated that the

macroscopic properties (in particular, the stiffness and scratch resistance) of the compos-

ite can be tailored, by selectively designing the surface chemistry of the particles. Typical

results from their investigation are illustrated in Figure 2.1.
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Figure 2.1: Experimental evidence of interphases showing the normalized particle profiles measured on
torsional harmonic atomic force microscopy height and stiffness maps (scale bar = 50nm). Images extracted
from Qu et al. [84].

To capture the full effect of spherical particle reinforced elastomers in a computational

framework, three-dimensional modeling is necessary. An early investigation of particle re-

inforced elastomers can be found in the limited study of Bergström and Boyce [85]. They

investigated the influence of perfectly bonded particle inclusions on the macroscopic compres-

sive stiffness of elastomers. Using very coarse finite element models, they demonstrated that

the addition of particles leads to stiffening behavior in line with experimental observations.

Later, Segurado and Llorca [86] conducted a numerical investigation into the influence of
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particle inclusions and voids on the effective modulus of an elastomeric matrix. They demon-

strated that a representative unit cell, with randomly distributed monodisperse particles and

periodic boundary conditions, can capture behavior in line with analytical solutions avail-

able in the literature. Alternatively, Galli et al. [87] investigated the influence of polyhedral

inclusions on the elasto-plastic response of particle reinforced composites. By assuming poly-

hedral inclusions, they were able to use the same mesh discretization for each concentration

of particles they considered, by simply assigning a larger number of finite elements to the

properties of the particles. More recently, Lopez-Pamies et al. [88, 89] developed an ap-

proximate analytical solution for isotropic hyperelastic materials reinforced by an infinitely

polydisperse distribution of rigid particles. They verified their analytical solution with full

3D finite element simulations, the first of their kind to extend to the finite deformation

regime. Their investigation found good correlation between theoretically derived and nu-

merically simulated results. The contributions of Lopez-Pamies et al. significantly influenced

and motivated the contributions in this chapter. Even though their investigation omitted

the inclusion of interphases, they did comment on the known, significant contribution of

interphases to the overall constitutive response of such composite materials.

The objective of this chapter is to motivate the inclusion of interphases when modeling

heterogeneous multiphase materials. To the best of the author’s knowledge, their has been

no computational framework proposed for the investigation of particle reinforced elastomers;

which includes the influence of interphases, in the finite deformation regime. We aim to show

that the inclusion of interphases in particle reinforced elastomers can lead to behavior which

is more consistent with that obtained experimentally. To do this, we investigate the influence

of interphases in both the small-deformation and large-deformation regimes, and attempt

to demonstrate the key interphasial properties which influence the global constitutive re-

sponse. In the following section, we provide some background information on the history

of this problem. In Section 2.3, we briefly outline the theoretical framework developed in

conjunction with this work; the extended details of the theoretical formulation may be found

in the accompanying publication [75]. Section 2.4, proposes a computational framework for

the full 3D simulation of these composites; wherein we explicitly model homogeneous in-

terphases at the particle-matrix interface. In Section 2.5, we compare our computational

framework with both theoretical and experimental results in the small deformation regime;

and, in Section 2.6, we compare our computational framework with both theoretical and

experimental results in the large deformation regime. Finally, we provide some concluding

remarks and discuss the extension of this work in Section 2.7.
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2.2 History

In 1906, Einstein [90] derived a solution for the effective viscosity of a dilute suspension

of rigid particles in a viscous solvent, assuming perfect adhesion between the phases. He

determined that the effective viscosity of the solvent, η is given as:

η = η (1 + 2.5c) , (2.1)

where η is the viscosity of the solvent, and c is the concentration of the particles. By

exploiting the analogy between Stokes-flow and small-strain linear elasticity, Smallwood

extended the Einstein solution to linear elasticity. In this case, the resulting effective shear

modulus, µ, of an isotropic incompressible elastomer reinforced with a dilute concentration

of rigid spherical particles is similarly calculated as:

µ = µm (1 + 2.5c) , (2.2)

where µm is the modulus of the elastomeric matrix. Subsequently, Guth [91] extended the

Einstein-Smallwood solution, to account for a finite concentration of particles:

µ = µm
(
1 + 2.5c+ 14.1c2

)
, (2.3)

where the quadratic term accounts for the mutual interaction of pairs of particles. In this set-

ting of linear elasticity, many authors have made contributions; accounting for non-spherical

inclusions and non-dilute concentrations (for example, see [92, 93] and the references therein).

As opposed to the early attention given to the small-strain problem, the first formal

framework capable of describing the finite strain response of filled elastomers was proposed

by Hill [94] in 1972. Despite the presence of an applicable framework, however, little progress

has been made in its application [89, 95]. In the following section, we will discuss a recently

proposed, fully nonlinear, closed-form solution for the overall response of filled elastomers

under finite strains - developed by Goudarzi et al. [75]. In their formulation, they consider

the influence of perfectly bonded interphases. Their solution procedure consists of three

steps. In the first step, a closed-form solution is developed for a dilute suspension of rigid

particles, bonded to a neo-Hookean matrix through interphases of finite size. In the second

step, an iterated dilute homogenization technique is used to extend the dilute solution to one

for a finite concentration of particles in a Gaussian elastomer. Finally, in the third step, a

nonlinear comparison medium method is used to develop a solution for a finite concentration

of particles in a non-Gaussian elastomer.
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2.3 Theoretical framework

In this section, we briefly outline the theoretical solution developed by Goudarzi et al. [75,

95]; which describes the macroscopic response of particle reinforced elastomers with perfectly

bonded interphases. The extended details of the solution may be found in the principal

publication [75]; we just highlight a few critical details for completeness, and maintain the

notation of [75] for consistency. In subsequent sections, we will use this theoretical framework

to verify the computational framework developed in this chapter.

2.3.1 The problem

The problem under consideration is that of a filled elastomer occupying a domain Ω, with

boundary ∂Ω, in its undeformed state, as illustrated in Figure 2.2. The composite material

consists of a random dispersion of rigid particles, bonded to an elastomeric matrix through

interphases of finite size [95]. The elastomeric matrix is assumed to be isotropic and in-

compressible. The particles are assumed to be spherical, and their random dispersion is

assumed to result in an isotropic material. Additionally, the interphases are assumed to be

of constant thickness and constituted of a Gaussian elastomer. The matrix, particles and

interphases occupy domains Ωm, Ωp and Ωi, respectively; such that Ω = Ωm+Ωp+Ωi. Thus,

the concentrations of the respective components are given by cm ≡ |Ωm| / |Ω|, cp ≡ |Ωp| / |Ω|,
and ci ≡ |Ωi| / |Ω|.

Interphases

Rigid particles

Elastomeric matrix

∂Ω

Ω

Figure 2.2: A schematic of the composite filled elastomer considered in this investigation. The composite
consists of a random dispersion of rigid particles, bonded to an elastomeric matrix through constant-thickness
interphases of finite size.
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2.3.2 A dilute concentration of particles in the small -deformation regime

Goudarzi et al. [75] developed a series of solutions for the macroscopic response of parti-

cle filled elastomers considering the influence of interphases. First, they assumed a dilute

concentration of rigid particles bonded to a Gaussian matrix through constant-thickness in-

terphases. The Gaussian matrix is assumed to follow a neo-Hookean material model, with

stored-energy function:

Ψ (I1) =

{
µm
2

[I1 − 3] if J = λ1λ2λ3 = 1

+∞ otherwise

}
, (2.4)

where µm is the initial shear modulus of the matrix, I1 = F ·F is the first principal invariant

of the right Cauchy-Green tensor, and F is the deformation gradient. A dilute concentration

of particles assumes that particles are well separated (i.e. they do not interact with one

another). With this assumption, it is expected that the effective stored-energy function for

a dilute suspension of particles in a finite-sized matrix will agree identically with that for

a single particle suspended in an infinite matrix [75]. In the limit of small deformations,

Goudarzi et al. [75] demonstrate that this problem has an exact solution, wherein the

effective stored-energy function is described as:

Ψ
(
I1, I2, cp, ci

)
= µmtrε2 +

5µm
2

trε2cp +
5 (µi − µm) (q1µi + q4µm)µm

2 (q1µ2
i + q2µiµm + q3µ2

m)
trε2ci, (2.5)

where ε = (F + F − 2I)/2, and I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 and I2 = λ−2
1 + λ−2

2 + λ2
1λ

2
2 are the

first two principal invariants. Additionally,

q1 = 38k10 + 225k7 − 336k5 + 200k3 + 48, (2.6)

q2 = 89k10 + 75k7 − 168k5 + 100k3 − 96, (2.7)

q3 = 48k10 − 300k7 + 504k5 − 300k3 + 48, (2.8)

q4 =
4 (k − 1)3 (2k3 + 3) (4k6 + 16k5 + 40k4 + 55k3 + 40k2 + 16k + 4)

k2 + k + 1
, (2.9)

with

k =

(
1 +

ci
cp

)1/3

. (2.10)

This may also be written in compact form as:
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Ψ
(
I1, I2, cp, ci

)
= µdilutetrε2, (2.11)

where

µdilute ≡ µm +
5µm

2
cp +

5(µi − µm)(q1µi + q4µm)µm
2(q1µ2

i + q2µiµm + q3µ2
3)

ci. (2.12)

Notably, this solution is a generalization of the classical Einstein-Smallwood solution (2.2)

for the effective shear modulus of a dilute distribution of rigid spherical particles suspended

in a matrix (i.e without the inclusion of interphases). For extended details, and features, of

the above formulation, the reader is referred to [75].

2.3.3 A dilute concentration of particles in the large-deformation regime

In general, it is not possible to solve dilute problems in finite elasticity by analytical means.

Thus, in order to develop an approximate solution, numerical approaches are necessary.

Goudarzi et al. [75] constructed a numerical solution by developing a finite element model

of an infinitesimal particle, surrounded by an interphase, embedded in a finite-size block of

elastomer. The resulting finite element solution admitted the following asymptotic form:

ΨFE
(
I1, I2, cp, ci

)
=
µm
2

[
I1 − 3

]
+ µmH

(
I1, I2

)
cp + µmG

(
I1, I2

)
ci, (2.13)

where H and G are correction functions, accounting for the inclusion of the particle and the

interphase, respectively. The numerical forms of the correction functions are computed as

follows [75]:

H
(
I1, I2

)
=

1

cp

{
1

µm
ΨFE

(
I1, I2, cp, 0

)
− 1

2

[
I1 − 3

]}
, (2.14)

G
(
I1, I2

)
=

1

ci

{
1

µm
ΨFE

(
I1, I2, cp, ci

)
− 1

2

[
I1 − 3

]
−H

(
I1, I2

)
cp

}
. (2.15)

After computing the correction functions, Goudarzi et al. [75] deduced the following closed-

form analytical approximations:

H
(
I1, I2

)
=

5

4

[
I1 − 3

]
, (2.16)

G
(
I1, I2

)
=

5(µi − µm)(q1µi + q4µm)

4(q1µ2
i + q2µiµm + q3µ2

3)

[
I1 − 3

]
. (2.17)
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Substituting the approximations for the correction functions back into the effective stored-

energy function (2.13) yields:

ΨFE
(
I1, I2, cp, ci

)
=
µm
2

[
I1 − 3

]
+

5µm
4

[
I1 − 3

]
cp

+
5 (µi − µm) (q1µi + q4µm)µm

4 (q1µ2
i + q2µiµm + q3µ2

m)

[
I1 − 3

]
ci (2.18)

=
µdilute

2

[
I1 − 3

]
(2.19)

where the coefficients, q1, q2, q3, and q4 are defined by Expressions 2.6 to 2.9.

2.3.4 A finite concentration of particles in a Gaussian elastomer

The randomly oriented, sparsely cross-linked, long chain molecular structure of elastomers

enables these materials to undergo large, nonlinear elastic deformations. As an elastomer

undergoes large deformations, its randomly oriented molecular structure becomes preferen-

tially oriented [96]. Thus, the distribution and initial lengths of the individual chains in the

molecular structure impacts the manner in which the elastomer stiffens. A single polymer

chain is said to contain n links of length l [96]. In a Gaussian elastomer, the average initial

length of each chain (in the undeformed configuration) is Lo =
√
nl, and the final extended

length of each chain, after deformation, is assumed to be much less than the fully extended

length, nl [96]. However, at large strains, this assumption is no longer valid, and typical

elastomers display strain hardening (behavior that the Gaussian assumption is unable to

capture). In this case, we turn to a non-Gaussian description of the elastomer, wherein

strain hardening behavior can be captured. In this section, we describe the solution for a

finite concentration of particles in a Gaussian elastomer and in the next section we describe

the corresponding solution for a non-Gaussian elastomer.

In order to obtain the solution for a Gaussian elastomer reinforced by a finite concentration

of rigid particles, an iterated dilute homogenization method is used [97, 98, 99]. In this

method, at each iteration, a dilute concentration of rigid particles is embedded in the matrix.

The resulting composite at each iteration is viewed as a homogenous matrix during the next

iteration, wherein a dilute concentration of particles of much larger size are embedded in the

composite. This procedure is repeated an arbitrarily large number of times, until a finite

total concentration of particles is reached. Details of the iterated dilute homogenization

method may be found in references [89, 100]. Following this approach, Goudarzi et al. [75]
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calculated the following homogenized solution for a finite concentration of rigid particles

bonded to a Gaussian matrix through constant-thickness interphases:

Ψ
(
I1, I2, cp, ci

)
=
µ

2

[
I1 − 3

]
, (2.20)

where µ is defined implicitly through the expression:

F1 {µ, µm} =
ci [q

2
4 − q4 (q1 + 2q2 + q3) + q1q3] + cp [q3 (2q1 + q2)− q4 (q2 + 2q3)]√

c2
i (q1 + q4)2 + 2cicp [q4 (2q1 + q2)− q1 (q2 + 2q3)] + c2

p (q2
2 − 4q1q3)

×

tanh−1

 ci (q4 − q1) + cpq2 + 2 (cpq3 − ciq4)
µ
µi√

c2
i (q1 + q4)2 + 2cicp [q4 (2q1 + q2)− q1 (q2 + 2q3)] + c2

p (q2
2 − 4q1q3)

−
tanh−1

 ci (q4 − q1) + cpq2 + 2 (cpq3 − ciq4) µm
µi√

c2
i (q1 + q4)2 + 2cicp [q4 (2q1 + q2)− q1 (q2 + 2q3)] + c2

p (q2
2 − 4q1q3)

−
1

2
(q3 + q4) ln

[
ci (µ− µi) (µiq1 + q4µ)− cp (µ2

i q1 + µiq2µ+ q3µ
2)

ci (µm − µi) (µiq1 + q4µm)− cp (µ2
i q1 + µiq2µm + q3µ2

m)

]
+(

q4 −
cp
ci
q3

)
ln

[
(1− ci − cp)5/2 µ

µm

]
= 0. (2.21)

and the coefficients, q1, q2, q3, and q4 are defined by Expressions 2.6 to 2.9.

2.3.5 A finite concentration of particles in a non-Gaussian elastomer

Finally, using the above solution for a filled Gaussian elastomer, a comparison medium

method can be used to develop a corresponding solution for a filled non-Gaussian elastomer

[101, 102]. Briefly, the comparison medium method uses a variational framework which

permits the construction of an explicit, approximate solution for the effective stored-energy

function for a filled non-Gaussian elastomer directly in terms of the “simpler” effective

stored-energy function for a filled Gaussian elastomer [89]. Using this method, Goudarzi et

al. [75] derive the following explicit form for the effective stored-energy function for a filled

non-Gaussian elastomer:

Ψ
(
I1, I2, cp, ci

)
= (1− cp − ci) Ψm (I1) +

µ0

2

[
I1 − 3

]
− (1− cp − ci)

µ0

2
[I1 − 3] , (2.22)

where
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I1 =

cpµ0 +
(µi−µ0)(q1µi+q4µ0)
q1µ2i +q2µiµ0+q3µ2

0

ciµ0

cpµ0 + (µi−µ0)(q1µi+q4µ0)

q1µ2i +q2µiµ0+q3µ20
ciµ0

 [
I1 − 3

]
1− cp − ci

+ 3, (2.23)

and µ0 and µ0 are defined implicitly through the coupled nonlinear equations:

F1 {µ0, µ0} = 0, and F2 {µ0, µ0} = Ψ′m (I1)− µ0

2
= 0, (2.24)

and F1 is given in Equation 2.21. Once again, for extended details and features of the

formulation, the reader is referred to [75].

2.4 Computational framework

To complete our investigation, in this section, we develop a computational framework capable

of capturing the macroscopic response of particle reinforced elastomers with perfectly bonded

interphases. The computational framework is based on the use of a representative unit cell,

and, for broad applicability, uses the commercial finite element analysis software Abaqus

[103] to carry out the simulations. A representative unit cell (RUC) is a microstructural

model containing the smallest material volume element for which the usual spatially constant

macroscopic constitutive representation is accurately captured [104, 105]. The size of the

RUC model should be large enough to represent the microstructure without introducing non-

existing macroscopic properties (such as anisotropy in a macroscopically isotropic material).

The appropriate sizing of our models will be investigated in Section 2.4.5. Alternatively, one

may use a representative volume element (RVE) model; which is a microstructural model

capable of reproducing the statistical nature of the microstructure in the actual composite.

To be statistically representative of the composite (i.e. to effectively include a sampling of

all possible microstructural configurations that occur in the composite), the model may need

to be sized arbitrarily large. The sizing of the RVE is generally qualitative; thus articles on

the topic generally state that the RVE must be sized “sufficiently large” compared to the

microstructural size [104]. Additionally, the larger the mismatch in material properties the

large the size of the RVE, thus the cases being investigated (a rigid phase in a soft phase)

will lead to very large models and could become computationally cumbersome [106].

Representative unit cells are commonly applied in the literature to investigate random,

periodic microstructures, as they allow one to obtain the complete microstructure of the

material by translating the unit cell in the three (±) Cartesian directions [107, 108, 109], as

illustrated in Figure 2.3. In this investigation, we consider composites with both monodis-
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perse and polydisperse distributions of particles; however, our investigation demonstrates

that there is little difference between the two distributions, at small particle concentrations.

Figure 2.3: Depiction of a periodic geometry. Periodicity ensures that the particles are placed in such a
manner that if the cell were to be replicated and placed adjacent, in any of the three (±) Cartesian directions,
it would result in a continuous microstructure.

2.4.1 Microstructures with a monodisperse distribution of particles

The monodisperse microstructures are generated using a constrained random sequential

adsorption algorithm [86, 110]. Spherical particles of radius rp, surrounded by interphases of

thickness t, are sequentially added to the microstructure. For ease of modeling, it is assumed

that interphases do not overlap. This assumption allows for a higher quality discretization

of the problem domain, while permitting a more general behavior analysis. Once a random

location for a particle is generated, two necessary criterion are checked for that site to be

accepted:

� If the center-to-center distance between the interphase of a newly generated particle

and that of a previously accepted one is below a specified constraint value, the new site

is rejected. The constraint value, s1, is calculated as s1 = 2 (1 + d1) (rp + t), where the

offset distance is fixed as d1 ≥ 0.05. Using notation similar to that of Lopez-Pamies et

al. [89], this is compactly written as:

∥∥Xi −Xj − h
∥∥ ≥ s1, (2.25)

where i, j = 1, 2, . . . N , Xi (Xj) denotes the location of the centroid of particle i (j),

N is the total number of particles in the microstructure, and h is a vector composed

of 0, L, and −L entries, accounting for the periodicity of the unit cell with dimensions

L× L× L [89].

25



� The distance between the boundary of the unit cell, ∂Ω, and any interphase, should be

sufficiently great to allow for a high quality discretization to be formed. The distance,

s2, between the boundary and each interphase should satisfy:

∣∣X i
k − rp − t

∣∣ ≥ s2,
∣∣X i

k + rp + t− L
∣∣ ≥ s2 (k = 1, 2, 3) (2.26)

where s2 = d2 (rp + t) and the offset distance is fixed as d2 = 0.05.

Prior investigations have illustrated that the use of N = 30 particles is appropriate to

capture the overall isotropy of the material [86, 89], and is the number of particles used

in this investigation. This assumption is verified in Section 2.4.5. Figure 2.4 illustrates

sample monodisperse microstructures generated using the above procedure, for a particle

concentration of cp = 0.15. A script incorporating the above procedure for generating

monodisperse microstructures is included in Appendix A.

(a) (b) (c)

Figure 2.4: Representative monodisperse microstructures, containing a random distribution of 30 particles.
The particles constitute a concentration of cp = 0.15 and are surrounded by (a) no interphase, (b) interphases
with a thickness of t = 0.1rp, and (c) interphases with a thickness of t = 0.2rp.

2.4.2 Microstructures with a polydisperse distribution of particles

For the polydisperse microstructures, polydispersity is represented through three families

of particle sizes [89]. The particle locations are determined using a similar constrained

adsorption algorithm to that used for the monodisperse microstructures [75, 86, 89]. The

procedure we use to generate the polydisperse microstructures is as follows:

� Families of particles with three different radii, r
(i)
p (i = 1, 2, 3), are selected with con-

centrations c
(i)
p ; surrounded by interphases with thickness t(i), such that:
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{
r(1)
p , r(2)

p , r(3)
p

} ∼= {rp, 7

9
rp,

4

9
rp

}
with rp = L

(
3c

(1)
p

4πNp

)1/3

, (2.27)

{
c(1)
p , c(2)

p , c(3)
p

}
= {0.5cp, 0.25cp, 0.25cp} with c(1)

p + c(2)
p + c(3)

p = cp, (2.28){
t(1)

r
(1)
p

,
t(2)

r
(2)
p

,
t(3)

r
(3)
p

}
=

{
t

r
,
t

r
,
t

r

}
with t = γr, (2.29)

where Np denotes the number of particles with the largest radius and thickest inter-

phase, and γ is a constant multiplier.

� The particles are added sequentially, from the family with the largest particle size to

that with the smallest particle size. To guarantee an adequate spatial discretization,

each placement of a particle must satisfy constraints analogous to those enforced for

the monodisperse microstructures (i.e constraints (2.25) and (2.26)).

In this investigation, we set Np = 10 such that the microstructure contains a total of 80 parti-

cles [75]. Figure 2.5 illustrates sample microstructures generated using the above procedure,

for a particle concentration of cp = 0.15.

(a) (b) (c)

Figure 2.5: Representative polydisperse microstructures, containing a random distribution of 80 particles
of three different radii. The particles constitute a concentration of cp = 0.15 and are surrounded by (a) no

interphase, (b) interphases with a thickness of t = 0.1r
(i)
p , and (c) interphases with a thickness of t = 0.2r

(i)
p .

2.4.3 Material models

The perfectly rigid behavior of the particles is numerically approximated by setting the

stiffness of the particles to be four orders of magnitude (10, 000×) greater than that of the
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elastomeric matrix [111]. Alternatively, a variational rigid-body constraint could have been

implemented, to capture the perfectly rigid behavior of the particles [112]; however, this

approach was not pursued here. The elastomeric matrix throughout this investigation is

assumed to be hyperelastic and incompressible, and two different models are considered to

describe its constitutive response. Initially, we consider an incompressible Gaussian elas-

tomer following the neo-Hookean model; which has the following stored-energy function:

Ψ (I1) =

{
µ
2

[I1 − 3] = µ
2

[λ2
1 + λ2

2 + λ2
3 − 3] if J = λ1λ2λ3 = 1

+∞ otherwise

}
, (2.30)

where I1 is the first principal invariant of the right Cauchy-Green deformation tensor, µ is

the initial shear modulus of the material, and λ1, λ2 and λ3 are the singular terms of the

deformation gradient, F.

For the non-Gaussian elastomer, the constitutive model proposed by Lopez-Pamies [113]

is implemented into a UHYPER subroutine of Abaqus [103]. The stored-energy function for

this model is expressed as:

Ψ (I1) =
M∑
r=1

31−αr

2αr
µr (Iαr

1 − 3αr) , (2.31)

where M is the number of terms included in the summation and µr and αr are experimentally

determined material parameters. This material model accounts for strain hardening, unlike

the neo-Hookean material model, but can revert back to a neo-Hookean-equivalent model in

the small-deformation regime.

2.4.4 Periodic boundary conditions

To capture the behavior of a truly periodic microstructure, the model considers both a

periodic geometry (see Figure 2.3) and periodic boundary conditions. The periodic boundary

conditions are expressed as:

uk (0, X2, X3)− uk (L,X2, X3) =
(
F k1 − δk1

)
L,

uk (X1, 0, X3)− uk (X1, L,X3) =
(
F k2 − δk2

)
L,

uk (X1, X2, 0)− uk (X1, X2, L) =
(
F k3 − δk3

)
L,

(2.32)

where X1, X2 and X3 correspond to a Cartesian frame of reference, where the origin is placed

at a corner of the cell and the axes are aligned with the edges of the cell. Moreover, k is

a constant (= 1, 2, 3), δki denotes the Kronecker delta, and F ki are the components of the
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prescribed average deformation gradient. To impose these periodic boundary conditions, the

surface mesh on opposite faces of the cell need to be mirrors of one another. The pairing of

the nodes on opposite faces is conducted automatically by Netgen [114], and incorporated

into the Abaqus analysis using multi-point constraints [103].

2.4.5 Assessment of microstructure isotropy

In all models containing a finite number of randomly placed particles, the isotropy of the

microstructure is only approximate [89]. There are multiple approaches for determining

whether the random placement of particles results in an approximately isotropic microstruc-

ture. Many authors take a geometric approach, computing the centroid or moment of inertia

of the particles [86, 111, 115]. Alternatively, one could take a constitutive approach, by ex-

amining the co-axiality between the average Cauchy stress tensor, T =̇ SFT, and the average

left Cauchy-Green strain tensor, B =̇ FFT, under three loading conditions: (i) uniaxial ten-

sion, (ii) uniaxial compression, and (iii) simple shear [75, 89]. Since the constitutive approach

is sufficient, we use this approach for all loading conditions, and particle and interphase con-

centrations we consider. Each microstructure is tested, and those which result in an angle

of co-axiality greater than 0.05 radians are discarded [75, 89]. Representative values of the

maximum angle of co-axiality for the microstructures used in this study are presented in

Table 2.1.

Interphase
Thickness

Interphase
Stiffness

θX
(rad)

θY
(rad)

θZ
(rad)

0.05r
(i)
p

µi = 2µm 0.00350 0.00753 0.00708

µi = 5µm 0.00388 0.00849 0.00779

µi =∞ 0.00428 0.00885 0.00886

0.10r
(i)
p

µi = 2µm 0.00527 0.00747 0.00637

µi = 5µm 0.00615 0.00879 0.00770

µi =∞ 0.00786 0.01013 0.00922

0.20r
(i)
p

µi = 2µm 0.00421 0.00934 0.01131

µi = 5µm 0.00645 0.01031 0.01721

µi =∞ 0.00789 0.01426 0.02344

Table 2.1: Maximum angle of co-axiality for the assessment of microstructure isotropy. θI corresponds to
the angle of co-axiality computed when the microstructure is extended in uniaxial tension in the I direction.
Results are listed for a particle concentration of c = 0.15.
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Each model is discretized with quadratic, hybrid tetrahedral elements (C3D10H elements

in Abaqus), using the open-source mesh generator Netgen [114]. A mesh refinement study

was conducted using randomly generated meshes with approximately 60,000, 100,000 and

140,000 elements, as illustrated in Figure 2.6. Meshes with approximately 100,000 elements

displayed a sufficient level of accuracy, and is the target mesh size for the results presented

in the remainder of the chapter.

(a) (b) (c)

Y

X

Z

Figure 2.6: Three representative meshes in the undeformed configuration for a distribution of monodisperse

particles with a particle concentration of cp = 0.15, and an interphase thickness of t = 0.2r
(i)
p : (a) a coarse

mesh with approximately 60,000 elements, (b) a fine mesh with approximately 100,000 elements, and (c) a
very fine mesh with approximately 140,000 elements.

2.5 Small deformation results

In this section, we investigate the influence of; the concentration of particles, the nature of the

dispersion (monodisperse or polydisperse), and the interphase thickness and stiffness, on the

effective modulus of the composite material. We compare the results from our computational

framework with both theoretical and experimental results.

2.5.1 Comparison with theory

In the limit of small deformations, the effective stored-energy function (2.22) reduces asymp-

totically to [75]:

Ψ
(
I1, I2, cp, ci

)
= µtrε2, (2.33)
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where µ is the effective shear modulus of the composite, defined implicitly by:

F1 {µ, µm} = 0, (2.34)

and F1 is defined by Equation 2.21. Thus, the response of the composite is completely

characterized by the effective shear modulus µ. Figure 2.7 illustrates both numerical and

analytical results for the normalized effective shear modulus, µ/µm, as a function of the

concentration of particles, cp, for various microstructural configurations. As is well known,

the inclusion of stiff particles to a soft elastomer acts to greatly increase the effective overall

stiffness of the composite. Notably though, Figure 2.7 demonstrates that the presence of

interphases has a comparable influence on the effective stiffness as does the presence of the

particles alone.

In Figures 2.7(a) and 2.7(b), we illustrate the influence of the thickness of the interphase

on the effective composite stiffness. For thinner interphases (t/r = 0.05 and t/r = 0.1),

both monodisperse and polydisperse microstructures closely approximate the analytical so-

lution. However, when the interphase thickness increases to t/r = 0.2, the monodisperse

microstructures deviate from the analytical solution at concentrations greater than cp = 0.15.

Alternatively, for all values of interphase thickness considered in this investigation, the poly-

disperse microstructures demonstrate good correlation with the analytical solution. Thus,

even though the theoretical formulation considers an infinitely polydisperse microstructure,

our results demonstrate that approximating the polydispersity of the microstructure with

three families of particle sizes provides sufficiently accurate results.

In Figures 2.7(c) and 2.7(d), we fix the interphase thickness at t/r = 0.1, to illustrate

the influence of the interphase modulus on the effective composite stiffness. The first thing

to note is that the effective composite stiffness is less sensitive to a change in interphase

stiffness than it is for a change in interphase thickness. Additionally, both monodisperse

and polydisperse microstructures demonstrate good agreement with the analytical solution,

even at particle concentrations up to cp = 0.25. We also note that the influence of the

stiffness of the interphase culminates rapidly. For instance, the response of composites with

an interphase just 5 times stiffer than the matrix (µi/µm = 5) is similar to that when the

interphase is rigid (µi →∞).

2.5.2 Comparison with experiments

There have been numerous experimental investigations into the effective modulus of particle

reinforced composites in the small-deformation regime. In the early 1940’s, Smallwood [116]
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Figure 2.7: Results of the investigation on the effective composite stiffness of particle reinforced elastomers,
considering the influence of interphases. Numerical results are compared with those derived theoretically.
Results are shown for: (a) a monodisperse distribution with a constant interphase stiffness, (b) a polydisperse
distribution with a constant interphase stiffness, (c) a monodisperse distribution with a constant interphase
thickness, and (d) a polydisperse distribution with a constant interphase thickness.

conducted an in-depth experimental and theoretical investigation into the influence of differ-

ent fillers on the effective modulus of such composites. His study demonstrated the variation

in the macroscopic response of the composite, based on the variable characteristics of the

fillers. Some fillers were shown to alter the elastomeric matrix surrounding the inclusions

while others showed preference to flocculate. Smallwood concluded that the effective modu-

lus of the composite depends on the type of filler used, the concentration of the filler, and the
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interaction at the filler-elastomer interface. More recently, Omnès et al. [117] investigated

the influence of different types of carbon-black particles (N330 and N650) on the response

of natural rubber under small strains. Similar to Smallwood’s findings, they demonstrate

that the response of the composite varies significantly, depending on the type of filler used.

Additionally, even when using the same concentration of the same type of filler, the result-

ing effective modulus of the composite showed some variation. Based on their experimental

findings, they hypothesized that the variation they observed was a result of an interphasial

region at the particle-elastomer interface. The results of these studies, along with multiple

others, are summarized in Figure 2.8.
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Figure 2.8: Experimental comparison of effective moduli. Numerical results are denoted by solid triangles,
and, for each particle concentration, depict all the cases of interphase thickness and stiffness we considered.
The gray overlay defines the bounds of the numerically obtained results. Experimental results are extracted
from the literature ([85, 116, 117, 118, 119]).

We overlay the numerically computed effective moduli onto the experimental data in

Figure 2.8. The comparison demonstrates that a wide range of experimentally obtained

effective moduli, for similar concentrations of particles, can be captured by the inclusion

of physically realistic interphases. If we were to consider a wider range of values for the

interphase thickness, we would capture a wider range of experimental data, however, this

becomes numerically challenging at large particle concentrations. This comparison suggests

that the inclusion of an interphasial region provides an explanation for the wide range of

behavior observed experimentally, and is a crucial component that should not be omitted

when modeling particle reinforced elastomers.
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2.6 Finite deformation results

In this section, we investigate the influence of the interphase thickness and stiffness on

the macroscopic constitutive response of particle reinforced elastomers as they undergo fi-

nite strains. For the sake of brevity, we do not present results for all the microstructural

configurations we considered. Instead, based on our findings in the small deformation in-

vestigation, we focus on monodisperse microstructures and fix the particle concentration at

cp = 0.15. While we do not illustrate results for other microstructural configurations, we did

an extensive parametric study on all the parameters we consider, with both monodisperse

and polydisperse microstructures, and the results discussed below represent typical behavior

observed in our investigation. The computations are carried out in the commercial code

ABAQUS by following an incremental loading path. We utilize the default dual convergence

criterion in abaqus [103], namely, the permissible ratio of the largest solution correction

to the largest corresponding incremental solution is set at |∆u| / |umax| = 10−2, while the

permissible ratio of the largest residual to the corresponding average force norm is set at

Rtol = 5×10−3. Whenever one of these criteria is not satisfied the computations are stopped.

This typically happens whenever the elements in between two adjacent interphases become

exceedingly distorted because of the locally large deformations involved.

2.6.1 Results for Gaussian elastomers: Comparison with theory

We first consider the case of a Gaussian elastomeric matrix, with a neo-Hookean stored-

energy function (2.30). Typical results from our investigation are illustrated in Figure 2.9,

for: (a) uniaxial compression, (b) uniaxial tension, (c) simple shear, and (d) pure shear

loading conditions. The theoretically derived stress-deformation relations for these loading

conditions are expressed as:

� Uniaxial loading
(
λ1 = λ , λ2 = λ3 = λ−1/2 with τ 2 = τ 3 = 0):

Sun = λ−1τ 1 =
dΨ

dλ
= µ

[
λ− λ−2

]
, (2.35)

� Simple shear
(
λ1 = (γ +

√
γ2 + 4)/2, λ2 = λ−1

1 , λ3 = 1
)
:

Sss =
dΨ

dγ
= µγ, (2.36)
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� Pure shear
(
λ1 = λ , λ2 = λ−1, λ3 = 1 with τ 2 = 0):

Sps = λ−1τ 1 =
dΨ

dλ
= µ

[
λ− λ−3

]
, (2.37)

where Sun, Sss, and Sps are the first Piola-Kirchoff stress measures; and τ 2, τ 2, and τ 2 are

the macroscopic principal Cauchy stress measures. As in the case of small deformations,

the effective shear modulus, µ, is implicitly defined by Equation 2.34. We consider three

realizations for the interphase: (i) no interphase, t/r = 0; (ii) an interphase with stiffness

µi/µm = 5 and thickness t/r = 0.1; and (iii) a rigid interphase, µi = ∞, with thickness

t/r = 0.2. These interphase configurations are selected to demonstrate the wide variation

of behavior which can be attributed to the presence of an interphase of reasonable thickness

and stiffness.

From the results in Figure 2.9, it is clear that the computational framework and theoretical

framework, while developed independently, demonstrate good agreement under all loading

conditions. The overall large deformation response of the Gaussian elastomer is significantly

stiffened by the inclusion of rigid particles. Additionally, the results demonstrate that the

presence of interphases has a comparable influence on the stiffness of the elastomer as does

the presence of the particles alone. The increase in stiffness generated by the presence

of interphases is more sensitive to the interphase thickness than it is to the interphase

modulus; as was the case in the small deformation investigation. We emphasize that, while

these conclusions are drawn based on the results illustrated in Figure 2.9, they are also

representative of conclusions drawn for other microstructural configurations and constituent

properties under the same loading conditions.

2.6.2 Results for non-Gaussian elastomers: Comparison with theory

Here, we consider the case of a non-Gaussian elastomeric matrix, described by the stored-

energy function in Equation 2.31, with µ1 = 0.032MPa, µ2 = 0.3MPa, α1 = 3.837, and

α2 = 0.559. The values of the parameters in the stored-energy function are selected to

correspond to a typical silicone rubber [89]. The corresponding initial shear modulus for

this material is µm = µ1 + µ2 = 0.332MPa. For convenience, we write down the explicit

form of the effective stored-energy function (2.22), as:
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Figure 2.9: Macroscopic constitutive response of a particle reinforced Gaussian elastomer, considering the
influence of interphases. Typical results are illustrated for loading under: (a) uniaxial compression, (b)
uniaxial tension, (c) simple shear, and (d) pure shear. The particle concentration is fixed at cp = 0.15,
and the interphase thickness and stiffness is varied. The solid lines corresponds to the theoretical solution
considering an infinitely polydisperse microstructure, and the dashed lines correspond to the numerical
results considering a monodisperse microstructure.

Ψ
(
I1, I2, cp, ci

)
= (1− cp − ci)

[
31−α1

2α1

µ1 (Iα1
1 − 3α1) +

31−α2

2α2

µ2 (Iα2
1 − 3α2)

]
+
µ0

2

[
I1 − 3

]
− (1− cp − ci)

µ0

2
[I1 − 3] , (2.38)
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where I1 is given by Equation 2.23 and the variables µ0 and µ0 are implicitly defined by the

following set of coupled nonlinear equations:

F1 {µ0, µ0} = 0, and F2 {µ0, µ0} =
31−α1

2
µ1Iα1−1

1 +
31−α2

2
µ2Iα2−1

1 − µ0

2
= 0, (2.39)

where F1 is defined by Equation 2.21.

Typical results from our investigation are illustrated in Figure 2.10, for: (a) uniaxial com-

pression, (b) uniaxial tension, (c) simple shear, and (d) pure shear loading conditions. With

this choice of stored-energy function, the theoretically derived stress-deformation relations

for these loading conditions are expressed as:

� Uniaxial loading
(
λ1 = λ , λ2 = λ3 = λ−1/2 with τ 2 = τ 3 = 0):

Sun = λ−1τ 1 =
dΨ

dλ
= µ0

[
λ− λ−2

]
. (2.40)

� Simple shear
(
λ1 = (γ +

√
γ2 + 4)/2, λ2 = λ−1

1 , λ3 = 1
)
:

Sss =
dΨ

dγ
= µ0γ. (2.41)

� Pure shear
(
λ1 = λ , λ2 = λ−1, λ3 = 1 with τ 2 = 0):

Sps = λ−1τ 1 =
dΨ

dλ
= µ0

[
λ− λ−3

]
. (2.42)

Moreover, we consider the same three realizations for the interphase as in the investigation

with a Gaussian matrix.

The results in Figure 2.10 demonstrate that the stiffness of the composite is significantly

influenced by not only the addition of particles, but also the presence of interphases. At

small to moderate deformations, there is good agreement between the numerical and ana-

lytical results under all loading conditions. At larger deformations, the numerical results

demonstrate a stiffer response than the analytical solution. This behavior is expected, and

could be explained by a number of reasons: (i) the finite element shape functions present

a stiffer space of solutions than in reality; (ii) the theoretical solution assumes an infinitely

polydisperse microstructure, thus it may approximate a lower bound [75]; (iii) at large

deformations the particle-to-particle interactions in the monodisperse microstructure tend
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to stiffen the composite, and (iv) at large deformations the particles become preferentially

oriented in the direction of loading, deviating from the isotropy that the theoretical solu-

tion assumes. Regardless, the trends observed for both the numerical and analytical results

are consistent (i.e. the increase in stiffness due to the interphases is more sensitive to the

interphase thickness than it is to the interphase modulus).
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Figure 2.10: Macroscopic constitutive response of a particle reinforced non-Gaussian elastomer, considering
the influence of interphases. Typical results are illustrated for loading under: (a) uniaxial compression, (b)
uniaxial tension, (c) simple shear, and (d) pure shear. The particle concentration is fixed at cp = 0.15,
and the interphase thickness and stiffness is varied. The solid lines corresponds to the theoretical solution
considering an infinitely polydisperse microstructure, and the dashed lines correspond to the numerical
results considering a monodisperse microstructure.
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2.6.3 Comparison with experiments

In this section, we verify that the proposed computational framework is capable of capturing

representative experimental results from the literature. There are few experimental investi-

gations which report all the necessary microscale and macroscale properties of the composite

material, thus we make reasonable assumptions, and discuss them, where necessary. The

experimental results selected for this comparison were reported in two separate investiga-

tions. The first investigation is that reported by Jha [120] into the influence of carbon black

(N990) particles on the large deformation response of natural rubber. The carbon black

particles are roughly spherical in shape and are well-dispersed in the specimen, with little

agglomeration [120]. The average particle size is 0.285µm, and the average agglomeration

size is 0.483µm. The filler concentration is set as cp = 0.052 and the author reports the

constitutive response of the unfilled rubber. Based on fitting the response of the rubber, we

find an appropriate response of the rubber matrix, at least in uniaxial tension, follows the

stored-energy function:

Ψ (I1) =
31−α1

2α1

µ1 [Iα1
1 − 3α1 ] +

31−α2

2α2

µ2 [Iα2
1 − 3α2 ] , (2.43)

with material parameters µ1 = 0.05MPa, µ2 = 0.335MPa, α1 = 2.0, and α2 = 0.35.

Given this partial information, we make assumptions on the presence and properties of

interphases. We assume that the interphases are 10 times stiffer than the matrix, µi =

10× µm = 10× (µ1 + µ2) = 3.85MPa. Since the authors do not report the thickness of the

interphases, we select them here by fitting the numerical results to the experimental results.

As illustrated in Figure 2.11, an interphase-thickness-to-particle-radius ratio of t/r = 0.4

leads to good agreement with the experimental results.

The second investigation is that reported by Mullins and Tobin [118], wherein they con-

sider filled elastomers with particle concentrations of cp = 0.138 and cp = 0.2085. Their

results correspond to a well-dispersed distribution of roughly spherical aggregates of carbon

black with an average particle radius of about 0.2µm. The authors report, through the use

of swelling experiments, that the elastic properties of the rubber matrix were essentially

unmodified by the presence of the particles. However, they provide no comments on the

amount or type of bound rubber present in the composite. Additionally, the authors report

the response of the unfilled elastomer. By fitting the response of the unfilled elastomer

in uniaxial tension, we determine that an appropriate response for the matrix can be cap-

tured using the stored-energy in Expression (2.43) with material parameters µ1 = 0.04MPa,

µ2 = 0.4MPa, α1 = 2.0, and α2 = 0.8.

Since we have demonstrated that the monodisperse microstructures are suitable only up to
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Figure 2.11: Comparison of the proposed computational framework with experimental data.

a particle concentration cp < 0.2, for the case with a particle concentration of cp = 0.2085, we

assume a polydisperse distribution of particles. Through a series of numerical simulations,

We assume that, for a particle concentration of cp = 0.138, no interphases form around the

particles, and for a particle concentration of cp = 0.2085, the interphases are 2 times stiffer

than the matrix, µi = 2× µm = 2× (µ1 + µ2) = 0.88MPa. Since the authors do not report

the thickness of the interphases, we select them here by fitting the numerical results to the

experimental results. As illustrated in Figure 2.11, an interphase-thickness-to-particle-radius

ratio of t/r = 0.2 leads to good agreement with the experimental results.

In summary, the above comparisons with experiments demonstrate that the proposed com-

putational framework is able to provide an explanation for the varied macroscopic response

of filled elastomers at finite deformations. Additionally, it confirms the significant influence

of not only particle inclusions, but also interphases on the constitutive response. Thus, it is

not enough to consider only the influence of the particles in the design of such composites,

but one must also consider the presence of interphases.

2.7 Concluding remarks

In this chapter, we explore the influence of perfectly bonded interphases on the macro-

scopic constitutive response of particle reinforced elastomers. We provide a brief summary

of the historical background on the topic, including a discussion on the various theoretical

approaches to this problem. Then, we outline a recently developed theoretical framework,

developed by Goudarzi et al. [75], which is capable of capturing the response of these com-
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posite materials in both the small deformation and large deformation regimes. The main

contribution of this chapter, however, is the computational framework we propose to inves-

tigate these composites. We challenge the computational framework with the theoretically

derived solution and demonstrate good agreement in all loading conditions we consider.

In the small deformation regime, we investigate the influence of interphases on the effective

shear modulus of particle reinforced elastomers. Even though the theoretical solution as-

sumes an infinitely polydisperse microstructure; the computational framework, using a finite

number of particles, yields results in good agreement with those derived theoretically. The

only outlying solutions correspond to those for monodisperse microstructures, with thick

interphases, at high particle concentrations. Additionally, we compare our numerical results

with experiments, and demonstrate that a wide range of experimentally obtained effective

moduli can be captured by the inclusion of physically realistic interphases.

In the large deformation regime, we consider both Gaussian and non-Gaussian elastomeric

matrices. For the case of a Gaussian elastomer, the difference between the numerical and

analytical solutions is negligible. However, for the case of a non-Gaussian elastomer, good

agreement is only demonstrated under moderate deformations. Under large deformations,

the numerical results demonstrate a stiffer global response than that suggested by the the-

oretical solution.

We also note that, in addition to the hydrodynamic and interphasial reinforcement effects,

occluded rubber may also provide additional reinforcement to the composite. Occluded

rubber constitutes regions of elastomer which may be entrapped by the agglomeration of the

particles. Because of its shielding from the rest of the elastomer, its constitutive behavior

can be approximated as rigid. In this case, the presence of occluded rubber can be accounted

for by the proposed computational framework by simply reinterpreting the concentration of

particles as the combined concentration of particles and occluded rubber.

The computational framework proposed herein constitutes the first step in our objective

of developing a more general computational framework capable of capturing the finite defor-

mation interfacial debonding behavior of particle reinforced elastomers. In the next chapter

we develop the tools necessary to account for interfacial debonding. Then, in Chapter 4, we

combine the work in this chapter and the next, to investigate the combined influence of both

interphases and interfacial debonding on the macroscopic constitutive response of particle

reinforced elastomers.
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Chapter 3

Fracture in Three-Dimensions Using the Intrinsic
Cohesive Element Approach: Formulation and
Implementation

This chapter provides an educational look at the implementation of cohesive elements into

a finite element program, in accordance with their use in Abaqus (or a similar commercial

finite element package with support for user-supplied subroutines). The intrinsic cohesive

formulation is outlined, due to its compatibility with the implicit finite element framework

present in Abaqus. The Park-Paulino-Roesler, potential-based traction-separation relation

is chosen to describe the element’s constitutive model. Specific components of the elements

are highlighted; which potential future users may wish to modify, to meet specific research

needs. Numerical examples are presented which verify the implementation and display the

features of the elements. A sample element source code is provided in Appendix B, and

electronic source files for the elements are supplied through the website of Professor Glaucio

H. Paulino.

3.1 Introduction

The use of cohesive elements within the framework of the finite element method has proven

to be a powerful technique for modeling material failure. The concept of the cohesive zone

model was presented over half a century ago by Dugdale [2] and Barenblatt [1]. They pro-

posed modeling the inelastic zone in front of a macrocrack with a traction-separation relation.

In this method, as the crack separates, a softening traction is applied to the surrounding

bulk material. There have been a variety of traction-separation relations proposed in the

literature, including linear, bilinear, trilinear, trapezoidal, polynomial, and exponential soft-

ening models. A summary of many of the prevalent traction-separation relations may be

found in the review paper by Park and Paulino [41].

A distinct feature of the cohesive element method is that the material model chosen for

the bulk elements is independent of that chosen for the cohesive elements. For example, the

bulk material may be linear elastic, viscoelastic, hyperelastic, etc. In this chapter, we focus

on examples which use elastic material models under small deformations. In Chapter 4, we
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will present an application where we use hyperelastic materials undergoing large deforma-

tions. Since the two constitutive models (bulk and cohesive) are independent, the modeling

of functionally graded materials will require modifications to both the bulk and cohesive

formulations. A means for modifying cohesive element formulations to permit the modeling

of graded properties will be presented in Section 3.5.

Currently, there are only a few available (built-in) traction-separation relations for cohesive

elements in the commercial software Abaqus. The available traction-separation relations

typically consist of a linear hardening region, and either a linear or exponential softening

region [103]. The traction-separation relation used in this work is the unified potential-based

model presented by Park et al. [51]. This model has been implemented in the Warp3D

software [121], and in the Finite Element All-Wheel Drive (FEAWD) software [122], but

its use in Abaqus has been limited to two-dimensions [123]. The intrinsic model will be

presented here, the extension of the model to an extrinsic formulation may be found in

Chapter 5. This work is an extension of a previous publication; in which the authors present

the two-dimensional user-defined element (UEL) for use in Abaqus [123]. The requests,

from users of that UEL, for the corresponding extension to three-dimensions, has been the

motivation behind the present work.

This chapter is organized as follows. Section 3.2 discusses related work and potential

applications of the cohesive element method. Section 3.3 outlines the formulation of the

three-dimensional UEL. The intrinsic formulation of the Park-Paulino-Roesler (PPR) cohe-

sive model is presented in Section 3.4. It is understood that research, by its very nature, is

diverse and ever-changing. To aid in the removal of the black-box nature of many codes, and

to make this work more adaptable to potential future users, Section 3.5 describes areas of

the code which may be of interest to the readers, to modify and incorporate into their own

work. Section 3.6 presents some relevant examples which make use of the three-dimensional

elements. Finally, some concluding remarks are provided in Section 3.7, and a representa-

tive implementation (interface cohesive elements between linear tetrahedral bulk elements)

is included in Appendix B.

3.2 Related work using cohesive elements for fracture

Since their conception, cohesive zone elements have been used to describe fracture and

fragmentation in a variety of complex problems. Cohesive elements have been extensively

used to model fracture in concrete and asphalt. In 1976, Hillerborg et al. [42] used cohesive

elements with a linear softening relation to study the fracture of plain concrete beams.
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Following the work of Hillerborg, Petersson [43] used a bilinear softening relation to simulate

the fracture of concrete and other quasi-brittle materials. More recently, Song et al. [124,

125, 126, 127] tailored both bilinear softening and exponential softening relations to capture

crack propagation in viscoelastic asphalt beams. Spring [128] employed a graded bilinear

softening relation to investigate the failure of functionally graded concrete slabs. Finally,

Park et al. [44] developed a trilinear softening relation to model the fracture of functionally

graded, fiber reinforced concrete beams. By accounting for the added fracture energy due to

the inclusion of fibers, they were able to obtain an excellent correlation between numerical

and experimental results.

There has also been a substantial amount of work employing cohesive elements to simulate

impact damage and fragmentation. For example, Camacho and Ortiz [55] employed a linear

softening relation to model pervasive fracture due to a high velocity impact event. They

studied the problem of a steel pellet impacting a ceramic plate (an important problem in

armor and turbine blade design), and captured results consistent with experiments. Espinosa

et al. [129] combined cohesive elements with a continuum damage model to capture the

fragmentation of ceramic rods under dynamic loading. Both Pandolfi et al. [130] and Zhou

et al. [131] used cohesive elements to model the fragmentation of radially loaded, expanding

rings. More recently, Mota et al. [132] studied the fragmentation of a human cranium due

to a firearm injury. They used fully three-dimensional finite element simulations, to capture

behavior consistent with that observed experimentally. Finally, Caballero and Molinari [133]

used the same cohesive model as Camacho and Ortiz to study the fracture and fragmentation

of kidney stones under direct impact. Their findings lead to the design of a new surgical

tool which increases the efficiency of kidney stone dissipation.

In general, the numerical simulation of dynamic crack propagation has been a popu-

lar application for cohesive elements. Ortiz and Pandolfi [56] used effective-displacement,

three-dimensional cohesive elements to model dynamic crack propagation. They considered

quadratic cohesive elements, with an irreversible cohesive relation, and were able to cap-

ture an accurate crack trajectory in a drop-weight dynamic fracture test. Ruiz et al. [134]

investigated the failure of a three-point-bend concrete beam under dynamic loading. They

simulated fracture using three-dimensional cohesive elements with a linear softening relation.

More recently, Zhang and Paulino [135, 136] were able to capture microbranching behav-

ior during crack propagation in both homogeneous and functionally graded materials. In

fracture simulations, particularly dynamic fracture simulations, it is important to take into

consideration the effect of finite displacements. When cohesive elements are inserted into a

model, they initially have zero thickness; however, once fracture progresses, they separate

and rotate. By not taking into consideration the rotation of fracture surfaces, the mechanics
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of the problem may not be accurately captured.

3.3 Cohesive element formulation

In this study, we implement three different cohesive elements. The three elements allow for

compatibility with linear brick, linear tetrahedral, and quadratic tetrahedral bulk elements1,

as illustrated in Figure 3.1. As discussed previously, the constitutive relation for the bulk

elements is selected independently of that for the cohesive elements.

(a) (b) (c)

Figure 3.1: Cohesive elements compatible with (a) linear brick, (b) linear tetrahedral and (c) quadratic
tetrahedral bulk elements. Cohesive elements, highlighted in red, are initially of zero thickness.

Intrinsic cohesive elements are inserted into a finite element mesh prior to the beginning

of the simulation. Initially, intrinsic cohesive elements have zero thickness and, upon sepa-

ration, impart a traction to the adjacent bulk elements. There are two common approaches

to inserting intrinsic cohesive elements into a mesh. One may either insert cohesive elements

along a pre-selected fracture path, restricting the crack to propagate where the user has

specified; or one may insert cohesive elements between all bulk elements in a region of a

mesh, allowing fracture to propagate freely within that region. When cohesive elements are

inserted throughout a region of a mesh, the elements may introduce artificial softening into

the model, effectively distorting the constitutive properties of the bulk elements [52, 54]. In

addition, if cohesive elements are inserted between all bulk elements in a region of the mesh,

the solution becomes highly non-convergent, and additional numerical measures need to be

included in the solution scheme to account for these instabilities [73, 137]. An alternative

method for allowing fracture to propagate freely would be to use adaptively inserted extrinsic

cohesive elements [56, 57]. A discussion on the use of adaptively inserted extrinsic cohesive

elements will be left to Chapters 5 and 6.

1At the time of this work, Abaqus does not have a built-in cohesive element that is compatible with
quadratic elements.

45



Prior to the insertion of cohesive elements, the standard finite element formulation may

be described analytically, using the principle of virtual work [5]:

Wint ≡
∫

Ω

δE : SdΩ =

∫
Γ

δu ·TextdΓ ≡ Wext, (3.1)

where E is the Green strain tensor in the domain Ω, and δu is the virtual displacement on

the boundary Γ. Moreover, Text is the external traction, and S is the 2nd Piola-Kirchhoff

stress tensor. When cohesive elements are included in the formulation, they contribute an

additional term to the internal work:∫
Ω

δE : SdΩ +

∫
Γc

δ∆ ·TcdΓc =

∫
Γ

δu ·TextdΓ, (3.2)

where Tc is the cohesive traction, acting on fracture surface Γc, corresponding to the virtual

separation δ∆. Using the Galerkin method [5], we discretize the contribution from the

cohesive elements:

[K]el =

∫ 1

0

∫ 1

0

BTRTDlocalRBJdξdη, (3.3)

[F]el =

∫ 1

0

∫ 1

0

BTRTtlocalJdξdη, (3.4)

where (ξ,η) denote intrinsic coordinates and J denotes the Jacobian. To incorporate a user-

defined cohesive element into the existing Abaqus framework, we need to provide the element

stiffness matrix ([K]el) and force vector ([F]el) within a user supplied subroutine (UEL). The

global displacement-separation matrix, B, is a 3 × 3N matrix (where N is the number of

shape functions) that computes the relative opening of the crack at any point in the cohesive

element. The rotational matrix, R, transforms from global to local coordinates. The local

constitutive matrix, Dlocal, and the local force vector, tlocal, are functions of the particular

choice of cohesive model, and will be outlined for the Park-Paulino-Roesler cohesive model

below.

The B matrix is computed from the shape functions Ni (i = 1, 2, . . . , N), and the identity

matrix I:

B = [ N1I3×3 | N2I3×3 | · · · | NNI3×3 ] [ I3N×3N | − I3N×3N ] . (3.5)

The rotational matrix, R, is a function of the normal vector (n) and two perpendicular

tangential vectors (t2, t3); which form the basis of the midplane of the cohesive element, as

illustrated in Figure 3.2:

46



R =


nT

tT
2

tT
3

 . (3.6)
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Figure 3.2: A cohesive element in (a) its initial configuration with zero thickness and (b) its deformed
configuration, depicting the normal and tangential vectors on the midplane of the cohesive element.

The local constitutive matrix, for any coupled cohesive model, is defined as:

Dlocal =


Dnn Dnt∆2/∆t Dnt∆3/∆t

Dtn∆2/∆t Dtt∆
2
2/∆

2
t + Tt∆

2
3∆3

t Dtt∆2∆3/∆
2
t − Tt∆2∆3/∆

3
t

Dtn∆3/∆t Dtt∆2∆3/∆
2
t − Tt∆2∆3/∆

3
t Dtt∆

2
3/∆

2
t + Tt∆

2
2/∆

3
t

 , (3.7)

where Dnn, Dnt, Dtn, and Dtt are particular to the model. The variables ∆2 and ∆3 corre-

spond to the crack opening widths in the plane perpendicular to the normal direction (∆1),

as illustrated in Figure 3.3. The local force vector, tlocal, for any coupled cohesive model is:

tlocal =


Tn

Tt∆2/∆t

Tt∆3/∆t

 , (3.8)

where we have considered the tangential opening directions to be coupled through the rela-

tion ∆t =
√

∆2
2 + ∆2

3, on the fracture plane. The traction components (Tn and Tt) are also

particular to the choice of cohesive model, and will be defined for the the PPR model in

Section 3.4.
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Figure 3.3: Definition of the crack opening directions in a typical element configuration.

3.4 Constitutive relations

The constitutive relation for the cohesive elements is chosen independently of that for the

bulk elements. There have been many cohesive relations proposed in the literature (see [41]

for a recent review of some of the prevalent relations); most of which suffer from deficiencies

when trying to satisfy fracture boundary conditions, or which require non-physical input

parameters. The PPR cohesive model is an adaptable cohesive model that was designed

with the goal of overcoming the deficiencies suffered by previous models. The PPR model

is capable of capturing both intrinsic and extrinsic fracture behavior [51], but the present

implementation in Abaqus highlights the use of the intrinsic model. The extrinsic model

will be discussed in Chapters 5 and 6. This section outlines the formulation of the intrinsic

PPR cohesive model, as well as the choice of unloading/reloading and contact relations used

in this work.

3.4.1 Intrinsic PPR potential-based cohesive model

The intrinsic PPR cohesive model is potential-based. Such models have an advantage over

non-potential-based models, in that their traction-separation relations are determined by

taking the derivative of the potential with respect to the normal and tangential crack opening

widths. Similarly, since the second derivative of the potential yields the tangent matrix, it

is guaranteed to be symmetric. The intrinsic PPR potential function is defined as:

Ψ(∆n,∆t) = min(φn, φt) +

[
Γn

(
1− ∆n

δn

)α(
m

α
+

∆n

δn

)m
+ 〈φn − φt〉

]
×

[
Γt

(
1− |∆t|

δt

)β (
n

β
+
|∆t|
δt

)n
+ 〈φt − φn〉

]
, (3.9)
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where ∆n and ∆t are the normal and tangential crack opening widths, respectively. There

are eight user inputs to the PPR model, a feature that allows the model to capture a

variety of cohesive relations. The eight inputs are the normal and tangential: fracture

energies (φn, φt), cohesive strengths (σmax, τmax), shape parameters (α, β), and initial slope

indicators (λn, λt), respectively. All parameters have a physical interpretation. The shape

parameters control the softening shape of the traction-separation relation. If α (β) is set

equal to 2, the softening relation is almost linear, whereas if α (β) is less than or greater than

2, the relation is concave or convex, respectively. The initial slope indicators correspond to

the ratio of the peak crack opening width to the final crack opening width. Thus, the smaller

the initial slope indicator, the greater the initial slope in the traction-separation relation.

The potential function is defined over a domain of dependence; which is bounded by the

normal final crack opening width (δn) and the tangential final crack opening width (δt):

δn =
φn
σmax

αλn (1− λn)α−1
( α
m

+ 1
)( α

m
λn + 1

)m−1

, (3.10)

δt =
φt
τmax

βλt (1− λt)β−1

(
β

n
+ 1

)(
β

n
λt + 1

)n−1

. (3.11)

The corresponding traction-separation relations, Tn and Tt, determined by taking the

derivative of the above potential with respect to ∆n and ∆t, respectively, are defined as:

Tn(∆n,∆t) =
∂Ψ

∂∆n

=
Γn
δn

[
m

(
1− ∆n

δn

)α(
m

α
+

∆n

δn

)m−1

− α
(

1− ∆n

δn

)α−1

(
m

α
+

∆n

δn

)m] [
Γt

(
1− |∆t|

δt

)β (
n

β
+
|∆t|
δt

)n
+ 〈φt − φn〉

]
, (3.12)

Tt(∆n,∆t) =
∂Ψ

∂∆t

=
Γt
δt

[
n

(
1− |∆t|

δt

)β (
n

β
+
|∆t|
δt

)n−1

− β
(

1− |∆t|
δt

)β−1

(
n

β
+
|∆t|
δt

)n] [
Γn

(
1− ∆n

δn

)α(
m

α
+

∆n

δn

)m
+ 〈φn − φt〉

]
∆t

|∆t|
. (3.13)

These tractions are used to compute the local force vector, as per Equation 3.8. Represen-

tative traction-separation relations are plotted in Figure 3.4.

The energy constants, Γn and Γt, are related to the normal and tangential fracture ener-

gies. When the normal and tangential fracture energies are different (φn 6= φt), the energy

constants become:
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Figure 3.4: Traction-separation relations for (a) normal opening (φn = 100N/m, σmax = 40MPa, α = 5.0,
and λn = 0.1), and (b) tangential opening (φt = 200N/m, τmax = 30MPa, β = 2.0, and λt = 0.2).

Γn = (−φn)〈φn−φt〉/(φn−φt)
( α
m

)m
and Γt = (−φt)〈φt−φn〉/(φt−φn)

(
β

n

)n
. (3.14)

When the normal and tangential fracture energies are equal (φn = φt), the energy constants

simplify to:

Γn = −φn
( α
m

)m
and Γt =

(
β

n

)n
, (3.15)

where the non-dimensional exponents, m and n, are evaluated from the shape parameters

(α, β) and the initial slope indicators (λn, λt):

m =
α (α− 1)λ2

n

(1− αλ2
n)

, n =
β (β − 1)λ2

t

(1− βλ2
t )

. (3.16)

The traction-separation relations are also valid in a domain of dependence. The domain for

the normal traction is bounded by the final crack opening width in the normal direction

(δn) and the conjugate final crack opening width in the tangential direction (±δt). Simi-

larly, the domain for the tangential traction is bounded by the final crack opening width

in the tangential direction (±δt) and the conjugate final crack opening width in the normal

direction (δn). The conjugate final crack opening width in the tangential direction (∆t = δt)

corresponds to the solution of the following nonlinear equation:

ft (∆t) = Γt

(
1− ∆t

δt

)β (
n

β
+

∆t

δt

)n
+ 〈φt − φn〉 = 0; (3.17)

which is unique between 0 and δt. Likewise, the conjugate final crack opening width in the
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normal direction (∆n = δn) is the solution of the following nonlinear equation:

fn (∆n) = Γn

(
1− ∆n

δn

)α(
m

α
+

∆n

δn

)m
+ 〈φn − φt〉 = 0; (3.18)

which is unique between 0 and δn. The resulting domains of dependence are illustrated in

Figure 3.5.
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Figure 3.5: Domain of dependence for each traction-separation relation (Tn, Tt); bounded by the final crack
opening widths (δn, δt) and the conjugate final crack opening widths (δn, δt).

To implement these elements into an Abaqus subroutine, we also need to provide the

material tangent matrix, Dlocal. This is calculated by taking either the second derivatives

of the potential function (3.9), or the first derivatives of the traction relations (3.12) and

(3.13), with respect to the normal and tangential crack opening widths (∆n and ∆t):

Dnn =
∂2Ψ

∂∆2
n

=
∂Tn
∂∆n

(3.19)

Dtt =
∂2Ψ

∂∆2
t

=
∂Tt
∂∆t

(3.20)

Dnt =
∂2Ψ

∂∆n∂∆t

=
∂Tn
∂∆t

(3.21)

Since the PPR model is potential-based, the tangent matrix is symmetric and Dtn = Dnt.

The components of the material tangent matrix are combined to form the local constitutive

matrix through Expression 3.7.

3.4.2 Choice of unloading/reloading relation

The unloading/reloading relation used in this model is uncoupled, in the sense that, unload-

ing in the normal direction is viewed as independent of that in the tangential direction. The
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unloading relation is activated when the normal or tangential separation is past the peak

cohesive strength of the element, and effects both the tangent matrix (3.7) and the traction

vector (3.8). The unloading/reloading relation in the model is selected to be linear to the

origin, as illustrated in Figure 3.6. This is a very common approach to modeling unload-

ing/reloading in cohesive elements [138, 139], and will likely satisfy the expectations of most

users of this work. If an alternative unloading/reloading relation is desired, we outline a

possible replacement in Section 3.5.2 and specify the portions of the UEL which will need

to be updated.

ν (          )

ν (          )

(             )

Δn

Δ tδn
δt

T Δ tΔn,n

T Δ tΔn,n

T Δ tΔn ,n max

ΔnmaxΔn =

(a)
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T Δ tΔn,t

(             )

ν (          )

Δn

Δ tδn
δt
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T Δ tΔn,t (          )

Δ tmaxΔ t =

(b)

Figure 3.6: Depiction of the linear unloading/reloading relations for loading in the (a) normal direction, and
(b) tangential direction.

3.4.3 Choice of contact relation

The selected contact relation is based on the penalty stiffness approach. As the normal

separation becomes negative (∆n < 0) contact forces resist interpenetration. The resisting

force increases linearly in accordance with a corresponding stiffness; the modulus of which

is chosen to correspond to the slope of the cohesive relation as it approaches zero opening

displacement. Alternatively, other contact formulations could be used, such as the ones

found in references [53, 140]. We will discuss the modifications necessary to alter the contact

formulation in Section 3.5.4.

3.5 Implementation in commercial software and user modifications

To make this work as useful as possible, this section describes how to implement the cohesive

elements into a finite element model, and outlines sections of the code that users may chose
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to modify to suit their specific needs. This section provides the basis for other modifications

not anticipated in this work.

3.5.1 Implementing cohesive elements into an Abaqus input file

To insert the cohesive zone elements (CZEs) into an Abaqus analysis, the Abaqus input file

should refer to the CZEs using the following commands. In the case of the CZE with 8

nodes:

*USER ELEMENT, TYPE=U1, NODE=8, COORDINATES=3, PROPERTIES=8, VARIABLES=14

1, 2, 3

*ELEMENT, TYPE=U1, ELSET=ELSET_NAME

where the VARIABLES parameter indicates the number of solution-dependent state variables

stored in each element [103]. For our purposes, these variables track the maximum opening

at each Gauss point in the element, to determine if the element is opening or closing. The

primary difference for the other elements is the number of nodes and variables. For the

CZE with 6 nodes; NODE=6 and VARIABLES=8, and for the CZE with 12 nodes; NODE=12 and

VARIABLES=8.
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Figure 3.7: Node numbering for a cohesive zone element with (a) 8 nodes, (b) 6 nodes, and (c) 12 nodes.

Below these input lines, the user specifies the element number and the node numbers

corresponding to the connectivity of the element. Nodes are numbered in the order shown

in Figure 3.7. To assign properties to the elements, one needs to include the following lines

to the input file:

*UEL PROPERTY, ELSET=ELSET_NAME

100, 200, 30e6, 40e6, 2, 5, 0.1, 0.2

where we have chosen, for example, φn = 100N/m, φt = 200N/m, σmax = 30MPa, τmax =

40MPa, α = 2, β = 5, λn = 0.1 and λt = 0.2, respectively. Note that the units are
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important, and the values here assume that the dimensions of the mesh are given in meters,

and any force boundary conditions are given in Newtons. Finally, when running this problem

on a linux machine, the following command line prompt will run the problem:

abaqus job=job_name user=3DpprBrick.f

where ‘job_name’ is the name of the input file.

3.5.2 Modifying the unloading/reloading relation

The current unloading/reloading relation in the model is linear to the origin, as illustrated

in Figure 3.6. Some users may wish to modify this; which may be done by altering only

a few lines in the UEL. Unloading effects the tangent matrix (3.7) and the traction vector

(3.8), both of which will need updating. For purposes of illustration, we outline the steps

necessary to implement a power-law unloading/reloading relation. Assuming a power-law

relation, the corresponding tractions during the unloading phase are reformulated as:

T vn (∆n,∆t) = Tn (∆nmax ,∆t)

(
∆n

∆nmax

)αv

, (3.22)

T vt (∆n,∆t) = Tt (∆n,∆tmax)

(
|∆t|

∆tmax

)βv ∆t

|∆t|
(3.23)

where αv and βv determine the shape of the unloading curve, as illustrated in Figure 3.8.

Similarly, the tangent matrix components become:

Dv
nn = Tn (∆nmax ,∆t)

αv
∆nmax

(
∆n

∆nmax

)αv−1

, Dv
nt = Dnt (∆nmax ,∆t)

(
∆n

∆nmax

)αv

(3.24)

Dv
tt = Tt (∆n,∆tmax)

βv
∆tmax

(
|∆t|

∆tmax

)βv−1

, Dv
tn = Dtn (∆n,∆tmax)

(
|∆t|

∆tmax

)βv
(3.25)

To implement these changes into the UEL, we first introduce additional input parameters,

let them be called alphaV and betaV. This can be done in the input portion of the code

(lines 36-43):

alphaV = PROPS(9)

betaV = PROPS(10)

54



ν (          )T Δ tΔn,n

T Δ tΔn ,n max(             )

T Δ tΔn,n
ν (          )

Δn

Δ tδn
δtΔnmaxΔn =

(a)

T Δ tΔn,t (          )ν

Δn

Δ t

T Δ tΔn,t max(             )

δn
δt

Δ tmaxΔ t =

T Δ tΔn,t (          )ν

(b)

Figure 3.8: Depiction of the power-law unloading/reloading relations for loading in the (a) normal direction,
and (b) tangential direction. If αv or βv > 1, the unloading/reloading relation is convex; whereas, if αv or
βv < 1 the unloading/reloading relation is concave.

These variables are then passed into the subfunction k_cohesive_law on line 137. To update

the normal unloading traction, we change line 256 to:

*(popn/pmax)**alphaV

Similarly, to modify the tangential unloading traction, we change line 273 to:

*(popt/tmax)**betaV

The process of updating the material tangent matrix follows in the same manner as the

tractions. Updating is required to the variables Dnn, Dnt, Dtt and Dtn on lines 307, 314, 348

and 355, respectively. In the order that they appear, we change these lines to:

307: *(alphaV/pmax)*(popn/pmax)**(alphaV-1)

314: *(popn/pmax)**alphaV

348: *(betaV/tmax)*(popt/tmax)**(betaV-1)

355: *(popt/tmax)**betaV

respectively. It is important to note that, since the power-law unloading/reloading relation is

not derived from a potential, the resulting tangent matrix is not guaranteed to be symmetric.

3.5.3 Modifications for material gradation

There are multiple methods by which one may chose to grade their material properties

[141, 142]. This section will outline the modifications necessary to implement a graded

normal fracture energy in the z-coordinate direction, based on the method proposed by Kim
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and Paulino [142]. Based on this simple exercise, we hope that the users will be more familiar

with the UEL, and more adept at making their own modifications. To allocate the range

and region of gradation, we need additional user inputs; which may be included in the input

section of the code (lines 36-43):

Gfn_min=PROPS(9)

Gfn_max=PROPS(10)

Zmin=PROPS(11)

Zmax=PROPS(12)

where Gfn_min, Gfn_max, Zmin and Zmax correspond to the minimum and maximum value

of the fracture energy and to the minimum and maximum z-coordinates in the region of

gradation, respectively. The remainder of the modifications need to occur prior to the first

use of the fracture energy (on line 106). To compute the total change in the fracture energy,

we include the line:

del_Gfn=Gfn_max-Gfn_min

Finally, assuming a linear variation of fracture energy, we include the lines:

Gfn1=Gfn_min+((Zmax-co_de_m(3,1))/(Zmax-Zmin))*del_Gfn

Gfn2=Gfn_min+((Zmax-co_de_m(3,2))/(Zmax-Zmin))*del_Gfn

Gfn3=Gfn_min+((Zmax-co_de_m(3,3))/(Zmax-Zmin))*del_Gfn

Gfn4=Gfn_min+((Zmax-co_de_m(3,4))/(Zmax-Zmin))*del_Gfn

Gfn = sf(1)*Gfn1+sf(2)*Gfn2+sf(3)*Gfn3+sf(4)*Gfn4

after we call the subfunction k_shape_fun on line 100, and before we determine the inputs

to the cohesive model on line 104. The resulting cohesive model will have a varying final

crack opening width, and corresponding softening curve, based on the variation of fracture

energy. This method, although presented for a variation of fracture energy in the z-direction,

can be extended to other parameters (including multiple parameters) in any direction, such

as that illustrated in Figure 3.9 for the case of a graded shape parameter, α.

3.5.4 Modifying the contact relation

The current UELs are implemented with the common penalty stiffness approach to contact.

The magnitude of the stiffness is in accordance with that of the hardening slope at the

initiation of the intrinsic formulation. There is much debate about the appropriate method
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Figure 3.9: Influence of varying the shape parameter, α, on the normal traction-separation relation. Note
the influence on both the shape of the softening curve and the final crack opening width.

of accounting for contact in a cohesive element formulation; thus, it may be a desired mod-

ification to the formulation [53, 140]. To change the contact formulation, the user needs

to modify the corresponding part of the code in which contact is handled. In the subfunc-

tion k_cohesive_law the user needs to modify the section of the code in which the normal

opening displacement is negative (line 279):

if (delu(3) .LT. 0.0) then

The users are able to modify any component of this section, and may include any additional

variables external to this statement as they wish.

In addition to the contact condition considered within the element itself, one may choose

to use the surface contact conditions built into Abaqus [103]. The surface contact conditions

use the master-slave surface relation to prevent element interpenetration. This condition

is suitable for situations in which the fracture surfaces are predefined, but would be very

difficult to implement if the intrinsic cohesive elements were to be inserted throughout a

region of the mesh. This method essentially requires one additional step in the analysis.

One needs to define two surfaces, corresponding to the two fracture surfaces that make

up the facets on which the cohesive elements are inserted. More information on how to

implement this method may be found in the Abaqus users manual [103].

3.6 Three-dimensional example problems

Here, we verify the implementation and display some of the capabilities of the elements.

The following problems are presented and discussed: (1) the patch test, (2) the mixed-mode
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bending (MMB) test problem, and (3) the small deformation coated particle debonding of

composite materials.

3.6.1 Patch test

To verify the implementation of the cohesive elements, a simple patch test is conducted

for each of the elements, using the models illustrated in Figure 3.10. Two sets of material

and cohesive parameters are considered. In the first study, the bulk material has an elastic

modulus of 32MPa and a Poisson’s ratio of 0.2; and the cohesive elements have a cohesive

fracture energy of 100N/m, a cohesive strength of 4MPa, a softening shape parameter of 5,

and an initial slope indicator of 0.2. Each cube is 1× 1× 1mm and is elongated at the top

to a displacement of 0.025mm, then compressed to a displacement of −0.01mm, and finally

elongated to complete failure. The unloading/reloading relation is selected to be linear. A

representative result from this study is illustrated in Figure 3.11(a). Upon loading, the stress

increases to the cohesive strength, then softens due to the presence of the cohesive elements.

The softening behavior is convex, as determined by the use of a shape parameter greater

than 2 (α = 5). As the model is unloaded, the stress linearly decreases to the origin, where

contact is initiated. In the compressive region, the stress is linear with a slope equal to that

of the initial hardening region.

(a) (b)

Figure 3.10: Geometry and support conditions for the patch test using (a) brick elements, and (b) tetrahedral
elements. The blue zones indicate the areas where cohesive elements are inserted, between the bulk elements
and the boundary supports.

In the second study, the bulk constitutive relation is assumed to follow the incompressible

neo-Hookean model; with corresponding stored-energy function [143]:
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Ψ (I1) =
µ

2
[I1 − 3] , (3.26)

where µ is the initial shear modulus, I1 = F · F is the first principal invariant of the right

Cauchy-Green tensor, and F is the deformation gradient. The shear modulus is selected

as µ = 1.0MPa; which is a representative value for a typical elastomer [74]. The cohesive

elements have a cohesive fracture energy of 1N/m, a cohesive strength of 0.5MPa, a softening

shape parameter of 3, and an initial slope indicator of 0.1. Each cube is 10× 10× 10µm and

is elongated at the top to a displacement of 2.75µm, then compressed to a displacement of

−1µm and finally elongated to complete failure. The unloading/reloading relation is selected

to be linear. A representative result from this study is illustrated in Figure 3.11(b). The

global response is similar to that observed in the first study, but displays a much softer

initial slope, due to the softer bulk material, and a softening region with greater convexity.
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Figure 3.11: Representative results from the patch test study, with two different sets of material parameters:
(a) a 1 × 1 × 1mm linear elastic cube, with displacements tracked at point A (E = 32MPa, ν = 0.2,
φ = 100N/m, σ = 4MPa, α = 5, and λ = 0.2); and (b) a 10 × 10 × 10µm nonlinear elastic cube, with
displacements tracked at point B (µ = 1.0MPa, φ = 1N/m, σ = 0.5MPa, α = 3, and λ = 0.1).

3.6.2 Mixed-mode bending specimen

The mixed-mode bending (MMB) specimen is a popular benchmark problem used to estimate

fracture energies under mixed-mode loading conditions [144]. The geometry of the problem

is illustrated in Figure 3.12. Its Cartesian geometry can be represented in a two-dimensional

plane, and thus has received a lot of interest in fracture related publications [51, 145, 146,

147]. Adding to its popularity is the presence of an analytical solution. The analytical

solution consists of three separate components [148, 149]. Initially, the response is linear,
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and can be compared with results from linear beam theory. However, once fracture initiates,

the response follows that derived from linear elastic fracture mechanics.

P

L L

a
a0

B

h
δ

Rigid Lever

c

c + L
L

P L
cP

Figure 3.12: Geometry and boundary conditions of the MMB specimen. L = 51mm, c = 60mm, B =
25.4mm, h = 1.56mm, a0 = 33.7mm, P = 850N .

The elastic beam has a modulus of 122GPa, and a Poisson’s ratio of 0.3. We consider

two different scenarios for the cohesive properties. In both scenarios, the shape parameters

(α, β) and initial slope indicators (λn, λt) are set equal to 3 and 0.02, respectively. The

first scenario considers a fracture energy of 500N/m in both the normal and tangential

directions, and equivalent cohesive strengths in each direction. As the cohesive strengths

increase, the numerical solution approaches the analytical solution, as illustrated in Figure

3.13(a). Similar behavior is observed for each element type (see Figure 3.1), thus only the

results for linear tetrahedral bulk elements are illustrated. The second scenario considers

different fracture energies in the normal (φn = 500N/m) and tangential (φt = 1000N/m)

directions. The cohesive strength in the normal direction is set as 20MPa and the strength

in the tangential direction is varied. As the tangential cohesive strength increases, the results

approach the analytical solution, as illustrated in Figure 3.13(b). As expected, the present

results for the three-dimensional problem are essentially the same as those obtained by Park

and Paulino for an equivalent two-dimensional problem [123].

3.6.3 Extended example: Small deformation coated particle debonding

In this example, we take an extended look at the small deformation debonding behavior

of coated particle reinforced composites. This example acts as a first look at the debond-

ing behavior of particle reinforced composites in this thesis. Initially we will consider the

simplified loading case of hydrostatic tension, where, based on experimental observations,

debonding is expected to occur uniformly around the particle, as illustrated in Figure 3.14.

Following this investigation, we will consider the case of uniaxial tension, where we expect
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Figure 3.13: Representative results for the MMB specimen using linear tetrahedral elements. The results
with linear brick and quadratic tetrahedral elements are similar and thus are not repeated here.

to see progressive debonding. In Chapter 4, we will investigate finite deformation debonding

under multiple loading scenarios.

(a) (b)

(d) (e)

(c)

(f)

Figure 3.14: Experimental observations of interface debonding in particle reinforced composites undergoing
(a)-(c) hydrostatic tension (images extracted from Tagliavia [150]; Kawaguchi and Pearson [151]; and Kraus
et al. [152]); and (d)-(f) uniaxial tension (images extracted from Renner [67]; Tsui et al. [153]; and Kanetake
et al. [154]).

To investigate particle reinforced composites under hydrostatic tension, we consider a

single coated particle, embedded in a matrix, as illustrated in Figure 3.15. Linear brick

elements are used to discretize the domain. Mesh refinement studies indicate that a mesh
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with approximately 150,000 bulk elements produces sufficiently accurate results, and is the

level of refinement used throughout this investigation, as illustrated in Figure 3.15(b). At

both the particle-coating and coating-matrix interfaces, 3,230 cohesive elements are used to

capture interfacial debonding behavior. Displacement boundary conditions are applied to

the exterior surface of the model. In the following examples, unless stated otherwise, the

bulk Poisson’s ratio has been fixed at 0.25, and the cohesive parameters have been fixed

at a cohesive fracture energy (φ) of 1.0N/m, a cohesive strength (σ) of 15MPa, a shape

parameter (α) of 3, and an initial slope indicator (λ) of 0.005.

Matrix

Coating

Particle
oR

iR

(a) (b)

Figure 3.15: The single particle model used to investigate the hydrostatic tensile loading of a composite
material with coated particle inclusions: (a) geometry, and (b) mesh.

In the following subsections, we will investigate the influence of many microstructural

parameters; including particle size, particle volume fraction, coating thickness, bulk material

properties, and cohesive properties, on the macroscopic constitutive response. In subsections

3.6.3.2 through 3.6.3.4 we consider hydrostatic tension, while in subsections 3.6.3.5 and

3.6.3.6 we consider uniaxial tension. For the cases which consider hydrostatic tension, we

compare our numerical results to an analytical solution. The details of the analytical solution

may be found in reference [155], here we briefly outline the solution for the case of particles

with homogeneous coatings, and concurrent debonding occurring at both the particle-coating

and coating-matrix interfaces. In this scenario, the macroscopic stress is computed as:

σ = (1− f)σm + fpσi + fc
(σiR

3
i − σoR3

o)

(R3
i −R3

o)
, (3.27)

and the macroscopic strain is computed as:
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ε =
1− 2νm
Em

σ + fp

(
1− 2νp
Ep

− 1− 2νm
Em

)
σi

+ fc

(
1− 2νc
Ec

− 1− 2νm
Em

)
(σiR

3
i − σoR3

o)

(R3
i −R3

o)
+ fc

∆o

Ro

, (3.28)

where f is the combined volume fraction of the particle (fp) and coating (fc); p denotes

the particle; c denotes the coating; m denotes the matrix; i denotes the particle-coating

interface; o denotes the coating-matrix interface; and ∆o is the normal crack opening at

the coating-matrix interface. The radial distances to the interfaces are denoted by Ri and

Ro, as illustrated in Figure 3.15(a). In the above expressions, the stress at each interface is

calculated as:

σi =
φn
δn

( α
m

)m(
1− ∆i

δn

)α−1(
m

α
− ∆i

δn

)m−1

(m+ α)
∆i

δn
, (3.29)

σo =
φn
δn

( α
m

)m(
1− ∆o

δn

)α−1(
m

α
− ∆o

δn

)m−1

(m+ α)
∆o

δn
, (3.30)

where, ∆i is the normal crack opening at the particle-coating interface, and is computed as:

∆i =
1− 2vc

Ec (R3
i −R3

o)

(
R3
iσi −R3

oσo
)
Ri +

1 + vc
2Ec (R3

i −R3
o)

(σi − σo)R3
oRi

− 1− 2vp
Ep

σiRi. (3.31)

Moreover, the stress in the matrix is computed as:

σm =
2Em

3 (1− vm)

{
∆o

R3
o

+

[
1− 2vc

Ec (R3
i −R3

o)

(
R3
iσi −R3

oσo
)

+
(1 + vc)R

3
i

2Ec (R3
i −R3

o)
(σi − σo)

]}
+

(1 + vm)σo
3 (1− vm)

. (3.32)

Solving this system of equations in terms of ∆o, we determine the macroscopic constitu-

tive response of the corresponding composite material with concurrent separation at both

interfaces.
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3.6.3.1 Comparison between the single particle model and a full representative unit cell

To verify the simplified single particle model used in this investigation, we compare the re-

sponse of the model to that of a representative unit cell. The unit cell contains 30 particles

with a radius of 1mm, placed in a random, but periodic, manner. Each particle has a 0.2mm

thick coating, as illustrated in Figure 3.16. The size of the unit cell is such that the parti-

cles constitute a volume fraction of 10%. The geometry is discretized with approximately

330,000 linear tetrahedral elements and periodic boundary conditions are applied. The elas-

tic modulus of the matrix is 80MPa, and the elastic modulus of the particles is 400MPa.

Cohesive elements are inserted between each particle and its corresponding coating, and

have a cohesive fracture energy of 1.0N/m, a cohesive strength of 10MPa, a softening shape

parameter of 3, and an initial slope indicator of 0.005.

(a) (b)

Figure 3.16: The representative unit cell containing 30 particles placed in a random, but periodic, manner:
(a) geometry, and (b) mesh.

The macroscopic constitutive response of the two different models is compared in Figure

3.17. As expected, the response of the single particle model and the representative unit

cell model is in good agreement under hydrostatic tension. This study is useful to verify

the effectiveness of the single particle model, and leads to increased confidence in using the

simplified model. The single particle model has distinct advantages in this case, because it

allows us to model higher volume fractions of the particle ensemble (particles and coatings).

The volume fraction of the representative unit cell is limited by the requirement of having a

well formed discretization between particles, and becomes cumbersome once the total volume

fraction of the particle ensemble exceeds approximately 30%. Additionally, the single particle

model allows for a direct visualization of the local debonding process, providing a greater

understanding of the physical behavior at the microscale. Finally, the single particle model
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allows for a greater resolution (finer mesh) to capture the debonding process at the interface.

This becomes significant when the fracture properties are chosen such that they cause the

fracture region to reduce in size. When the fracture region is small, the size of the mesh in

the unit cell grows significantly, and, from a computational viewpoint, becomes prohibitive.
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Figure 3.17: Comparison between the constitutive response of the single particle model and the representative
unit cell model.

3.6.3.2 Homogeneous coatings: Single separation along the particle-coating interface

In this scenario, we assume that the coating is homogeneous, and that separation is only

permitted at the particle-coating interface. The size of the particles is kept constant at

R = 1mm, with a fixed volume fraction of fp = 0.3. The elastic modulus of the particle is

100GPa, and the elastic modulus of the matrix is 100MPa. The volume fraction and elastic

modulus of the coating is varied. When the coating is softer than the surrounding matrix

(40MPa) the elastic stiffness of the material decreases as the volume fraction of the coating

increases, as illustrated in Figure 3.18(a). In all cases, the softer coating leads to softening

behavior past the elastic limit. When the coating is stiffer than the matrix (400MPa), the

elastic stiffness of the composite increases as the volume fraction of the coating increases;

however, the macroscopic stress at the elastic limit is only slightly altered, as illustrated

in Figure 3.18(b). For a very small coating thickness (fc = 0.01), the material displays

softening behavior past the elastic limit; however, as the thickness of the coating increases,

the material displays hardening behavior past the elastic limit.
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Figure 3.18: Effect of coating thickness on the constitutive response of a composite containing homogeneously
coated particles with separation along the particle-coating interface (R = 1mm, Ep = 100GPa and fp = 0.3).
Coating modulus of (a) 40MPa, and (b) 400MPa.

3.6.3.3 Graded coatings: Single separation along the particle-coating interface

The distribution of material in the coating influences the localization of stress at the particle-

coating interface. In this study, we investigate the case of heterogeneous coatings with a

graded elastic modulus in the radial direction. The modulus is linearly varied from that

of the particle (400MPa) to that of the matrix (80MPa). The particle size is fixed at

R = 1mm, and the influence of both the volume fraction of the particle and the thickness of

the coating is investigated. For the case of a thin coating (0.02mm), as the volume fraction

of the particle increases, the elastic stiffness and elastic limit of the material increases, as

illustrated in Figure 3.19(a). In all cases, softening behavior is observed past the elastic

limit. As the particle size decreases, complete debonding occurs earlier, and for a volume

fraction of fp = 0.1, snap-back behavior is observed in the post-peak response. For thicker

coatings (0.2mm), the influence of the graded coating is increased. Similar to the case

with thin coatings, as the volume fraction of the particle increases, the elastic stiffness and

elastic limit of the material increases, as illustrated in Figure 3.19(b). The material generally

displays softening behavior beyond the elastic limit, but transitions to hardening behavior

after a small increase in macroscopic strain.
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Figure 3.19: Effect of particle volume fraction on the constitutive response of a composite containing particles
with functionally graded coatings, with separation along the particle-coating interface (Ep = 400MPa and
Em = 80MPa.). Coating thickness of (a) 0.02mm, and (b) 0.2mm.

3.6.3.4 Homogeneous coatings: Concurrent separation at the particle-coating and
coating-matrix interfaces

We now consider scenarios in which concurrent separation is permitted at both the particle-

coating interface, and the coating-matrix interface. We assume that the coatings are homo-

geneous, and investigate the influence of both the particle size and the coating thickness.

First, the effect of particle size is considered. The particle sizes are selected as R = 0.5mm,

1mm, and 1.5mm; with a fixed particle volume fraction of fp = 0.3, and a fixed coating

volume fraction of fc = 0.3. The matrix has an elastic modulus of 100MPa, the coatings

an elastic modulus of 200MPa, and the particles an elastic modulus of 100GPa. For this

investigation, the cohesive strength at both interfaces is 10MPa. The initial elastic behavior

of the composite is independent of the particle size, as illustrated in Figure 3.20(a). How-

ever, there are two distinct kinks in the stress-strain response of the material. Separation

initiates at the particle-coating interface, at a macroscopic stress of approximately 6.8MPa.

Beyond this point, the stiffness of the material decreases with increasing particle size. The

second distinct kink in the stress-strain response represents the initiation of separation at the

coating-matrix interface. After the coating-matrix interface separates, the material hardens

for fine particles (R = 0.5mm) and the material softens for coarse particles (R > 0.5mm).

To investigate the effect of coating thickness, we fix the particle size at R = 1mm. For

a particle volume fraction of fp = 0.3, the coating volume fraction is varied (fc = 0.15,

0.3, 0.45). As the volume fraction of the stiff coating increases, the elastic stiffness of the

composite increases; however, the macroscopic stress at the elastic limit remains the same, as
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Figure 3.20: Effect of (a) particle radius, and (b) coating thickness on the constitutive response of a composite
containing homogeneously coated particles with concurrent separation at the particle-coating and coating-
matrix interfaces (Em = 100MPa, Ec = 200MPa, Ep = 100GPa, fp = 0.3, fc = 0.3 and σmax = 10MPa).

illustrated in Figure 3.20(b). Separation initiates at the particle-coating interface, followed

by that at the coating-matrix interface. For all cases considered, the material displays

softening behavior after both interfaces have separated.

3.6.3.5 Homogeneous coatings: Uniaxial tension with single separation along the
particle-coating interface

In the following two subsections, we consider the case of a composite material with coated

particle inclusions loaded in uniaxial tension. Under uniaxial tension, the debonding of the

matrix from the particle is not uniform, but instead, goes through gradual stages of partial

debonding, as observed experimentally and illustrated in Figure 3.14.

The first scenario we consider investigates progressive debonding at the particle-coating

interface. The geometry and mesh of the model we use is illustrated in Figure 3.21. The

particle has a volume fraction of 20%, with a diameter of 1mm, and a coating thickness

of 0.1mm. The elastic modulus of the matrix is 80MPa and the elastic modulus of the

particle is 400MPa. Cohesive elements are inserted between the particle and the coating,

and have a cohesive fracture energy of 1.0N/m, a cohesive strength of 15MPa, a softening

shape parameter of 3, and an initial slope indicator of 0.005. The geometry is discretized

with approximately 100,000 linear tetrahedral elements, and 3,765 cohesive elements are

used to capture interfacial debonding at the particle-coating interface. Rollers are placed on

the faces corresponding to the planes of symmetry, and the lateral extension is displacement

controlled, as illustrated in Figure 3.21(a).
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Δ

(a) (b)

Figure 3.21: The single particle model used to investigate the uniaxial tensile loading of a composite material
with coated particle inclusions: (a) geometry and (b) mesh.

The results of the analysis are illustrated in Figure 3.22(a). When the coating is intro-

duced, the elastic stiffness and elastic limit increase slightly. However, the most significant

influence of the coating is in the post-peak response of the composite. Without the coating,

the composite displays a small region of softening prior to an extended region of harden-

ing. When a coating is present, hardening behavior is observed past the elastic limit. In

comparison to the hydrostatic loading cases considered throughout the rest of this example,

the global strain at the elastic limit is 2 to 3 times greater. As well, the transition between

the elastic range and the debonded range is more gradual in the case of uniaxial tension,

because debonding occurs gradually; initiating at the pole of the particle and propagating

down to the equator, as illustrated in Figure 3.23.

3.6.3.6 Homogeneous coatings: Uniaxial tension with concurrent separation at the
particle-coating and coating-matrix interfaces

The last scenario we consider permits concurrent separation at both the particle-coating

and coating-matrix interfaces. The same mesh as that used in the previous scenario is used,

with an additional 5,812 cohesive elements inserted to capture debonding at the coating-

matrix interface. Each cohesive element has a fracture energy of 1.0N/m, a softening shape

parameter of 3, and an initial slope indicator of 0.005. The cohesive strength is 8MPa

and 12MPa at the particle-coating and coating-matrix interfaces, respectively. The results

of the analysis are illustrated in Figure 3.22(b). As with the single separation case, when

the coating is introduced, the elastic stiffness and elastic limit increase slightly, however,

69



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

5

10

15

20

Macroscopic Strain (%)

M
ac

ro
sc

op
ic

 S
tre

ss
 (M

Pa
 )

 

 

No Coating
E  = 120MPa
E  = 160MPa

c
c

Particle

Coating
Matrix

Cohesive 
Elements 

(a)

0 0.01 0.02 0.03 0.04 0.05 0.060

5

10

15

20

25

Macroscopic Strain (%)

M
ac

ro
sc

op
ic

 S
tre

ss
 (M

Pa
 )

 

 

No Coating
E  = 120MPa
E  = 160MPa

c
c

Particle

Coating
Matrix

Cohesive 
Elements 

(b)

Figure 3.22: Constitutive response of a composite, loaded in uniaxial tension, containing homogeneously
coated particles, with separation along (a) the particle-coating interface; and (b) both the particle-coating
and coating-matrix interfaces. The following properties are considered: Em = 80MPa, Ep = 400MPa,
fp = 0.2, tc = 0.1mm, and φn = 1.0N/m. For separation only at the particle-coating interface, σi = 15MPa,
whereas, when concurrent separation is permitted at both interfaces σi = 8MPa and σo = 12MPa.

Figure 3.23: Progression of debonding of a coated particle under uniaxial tension. For illustrative purposes,
the displacements are scaled by a factor of 10.

there are now two distinct kinks in the stress-strain response of the material. Separation

initiates at the particle-coating interface, at a macroscopic stress of approximately 10MPa.

Beyond this point, the stiffness of the material decreases with decreasing coating modulus.

The second distinct kink in the stress strain response represents the initiation of separation

at the coating-matrix interface. After the coating-matrix interface separates, the material

displays snap-back behavior in all cases. At large macroscopic strains, complete separation

occurs and the load is carried entirely by the matrix shell. The progression of debonding is

illustrated in Figure 3.24.
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Figure 3.24: Progression of debonding of a coated particle under uniaxial tension when separation is permit-
ted at both the particle-coating and coating-matrix interfaces. For illustrative purposes, the displacements
are scaled by a factor of 10.

3.7 Concluding remarks

This chapter outlines the formulation and implementation of three-dimensional, intrinsic co-

hesive zone elements for use in Abaqus. In total, three different cohesive elements are imple-

mented; which are compatible with linear brick, linear tetrahedral and quadratic tetrahedral

bulk elements. The constitutive model for the cohesive elements is selected independently

of that for the bulk elements. The selected constitutive model for the cohesive elements

is the intrinsic PPR model. A linear unloading/reloading relation and a penalty stiffness

approach to contact are chosen. The modulus of the penalty stiffness is set equal to the

initial hardening slope at the initiation of the intrinsic formulation.

In addition to the base implementation, a series of suggested modifications is presented.

These modifications highlight the sections of the code which require changing if the user

chooses to implement alternate unloading/reloading and contact conditions. As well, the

modifications necessary to implement functionally graded cohesive properties are presented.

To verify the implementation and present the varied possible applications, three numerical

examples are provided: the patch test, the mixed-mode bending test problem, and the small

deformation debonding of composite materials containing coated particle inclusions.

For the small deformation coated particle debonding example, we take an extended look

at the change in the macroscopic constitutive response of these composite materials due to

changes in the microstructure. The effects due to a variation in the volume fraction of par-

ticles, coating thickness, constitutive properties, and location of separation are investigated.

In general, the hydrostatic debonding behavior, captured numerically, agrees well with that

predicted theoretically. Depending on the material properties, when multiple interfaces are

permitted to separate, the particle-coating interface tends to separate first, followed by the

coating-matrix interface, resulting in two distinct kinks in the constitutive response. Overall,
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the results from the numerical investigation provide insight into the progressive debonding

process of composite materials with coated particles. Throughout each of the examples, we

demonstrate that this small library of cohesive elements is useful in a variety of applications,

however, we hope that the library could be extended in the future, for compatibility with

other types of bulk elements, such as shell and membrane elements.

This chapter constitutes the second step in our objective of developing a computational

framework capable of capturing the finite deformation debonding behavior of particle rein-

forced composites. In Chapter 2 we developed a framework capable of capturing the influence

of interphases, and now we have the tools capable of capturing the interfacial debonding be-

havior. In Chapter 4, we will combine these tools to reach our objective.
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Chapter 4

Finite Deformation Response of Particle Reinforced
Composites Considering both Interphasial and
Interfacial Effects

There are four primary factors which influence the macroscopic constitutive response of par-

ticle reinforced composites: component properties, component concentrations, interphases,

and interfacial debonding. Interphases are often a byproduct of surface treatments applied

to the particles to control agglomeration. Alternatively, in polymer based materials such as

carbon-black reinforced rubber, an interphase or “bound rubber” phase often occurs at the

particle-matrix interface. This interphasial region has been known to exist for many decades,

but is often omitted in computational investigations of such composites. In this chapter, we

present an investigation into the influence of interphases on the large deformation response

of particle reinforced composites. In addition, since particles tend to debond from the matrix

at large deformations, we investigate the influence of interfacial debonding on the macro-

scopic constitutive response. The investigation considers two different microstructures; both

a simplified single particle model, and a more complex polydisperse representative unit cell.

Cohesive elements, which follow the Park-Paulino-Roesler traction-separation relation, are

inserted between each particle and its corresponding interphase to account for debonding.

To account for friction, we present a new, coupled cohesive-friction model and detail its

formulation and implementation. For each microstructure, we discuss the influence of the

interphase thickness and stiffness on the global constitutive response in both uniaxial ten-

sion and simple shear. To validate the computational framework, comparisons are made

with experimental results available in the literature.

4.1 Introduction

The macroscopic response of particle reinforced composites is influenced by not only the

component properties and component concentrations, but also the interfacial interaction

between the particles and the matrix. In particular, the inclusion of stiff particles to a

soft matrix can lead to an increase in composite stiffness, strength, impact resistance, and

abrasion resistance [59, 156]. Additionally, at large deformations particles tend to debond
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from the matrix, influencing both the ductility and fracture toughness of the composite

[157, 158, 159]. To enhance or control these properties, the particles themselves can be

tailored through surface treatments [62, 160, 61]. Often, surface treatments are applied to

the particles of a composite material to meet various desired specifications. For instance,

these treatments are often employed to reduce residual tensile stresses between the particles

and the matrix or to reduce particle agglomeration [160, 161]. On the other hand, as a

result of chemical interactions, an interphase may form between the particle and the matrix

during manufacturing and processing [162]. Even though these interphases are typically

microscopic, they can greatly influence the macroscopic behavior of composite materials.

The extent and composition of this interphase depends on a number of factors, including

the surface area and surface treatment of the particles, as well as the level of mixing and

age of the composite [59, 60].

Recent experiments by Qu et al. [84, 163], used atomic force microscopy to conduct in-situ

imaging of particle-elastomer interactions. They demonstrated that the macroscopic prop-

erties (in particular, the stiffness and scratch resistance) of the composite can be tailored,

by selectively designing the surface chemistry of the particles. Ramier et al. [62, 61] investi-

gated the influence of different surface treatments on the large deformation response of silica

particle reinforced styrene butadiene rubber. They conducted a series of experiments on

consistently prepared specimens, but applied a different surface treatment to the particles

in each sample. Their investigation focused on the influence of the cross-linking that occurs

in the matrix as a result of the different surface treatments, and concluded that the applied

surface treatment on the particles is often the primary factor controlling the macroscopic

constitutive response of the composite. Moreover, at large deformations, they observed the

particles debonding from the matrix. Debonding is characterized by a localized region of

failure (or interfacial debonding) that accumulates around the particle inclusions. There

have been numerous experimental investigations demonstrating the interfacial debonding

behavior of particles under large deformations; some examples of which are illustrated in

Figure 4.1.

In contrast to the numerous experimental investigations, there have been few theoretical

investigations which consider the effect of either interphases or interfacial debonding in the

finite deformation regime. One of the few formulations for debonding under finite strains

was presented by Brassart et al. [72]. They extend the Mori-Tanaka homogenization scheme

[166] to account for the debonding of composite materials under finite strains; however, they

only consider hydrostatic loading in three-dimensions and do not account for the presence of

interphases. More Recently, Goudarzi et al. [75] presented a theoretical framework capable

of describing the influence of interphases on the macroscopic constitutive response of particle
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(a)

(b)

(c)

(d) (e)

Figure 4.1: Experimentally observed debonding behavior of particle reinforced composites under large defor-
mations. (a) Debonding of aluminum oxide particles from an epoxy resin (extracted from Wetzel et al. [164]).
(b) Multiple locations of silane treated alumina particles debonding from an epoxy matrix (mse.rpi.edu). (c)
A glass particle surrounded by the void created due to deformation of the polypropylene/glass composite
(extracted from Thio et al. [66]). The glass particles in this investigation were treated using heptadecafluo-
rodecyl trichlorosilane. (d) Glass beads, treated with ethylsilane, debonding from natural rubber (extracted
from Gent and Park [165]). (e) Large void creation around glass particles in a high-density polyethylene
matrix (extracted from Zhuk et al. [64]).

reinforced elastomers. They compare their formulation to both numerical and experimental

results [62], and found excellent correlation with both. However, their investigation focuses

on the influence of perfectly bonded interphases, excluding the consideration of interfacial

debonding. To the best of the author’s knowledge, there has been no theoretical formula-

tion presented which accounts for both interphases and interfacial debonding under finite

deformations.

There are four primary factors which influence the macroscopic constitutive response

of particle reinforced composites: component properties, component concentrations, inter-

phases, and interfacial debonding. This chapter presents a computational framework capable

of capturing the influence of interphases and interfacial debonding on the finite deformation

response of particle reinforced composites. The influence of the thickness and modulus of

the interphase is considered, and debonding is accounted for through the use of cohesive

elements. The remainder of the chapter is organized as follows. In Section 4.2, we discuss

the computational framework for this investigation. Section 4.3 presents a new, coupled
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cohesive-friction relation and details its formulation and implementation. Both single par-

ticle and multi-particle periodic microstructures are considered in this investigation. The

results for the single particle microstructure are presented in Section 4.4.1, and those for

the multi-particle microstructure are presented in Section 4.4.2. We validate the compu-

tational framework by challenging it with experimental data in Section 4.5. Finally, some

conclusions, and potential extensions are discussed in Section 4.6.

4.2 Computational framework

In this investigation, we develop a fully three-dimensional computational framework capable

of capturing the influence of interphases and interfacial debonding on the finite deformation

response of particle reinforced composites. We consider both a single particle microstruc-

ture, and a multi-particle microstructure; and, for the most generality, in the multi-particle

microstructure we consider a random distribution of polydisperse particles. The single parti-

cle microstructure is presented to illustrate the local behavior during progressive debonding.

While this model is simplified, it can provide insight into the important characteristics, and

provide guidance into tailoring the design of particle-reinforced composite materials. The

multi-particle microstructure, however, is more representative of a real material.

4.2.1 Single particle microstructure

The single particle model replicates the case of a perfectly repeating, structured microstruc-

ture. The model considers a single particle placed at the centroid of a cube. The particle

is assumed to be numerically rigid [89], and we assume that a compliant interphase forms

around the surface of the particle. The particle is assumed to be spherical, and the inter-

phase thickness is assumed to be uniform, as illustrated in Figure 4.2(a). The geometry is

discretized with quadratic tetrahedral elements using the automatic mesh generator Netgen

[114]. A sample mesh for the particle and interphase is illustrated in Figure 4.2(b).

4.2.2 Multi-particle microstructure

In the multi-particle model, we consider a random distribution of particles. These models,

often referred to as representative unit cells (RUCs), are commonly used to represent re-

alistic microstructures [104, 105]. For the most generality, we consider the particles to be

polydisperse, represented through three families of particle sizes [89]. The particle locations
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(a) (b)

Figure 4.2: The single particle model: (a) geometry and (b) sample mesh used for the particle and interphase.
Note that the mesh for the bulk matrix is excluded from the figure for illustrative purposes only. Additionally,
an octant of the geometry is removed to illustrate the particle and interphase.

are generated using a constrained adsorption algorithm [86, 89, 75]. The procedure we use

to generate the polydisperse microstructures was described in detail in Chapter 2, and the

interested reader is referred there for further details. In this investigation, we consider two

different particle concentrations, c = 0.1 and c = 0.2, as illustrated in Figures 4.3 and 4.4,

respectively.

(a) (b) (c)

Figure 4.3: Representative polydisperse microstructures, containing a random distribution of 80 particles
of three different radii. The particles constitute a concentration of c = 0.1 and are surrounded by (a) no

interphase, (b) interphases with a thickness of t = 0.1r
(i)
p , and (c) interphases with a thickness of t = 0.2r

(i)
p .

A mesh refinement study was conducted using randomly generated meshes with approxi-

mately 100,000, 200,000 and 300,000 quadratic tetrahedral elements, as illustrated in Figure

4.5. Meshes with approximately 200,000 elements displayed a sufficient level of accuracy,

and is the target mesh size for the results presented in the remainder of the investigation.
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(a) (b) (c)

Figure 4.4: Representative polydisperse microstructures, containing a random distribution of 80 particles
of three different radii. The particles constitute a concentration of c = 0.2 and are surrounded by (a) no

interphase, (b) interphases with a thickness of t = 0.1r
(i)
p , and (c) interphases with a thickness of t = 0.2r

(i)
p .

Periodicity of the models is ensured through the use of both a periodic microstructure and

periodic boundary conditions, as was detailed in Chapter 2.

(a) (b) (c)

Y
X

Z

Figure 4.5: Three representative meshes in the undeformed configuration for a distribution of polydisperse

particles with a concentration of c = 0.2, and an interphase thickness of t = 0.2r
(i)
p : (a) a coarse mesh with

approximately 100,000 elements, (b) a fine mesh with approximately 200,000 elements, and (c) a very fine
mesh with approximately 300,000 elements.

4.2.3 Assessment of isotropy

In all models containing a finite number of randomly placed particles, the isotropy of the

microstructure is only approximate [89]. There are multiple approaches for determining

whether the random placement of particles results in an approximately isotropic microstruc-

ture. Many authors take a geometric approach, computing the centroid or moment of inertia

of the particles [86, 115, 111]. Alternatively, one could take a constitutive approach, by exam-
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ining the co-axiality between the stress and strain tensors [89, 75]. In an isotropic material,

the average Cauchy stress tensor, σ = SFT and average left Green-Cauchy strain tensor

B = FFT are co-axial, and the angle between their principal axes (the angle of co-axiality)

is zero. Since the constitutive approach is sufficient, it is the method we choose to assess the

isotropy of our microstructures. Each microstructure is tested, and those which result in an

angle of co-axiality greater than 0.05 radians are discarded [89, 75]. We use this approach

for all loading conditions, particle concentrations and interphase thicknesses considered in

this investigation.

4.3 Coupled cohesive-friction relation

To account for interfacial debonding, cohesive elements are inserted between each particle

and its surrounding interphase, as illustrated in Figure 4.6. The cohesive elements initially

have zero thickness, and, as the elements separate, they transfer normal and shear tractions

to the surrounding bulk elements. There have been numerous traction-separation relations

proposed in the literature, see for example the relations proposed by Xu and Needleman

[50] and Ortiz and Pandolfi [56]. The traction-separation relation used in this investigation

follows the Park-Paulino-Roesler (PPR) cohesive model [51]. The details of the PPR model

were provided in the previous chapter. Here, we present a new three-dimensional frictional

relation which is compatible with, and coupled to, the PPR formulation.

Figure 4.6: Cohesive elements with zero initial thickness are inserted between each particle and its corre-
sponding interphase.

When a particle is in contact with its surrounding interphase, compressive and frictional

forces (Tf ) are generated. Since the potential-based cohesive formulation does not explicitly
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account for a contact relation, we have chosen to use a simplified penalty approach to

contact. As an element is distorted into an adjacent element the resisting force increases

linearly in accordance with a corresponding stiffness. The modulus of this stiffness is chosen

to correspond to a multiple of the slope of the cohesive hardening curve as it approaches

zero opening displacement. Alternatively, other contact formulations could be used, such as

the ones found in references [140, 167].

There have been multiple techniques proposed for coupling a friction relation to a co-

hesive model. One of the first approaches can be attributed to Tvergaard [168]. In this

approach, the onset of friction is assumed to occur only after the cohesive model has com-

pletely softened. Later authors revised this assumption, setting the onset of friction to occur

at the onset of irreversible damage [167, 169, 170, 171]. The main feature of this revised

approach is that no frictional energy is dissipated prior to the onset of decohesion. Here,

we outline a new mixed-mode frictional relation that, when coupled with the PPR cohesive

model, presents a smooth transition from a cohesive zone to a pure frictional contact zone.

In particular, the coupled frictional force is computed as:

Tf = µfκ (∆t) |Tn| when Tn < 0 and ∆t > λtδt, (4.1)

where µf is the coefficient of friction, and κ (∆t) may be thought of as a damage-type

parameter, varying monotonically between 0 and 1 (when ∆t > λtδt). The relation chosen

for κ is expressed as:

κ (∆t) =

 0 if ∆t ≤ λtδt(
1− Tt(0,∆t)

D0∆t

)s
if ∆t > λtδt

 , (4.2)

where s is an input parameter which controls the rate of transition between cohesive and

frictional forces. The influence of s on κ is illustrated in Figure 4.7(a). Moreover, Tt (0,∆t)

is the tangential cohesive traction computed at zero normal opening displacement, and D0

is the stiffness at the onset of decohesion (see Figure 4.7(b)) calculated as:

D0 =
Γt
δt

[
n (1− λt)β

(
n

β
+ λt

)n−1

− β (1− λt)β−1

(
n

β
+ λt

)n]
×
[
Γn

(m
α

)m
+ 〈φn − φt〉

] 1

λtδt
, (4.3)

where the input parameters Γt, Γn, δt, δn, n, m, α, β, and λt are the same as those in the

PPR cohesive model.
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The frictional force vector is coupled to the cohesive force vector through the following

relation:

T =


Tn

Tt
∆2

∆t
+ Tf

(
|∆2|
∆t

)
∆̇2

|∆̇2|
Tt

∆3

∆t
+ Tf

(
|∆3|
∆t

)
∆̇3

|∆̇3|

 , (4.4)

where ∆2 and ∆3 correspond to crack opening widths in the tangential plane of fracture,

and the ( ˙ ) operator represents the change in the crack opening width. The tangential crack

opening width, ∆t, is coupled through the relation ∆t =
√

∆2
2 + ∆2

3. A sample cohesive-

friction relation is plotted versus the coupled tangential crack opening width in Figure 4.7(b).

From the figure it is clear that frictional forces initiate at the onset of cohesive softening

(irreversible damage), and that the transition from softening behavior to frictional behav-

ior is monotonic and smooth. To illustrate the fully coupled, three-dimensional friction

relation, the tangential components of the force vector (Equation 4.4) are decoupled then

superimposed in Figure 4.8.
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Figure 4.7: (a) Influence of the value of s on the damage variable, κ (∆t), as per Equation 4.2. (b) Tangential
traction, including friction (∆n < 0, λt = 0.2, and s = 3). The various energies at a given state are depicted:
dark gray is the energy dissipated during the process of decohesion, light gray is the stored elastic energy,
and black is the energy dissipated by friction.

The hysteretic response of the coupled cohesive-friction relation is illustrated in Figure 4.9.

Initially, the loading follows the cohesive relation; however, beyond the peak stress, frictional

forces are generated and energy dissipation due to friction accumulates. As unloading occurs,

the direction dependent frictional force generates a jump in the traction. When the cohesive

element has fully separated (i.e the cohesive force goes to zero), only frictional forces are

generated.
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Figure 4.8: Visual decomposition of the three-dimensional, coupled cohesive-friction model: (a) cohesive
traction in the ∆2 direction; (b) cohesive traction in the ∆3 direction; (c) friction traction in the ∆2 direction;
(d) friction traction in the ∆3 direction; (e) coupled cohesive-friction traction in the ∆2 direction; and (f)
coupled cohesive-friction traction in the ∆3 direction. The cohesive and friction parameters are: α = β = 3,
λn = λt = 0.2, φn = φt = 1.0N/m, σmax = τmax = 0.5MPa, s = 3, µ = 0.5, and Tn = −0.4MPa; and it is
assumed that ∆̇2 and ∆̇3 > 0.
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Figure 4.9: Tangential traction versus tangential opening during cyclic loading (∆n < 0, s = 3 and µ = 0.5).

Finally, to incorporate the coupled cohesive and friction relations, many finite element

codes require the implementation of a material tangent stiffness matrix, D:

D =


D11 D12 D13

D21 D22 D23

D31 D32 D33

 , (4.5)

where the components of the stiffness matrix depend on the constitutive relation. Here, we

list the components for any general coupled cohesive and any friction model:

D11 =
∂Tn
∂∆n

, D12 =
∂Tn
∂∆t

∆2

∆t

, D13 =
∂Tn
∂∆t

∆3

∆t

,

D21 =
∂Tt
∂∆n

∆2

∆t

+
∂Tf
∂∆n

|∆2|
∆t

∆̇2∣∣∣∆̇2

∣∣∣ ,
D22 =

 ∂Tt
∂∆t

∆2 +
∂Tf
∂∆t

|∆2|
∆̇2∣∣∣∆̇2

∣∣∣
 ∆2

∆2
t

+

Tt + Tf
∆2

|∆2|
∆̇2∣∣∣∆̇2

∣∣∣
 ∆2

3

∆3
t

,

D23 =

 ∂Tt
∂∆t

∆2 +
∂Tf
∂∆t

|∆2|
∆̇2∣∣∣∆̇2

∣∣∣
 ∆3

∆2
t

−

Tt∆2 + Tf |∆2|
∆̇2∣∣∣∆̇2

∣∣∣
 ∆3

∆3
t

,

D31 =
∂Tt
∂∆n

∆3

∆t

+
∂Tf
∂∆n

|∆3|
∆t

∆̇3∣∣∣∆̇3

∣∣∣ ,
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D32 =

 ∂Tt
∂∆t

∆3 +
∂Tf
∂∆t

|∆3|
∆̇3∣∣∣∆̇3

∣∣∣
 ∆2

∆2
t

−

Tt∆3 + Tf |∆3|
∆̇3∣∣∣∆̇3

∣∣∣
 ∆2

∆3
t

,

D33 =

 ∂Tt
∂∆t

∆3 +
∂Tf
∂∆t

|∆3|
∆̇3∣∣∣∆̇3

∣∣∣
 ∆3

∆2
t

+

Tt + Tf
∆3

|∆3|
∆̇3∣∣∣∆̇3

∣∣∣
 ∆2

2

∆3
t

.

For the specific friction model presented in this section:

∂Tf
∂∆n

=

(
1− Tt (0,∆t)

D0∆t

)s
µ
Tn
|Tn|

∂Tn
∂∆n

, and

∂Tf
∂∆t

= s

(
1− Tt (0,∆t)

D0∆t

)s−1

µ |Tn|
(
Tt (0,∆t)

D0∆2
t

− ∂Tt (0,∆t)

∂∆t

1

D0∆t

)
.

The partial derivatives ( ∂Tn
∂∆n

, ∂Tn
∂∆t

, ∂Tt
∂∆n

, and ∂Tt
∂∆t

) for the PPR cohesive model were listed in

Chapter 3.

4.4 Results and discussion

We now apply the above computational framework to several examples with various mi-

crostructural configurations. First, we investigate the single particle model, then present

results for full field simulations on representative unit cells. In each configuration, we ex-

amine the influence of interphase thickness and stiffness on the macroscopic constitutive

response in both uniaxial and shear loading. There are various stored-energy functions

available for representing the behavior of hyperelastic materials [143], however the most

commonly applied may be the neo-Hookean model. In this section, the matrix material is

assumed to be an incompressible neo-Hookean rubber, with stored-energy function:

Ψ (I1) =
µ

2
[I1 − 3] , (4.6)

where µ is the initial shear modulus, I1 = F · F is the first principal invariant of the right

Cauchy-Green tensor, and F is the deformation gradient. The matrix is assumed to have

an initial shear modulus, µm, of 1.0MPa, and the interphase surrounding each particle is

assumed to have a modulus, µi, which is a multiple of that in the bulk. The particles are

assumed to have a modulus that is four orders of magnitude greater than that in the matrix

(µp = 104µm), to numerically approximate the case of rigid particle inclusions [172, 111].

In each case, the cohesive parameters are set as σmax = 0.5MPa, φ = 1.0N/m, α = 3,
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and λ = 0.2. For contact between the interphases and the rigid particles, the coefficient of

friction is set at µf = 1.0 and the rate of transition between cohesive and friction forces is

set at s = 3, in Equation 4.2. The macroscopic strain is defined as ε = h/H − 1, where h is

the deformed length in the direction of loading, and H is the undeformed length of the edge

of the cell. The macroscopic stress corresponds to the first Piola-Kirchoff stress, measured

as the force calculated in the deformed configuration applied over the undeformed surface

of the model.

4.4.1 Single particle results

First, we consider the single particle model, and investigate the influence of the interphase

thickness and stiffness on the macroscopic constitutive response in both uniaxial tension

and simple shear. We consider the case of microparticle inclusions, with an assumed particle

diameter of 10µm, and size the model based on the particle diameter and volume fraction.

Thus, the cell dimensions for a particle concentration of c = 0.1 and c = 0.2 are 17.4×17.4×
17.4µm and 13.8 × 13.8 × 13.8µm, respectively. The objective of this investigation is to

demonstrate the ability of the computational framework to capture the complex decohesion

process along the particle-interphase interface.

4.4.1.1 Uniaxial tension

In uniaxial tension, progressive debonding occurs. Decohesion initiates at the poles of the

particle, in the direction of loading, and propagates towards the equator. Upon decohesion,

compressive regions are formed in the plane perpendicular to the axis of loading; due to the

volume preserving nature of the matrix material. The void and compressive regions can be

seen in the contour plots of principal stress, as illustrated in the deformed configuration in

Figure 4.10. In the matrix, a band of stress is concentrated at the location of the particle.

The stress distribution in the interphase is illustrated in Figure 4.10(b). The shape of the

interphase coincides with the shape of the void. Contact between the interphase and the

particle can be seen by the outward bulge in the deformed shape of the interphase. At the

poles of the interphase, zero stress is observed, indicating a complete loss of load bearing

capacity, or complete debonding of the particle. At the equator of the interphase, high

contact stresses are distributed through a thick band in the interphase. The resulting stress

distribution in the particle is illustrated in Figure 4.10(c). As expected, the stress in the

particle is concentrated in the band that remains in contact with the interphase, and the

particle carries zero stress in the fully debonded regions.
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Figure 4.10: Contour plot of principal stress in uniaxial tension in the (a) matrix, (b) interphase, and (c)
particle, for the single particle model.

The macroscopic constitutive response in uniaxial tension is plotted in Figure 4.11. We

illustrate cases for particle concentrations of c = 0.1 and c = 0.2, and interphase thickness

to particle radius ratios of t/rp = 0.1 and t/rp = 0.2. The thicker and stiffer the interphase,

the greater the influence on the constitutive response. For the case with a small particle

concentration (c = 0.1) and interphase thickness (t/rp = 0.1), the influence is the smallest,

but is still significant. For example, when we consider the case with an interphase stiffness of

µi = 10µm = 10MPa (a similar modulus to that observed experimentally [84]), at a strain of

0.4 the global response is approximately 25% greater than in the case when no interphase is

considered, as illustrated in Figure 4.11(a). For the larger particle concentration, c = 0.2, the

global response is approximately 115% greater than that without considering interphases,

as illustrated in Figure 4.11(c).

4.4.1.2 Simple shear

The second loading condition we consider is simple shear. In this case, we observe a higher

area of contact between the particle and the surrounding interphase in the deformed config-

uration. Thus, we expect the frictional forces in this scenario to be more significant; we will

discuss and quantify this further in Section 4.4.2.1. The contour plots of principal stress for

the matrix, interphase and particle are illustrated in Figure 4.12. In the direction perpen-

dicular to the plane of shear, the stress in the interphase is lower than that in the plane of

shear. Additionally, the void region is concentrated into a smaller zone than in the uniaxial

tension case, as demonstrated by the deformed shape of the interphase in Figure 4.12(b).
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Figure 4.11: Macroscopic constitutive response in uniaxial tension for microstructures with: (a) c = 0.1 and
t/rp = 0.1; (b) c = 0.1 and t/rp = 0.2; and (c) c = 0.2 and t/rp = 0.2.

Because of the small void region, there remains a significant surface area of contact between

the particle and the interphase, as demonstrated by the distribution of stress in the particle

in Figure 4.12(c).
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Figure 4.12: Contour plot of principal stress in simple shear in the (a) matrix, (b) interphase, and (c)
particle, for the single particle model.

The macroscopic constitutive response in simple shear is illustrated in Figure 4.13. Similar

to the case in uniaxial tension, we illustrate cases for particle concentrations of c = 0.1 and

c = 0.2, and interphase thickness to particle radius ratios of t/rp = 0.1 and t/rp = 0.2. In

simple shear, the influence of the interphase is noticeably less than in the case of uniaxial

tension; however, the interphase continues to significantly alter the macroscopic constitutive

response. For example, when we consider the case with a small particle concentration in

Figure 4.13(a), and an interphase stiffness of µi = 10µm, at a strain of 0.4 the global

response is approximately 18% greater than in the case when no interphase is considered.

The influence of the interphase is magnified as the particle concentration, and thus the

effective concentration of the interphase, increases, as illustrated in Figures 4.13(b) and

4.13(c).
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Figure 4.13: Macroscopic constitutive response in simple shear for microstructures with: (a) c = 0.1 and
t/rp = 0.2; (b) c = 0.2 and t/rp = 0.1; and (c) c = 0.2 and t/rp = 0.2.

4.4.2 Full representative unit cell results

Here we consider the case of more realistic microstructures, based on the full field simulations

of polydisperse representative unit cells. The particle diameter is assumed to be 10µm for

the largest family of particles, and the RUCs are sized based on the particle diameter and

concentration. Thus, the cell dimensions for a particle concentration of c = 0.1 and c = 0.2

are 47.1 × 47.1 × 47.1µm and 37.4 × 37.4 × 37.4µm, respectively. First, we investigate the

influence of frictional forces on the constitutive response of various microstructures, then

demonstrate the influence of the interphase thickness and modulus in both uniaxial tension

and simple shear loading.

4.4.2.1 Influence of friction

To investigate the influence of frictional forces, we compare the full field results with and

without friction, as illustrated in Figure 4.14. As in the case with a single particle, we

consider both uniaxial tension and simple shear loading, with various particle concentrations,

c, and interphase thickness to particle radius ratios, t/rp. In the case of uniaxial tension, the

frictional forces are shown to impart little effect on the macroscopic constitutive response

of the composite, as illustrated in Figure 4.14(a). The inclusion of a frictional relation in

the cohesive element formulation causes a slight increase in the effective stiffness of the

composite, but, for the concentration and number of particles we have considered, it is

negligible. It is valuable to note that the magnitude of frictional forces is dependent on the

number of particles used to capture the respective concentration, thus, if a greater number

of particles were used, the magnitude would increase. However, the underlying cause of
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the low influence will not change, as will be discussed in the next section. In the case of

simple shear, the frictional forces are shown to have a greater influence on the composite’s

constitutive response, as illustrated in Figure 4.14(b). This is expected behavior, since, in

the previous investigation in the single particle model, we demonstrated that a large area

of contact exists between the particle and the interphase in simple shear. This large area of

contact generates large frictional forces.
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Figure 4.14: Influence of friction on the global constitutive response of RUCs in (a) uniaxial tension, and
(b) simple shear.

We have demonstrated that the particle reinforced composite materials under investigation

in this chapter demonstrate a small influence of friction, however, there are alternate appli-

cations wherein frictional forces are significant. In order to further verify and validate the

newly proposed coupled cohesive-friction model presented in Section 4.3, we have included

a supplementary example in C which demonstrates a significant dependence on friction.

4.4.2.2 Uniaxial tension

In uniaxial tension, a representative deformed microstructure is illustrated in Figure 4.15(a).

Each particle debonds from the surrounding matrix, as seen both in the deformed shape and

in the contour plots in Figures 4.15(b) and 4.15(c). Similar to the study on the single particle

model, each particle is compressed by the surrounding matrix in a plane perpendicular to

the direction of loading. The fully debonded regions alleviate the stress at the poles of

the particles. The width of the small band of compression in the particles is indicative of

the small area of contact wherein frictional forces can be generated, explaining the small

influence of friction on the global response seen in Figure 4.14(a).
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Figure 4.15: (a) Deformed geometry of a representative unit cell with a particle concentration of c = 0.1
and an interphase to particle radius ratio of t/rp = 0.2, loaded in uniaxial tension. Contour plot of principal
stress in uniaxial tension in the (b) entire model, and (c) particles.

The macroscopic constitutive response in uniaxial tension is plotted in Figure 4.16. We

consider particle concentrations of c = 0.1 and c = 0.2, and interphase thickness to par-

ticle radius ratios of t/rp = 0.1 and t/rp = 0.2, and compare them to the response when

no interphase is present. Because each microstructure is generated randomly, the response

illustrated is an average of three simulations. As expected, the thicker and stiffer the inter-

phase, the greater the influence on the constitutive response. Additionally, as is commonly

noted in the literature [73], the large particles tend to debond from the matrix prior to the

smaller particles fully debonding.

Even in the case with a small particle concentration (c = 0.1) and interphase thickness

(t/rp = 0.1), the interphase has a significant influence on the global response at relatively

low strains. For example, at a strain of 0.4, microstructures with an interphase stiffness of

µi = 10µm produce a global response which is approximately 25% greater than in the case

when no interphase is considered, as illustrated in Figure 4.16(a). For the larger particle

concentration, c = 0.2, the global response is approximately 80% greater than that without

considering interphases, as illustrated in Figure 4.16(c).
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Figure 4.16: Macroscopic constitutive response in uniaxial tension for microstructures with: (a) c = 0.1 and
t/rp = 0.1; (b) c = 0.1 and t/rp = 0.2; and (c) c = 0.2 and t/rp = 0.2.

4.4.2.3 Simple shear

In simple shear, a representative deformed microstructure is illustrated in Figure 4.17(a).

The zone of debonding around each particle is much smaller than that in uniaxial tension.

Similar to the previous example, we also illustrate the stress contours in the particles in

Figure 4.17(b). As with the single particle model, the stress in the particles remains high

at large strains; which explains the higher contribution of friction to the global response, as

discussed in Section 4.4.2.1.
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Figure 4.17: (a) Deformed geometry of a representative unit cell with a particle concentration of c = 0.1 and
an interphase to particle radius ratio of t/rp = 0.2, loaded in simple shear. (b) Contour plot of principal
stress in the particles.

The macroscopic constitutive response in simple shear, for various microstructural config-

urations, is illustrated in Figure 4.18. Similar to the study on the single particle model, in
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simple shear, the influence of the interphase is noticeably less than in the case of uniaxial

tension; however, the interphase continues to significantly alter the macroscopic response.

For the case with a small particle concentration in Figure 4.18(a), and an interphase stiffness

of µi = 10µm, at a strain of 0.4 the global response is approximately 20% greater than in the

case when no interphase is considered. For the case with a larger particle concentration and

interphase thickness in Figure 4.18(c), at a strain of 0.4, the global response is approximately

45% greater than in the case when no interphase is considered.
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Figure 4.18: Macroscopic constitutive response in simple shear for microstructures with: (a) c = 0.1 and
t/rp = 0.2; (b) c = 0.2 and t/rp = 0.1; and (c) c = 0.2 and t/rp = 0.2.

In summary, this series of numerical investigations clearly demonstrates that the inclusion

of physically significant, microscopic interphases can dramatically alter the macroscopic

constitutive response of particle reinforced composites. We are also able to demonstrate

that frictional effects are negligible in tension induced debonding. By demonstrating that

the presence of interphases and interfacial debonding significantly alters the macroscopic

constitutive response of these composite materials, we hope to motivate the inclusion of

such interphases in future investigations which model such composites.

4.5 Experimental validation

In this section, we verify that the proposed computational framework is capable of capturing

representative experimental results from the literature. There are few experimental investi-

gations which report all the necessary microscale and macroscale properties of the composite

material, thus we make reasonable assumptions, and discuss them, where necessary. The

experimental results selected for this comparison were reported in a series of papers by Yat-
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suyanagi et al. [161] and Suzuki et al. [160]. Their results correspond to a well-dispersed

distribution of roughly spherical aggregates of silica particles in a styrene-butadiene rubber

matrix. In their investigation, they study the influence of rubber/filler interaction, due to

variations in coupling agents used in the surface modification process of the silica particles.

Two different surface treatments are considered, labeled as A-50 and UM-2.

The authors used a tensile tester, at room temperature, to determine the stress-strain

curves, and used transmission electron microscopy (TEM) observations to determine the

global effect of the different surface treatments. The authors report, through the use of

swelling experiments, that the elastic properties of the rubber matrix were essentially un-

modified for the A-50 treatment, but the crosslink density in the rubber increased with

surface treatment UM-2. However, they provide no comments on the amount or type of

bound rubber present in the composite. They concluded that the constitutive relation of

the composite is significantly influenced by the interactions between the filler particles and

the matrix. In some cases, they demonstrate that the surface treatment caused strong in-

terfacial bonding between the inclusions and the rubber, however, in other cases the surface

treatment resulted in weak bonding; which lead to interfacial debonding (or dewetting) of

the particles at large strains. In the following, we will only consider the reported cases which

involved interfacial debonding.

Additionally, the authors report the response of the unfilled rubber. Based on fitting the

response of the rubber, we find an appropriate response of the rubber matrix, at least in

uniaxial tension, follows the stored-energy function [113]:

W =
31−α

2α
µ [Iα1 − 3α] . (4.7)

with material parameters µ = 0.54 and α = 0.2, as illustrated in Figure 4.19. As mentioned,

for the surface treatment labeled as UM-2, the authors report that the amount of sulfur

used in this treatment increased the crosslink density in the rubber. To account for this, we

assume that this increases the effective modulus of the rubber, resulting in an increase in

the shear modulus in the stored-energy function (µ = 2.1). The rubber is reinforced with a

particle concentration of cp = 0.26. Further, through a numerical investigation, we assume

an interphase-thickness-to-particle-radius ratio of t/r = 0.2. Since the authors do not report

the interphase stiffness, we select it here by fitting the numerical results to the experimental

results. As illustrated in Figure 4.19, for the A-50 treatment, an interphase modulus 3 times

stiffer than that for the matrix, µi = 3×µm = 3×0.54MPa = 1.62MPa leads to good agree-

ment with the experimental results. Additionally, for the UM-2 treatment, an interphase

modulus 2 times stiffer than that for the matrix, µi = 2 × µm = 2 × 2.1MPa = 4.2MPa
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leads to good agreement with the experimental results. As seen in Figure 4.19, simula-

tions of the same microstructures without the inclusion of interfacial debonding significantly

overestimate the macroscopic constitutive response. The material properties used in the

simulations are summarized in Table 4.1.
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Figure 4.19: Comparison of the proposed computational framework with experimental data.

Table 4.1: Summary of material properties used in the numerical comparison with experiments. The rate of
transition between cohesive and friction forces is set at s = 3, in Equation 4.2.

Treatment Matrix
Modulus

Interphase
Modulus

Fracture
Energy

Cohesive
Strength

Coefficient
of Friction

A-50 0.54MPa 1.62MPa 1.0N/m 0.5MPa 1.0

UM-2 2.10MPa 4.20MPa 1.0N/m 0.5MPa 1.0

In summary, the above comparisons with experiments demonstrate that the proposed

computational framework is able to provide an explanation for the varied macroscopic re-

sponse of particle reinforced composites at finite deformations. Additionally, it confirms the

significant influence of not only particle reinforcements, but also interfacial interactions on

the constitutive response. Thus, in order to design these composites from the bottom up, it

is not enough to only consider the influence of the particles, but one must also consider the

influence of the interactions between the particles and the matrix. Finally, we note that, due

to the necessity to make assumptions on the specific constituent properties not provided in

the experiments, there are other potential combinations of constituent properties which may

also be suitable at capturing the above described behavior. For example, the properties of
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the matrix may change in a different manner than we assumed, due to the use of the applied

treatments, however, this doesn’t negate the presence of interphases. And the influence of

the interphases compounds the influence of the changes in the matrix.

4.6 Concluding remarks

In this chapter, we develop a computational framework to explore the influence of microscale

features on the macroscale constitutive response of particle reinforced composites. While it

has been shown experimentally that interphases significantly alter the macroscopic constitu-

tive response of these composite materials, their inclusion in computational models of such

composites is widely omitted. Through the use of representative unit cells, we demonstrate

the influence of interphases and interfacial debonding on the global response of particle

reinforced composites. We model interphases explicitly, and capture the interfacial debond-

ing behavior of the particles, at large strains, using cohesive elements. To account for the

frictional forces generated between each particle and its corresponding interphase, we devel-

oped a new, fully three-dimensional, coupled cohesive-friction constitutive relation. The use

of this relation revealed that the consideration of friction in uniaxial tension can often be

neglected, due to the small area of contact between the particles and the surrounding ma-

trix. However, this is not the case when the microstructure experiences simple shear loading

conditions; where we demonstrate that frictional forces can be significant, and should not

be neglected. We validated the computational framework with experimental results from

the literature which displayed both the presence of interphases and interfacial debonding.

The comparison with experiments indicates that the proposed computational framework is

able to provide an explanation for the varied macroscopic response of particle reinforced

composites at finite deformations. Because of the challenges associated with experimentally

obtaining the necessary measurements of material properties, a computational framework,

such as the one presented in this chapter, could prove helpful in shedding some light on the

key parameters influencing the global response of this important class of materials.

Finally, we note that entrapped or occluded rubber, may experience uneven curing, result-

ing in residual pressure/confinement stresses which may lead to premature damage or failure

[173]. As discussed in Chapter 2, in our framework, we approximate the occluded rubber by

reinterpreting the concentration of particles as the combined concentration of particles and

occluded rubber, and assume that fracture does not occur within the particles. An extension

of this work may incorporate the influence of cracks occurring within the particle (regions

of occluded rubber), and would then be able to account for the presence and influence of
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residual pressure/confinement on the fracture behavior.

In summary, this investigation has been able to clearly demonstrate the significance of

interphases and interfacial debonding on the macroscopic constitutive response of particle

reinforced composites under finite deformations. However, there are many areas of this topic

which lend themselves to being explored further. For example, the use of 80 particles to rep-

resent the polydisperse nature of the composite fixes the particle surface area, and thus, the

frictional area of contact. If fewer particles or more particles were to be used to generate the

same particle concentration, the surface area of the particles in contact with the elastomer,

and the resulting frictional forces, would change accordingly. Additionally, in this investi-

gation we restrict our attention to spherical particles. The shape of the particles will likely

influence the local stress field around the inclusion [174], and the strength of the adhesive

binding between the particles and the matrix [175], thus a potential extension of this work

would be to consider alternative particle shapes and investigate their influence on the mod-

ulus of the composite and their contribution to frictional effects. Ultimately, the goal would

be to use experimental realizations of the microstructure to capture the precise locations

and geometries of the particles and interphases. This could be done using the techniques of

X-ray tomography or serial sectioning [176, 177]. Finally, one could consider the influence

of hysteretic loading and rate effects on the global constitutive response. The stiffness of

elastomers is known to be strain history dependent [178], wherein the global response of the

elastomer irreversibly softens during cyclic loading. The stiffness of elastomers is also rate

dependent. Some researchers use strain amplification factors to account for rate dependence

in elastomers [85], and include experimentally determined fitting parameters to adjust the

model to the specific material being investigated. A more rigorous approach might incor-

porate the rate dependence into the stored-energy function. The influence of hysteretic and

rate effects was not pursued in our investigation, but could enable a new avenue for the

analysis and design of elastomeric bearings and dampers.
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Chapter 5

Geometrically, Topologically, and Constitutively
Unstructured Methods for Reducing Mesh Dependency
in Dynamic Cohesive Fracture Simulations

In this chapter, we present a series of methods for reducing mesh dependency in two-

dimensional dynamic cohesive fracture simulations. In this setting, cracks are only permitted

to propagate along element facets, thus a poorly designed discretization of the domain can

potentially introduce artifacts the fracture behavior. To reduce the influence of the mesh, we

consider unstructured polygonal finite elements. A randomly-seeded polygonal mesh leads

to an isotropic discretization of the problem domain; which does not bias the crack direction.

However, polygonal meshes tend to limit the possible directions a crack may travel at each

node, making this discretization a poor candidate for dynamic cohesive fracture simulations.

To alleviate this problem, we propose two new topological operators. The first operator we

propose is adaptive element-splitting, and the second is adaptive mesh refinement. Both

operators are designed to improve the ability of unstructured polygonal meshes to capture

crack patterns in dynamic cohesive fracture simulations. However, we show that element-

splitting is more suited to pervasive fracture problems, whereas, adaptive refinement is more

suited to problems dominated by a single crack. In addition, the influence of bulk and co-

hesive material heterogeneity is investigated through the use of a statistical distribution of

material properties. Cohesive elements are dynamically inserted, when and where necessary,

and follow the constitutive response of the extrinsic Park-Paulino-Roesler cohesive model.

The adaptive mesh modifications are handled through a compact topological data structure.

Numerical examples highlight the features of the two operators in both capturing physical

fracture patterns and reducing computational cost.

5.1 Introduction

To predict and understand the real world failure of structures under dynamic loads, inves-

tigators often turn to numerical simulations. Many numerical methods were discussed in

Chapter 1, however, in this work, we employ the finite element method and inter-element

cohesive zone modeling to simulate dynamic fracture. Cohesive elements are adaptively
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inserted between bulk elements, and initially have zero thickness. As the bulk elements

separate, signifying damage and fracture, the cohesive elements impart a softening traction

(which corresponds to a specified cohesive model) on the adjacent facets of the bulk elements.

As discussed in Chapters 3 and 4, elements with intrinsic cohesive models are inserted a

priori into a mesh and have a traction-separation relation which consists of both an initial

elastic range and a softening range. This initial elastic range may create an artificial com-

pliance in the mesh and can lead to non-physical results [52, 54], thus they are primarily

used in problems where the location of material failure is known beforehand. Alternatively,

extrinsic cohesive elements are inserted adaptively into a mesh [55, 56, 57], and are useful

in problems where the fracture path is not known a priori. The traction-separation relation,

corresponding to an extrinsic cohesive model, only consists of a softening range and thus

does not cause artificial compliance.

Since the cohesive element method restricts cracks to propagate along element facets,

issues of crack branching, crack coalescence and fragmentation are naturally handled by the

mesh topology. The primary drawback of this restriction is that the initial mesh, if designed

poorly, can adversely influence the path(s) of crack propagation. Several meshing strategies

have been proposed to circumvent this issue [179, 180, 181, 182, 183]. Unstructured meshes

are preferred for fracture applications, because they possess no preferential paths for cracks

to propagate along (i.e. they are isotropic), which can result in more realistic crack patterns

than their structured counterparts [184, 185]. Motivated by this issue of mesh isotropy, we

use unstructured polygonal meshes in this work.

Unstructured polygonal meshes demonstrate no directional preference for crack propaga-

tion, and have gained popularity of late. Li and Ghosh modeled multiple crack growth,

in brittle materials, with the extended Voronoi cell finite element method (X-VCFEM)

[186, 187, 188]. Ooi et al. [189, 190] developed a hybrid finite element-scaled boundary

finite element technique to propagate cracks. Bishop and coworkers use a framework similar

to that developed in this work, to model pervasive fracture behavior. They generate their fi-

nite element meshes with randomly close-packed Voronoi tessellations and cohesive elements

are adaptively inserted at element boundaries [12, 191]. For a more detailed discussion of

Voronoi tessellations applied to fracture problems, we direct the reader to [192]. Other than

the dynamic insertion of cohesive elements, however, the meshes in the above investigations

remain fixed throughout the simulation. Therefore, to obtain more realistic crack patterns,

in the present study, we apply adaptive (on-the-fly) modifications to the mesh.

In this chapter, we propose two new topological operators for adaptive mesh modification,

to improve fracture patterns in unstructured polygonal meshes. The first operator is more

appropriately used in pervasive fracture simulations, while the second operator is more ap-
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propriately used in problems dominated by a single crack. The remainder of the chapter is

organized as follows. Section 5.2 outlines the numerical framework used in this study. In

Section 5.3, we present the two new topological operators developed in this work, and detail

their implementation. In Section 5.4, we briefly discuss the constitutive models used in this

investigation, and the incorporation of constitutive unstructuredness in homogeneous mate-

rials. Examples which display pervasive fracture behavior are presented in Section 5.5; and

examples dominated by a single crack are presented in Section 5.6. Finally, our concluding

remarks and some potential extensions are presented in Section 5.7.

5.2 Numerical framework using polygonal finite elements

In this section, we present an overview of: the finite element formulation for dynamic frac-

ture problems with cohesive elements; the method used for mesh generation; the polygonal

element shape functions; the method of extrapolating computed values from Gauss points to

nodes; and the topological data structure used to manage the on-the-fly mesh modifications.

5.2.1 Finite element formulation

For an arbitrary domain, Ω, the standard finite element formulation can be derived from the

principle of virtual work. The principal of virtual work corresponding to the dynamic finite

element formulation is [193]:

Wint ≡
∫

Ω

(divσ − ρü) δudΩ =

∫
Γ

(T− σn) δudΓ ≡ Wext, (5.1)

where ρ is the material density, σ is the Cauchy stress tensor, u is the displacement vector,

ü is the acceleration vector, and T is the surface traction along boundary Γ with normal n.

Rearranging Equation 5.1, and applying the divergence theorem and integration by parts,

the following expression is obtained:∫
Ω

(σ : δE + ρü · δu) dΩ−
∫

Γext

Text · δudΓext = 0, (5.2)

where E is the Green-Lagrange strain tensor, and Text is the traction applied on the external

surface, Γext. When cohesive elements are incorporated into the formulation, they contribute
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an additional term to the expression:∫
Ω

(σ : δE + ρü · δu) dΩ−
∫

Γcoh

Tcoh · δ∆udΓcoh −
∫

Γext

Text · δudΓext = 0, (5.3)

where the internal displacement jump, ∆u, produces a cohesive traction, Tcoh, on the internal

cohesive surface, Γcoh.

In fracture simulations, it is important to take into consideration the effect of finite dis-

placements. When cohesive elements are first activated, they display zero thickness. But,

as fracture progresses, the adjacent bulk elements separate and rotate. By not taking into

consideration these finite rotations, the mechanics of the problem may not be accurately

captured. In this work, finite displacements are taken into account by means of the total La-

grangian formulation. In this formulation, the deformation is described with respect to the

undeformed configuration. Following a similar procedure to that described above, the final

expression of the principal of virtual work, with respect to the undeformed configuration,

becomes:∫
Ω

(S : δE + ρü · δu) dΩ−
∫

Γcoh

Tcoh · δ∆udΓcoh −
∫

Γext

Text · δudΓext = 0, (5.4)

where S = JF−1σF−T is the second Piola-Kirchoff stress tensor, F is the deformation

gradient, and J = detF is the Jacobian. For implementation, Equation 5.4 is expressed in

matrix notation as:

Ku + Mü−Rcoh −Rext = 0. (5.5)

Numerically, to progress the dynamic simulation, time is discretized using the explicit

central difference method; which is a subset of the Newmark method [194]. The computation

of nodal displacements, velocities, and accelerations at time n+ 1 are computed from those

at time n through the following scheme:

un+1 = un + ∆tu̇n +
1

2
(∆t)2 ün, (5.6)

ün+1 = M−1
(
Rext −Rintn+1 + Rcohn+1

)
, (5.7)

u̇n+1 = u̇n +
∆t

2
(ün + ün+1) , (5.8)

where ∆t denotes the time step and Rext is the external force vector. Moreover, Rint and

Rcoh are the internal and cohesive force vectors, obtained from the separate contribution of

the bulk and cohesive elements, respectively. To compute the mass matrix, M, we apply a

standard mass lumping technique; in which the diagonal terms of the consistent mass matrix
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are scaled, preserving the total mass, resulting in a diagonal mass matrix [5, 195].

5.2.2 Mesh generation

The unstructured polygonal meshes in this work are generated using the PolyMesher algo-

rithm [196]; which discretizes a domain with a centroidal Voronoi tessellation (CVT). A CVT

results in a higher quality discretization, which is more suitable for finite element analysis

than one generated using randomly placed seeds [196, 20]. We refer to a mesh with more

uniform edge lengths as better suited for finite element analysis than one with a large vari-

ation in edge length [196, 197] (see Section 5.3.4 for a statistical analysis of CVT quality).

Detailed information on the generation of CVT tessellations can be found in the principal

PolyMesher publication [196]; we just highlight a few critical details for completeness, and

maintain the notation of [196] for consistency. Briefly, to initiate the tessellation, a random

set of seeds are inserted into the problem domain. The number of seeds corresponds to the

number of elements to be generated. Given a set of seeds, P, the Voronoi tessellation, T , of

the domain, Ω, is defined as:

T (P; Ω) = {Vy ∩ Ω : y ∈ P} , (5.9)

where Vy is the Voronoi cell corresponding to point y. The Voronoi cell consists of all points

in the domain which are closer to y than to any other point in the set P:

Vy = {x ∈ Ω : ‖x− y‖ < ‖x− z‖ ,∀z ∈ P\ {y}} . (5.10)

The initial discretization, based off the initial set of seeds, results in a random polygonal

tessellation, as illustrated in Figure 5.1(a). In dynamic fracture simulations, the time step

required to produce a stable simulation is dependent on the element size [8]. Because the

random placement of seeds may result in arbitrarily small elements and/or element edges,

this initial discretization is not suitable for dynamic fracture simulations. To improve the

quality of the mesh, Lloyd’s iterative updating algorithm is employed [198]. It generates

a new set of seeds at every iteration, based on the previous Voronoi tessellation. The

new locations of the seeds correspond to the geometric centroids of the Voronoi cells in

the previous tessellation. Figure 5.1(b) shows the resulting Voronoi tessellation after one

update using Lloyd’s algorithm on the random seeds in Figure 5.1(a). This updating process

continues until the change in the energy of the tessellation, from one iteration to the next,

falls below a selected tolerance [196]. The resulting tessellation after 50 iterations of Lloyd’s

algorithm is illustrated in Figure 5.1(c). The resulting mesh is more uniform, and is thus
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more suited for use in dynamic fracture simulations. An investigation of the mesh quality

can be found in the accompanying papers [199, 200], and will be briefly discussed in Sections

5.3.3 and 5.3.4.

(a) (b) (c)

Figure 5.1: Depiction of the mesh generation procedure. (a) Initial placement of seeds and the corresponding
Voronoi tessellation; (b) the Voronoi tessellation after the first iteration of Lloyd’s algorithm; and (c) the
final Voronoi tessellation [196].

5.2.3 Shape functions for polygonal elements

There are several polygonal interpolants available in the literature, see, for example, the

review paper by Sukumar and Malsch [201]. Here, we adopt Wachspress shape functions

[202], which satisfy the desirable properties of shape functions [203]. Isoparametric mapping

is employed to map quantities from a regular n-gon in the reference coordinate system to an

arbitrary convex n-gon in the physical coordinate system. The Wachspress shape functions

[203] for a reference n-gon are expressed as:

Ni (ξ) =
αi (ξ)∑n
j=1 αj (ξ)

, (5.11)

where the interpolants αi are of the form:

αi (ξ) =
A
(
pi−1,pi,pi+1

)
A
(
pi−1,pi, ξ

)
A
(
pi,pi+1, ξ

) , (5.12)

and A denotes the area of the triangle made up of the points in its arguments. For example,

Figure 5.2 shows a reference hexagon with shaded triangular regions indicating the areas

used in the computation of αi in the shape function of the node at pi evaluated at point ξ.

For a detailed discussion of the construction and implementation of the Wachspress shape
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functions for finite element applications, the reader is directed to [204]. The Wachspress

shape functions are generated once, before the fracture simulation begins, and the necessary

quantities (i.e. shape functions and their derivatives evaluated at the integration points) are

stored and accessed on an as-needed basis.
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Figure 5.2: Triangular areas used to define the interpolants, αi, in Equation 5.12.

5.2.4 Numerical integration and extrapolation from Gauss points to nodes

After discretization of Equation 5.1, integration is performed via numerical quadrature, for

which there are many schemes available. One scheme is to use quadrature rules which have

been designed specifically for polygonal domains [205, 206]. In this work we opt to subdivide

the reference n-gon into triangles and use 3-point quadrature rules on each triangle, as

illustrated in Figure 5.3. Then, the contribution from each triangle is summed, to get the

integral over the entire element. Alternatively, the reference n-gon could be subdivided into

quadrilaterals and a 2×2 quadrature rule used on each quadrilateral, as illustrated in Figure

5.3(c).

(a) (b) (c)

Figure 5.3: Quadrature schemes on polygonal elements. (a) Integration points using 3-point quadrature
for each triangular subdivision of a reference 6-gon; (b) location of the integration points in the physical
element; and (c) location of the integration points in the physical element for the quadrilateral subdivision
scheme.
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To achieve a continuous stress field across the domain (except across cracks), we first

extrapolate stresses from the quadrature points to the nodes, then conduct a least squares

minimization over each element [195]. This procedure is conducted throughout the domain

- no differentiation is made between elements near or far from the crack-tip. To do this, we

calculate the stresses at the integration points, σ (ξi, ηi) = σi, where σ is any stress measure

of choice. We then define the smooth stress functions as:

σ̃ (ξi, ηi) =
n∑
j=1

σ̃jNj (ξi, ηi) , (5.13)

where n is the number of nodes in the element, and σ̃j is the smoothed nodal stresses. The

objective then is to find the smoothed nodal stresses, σ̃j, which minimize:

χ =
m∑
i=1

(σ̃ (ξi, ηi)− σ (ξi, ηi))
2 , (5.14)

which leads to the following system of equations:

n∑
j=1

m∑
i=1

Nj (ξi, ηi)Nk (ξi, ηi) σ̃j =
m∑
i=1

Nk (ξi, ηi)σi. (5.15)

By defining the following matrices:

Skj :=
m∑
i=1

Nj (ξi, ηi)Nk (ξi, ηi) and Fki := Nk (ξi, ηi) , (5.16)

the transfer matrix, T, is computed as:

Sσ̃ = Fσ ⇒ σ̃ = S−1Fσ := Tσ ⇒ T = S−1F. (5.17)

Finally, the nodal stress values are computed as the average of that node’s stress contribu-

tion from each adjacent element. For efficient implementation, all searching and storing of

shape functions, Gauss points, and transfer matrices is done in the preprocessing step. This

information is then updated during crack propagation, as necessary, for elements which have

been topologically modified. Alternatively, one could use a non-local smoothing approach;

such as, the super-convergent patch recovery [207], which may provide more accurate results.

However, this approach was not pursued in this work.
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5.2.5 Consistent topological data structure

The insertion of extrinsic cohesive elements in front of the propagating crack-tip requires

on-the-fly mesh modifications during the simulation. To handle the modifications to the

adjacency relations, the present work uses the topological data structure TopS [208, 209].

TopS explicitly stores node and element information, and implicitly represents element facets,

edges and vertices, as illustrated in Figure 5.4. Additionally, TopS is a complete topological

data structure, meaning that, from any entity, all adjacent entities can be determined (e.g.

from a given node, all adjacent nodes, elements, facets, edges and vertices can be accessed).

Cohesive elements are also supported by TopS; in this work we use 2D linear cohesive

elements to be compatible with the linear polygonal elements. With this data structure,

the dynamic insertion of cohesive elements and the retrieval of adjacency information occurs

in time proportional to the number of entities retrieved/inserted.

Element

Model

Vertex-use
Node

Edge-use

Facet-use

Vertex

Edge

Facet

Figure 5.4: Schematic of the topological data structure TopS [208, 210]. The solid lines represent explicit
entities while the dashed lines represent implicit entities. The solid arrows represent explicit references while
the dashed arrows represent implicit references.

5.3 Adaptive topological operators

Crack patterns in geometrically structured meshes often suffer from mesh induced bias [181].

To reduce this bias, unstructured meshes, such as those employed in this work with polygo-

nal elements, are desirable. However, polygonal element meshes are quite restrictive to crack

propagation, because each node in the mesh typically only has three or four edges emanat-

ing from it. Thus, there are only two or three possible directions for a crack to continue

propagating at each crack-tip node. To alleviate this problem, and increase the number of

crack paths on polygonal element meshes, we propose two new topological operators. The
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first operator we propose is adaptive element-splitting, and the second is adaptive mesh

refinement.

5.3.1 Adaptive element-splitting

During dynamic fracture simulations, cracks are advanced by inserting extrinsic cohesive

elements where and when needed. To determine the potential facets along which to in-

sert cohesive elements, nodes with principal stress values greater than 90% of the cohesive

strength are flagged. All the facets in the mesh are then iterated over, and if the facet

contains two flagged nodes, the average normal and shear stress along the facet is computed.

If either stress exceeds the corresponding strength along the facet, a cohesive element is

inserted. Although a stress-based criterion has been adopted, the present methodology can

be used in conjunction with other criteria [211, 212, 213, 214]. In addition to identifying

potential sites for cohesive element insertion, the flagged nodes are also used to identify

potential elements to be split.

Each element connected to a flagged node is checked for splitting. The element may be

split along the line connecting the flagged node to the node which minimizes the difference in

the areas of the two newly created elements. Since the element size is directly related to the

critical time step for the explicit dynamic time integrator, limiting the nodes on which an

element can be split minimizes the reduction of the already small time step. For this same

reason, we also restrict the element to only be split once. To demonstrate the procedure of

element-splitting, we illustrate a typical case in Figure 5.5. In Figure 5.5, node 1 is assumed

to be flagged, and the element could be split with either node 3, 4 or 5. The areas of the

resulting split elements are indicated as A1 and A2, in Figures 5.5(a) through 5.5(c). In

this case, we see that the element is restricted to be split with node 4, as it produces two

new elements whose difference in area is smaller than that if the element were to be split

with either node 3 or node 5. To determine if the element should actually be split, we

compute the average normal and shear stress, and compare them with the cohesive strength,

as described previously. If the average normal or shear stress along the facet that would

connect the splitting nodes is greater than the corresponding cohesive strength, the element

is split. During a time step, element-splitting is performed before cohesive elements are

inserted. Thus, since the criteria for inserting cohesive elements is the same as that to split

an element, all split elements will have a cohesive element inserted along the new facet.

Since we restrict the elements to be split along the path which minimizes the differ-

ence between the areas of the resulting split elements, we introduce directionality into the
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Figure 5.5: Schematic of potential new elements that would result from splitting the element between node
1 and (a) node 3, (b) node 4, and (c) node 5. The configuration shown in (b), where the element is split
with node 4, minimizes the difference between the areas, A1 and A2, of the resulting new elements.

element-splitting operator. Take, for example, the scenario depicted in Figure 5.6. If a crack

approaches the highlighted element from above (Figure 5.6(a)), the element would only be

permitted to split along path 1. However, if a crack approaches the same element from

below (Figure 5.6(b)), the element would only be permitted to split along path 2. Thus, if

this element were to be split along path 1, during post-processing, we can deduce that the

crack approached the element from above. This directionality will become significant when

we assess the quality of the element-splitting operator in Section 5.3.3.

(a) (b)

Figure 5.6: Schematic depicting the directionality of the element-splitting operator. The potential paths on
which an element can be split (if no restrictions are placed) is dependent on the direction at which the crack
approaches the element, as illustrated for the case of a crack approaching from (a) above, and (b) below.

Use of the TopS data structure, discussed in Section 5.2.5, ensures that the element-

splitting operation is computationally efficient. The original polygonal element is removed,

and two new polygonal elements replace it, using appropriate functions available in the TopS

application programming interface (API). Linear polygons are used in this work, so no new
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nodes are created when elements are split; therefore, it is not necessary to interpolate new

nodal quantities. If higher order elements were to be used, mid-side nodal quantities would

need to be interpolated from existing nodes. Moreover, since all of the polygons in the

original mesh are convex, the polygons which result from element-splitting are also convex.

Thus, we do not encounter issues of degenerate finite elements. The methodology presented

here is effective because all of the elements (whether they have been split or not) are polygons,

so the shape functions for the n-gons are always computed in the same fashion. This would

not be the case, however, if element-splitting were employed on a mesh of alternative linear

elements. For example, a split linear quad element would result in two linear triangles, which

have fundamentally different shape functions.

Numerical integration of the split elements is accomplished by the same means as in the

intact elements: the n-sided element is subdivided into n non-overlapping triangles that meet

at the centroid of the polygon. Then, a 3-point quadrature rule is employed on each triangle

and its contribution is added to the element. Thus, new integration points are created in

the element-splitting procedure. In the current work, we use a bulk constitutive model in

which the state of the material is completely characterized by the displacement field, and

cohesive elements are never split. Thus, there is no need to map history-dependent internal

state variables from the original set of integration points to the new set. However, if a more

complex constitutive model were to be used, a technique to map internal state variables,

such as that proposed in [215], would be necessary.

5.3.2 Adaptive refinement

The second topological operator we propose is adaptive refinement. Adaptive refinement

schemes have been used to both minimize error in finite element analysis, and reduce com-

putational cost [216, 217, 218]. In large scale simulations, to capture multiscale effects, fine

meshes are used in regions containing high stress and strain gradients, and coarse meshes are

used far from these regions [7]. In dynamic fracture simulations, the region in the vicinity

of the propagating crack-tip has high stress and strain gradients and thus requires a fine

mesh. Instead of prescribing a fine mesh in the region of expected crack propagation, an

adaptive refinement scheme allows for the unrestricted dynamic propagation of the crack.

This approach has been applied by many researchers: Molinari and Ortiz [219] developed

an adaptive refinement technique based on Rivara’s longest edge propagation path bisection

algorithm; Park et al. [7] presented a multilevel refinement and coarsening strategy for 4k

meshes; and Khoei et al. [220] proposed an adaptive mesh refinement scheme based on a
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modified super-convergent path recovery technique.

Previously proposed adaptive refinement schemes, for two-dimensional dynamic fracture

simulations, have used a 4k mesh structure [7]. Adaptive refinement using the 4k mesh

structure has shown great promise. Since, in this case, the refined mesh also contains a 4k

structure, a systematic procedure of refinement can be developed for one level of refinement

which then translates directly to the next level. By keeping track of the levels of refinement,

an analogous coarsening scheme can be generated. The drawback of using a 4k mesh is

that it is an anisotropic discretization of the problem domain [183]. The 4k mesh is ideal

for modeling cracks which propagate at angles which are a multiple of 45 degrees, but

presents mesh-induced geometric errors when modeling crack paths which deviate greatly

from these angles [183]. To minimize this effect, edge-swap and nodal perturbation operators

were introduced to make the 4k mesh topologically and geometrically unstructured [221].

However, the unstructured 4k mesh has been shown to only moderately reduce, not remove,

the effect of the anisotropies [183].

The refinement scheme we propose decomposes an n-sided polygon into n non-overlapping

quadrilateral elements, as illustrated in Figure 5.7. To conduct the refinement within each

element, we need to determine the location of the centroid of the n-gon. First, the signed

area of the n-gon is calculated based on the physical coordinates of its vertices:

A =
1

2

n∑
k=1

(
vkxv

k+1
y − vk+1

x vky
)
, (5.18)

where (vkx, v
k
y) is the coordinates of the kth vertex of the n-gon, k = 1, ..., n, and the (n+ 1)th

vertex is assumed to be the 1st vertex. From the area, the geometric location of the centroid

(cx, cy) is calculated as:

cx =
1

6A

n∑
k=1

(
vkx + vk+1

x

) (
vkxv

k+1
y − vk+1

x vky
)
, (5.19)

cy =
1

6A

n∑
k=1

(
vky + vk+1

y

) (
vkxv

k+1
y − vk+1

x vky
)
. (5.20)

We then insert nodes at the centroid and the midpoints of the edges of the original polygon.

The original polygon is then removed and replaced with quadrilateral elements connected

at the centroid, one vertex of the original polygon, and the midpoints of the two adjacent

edges, as illustrated in Figure 5.7(b). The resulting nodal connectivities are illustrated in

Figure 5.7(c).
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Figure 5.7: Local geometry in an arbitrary n-gon: (a) prior to refinement, and (b) after refinement with
quadrilaterals. (c) Connectivity in a refined element.

While we only discuss the implementation for a single level of refinement, the extension to a

multi-level refinement scheme can be considered as a simple extension of the above procedure.

When nodes are added to the model, their attributes need to be initialized. Since we are

using linear polygonal elements, the interpolation of nodal attributes is relatively straight

forward.

5.3.2.1 Interpolation scheme

As discussed previously, in this work, we adopt Wachspress shape functions [202] to in-

terpolate field quantities over each element. Thus, the centroidal nodal attributes, ucj, are

interpolated from those of the original nodes of the n-gon using Wachspress shape functions.

The interpolation takes the form:

ucj =
n∑
i=1

Ni (ξ)ui, (5.21)

where n is the number of vertices in the original n-gon, Ni are the Wachspress shape functions

defined on a parent domain, ξ is an interior point in the n-gon, and ui are the attributes to

be interpolated. The centroid of the n-gon, in the parent domain, is ξ = (0, 0) = 0. The

Wachspress shape functions are then expressed as:

Ni (0) =
αi (0)∑n
j=1 αj (0)

, (5.22)

where αi are interpolants of the form:

αi (0) =
A
(
pi−1,pi,pi+1

)
A
(
pi−1,pi,0

)
A
(
pi,pi+1,0

) , (5.23)
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where A denotes the area of the triangle made up of the points in its arguments (see Figure

5.2). For the nodes which are added to the midpoint of an edge, the nodal attributes, umj ,

are interpolated from the two adjacent nodes on the edge. In this case, the interpolation

simply takes the form:

umj =
2∑
i=1

1

2
ui, (5.24)

where ui are the attributes to be interpolated. In this work, we use a bulk constitutive

relation in which the material state is defined completely by the displacement vector, thus,

only the displacement (a nodal quantity) needs to be mapped. As mentioned previously, if

a constitutive relation which included rate or history effects were to be employed, it would

be necessary to map internal state variables from the original integration points to the new

ones [215]; however, this is outside the scope of the current work.

Because nodes are added to the midpoints of the edges, the nodes are initially left hanging,

as illustrated in Figure 5.8. To account for this, all adjacent elements are modified to connect

to the midpoint, resulting in three collinear nodes in each of these adjacent elements. The

elements with collinear nodes remain convex, a condition which enables these elements to

be handled naturally by the Wachspress shape functions. The refinement procedure does

not increase the minimum number of paths a crack may travel along at the original nodes;

however, the inserted midside nodes have 4 potential fracture paths (see Figure 5.9), and

the centroid nodes have n potential fracture paths. To increase the number of fracture paths

at each node, we allow elements to be split, using the element-splitting algorithm discussed

previously.

1

1 1Original: Modif ied:
6-gon 8-gon

Figure 5.8: Hanging nodes adjacent to the region refined with quadrilateral elements and the subsequent
modifications to the coincident edges of the adjacent elements.

Since, in the element-splitting algorithm, an element can only be split along any two,

non-adjacent nodes, there is only one possible direction for quadrilateral elements to be split

at each node. When combined with the adaptive refinement scheme, elements are always
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Figure 5.9: Circular zone of refinement and the corresponding refined mesh. The detail illustrates a typical
midside node with the 4 potential paths along which a crack could propagate.

refined before splitting is performed. Thus, restricting the direction in which elements can

be split is not necessary. With both refinement and element-splitting enabled, there are

a total of 3n possible facets for cracks to propagate along, within an original element, as

illustrated in Figure 5.10.

1 2

Figure 5.10: Possible facets for fracture, progression for an arbitrary n-gon (here 6-gon). Step 1: refinement
(explicit facets) to introduce n possible facets for fracture within the element. Step 2: element-splitting
(implicit facets) to introduce 3n possible facets for fracture within the element.

5.3.2.2 Refinement criteria

The simulation of dynamic fracture problems results in a propagating crack-tip, as illustrated

in Figure 5.11. The mesh refinement procedure is conducted in an adaptive manner, in a

circular region around the propagating crack-tip, as illustrated in Figure 5.9. If the centroid

of a polygonal element falls within the circular region, the element is refined. The influence of

the radius of the circular region of refinement is investigated further in Section 5.6.1. When

refined with quadrilateral elements, the element-splitting procedure is used to implicitly

allow fracture paths to split elements in this region, but does not increase the number of
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“explicit facets” in the model. An explicit facet is a facet which is represented geometrically

(as opposed to an implicit facet, which is only represented topologically).

Crack passing through split elementCrack along refined edge

Figure 5.11: Schematic illustrating the adaptive refinement scheme and a possible crack path propagating
along both refined and split element edges. The shaded elements depict those which have been split.

5.3.3 Geometric quantification of mesh isotropy and bias

In the cohesive element method, cracks are restricted to propagate along element facets, thus

the mesh will undoubtedly influence the crack path. Consider the case of the arbitrary crack

depicted in Figure 5.12. Due to the restriction of cracks only being permitted to propagate

along element facets, the best representation of the crack, by the mesh, will be through a

connection of points on the curve with straight line segments, as illustrated in Figure 5.12.

The approximation of the crack length is then computed as the summation of the length of

the segments. The length of the actual crack could then be approximated, in the limit, as

the length of the line segments tend to zero.

Explicit Crack

Cohesive Element 
Approximation

Figure 5.12: An arbitrary curve (solid), representing an explicit crack, and the straight line segments (dashed)
representing the best representation of the curve by the mesh.

The topological operators we proposed in the previous two subsections are specifically

designed to reduce mesh induced bias in polygonal meshes. Polygonal meshes, on average,

present two potential directions for a crack to continue propagating along at each node.

These limited paths can artificially increase the area of the fracture surface, and thus the
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energy required to propagate a crack. In this section, we present a geometric study which

quantifies the path deviation present in polygonal discretizations and illustrates the signif-

icant improvement provided by the new topological operators. Further investigation and

quantification may be found in the accompanying publications [199, 200].

We define the path deviation, η, in two-dimensions as:

η =
Lf
Lc
− 1, (5.25)

where Lf is the length of the fracture surface along the element facets, and Lc is the actual

length of the crack which the fracture surface is attempting to represent. In this study, the

actual crack length, Lc, is idealized as the straight line distance between a start and end

point in the mesh. Following the reasoning in the above paragraphs, in order for a mesh

to be able to represent an arbitrary crack, it is necessary that it be able to provide a good

representation of a straight line segment. The length of the fracture surface is computed

using Dijkstras greedy shortest path algorithm [222] between the same start and end points.

Since the adaptive element-splitting operator is directional, restrictions are placed on the

potential paths in the shortest path algorithm, such that the directionality is accounted for.

The study is conducted on a circular domain of unit radius, centered on the origin. The start

point is set as (0, 0), and the end point is located at (sinθ, cosθ), where θ = 1◦, 2◦, . . . , 180◦. A

schematic of the study for both a polygonal mesh and a refined mesh with element-splitting

is illustrated in Figure 5.13.

endElement edges
Euclidean distance

start

(a)

start

Element edges
Split element edges

Euclidean distance end

(b)

Figure 5.13: Schematic of the path deviation study, illustrating the shortest computed fracture surface (using
Dijkstras shortest path algorithm) for (a) a polygonal mesh, and (b) a refined mesh. For visual clarity, the
meshes illustrated here are much coarser than those used in the studies.

The results of the study are illustrated in Figure 5.14 and summarized in Table 5.1. From
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the figure, it is clear that the polygonal mesh is isotropic, presenting no clearly preferred

direction for crack propagation. In addition, both of the proposed topological operators

maintain the isotropy of the base polygonal mesh. The base polygonal mesh produces an

average path deviation of approximately 19.3%. When combined with element-splitting,

the average path deviation reduces to approximately 4.45%, an improvement of over 75%.

When the element-splitting operator is combined with adaptive refinement, the average path

deviation reduces to approximately 1.71%, an improvement of over 90%. For comparison,

the path deviation of the adaptively refined mesh with element-splitting is on par with

that for the conjugate-directions mesh presented by Rimoli et al. [183]. However, because

the refinement and element-splitting operators are performed adaptively, the computational

storage costs are less than what they would be for the fixed conjugate-directions mesh.
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Figure 5.14: Results of the path deviation study. Results are displayed for ten, randomly generated: (a)
polygonal meshes, with and without element-splitting; and (b) refined meshes with and without element-
splitting. The horizontal lines represent the average deviation across all of the meshes.

Table 5.1: Summary of the results of the path deviation study for different meshing strategies.

Meshing Strategy Average Standard Deviation

Polygonal 0.1931 0.0013

Polygonal with Splitting 0.0445 0.0009

Polygonal with Refinement 0.0698 0.0021

Polygonal with Refinement and Splitting 0.0171 0.0004
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5.3.4 Influence of topological operators on element quality

Here, we conduct a series of geometric studies on a mesh before and after the application of

element-splitting and adaptive refinement. The studies are conducted on a circular domain,

and the quality metrics used are the coefficient of variation in edge lengths, the element

areas and the interior angles. First, we investigate the influence of collapsing small edges

on element quality in the polygonal discretization. The element edge size is directly related

to the critical time step for the explicit dynamic time integrator. Thus, when designing

the discretization, we eliminate the presence of small edges. To eliminate small edges, the

PolyMesher algorithm searches all the edges in the mesh by looping over all the elements.

Given an edge of an element, the angle (β) between the vectors connecting the center of the

element and the vertices forming the edge is computed [196]. The edge is collapsed into a

single node when:

β < ε

(
2π

n

)
(5.26)

where n is the number of vertices of the element and ε is a user-defined tolerance. We

investigate the influence of the user-defined tolerance on the coefficient of variation of the

element edges when the mesh is adaptively refined with element splitting, as illustrated in

Figure 5.15. In each case, we refine a mesh with 80 polygonal elements using the scheme

outlined in Section 5.3.2. Further, we have randomly split each of the refined elements to

demonstrate the worst case scenario for the adaptively-refined and split elements around the

crack tip. From this preliminary investigation, we demonstrate that the higher the user-

(a) (b)
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0

(c)

Figure 5.15: Influence of user-defined tolerance on the coefficient of variation of edge lengths. A user-defined
tolerance of: (a) ε = 0.1, (b) ε = 0.3, and (c) ε = 0.5.

defined tolerance, the higher the quality of the discretization after refinement and splitting.

Based on this investigation, we recommend that the user-defined tolerance be selected as a
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minimum of 0.4, for dynamic fracture simulations, which is the value used in the remainder

of this chapter.

For each user-defined tolerance, we also investigate the change in the quality of the polyg-

onal mesh with the application of the adaptive operators. We illustrate the results of our

investigation, for ε = 0.4 in Figures 5.16 to 5.18. The coefficient of variation in edge lengths

is represented by a contour plot in Figure 5.16. Each mesh contains 946 elements. We ob-

serve that the uniform polygonal discretization is superior to the cases after the topological

operators are applied, in terms of element quality. The polygonal mesh (Figure 5.16(a))

shows a very uniform distribution of low variation, while the split polygonal mesh demon-

strates a uniform distribution of high variation. The refined polygonal mesh with splitting

contains a wide range of variation.

(a) (b)
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0

(c)

Figure 5.16: Influence of meshing strategy on the coefficient of variation of edge lengths. (a) polygonal mesh,
(b) polygonal mesh with element-splitting, and (c) polygonal mesh with refinement and element-splitting.

To gain further insight into the influence of the topological operators on the mesh quality,

we investigate the element areas and interior angles of the mesh. Each mesh contains 23, 576

elements. The histograms of element areas and interior angles are depicted in Figures 5.17

and 5.18. These plots indicate that topological operators reduce the quality of the polygonal

mesh. However, we note that, since these operators are only applied in the immediate

vicinity of the crack, its influence on the global response is limited, and the use of a high

user-defined tolerance further limits the reduction in quality of the mesh.

5.4 Constitutive relations

While we have approached the problem of mesh induced bias with the geometrically and

topologically unstructured methods outlined in this chapter, we also investigate the use of
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Figure 5.17: Histograms of element areas for a (a) polygonal mesh, (b) polygonal mesh with element-splitting,
and (c) polygonal mesh with refinement and element-splitting.
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Figure 5.18: Histograms of interior angles for a (a) polygonal mesh, (b) polygonal mesh with element-
splitting, and (c) polygonal mesh with refinement and element-splitting. Note, at the boundaries of the
domain the polygonal elements tend to contain edges perpendicular to the outer edges - resulting in a small
peak in frequency of angles around 90◦ for the polygonal mesh.

constitutively unstructured means to reducing mesh dependency [131]. A feature of the

cohesive element method is the ability to separate the constitutive relation of the bulk

elements from that of the cohesive elements. In this section, we discuss the bulk and cohesive

constitutive relations used in this investigation, and the means by which we investigate

microscale heterogeneities. A further discussion on this topic will be provided in Section 6.2.

5.4.1 Bulk material model

The focus of this work is on either homogeneous or homogenized materials; however, in

reality, it is recognized that all materials contain inhomogeneities at the microscale. To

account for these microscale inhomogeneities, the primary properties of the material are

randomly assigned. The bulk material is elastic with an average elastic modulus, Eo, and

Poisson’s ratio, ν. While the elastic modulus is a global parameter, the modulus at the

microscale is varied. To model this variation numerically, the elastic modulus is assigned to

follow a statistically random Weibull [223] distribution:
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E = Eo(−ln(1− ρ)1/m), (5.27)

where Eo is the average elastic modulus, m is the Weibull modulus, and ρ is a randomly

generated number between 0 and 1.

5.4.2 Extrinsic PPR potential-based cohesive zone model

In the dynamic simulations performed in this work, the creation of fractured surfaces, i.e.

crack advancement, is achieved by means of cohesive zone elements, which are inserted at

facets between finite elements. Once a cohesive element is inserted, its behavior is governed

by the traction-separation relation of the extrinsic Park-Paulino-Roesler (PPR) cohesive

model [51]. Next, we describe the extrinsic PPR softening model, and also comment on the

unloading/reloading and contact formulations used in this work.

5.4.2.1 Cohesive softening relation

The extrinsic PPR cohesive model is chosen to represent the nonlinear softening behavior

in the inelastic zone of damage in front of the crack-tip [51]. The extrinsic PPR cohesive

model is potential-based, meaning that the traction-separation relation is derived from a

potential function and the unloading and contact relations are independent of the model.

The potential function for the extrinsic PPR model is given as:

Ψ (∆n,∆t) = min (φn, φt) +

[
Γn

(
1− ∆n

δn

)α
+ 〈φn − φt〉

]
×

[
Γt

(
1− |∆t|

δt

)β
+ 〈φt − φn〉

]
, (5.28)

where the Macaulay bracket 〈·〉 is defined such that 〈x〉 = (|x|+ x) /2.

The normal, Tn, and tangential, Tt, tractions are calculated by taking the derivative of

the potential with respect to the normal crack opening, ∆n, and tangential crack opening,

∆t, respectively:

Tn (∆n,∆t) =
∂Ψ

∂∆n

= −αΓn
δn

(
1− ∆n

δn

)α−1
[

Γt

(
1− |∆t|

δt

)β
+ 〈φt − φn〉

]
, (5.29)

119



Tt (∆n,∆t) =
∂Ψ

∂∆t

= −βΓt
δt

(
1− |∆t|

δt

)β−1 [
Γn

(
1− ∆n

δn

)α
+ 〈φn − φt〉

]
∆t

|∆t|
, (5.30)

where φn and φt are the mode I and mode II fracture energies, and α and β are the mode I

and mode II shape parameters. The energy constants Γn, and Γt are defined as:

Γn = (−φn)〈φn−φt〉/(φn−φt) , Γt = (−φt)〈φt−φn〉/(φt−φn) (φn 6= φt) (5.31)

for different fracture energies, and simplify to:

Γn = −φn, Γt = 1 (φn = φt) (5.32)

for equal fracture energies in both mode I and mode II separation.

Similar to the intrinsic traction-separation relations described in the previous chapters,

the extrinsic traction-separation relations are defined within a domain of dependence, as

illustrated in Figure 5.19. The normal and tangential final crack opening widths are:

δn = αφn/σmax and δt = βφt/τmax, (5.33)

respectively, and the normal and tangential conjugate final crack opening widths are:

δn = δn − δn
(
〈φn − φt〉

φn

)1/α

and δt = δt − δt
(
〈φt − φn〉

φt

)1/β

, (5.34)

where σmax and τmax are the mode I and mode II cohesive strengths, respectively. In total,

there are six user inputs to the extrinsic PPR cohesive model: φn, φt, α, β, σmax, and τmax.

A set of sample traction-separation relations are illustrated in Fig. 5.20.
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Figure 5.19: Domain of dependance for the (a) normal, and (b) tangential tractions; defined by the final
crack opening widths (δn, δt), and the conjugate final crack opening widths (δn, δt).
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Figure 5.20: Extrinsic traction-separation relations for (a) normal opening (φn = 100N/m, σmax = 40MPa,
α = 3.0), and (b) tangential opening (φt = 200N/m, τmax = 30MPa, β = 5.0).

5.4.2.2 Unloading/Reloading relation

In this investigation, the unloading/reloading relation is coupled, meaning that unloading in

the normal direction is coupled to that in the tangential direction. In addition, we assume

that unloading occurs linearly back to the origin, as illustrated in Figure 5.21. Contact is

assumed to occur when the normal separation within a cohesive element becomes negative.

We use the penalty stiffness approach to contact, in which a high stiffness counteracts the

interpenetration of elements. This approach is popularly implemented in conjunction with

cohesive elements, however, others are available [53, 140, 224].
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Figure 5.21: Depiction of the coupled unloading schemes for (a) normal and (b) tangential tractions, with
linear unloading/reloading to the origin [149].

5.4.2.3 Cohesive heterogeneity

To further investigate the influence of constitutively unstructured means on reducing mesh

dependency, we also vary the primary cohesive parameters. Both the cohesive strength
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and fracture energy, attributes of the cohesive elements, are individually selected to follow

a modified weakest link Weibull distribution; where the probability of a cohesive element

having a lower cohesive strength or fracture energy increases with increasing element size

[131]:

γ =
L

1/m
s

L
1/m
f

γo(−ln(1− ρ)1/m), (5.35)

where γo is the average cohesive property (in this work, γo is either the cohesive strength

or the cohesive fracture energy), Lf is the length of the cohesive element, Ls is a scaling

parameter, and m is the Weibull modulus. For a uniform mesh, the scaling parameter is

selected to be the average facet length; whereas, for an adaptively refined mesh, the scaling

parameter is selected to be the average facet length of an equivalent, uniformly refined mesh.

Figure 5.22 illustrates the distribution of facet lengths for a typical mesh with approximately

16,000 facets before refinement, and approximately 67,000 facets after refinement. This

approach was proposed by Zhou and Molinari [131], as a means to address mesh dependency

from a constitutive perspective. While it has proven useful in many situations with triangular

and tetrahedral elements, its use has not been investigated with polygonal elements.
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Figure 5.22: Facet length distribution for a typical random mesh consisting of 6,000 elements. There are
approximately 16,000 facets before refinement and approximately 67,000 facets after uniform refinement.
The domain for this example is 100 × 100mm. (a) Polygonal discretization, and (b) uniformly refined
discretization. The dashed line corresponds to the average facet length in the mesh (Ls), and is equivalent
for both the uniformly refined mesh and the adaptively refined mesh.

To illustrate the effect of the Weibull modulus on the material distribution, a sample

mesh with 16,000 randomly numbered facets was generated, and the cohesive properties of

each were randomly assigned. For example, when a mesh with an average cohesive strength

σo = 1.733GPa was modeled, the resulting variation of cohesive strength for a Weibull
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modulus of m = 50, 30, and 10 is illustrated in Figure 5.23. Clearly, the smaller the

value of m, the greater the range of assigned properties, and thus the greater the overall

heterogeneity in the material. We recognize that there are other methods for randomly

distributing material properties, and will discuss some alternatives in Chapter 6.
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Figure 5.23: Example statistical distribution for a Weibull modulus of (a) m = 50, (b) m = 30 and (c)
m = 10. The average cohesive strength is prescribed as σo = 1.733GPa.

5.5 Pervasive fracture and crack initiation example problems

In this section, we use two numerical examples to explore the effectiveness of the element-

splitting operator in pervasive fracture and crack initiation problems. The first example

considers the fragmentation of a thick cylinder due to an internal impact pressure. The

second example investigates the crack initiation of an epoxy plate with randomly distributed

holes. Comparisons to experiments are made where possible.

5.5.1 Pressure loaded cylinder

This example investigates the fragmentation of a cylinder with an internal impact pressure.

This problem is particularly suitable for the use of unstructured meshes, as structured meshes

can induce undesirable fracture patterns; see [131] for a discussion of unsatisfactory results

obtained due to mesh dependency for the pressure loaded cylinder. The thick cylinder has

an inner radius of 80mm and an outer radius of 150mm, as illustrated in Figure 5.24(a).

The internally applied pressure increases linearly from 0MPa to 400MPa over the course of

1µs then decreases exponentially according to P (t) = 400e(−t/100), as illustrated in Figure

5.24(b). The material has an elastic modulus of 210GPa, a Poisson’s ratio of 0.3 and a

123



density of 7850kg/m3. The cohesive strength, fracture energy, and shape parameter in both

modes are 850MPa, 2000N/m and 2, respectively.
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Figure 5.24: (a) Geometry of the thick cylinder example, and (b) evolution of internal impact pressure with
time.

In a prior numerical investigation of this example, Rabczuk and Belytschko [32] used a

mesh free cracking-nodes method, and observed that the number of large and small fragments

are consistent, regardless of the number of particles used to model the geometry. Song and

Belytschko [225] used a cracking nodes method within the finite element framework. To

break the mesh induced symmetry in their model, they randomly perturbed the elastic

modulus throughout the model by ±5%. They also show that the number of fragments

is consistent through mesh refinement, and are on the order of 20 fragments. Zhou and

Molinari [131] implemented a similar problem in three-dimensions. They also distributed

the cohesive strength based on a modified weakest link Weibull distribution to overcome

mesh dependency in their model. Without distributing the cohesive strength, they found

that cracks initiated in the interior of the cylinder wall. Paulino et al. [221], used an edge-

swap operator to increase the number of fracture paths in their finite element mesh. To

overcome symmetry in their model, they implemented nodal perturbation, but also imposed

restrictions on the location of crack initiation, so that they do not initiate in the interior of

the cylinder wall.

In the present study, the domain is discretized at two levels of refinement, 5,000 and 10,000

polygons, and we investigate cases with and without element-splitting. No external method

(e.g. perturbation) is required to break mesh symmetry, because the mesh is inherently

random, and no restrictions are placed on the initiation of fracture. The final crack patterns
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for all cases are illustrated in Figure 5.25, and the evolution of the strain energy, as frac-

ture progresses for the mesh containing 10,000 elements (with element-splitting enabled), is

illustrated in Figure 5.26.

Regardless of the level of refinement, without element-splitting we observe that many co-

hesive elements are inserted near the internal boundary. The insertion of cohesive elements

results in excessive material softening in this region, causing the cracks to arrest instead of

propagating completely through the thickness of the cylinder. At a finer level of discretiza-

tion, the standard polygonal meshes are still not able to capture the full fragmentation of

the cylinder. Using the same initial polygonal meshes and boundary conditions, but al-

lowing for element-splitting, the resulting behavior and fragmentation patterns agree with

the expected results from the literature [32, 221, 225]. In comparison, the mesh with 5,000

polygonal elements contains 9,419 nodes, whereas that presented by Paulino et al. [221],

for the 4k mesh, results in similar fracture behavior, but contains 12,800 quadratic elements

and 25,920 nodes.

The stress and strain are initially concentrated around the inner boundary of the cylinder

(Figure 5.26(a)), causing fracture to initiate almost uniformly around the inner surface

(Figure 5.26(b)). The majority of these cracks arrest after a small amount of propagation,

however, several cracks propagate through the entire thickness (Figures 5.26(c) to 5.26(e)).

At the end of the simulation (64µs), we can quantify the number of fragments, where a

fragment is defined as the volume of material between two cracks which are continuous and

span the thickness of the cylinder. The final geometry consists of 18 fragments for the 5,000

element case and 23 fragments for the 10,000 element case, which is in good agreement with

the results available in the literature.

5.5.1.1 Influence of material heterogeneity

Here, we investigate the influence of material heterogeneity on the number of fragments

produced and the average crack-tip velocity. We consider variations in the bulk elastic mod-

ulus, the cohesive fracture energy and the cohesive strength. The investigation is conducted

on a polygonal mesh containing 5,000 elements, with element-splitting enabled. For each

material property we vary, we consider three different Weibull moduli, m = 10, 30, and 50;

and for each modulus, three different random instances are simulated (a total of 27 simu-

lations). A summary of the results is provided in Table 5.2. Based on the investigation,

statistically distributing the material properties does not have a significant influence on the

average crack-tip velocity. The only exception might be the case when the cohesive strength

is randomly distributed, with a Weibull modulus of m = 10. In this case, cracking initiates
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(a) (b)

(c) (d)

Figure 5.25: Comparison of the results of the pervasive fragmentation of a cylinder example. Results are
displayed at a time of 64µs. (a) 5,000 elements without element-splitting, (b) 5,000 elements with element-
splitting, (c) 10,000 elements without element-splitting, and (d) 10,000 elements with element-splitting.

sooner, but the time taken to fail completely (29.7 µs) roughly corresponds to that of the

other cases (an average of approximately 27.7 µs), resulting in an average crack-tip velocity

close to that in all the other cases considered.

As well, there is little variation in the number of fragments produced. The only excep-

tion might be the case when the cohesive strength is randomly distributed, with a Weibull

modulus of m = 10. A typical result for this case is illustrated in Figure 5.27. The black

lines in Figure 5.27(b) represent all the cohesive elements which have been inserted in the

model. The insertion of a cohesive element alone, does not signify the development of a

crack, the crack is only fully developed once the cohesive element opens beyond the final

crack opening width, as discussed in Section 5.4.2. However, the insertion of a cohesive ele-

ment does signify some damage in the material has occurred, and the material in this region
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(a) (b)

(c) (d)

(e) (f)

Figure 5.26: Evolution of strain energy through the fragmentation process, for a mesh containing 10,000
elements with element-splitting enabled. Results are displayed at a time of: (a) 30µs, (b) 40µs, (c) 47.5µs,
(d) 55µs, and (e) 60µs. (f) Final fragmented geometry at 64µs.
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Table 5.2: Summary of the investigation of material heterogeneity. A fragment is defined as the mass of
material between two through-thickness cracks. For each case, the results are an average of three simulations.

Number of Fragments Crack-tip Velocity (m/s)

Elastic Modulus (E)

m = 10 17.67 2439

m = 30 20.00 2517

m = 50 19.00 2573

Cohesive Energy (φ)

m = 10 19.67 2592

m = 30 19.67 2592

m = 50 20.67 2592

Cohesive Stress (σ)

m = 10 15.33 2356

m = 30 19.00 2473

m = 50 20.33 2430

has softened. This damage in the material dissipates energy, and can prevent surrounding

cracks from fully developing, thus, possibly providing a explanation as to why fewer cracks

propagate through the full thickness of the cylinder.

cohesiveσ
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(a) (b)

Figure 5.27: (a) Contour plot of cohesive stress, illustrating the distribution of material heterogeneity, with
a Weibull modulus of m = 10; and (b) the corresponding crack pattern after fragmentation.
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5.5.2 Epoxy plate with holes

Adapted from a problem investigated experimentally by Al-Ostaz and Jasiuk [226], this

example investigates the fracture of an epoxy plate with dimensions of 89× 98.4× 3.2mm,

containing 31 randomly distributed holes, as illustrated in Figure 5.28. In their experimental

investigation, Al-Ostaz and Jasiuk observed different fracture patterns for several specimens

containing the same arrangement of holes, as illustrated in Figure 5.29. They attributed the

non-unique fracture patterns to microscopic inhomogeneities in the material, and to flaws

or microcracks at the hole surfaces. Numerically, they simulated the experiments using

both the finite element and the spring network methods. To model fracture, they removed

elements, or bonds, based on a maximum elastic strain energy criterion. They investigated

different fracture criteria and mesh discretizations, and captured different fracture paths for

each scenario.

Coordinates of Hole Locations (mm)

(14.86, 18.57) (26.60, 55.30) (72.46, 70.99) (40.31, 36.25)

(23.70, 13.09) (45.03, 54.38) (63.01, 71.14) (48.54, 31.07)

(13.03, 33.66) (22.18, 70.99) (50.67, 62.76) (59.97, 27.56)

(37.26, 19.49) (13.34, 80.59) (64.69, 58.19) (51.28, 19.64)

(26.14, 38.53) (24.31, 80.74) (76.27, 56.51) (72.77, 17.96)

(12.73, 46.15) (43.51, 75.71) (55.85, 52.10) (64.08, 14.91)

(31.01, 46.76) (55.40, 83.18) (75.51, 40.97) (33.30, 85.31)

(15.32, 55.90) (72.46, 83.94) (51.59, 40.97)

Fixed

89.0 mm

98
.4

 m
m

Δ = 0.4 m/s

Figure 5.28: Geometry of the epoxy plate with holes example, and the corresponding hole locations (extracted
from Figure 13 in [226]).

The problem of a plate with a random distribution of holes, has been investigated by

many researchers, using multiple methods. The strain localization and fracture between

holes in a plate was investigated by Becker and Smelser [227]. In their work, to simulate

the loss of stiffness due to fracture, finite elements were deleted based on an out-of-plane

strain criteria. When the local out-of-plane strain fell in the range of -0.25 to -0.30, the

element was removed from the model. This method of fracture representation was noted

to not be representative of any explicit fracture mechanism. Dynamic behavior was not

considered, instead, mass scaling was used to represent the experiment’s quasi-static loading
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condition. Ostoja-Starzewski and Wang [228] employed particle modeling to simulate the

dynamic fracture and fragmentation of epoxy plates with randomly distributed holes. The

plates were assumed to be inhomogeneous, by applying a very small (±0.005%) random

perturbation to the elastic modulus and the tensile strength. Their investigation of material

heterogeneity illustrated that perturbations in the elastic modulus have a greater influence

on the fracture patterns than perturbations in the tensile strength.

(a) (b)

Figure 5.29: (a) A sample experimental fracture path for one epoxy plate (image extracted from Al-Ostaz
and Jasiuk [226]). (b) Compilation of seven experimental results, adapted from Figure 13 in [226], displaying
the variation in fracture patterns for macroscopically similar plates.

To reproduce this problem, the hole locations are extracted from Figure 13 in reference

[226], as they are not listed explicitly in the literature. Five unique meshes are generated,

with 6,000 elements each. The element seeds are concentrated around the holes using the

probability density function illustrated in Figure 5.30(a). A sample graded mesh is plotted

in Figure 5.30(b). The epoxy has an elastic modulus of 3.26GPa, a Poisson’s ratio of 0.38,

a density of 1100kg/m3, and plane stress conditions are assumed. The average mode I

fracture energy (φn), cohesive strength (σmax), and shape parameter (α) are set as 100N/m,

62.86MPa and 2, respectively. The mode II fracture properties are assumed to be the same

as the mode I fracture properties. A small vertical velocity of 0.04m/s is applied to the

upper surface of the plate, to mimic the quasi-static loading conditions in the experiments

[228]. In this example, we investigate the influence of the holes on the distribution of stress

in the plate, and the influence of material heterogeneity (both uniform and localized) on the

global fracture patterns.
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Figure 5.30: (a) Three-dimensional contour plot of the probability density function, showing the concentrated
probability of generating seeds around the holes. (b) Sample mesh for the epoxy plate with holes example,
showing the gradation around each hole.

5.5.2.1 Influence of the holes on the stress field

First, we examine the elastic stress field in the uncracked specimen, immediately prior to

fracture. Al-Ostaz and Jasiuk [226] experimentally observed the stress field in the speci-

men using photoelasticity. Their experimental results are illustrated in Figure 5.31(a). The

numerically obtained principal stress field is illustrated in Figure 5.31(b), for the case of

a homogenous material. The numerical results are shown to be in good agreement with

the experimental results. Both approaches illustrate that the highest stresses occur at the

surfaces of the holes along lines perpendicular to the line of loading, however, the magnitude

of stress depends on the local geometry. For this particular arrangement of holes, the maxi-

mum stress is between the two holes placed in a most critical position. The maximum stress

depends on the distance from, and direction to, neighboring holes; and the hole’s location

with respect to the applied load.

5.5.2.2 Influence of microscale heterogeneities on fracture patterns

In this section, we investigate the influence of constitutive heterogeneity in the specimen. We

consider different cases for the distribution of material properties. The first case considers

uniform heterogeneity in the material, as illustrated in Figure 5.32(a). However, in the

experimental work of Al-Ostaz and Jasiuk [226], the authors mention that one source of the

randomness in the fracture patterns may be due to a distribution of flaws at the surface of
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Figure 5.31: (a) Stress field obtained by a photo-elasticity method for an epoxy plate (image extracted
from Al-Ostaz and Jasiuk [226]), and (b) corresponding principal stress field obtained from the numerical
simulation. The two results display similar stress contours and locations of concentration.

the holes (due to the manner in which the holes were drilled). Because of this, the second

case we consider assumes that the material heterogeneity is concentrated around the holes,

as illustrated in Figure 5.32(b). The results of our study demonstrated a negligible difference

between the two different scenarios, so the conclusions we provide are general. For the sake

of brevity, we only consider a variation in elastic modulus and cohesive strength, and only

consider a Weibull modulus of m = 5 and 10. We continue to use 5 randomly generated

meshes, and conduct 3 simulations for each random distribution (a total of 120 simulations).

When the elastic modulus of the epoxy plate is randomly assigned, we observe a wide

variation in fracture patterns spanning the middle to lower portion of the plate. For the

sake of brevity, we do not present all of the results, but provide typical results in Figure 5.33.

The results shown are for a Weibull modulus of m = 5, but similar results were observed

for the case of m = 10. Regardless of the material distribution, or mesh, cracks were not

observed in the upper portion of the plate, contrary to the experimental results in Figure

5.29(b). Alternatively, when the cohesive strength of the plate is randomly assigned, we

observe a range of fracture behavior, with cracks spanning the entire height of the plate.

Similarly to before, we only illustrate typical results in Figure 5.34. As seen in Figure

5.34(b), with a variation in cohesive strength, cracks formed in the upper portion of the

plate, capturing the outlying case observed in the experiments.

Through this numerical investigation, we were able to corroborate the conclusion of the

authors who investigated this example experimentally; who noted that the different fracture
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Figure 5.32: Contour plot of cohesive stress showing the (a) uniform, and (b) local distribution of material
heterogeneity.

(a) (b)

Figure 5.33: Typical fracture patterns in the epoxy plate specimen, when the elastic modulus is statistically
distributed. In the results shown, the modulus follows the Weibull distribution in Equation 5.27, with m = 5.

patterns for macroscopically similar plates may be due to microscale heterogeneities. While

the above examples have shown that material heterogeneity has a significant influence on

the fracture patterns of problems concerning pervasive fracture and crack initiation, the

following three examples investigate its influence on problems dominated by a single crack.
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(a) (b)

Figure 5.34: Typical fracture patterns in the epoxy plate specimen, when the cohesive strength is statistically
distributed. In the results shown, the strength follows the Weibull distribution in Equation 5.35, with m = 5.

5.6 Dominant crack example problems

In this section, we explore the effectiveness of the adaptive refinement and element-splitting

operators in problems containing a dominant crack. The first example considers the impact

of a double notched test specimen; which has well known fracture behavior. This will

serve as the benchmark for our analysis, and we will use this opportunity to investigate

the influence of the radius of the zone of refinement on fracture behavior. The second

example focuses on the mixed-mode fracture behavior of a notched plate with a hole under

impact load. In this example, we will consider the influence of both horizontal and angled

notches. The third example considers microbranching behavior. All the examples have

related experimental results in the literature, and comparisons will be made when possible.

To compare the various meshing strategies highlighted in this work, five cases are analyzed:

(1) a coarse polygonal mesh, (2) a coarse polygonal mesh with element-splitting, (3) an

adaptively refined coarse polygonal mesh with element-splitting, (4) a fine polygonal mesh,

and (5) a fine quadrilateral mesh with element-splitting. The five strategies are illustrated

in Figure 5.35. The fine quadrilateral mesh is geometrically similar to the coarse polygonal

mesh, where each polygon is refined with the scheme illustrated in Figure 5.9.

5.6.1 Double notched plate specimen

Kalthoff and Winkler [229] investigated the crack propagation of a double-notched plate

specimen under impact load, as depicted in Figure 5.36(a). They demonstrate that, for

134



Cases (1) and (2)

(a)

Case (3)

(b)

Case (4)

(c)

Case (5)

(d)

Figure 5.35: The five meshing strategies considered in this investigation: (a) a coarse polygonal mesh with
and without element-splitting, (b) an adaptively refined coarse polygonal mesh with element-splitting (nodes
are depicted to illustrate the ability of the polygonal elements to adaptively account for hanging nodes),
(c) a fine polygonal mesh, and (d) a fine quadrilateral mesh with element-splitting. Note that the element-
splitting is not explicitly represented in the mesh, as it occurs on-the-fly; which is why dashed lines are used
to depict split elements.

this specimen, the failure mechanism changes from brittle to ductile failure as the impact

velocity increases. In the case of brittle failure (low rates of loading), cracking initiates at

an angle of approximately 70◦ from the initial plane of the notch. At higher rates of loading,

the failure mechanism is dominated by plastic shear, and the crack initiates at an angle of

approximately −10◦. In this example we focus on the case of brittle fracture, and attempt

to capture the initiation angle of 70◦.

50mm

50mm

100mm
6mm

200m
mv

(a)

Initial notch

25mm

100m
m

100mm

v

(b)

Figure 5.36: (a) The doubled notched plate test specimen used by Kalthoff and Winkler [229], and (b) the
symmetric model used for computations.

Numerically, this problem has been investigated by many researchers. Belytschko et al.

[213] used discontinuous enrichment functions, in the extended finite element method, and
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captured a crack initiation angle of 58◦ with an average crack-tip velocity of 75% the Rayleigh

wave speed. Zhang and Paulino [136] used intrinsic cohesive elements, inserted into the mesh

a priori, and captured a crack initiation angle of between 72◦ and 74◦, with an average crack-

tip velocity of 65% the Rayleigh wave speed. More recently, Park et al. [7] used extrinsic

cohesive elements with adaptive refinement and coarsening on a 4k mesh. They captured a

crack initiation angle of approximately 62◦, with an average crack-tip velocity of 71% the

Rayleigh wave speed.

Due to the symmetry of the problem, the geometry can be reduced to that illustrated

in Figure 5.36(b). The impact velocity is 16.54m/s, and is linearly ramped up over 1µs.

Maraging steel, designated as 18Ni(300), as per the American National Standards Institute,

is used as the representative material. The elastic modulus of the steel is 190GPa, the

Poisson’s ratio is 0.3, and the density is 8000kg/m3. The mode I and mode II fracture

parameters are assumed to be equivalent, with a fracture energy of 22.2kJ/m2, a cohesive

strength of 1.733GPa, and a shape parameter of 2.

To determine the influence of the chosen radius of refinement on fracture behavior, during

adaptively refined simulations, we model this problem with a variety of selected radii. Cases

with a radius of r = 2mm, 4mm, and 6mm are considered, with a starting mesh of 6,000

polygonal elements. The smallest radius we consider (r = 2mm) is a result of the mesh

size; with this radius, there are approximately 10 polygonal elements refined around each

crack-tip. When a radius of r = 1mm is selected, only 2 elements are refined; resulting

in the possibility of unrefined elements at the crack-tip. The size of the starting mesh was

determined through a mesh refinement study and was shown to display sufficiently accurate

results. The velocity of the crack-tip, and the evolution of energy are the two parameters

of interest in this investigation. For the purposes of computing the crack-tip velocity, the

crack-tip is defined as the individual crack-tip which is the greatest distance from the end

of the initial notch. The velocity of the crack-tip, illustrated in Figure 5.37(a), displays

similar trends for each radius of refinement. For the case of r = 2mm, the crack initiates

at a later time then in the other cases; however, the average velocity for each case is similar

(approximately 60% of the Rayleigh wave speed), as illustrated in Figure 5.37(a).

When we consider the evolution of energy, the results again indicate that the radius of

refinement has only a minor effect. The evolution of energy for each case, illustrated in

Figure 5.37(b), is comprised of the strain (Eint), kinetic (Ekin) and fracture (Efra) energies.

The fracture energy is zero up to the point of crack initiation, then steadily increases over

time. The strain energy increases due to the impact, but decreases over time as the crack

propagates. The external energy is equal to the sum of the strain, kinetic, and fracture

energies. The external energy is similar for all cases; however, a small discrepancy in the
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strain energy is observed beyond approximately 60µs. Based on these results, and due to

the small variation in computational cost between the three refinement radii, we select a

radius of r = 4mm for all cases we consider.
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Figure 5.37: Results of the study on the radius of refinement: (a) velocity of the crack-tip, and (b) evolution
of energy. The average velocity is calculated between a time of 25µs and 50µs.

The base, coarse polygonal mesh, contains 6,000 elements. When uniformly refined with

quadrilateral elements, the mesh contains 33,254 elements; which is the number of elements

contained in the fine polygonal mesh. When adaptive refinement is used, a zone with a

4mm radius is initially refined at the notch tip, as illustrated in Figure 5.38(a). For this

case, the refined finite element mesh discretizations at 47.5µs and 82.5µs are illustrated

in Figures 5.38(c) and 5.38(e), respectively. Beside each mesh in Figure 5.38, we provide

the composition of the mesh; which illustrates the evolution of the 4-gons throughout the

simulation.

For all cases, the global fracture angles are similar (68◦ to 72◦), and are in good agreement

with the experimentally observed angle of 70◦. However, the fracture surfaces for the coarse

and fine polygonal meshes are noticeably biased by the polygonal element shapes, as illus-

trated by the fluctuating crack paths in Figure 5.39(a). Both coarse polygonal meshes (with

and without element-splitting) display poor agreement with the expected fracture initiation

angle, and produce the highest global fracture angles.

Even though the polygonal meshes produce fracture surfaces that are biased by the shape

of the elements, the crack velocity for each case displays similar trends. The crack initiates

approximately 20µs after impact, steeply ramps up, and fluctuates greatly thereafter, as

illustrated in Figure 5.39(b). After roughly 50µs the velocity begins to gradually decrease.

In all cases, the average velocity is approximately 1675m/s (or approximately 60% of the
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Figure 5.38: Results of the double notch plate specimen study, for the case of adaptive refinement with
element-splitting. (a) Initial mesh discretization, with a zone of refinement at the notch tip, (b) composition
of the initial mesh, (c) intermediate mesh at 47.5µs, (d) composition of the intermediate mesh, (e) final
mesh at 82.5µs, and (f) composition of the final mesh.

Rayleigh wave speed). These results correspond well with those published in the literature

[7, 136, 229].

Next, we investigate the progression of strain energy density throughout the crack propa-

gation process in Figure 5.40. The strain energy density at times of 35µs, 55µs and 75µs, for
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Figure 5.39: Comparison of (a) the crack paths, and (b) the crack-tip velocity for the five cases considered.

the first three cases in Figure 5.35, are illustrated in 5.40. In each case, it is apparent that

the strain energy density concentrates at the crack tip and there is a clear influence of the

propagating crack on the distribution of strain energy in the right portion of the specimen.

In this portion of the specimen, the waves reflect between the rightmost boundary and the

macroscopic crack [57].

The computational time is listed in Table 5.3. We compare the time it takes for the

specimen to fracture completely, as the number of iterations for each mesh to fracture varies,

due to the variations in path length and corresponding element type. The total cost is lowest

for a coarse polygonal mesh with element-splitting, and highest for the fine polygonal mesh.

Alternatively, one could make comparisons based on the cost per iteration. In this case, the

coarse polygonal mesh becomes the lowest cost option, and has a smaller cost per iteration

than the adaptively modified cases. This result is in line with expectations, as the adaptively

modified cases; while they start with the same discretization, add elements (and nodes) to

the problem as the simulation progresses. Also notable is that computations using the

adaptive refinement scheme, when compared to those for the uniformly refined mesh of the

same effective discretization, are approximately 3.4 times faster.

5.6.2 Horizontal notch in a plate with a hole

This example highlights the mixed-mode fracture of a notched PMMA plate with a hole.

This problem was investigated experimentally by Grégoire et al. [230] using the geometry

illustrated in Figure 5.41(a). The experiments demonstrate a fracture initiation angle of
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Figure 5.40: Strain energy density at times of 35µs, 55µs and 75µs for (a)-(c) a coarse polygonal mesh,
(d)-(f) a coarse polygonal mesh with element-splitting, and (g)-(i) a coarse polygonal mesh with adaptive
refinement and element-splitting.

approximately 37.5◦. The crack initially propagates in a mixed-mode manner then transi-

tions into a mode I crack a short while after initiation. Numerically, this problem has been

investigated using the XFEM method by Grégoire et al. [230] and Gravouil et al. [231]; and

using the polygonal scaled boundary finite element method by Ooi et al. [189, 232]. To the
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Table 5.3: Summary of computational cost to simulate the various cases considered for the double notched
plate example. The five cases correspond to: (1) a coarse polygonal mesh, (2) a coarse polygonal mesh with
element-splitting, (3) an adaptively refined coarse polygonal mesh with element-splitting (the final mesh
contains 8,247 elements and 12,994 nodes), (4) a fine polygonal mesh, and (5) a fine quadrilateral mesh with
element-splitting. The elements and nodes correspond to the initial discretization (the base mesh). The
time step was held constant at ∆t = 5× 10−9µs.

Case Elements Nodes Cost (min) Iterations to Fracture Cost/Iteration (10−3s)

1 6,000 10,815 25.7 18,250 84.5

2 6,000 10,815 24.3 16,900 86.3

3 6,000 10,815 25.3 16,500 92.0

4 33,254 60,314 154.2 16,400 564.1

5 33,254 33,629 85.5 16,400 312.8

best of the author’s knowledge, this problem has not been investigated using the cohesive

element method.
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Figure 5.41: (a) Geometry of the horizontal notch in a plate with a hole, and (b) impact velocity.

Experimentally, the specimen is impacted using a Hopkinson bar [233] with a diameter

of 40mm. Numerically, the impact is described by an applied velocity that ramps up to

8m/s over a period of 100µs then ramps down to 7m/s over a period of 600µs, as illustrated

in Figure 5.41(b). The mesh contains 6,000 elements and a radius of refinement of 4mm

is used. The PMMA has an average elastic modulus of 3.3GPa, a Poisson’s ratio of 0.42,

and a density of 1180kg/m3. The average mode I fracture energy (φn), cohesive strength

(σmax), and shape parameter (α) are set as 352.4N/m, 62.1MPa and 2, respectively. The

mode II fracture properties are assumed to be the same as the mode I fracture properties,

and the influence of the distribution of material properties on the global fracture patterns is

investigated.
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The experimentally obtained fracture pattern and crack initiation angle is shown in Fig-

ure 5.42(a). Sample results from our simulations are illustrated in Figures 5.42(b) through

5.42(f). In Figure 5.42(b) the coarse polygonal mesh displays a crack initiation angle of

approximately 16◦. This is not significantly improved when a fine polygonal mesh is used,

as the crack in this case initiates at an angle of approximately 22◦ (Figure 5.42(e)). When

element-splitting is enabled (Figure 5.42(c)), the crack initiation angle increases to approxi-

mately 31◦, helping support our argument that element-splitting is a significant step towards

obtaining accurate fracture patterns with polygonal elements. However, these results still do

not approach the experimentally observed crack initiation angle of 37.5◦, and do not quite

transition to the mode I cracks we expect. Alternatively, when we use an adaptively refined

mesh (Figure 5.42(d)) or an a equivalent, uniformly refined mesh (Figure 5.42(f)), we observe

a much smoother fracture surface, with the crack initiating at an angle of approximately 35◦

and transitioning from a mixed-mode crack to a mode I crack a short while after initiation

- results which approach those observed experimentally.

An investigation of the energy evolution is conducted for the case of adaptive refinement,

as illustrated in Figure 5.43. The sum of the strain energy, kinetic energy and fracture energy

shows good agreement with the external energy imparted on the specimen by the Hopkinson

bar. The fracture energy remains equal to zero up until the point of crack initiation, and

increases over time, however, it does not contribute significantly to the overall energy. The

computational time is compared in Table 5.4 for the five cases considered (see Figure 5.35).

The time step is set at ∆t = 2 × 10−8µs, based on the Courant-Friedrichs-Lewy stability

condition [234], and the number of iterations to fracture is 22,500 for all cases. The coarse

polygonal mesh has the lowest cost per iteration, and, when adaptive operators are included

(element-splitting and adaptive refinement), the cost increases slightly. Computations using

the adaptive refinement scheme, when compared to those for the uniformly refined mesh of

the same effective discretization, produce comparable results and are more than four times

faster.

To investigate the influence of microstructural heterogeneities on the global fracture pat-

terns, we vary the bulk elastic modulus, the cohesive fracture energy and the cohesive

strength, as discussed in Section 5.4. The study is conducted on the first three cases con-

sidered; a coarse polygonal mesh, a coarse polygonal mesh with element-splitting, and an

adaptively refined coarse polygonal mesh. For each material property considered, three dif-

ferent Weibull moduli are selected, m = 10, 30, and 50, and for each modulus three different

random instances are simulated (a total of 81 simulations). Based on the study, statistically

distributing the material properties has a negligible influence on the global fracture patterns.

For the sake of brevity, not all of the results are shown here, but typical results are illustrated
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(a) (b)

(c) (d)

(e) (f)

Figure 5.42: Results of the notched plate with a hole study. (a) Experimentally obtained fracture pattern
and crack initiation angle of approximately 37.5◦ (image extracted from Grégoire et al. [230]). Simulated
results for (b) a coarse polygonal mesh, (c) a coarse polygonal mesh with element-splitting, (d) an adaptively
refined coarse polygonal mesh with element-splitting, (e) a fine polygonal mesh, and (f) a fine quadrilateral
mesh with element-splitting.

in Figure 5.44. We illustrate the two meshing strategies in most need of improvement, coarse

polygonal meshes with and without element-splitting, with the widest variation of material

properties (m = 10) for each of the properties considered. From the results, it is clear that

using a statistical distribution of material properties to overcome mesh dependency does not

improve the global fracture patterns for the geometrically restrictive polygonal meshes.
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Figure 5.43: Evolution of energy for the horizontal notch in a plate with a hole example, using adaptive
refinement with element-splitting.

Table 5.4: Summary of computational cost to simulate the various cases considered for the horizontal notch in
a plate with a hole example. The five cases correspond to: (1) a coarse polygonal mesh, (2) a coarse polygonal
mesh with element-splitting, (3) an adaptively refined coarse polygonal mesh with element-splitting (the final
mesh contains 7,873 elements and 13,193 nodes), (4) a fine polygonal mesh, and (5) a fine quadrilateral mesh
with element-splitting. The elements and nodes correspond to the initial discretization (the base mesh). The
time step was held constant at ∆t = 2× 10−8µs.

Case Elements Nodes Cost (min) Cost/Iteration (10−3s) Crack Initiation Angle (◦)

1 6,000 11,460 29.5 78.7 16

2 6,000 11,460 30.4 81.1 31

3 6,000 11,460 32.8 87.5 35

4 34,503 68,195 190.3 507.5 22

5 34,503 34,902 135.0 360.0 35

5.6.3 Angled notch in a plate with a hole

This example considers the same problem as in the previous example, but with an angled

notch. This problem was also investigated experimentally by Grégoire et al. [230] using

the geometry illustrated in Figure 5.45. The boundary conditions and material properties

are the same as in the previous example, and the experimental results are shown in Figure

5.46(a).

Sample results from our investigation are presented in Figures 5.46(b) through 5.46(e). In

this case, all of the crack initiation angles are in reasonable agreement with the experimen-

tally observed angle. However, the fracture surfaces in the polygonal meshes are noticeably

influenced by the element geometry, increasing the energy required to propagate the crack.

As before, we investigate the influence of microstructural heterogeneities on the global
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Figure 5.44: Global fracture patterns for the horizontal notch in a plate with a hole problem when the
material is statistically distributed. Results are for: (a)-(b) a variation in elastic modulus for the case of a
coarse polygonal mesh without element-splitting and with element-splitting, respectively; (c)-(d) a variation
in cohesive energy (140N/m ≤ φn ≤ 440N/m) for the same cases, respectively; and (e)-(f) a variation in
cohesive strength (25MPa ≤ σmax ≤ 78MPa) for the same cases, respectively. Results are shown for a
Weibull modulus of m = 10, but illustrate the minor effect that the constitutively unstructured method has
on global fracture patterns when using unstructured polygonal elements.
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Figure 5.45: Geometry of the angled notch in a plate with a hole.

fracture patterns. We vary the bulk elastic modulus, the cohesive fracture energy and the

cohesive strength. The study is conducted on the first three meshing strategies; a coarse
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Figure 5.46: Results of the angled notch in a plate with a hole study. (a) Experimentally obtained fracture
pattern (image extracted from Grégoire [235]). Simulated results for (b) a coarse polygonal mesh, (c) a
coarse polygonal mesh with element-splitting, (d) an adaptively refined coarse polygonal mesh with element-
splitting, (e) a fine polygonal mesh, and (f) a fine quadrilateral mesh with element-splitting.

polygonal mesh, a coarse polygonal mesh with element-splitting and an adaptively refined

coarse polygonal mesh (see Figure 5.35). Typical results are illustrated in Figure 5.47. We

illustrate the two meshing strategies in most need of improvement, coarse polygonal meshes

with and without element-splitting, with the widest variation of material properties (m = 10)

for each of the properties considered. From the results, it is clear that using a statistical

distribution of material properties to overcome mesh dependency does not significantly in-

fluence the global fracture patterns.
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Figure 5.47: Global fracture patterns for the angled notch in a plate with hole problem when the material
is statistically distributed. Results are for: (a)-(b) a variation in elastic modulus for the case of a coarse
polygonal mesh without element-splitting and with element-splitting, respectively; (c)-(d) a variation in
cohesive energy (140N/m ≤ φn ≤ 440N/m) for the same cases, respectively; and (e)-(f) a variation in
cohesive strength (25MPa ≤ σmax ≤ 78MPa) for the same cases, respectively. For each material property
considered, three different Weibull moduli are selected, m = 10, 30, and 50, and for each modulus three
different random instances are simulated (a total of 81 simulations). Results are shown for a Weibull modulus
of m = 10, but illustrate the minor effect that the constitutively unstructured method has on global fracture
patterns when using unstructured polygonal elements.

5.6.4 Microbranching

The microbranching instability in brittle materials undergoing dynamic fracture was exper-

imentally investigated by Sharon and Fineberg [236, 237]. They conducted experiments on

PMMA sheets with a width of 50mm to 200mm and a length of 200mm to 400mm. Among

others, Zhang et al. [57] illustrate that equivalent behavior can be achieved numerically, at

a lower cost, with a reduced dimension model. Thus, the numerical study is conducted on a

reduced dimension model having a width of 4mm, and a length of 16mm, as illustrated in

Figure 5.48 [57]. The PMMA sheet has an average elastic modulus of 3.24GPa, a Poisson’s

ratio of 0.35, and a density of 1190kg/m3. The average mode I fracture energy, cohesive
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strength, and shape parameter are set as 352.4N/m, 129.6MPa and 2, respectively. The

mode II fracture properties are assumed to be the same as the mode I fracture properties,

and the influence of the distribution of material properties on the global fracture patterns

and crack-tip velocity is investigated.

Initial notch
16mm

2mm

4m
m

(a)

Figure 5.48: Geometry and boundary conditions used to investigate the microbranching instability in a
PMMA sheet. A strain of ε0 = 0.015 is applied to the upper and lower surface of the specimen.

A number of researchers have investigated this problem numerically. For instance, Miller et

al. [238] used intrinsic cohesive elements, distributed throughout the model, to investigate

the energy dissipation due to microbranching. They show that crack branching leads to

energy dissipation as the crack velocity increases; which is consistent with the same assertion

made by Sharon and Fineberg [236, 237] based on their experimental investigation. Zhang

et al. [57] used extrinsic cohesive elements, within a topological data structure, to capture

the microbranching instability. Their simulations were conducted on structured 4k meshes;

which lead to similar angles of initiation for the microbranches, but captured behavior in good

agreement with experiments. More recently, Paulino et al. [221] used nodal perturbation

and edge-swap operators to make a structured 4k mesh unstructured. Their results indicate

that unstructured meshes capture varied microbranching angles; and lead to results which

are more consistent with experiments.

For this investigation, we consider the same five cases as before: (1) a coarse polygonal

mesh, (2) a coarse polygonal mesh with element-splitting, (3) an adaptively refined coarse

polygonal mesh (4) a fine polygonal mesh, and (5) a fine quadrilateral mesh (see Figure

5.35). The base, coarse polygonal mesh, contains 4,000 elements. When uniformly refined

with quadrilateral elements, the mesh contains 22,039 elements; which is the number of

elements contained in the fine polygonal mesh. For the cases with adaptive refinement, a

zone with a 0.4mm radius is refined at each crack-tip. The results of the investigation are

illustrated in Figure 5.49. The case for the coarse polygonal mesh (Figure 5.49(a)) results in

a fracture surface biased by the polygonal element shapes, and little crack branching occurs.

When adaptively refined with quadrilateral elements (Figure 5.49(c)), the fracture surface is
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more smooth, and the frequency of micro and macro branching increases. When uniformly

refined with quadrilateral elements (Figure 5.49(e)), we get similar behavior to that for the

case of adaptive refinement. For the adaptively refined case, and the two fine cases, the

fracture patterns agree well with previous numerical investigations and experimental results

[236, 237].

(a) (b)

(c) (d)

(e)

Figure 5.49: Simulated results of the microbranching problem, using (a) a coarse polygonal mesh (b) a coarse
polygonal mesh with element-splitting, (c) an adaptively refined coarse polygonal mesh, (d) a fine polygonal
mesh, and (e) a fine quadrilateral mesh with element-splitting.

The horizontal velocity of the crack-tip is tracked, for each case, and plotted in Figure

5.50(a). For the purposes of computing the crack-tip velocity, the crack-tip is defined as the

individual crack-tip which is the greatest horizontal distance from the end of the initial notch.

The average velocity of each case is also plotted, and is in close agreement with one another.

Since the crack-tip velocity fluctuates significantly while the crack propagates, the average

velocity is only representative of the overall trend and should not be taken as a precise

value. The average velocity is lowest for the case of a coarse polygonal mesh (approximately

543m/s), and is highest for the adaptively refined mesh (approximately 667m/s). All cases

have crack-tip velocities that fall within the range of those determined experimentally (as

illustrated in Figure 4 in [237]).

Similarly to the previous examples, the evolution of energy is computed for the case of

adaptive refinement and illustrated in Figure 5.50(b). Because there is no external work in

this problem (Eext = 0), the total energy (Etot) is the sum of the strain energy (Eint), the

kinetic energy (Ekin), and the fracture energy (Efra). The total energy remains constant
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throughout the problem; indicating that energy is conserved, and agrees well with results

published in the literature [57, 221].
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Figure 5.50: (a) Horizontal velocity of the crack-tip for the five cases considered. The average velocities
are included as horizontal lines. (b) Evolution of energy for the microbranching specimen using adaptive
refinement with element-splitting.

We also investigate the influence of microstructural heterogeneities on the global fracture

patterns, by varying the bulk elastic modulus, the cohesive fracture energy and the cohesive

strength. The study was conducted on the coarse polygonal mesh, the coarse polygonal mesh

with element-splitting and the adaptively refined coarse polygonal mesh. For each material

property considered, three different Weibull moduli were selected, m = 10, 30, and 50, and

for each Weibull modulus three different random instances were simulated (a total of 81

simulations). Typical results are illustrated in Figure 5.51. We illustrate the two meshing

strategies in most need of improvement, coarse polygonal meshes with and without element-

splitting, with the widest variation of material properties (m = 10) for each property we

consider. For the most part, statistically distributing material properties to overcome mesh

dependency does not significantly improve the global fracture patterns. The only noticeable

exception is in the case of element-splitting, with a variation in cohesive strength (Figure

5.51(f)), where there is an observable increase in the frequency of microbranching.

In addition to the global fracture patterns, we investigate the influence of microstructural

heterogeneities on the crack-tip velocity. The same scenarios as in the fracture pattern

investigation are considered, and the average crack-tip velocities are summarized in Table

5.5. While the tabulated velocities all fall within the expected range observed experimentally

[237], the coarse polygonal mesh consistently produces the lowest velocity, and the adaptively

refined mesh consistently produces the highest velocity. There is no observable influence of
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Figure 5.51: Global fracture patterns for the microbranching problem when the material is statistically
distributed. Results are for: (a)-(b) a variation in elastic modulus for the case of a coarse polygonal mesh
without element-splitting and with element-splitting, respectively; (c)-(d) a variation in cohesive energy
(140N/m ≤ φn ≤ 440N/m) for the same cases, respectively; and (e)-(f) a variation in cohesive strength
(55MPa ≤ σmax ≤ 162MPa) for the same cases, respectively. Results are shown for a Weibull modulus of
m = 10.

the statistical distribution of material properties.

Table 5.5: Summary of the average horizontal crack-tip velocity, when material properties are statistically
distributed. Results are averaged over three different random instances and are listed in units of meters per
second (m/s).

Distribution of Material

Homogeneous m = 50 m = 30 m = 10

Coarse Polygonal

Cohesive Stress (σ) 562 547 547

Cohesive Energy (φ) 543 557 531 551

Elastic Modulus (E) 533 521 504

Element-Splitting

Cohesive Stress (σ) 630 624 638

Cohesive Energy (φ) 597 582 594 605

Elastic Modulus (E) 607 589 605

Adaptive Refinement

Cohesive Stress (σ) 681 662 689

Cohesive Energy (φ) 667 677 682 673

Elastic Modulus (E) 654 669 650

The computational time is listed in Table 5.6. Similarly to the double notched plate
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example, the number of iterations it takes for the specimen to fracture completely depends

on the meshing strategy. The total cost is lowest for the adaptively refined coarse polygonal

mesh, and highest for the fine polygonal mesh. Alternatively, when considering the cost per

iteration, the coarse polygonal mesh becomes the lowest cost option. Once again, this is in

line with expectations, as the adaptively modified meshes add elements (and nodes) to the

problem as the simulation progresses. Computations using the adaptive refinement scheme,

when compared to those for the uniformly refined mesh of the same effective discretization,

produce comparable results and are almost three times faster.

Table 5.6: Summary of computational cost to simulate the various cases considered for the microbranching
example. The five cases correspond to: (1) a coarse polygonal mesh, (2) a coarse polygonal mesh with
element-splitting, (3) an adaptively refined coarse polygonal mesh with element-splitting (the final mesh
contains 9,395 elements and 12,436 nodes), (4) a fine polygonal mesh, and (5) a fine quadrilateral mesh with
element-splitting. The elements and nodes correspond to the initial discretization (the base mesh). The
time step was held constant at ∆t = 1× 10−9µs.

Case Elements Nodes Cost (min) Iterations to Fracture Cost/Iteration (10−3s)

1 4,000 7,188 21.5 28,200 45.7

2 4,000 7,188 20.8 23,000 54.3

3 4,000 7,188 19.1 21,000 54.6

4 22,039 43,538 116.8 25,200 278.1

5 22,039 22,375 56.0 22,400 150.0

5.7 Concluding remarks

In this chapter, we perform two-dimensional dynamic cohesive fracture simulations using

unstructured polygonal meshes. Unstructured polygonal meshes are isotropic, demonstrat-

ing no global directional preference for crack propagation, but limit the possible directions a

crack may travel at each node. To alleviate these mesh induced restrictions, two new topo-

logical operators are presented: adaptive element-splitting and adaptive refinement. The

influence of both operators on the crack path deviation is investigated through a proba-

bilistic series of geometric studies. The studies quantify the ability of the various meshing

strategies to represent arbitrary fracture patterns with minimal error. While the primary

objective of this work is to promote the use of geometrically and topologically unstructured

methods for addressing mesh dependency, we also investigate the use of a constitutively un-

structured method. The constitutively unstructured method is investigated in the example
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problems by statistically distributing the primary bulk and cohesive material properties, and

investigating their effects on the global fracture behavior. Our investigation shows that the

effects are minor and almost negligible, when compared to the improvements demonstrated

by the topological operators.

The numerical methods developed in this chapter are verified with five example problems,

most of which are supported with experimental results from the literature. The first two

examples investigate pervasive fracture and crack initiation behavior, while the last three

examples cover mode I, mixed-mode, and microbranching behavior. The examples demon-

strate that adaptive element-splitting is more suited to pervasive fracture problems, and

adaptive refinement is more suited to problems dominated by a single crack. Specifically,

the problems dominated by a single crack illustrate the improvements that the adaptive re-

finement scheme presents in capturing crack initiation angles, crack-tip velocities, and global

fracture patterns. Both the crack-tip velocity and the evolution of energy are computed in

the examples, and compare well with experimental and numerical results published in the

literature. The microbranching behavior, observed experimentally, is also captured when

using the geometric and topological strategies proposed in this work. In addition to show-

ing improved capabilities in capturing fracture behavior, the adaptive refinement scheme is

shown to be computationally advantageous. The cost per iteration for the adaptive refine-

ment scheme is shown to be only slightly higher than that for a coarse polygonal mesh. We

also demonstrate that the standard polygonal element meshes do not provide the expected

results in most of the examples we consider, when compared to numerical and experimental

results available in the literature.

In this chapter, we focus on the unique geometric characteristics of polygonal elements

for reducing mesh induced restrictions to crack propagation. However, we note that there

is room for the extension of this work. For example, adaptive refinement of unstructured

polygonal meshes, with the cohesive element framework, could allow one to bridge length

scales in hierarchical materials. The fine scale features of a hierarchical material can be

captured with the adaptive refinement technique detailed here, while the coarse regions

of the mesh could be used to represent the homogenized response of the bulk material.

Heterogeneity in the bulk material has been treated in this work with a simplified statistical

distribution for nearly homogeneous materials, but the unstructured polygonal elements

provide flexibility in representing distributions of heterogeneity in a material. For example,

at small scales, the polygonal elements could represent grains in metals and alloys, while

adaptive refinement and element-splitting could be used to represent either intergranular or

intragranular fracture.

Alternatively, the philosophy of eliminating mesh induced bias in cohesive fracture sim-
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ulations could be applied in the context of a recently proposed meshing strategy, known

as “universal meshing” [239]. In this approach, a background mesh is fixed, and is locally

deformed to conform to a given boundary (or crack). The fixed background mesh is termed

as the “universal mesh”. This approach has been used to successfully simulate the kink-free

evolution of quasi-static cracks in brittle, isotropic, linearly elastic materials in two dimen-

sions [239]. While this approach may be promising, it does have some inherent deficiencies.

At its foundation, it is essentially a remeshing technique. In the simulation of a dynamic

crack propagating through a domain, the crack boundary constantly changes, requiring a

remeshing of the domain at frequent intervals. During remeshing, the transfer of variables

from the former mesh to the new mesh would need to be performed. For arbitrary unstruc-

tured remeshing, the repeated application of mesh-to-mesh transfer operators may result in

significant numerical diffusion [240]. Alternative, hybrid approaches to overcome this de-

ficiency were proposed by Leon [20]. These include: (1) restricting the remeshing to the

vicinity of the crack-tip to reduce the amount of numerical diffusion, and (2) increasing the

intervals between remeshing, and using an element-splitting operator between each interval.

While these approaches may reduce some of the issues related to the numerical diffusion in-

duced by the mapping of variables from the old mesh to the new mesh, further investigation

will need to be conducted to quantify their improvement.
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Chapter 6

Regularizing Pervasive Cohesive Fracture and
Fragmentation in Three-Dimensions

In this chapter, we present an investigation into the full spectrum of three-dimensional dy-

namic fracture behavior, using the extrinsic PPR cohesive model. While two-dimensional

fracture simulations can capture the behavior of many important problems, the plane-stress

or plane-strain assumptions are not always representative of the problem at hand. More im-

portantly, two-dimensional fracture simulations can only model problems with homogeneous

out-of-plane geometries. If the geometry in the out-of-plane direction varies, then fully three-

dimensional simulations are necessary. In this chapter, we consider fully three-dimensional

pervasive fracture simulations. Throughout pervasive fracture simulations, many cracks

initiate, propagate, branch and coalesce simultaneously. Because of the cohesive element

method’s unique framework, this behavior can be captured in a regularized manner.

In three dimensions, it is common practice to use automatic mesh generators to discretize

the domain. However, automatic mesh generators often conduct additional post-processing

of the mesh; to remove elements with degenerate edges and sliver elements. In some cases,

this additional post-processing leads these (initially random) meshes to contain an underlying

structure. To remove this structure, we propose using the technique of nodal perturbation.

The focus of this work is on the investigation of homogeneous or homogenized materials;

however, we recognize that all materials contain heterogeneity (or defects) at the microscale.

Defects naturally arise in materials due to grain boundaries, voids, or inclusions. As well,

defects may be introduced through the act of processing or machining the material. These

microscale defects constitute potential regions where stresses can concentrate and lead to

damage or failure. To represent such heterogeneity, we propose using a statistical distri-

bution of material properties. The behavior of quasi-brittle materials undergoing pervasive

fracture and fragmentation is examined using three examples. The examples are selected to

investigate some of the significant factors which influence pervasive fracture and fragmenta-

tion; including, geometric features, loading conditions, and material gradation.

155



6.1 Introduction

The pervasive fracture and fragmentation of structures occurs at various scales and in various

contexts. When a structure is struck with either a high-velocity direct impact, or a blast load,

the damage incurred typically pervades a region of the structure. Pervasive damage involves

the entire spectrum of fracture behavior; from crack initiation, through crack propagation,

branching and coalescence, all the way to complete fragmentation. At any one time, there

may be hundreds or thousands of micro- to macro-cracks in the structure. Being able to

capture and understand the factors which influence the fragmentation of structures can lead

to better design practices in many fields of engineering. For example, understanding how a

ceramic plate fragments when struck with a high velocity projectile can improve the design

of armor for personnel carriers. Alternatively, understanding the process by which a kidney

stone fragments may help in the design of surgical tools and procedures. However, due to

the inherent complexity of modeling pervasive damage, there are few numerical methods

capable of capturing the full spectrum of behavior in three-dimensions.

There are many methods which have been proposed for simulating fracture problems.

Some of the popular methods consist of the extended (or generalized) finite element method

(FEM); meshless or particle based methods; and the cohesive element method. A summary

of the various methods was presented in Chapter 1; here, we briefly comment on the ability of

the various methods to capture the full range of fracture behavior. The extended FEM uses

discontinuous shape functions to represent the profile of a crack within a continuum. The

discontinuity in the element’s shape function effectively splits the element; which requires

a lot of heuristic manipulations, and can present numerical integration and time-stepping

issues in dynamic fracture simulations [7]. When faced with the full spectrum of fracture

behavior, these limitations result in the extended FEM becoming prohibitively complicated

[12]. Meshless methods have also shown promise in modeling problems dominated by a single

crack, however, when faced with pervasive damage, many of them still suffer from volume

deletion. As the continuum material fragments, it evolves into a collection of spheres; which

have a theoretical maximum packing limit of 74% [12], leading to a nonphysical loss of

volume in the model.

Alternatively, in this chapter, we demonstrate that the cohesive element method is par-

ticularly suited to capturing pervasive fracture and fragmentation behavior. The cohesive

element method, motivated by the work of Dugdale [2] and Barenblatt [1], uses cohesive

zone models to explicitly represent the inelastic zone of damage in front of the crack-tip. In

dynamic fracture simulations, extrinsic cohesive elements are adaptively inserted ahead of a

propagating crack-tip and resist the separation of the adjacent bulk elements through cohe-
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sive forces [56, 241]. The insertion of cohesive elements is restricted to element facets. This

restriction allows the cohesive element method some unique capabilities. The mesh topol-

ogy regularizes the domain and naturally handles the branching and coalescence of fracture

surfaces. The elements are not split, thus the minimum element size is fixed, and the time-

stepping issue present in the extended FEM does not occur. Additionally, the restriction

of fracture surfaces to element facets results in a continuous volume of bulk material as it

fragments. However, restricting fracture to occur along element facets can result in mesh

dependent behavior, and thus the meshing strategy in dynamic cohesive fracture simulations

is important. If one were to choose a structured mesh, or to use mesh smoothing techniques

on a randomly generated mesh, the resulting discretization could bias the fracture behavior.

Thus, it is worth exploring means of introducing unstructuredness into the problem.

Unstructuredness can be introduced to a finite element problem through either topological,

geometric, or constitutive means. The primary topologically unstructured methods consist

of: remeshing, element-splitting and adaptive refinement. With remeshing or adaptive re-

finement, the internal state variables of the fine mesh need to be interpolated from those

of the coarse mesh. For refinement around a propagating crack-tip, the repeated applica-

tion of mesh-to-mesh transfer operators may result in significant numerical diffusion [240].

Additionally, these methods are not particularly suited to pervasive fracture problems, as

the entire domain often needs to be refined, quickly losing the cost-saving advantages of

adaptive refinement. Alternatively, some researchers apply element-splitting operators to

increase the number of crack paths in three-dimensional tetrahedral meshes. The advantage

of element-splitting is that it may be combined with an edge-collapse operator [219, 242],

to coarsen regions far from the crack-tip. The downside of this technique is that element-

splitting only provides a small amount of refinement, and the quality of the elements can

deteriorate once split. Alternatively, in this chapter, we focus on geometric and constitutive

methods for introducing unstructuredness into the problem.

Much of the numerical framework in three-dimensions is the same as that described in

Chapter 5 in two-dimensions. In particular, the finite element formulation presented in Sec-

tion 5.2.1 is unchanged when we move to three-dimensions, thus it will not be repeated. Ad-

ditionally, the data structure we use to handle mesh modifications, and to store and retrieve

data, is TopS; which was outlined in Section 5.2.5. The cohesive zone model selected to rep-

resent the dynamic failure behavior is the extrinsic Park-Paulino-Roesler (PPR) model. This

work represents the first known instance of the use of the model in fully three-dimensional

dynamic fracture simulations. The details of the model were presented in Chapter 5. The

remainder of the chapter is organized as follows. In Section 6.2, we discuss constitutively

unstructured methods for introducing randomness into a model. Section 6.3 outlines the
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technique of nodal perturbation, to introduce geometric unstructuredness into a finite el-

ement mesh. Additionally, in this section, we conduct a series of geometric studies to in-

vestigate the influence of nodal perturbation on the quality of the mesh. In Section 6.4,

we present three examples which highlight many of the significant factors influencing the

pervasive fracture and fragmentation of structures. Section 6.5 presents an example where

failure occurs due to a dominant, mixed-mode crack. In Section 6.6, we provide a global

discussion on meshing strategies in two and three dimensions, and summarize the findings

of our investigation on the topic. In Section 6.7, we propose a new meshing strategy called

the 4k-patch mesh. Finally, we provide some concluding remarks in Section 6.8.

6.2 Unstructured constitutive relations by means of a statistical

distribution

The focus of this work is on the investigation of homogeneous or homogenized materials,

however, we recognize that all materials contain heterogeneity (or defects) at the microscale.

Defects naturally arise in materials due to grain boundaries, voids, or inclusions [243, 244].

As well, defects may be introduced through the act of processing or machining the material

[245]. These microscale defects constitute regions where stresses can concentrate and lead

to damage or failure. In this work, we propose representing this heterogeneity by means of

a statistical distribution of material properties, specifically a distribution of the strength of

the material. Over the years, there have been many methods proposed for capturing the

distribution of defects in a material.

One of the simplest methods for incorporating defects in the material is to distribute

the material parameters based on a constant probability density function (PDF); which is

equivalent to a random perturbation to the material’s properties [225, 228, 246]. While

this model is simple, it has no physically motivated basis. Alternatively, one could take

a statistical approach, distributing the material strength based on a probabilistic model

[247]. Peirce [248] developed a probabilistic failure model based on the weakest link theory

and extreme value statistics. His model was later refined by Fréchet [249], among others

[250, 251]. However, the most popular probabilistic model, for the study of material failure,

is that of Weibull [223].

Weibull’s probabilistic failure model was motivated by randomness he observed in the

ultimate failure load of material specimens tested in an identical manner. He explained his

motivation through a simple thought experiment. Consider a series of rods of length L, with

cross-sectional area A, loaded to failure by an external load P . If one were to repeat this
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experiment, the ultimate failure load would not be a constant, but would differ each time.

The failure loads could then be grouped around a mean, and a statistical analysis could be

completed. Based on a set of experiments, conducted on a variety of materials with multiple

loading conditions, he proposed the well known Weibull distribution, with probability of

failure, Pf , given by:

Pf = 1− e−N(σ,V ), (6.1)

where V is the volume of the material, σ is the measure of stress, and N(σ, V ) is a material

function, independent of the position. The specific form of N(σ, V ) is often the topic of

debate; however, Weibull noted that it must be a monotonically increasing function of σ,

and determined that an effective relation for most homogeneous materials is:

N(σ, V ) =
1

V0

(
σ − σmin

λ

)m
, (6.2)

where m is the Weibull modulus, V0 is a normalizing volume (often taken as V0 = 1 [252]),

λ is a scale parameter, and σmin is the lower bound of material strength. To illustrate the

influence of the Weibull modulus and scale parameter on the probability density function,

some sample functions are illustrated in Figure 6.1.
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Figure 6.1: Effect of input parameters on the Weibull distribution: (a) λ, and (b) m. Here, we assume
σmin = 264MPa and V0 = 1.

In the years since Weibull presented his distribution, many researchers have proposed al-

ternate forms of N(σ, V ). Freudenthal [253] proposed a general distribution for homogeneous

and brittle materials. He assumed that flaws do not interact, and that the probability of

failure only depends on the number of critical flaws, Nc,S, present in a specimen of size S:

N(σ, V ) = Nc,S(σ). (6.3)
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Later, Danzer [252] extended this distribution for inhomogeneous materials. Alternatively,

Jayatilaka and Trustrum [254] proposed a model based on flaw size distribution and material

strength:

N(σ, V ) = N
cn−1

n!

(
πσ2

K2
IC

)n−1

, (6.4)

where N is the number of cracks, KIC is the critical stress intensity factor of the material,

and n and c are characteristic constants.

The abovementioned models assume that there is no interaction between defects. However,

Afferrante et al. [255] demonstrated that the Weibull distribution of material strength (6.2)

applies in a general sense, even if there is interaction between the defects. They also note

that the Weibull modulus does not necessarily correspond to a material constant, and that it

may be influenced by the interaction among cracks, or the interaction of cracks and the stress

field. Thus, in the examples we investigate in Section 6.4, we will use the Weibull distribution

and will vary the Weibull modulus to illustrate its influence on the global fracture behavior.

6.3 Unstructured geometry by means of nodal perturbation

There are many techniques for discretizing a volume into tetrahedral elements [256]; of which,

the most popular may be the Delaunay triangulation [257, 258, 259]. Delaunay triangulation

is the technique of choice for most automatic mesh generators [114, 260]. However, automatic

mesh generators often conduct additional post-processing of the mesh; to remove elements

with degenerate edges and sliver elements. In some cases this additional post-processing

leads these (initially random) meshes to contain an underlying structure. To remove this

structure, we propose using the technique of nodal perturbation (NP).

To implement the NP algorithm, we apply the following steps. First, all the nodes in the

mesh are traversed, and restrictions are placed on boundary nodes. Corner nodes are fixed,

edge nodes are restricted to the original line of the edge, and face nodes are restricted to

the boundary face. At each node, the minimum distance between the node and the opposite

faces of the adjacent tetrahedrons is computed. The node is then perturbed in a random

direction; where the magnitude of the perturbation corresponds to the computed distance

multiplied by a perturbation factor (perturbation factor < 1). After perturbing the nodes, a

Laplacian smoothing technique is used to improve the mesh quality [221, 261]. In this step,

each element in the mesh is visited, and the quality of the element is assessed. The element
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quality is quantified by Lo’s parameter [256], γ:

γ =
72
√

3 Vtetrahedron

(
∑

square of edges)3/2
, (6.5)

where Vtetrahedron is the volume of the tetrahedron. Equivalently:

γ (A,B,C,D) =
12
√

3 (AB × AC) · AD(
‖AB‖2 + ‖BC‖2 + ‖CA‖2 + ‖AD‖2 + ‖CD‖2 + ‖BD‖2)3/2

, (6.6)

where A, B, C, and D correspond to the nodal positions of the tetrahedron. The higher the

Lo’s parameter, the higher the quality of the element. For example, equilateral tetrahedra

have a Lo’s parameter of 1.0. If an element fails to meet a minimum specified Lo’s parameter,

the position of each node in the element is displaced by the average of the distance vectors

to the neighboring nodes on the edges incident to the node [221]. This procedure is iterated

until all elements in the mesh meet minimum specified quality requirements.

Here, we conduct a series of geometric studies on a mesh before and after NP. The studies

are conducted on a cubic domain, randomly discretized with 47, 924 tetrahedral elements,

as illustrated in Figure 6.2. An illustration of the effect of NP on a typical Delaunay mesh

is shown in Figures 6.2(b) to 6.2(d). The NP factors used in this study range from 0.0−0.6,

in increments of 0.1. Three unique meshes are generated for each random NP factor, and

the results of the studies are averaged. To quantify the effect of NP, we track three metrics:

element quality (Lo’s parameter), minimum interior angle, and maximum interior angle.

The results of the study on Lo’s parameter are illustrated in Figure 6.3. The desired

average mesh quality parameter is selected as 0.7; which is generally acceptable for finite

element simulations [221]. The minimum Lo’s parameter for an unperturbed mesh is 0.434,

and decreases with increasing NP factor. For the unperturbed mesh, and the same mesh

with a NP factor of 0.4, we plot the spatial distribution of Lo’s parameter for each element

in Figures 6.3(a) and 6.3(b), respectively. A histogram of the mesh quality for increasing

NP factors is illustrated in Figure 6.3(c). As the NP factor increases, the range of Lo’s

parameters broadens and skews to lower values. Regardless of the NP factor, the maximum

Lo’s parameter in the mesh remains approximately equal to 1.0.

To gain additional insight into the influence of NP on the mesh, we investigate the min-

imum and maximum interior angles of the elements in the mesh. The interior angles can

give insight into the initial distortion of the elements. For example, the commercial software

Abaqus qualifies elements with interior angles less than 10◦ or greater than 160◦ as distorted

[103]. A histogram of the minimum interior angle is presented in Figure 6.4(a), while one
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(a) (b)

(c) (d)

Figure 6.2: Influence of nodal perturbation on meshes generated using a Delaunay triangulation [114]. (a)
Unperturbed, (b) a nodal perturbation factor of 0.2, (c) a nodal perturbation factor of 0.4, and (d) a nodal
perturbation factor of 0.6.

for the maximum interior angle is presented in Figure 6.4(b). For the unperturbed case,

the smallest minimum interior angle is approximately 25.3◦, and decreases with increasing

NP factor. Similarly, the largest maximum interior angle for the unperturbed case is ap-

proximately 120.7◦ and increases with increasing NP factor. These results are in line with

expectations, as perturbing the nodes distorts the elements, and the higher the perturbation

factor, the higher the level of distortion.

The results of the geometric study are summarized in Table 6.1. Based on the results, a

NP factor of 0.4 is the largest factor which still maintains a high quality mesh and conforms

to the recommended interior angles [103]. Thus, this is the NP factor we use in the remainder

of the chapter.
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Figure 6.3: Contour plot of Lo’s parameter for each element, considering (a) NP= 0.0 (Unperturbed), and
(b) NP= 0.4; and (c) a histograph of mesh quality for various nodal perturbation factors.

6.4 Pervasive fracture example problems

In this section, three example problems are investigated which display pervasive fracture

behavior. The first example considers the centrifugal loading of a spinning disk. The second

example investigates the impulse loading of a hollow sphere, where focus is placed on the

influence of geometric features on the fragmentation behavior of the sphere. The third

example considers the fragmentation of a kidney stone under direct impact. Since kidney

stones often display a radial gradation of material properties, we consider both homogeneous

and functionally graded stones. Unless noted otherwise, we consider a fragment to be a
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Figure 6.4: Results of the study on the interior angles in the mesh: (a) histograph of minimum interior
angles, and (b) histograph of maximum interior angles.

mass of bulk elements (and cohesive elements which have not fully separated) completely

surrounded by boundary facets and/or fully separated cohesive elements. A pseudo code of

the procedure we use to determine the fragments is provided in Algorithm 1. The objective

of the algorithm is to create a list of fragments, and all bulk elements belonging to that

fragment. Comparisons to experiments are made where possible. In all of the examples, we

consider the influence of randomness in the material strength on the fragmentation behavior.

The Weibull function (6.2) is selected to describe the distribution of material strength.
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Algorithm 1 Procedure for determining the distribution of the fragments.

input: nBulkElems //number of bulk elements in the model

nVisited = 0 //number of bulk elements visited

while (nVisited < nBulkElems)

Iterate over all the elements in the model

if (element is cohesive) continue; end if

if (element has been visited) continue; end if

Create a new fragment structure

Add the bulk element to the fragment, and flag it as visited

Increment nVisited

for (i = 0; i < number of bulk elements in the fragment; i++)

Get current element in the fragment

for (j = 0; j < number of adjacent elements; j++)

if adjacent element is cohesive and not flagged as visited

Flag cohesive element as visited

if (cohesive element has failed completely) continue; end if

for (k = 0; k < number of adjacent bulk elements; k++)

if (element has been visited) continue; end if

Add the bulk element to the fragment, and flag it as visited

end for

else

if (element has been visited) continue; end if

Add the bulk element to the fragment, and flag it as visited

Increment nVisited

end if

end for

end for

end while

output: Fragments
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Table 6.1: Summary of the results for the mesh quality study. The quantities for each metric are averaged
over three randomly generated meshes.

Lo’s Parameter (γ) Minimum Angle (◦) Maximum Angle (◦)

NP Factor min mean max min mean max min mean max

0.0 0.434 0.858 0.999 25.3 43.7 58.1 61.5 81.8 120.7

0.1 0.419 0.848 0.998 24.3 43.0 58.4 61.9 82.6 123.1

0.2 0.292 0.820 0.998 19.9 41.1 58.1 62.0 84.8 132.5

0.3 0.225 0.782 0.997 15.2 38.8 57.9 62.5 87.8 142.0

0.4 0.132 0.738 0.996 11.5 36.5 57.3 62.5 90.9 152.4

0.5 0.064 0.695 0.996 7.2 34.4 57.6 63.3 94.2 162.7

0.6 0.027 0.656 0.998 3.7 32.6 58.0 61.6 97.1 171.0

6.4.1 Centrifugal loading of a spinning disk

This example considers the fragmentation of a spinning disk; which is motivated by the use

of structural ceramics in the high stress environment of a spinning turbine. We consider two

different geometries for the disk, as illustrated in Figure 6.5. The two disks, from this point

forward, will be referred to as the small disk and the large disk, respectively. Each disk

is ceramic, constituted of silicon nitride (Si3N4); the elastic modulus of which is 300GPa,

the Poisson’s ratio is 0.3, and the density is 3250kg/m3. The mode I fracture energy (φn)

and shape parameter (α) are set as 180N/m and 2, respectively. The minimum cohesive

strength, σmin, is set as 425MPa. Two Weibull moduli, m = 2, 5, and two scale parameters

λ = 40MPa, 80MPa are considered. The mode II fracture properties are assumed to be

the same as the mode I fracture properties.

Experimentally, the small disk specimen was investigated by Swank and Williams [262];

however, to the best of the author’s knowledge, there have been no numerical investigations

using this geometry and loading condition. To simulate this problem, we use a randomly

generated mesh containing 124, 882 linear tetrahedral elements (30, 421 nodes), and a NP

factor of 0.4. The spinning of the disk is represented as a centrifugal force, with an angular

velocity (ω) of 4π × 103rad/sec. To model the centrifugal force, a body force (b) is applied

to the model:

b = ρω2r, (6.7)

where ρ is the density of the material and r is the radial vector of the point of loading.

The angular velocity is ramped up linearly over 100µs and held constant thereafter, as

illustrated in Figure 6.6. For each Weibull modulus (m) and scale parameter (λ) we run

three simulations (a total of 12 simulations). For this example, we illustrate each of the
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Figure 6.5: Geometries investigated in the spinning disk example: (a) small disk, and (b) large disk.

results in Figure 6.7. Each result displays the final fragmented form of the specimen.
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Figure 6.6: Applied angular velocity, over time, in the small disk specimen.

Based on the results, it is clear that the random distribution of material strength, and

the random perturbation of nodes, produces a random result in each simulation. However,

qualitatively there are many similarities among the fracture patterns. For the most part,

the small disk specimen fractures into approximately four large fragments and 1−3 medium

fragments. The large fragments are defined as the bulk of material between two cracks which

span the entire width of the cylinder. A medium fragment is defined as the bulk of material

that results after the branch of a through-width crack reaches the outer boundary of the

specimen. For example, the result illustrated in Figure 6.7(f) displays four large fragments

and two medium fragments. In addition to the qualitative fracture patterns, we also calculate

the average crack-tip velocity through the specimen. The crack-tip velocity is determined
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Figure 6.7: Results for the small disk geometry with Weibull parameters: (a) λ = 40MPa, and m = 2; (b)
λ = 40MPa, and m = 5; (c) λ = 80MPa, and m = 2; and (d) λ = 80MPa, and m = 5. All the results are
illustrated in their final fragmented form, which occurred in the range of 118µs to 127µs. For visual clarity,
the small fragments (those comprised of fewer than 10 bulk elements) have been removed from the displayed
results.
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by simply documenting the time it takes for a crack to propagate through the entire width

of the disk. A summary of the results is presented in Table 6.2.

The average crack-tip velocity varies between 2769m/s and 3181m/s, depending on the

distribution of material strength. For the wider distribution of strength, m = 5, the crack-

tip velocity is higher than that observed for a more homogeneous, or narrow, distribution of

strength, m = 2. The Rayleigh wave speed, CR, for Si3N4 is 5600m/s, thus the computed

values fall in the range of 0.49CR to 0.57CR; which is consistent with the experimentally

expected crack velocity [237].

Scale
Parameter (λ)

Weibull
Modulus (m)

Large
Fragments

Medium
Fragments

Crack-tip
Velocity

40 MPa 2 4.33 2.67 2888 m/s

40 MPa 5 4.00 2.67 3181 m/s

80 MPa 2 4.00 2.33 2769 m/s

80 MPa 5 3.67 3.33 3179 m/s

Table 6.2: Summary of the small disk results. Each result is the average of three simulations. A large
fragment is defined as the bulk of material between two cracks which span the entire width of the cylinder.
A medium fragment is defined as the bulk of material that results after the branch of a through-width crack
reaches the outer boundary of the specimen.

The large disk specimen was investigated experimentally by Hashimoto et al. [263]. Nu-

merically, this problem has been simulated by Zhou and Molinari [131]. They simulate

fracture using a linear cohesive traction-separation relation, and also consider the influence

of material heterogeneity. Their investigation determined that the greater the heterogeneity

in the material (i.e. the wider the range of cohesive strength), the fewer fragments were

produced. In addition, they compute an average crack-tip velocity of 5500m/s, or 98% of

the Rayleigh wave speed; a result which they note is inconsistent with experiments [131].

To simulate this problem, we use a model containing 140, 339 elements (40, 768 nodes).

Similarly to the small disk, we represent the spinning of the large disk as a centrifugal force,

with an angular velocity of 2.8π × 103rad/sec. The angular velocity is ramped up linearly

over 100µs and held constant thereafter. For each Weibull modulus (m) and scale parameter

(λ) we run three simulations (a total of 12 simulations). For this example, we only illustrate

a typical result for each combination of Weibull modulus and scale parameter in Figure 6.8.

Each result displays the final fragmented form of the specimen. The resulting number of

large and medium fragments is summarized in Table 6.3. For the smaller scale parameter,

λ = 40MPa, a greater number of large and medium fragments is produced than in the case

with a larger scale parameter, λ = 80MPa. Overall, the fracture patterns correspond well
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to those observed experimentally (see Figure 4 in [263]), and the distribution of fragments

corresponds well to those in alternate numerical investigations [131].

The velocity of the through-width cracks is also tracked, and the results are included in

Table 6.3. The average crack-tip velocity varies between 3165m/s and 3390m/s, depending

on the distribution of material strength. Similar to the small disk geometry, for a wider

distribution of strength, m = 5, the crack-tip velocity is higher than that observed for a

more homogeneous distribution of strength, m = 2. For comparison, the computed values

fall in the range of 0.56CR to 0.61CR.

(a) (b)

(c) (d)

Figure 6.8: Typical results for the large disk geometry with Weibull parameters: (a) λ = 40MPa, and
m = 2; (b) λ = 40MPa, and m = 5; (c) λ = 80MPa, and m = 2; and (d) λ = 80MPa, and m = 5. All
the results are illustrated in their final fragmented form, which occurred at approximately 87µs. For visual
clarity, the small fragments (those comprised of fewer than 10 bulk elements) have been removed from the
displayed results.
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Scale
Parameter (λ)

Weibull
Modulus (m)

Large
Fragments

Medium
Fragments

Crack-tip
Velocity

40 MPa 2 12.33 6.67 3165 m/s

40 MPa 5 13.67 7.00 3390 m/s

80 MPa 2 11.33 4.33 3203 m/s

80 MPa 5 10.67 5.67 3346 m/s

Table 6.3: Summary of the large disk results. Each result is the average of three simulations. A large
fragment is defined as the bulk of material between two cracks which span the entire width of the cylinder.
A medium fragment is defined as the bulk of material that results after the branch of a through-width crack
reaches the outer boundary of the specimen.

6.4.2 Impulse loading of a hollow sphere

This example investigates the fragmentation of a hollow sphere impacted with a radial

impulse load. We consider both a smooth sphere (Figure 6.9) and a sphere containing surface

features (Figure 6.10). The influence of surface features in this investigation is included to

illustrate the use of simple geometric design features to regularize fragmentation patterns.

Alternatively, surface features may be viewed as geometric defects, and investigating their

impact on the global fragmentation response is equally significant. Numerically, the smooth

sphere geometry was investigated by Levy [245]. She investigated the effect of the thickness

of the sphere on the shape and distribution of fragments. In this study, we set the inner

radius of the sphere to be 9.25mm,and the outer radius to be 10mm, as illustrated in Figure

6.9(a). The geometry is discretized with approximately 100,000 linear tetrahedral elements

(approximately 25,000 nodes), as illustrated in Figure 6.9(b). The sphere is constituted of

aluminum oxide (Al2O3); the elastic modulus of which is 370GPa, the Poisson’s ratio is 0.22,

and the density is 3900kg/m3. The mode I fracture energy and shape parameter are set as

50N/m and 2, respectively. The minimum cohesive strength, σmin, is set as 264MPa. Two

Weibull moduli, m = 2, 5, and two scale parameters λ = 50MPa, 100MPa are considered.

The sphere is loaded with a radial impulse. Since we assume the sphere to be centered on

the origin, the initial nodal velocities are prescribed as:

vx (x, y, z) = ε̇x, vy (x, y, z) = ε̇y, and vz (x, y, z) = ε̇z, (6.8)

where x, y, and z, are the nodal coordinates, and ε̇ is the applied rate of strain. In this study

we will consider two different strain rates, ε̇ = 2500s−1 and ε̇ = 5000s−1. Once again, for

each geometry, loading rate, Weibull modulus and scale parameter, we run three simulations

(a total of 72 simulations). For visual clarity, the fragments will be individually colored in
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Figure 6.9: Model of a smooth, hollow sphere: (a) geometry, and (b) mesh.
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Figure 6.10: Geometry of a hollow sphere with different surface features, (a) dimples, and (b) bumps. The
dimples are generated by removing material that intersects with spheres of radius, r = 1.1mm, placed at
a radial distance of 10.5mm from the origin. The bumps are generated through the union of the smooth
sphere and spheres of radius, r = 1.1mm, placed at a radial distance of 9.5mm from the origin.

each of the results we illustrate.

For a strain rate of ε̇ = 2500s−1, we illustrate some typical results in Figure 6.11 for a

Weibull modulus of m = 2 and scale parameter λ = 50MPa. As illustrated in Figure 6.11(a),

the smooth sphere fragments into large pieces with no discernible pattern. Alternatively,

each case with surface features displays a distinct pattern by which it fragments. For the case

with surface dimples, fracture was observed to initiate at the centroid of the dimples and to
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radiate outwards. This is not surprising, as the geometry is thinnest at this location, causing

stresses to concentrate here, as illustrated in Figure 6.12. Additionally, the placement of the

dimples appears to control the geometry of the fragments. In Figure 6.11(b), one can see that

the edges of the fragments align with the centroids of nearest neighbor dimples. Alternatively,

when we consider the case with bumps (Figure 6.11(c)), there is clear evidence that the edges

of the fragments are deflected away from the bumps. Thus, the bumps remain intact during

fragmentation. While we only display selected results here, this behavior was shown across

all the Weibull modulus and scale parameter values we considered.

(a) (b) (c)

Figure 6.11: Final fragmented geometries, after impacted with an impulse load at a rate of ε̇ = 2500s−1,
for: (a) a smooth sphere, (b) a sphere with dimples, and (c) a sphere with bumps. The results show typical
fracture patterns, but are for the case with λ = 50MPa and m = 2. The fragments are colored for visual
clarity, and the small fragments (those comprised of fewer than 10 bulk elements) have been removed from
the displayed results.

If we increase the applied rate of strain to ε̇ = 5000s−1, fragmentation becomes more

pervasive, as illustrated in Figure 6.13. Similar to the previous case, the fragmentation of

the smooth sphere does not display any discernible pattern. However, fracture continues to

initiate at, and to radiate outwards from, the dimples; and each bump is wholly contained

in a single fragment. Once again, this behavior was shown across all the Weibull modulus

and scale parameter values we considered.

To further examine the fragmentation behavior, we plot the evolution of fragmentation

through time in Figure 6.14. Results are illustrated for a variation in scale parameter, λ,

with a constant Weibull modulus of m = 2. In each scenario, fragmentation initiates quickly

(after approximately 0.5µs to 2µs), and takes approximately 20µs to complete. In all the

cases with a higher applied rate of strain, ε̇ = 5000s−1, the majority of the fragmentation

occurs in the first 10µs, and fragmentation evolves slower in cases with λ = 100MPa than

they do in cases with λ = 50MPa. When we examine cases with a lower rate of strain,
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Figure 6.12: Initial stages of fracture in a sphere with dimples. (a) Contour of principal stress, illustrating
the concentration of stress at the centroids of the dimples, immediately prior to fracture; and (b) fracture
initiating at the dimples.

(a) (b) (c)

Figure 6.13: Final fragmented geometries, after impacted with an impulse load at a rate of ε̇ = 5000s−1,
for: (a) a smooth sphere, (b) a sphere with dimples, and (c) a sphere with bumps. The results show typical
fracture patterns, but are for the case with λ = 50MPa and m = 2. The fragments are colored for visual
clarity, and the small fragments (those comprised of fewer than 10 bulk elements) have been removed from
the displayed results.

ε̇ = 2500s−1, little difference is observed in the cases with λ = 50MPa and λ = 100MPa.

However, for the case with dimples (Figure 6.13(b)) fragmentation evolves at a faster rate

than when we consider a smooth sphere, or a sphere with bumps. From this investigation,

we see that the distribution of material parameters does have an impact on the manner

in which fragmentation occurs; however, the fragmentation patterns are also significantly

influenced by geometric features. This investigation provides support to the idea of being

able to regularize fragmentation behavior through simple geometric design features.

An investigation of energy evolution is conducted for the case of the smooth sphere, as
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Figure 6.14: Evolution of fragmentation for: (a) a smooth sphere, (b) a sphere with dimples, and (c) a
sphere with bumps. The results shown consider a Weibull modulus of m = 2.

illustrated in Figure 6.15. The energy is comprised of the strain (Eint), kinetic (Ekin) and

fracture (Efra) energies. The impulse load on the structure results in a large initial kinetic

energy, which is converted into strain energy in the system. The fracture energy remains

equal to zero up until the point of crack initiation, and monotonically increases over time.

The summation of energy in the system remains constant over time, indicating a conservation

of energy. For a higher rate of strain, the initial kinetic energy in the system is larger, as

illustrated in Figure 6.15(b). This higher rate of strain also leads to an earlier onset of

fracture, however, the relative magnitudes of strain and fracture energy in each system is

similar.
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Figure 6.15: Evolution of energy for a hollow sphere under an impulse load with an applied rate of strain
of: (a) 2500s−1, and (b) 5000s−1.
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6.4.3 Direct impact of a kidney stone

This example considers the direct impact of a kidney stone through the use of a Lithoclast.

A Lithoclast is a surgical tool which propels a metallic probe against the stone. The ki-

netic energy of the probe is dissipated throughout the stone, forming cracks and fragments,

allowing for easier removal or passage. The structure of the kidney stone has long been

known to be nonhomogeneous [264, 265, 266], however, most attempts at simulating such

problems have assumed homogeneous material properties [133, 267, 268]. Mota et al. [267]

studied the fragmentation of manufactured, cylindrical stones made from gypsum. They

loaded the stone using the technique of Lithotripsy, wherein a pulse of pressure is applied

to the exterior of the stone. They also conducted experiments and demonstrated the co-

hesive element method’s ability to capture fragmentation patterns which agreed with those

observed experimentally. Caballero and Molinari [133, 268] simulated the direct impact of a

kidney stone with the Lithoclast, but only considered the simplified case of a homogeneous

stone structure. In this example, we investigate the influence of a radially heterogeneous

microstructure within the stone, and include the influence of randomly distributed material

strength.

The geometry of the problem is illustrated in Figure 6.16. The kidney stone model is

assumed to be spherical, with a radius of 10mm. The site of impact with the Lithoclast

is assumed to be circular, with a radius of 0.325mm. The stone is discretized with 51,746

elements (10,424 nodes), as illustrated in Figure 6.16. The elements at the site of impact

have a maximum size of 0.1mm, and those in the bulk of the stone have a maximum size of

0.65mm. In this investigation, we will consider the three distinct sets of material properties

listed in Table 6.4. We will first investigate the fragmentation behavior for a homogeneous

stone; then consider the behavior when the core of the stone is comprised of a different

material than the outer layer of the stone. The numerical framework described in Section

5.2.1 applies to both homogeneous and functionally graded materials. To numerically capture

the gradation of the material between distinct zones, we use graded finite elements; which

incorporate the material gradation at the size-scale of the element. There have been multiple

methods designed to allow for graded material properties at the element scale [141, 142],

however, in this work, we use the generalized isoparametric method proposed by Kim and

Paulino [142]. In the generalized isoparametric method, the element shape functions are

used to interpolate the material parameters from the Gauss points to the nodes. Between

distinct zones we grade all bulk and cohesive material properties, as well, we continue to

assume a random distribution of material strength.

The impact of the probe is modeled by displacing the nodes in the impact site by a
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Figure 6.16: Geometry and mesh of the kidney stone model.

Stone Composition (%) φ (N/m) σ (MPa) ρ (kg/m3) E (MPa)

COM 0.735 1.500 2038 25.162

CA 0.382 0.500 1732 8.504

CA(50)/COM(50) 0.553 1.000 1885 16.833

Table 6.4: Summary of material properties in common kidney stones. COM: calcium oxalate monohydrate;
and CA: carbonate apatite [265].

prescribed velocity. The velocity of the probe is not known precisely, but we assume that it

decreases monotonically. Caballero and Molinari [133, 268] suggest that the impact velocity

follows the relation:

u̇ (t) = u̇0

[
1−

e−α t
tmax

1 + (e−α − 1) t
tmax

]
, (6.9)

where α ∈ (−∞,+∞), u̇0 is the initial velocity of the probe, and tmax is the total time of

contact. The total time of contact is determined through the relation:

tmax =
utmax

u̇0

(e−α − 1)
2

1− e−α (1 + α)
, (6.10)
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where utmax is the maximum displacement achieved by the probe after impact. The particular

velocity relation used in this investigation is illustrated in Figure 6.17.
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Figure 6.17: Impact velocity of the metal probe on the kidney stone.

First, we examine the fragmentation behavior of the homogeneous kidney stone. We

consider all three materials listed in Table 6.4 and plot the evolution of fragmentation through

time in Figure 6.18. Results are illustrated for a variation in both scale parameter, λ, and

Weibull modulus, m, for each material. In general, the fragmentation evolves slower for the

most compliant material (CA), than it does for the least compliant material (COM). When

considering the random distribution of material strength, the scale parameter is shown to

have a much greater influence on the evolution of fragmentation that the Weibull modulus.

For a smaller scale parameter, λ = 0.2MPa, fragmentation occurs sooner and is more

pervasive than in the case of a large scale parameter, λ = 0.4MPa. Additionally, the final

volume of fragments indicates that the stone does not fully fragment when the range of

material strength increases. The results shown are for a single instance of the simulated

problem, however, each scenario was simulated three times, and the present results and

conclusions are typical across each simulation.

When we assume that the stone contains a different constitutive make-up in the inner

core than it does in the outer layer, the fragmentation behavior changes significantly. In this

investigation, we consider scenarios with both a more compliant and less compliant material

in the inner core. Based on experimental observations of the microstructure of kidney stones

[264, 265, 266], the outer core is assumed to be 15% the thickness of the radius, and the zone

transitioning between the inner core and outer layer is assumed to be 20% the thickness

of the radius. Multiple values were investigated for the thickness of both the outer layer

and zone of transition, but these values did not significantly influence the global response.

Typical results are illustrated in Figure 6.19. When we have a more compliant inner core,
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Figure 6.18: Evolution of fragmentation for a homogeneous kidney stone constituted of: (a) CA, (b)
CA(50)/COM(50), and (c) COM.

as in Figures 6.19(a) and 6.19(b), complete fragmentation evolves rapidly (in approximately

40− 45µs), regardless of the material in the core. Additionally, the distribution of material

strength has a much smaller influence than in the homogeneous stones. Alternatively, when

a less compliant material is present in the inner core, as in Figure 6.19(c), fragmentation

is significantly restricted. The maximum volume of fragments produced was approximately

125mm3, significantly less than the volume of the stone (4189mm3). This small volume

of fragments demonstrates the limited ability of the softer outer layer to transmit enough

energy to the inner core, from the impacting probe, to cause fragmentation to occur. Similar

behavior was observed across all scenarios we considered, including scenarios with different

material combinations and thicker and thinner outer layers. This investigation provides

support to the idea of being able to regularize fragmentation behavior through constitutive

design.

Similarly to the the previous example, we investigate the evolution of energy throughout

the simulation. In this case, we examine the evolution of energy for two homogeneous stones,

as illustrated in Figure 6.20. The external energy from the impacting probe is converted

into strain, kinetic and fracture energy. In the initial stages of impact, the external energy

is primarily converted into strain energy. The strain energy increases rapidly, but decreases

as the damaged region in the stone expands. As the stone begins to fracture, the kinetic

energy and fracture energy increase. Over time, the problem reaches equilibrium, and the

fracture of the stone stops. At equilibrium, the external energy is converted into kinetic and

fracture energy, each of which remain constant with time.
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Figure 6.19: Evolution of fragmentation for a heterogeneous kidney stone constituted of: (a) an inner core
of CA, and an outer layer of COM; (b) an inner core of CA(50)/COM(50), and an outer layer of COM; and
(c) an inner core of COM, and an outer layer of CA(50)/COM(50).
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Figure 6.20: Evolution of energy for a homogeneous kidney stone constituted of: (a) CA, and (b) COM.

6.5 Dominant crack example problem

The truly unique characteristics of the cohesive element framework in three-dimensions is

most prevalent in pervasive fracture problems, wherein the full spectrum of fracture behavior

is captured in a regularized manner. However, in this section we present an example which

illustrates the ability of the cohesive element method to also capture the behavior of problems

dominated by a single crack. In particular, we investigate the mixed-mode fracture of a

PMMA plate with a hole. This problem was investigated experimentally by Grégoire [235]

using the geometry illustrated in Figure 6.21(a). The plate has an inclined notch through

the thickness (at an angle of 22◦), making this a fully three-dimensional problem. The crack

initially propagates in a mixed-mode (I + III) manner, then transitions into a mode I crack
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a short while after initiation. To the best of the author’s knowledge, there have been no

numerical investigations using this geometry and loading condition.
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Figure 6.21: Model of the out-of-plane angled notch in a PMMA plate with hole: (a) geometry, and (b)
impact velocity.

Experimentally, the specimen is impacted using a Hopkinson bar [233] with a diameter

of 40mm. Numerically, the impact is described by an applied velocity of 10m/s, which is

linearly ramped up over 10µs, as illustrated in Figure 6.21(b). The mesh contains 286,545

elements (52,758 nodes) with a refined zone in the region in which fracture is expected to

occur, as illustrated in Figure 6.22. The PMMA has an elastic modulus of 3.24GPa, a

Poisson’s ratio of 0.35, and a density of 1190kg/m3 [235]. The mode I fracture energy (φn),

cohesive strength (σn), and shape parameter (α) are set as 352.3N/m, 62.1MPa and 2,

respectively. The mixed-mode fracture properties are assumed to be the same as the mode

I fracture properties.

Figure 6.22: Finite element mesh showing the explicit representation of the angled notch through the spec-
imen thickness. The mesh is a priori refined, in the region in which fracture is expected to occur.

The experimentally obtained fracture pattern is illustrated in Figures 6.23(a) and 6.23(b).
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In Chapter 5 we demonstrated that constitutive heterogeneity (by a statistical distribution

of material properties) does not significantly influence the fracture behavior in problems

dominated by a single crack. Since this example exhibits a dominant crack, we will not

investigate the influence of material heterogeneity in this example. Sample results from our

simulations are presented in Figures 6.23(c) and 6.23(d). The numerical results demonstrate

good agreement with those observed experimentally. The crack emanates from the notch

in a mixed-mode (I + III) manner, then transitions to a mode I crack a short while after

initiation.

(a)

Initial Notch
Mode I + III Fracture

Mode I Fracture

(b)

(c) (d)

Figure 6.23: Experimental result of the out-of-plane angled notch in a PMMA plate with a hole: (a) global
fracture pattern, and (b) close up of the notch-tip region, showing the transition to a mode I crack (images
extracted from Grégoire [235]). Numerical result of the out-of-plane angled notch in a PMMA plate with a
hole: (c) global fracture pattern, and (d) close up of the notch-tip region, showing the transition to a mode
I crack.

6.6 Some comments on mesh dependency in three-dimensions

The issue of mesh dependency in two dimensions has been thoroughly discussed in Chapter 5

and the accompanying publications [199, 200]. In this section, we aim to take the knowledge
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we gained in our two-dimensional investigation, and apply it to three-dimensional meshes.

But, first, we look at the current state of meshing techniques in three-dimensions.

In this chapter, we proposed a nodal perturbation technique to increase the geometric

randomness in three-dimensional Delaunay triangulations. While Delaunay triangulations

might be prevalent in three-dimensional applications, they are not without their disadvan-

tages. Without adaptive operators, a fixed three-dimensional mesh may be computationally

prohibitive. For example, for the three-dimensional dynamic fracture simulations presented

in this chapter, simplifications had to be made to model the problems in a reasonable amount

of time (such as a priori defining a finely meshed region where fracture is expected to occur),

and even then, the computational cost can be immense.

Besides the Delaunay triangulation, there are a variety of alternative meshing strategies

which have been developed and applied to three-dimensional dynamic fracture problems.

The 4k mesh has been extended to three-dimensions [57, 20]. The qualities of the two-

dimensional 4k mesh make it an attractive option in three-dimensions; in particular, the

multi-level refinement and coarsening capability of the mesh significantly reduces computa-

tional cost. However, the mesh presents an isotropic discretization of the problem domain,

showing preference to cracks which propagate at angles which are a multiple of 45◦. The

polygonal mesh has been extended to three-dimensions as well, and has seen limited applica-

tion to fracture problems [191, 269]. The isotropic nature of the two-dimensional polygonal

meshes carries over to three-dimensional polyhedral meshes.

To illustrate the isotropy of polyhedral meshes in three-dimensions, we conduct a geometric

study where we compute the average path deviation for a set of randomly generated meshes.

The path deviation study attempts to quantify the ability of the mesh to capture arbitrary

crack patterns. Additionally, since the fracture energy necessary to propagate a crack is

proportional to the area of the fracture surface, we prefer mesh discretizations which limit the

amount by which they artificially increase this area. The path deviation in three-dimensions,

η, is computed as:

η =
Af
Ap
− 1, (6.11)

where Af is the area of the fracture surface along the facets of the elements, and Ap is the

area of the plane which the fracture surface is attempting to reproduce.

In Chapter 5, to compute the path deviation in a two-dimensional mesh, we were able to

take advantage of Dijkstra’s shortest path algorithm [222] to compute the fracture surface,

Af . Since there is no three-dimensional counterpart to this algorithm, a slightly modified

approach is taken. The study is conducted on a unit cube, and a plane is used to represent
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the target fracture surface, as illustrated in Figure 6.24(a). For each planar slice through the

mesh, all elements whose centroid falls on the side of the plane containing the positive normal

are removed. The resulting mesh contains approximately half of the original elements, and

the remaining elements produce a rough representation of the plane (see Figure 6.24(b)).

The rough planar surface, composed of polygonal facets, is extracted, as illustrated in Figure

6.24(c); and the area of this surface is set as the area of the fracture surface, Af . This rough

polygonal surface is then projected onto the original plane, as illustrated in Figure 6.24(d);

and the area of the projected surface is set as the area of the plane which the fracture surface

is attempting to reproduce, Ap. An alternative approach would be to determine the area of

the fracture surface based on a surface-based criterion, as opposed to the centroid-criterion

based criterion. For example, for each element intersected by the target fracture surface,

evaluate the area of the boundary of the element above and below the plane and discard

elements which have a larger area above than below. We also implemented this surface-based

criterion and found that the change in the computed path deviation is negligible, thus each

of the conclusions we present below is unaltered by the selected criterion.

Y
X

Z

(a) (b) (c) (d)

Figure 6.24: Steps of the isotropy study of polyhedral meshes in three-dimensions: (a) planar slice (b)
polyhedral elements isolated below the plane, (c) polygonal surface representing plane, and (d) projected
face on the plane.

The study is conducted on three different levels of mesh refinement (2400, 4800, and 7200

elements) and, for each level of refinement, three random meshes are generated. Typical

discretizations are illustrated in Figure 6.26. The planar slice is rotated 360◦, in increments

of 1◦, around the X, Y , and Z axes. We also evaluated the path deviation when the plane

is rotated about arbitrarily oriented axes and found that, due to the random nature of

the discretization, the results were consistent. The results for each level of refinement are

averaged over the nine different sets of studies. The path deviation is plotted on a polar

graph in Figure 6.25. It is clear from this study that three-dimensional polyhedral meshes

are isotropic. However, it is also clear that these meshes impart a significant influence on

the fracture surface, increasing the area the crack has to propagate along by approximately
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49%. Also evident from these plots is that the bias is independent of the level of refinement.
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Figure 6.25: Comparison of mesh deviation, η, in the three-dimensional polyhedral meshes; for various levels
of refinement.

(a) (b)

Figure 6.26: Representative fracture surfaces for: (a) a coarse polyhedral mesh, and (b) a fine polyhedral
mesh. The surfaces are illustrated for a planar slice of 30◦.

The above geometric study illustrates that; while polyhedral elements are able to dis-

cretize arbitrary problem domains, they display similarly poor representations of fracture

surfaces as polygonal meshes do in two-dimensions (see Section 5.3.3). The element-splitting

operator presented in Chapter 5 could potentially be extended to three-dimensions, however,

the splitting of polyhedral elements would entail the addition of new nodes and new faces

(as a planar cut between opposing vertices of a polyhedral element is not guaranteed to

be conforming). While not impossible, these heuristic manipulations could become very

complicated very quickly.

Clearly, there is a no meshing strategy which is suitable for all scenarios. Each strategy

has its own advantages and disadvantages. Through our investigation of meshing strategies
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in both two- and three-dimensions, we have compiled a list of qualities to look for in an ideal

mesh for dynamic cohesive fracture simulations:

� The mesh should be able to discretize any arbitrary domain. The domain of

the problem should not be limited by the meshing strategy.

� The mesh should be unstructured and isotropic. A structured mesh introduces

paths upon which cracks will prefer to propagate along. Any bias induced by the mesh

should be uniform in all global directions of crack propagation.

� The mesh should produce a minimal bias to fracture patterns. The restric-

tion of cracks to element facets should not significantly increase the resulting fracture

surface.

� The beneficial qualities of the mesh should not be dependent on the use

of additional topological operators. Not all research centers have access to data

structures capable of handling complicated adaptive topological operators. And, for

broad use, commercial codes often lack the ability to change the topology of a mesh

on-the-fly.

� The mesh should have a three-dimensional counterpart. For the most gener-

ality, the mesh should not be limited to two-dimensional applications.

� The mesh should ideally allow for a hierarchical multi-level adaptive re-

finement and coarsening scheme. In two dimensions, computational cost is not

a significant limiting factor for most problems. In three dimensions, the size of a

comparable two-dimensional problem increases immensely. Thus, in three dimensions,

adaptive refinement and coarsening strategies could be applied to significantly reduce

computational cost.

In the following section, we propose a new meshing strategy which satisfies each of the

desired qualities listed above.

6.7 The 4k-patch mesh

In Chapter 5, we presented a technique for discretizing an n-sided polygonal element into n

quadrilaterals. By combining this refinement scheme with the element-splitting operator, as

illustrated in Figure 6.27(a), we were able to greatly reduce the mesh dependency in dynamic
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cohesive fracture simulations. This approach was motivated as a means for overcoming the

mesh anisotropy we noticed in some of our previous work which used a 4k mesh discretization

[7, 199, 221]. As mentioned previously, the primary advantage of the 4k mesh over the

polygonal mesh is the 4k mesh’s intrinsic hierarchical refinement and coarsening capability.

If this capability could be combined with the isotropic geometry of an unstructured polygonal

discretization, a robust meshing strategy could be developed. This lead us to the idea of

using a patch of 4k discretizations inside each polygon, as illustrated in Figure 6.27(b).

(a) (b)

Figure 6.27: Depiction of the similarities in potential fracture paths for a polygonal element with refinement
and element-splitting, and a polygonal element with a 4k-patch. (a) Refined polygonal element where the
dashed lines represent the implicit facets on which elements could be split, and (b) a 4k-patch discretization
of a polygonal element. Notice the similarity of the structure in each of the shaded regions.

The 4k-patch mesh combines the positive features of both the 4k and polygonal discretiza-

tions: it can discretize arbitrary domains; it is isotropic; it presents minimal bias to fracture

patterns; it contains a hierarchical multi-level adaptive refinement and coarsening scheme;

its qualities can be combined with, but are not dependent on topological operators; and it

has a three-dimensional counterpart. The following subsections further investigate some of

these claims.

6.7.1 Investigation of isotropy and bias in the 4k-patch mesh

To generate a 4k-patch mesh, the domain is initially discretized with polygons (n-gons).

Then, each n-gon is discretized by n quadrilateral elements in the same manner as was

described in Section 5.3.2. Each quadrilateral is further discretized with four triangles,

connected at the centroid of the quadrilateral, as depicted in Figure 6.27(b). In Section

5.3.3 we conducted a geometric study which demonstrated the isotropy of a polygonal mesh.

To demonstrate that the 4k-patch mesh retains this isotropy, we conduct a similar geometric

study.
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The study computes the path deviation, η, as per Equation 5.25; where Lf is computed

using Dijkstra’s shortest path algorithm [222] between any two nodes, and Lc is the Eu-

clidean distance between the same two nodes. The study is conducted on a circular domain

discretized with 1000 n-gons. Each n-gon is then discretized with n 4k-patches, leading to

an average of approximately 22, 800 triangular elements in the discretization. Ten random

meshes are generated, and paths over 0◦ to 180◦, in 1◦ increments, are analyzed. The results

of the study are illustrated in Figure 6.28. From the figure, it is clear that the 4k-patch mesh

retains the isotropy of the polygonal mesh. Additionally, it only introduces a path deviation

of approximately 2.1%; almost on par with that using the refinement with element-splitting

scheme in Chapter 5 (see Table 5.1). For comparison, the path deviation of the 4k-patch

mesh is also on par with that for the conjugate-directions mesh presented by Rimoli et al.

[183]. The downside of the conjugate-directions mesh is that it does not contain a multi-level

refinement and coarsening scheme.
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Figure 6.28: Comparison of mesh deviation. (a) Deviation of polygonal meshes (with and without element-
splitting) and the 4k-patch mesh; and (b) close up view of the deviation for the polygonal mesh with
element-splitting and the 4k-patch mesh.

6.7.2 Element quality in the 4k-patch mesh

Here, we conduct a series of geometric studies which quantify the quality of the 4k-patch

mesh. The studies are conducted on a circular domain, and the quality metrics used are

the coefficient of variation in edge lengths, the Lo’s parameter, the element areas and the
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interior angles. We summarize the result of our study in Figure 6.29. In Figure 6.29(a), we

illustrate the coefficient of variation of the element edges. This mesh is coarser than those

used in the remainder of the study, for illustrative purposes. As illustrated, the 4k-patch

mesh results in a small variation in the coefficient of edges lengths, however, because the

initial polygonal discretization is of high quality (see Section 5.3.4), the variation is low and

the element quality is acceptable.

Additionally, we illustrate the distribution of Lo’s parameter, element area and interior

angles in Figures 6.29(b) to 6.29(d), respectively. Each mesh contains 22, 896 elements.

These plots indicate that the 4k-patch mesh has a lower quality than the polygonal mesh

(see Section 5.3.4). However, the 4k-patch mesh may be adaptively applied in the immediate

vicinity of the crack, limiting its influence on the average element quality.
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Figure 6.29: Summary of results of study on the element quality in a 4k-patch mesh, considering: (a)
coefficient of variation of edge lengths, (b) Lo’s parameter, (c) element area, and (d) interior angles.
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6.7.3 Multi-level refinement and coarsening scheme in the 4k-patch mesh

The 4k-patch mesh retains the adaptive refinement and coarsening qualities of the 4k mesh

presented by Park et al. [7]. Here, we briefly summarize the procedure. Mesh refinement

proceeds through the use of an edge-splitting operator. The operator splits an edge into two-

edges in such a way that the 4k structure is retained. The procedure works by recursively

splitting edges of neighboring triangles until an allowable pattern is achieved, as illustrated

in Figure 6.30. If we select the dashed edge in Figure 6.30(a) to be split, we can not directly

split that edge without losing the structure of the mesh. To maintain the necessary 4k

structure, we split adjacent edges (as illustrated in Figures 6.30(b) and 6.30(c)). This is

similar in nature to the longest edge-bisection procedure used for unstructured triangles,

such as those in Delaunay triangulations, but presents a greater number of paths on which

a crack may propagate [7].

(a) (b) (c)

Figure 6.30: Recursive edge split procedure: (a) request for an edge-split along the edge with a dashed line;
(b) split edges to create an allowable pattern; and (c) split edge along the dashed edge.

During the refinement procedure, the depth of the refinement (edge depths) are tracked.

In the initial mesh, all edges are considered to have an edge depth of zero. When a new

edge is created, the edge is assigned a depth that is one greater than the maximum depth

of all edges in the adjacent triangles, as illustrated in Figure 6.31(a). An illustration of the

refinement procedure over a region spanning multiple patches is presented in Figure 6.32.

Mesh coarsening is conducted through a sequence of vertex-removal operators, as illus-

trated in Figure 6.31(b). For each vertex which is removed, the edges, incident to the vertex,

with the greatest depth are deleted and the adjacent elements are merged. For example, we

apply the vertex-removal operator to the highlighted node in the first part of Figure 6.31(b).

The maximum edge depth of edges incident to this node is 3. Thus, the two edges with this

depth are deleted and the two other edges incident to this node are merged.

It is also valuable to note that the 4k-patch mesh is equally suitable to both linear and

quadratic elements. In addition, the 4k-patch meshing strategy can incorporate adaptive

edge-swap operators, as noted by Paulino et al. [221].
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Figure 6.31: (a) Sequence of edge-split operations along the dashed edges, and (b) sequence of vertex-removal
operations in shaded unstructured 4k-patches.

6.7.4 Extending the 4k-patch mesh to three dimensions

Similar to the generation of the two-dimensional 4k-patch mesh, the three-dimensional 4k-

patch mesh is generated by first discretizing the domain with polyhedral elements. Then,

each polyhedral element is discretized by 8-node (6-sided) brick elements, as illustrated in

Figure 6.33(b). Each 8-node brick is formed using the element center, three edge mid-points,

three face centroids and the corner node [270, 271]. Each brick element is further discretized

with 24 tetrahedral elements, connected at the centroid of the brick, as described in [57] and

illustrated in Figure 6.33(c).

While the 4k-patch mesh can be extended to three dimensions, mesh generators which are

able to generate the necessary, high quality base polyhedral discretization are still in a growth

stage. There are very few mesh generators which can handle polyhedral elements, and even

fewer which are robust and available to the research community. Thus, there is a need for

an open-source mesh generator, for complicated domains; which uses polyhedral elements.

A new approach to polyhedral mesh generation, presented by Thedin et al. [197], may

provide a potential avenue. In their approach, they use an energy minimization formulation;

which, they demonstrate, produces higher quality polyhedral elements suitable for use as

finite elements in numerical analysis.
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(a) (b)

(c) (d)

Figure 6.32: Adaptive refinement over multiple patches in a 4k-patch mesh. (a) Circular zone with: (b) level
1, (c) level 2, and (d) level 3 refinement.

(a) (b) (c)

Figure 6.33: Extension of the 4k-patch mesh to three-dimensions. (a) Polyhedral element (b) Polyhedral
element refined with brick elements, and (c) Polyhedral element refined first with brick elements then with
tetrahedral elements. Note: each 8-node brick is formed using the element center, three edge mid-points,
three face centroids and the corner node.

6.8 Concluding remarks

The cohesive element method’s unique ability to capture the full range of fracture behavior:

from crack initiation, through crack propagation, branching and coalescence, all the way to

complete fragmentation, has allowed us to study the pervasive fracture problems herein. To
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reduce mesh induced artifacts on fracture behavior, often caused by the use of smoothing

operators in automatic mesh generators, we propose the nodal perturbation operator to

introduce geometric unstructuredness. We perform a geometric study on Lo’s mesh quality

parameter and the minimum and maximum interior angles in the mesh, before and after

nodal perturbation. Through the investigation, we demonstrate that the use of a nodal

perturbation factor of 0.4 is able to produce a highly randomized mesh while still maintaining

high quality elements which satisfy requirements on Lo’s parameter and interior angles.

To further alleviate the influence of the mesh on the fracture patterns, we discuss the use of

constitutively unstructured methods. Constitutively unstructured methods are motivated by

the idea that no material is truly homogeneous, but contains heterogeneities (or defects) at

the microscale. We provide a summary of many of the prominent methods, for representing

these microscale heterogeneities, including the well-known Weibull distribution. We use these

statistical methods to distribute the strength of the material in the problems we investigate.

To capture the failure response of the material, we implement the extrinsic PPR cohesive

model, and adaptively insert cohesive elements in front of each crack-tip to capture the

nonlinear fracture behavior.

Three pervasive fracture examples are presented, which are specifically selected to inves-

tigate many of the prominent features influencing the fragmentation of structures. The first

example considers the high-speed spinning of a ceramic disk. The combination of geometric

and constitutive randomness results in random fracture behavior; which corresponds well

to experimentally observed fragmentation patterns and crack speeds. The second exam-

ple demonstrates the ability of using geometric features, on structures undergoing blast or

impact loads, to regularize fragmentation patterns. The third example demonstrates the sig-

nificance of accounting for material gradation in the investigation of structures under direct

impact. By using the case of a graded kidney stone, we demonstrate that the gradation of

the material can significantly influence the fragmentation behavior, and in some cases can

even inhibit fragmentation from occurring altogether. Additionally, an example dominated

by a single crack was presented. The example considers the impact of a plate with an in-

clined notch. The inclination of the notch results in the formation of a mixed-mode (I +

III) crack at the notch tip; which transitions to a mode I crack a short while after initiation.

The results from the numerical analysis agree well with those obtained experimentally.

Throughout our investigation of dynamic fracture using the cohesive element method, we

noticed some common, desirable qualities to look for in a meshing strategy. In this chapter,

we discuss these qualities, and propose a new type of mesh which incorporates all of the

qualities we highlight. We refer to the new mesh as a 4k-patch mesh. We investigate the

4k-patch mesh and show that it is isotropic, and imparts little influence on the fracture
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patterns. We also demonstrate that the 4k-patch mesh can be procedurally generated, has

a hierarchical refinement and coarsening scheme, and can be extended to three-dimensions.
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Chapter 7

Conclusions and Future Work

In this thesis, the mechanisms behind material failure are investigated in soft and quasi-

brittle materials with nonhomogeneous microstructures. To numerically capture the behav-

ior of failure, we use cohesive zone models in the finite element framework. First, a new

computational framework is developed to investigate the complex problem of finite defor-

mation interfacial debonding in particle reinforced composites, considering the influence of

interphases. In the process of this investigation, we developed a small library of cohesive ele-

ments for use with a commercially available finite element analysis software package. Second,

we develop a research code that uses unstructured polygonal discretizations for the simulation

of dynamic cohesive fracture in two-dimensions. To overcome one of the primary critiques of

the cohesive element method - mesh dependency - we designed two new topological operators

which minimize mesh induced bias on fracture behavior. Finally, we take advantage of the

cohesive element method’s unique framework and develop a three-dimensional fracture code

to investigate the pervasive fracture and fragmentation of quasi-brittle materials under im-

pact or blast loading. In all of our investigations into dynamic failure, we take into account

the influence of material heterogeneity (or defects) using a statistical distribution of material

properties. In this chapter, a brief summary of the content of this thesis is presented, and

suggestions for future work are provided.

7.1 Concluding remarks

The main topics covered in the thesis are outlined in Chapter 1. The current state-of-the-art

in simulating material failure is discussed and a summary of the prevalent frameworks for

modeling material failure is presented. In this thesis, we investigate failure processes using

the finite element method with cohesive zone elements to represent the inelastic zone of

damage in the region of failure. The primary classification subsets of the cohesive models

present in the literature are summarized and nomenclature is introduced. Additionally, one

of the main topics investigated in this thesis is the influence of microscale features on the
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macroscopic constitutive response of particle reinforced composites. Since this is a significant

problem covered in this thesis, the topic is outlined and motivated.

In the next three chapters, we develop a computational framework which is capable of

quantifying the macroscale effect of microscale features in particle reinforced composites.

Both the influence of interphases and interfacial debonding is considered. When a particle

is embedded into an elastomer, the polymer chains in the elastomer tend to anchor onto

the surface of the particle; creating a region in the vicinity of each particle with distinct

properties from those in the bulk elastomer. In Chapter 2, we discuss how the bulk properties

of the elastomer, in the region around the particles, are effected, and the significance of this

on the macroscopic response of such composites. In most computational investigations of

such composites, the interphasial region is often omitted. We are able to show that this

omission can significantly limit the validity of these models for most composites of this

nature. Perfectly bonded interphases were shown to dramatically alter the constitutive

response of the composite, and provide an explanation for the variation in results, observed

experimentally, of macroscopically similar test specimens.

In Chapter 3, we develop a small library of three-dimensional cohesive elements for use

in commercial software. The elements are implemented as user defined element subroutines

of Abaqus, and follow the intrinsic Park-Paulino-Roesler traction-separation relation. We

discuss the formulation and implementation of the elements from an educational perspec-

tive. Additionally, we emphasize the adaptability of the elements, by including a detailed

discussion on the modifications one may wish to make to adapt the elements to suit their

own needs. We also take an extended look at the small deformation debonding behavior of

coated particle inclusions. Our investigation highlights the influence of many microstructural

parameters; including particle size, particle volume fraction, coating thickness, and material

properties. We consider cases involving both a single location of separation and multiple

locations of separation; and observe different microscopic debonding processes with respect

to different macroscopic constitutive relations (e.g. hardening, softening and snap-back).

Chapter 4 combines the work in Chapters 2 and 3, to develop a computational framework

capable of capturing the behavior of both interphases and interfacial debonding in parti-

cle reinforced composites as they undergo large strains. In the framework, interphases are

explicitly modeled, and interfacial debonding is accounted for through the use of intrinsic

cohesive elements. To account for frictional forces generated between each particle its sur-

rounding interphase, we develop a new, fully three-dimensional, coupled cohesive-friction

relation compatible with the intrinsic PPR cohesive model. In most prior investigations of

particle reinforced composites, the influence of friction is often neglected. In our investiga-

tion, we demonstrate that this assumption is reasonable when the composite is loaded in
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uniaxial tension, but also show that frictional forces can be significant in simple shear loading

cases. We conduct a small parametric study demonstrating the significance of interphases

and debonding on the macroscopic constitutive response, and validate our framework with

experimental data from the literature.

The issue of mesh dependency in cohesive fracture simulations was motivated in the Intro-

duction. Since the cohesive element method is only able to propagate cracks along element

facets, a poorly designed discretization of the problem domain may introduce artifacts into

the simulated results. In Chapter 5, we present two new topological operators, designed for

unstructured polygonal discretizations, to address this issue of mesh dependency in dynamic

fracture simulations. The first operator we developed is adaptive element-splitting, and the

second is adaptive mesh refinement. We quantify the mesh induced bias, and the improve-

ment made by the new operators, through a series of probabilistic geometric studies. The

new operators demonstrate a reduction in mesh induced bias by over 90% from that of tra-

ditional approaches. This places the proposed meshing strategy on par with the best, fixed

meshing strategy that has been proposed in the literature - the conjugate directions mesh.

However, because the refinement and element-splitting operators are performed adaptively,

the computational storage costs are less than what they would be for the conjugate directions

mesh. Both operators are designed to improve the ability of unstructured polygonal meshes

to capture crack patterns in dynamic cohesive fracture simulations. However, through a

series of experimentally supported examples, we show that the element-splitting operator

is more suited to pervasive fracture problems, whereas, the adaptive refinement operator is

more suited to problems dominated by a single crack.

In Chapter 6, we investigate the full spectrum of pervasive fracture and fragmentation be-

havior in three-dimensions. Throughout pervasive fracture simulations, many cracks initiate,

propagate, branch and coalesce simultaneously. Because of the cohesive element method’s

unique framework, we show that this behavior can be captured in a regularized manner. Ad-

ditionally, we investigate and quantify the ability of three-dimensional nodal perturbation

techniques to introduce geometric unstructuredness into a finite element mesh. We then use

three numerical examples to investigate the behavior of quasi-brittle materials undergoing

pervasive fragmentation. The examples are selected to investigate some of the significant

factors which influence pervasive fracture and fragmentation; including, geometric features,

loading conditions, and material gradation. Through the examples, we demonstrate that

fragmentation behavior can be regularized with the use of simple geometric features or the

use of functionally graded materials. The work in this chapter serves as the first known

instance of the use of the extrinsic PPR cohesive model in three-dimensional fracture simu-

lations.

197



The problem of mesh dependency in three-dimensions is still an unresolved problem. While

nodal perturbation allows for the generation of unstructured meshes, the mesh upon which

the nodal perturbation is applied typically contains some underlying structure. Through our

investigation of meshing strategies, in both two- and three-dimensions, we compiled a list of

qualities to look for in an ideal mesh for dynamic cohesive fracture simulations. In Chapter

6, we summarize these qualities, and present a new meshing strategies, called the 4k-patch

mesh; which incorporates all the qualities we highlight.

While the focus of this thesis is on the investigation of homogeneous or homogenized

materials, we recognize that all materials contain heterogeneity (or defects) at the microscale.

Defects naturally arise in materials due to grain boundaries, voids, or inclusions. As well,

defects may be introduced through the act of processing or machining the material. These

microscale defects constitute regions where stresses can concentrate and lead to damage or

failure. In our investigation of dynamic fracture in quasi-brittle materials, the representation

of this heterogeneity is achieved by means of a statistical distribution of material properties.

7.2 Suggestions for future work

Due to the eclectic nature of this work, there are many avenues along which it could be ex-

tended. In the concluding remarks section of each of the previous chapters, some suggestions

for extensions were provided, specific to the material in that chapter. This section discusses

some global ideas which may or may not be considered as direct or indirect extensions of

this work.

7.2.1 Three-dimensional fracture of soft materials with polyhedral finite
elements

In Chapter 2, we developed a computational framework to demonstrate the significance of

interphases in particle reinforced elastomers. However, due to numerical difficulties asso-

ciated with large element distortions, the maximum global stretch attained by the model

was relatively small. Recently, interest has grown in the use of polygonal elements for soft

materials undergoing large deformations. The applications have, thus far, been restricted

to two dimensions [272], but have clearly demonstrated that polygonal elements are able to

undergo much greater distortions than any of their traditional counterparts.

The development of a polyhedral element framework in three-dimensions has been hin-

dered due to difficulties in developing a robust meshing strategy, and to the development of
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appropriate shape functions for three-dimensional polyhedrons. Recently, the Wachspress

shape functions were extended to three-dimensions [273]. These shape functions could pro-

vide an avenue for the use of polyhedrons in the finite element framework. Alternatively, the

virtual element framework has recently been extended to three-dimensions, and has shown

to be stable and to produce accurate results for linear elasticity problems [270]. The virtual

element method is also capable of capturing the behavior of arbitrary non-convex elements in

a computationally efficient manner, allowing for a much wider range of meshing capabilities.

If this framework could be extended to account for finite displacements and deformations,

it may be a viable option for the study of soft materials [274].

(a) (b) (c)

Figure 7.1: Representative unit cell of a particle reinforced composite material. (a) Geometry of the mi-
crostructure, (b) discretization using tetrahedral elements and (c) discretization using polyhedral elements,
where each particle is represented with a single polyhedral element.

In the context of the particle reinforced composites investigated in Chapters 2 and 4, the

geometric qualities of the polyhedral elements provide multiple advantages. First, because

there is no restriction on the number of sides in a polyhedron and due to the fact that rigid

materials undergo negligible deformations, rigid particles could be modeled with a single

finite element [272], as illustrated in Figure 7.1. Alternatively, the rigid particles could

be implemented as variational constraints [112]. Additionally, if the mesh was required to

be periodic (to account for periodic boundary conditions), instead of generating a periodic

mesh, paired nodes could simply be added on opposing faces of the model and the element

connectivity updated to account for the additional hanging nodes.

To model fracture using polyhedral meshes, one would also need to implement compatible

cohesive elements. The cohesive elements would have an arbitrary number of sides, and

would use shape functions and Gauss quadrature rules appropriate for the two-dimensional,

polygonal nature of the element, as illustrated in Figure 7.2.

This is a multi-staged problem that would involve the development of a polyhedral mesh
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0=∆

Figure 7.2: A sample cohesive element compatible with polyhedral elements.

generator, the implementation of a polyhedral finite (or virtual) element code, and the

development of a library of compatible cohesive elements. While the problem is large, the

resulting solution could significantly improve our ability to accurately capture the finite

deformation response of this important class of materials.

7.2.2 Considering multiphysics in particle reinforced composites

While this thesis focuses on the mechanical behavior of particle reinforced composites, there

has been a lot of research done on the multiphysics attributes of these composite materials.

Materials with electrostrictive properties have been an exciting research topic of late; leading

to applications in artificial muscles, energy harvesters and drug delivery systems [275, 276].

Recent investigations have shown that, by including particles with a high dielectric constant

in polymers with a low dielectric constant, the resulting composite material can exhibit an

order of magnitude increase in its electrostrictive deformations [277, 278, 279, 280, 281].

Another area in which multiphysics of particle reinforced composites is pertinent, is in

the recent development of patchy particles. Patchy particles are particles which are only

partially coated (see Figure 7.3), or the coating on the particle has two or more distinct

zones with different properties. These composites have garnered significant attention in the

past few years due to their applications in magnetic storage devices, drug delivery systems,

electronics and robotics [284, 285, 286, 287].

Much of the computational framework presented in this thesis could serve as a baseline

for investigating these new material composites. Extensions to account for different bulk

material constituents, loading conditions and failure conditions would need to be accounted

for. However, the new computational framework could significantly improve our quantitative

understanding and design of such materials; and potentially spur a surge of innovation in

the engineering industry.

200



(a) (b)

(c)

500 nm

(d)

Figure 7.3: Various sample configurations of (a)-(b) patchy particles (experimental image extracted from
Perro [282]), and (c)-(d) Janus particles (experimental image extracted from Taylor et al. [283]).

7.2.3 Nanoparticle reinforced adhesives for gels

Nanoparticle reinforced solutions have recently shown to be excellent adhesives for gels and

biological tissue [288, 289]. Typical polymer based adhesives require chemical reactions,

heating, pH changes, or other measures, to effectively bond two soft materials together

[290, 291]. The addition of particles to the adhesive, however, capitalizes on the gel-chains

natural inclination to adsorb (or anchor) onto the surface of the particles; forming a strong

bridge between the two gels being glued together, as illustrated in Figure 7.4. In contrast

to alternative approaches, nanoparticle reinforced solutions can adhere at room temperature

with only a small applied pressure.

In addition to the presence of the particles, the surface treatment of the particles can have

an influence on the strength and toughness of the bond [288]. By controlling the surface

treatment, the effectiveness and zone of influence of the bonded region could be controlled,

setting up the possibility of tailored, high strength, high toughness adhesives. This could

pave the way for advancements in the fields of nanotechnology and biological materials
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(a) (b) (c)

Figure 7.4: Schematic of (a) a nanoparticle reinforced adhesive between two gel layers, and (b) the gel-chains
adsorbing onto the particles embedded in the adhesive. (c) Experimental testing of two gels, bonded through
a nanoparticle reinforced adhesive, being stretched to large deformations. Images extracted from Rose et al.
[288].

science.

7.2.4 Enhancing the Park-Paulino-Roesler cohesive model

Throughout this thesis, we make reference to the Park-Paulino-Roesler (PPR) cohesive

model. This is the model we choose to capture the failure behavior of our materials. In

Chapters 3 and 6 we discuss the use of the PPR model in functionally graded materials, and

in Chapter 4 we coupled the model with a frictional relation. While these extensions of the

PPR model have allowed us to investigate a wide variety of materials and loading scenarios,

further enhancing, or extending the model to account for additional physical behavior could

allow for a wider range of insight. For example, the model could be extended to account for

thermodynamically consistent, rate-dependent, self healing, or electromechanically coupled

materials. Below, we outline a potential path for extending the PPR model to account for

electromechanical behavior. This could allow for the investigation of failure in ferroelectric,

piezoelectric, or electrostrictive materials [292, 293, 294].

The first thing to consider, when designing a coupled electromechanical cohesive zone

model, is the crack face boundary conditions. Permeable boundary conditions assume that

the normal component of the electric displacement is continuous across the crack [295];

whereas impermeable boundary conditions assume that the normal component of the electric

displacement is zero across the crack [296]. These classic boundary conditions have come

under scrutiny of late, and have widely been superseded by the energetically consistent
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boundary conditions proposed by Landis [297, 298]. The energetically consistent boundary

conditions assign an electrical enthalpy, hc, to the crack; where the change in the enthalpy

with crack opening displacement is an applied traction, and the change in the enthalpy

with respect to the potential drop is an applied charge. Thus, the new crack face boundary

conditions normal to the crack face are:

q+ = Dc = − dhc
dEc

on Γ+
coh, q− = −Dc =

dhc
dEc

on Γ−coh, (7.1)

T+
n = (hc + EcDc)n

+ on Γ+
coh, T−n = (hc + EcDc)n

− on Γ−coh (7.2)

where

Ec = −∆φ

∆n

. (7.3)

Here, Γ+
coh and Γ−coh denote the top and bottom faces of the crack; q+ and q− are the surface

charge densities applied to the faces; T+
n and T−n are the surface tractions applied to the

faces; n+ and n− are the unit normals along the crack faces; Dc is the normal component of

the electric displacement; Ec is the electric field in the crack gap; and ∆φ is the potential

drop across the crack.

In general, the electrical enthalpy is intended to model the nonlinear electrical response

of the crack gap [298]. If the dielectric constant, κ0, of the medium within the crack gap is

much lower than that of the bulk material, high electric fields are generated in the crack.

These high electric fields within the crack can lead to a corona discharge (electrical break-

down). To account for this behavior, Landis [297] proposed a phenomenological model which

incorporates a critical electrical discharge level, Ed. Below the critical discharge level, the

crack gap behaves in a linear dielectric manner, but beyond this level, charge flows between

the crack surfaces, maintaining an electric field at this bounding level. The revised model is

defined as:

hc = −1

2
κ0E

2
c , Dc = κ0Ec ⇒ (hc + EcDc) =

1

2
κ0E

2
c , (7.4)

if |Dc| ≤ κ0Ed, and:

hc = −1

2
κ0E

2
c , Dc = sgn (ωd)κ0Ed + ωd, Ec = sgn (ωd)Ed

⇒ (hc + EcDc) = Ed |ωd|+
1

2
κ0E

2
d , (7.5)

if |Dc| ≥ κ0Ed. Here, ωd is the amount of charge per unit area transferred between the crack

faces. If it is not necessary to account for the breakdown strength, Ed could simply be set as

infinite. By plugging Equation 7.4 (7.5) into 7.2, the additional components of force, acting
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on the fracture surfaces, can be computed. Similarly, by plugging Dc from Equation 7.4

(7.5) into 7.1, the surface charge density on the fracture surfaces can be computed.

7.2.5 Rate-dependent constitutive relations

The influence of rate-dependent material properties has not been investigated in this thesis,

however, this is a topic with broad applicability to the problems investigated. For exam-

ple, the stiffness of elastomers is rate-dependent. Rate dependence in elastomers may be

captured through the use of strain amplification factors [85]; which include experimentally

determined fitting parameters to adjust the model to the specific material being investi-

gated. However, a more rigorous approach would be to incorporate the rate dependence

directly into the stored-energy function. Additionally, the stiffness of elastomers is known to

be strain history dependent [178], wherein the global response of the elastomer irreversibly

softens during cyclic loading. Incorporating the influence of history and rate dependence

into the computational framework developed in Chapters 2 to 4, could enable a new avenue

for the analysis and design of elastomeric bearings and dampers.

Additionally, rate dependency is an important topic in the dynamic fracture of materials.

The cohesive relations selected in this thesis are inspired by the initial rate-independent

cohesive model introduced by Dugdale [2] and Barenblatt [1]; namely, the tractions within

the cohesive zone are dependent only on the opening between the cohesive surfaces, not on the

rate at which the surfaces open. Nevertheless, these rate-independent cohesive models have

successfully captured a wide range of fracture behavior. However, a more robust approach

could be taken, which incorporates the influence of rate into the problem by considering the

combined influence of rate in the bulk material and in the fracture process zone. The rate

dependency of materials introduces a competition between the rate hardening of the bulk

zone, which tends to enhance crack growth and the rate strengthening of the fracture process

zone, which resists crack propagation [299]. Often, however, this competition is omitted in

the investigation of rate-dependent materials. Gaining further insight into this competition

may allow for a more complete failure analysis of materials demonstrating rate dependence.

7.2.6 Rate-dependent friction model

In Chapter 4, a new, coupled cohesive-friction model was presented for use with the PPR

cohesive model. The model, as presented, does not incorporate the influence of rate, however,

frictional effects are known to depend on the rate of slippage [300, 301]. To incorporate rate-
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dependence into the coupled cohesive-friction model, one could modify the friction relation

such that it depends on the rate of sliding between the two surfaces under contact. One of

the most common rate- and state-dependent friction models takes the following form [302]:

τ = τ0 + Aln

(
V

Vl

)
+Bθ (7.6)

where Vl is the long-term slip rate, τ0 is a constant proportional to the effective normal stress

and to the steady state coefficient of friction; and the constants A and B are proportional

to the effective normal stress and to the temperature [302]. Moreover, θ is an evolving state

variable described by:
∂θ

∂t
= −

(
V

L

)[
θ + ln

(
V

Vl

)]
(7.7)

where L is a characteristic distance for exponential decay [302, 303].

Additionally, the rate-dependent friction model could be extended to consider the influence

of contact between two dissimilar substrates. In this scenario, it has been shown that

Coulomb friction is ill-posed for a wide range of material parameters and friction coefficients

[304, 305, 306]. To overcome this, the problem could be regularized by incorporating a simple

monotonic memory dependence of shear strength on the compressive normal stress; which

causes the stability problem to be well-posed [307, 308].

7.2.7 Advanced cost saving procedures for fully three-dimensional dynamic
cohesive fracture simulations

In terms of cost, the three-dimensional dynamic fracture framework presented in this the-

sis has significant room for improvement. Even the smallest simulation presented in this

thesis took on the order of 20 hours. There are; however, multiple avenues which could

be explored to help resolve this issue. One idea would be to implement an adaptive mesh

refinement and coarsening scheme [20]. It was demonstrated in Chapter 5 that employing

adaptive mesh refinement can yield significant cost savings over comparably accurate, uni-

formly refined meshes. The complexities in three-dimensions are much greater than those

in two-dimensions, however, the potential cost savings could be significant. In addition

to adaptive meshing schemes, alternative computational frameworks could be used. The

current study was completed using a serial code, capable of running on only one central

processing unit (CPU). Modifying the code to run not on the TopS [208] framework, but

on the ParTopS (Parallel TopS) [309] framework would allow for the use of multiple CPUs

and smaller wall-clock times. Alternatively, one could move away from running on CPUs
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altogether, and take advantage of graphics processing units (GPUs) [310, 311] or quantum

processing units (QPUs). A GPU is a powerful graphics engine that allows for large parallel

applications to be run at speeds much higher than those attainable by a CPU [312, 313]. A

QPU is a processor which conducts operations on qubits - the quantum analogue of the well

known bit.

7.2.8 Hypervelocity impact and fragmentation

The investigation of hypervelocity impact events has seen an influx of interest in the past

decade, due in large part to the increase in the amount of debris in space. The issue of space

debris has become so pervasive that it poses a risk to, and must be taken into account in

the design of all space craft. In 2013, NASA estimated that there are approximately 500,000

pieces of debris orbiting earth; which are equal to, or greater than, the size of a marble [314].

Alternatively, we may use hypervelocity impactors as tools for asteroid deflection. If an

asteroid or comet is identified as being on a collision course with earth, with a sufficient

amount of advanced warning, one option of altering its path is through the use of a hyper-

velocity impactor [315]. Since the experimental validation of such an event is out of this

world, the investigation of these events must rely on small scale experiments (such as that

illustrated in Figure 7.5) and numerical simulations.

at 2 km/s. The aluminum spheres were held in a lexan sabot and
launched from a powder gun. The 1-m diameter granite sphere sat
in a 61 cm long section of 61 cm diameter pipe (inner diameter of
the flange) sitting on wooden 2 � 4 s spaced 50 cm apart (Fig. 1).
The rocking of the granite spheres due to the impacts was
measured from recorded high speed video.

With the center of the sphere a height L above the pivot and
a horizontal distance B to the pivot, for a rotation q about the pivot the
kinetic energy is (1/2)M(L2þB2)(dq/dt)2 and the potential energy is
MgfLðcosðqÞ � 1Þ þ BsinðqÞg: Using either energy conservation or
Euler’s equation acting on the Lagrangian (the difference of the kinetic
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Here, m is the mass and v the speed of the impactor and M is the
mass of the granite sphere. The momentum enhancement factor
b is the unknown. With the time to maximum deflection of the
granite sphere given by Dt, by setting dq/dt ¼ 0 at t ¼ Dt, the
momentum enhancement is found to be

b ¼ MB
ffiffiffiffiffiffiffiffi
g=L

p
tanhðuDtÞ=ðmvÞ: (4)

Horizontal deflection is given by Lq and vertical deflection by Bq,
where the maximal values are given at the angle of maximum
deflection.

For both tests themass of the impactor was 124 g and the impact
speed was 2.01 km/s. In the first test the granite sphere massed

Fig. 1. Schematic of test geometry and initial geometry of first test; side-on image of second test at 53 ms before impact showing the incoming aluminum sphere at 2.01 km/s
followed by a vapor trail, and side-on images of first test at 870 ms and 61.7 ms after impact. (The image from the second test is used because the lighting on the projectile is better
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Figure 7.5: Fragmentation of a granite sphere under hypervelocity impact (images extracted from Walker et
al. [316]).

In Chapter 6, we demonstrate the cohesive element method’s ability to capture pervasive

fracture and fragmentation behavior. Throughout those simulations, many cracks initiated,

branched and coalesced simultaneously. Because of the cohesive element method’s unique

framework, this behavior was captured in a regularized manner. In a hypervelocity impact

event, much of this same behavior is expected to occur; thus, the cohesive element framework

may be a potential avenue for numerically simulating such an event.
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Appendix A

Matlab Code to Generate Particle Reinforced
Representative Unit Cell Models

1 % A model generator for randomly distributed, periodic, monodisperse,
2 % particle reinforced microstructures with interphases. The output is in
3 % the form of an input file compatible with the mesh generating software
4 % Netgen.
5

6 function particleRUC 3component()
7 clear all; close all; rng('shuffle');
8 for numFiles = 1:1:4 %Number of input files generated
9 fprintf('numFile = %d\n',numFiles);

10 %===============================User input================================%
11 VF = 0.10; % Volume fraction of particles
12 nParts = 30; % Number of particles
13 intT = 0.1; % Interphase thickness (enter as a percentage of the radius)
14 Cedge = 100; % Length of cube edge
15 d1 = 0.05; % Allowable center−to−center distance = 2*R*(1+d1)
16 d2 = 0.1; % Allowable distance to boundary of the cell = R*(1+d2)
17 %===============================User input================================%
18

19 pRad = ((VF*(Cedgeˆ3)/nParts)*(3/(4*pi())))ˆ(1/3);
20

21 FileName = strcat('vf',num2str(VF*100),' it',num2str(intT*100),' np',...
22 num2str(nParts),' ',num2str(numFiles),'.geo');
23

24 outfile = strrep(FileName,'.geo','.inp'); foutid = fopen(outfile, 'wt');
25

26 fid = fopen(FileName,'w');
27 fprintf(fid,'%s %2.2f\n','# Volume fraction c =',VF);
28 fprintf(fid,'%s %d\n','# Radius of particles = ',pRad);
29 fprintf(fid,'%s\n\n','algebraic3d');
30

31 origin = [0 0 0]; %Origin of the cube
32

33 fprintf(fid,'\n%s%d%s%d%s%d%s%d%s%d%s%d%s\n','solid p1 = plane(',...
34 origin(1),', ',origin(2),', ',origin(3),'; ',0,', ',0,', ',−1,');');
35 fprintf(fid,'%s%d%s%d%s%d%s%d%s%d%s%d%s\n','solid p2 = plane(',...
36 origin(1),', ',origin(2),', ',origin(3),'; ',0,', ',−1,', ',0,');');
37 fprintf(fid,'%s%d%s%d%s%d%s%d%s%d%s%d%s\n','solid p3 = plane(',...
38 origin(1),', ',origin(2),', ',origin(3),'; ',−1,', ',0,', ',0,');');
39 fprintf(fid,'%s%d%s%d%s%d%s%d%s%d%s%d%s\n','solid p4 = plane(',...
40 Cedge,', ',Cedge,', ',Cedge,'; ',0,', ',0,', ',1,');');
41 fprintf(fid,'%s%d%s%d%s%d%s%d%s%d%s%d%s\n','solid p5 = plane(',...
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42 Cedge,', ',Cedge,', ',Cedge,'; ',0,', ',1,', ',0,');');
43 fprintf(fid,'%s%d%s%d%s%d%s%d%s%d%s%d%s\n','solid p6 = plane(',...
44 Cedge,', ',Cedge,', ',Cedge,'; ',1,', ',0,', ',0,');');
45

46 fprintf(fid,'\nsolid cube = p1 and p2 and p3 and p4 and p5 and p6;\n');
47

48 % Get the centroids of the particles
49 [x y z] = cents(VF,Cedge,(pRad+pRad*intT),intT,d1,d2);
50

51 for i = 1:1:length(x)
52 fprintf(fid,'%s%d%s%f%s%f%s%f%s%.6f%s\n','solid sph',i,...
53 'a = sphere (',x(i),',',y(i),',',z(i),';',(pRad+pRad*intT),');');
54 if (i 6=length(x))
55 fprintf(foutid,'%f %f %f %f %f\n',x(i),y(i),z(i),pRad,pRad+pRad*intT);
56 else
57 fprintf(foutid,'%f %f %f %f %f',x(i),y(i),z(i),pRad,pRad+pRad*intT);
58 end
59 end
60

61 fprintf(fid,'\n');
62 for i = 1:1:length(x)
63 fprintf(fid,'%s%d%s%f%s%f%s%f%s%.6f%s\n','solid sph',i,...
64 'b = sphere (',x(i),',',y(i),',',z(i),';',pRad,');');
65 end
66

67 fprintf(fid,'\nsolid int = sph1a\n');
68 for i = 2:1:(length(x)−1)
69 fprintf(fid,'%s%d%s\n','or sph',i,'a');
70 end
71 fprintf(fid,'%s%d%s\n','or sph',length(x),'a;');
72

73 fprintf(fid,'\nsolid particles = sph1b\n');
74 for i = 2:1:(length(x)−1)
75 fprintf(fid,'%s%d%s\n','or sph',i,'b');
76 end
77 fprintf(fid,'%s%d%s\n','or sph',length(x),'b;');
78

79 fprintf(fid,'\nsolid rest = cube and not int;');
80 fprintf(fid,'\nsolid interphase = int and cube and not particles;');
81 fprintf(fid,'\nsolid finalparticles = particles and cube;');
82

83 fprintf(fid,'\n\ntlo rest −transparent −col=[.09,.42,.96];\n');
84 fprintf(fid,'tlo finalparticles −col=[.93,.37,0.37];\n');
85 fprintf(fid,'tlo interphase −col=[.54,.83,.51];\n');
86

87 fprintf(fid,'\n"identify periodic p1 p4;"\n');
88 fprintf(fid,'"identify periodic p2 p5;"\n');
89 fprintf(fid,'"identify periodic p3 p6;"\n');
90

91 fclose(fid); fclose(foutid);
92 end
93 end
94

95 function [xFinal yFinal zFinal] = cents(vf,Lcube,r,pThick,d1,d2)
96
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97 vf=vf*100; rin = r/(1+pThick); check1=2*r*(1+d1); check2=r*d2;
98 vcur=0; totVolSphere=0; x(1)=0; y(1)=0; z(1)=0; volCube=Lcubeˆ3; i=2;
99 iter = 0;

100 while vcur<(vf*(1−10ˆ(−6)))
101

102 px=Lcube*rand; py=Lcube*rand; pz=Lcube*rand; %random seeds
103

104 % Check the distance to the surfaces of the cube
105 if ((((px−r)≥check2) | | ((px−rin)≤−check2)) && (((py−r)≥check2) ...
106 | | ((py−rin)≤−check2)) && (((pz−r)≥check2) | | ((pz−rin)≤−check2))...
107 && (((px+r−Lcube)≤−check2) | | ((px+rin−Lcube)≥check2)) && (((py+r...
108 −Lcube)≤−check2) | | ((py+rin−Lcube)≥check2)) && (((pz+r−Lcube)≤...
109 −check2) | | ((pz+rin−Lcube)≥check2)))
110 valid=1;
111 else
112 continue % Start again with a new (random) position
113 end
114

115 % Check the distance to the adjacent particles
116 j=1; flag=0;
117 while j<i % Loop over all the particles already placed
118 centDist=determineDist(j,px,py,pz,x,y,z,Lcube);
119 if abs(centDist)≥check1 valid=1; j=j+1; else valid=0; j=i; end
120 iter=iter+1;
121 if iter ≥ 200000
122 fprintf('Nonconvergent\n'); valid=0; j=2; i=1; flag=1;
123 end
124 end
125

126 if flag==1 break; end
127

128 if valid==1 % Particle passes the two checks
129

130 x(i)=px; y(i)=py; z(i)=pz; % Store centroidal coordinates
131

132 % Calculate the total volume of the particles
133 volSphere=(4*pi*((r/(1+pThick))ˆ3)/3);
134 totVolSphere=totVolSphere+volSphere;
135 vcur=100*(totVolSphere/volCube);
136 i=i+1;
137 else
138 i=i;
139 end
140 end
141

142 nP = length(x);
143

144 % Final coordinates of spheres are stored in x, y, and z arrays
145 xFa(1:nP−1) = x(2:nP); yFa(1:nP−1) = y(2:nP); zFa(1:nP−1) = z(2:nP);
146

147 [xFinal,yFinal,zFinal] = gParticles(xFa,yFa,zFa,Lcube,rin);
148 fprintf('In total, %d particle(s) are created \n',(i−2));
149 fprintf('Final volume fraction of the particles = %f\n',vcur);
150

151 end
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152

153 function centDistMin = determineDist(j,px,py,pz,x,y,z,h)
154

155 q=[0 −h 0 0 −h −h 0 −h h 0 0 h h 0 h −h −h −h h 0 h h 0 h −h −h h];
156 r=[0 0 −h 0 −h 0 −h −h 0 h 0 h 0 h h h 0 h −h −h −h 0 h h −h h −h];
157 s=[0 0 0 −h 0 −h −h −h 0 0 h 0 h h h 0 h h 0 h h −h −h −h h −h −h];
158

159 for k=1:27
160 centDist(k)=sqrt(((px−x(j)+q(k))ˆ2)+((py−y(j)+r(k))ˆ2)+((pz−z(j)+s(k))ˆ2));
161 end
162 centDistMin = min(centDist);
163 end
164

165 function [xFinal yFinal zFinal] = gParticles(x,y,z,Lc,r)
166

167 xlen=length(x); xadd=[]; yadd=[]; zadd=[];
168 M=[Lc 0 0 −Lc 0 0;0 Lc 0 0 −Lc 0;0 0 Lc 0 0 −Lc];
169

170 for i=1:1:xlen
171 lx=length(xadd); ly=length(yadd); lz=length(zadd);
172 Vadd = [x(i)<r y(i)<r z(i)<r abs(x(i)−Lc)<r abs(y(i)−Lc)<r ...
173 abs(z(i)−Lc)<r];
174

175 itr=0; st=[];
176 for j=1:6
177 if (Vadd(j)==1)
178 itr=itr+1; st(itr)=j;
179 xadd(lx+itr)=x(i)+M(1,j); yadd(ly+itr)=y(i)+M(2,j);
180 zadd(lz+itr)=z(i)+M(3,j);
181 end
182 end
183

184 if (itr==2)
185 xadd(lx+3)=x(i)+M(1,st(1))+M(1,st(2));
186 yadd(ly+3)=y(i)+M(2,st(1))+M(2,st(2));
187 zadd(lz+3)=z(i)+M(3,st(1))+M(3,st(2));
188 elseif (itr==3)
189 xadd(lx+4)=x(i)+M(1,st(1))+M(1,st(2));
190 yadd(ly+4)=y(i)+M(2,st(1))+M(2,st(2));
191 zadd(lz+4)=z(i)+M(3,st(1))+M(3,st(2));
192 xadd(lx+5)=x(i)+M(1,st(1))+M(1,st(3));
193 yadd(ly+5)=y(i)+M(2,st(1))+M(2,st(3));
194 zadd(lz+5)=z(i)+M(3,st(1))+M(3,st(3));
195 xadd(lx+6)=x(i)+M(1,st(2))+M(1,st(3));
196 yadd(ly+6)=y(i)+M(2,st(2))+M(2,st(3));
197 zadd(lz+6)=z(i)+M(3,st(2))+M(3,st(3));
198 xadd(lx+7)=x(i)+M(1,st(1))+M(1,st(2))+M(1,st(3));
199 yadd(ly+7)=y(i)+M(2,st(1))+M(2,st(2))+M(2,st(3));
200 zadd(lz+7)=z(i)+M(3,st(1))+M(3,st(2))+M(3,st(3));
201 end
202 end
203

204 xFinal = [x,xadd]; yFinal = [y,yadd]; zFinal = [z,zadd];
205

206 end
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Appendix B

User Defined Element Subroutine of Abaqus for the
Three-Dimensional PPR Cohesive Zone Model

This appendix provides the user-defined subroutine of Abaqus for the three-dimensional

PPR cohesive element. The element is compatible for use with linear tetrahedral (T4) bulk

elements. The electronic source files for this element and elements compatible with linear

brick (B8) and quadratic tetrahedral (T10) elements are supplied through the website of

Professor Glaucio H. Paulino.

Figure B.1: Cohesive element compatible with linear tetrahedral bulk elements.

1 c 3D PPR UEL for Abaqus Code (Compatible with 4 node Tet Elements)
2 c Reference: DW Spring and GH Paulino, A Growing Library of Cohesive
3 c Elements for Use in Abaqus. Engineering Fracture Mechanics,
4 c Vol. 126, pp. 190−216, 2014.
5 c ====================================================================
6 SUBROUTINE UEL (RHS, AMATRX, SVARS, ENERGY, NDOFEL, NRHS,
7 1 NSVARS, PROPS, NPROPS, COORDS, MCRD, NNODE, U, DU, V, A, JTYPE,
8 2 TIME, DTIME, KSTEP, KINC, JELEM, PARAMS, NDLOAD, JDLTYP,
9 3 ADLMAG, PREDEF, NPREDF, LFLAGS, MLVARX, DDLMAG, MDLOAD, PNEWDT,

10 4 JPROPS, NJPROP, PERIOD)
11 c
12 INCLUDE 'ABA PARAM.INC'
13 c
14 DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),PROPS(*),
15 1 SVARS(*),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL),
16 2 DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*),
17 3 JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),DDLMAG(MDLOAD,*),
18 4 PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*)
19 c
20 DIMENSION ds1(3),ds2(3),dn(3),Trac(MCRD,NRHS),
21 1 Trac Jacob(MCRD,MCRD),R(MCRD,MCRD),coord l(MCRD,NNODE),
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22 2 GP coord(2),sf(3),B(MCRD,NDOFEL),co de m(3,3),
23 3 B t(NDOFEL,MCRD), Transformation M(NDOFEL,NDOFEL),
24 4 Transformation M T(NDOFEL,NDOFEL),temp1(MCRD,NDOFEL)
25 c
26 DIMENSION stiff l(NDOFEL,NDOFEL),temp2(NDOFEL,NDOFEL),
27 1 stiff g(NDOFEL,NDOFEL),residual l(NDOFEL,NRHS),
28 2 residual g(NDOFEL,NRHS),aJacob M(2,3),delu loc gp(mcrd),
29 3 co de(mcrd,nnode)
30 c
31 DOUBLE PRECISION G fn, G ft, f tn, f tt, alpha, beta, rn, rt,
32 1 p m, p n, deln, delt, tmax, pmax, opn, opt
33 c
34 c Define inputs=======================================================
35 c
36 G fn=PROPS(1)
37 G ft=PROPS(2)
38 f tn=PROPS(3)
39 f tt=PROPS(4)
40 alpha=PROPS(5)
41 beta=PROPS(6)
42 rn=PROPS(7)
43 rt=PROPS(8)
44 GP n=3d0
45 GP W = 1.0d0/3.0d0
46 c
47 c Initialize matrices and vectors=====================================
48 c
49 call k vector zero(ds1,3)
50 call k vector zero(ds2,3)
51 call k vector zero(dn,3)
52 call k matrix zero(Trac,mcrd,nrhs)
53 call k matrix zero(Trac Jacob,mcrd,mcrd)
54 call k matrix zero(R,mcrd,mcrd)
55 call k matrix zero(coord l,mcrd,nnode)
56 call k vector zero(GP coord,2)
57 call k vector zero(sf,3)
58 call k matrix zero(Transformation M,ndofel,ndofel)
59 call k matrix zero(Transformation M T,ndofel,ndofel)
60 call k matrix zero(B,mcrd,ndofel)
61 call k matrix zero(B t,ndofel,mcrd)
62 call k matrix zero(temp1,mcrd,ndofel)
63 call k matrix zero(stiff l,ndofel,ndofel)
64 call k matrix zero(temp2,ndofel,ndofel)
65 call k matrix zero(stiff g,ndofel,ndofel)
66 call k matrix zero(residual l,ndofel,nrhs)
67 call k matrix zero(residual g,ndofel,nrhs)
68 call k matrix zero(aJacob M,2,3)
69 call k matrix zero(rhs,ndofel,nrhs)
70 call k matrix zero(amatrx,ndofel,ndofel)
71 call k matrix zero(co de,mcrd,nnode)
72 a Jacob=0.d0
73 c
74 c Do local computations===============================================
75 c
76 do i = 1, mcrd
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77 do j = 1, nnode
78 co de(i,j)=coords(i,j)+U(3.0*(j−1.0)+i)
79 end do
80 end do
81 c
82 call k local coordinates(co de,R,coord l,Transformation M,
83 & Transformation M T,a Jacob,aJacob M,coords,u,ndofel,nnode,
84 & mcrd)
85 c
86 c Compute shear and normal local opening displacements================
87 c
88 do i = 1, 3
89 ds1(i)=coord l(1,i+3)−coord l(1,i)
90 ds2(i)=coord l(2,i+3)−coord l(2,i)
91 dn(i) =coord l(3,i+3)−coord l(3,i)
92 end do
93 c
94 c Do calculations at the Gauss points=================================
95 c
96 do i = 1, GP n
97 c
98 c Determine the values of the shape function at each Gauss point
99 c

100 call k shape fun(i,sf)
101 c
102 c Determine the inputs to the cohesive model==========================
103 c
104 p m=(alpha*(alpha−1.0)*rn**2.0)/(1.0−alpha*rn**2.0)
105 p n=(beta*(beta−1.0)*rt**2.0)/(1.0−beta*rt**2.0)
106 deln=(G fn/f tn)*alpha*rn*(1.0−rn)**(alpha−1.0)
107 & *((alpha/p m)+1.0)*((alpha/p m)*rn+1.0)**(p m−1.0)
108 delt=(G ft/f tt)*beta*rt*(1.0−rt)**(beta−1.0)
109 & *((beta/p n)+1.0)*((beta/p n)*rt+1.0)**(p n−1.0)
110 c
111 call k vector zero(delu loc gp,mcrd)
112 c
113 c Determine shear and normal opening displacements at the Gauss points
114 c
115 do j = 1, 3
116 delu loc gp(1)=delu loc gp(1)+ds1(j)*sf(j)
117 delu loc gp(2)=delu loc gp(2)+ds2(j)*sf(j)
118 delu loc gp(3)=delu loc gp(3)+ dn(j)*sf(j)
119 end do
120 c
121 opn=delu loc gp(3)
122 opt=sqrt(delu loc gp(1)**2.0+delu loc gp(2)**2.0)
123 c
124 if ((Svars(GP n*(i−1.0)+1.0) .LT. opt) .AND.
125 & (opt .GT. rt*delt)) then
126 Svars(GP n*(i−1.0)+1.0)=opt
127 end if
128 if ((Svars(GP n*(i−1.0)+2.0) .LT. opn) .AND.
129 & (opn .GT. rn*deln)) then
130 Svars(GP n*(i−1.0)+2.0)=opn
131 end if
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132 tmax=Svars(GP n*(i−1.0)+1.0)
133 pmax=Svars(GP n*(i−1.0)+2.0)
134 c
135 c Compute the traction vector and tangent modulus matrix
136 c
137 call k cohesive law(Trac,Trac Jacob,G fn,G ft,deln,delt,
138 & alpha,beta,p m,p n,pmax,tmax,delu loc gp,mcrd,nrhs)
139 c
140 c Compute the B matrix and its transpose
141 c
142 call k Bmatrix(sf,B,mcrd,ndofel)
143 c
144 call k matrix transpose(B,B t,mcrd,ndofel)
145 c
146 c Compute the local stiffness matrix
147 c Local stiffness = B t * Trac Jacob * B
148 c
149 call k matrix multiply(Trac Jacob,B,temp1,mcrd,mcrd,
150 & ndofel)
151 call k matrix multiply(B t,temp1,stiff l,ndofel,
152 & mcrd,ndofel)
153 c
154 c Compute the global stiffness matrix
155 c Global K = Transpose(T) * K * T
156 c
157 call k matrix multiply(Transformation M T,stiff l,
158 & temp2,ndofel,ndofel,ndofel)
159 call k matrix multiply(temp2,Transformation M,stiff g,
160 & ndofel,ndofel,ndofel)
161 c
162 c Multiply the Jacobian with the global stiffness matrix and
163 c add the contribution from each Gauss point
164 c
165 a Mult = a Jacob*GP w
166 call k matrix plus scalar(amatrx,stiff g,a Mult,
167 & ndofel,ndofel)
168 c
169 c Compute the global residual vector
170 c Local residual = B t * Trac
171 c Global residual = Transpose(T) * Local residual
172 c
173 call k matrix multiply(B t,Trac,residual l,ndofel,
174 & mcrd,nrhs)
175 call k matrix multiply(Transformation M T,residual l,
176 & residual g,ndofel,ndofel,nrhs)
177 c
178 c Multiply the global residual by the Jacobian and add the
179 c contribution from each point
180 c
181 call k matrix plus scalar(rhs,residual g,a Mult,
182 & ndofel,nrhs)
183 end do
184 c
185 return
186 end
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187 c=====================================================================
188 c=============================SUBROUTINES=============================
189 c=====================================================================
190 c
191 c Determine the global displacement−separation (B) matrix
192 c
193 subroutine k Bmatrix(sf,B,mcrd,ndofel)
194 INCLUDE 'ABA PARAM.INC'
195 dimension sf(3),B(mcrd,ndofel)
196 B(1,1) = sf(1)
197 B(1,4) = sf(2)
198 B(1,7) = sf(3)
199 B(1,10)= −sf(1)
200 B(1,13)= −sf(2)
201 B(1,16)= −sf(3)
202 B(2,2) = sf(1)
203 B(2,5) = sf(2)
204 B(2,8) = sf(3)
205 B(2,11)= −sf(1)
206 B(2,14)= −sf(2)
207 B(2,17)= −sf(3)
208 B(3,3) = sf(1)
209 B(3,6) = sf(2)
210 B(3,9) = sf(3)
211 B(3,12)= −sf(1)
212 B(3,15)= −sf(2)
213 B(3,18)= −sf(3)
214 c
215 return
216 end
217 c=====================================================================
218 subroutine k cohesive law(T,T d,G fn,G ft,deln,delt,
219 & alpha,beta,p m,p n,pmax,tmax,delu,mcrd,nrhs)
220 INCLUDE 'ABA PARAM.INC'
221 dimension T(mcrd,nrhs),T d(mcrd,mcrd),delu(mcrd)
222 DOUBLE PRECISION G fn, G ft, f tn, f tt, alpha, beta,
223 & p m, p n, deln, delt, tmax, pmax, popn, popt, gam n,
224 & gam t, Tn, Tt, Dnn, Dnt, Dtt, T d, T, delu
225 c
226 popn=delu(3)
227 popt=sqrt(delu(1)**2.0+delu(2)**2.0)
228 c
229 call k Mac(pM1,G fn,G ft)
230 call k Mac(pM2,G ft,G fn)
231 c
232 if (G fn .NE. G ft) then
233 gam n=(−G fn)**(pM1/(G fn−G ft))*(alpha/p m)**p m
234 gam t=(−G ft)**(pM2/(G ft−G fn))*(beta/p n)**p n
235 elseif (G fn .EQ. G ft) then
236 gam n=−G fn*(alpha/p m)**p m
237 gam t=(beta/p n)**p n
238 end if
239 c
240 c Pre−calculation of the normal cohesive traction, Tn
241 c
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242 if (popn .LT. 0.0) then
243 popn=0.0
244 elseif ((popn .GE. deln) .OR. (popt .GE. delt)) then
245 Tn = 0.0
246 elseif (popn .GE. pmax) then
247 Tn=(gam n/deln)*(p m*(1.0−(popn/deln))**alpha*((p m/alpha)
248 & +(popn/deln))**(p m−1.0)−alpha*((1.0−(popn/deln))**(alpha−1.0))
249 & *((p m/alpha)+(popn/deln))**p m)*(gam t*(1.0−(popt/delt))
250 & **beta*((p n/beta)+(popt/delt))**p n+pM2)
251 else
252 Tn=(gam n/deln)*(p m*(1.0−(pmax/deln))**alpha*((p m/alpha)
253 & +(pmax/deln))**(p m−1.0)−alpha*((1.0−(pmax/deln))**(alpha−1.0))
254 & *((p m/alpha)+(pmax/deln))**p m)*(gam t*(1.0−(popt/delt))
255 & **beta*((p n/beta)+(popt/delt))**p n+pM2)
256 & *popn/pmax
257 end if
258 c
259 c Pre−calculation of the tangential cohesive traction, Tt
260 c
261 if ((popn .GE. deln) .OR. (popt .GE. delt)) then
262 Tt = 0.0
263 elseif (popt .GE. tmax) then
264 Tt=(gam t/delt)*(p n*(1.0−(popt/delt))**beta*((p n/beta)
265 & +(popt/delt))**(p n−1.0)−beta*((1.0−(popt/delt))**(beta−1.0))
266 & *((p n/beta)+(popt/delt))**p n)*(gam n*(1.0−(popn/deln))
267 & **alpha*((p m/alpha)+(popn/deln))**p m+pM1)
268 else
269 Tt=(gam t/delt)*(p n*(1.0−(tmax/delt))**beta*((p n/beta)
270 & +(tmax/delt))**(p n−1.0)−beta*((1.0−(tmax/delt))**(beta−1.0))
271 & *((p n/beta)+(tmax/delt))**p n)*(gam n*(1.0−(popn/deln))
272 & **alpha*((p m/alpha)+(popn/deln))**p m+pM1)
273 & *popt/tmax
274 end if
275 c
276 c Normal cohesive interaction
277 c
278 c (1) Contact
279 if (delu(3) .LT. 0.0) then
280 Dnn = −(gam n/(deln**2))*(p m/alpha)**(p m−1.0)*(alpha+p m)*
281 & (gam t*(p n/beta)**p n + pM2)
282 Dnt = 0.0
283 Tn = Dnn * delu(3)
284 else if ((popn .LT. deln) .AND. (popt .LT. delt)
285 & .AND. (Tn .GE. −1.0E−5)) then
286 Tn = Tn
287 c (2) Softening condition
288 if (popn .GE. pmax) then
289 Dnn=(gam n/(deln**2.0))*((p m**2.0−p m)*((1.0−(popn/deln))
290 & **alpha)*((p m/alpha)+(popn/deln))**(p m−2.0)+(alpha**2.0
291 & −alpha)*((1.0−(popn/deln))**(alpha−2.0))*((p m/alpha)
292 & +(popn/deln))**p m −2.0*alpha*p m*((1.0−(popn/deln))
293 & **(alpha−1.0))*((p m/alpha)+(popn/deln))**(p m−1.0))*(gam t*
294 & (1.0−(popt/delt))**beta*((p n/beta)+(popt/delt))**p n+pM2)
295 Dnt=(gam n*gam t/(deln*delt))*(p m*((1.0−(popn/deln))**alpha)
296 & *((p m/alpha)+(popn/deln))**(p m−1.0)−alpha*((1.0−(popn/deln))
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297 & **(alpha−1.0))*((p m/alpha)+(popn/deln))**p m)*(p n
298 & *((1.0−(popt/delt))**beta)*(((p n/beta)+(popt/delt))
299 & **(p n−1.0))−beta*((1.0−(popt/delt))**(beta−1.0))*((p n/beta)
300 & +(popt/delt))**p n)
301 c (3) Unloading/reloading condition
302 else
303 Dnn=(gam n/deln)*(p m*(1.0−(pmax/deln))**alpha*((p m/alpha)
304 & +(pmax/deln))**(p m−1.0)−alpha*((1.0−(pmax/deln))**(alpha−1.0))
305 & *((p m/alpha)+(pmax/deln))**p m)*(gam t*(1.0−(popt/delt))
306 & **beta*((p n/beta)+(popt/delt))**p n+pM2)
307 & /pmax
308 Dnt=(gam n*gam t/(deln*delt))*(p m*((1.0−(pmax/deln))**alpha)
309 & *((p m/alpha)+(pmax/deln))**(p m−1.0)−alpha*((1.0−(pmax/deln))
310 & **(alpha−1.0))*((p m/alpha)+(pmax/deln))**p m)*(p n
311 & *((1.0−(popt/delt))**beta)*(((p n/beta)+(popt/delt))
312 & **(p n−1.0))−beta*((1.0−(popt/delt))**(beta−1.0))*((p n/beta)
313 & +(popt/delt))**p n)
314 & *popn/pmax
315 end if
316 c (4) Complete failure
317 else
318 Tn = 0.0
319 Dnn = 0.0
320 Dnt = 0.0
321 end if
322 c
323 c Tangential cohesive interaction
324 c
325 if ((popt .LT. delt) .AND. (popn .LT. deln)
326 & .AND. (Tt .GE. −1.0E−5)) then
327 Tt = Tt
328 c (1) Softening condition
329 if (popt .GE. tmax) then
330 Dtt=(gam t/(delt**2.0))*((p n**2.0−p n)*((1.0−(popt/delt))
331 & **beta)*((p n/beta)+(popt/delt))**(p n−2.0)+(beta**2.0−beta)
332 & *((1.0−(popt/delt))**(beta−2.0))*((p n/beta)+(popt/delt))**p n
333 & −2.0*beta*p n*((1.0−(popt/delt))**(beta−1.0))*((p n/beta)
334 & +(popt/delt))**(p n−1.0))*(gam n*(1.0−(popn/deln))
335 & **alpha*((p m/alpha)+(popn/deln))**p m+pM1)
336 Dtn=(gam n*gam t/(deln*delt))*(p m*((1.0−(popn/deln))
337 & **alpha)*((p m/alpha)+(popn/deln))**(p m−1.0)−alpha*((1.0−
338 & (popn/deln))**(alpha−1.0))*((p m/alpha)+(popn/deln))**p m)*(p n
339 & *((1.0−(popt/delt))**beta)*(((p n/beta)+(popt/delt))
340 & **(p n−1.0))−beta*((1.0−(popt/delt))**(beta−1.0))*((p n/beta)
341 & +(popt/delt))**p n)
342 c (2) Unloading/reloading condition
343 else
344 Dtt=(gam t/delt)*(p n*(1.0−(tmax/delt))**beta*((p n/beta)
345 & +(tmax/delt))**(p n−1.0)−beta*((1.0−(tmax/delt))**(beta−1.0))
346 & *((p n/beta)+(tmax/delt))**p n)*(gam n*(1.0−(popn/deln))
347 & **alpha*((p m/alpha)+(popn/deln))**p m+pM1)
348 & /tmax
349 Dtn=(gam n*gam t/(deln*delt))*(p m*((1.0−(popn/deln))
350 & **alpha)*((p m/alpha)+(popn/deln))**(p m−1.0)−alpha*((1.0−
351 & (popn/deln))**(alpha−1.0))*((p m/alpha)+(popn/deln))**p m)*(p n
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352 & *((1.0−(tmax/delt))**beta)*(((p n/beta)+(tmax/delt))
353 & **(p n−1.0))−beta*((1.0−(tmax/delt))**(beta−1.0))*((p n/beta)+
354 & (tmax/delt))**p n)
355 & *popt/tmax
356 end if
357 c (3) Complete failure condition
358 else
359 Tt = 0.0
360 Dtt = 0.0
361 Dtn = 0.0
362 end if
363 if (Dtn .NE. Dnt) then
364 Dtn = 0.5*(Dtn + Dnt)
365 Dnt = Dtn
366 end if
367 c
368 if (popt .EQ. 0.0) then
369 T(1,1) = 0.0
370 T(2,1) = 0.0
371 T(3,1) = Tn
372 c
373 T d(1,1)=Dtt
374 T d(1,2)=Dtn
375 T d(1,3)=0.0
376 T d(2,1)=Dnt
377 T d(2,2)=Dtt
378 T d(2,3)=0.0
379 T d(3,1)=0.0
380 T d(3,2)=0.0
381 T d(3,3)=Dnn
382 else
383 T(1,1)=Tt*delu(1)/popt
384 T(2,1)=Tt*delu(2)/popt
385 T(3,1)=Tn
386 c
387 T d(1,1)=Dtt*(delu(1)/popt)**2.0+Tt*((delu(2)**2.0)
388 & /(popt**3.0))
389 T d(1,2)=Dtt*delu(1)*delu(2)/(popt**2.0)
390 & −Tt*delu(1)*delu(2)/(popt**3.0)
391 T d(1,3)=Dnt*delu(1)/popt
392 c
393 T d(2,1)=Dtt*delu(1)*delu(2)/(popt**2.0)
394 & −Tt*delu(1)*delu(2)/(popt**3.0)
395 T d(2,2)=Dtt*(delu(2)/popt)**2.0+Tt*((delu(1)**2.0)
396 & /(popt**3.0))
397 T d(2,3)=Dnt*delu(2)/popt
398 c
399 T d(3,1)=Dtn*delu(1)/popt
400 T d(3,2)=Dtn*delu(2)/popt
401 T d(3,3)=Dnn
402 end if
403 c
404 return
405 end
406 c=====================================================================
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407 subroutine k local coordinates(co de,R,coord l,Transformation M,
408 & Transformation M T,a Jacob,aJacob M,coords,u,ndofel,nnode,
409 & mcrd)
410 INCLUDE 'ABA PARAM.INC'
411 dimension R(mcrd,mcrd),coord l(mcrd,nnode),aJacob M(2,3),
412 & Transformation M(ndofel,ndofel),coords(mcrd,nnode),
413 & Transformation M T(ndofel,ndofel),u(ndofel),
414 & co de(mcrd,nnode), co de m(3,3),SFD(2,4)
415 c
416 call k matrix zero(co de m,3,4)
417 c
418 do i = 1, 3
419 co de m(i,1)=(co de(i,1)+co de(i,4))*0.5
420 co de m(i,2)=(co de(i,2)+co de(i,5))*0.5
421 co de m(i,3)=(co de(i,3)+co de(i,6))*0.5
422 end do
423 c
424 SFD(1,1) =−1
425 SFD(1,2) = 1
426 SFD(1,3) = 0
427 SFD(2,1) =−1
428 SFD(2,2) = 0
429 SFD(2,3) = 1
430 c
431 do i = 1,2
432 do j = 1,3
433 do k =1, 3
434 aJacob M(i,j) = aJacob M(i,j) + SFD(i,k)*co de m(j,k)
435 end do
436 end do
437 end do
438

439 dum1 = aJacob M(1,2)*aJacob M(2,3) − aJacob M(1,3)*aJacob M(2,2)
440 dum2 = aJacob M(1,3)*aJacob M(2,1) − aJacob M(1,1)*aJacob M(2,3)
441 dum3 = aJacob M(1,1)*aJacob M(2,2) − aJacob M(1,2)*aJacob M(2,1)
442 c
443 a Jacob = sqrt(dum1**2 + dum2**2 + dum3**2)/2.0d0
444 Rn1 = sqrt(dum1**2 + dum2**2 + dum3**2)
445 c
446 R(3,1) = dum1/Rn1
447 R(3,2) = dum2/Rn1
448 R(3,3) = dum3/Rn1
449 c
450 aLen=sqrt(aJacob M(1,1)**2.0 + aJacob M(1,2)**2.0
451 & + aJacob M(1,3)**2.0)
452 R(1,1)=aJacob M(1,1)/aLen
453 R(1,2)=aJacob M(1,2)/aLen
454 R(1,3)=aJacob M(1,3)/aLen
455 c
456 R(2,1)=R(3,2)*R(1,3)−R(3,3)*R(1,2)
457 R(2,2)=R(3,3)*R(1,1)−R(3,1)*R(1,3)
458 R(2,3)=R(3,1)*R(1,2)−R(3,2)*R(1,1)
459 c
460 c=====================================================================
461 num=nnode
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462 c
463 do i = 1, num
464 dum=3.0*(i−1.0)
465 Transformation M(dum+1,dum+1)=R(1,1)
466 Transformation M(dum+1,dum+2)=R(1,2)
467 Transformation M(dum+1,dum+3)=R(1,3)
468 Transformation M(dum+2,dum+1)=R(2,1)
469 Transformation M(dum+2,dum+2)=R(2,2)
470 Transformation M(dum+2,dum+3)=R(2,3)
471 Transformation M(dum+3,dum+1)=R(3,1)
472 Transformation M(dum+3,dum+2)=R(3,2)
473 Transformation M(dum+3,dum+3)=R(3,3)
474 end do
475 c
476 call k matrix transpose(Transformation M,Transformation M T,
477 $ ndofel,ndofel)
478 c
479 do i = 1, nnode
480 coord l(1,i)=(R(1,1)*co de(1,i)+R(1,2)*co de(2,i)
481 & +R(1,3)*co de(3,i))
482 coord l(2,i)=(R(2,1)*co de(1,i)+R(2,2)*co de(2,i)
483 & +R(2,3)*co de(3,i))
484 coord l(3,i)=(R(3,1)*co de(1,i)+R(3,2)*co de(2,i)
485 & +R(3,3)*co de(3,i))
486 end do
487 c
488 return
489 end
490 c=====================================================================
491 subroutine k shape fun(i,sf)
492 INCLUDE 'ABA PARAM.INC'
493 dimension sf(3), GP coord(2)
494 c
495 if (i .eq. 1) then
496 GP coord(1)= 1.0d0/6.0d0
497 GP coord(2)= 2.0d0/3.0d0
498 elseif (i .eq. 2) then
499 GP coord(1)= 2.0d0/3.0d0
500 GP coord(2)= 1.0d0/6.0d0
501 elseif (i .eq. 3) then
502 GP coord(1)= 1.0d0/6.0d0
503 GP coord(2)= 1.0d0/6.0d0
504 end if
505 c
506 sf(1)= 1.0 − GP coord(1) − GP coord(2)
507 sf(2)= GP coord(1)
508 sf(3)= GP coord(2)
509 c
510 return
511 end
512 c=====================================================================
513 subroutine k matrix multiply(A,B,C,l,n,m)
514 INCLUDE 'ABA PARAM.INC'
515 dimension A(l,n),B(n,m),C(l,m)
516 c
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517 call k matrix zero(C,l,m)
518 c
519 do i = 1, l
520 do j = 1, m
521 do k = 1, n
522 C(i,j)=C(i,j)+A(i,k)*B(k,j)
523 end do
524 end do
525 end do
526 c
527 return
528 end
529 c=====================================================================
530 subroutine k matrix plus scalar(A,B,c,n,m)
531 INCLUDE 'ABA PARAM.INC'
532 dimension A(n,m),B(n,m)
533 c
534 do i = 1, n
535 do j = 1, m
536 A(i,j)=A(i,j)+c*B(i,j)
537 end do
538 end do
539 c
540 return
541 end
542 c=====================================================================
543 subroutine k matrix transpose(A,B,n,m)
544 INCLUDE 'ABA PARAM.INC'
545 dimension A(n,m),B(m,n)
546 c
547 do i = 1, n
548 do j = 1, m
549 B(j,i)=A(i,j)
550 end do
551 end do
552 c
553 return
554 end
555 c=====================================================================
556 subroutine k matrix zero(A,n,m)
557 INCLUDE 'ABA PARAM.INC'
558 dimension A(n,m)
559 c
560 do i = 1, n
561 do j = 1, m
562 A(i,j)=0.d0
563 end do
564 end do
565 c
566 return
567 end
568 c=====================================================================
569 subroutine k vector zero(A,n)
570 INCLUDE 'ABA PARAM.INC'
571 dimension A(n)
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572 c
573 do i = 1, n
574 A(i)=0.d0
575 end do
576 c
577 return
578 end
579 c=====================================================================
580 subroutine k Mac(pM,a,b)
581 INCLUDE 'ABA PARAM.INC'
582 c
583 if ((a−b) .GE. 0.0) then
584 pM=a−b
585 elseif ((a−b) .LT. 0.0) then
586 pM=0.d0
587 end if
588 c
589 return
590 end
591 c=================================END=================================
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Appendix C

Supplementary Example: Activation of Friction in a
Masonry Wallette

Since the coupled cohesive-friction model presented in Chapter 4 is new, and the particular

application under investigation in that chapter shows little influence due to friction (see

Section 4.4.2.1), a supplementary example is selected to provide further support to the

model. This supplementary example considers the shear loading of a masonry wallette, and

demonstrates the influence of the coupled cohesive-friction model when a significant frictional

effect is activated. The masonry wallette consists of three bricks, linked with two mortar

joints, as illustrated in Figure C.1(a). During the experimental testing [317], the middle

brick is supported at its top edge by two rigid blocks, and a shear load is introduced through

an applied displacement on the lower edge of the outer two bricks. The vertical edges of the

wallette are loaded by two load cells which control the horizontally applied pressure. The

experimental investigation of this wallette was conducted by Beyer et al. [318, 317].

This problem has also been investigated numerically by Snozzi and Molinari [167]. They

modeled this problem with a dynamic fracture code and adaptively inserted cohesive el-

ements at the interface. In their simulations they used material damping to reduce the

oscillations they observed in their results. Numerically, the model uses symmetric boundary

conditions and only considers half the full model, as illustrated in Figure C.1(b). The do-

main is discretized using a uniform mesh of linear brick elements of dimension 5× 5× 5mm.

The resulting discretization contains 68, 400 elements and 75, 579 nodes. Moreover, 3, 500

cohesive elements are used to capture the failure/friction response of the interface. The

bricks have an elastic modulus of 14.0GPa, and a Poisson’s ratio of 0.15. The properties

of the cohesive interface are listed in Table C.1. The lower boundary of the outer brick is

displaced vertically, and, as in the testing machine, the specimen is loaded with an imposed

horizontal displacement with a constant normal pressure level of 0.4MPa.

To determine the influence of frictional forces on the global response, we consider cases

with and without friction included in the model. The results from our investigation are

illustrated in Figure C.2. The shear force is calculated as the applied force on the lower

surface of the outer brick divided by the area of the interface between the two bricks. The

experimental data from Beyer et al. [317] is included, for comparison. The numerical results
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(a)

Roller
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Uniform Vertical 
   Displacement

0.4p =  MPa
100mm 195mm

100 mm

290mm

Cohesive Interface

(b)

Figure C.1: Model of a masonry wallette: (a) full model, based on experimental setup, and (b) numerical
model used in simulations.

Table C.1: Summary of cohesive properties used for the interface elements.

Fracture
Energy

(φt)

Cohesive
Strength

(τ)

Softening
Parameter

(β)

Penalty
Stiffness

(λt)

Coefficient
of Friction

(µ)

750N/m 0.45MPa 5 0.04 0.77

including friction demonstrate good agreement with the response observed experimentally.

Initially, the stiffness of the composite increases in accordance with the response of the bricks.

After cohesive softening initiates, the response transitions smoothly to a purely frictional

regime; which the model is able to accurately capture. When friction is not included in the

model, the shear stress follows the cohesive model and transitions to zero stress at a finite

displacement; which is inconsistent with the response obtained experimentally.
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Figure C.2: Shear stress plotted as a function of applied displacement for the masonry wallette example. The
experimental data is extracted from Beyer et al. [317], and the numerical results from Snozzi and Molinari
[167] are included for comparison.
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[218] T. Grätsch and B. Klaus-Jürgen, “A posteriori error estimation techniques in practical
finite element analysis,” Computers and Structures, vol. 83, pp. 235–265, 2005.

[219] J. F. Molinari and M. Ortiz, “Three-dimensional adaptive meshing by subdivision
and edge-collapse in finite-deformation dynamic-plasticity problems with application
to adiabatic shear banding,” International Journal for Numerical Methods in Engi-
neering, vol. 53, pp. 1101–1126, 2002.

[220] A. R. Khoei, H. Azadi, and H. Moslemi, “Modeling of crack propagation via an adap-
tive mesh refinement based on modified superconvergent patch recovery technique,”
Engineering Fracture Mechanics, vol. 75, pp. 2921–2945, 2008.

241



[221] G. H. Paulino, K. Park, W. Celes, and R. Espinha, “Adaptive dynamic cohesive frac-
ture simulations using nodal perturbation and edge-swap operators,” International
Journal for Numerical Methods in Engineering, vol. 84, pp. 1303–1343, 2010.

[222] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, pp. 269–271, 1959.

[223] W. Weibull, “A statistical theory of the strength of materials,” Proceedings of the
Royal Academy of Engineering Sciences, vol. 151, pp. 1–45, 1939.

[224] J. C. Simo, P. Wriggers, K. H. Schweizerhof, and R. L. Taylor, “Finite deformation
post-buckling analysis involving inelasticity and contact constraints,” International
Journal for Numerical Methods in Engineering, vol. 23, pp. 779–800, 1986.

[225] J. H. Song and T. Belytschko, “Cracking node method for dynamic fracture with finite
elements,” International Journal for Numerical Methods in Engineering, vol. 77, pp.
360–385, 2009.

[226] A. Al-Ostaz and I. Jasiuk, “Crack initiation and propagation in materials with ran-
domly distributed holes,” Engineering Fracture Mechanics, vol. 58, pp. 395–420, 1997.

[227] R. Becker and R. E. Smelser, “Simulation of strain localization and fracture between
holes in an aluminum sheet,” Journal of the Mechanics and Physics of Solids, vol. 42,
pp. 773–796, 1994.

[228] M. Ostoja-Starzewski and G. Wang, “Particle modeling of random crack patterns in
epoxy plates,” Probabilistic Engineering Mechanics, vol. 21, pp. 267–275, 2006.

[229] J. F. Kalthoff and S. Winkler, “Failure mode transition at high rates of shear load-
ing,” International Conference on Impact Loading and Dynamic Behavior of Materials,
vol. 1, pp. 185–195, 1987.
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pp. 793–800, 1934.

[258] J. C. Cavendish, D. A. Field, and W. H. Frey, “An approach to automatic three-
dimensional finite element mesh generation,” International Journal for Numerical
Methods in Engineering, vol. 21, pp. 329–347, 1985.

[259] W. J. Schroeder and M. S. Shephard, “Geometry-based fully automatic mesh gener-
ation and the Delaunay triangulation,” International Journal for Numerical Methods
in Engineering, vol. 26, pp. 2503–2515, 1988.

[260] C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh gen-
erator with built-in pre- and post-processing facilities,” International Journal for Nu-
merical Methods in Engineering, vol. 79, pp. 1309–1331, 2009.

244



[261] D. A. Field, “Laplacian smoothing and Delaunay triangulations,” Communications in
Applied Numerical Methods, vol. 4, pp. 709–712, 1988.

[262] L. R. Swank and R. M. Williams, “Correlation of static strengths and speeds of rota-
tional failure of structural ceramics,” American Ceramic Society Bulletin, vol. 60, pp.
830–834, 1981.

[263] R. Hashimoto, A. Ogawa, T. Morimoto, and M. Yonaiyama, “Spin test of silicon nitride
disk,” The 74th JSME Annual Meeting, vol. 2, pp. 441–442, 1996.

[264] P. Zhong, C. J. Chuong, and R. D. Goolsby, “Microhardness measurements of renal
calculi: Regional differences and effects of microstructure,” Journal of Biomedical
Materials Research, vol. 26, pp. 1117–1130, 1992.

[265] P. Zhong, C. J. Chuong, and G. M. Preminger, “Characterization of fracture toughness
of renal calculi using a microindentation technique,” Journal of Materials Science
Letters, vol. 12, pp. 1460–1462, 1993.

[266] G. Pittomvils, H. Vandeursen, M. Wevers, J. P. Lafaut, D. De Ridder, P. De Meester,
R. Boving, and L. Baert, “The influence of internal stone structure upon the fracture
behavior of urinary calculi,” Ultrasound in Medicine and Biology, vol. 20, pp. 803–810,
1994.

[267] A. Mota, J. Knap, and M. Ortiz, “Three-dimensional fracture and fragmentation of
artificial kidney stones,” Journal of Physics: Conference Series, vol. 46, pp. 299–303,
2006.

[268] A. Caballero and J. F. Molinari, “Optimum energy on the fragmentation of kidney
stones by direct impact,” International Journal for Computer-Aided Engineering and
Software, vol. 28, pp. 747–764, 2011.

[269] J. E. Bishop, “A displacement-based finite element formulation for general polyhe-
dra using harmonic shape functions,” International Journal for Numerical Methods in
Engineering, vol. 97, pp. 1–31, 2014.

[270] A. L. Gain, C. Talischi, and G. H. Paulino, “On the virtual element method for
three-dimensional linear elasticity problems on arbitrary polyhedral meshes,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 282, pp. 132–160, 2014.

[271] A. L. Gain, G. H. Paulino, L. S. Duarte, and I. F. M. Menezes, “Topology optimization
using polytopes,” Computer Methods in Applied Mechanics and Engineering, vol. 293,
pp. 411–430, 2015.

[272] H. Chi, C. Talischi, O. Lopez-Pamies, and G. H. Paulino, “Polygonal finite elements
for finite elasticity,” International Journal for Numerical Methods in Engineering, vol.
101, pp. 305–328, 2014.

[273] M. Floater, A. Gillette, and N. Sukumar, “Gradient bounds for Wachspress coordinates
on polytopes,” SIAM Journal on Numerical Analysis, vol. 52, pp. 515–532, 2014.

245



[274] L. Beirão da Veiga, C. Lovadina, and D. Mora, “A virtual element method for elastic
and inelastic problems on polytope meshes,” arXiv preprint arXiv:1503.02042, 2015.

[275] Y. Bar-Cohen, Electroactive polymer (EAP) actuators and artificial muscles. SPIE -
The International Society for Optical Engineering, 2004.

[276] F. Carpi and E. Smela, Biomedical Applications of Electroactive Polymer Actuators.
Wiley Publications, 2009.

[277] Q. M. Zhang, H. Li, M. Poh, F. Xia, Z. Y. Cheng, H. Xu, and C. Huang, “An all-
organic composite actuator material with a high dielectric constant,” Nature, vol. 419,
pp. 284–287, 2002.

[278] C. Huang and Q. Zhang, “Enhanced dielectric and electromechanical responses in high
dielectric constant all-polymer percolative composites,” Advanced Functional Materi-
als, vol. 14, pp. 501–506, 2004.

[279] C. Huang, Q. M. Zhang, J. Y. Li, and M. Rabeony, “Colossal dielectric and elec-
tromechanical responses in self-assembled polymeric nanocomposites,” Applied Physics
Letters, vol. 87, pp. 182 901–1 – 182 901–3, 2005.

[280] F. Carpi, G. Gallone, F. Galantini, and D. De Rossi, “Silicone-poly(hexylthiophene)
blends as elastomers with enhanced electromechanical transduction properties,” Ad-
vanced Functional Materials, vol. 18, pp. 235–241, 2008.

[281] O. Lopez-Pamies, T. Goudarzi, A. B. Meddeb, and Z. Ounaies, “Extreme enhancement
and reduction of the dielectric response of polymer nanoparticulate composites via
interphasial charges,” Applied Physics Letters, vol. 104, pp. 242 904–1 – 242 904–5,
2014.
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