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Structural engineering under natural hazards and risks 

Random Excitations

Random processes

Non-deterministic excitations

Many possibilities of the process

San Francisco Earthquake, 1906
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1. http://www.documentingreality.com, 2. Photograph: Kimimasa Mayama/Reuters
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Kobe Earthquake, 1995

One of the most fundamental requirements on building structures is to withstand

various uncertain loads.

The structural design needs to ensure safe and reliable operations over a

prolonged period of time despite random excitations caused by hazardous events.
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Structural systemCourtesy of Skidmore, Owing and Merrill, LLP 
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Research aim: identification of the optimal structure and 

system under dynamic and stochastic excitations

Structural Design
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Shape Optimization

Size Optimization

Design variable, d: area

Design variable, d: boundary of shape

Stress contour

Initial design Optimized design

Categorization of structural optimization

http://www.altairhyperworks.com/

Courtesy of Skidmore, Owing and Merrill, LLP 
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Topology Optimization: Continuum

max   stiffness

.      volume fractions t

d

Topology Optimization:

Ground structure

Design variable, d: area

Design variable, d: density

Categorization of structural optimization

(ANIMATION)

(ANIMATION)
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Presentation outline

1. Introduction 2. Discrete representation of stochastic 

process

3. Parameter sensitivity of system 

reliability

4. Structural design and topology 

optimization under stochastic 

excitations
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The stochastic excitation is represented by a linear combination of basis

functions, s(t), with standard normal independent random variables, v:

 Discrete Representation of Stochastic Excitation

Reasonable representation of the random process is 

needed to obtain a meaningful solution

time, t
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Random process can be understood as a

collection of random variables defined

along the time axis

Stochastic excitation is often described by

a random process

Der Kiureghian, A. (2000). The geometry of random vibrations and solutions by FORM and SORM. Probabilistic Engineering Mechanics, 15(1),: 81-90. 
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Stochastic ground excitations can be modeled by using a 

filter representing the characteristic of the soil medium 

and Gaussian process. 

Gaussian process Soil Medium (Filter)

Filter parameters

Ground acceleration 

(Filtered Gaussian Process)

 Modeling Ground Excitations - Filtered Gaussian Process

Stochastic ground motion is modeled as the response of a 

linear filter to a random pulse train
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Convolution integral for responses of linear systems subjected to the

stationary process can be developed with the impulse response function.
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 Dynamic Response

Stochastic response of a structure is described by a finite 

number of random variables



13

 Instantaneous Failure Probability

Failure event of a linear system at a certain time ti is defined as

  T
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Failure event is defined in terms of dynamic response in 

discretization representation form 
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 Derived system equations in matrix form

0
( )ta

 Numerical Integration (i.e. Newmark method)

A new procedure to facilitate identifying a(t) without 

derivation of the impulse response function

Chun, J., Song, J., Paulino, G.H. (2016). Structural topology optimization under constraints on instantaneous failure probability. Structural and Multidisciplinary Optimization. 

53(4): 773-799.
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Acceleration

In the reliability analysis of dynamic system subjected to stochastic

excitations, a significant problem is determining the first passage probability

that any one of output states of interest exceeds a certain threshold value

within a given time duration T.

Ssiger International Plaza 

Courtesy of Skidmore, Owing and Merrill, LLP 

Stress Displacement

Acceleration

 Randomness in Dynamic Responses

Probability of the occurrence of at least one failure event 

over a time interval needs to be evaluated
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Song, J., and A. Der Kiureghian (2006). Joint first-passage probability and reliability of systems under stochastic excitation. J. Engineering Mechanics, ASCE, 132(1):65-77.

Fujimura, K. and A. Der Kiureghian (2007). Tail-Equivalent Linearization Method for Nonlinear Random Vibration. Probabilistic Engineering Mechanics, 22: 63-76

Main issue: 1) Evaluation of first passage probability in an efficient way

2) Sensitivity analysis for the gradient-based optimization algorithms
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 First Passage Probability Pfp

First passage probability is formulated as a series system 

problem



17

Presentation outline

1. Introduction 2. Discrete representation of stochastic 

process

3. Parameter sensitivity of system 

reliability

4. Structural design and topology 

optimization under stochastic 

excitations

5. Reliability-based topology optimization 

by ground structure method

j

i

 

 

5 10 15 20

5

10

15

20
-0.5

-0.25

0.25

0.75

0.5

1

0

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1



18
1 2seriesE E E1 2 3parallelE E E E 1 2 3 4 5 6generalE E E E E E E

 Parallel System  Series System  General System

Reliability assessment needs to work with systems having 

components in parallel, series, and general
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Kang, WH,, Song, J. (2010). Evaluation of multivariate normal integrals for general systems by sequential compounding. Structural Safety. 32(1): 35–41.  

SCM compounds component events coupled by union or intersection sequentially

until a single compound event represents all of the system events

R

R

Correlation matrixSCM procedure

Sequential compounding method (SCM) is an efficient 

system reliability method
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Chun, J., Song, J., Paulino, G.H. (2015) Parameter sensitivity of system reliability using sequential compounding method.  Structural Safety. 55: 26–36

 Sensitivity in Parallel System

 Sensitivity in Series System

 Sensitivity in General System
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CSP is an efficient sensitivity method for various system 

problems using SCM
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Sensitivities computed by the CSP 

method, FDM and MCS
Illustration of the CSP method 
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Illustrative example of the CSP method considers the cut-

set system problem
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CSP method remarks

 CSP method can be used to facilitate efficient use of gradient-based

optimization algorithms for design or topology optimization under constraints

on system failure probability

 New sensitivity method, CSP, was developed to compute the parameter

sensitivity of series, parallel and general system problems using SCM

 Sequential Compounding Method (SCM) was reviewed

 Sensitivity computed by CSP, FDM, and MCS were compared with respect to

accuracy
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Chun, J., Song, J., Paulino, G.H. System reliability-based design/topology optimization of structures constrained by first passage probability. To be submitted.
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RBDO&RBTO under first passage probability
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http://www.sefindia.org/



27

     

 
1 2 1, ,3 1,

1

2 1

( ) ( , )

1 β , ,β , ,...,β , ; , ,...,

1 ,

i

n

fp sys fp f k

n i i i n

k

t n n

n i

P E P E t

t t t   





 
  

 

    

 

d

d d d

β R

1,1 1,

,1 ,

n

n n n

 

 

 
 

  
  

R

 Parameter sensitivity of first passage probability in RBDO&RBTO

     
1 1

1 ,( ) β ( ) β ( )

β

n n
n nfp sys j j

j
j ji i j i i

P E
c

d d d d 

       
              

 
β,R β R d d

Computation of first passage probability of engineering 

constraint

1

3/2

2

1

( , )
( , )

β ( )

( , )

j
k j

cst k j
k ij

j
i

k j
k

a t
C a t

d

d
a t





  
   

    
  

 
 





d
d

d

d



28

AJM introduces an adjoint system of equations so that computation of implicitly 

defined terms can be avoided. This results in significant reduction of  

computational cost. 
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Chun, J., Song, J., Paulino, G.H. System reliability-based design/topology optimization of structures constrained by first passage probability. To be submitted.

 Adjoint Method (AJM)

Implicit derivatives can be eliminated through adjoint 

method
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Adjoint method Finite difference method

Sensitivities of first passage probability from AJM show a 

good agreement with those by FDM
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Numerical tests confirm significant reduction in 

computational time of proposed AJM compared to FDM
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Image courtesy of SOM
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Optimization of a lateral bracing system subjected to 

earthquake ground motions

E = 21,000 MPa
ρm= 2,400 kg/m3

L. L. Beghini, A. Beghini, N. Katz, W. F. Baker, and G. H. Paulino. (2014). Connecting architecture and engineering through structural topology optimization. Engineering 

Structures. Vol. 59, pp. 716-726.

Chun, J., Song, J., Paulino, G.H. System reliability-based design/topology optimization of structures constrained by first passage probability. To be submitted.
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Pfp
t=0.0668 Pfp

t=0.0062 Pfp
t=0.00023

Proposed method enables optimization of elements for 

different target first passage failure probabilities

Chun, J., Song, J., Paulino, G.H. System reliability-based design/topology optimization of structures constrained by first passage probability. To be submitted.
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 Convergence History  Dynamic Response Comparison

Reduction of stress time histories decreases likelihood of 

exceeding the threshold value for Pf
target

3

9

13

Chun, J., Song, J., Paulino, G.H. System reliability-based design/topology optimization of structures constrained by first passage probability. To be submitted.
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Initial System Optimized System

Dynamic Behavior (Stress)

Stress time histories are more uniform than stress levels 

shown in the initial structure

(ANIMATION)
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xy

z

Node of interest

 Space Truss Dome

Optimization of space truss dome subjected to stochastic 

excitations

E = 210 GPa
ρm= 7,850 kg/m3

2% damping ratio

Chun, J., Song, J., Paulino, G.H. System reliability-based design/topology optimization of structures constrained by first passage probability. To be submitted.
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Simultaneous considerations of two direction components 

of earthquake ground excitations at different angles
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Optimization history: volume reduction while satisfying the 

target failure probability

 Convergence History

(ANIMATION)
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Initial structure Optimized structure

Comparison of dynamic responses of the initial structure 

and optimized structures

Scale Factor = 5

Time, s
0 1 2 3 4 5 6

A
c
c
e

le
ra

ti
o

n
, 

g
-10

-5

0

5

10

θ
g1
=0˚ θ

g1
=60˚

(ANIMATION)



39

Reduced drift ratios of the optimized structure result in 

decreased likelihood of exceeding the threshold value

Drift Ratio Time History
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θg1=0°, θg2=30°

θg1=0°, θg2=60°

θg1=0°, θg2=90°

Two directional ground components of earthquake ground 

excitations: optimal bar areas

Volume = 93.4 m3

Volume = 87.9 m3

Volume = 72.1 m3
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LEVEL 5

EL: 20 m

LEVEL 2

EL: 5m

LEVEL 3

EL: 10 m

LEVEL 4

EL: 15 m

GROUND

EL: 0 m

Node of interest5 m 4000 kg

Topology optimization can identify the optimal bracing 

layout of a structure

E = 21,000 MPa

ρm = 2,400 kg/m3

2% damping ratio

r = 0.25 m
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Chun, J., Song, J., Paulino, G.H. System reliability-based design/topology optimization of structures constrained by first passage probability. To be submitted.
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LEVEL 5

EL: 20 m

LEVEL 2

EL: 5m

LEVEL 3

EL: 10 m

LEVEL 4

EL: 15 m

GROUND

EL: 0 m

Volume = 2.805 m3 Volume = 3.521 m3 Volume = 3.937 m3

LEVEL 5

EL: 20 m

LEVEL 2

EL: 5m

LEVEL 3

EL: 10 m

LEVEL 4

EL: 15 m

GROUND

EL: 0 m

Volume = 2.885 m3 Volume = 3.706 m3 Volume = 4.271 m3

Tip Displacement Constraint Inter-story Drift Constraint

Reliable bracing systems can be interpreted from optimal 

topologies

Optimization shows that reinforcing lower regions will efficiently control the tip

displacement, whereas adjusting each bracing module will lead to successful

designs of structures fulfilling inter-story drift ratio criteria

Pf
t=0.0668 Pf

t=0.0062 Pf
t=0.0013 Pf

t=0.0668 Pf
t=0.0062 Pf

t=0.0013
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Stochastic design and topology optimization remarks

 New optimization framework was proposed to incorporate the first passage

probability into size optimization and topology optimization of structures

 Parameter sensitivity formulation of the probabilistic constraint on the first

passage probability was derived

 Lateral bracing system of structures subjected to stochastic ground motions

was optimized to identify optimal member sizes under engineering constraints

associated with structural design criteria

 Different types of failure events such as different time points and locations

as well as multiple design criteria can be considered

 Optimization frameworks under non-stationary stochastic processes in time

domain as well as in frequency domain need to be further studied
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Presentation outline

1. Introduction 2. Discrete representation of stochastic 

process 

3. Parameter sensitivity of system 

reliability

4. Structural design and topology 

optimization under stochastic 

excitations

5. Reliability-based topology optimization 

by ground structure method
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ɛcut-off = 0.0 ɛcut-off = 0.0001 ɛcut-off = 0.001 ɛcut-off = 0.1

 Hanging bars

 Internal mechanism

 Many thin bars Impractical 

structure

T

T

min  = ( )

.      

         

with ( ) ( )

s

lower upper
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s t V

 



A
f u A

L A

A A A

K A u A f

Ground structure

 Feasible structure

cut-off

cut-off

0    if / max( ) ε   
,  0 ε 1

   otherwise                   

i

i

i

A
A

A


  


A

 Elastic formulation

 Filter

Determination of a proper cut-off value is ambiguous in 

conventional filter
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ɛcut-off = 0.0001 ɛcut-off = 0.01 ɛcut-off = 0.05

  target

,
min  ( , )

.      ( , ) 0

         

with ( ) ( , ) ( )

f f

lower upper

f

s t P g P 

 



X
X

d μ
d μ

d X

d d d

K d u d X f X

 Objective: minimize volume, Constraint: compliance (Pf
target=0.005)

 Reliability-based topology optimization (RBTO)

Ground structure

Conventional filtering approach may lead to the violation of 

the prescribed target failure probability

Chun, J., Paulino, G.H, Song, J. Reliability-based topology optimization of truss structures using a discrete filtering technique. To be submitted for journal publication
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 Filter application during optimization

 Removal of critical members for equilibrium

 Detection of global equilibrium of a filtered structure

 Solution for singular systems of equations 

 Regularized potential energy (Tikhonov regularization)
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 Global equilibrium error
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pKu f

f

 Optimization formulation (compliance)

 Discrete filter approach

Ramos AS Jr., Paulino GH (2016) Filtering structures out of ground structures - a discrete filtering tool for structural design optimization. Journal of Structural and Multidisciplinary

Optimization. Available Online. DOI 10.1007/s00158-015-1390-1.

Discrete filtering scheme enables filtering of well-defined 

structures from ground structures
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 Double-loop RBTO

Two nested optimization loops

1) Design optimization: outer loop

2) Reliability assessment: inner loop  target

,
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 Failure probability (FORM: Der Kiureghian, 2005)

 Performance Measure Approach (PMA)

Der Kiureghian A (2005) First- and Second-Order Reliability Methods. Engineering Design Reliability Handbook, CRC, Boca Raton, FL, Chap. 14.

FORM approximations for a component problem

Double loop RBTO: an outer loop for optimization and an 

inner loop for the reliability analysis
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Liang J, Mourelatos Z, Tu J (2004) A Single-Loop Method for Reliability-Based Design Optimization. Proceedings of the ASME Design Engineering Technical Conferences.
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 Single-loop RBTO using discrete filter

Efficiency in RBTO can be improved by the reliability 

analysis loop by a non-iterative procedure
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Restrict zones (GRAND3) Random variable: Forces, Young’ Modulus

 Optimization problem

Zegard T, Paulino GH (2015) GRAND3 — Ground structure based topology optimization for arbitrary 3D domains using MATLAB. Structural and Multidisciplinary 

Optimization 52(6)

Chun, J., Paulino, G.H, Song, J. Reliability-based topology optimization of truss structures using a discrete filtering technique. To be submitted for journal publication
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Application of the proposed method in a large structure to 

identify the optimal topology with a desired reliability
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 Connectivity Level 1

Ground structure

Pf, FORM = 14.4% Pf, FORM = 0.0025%

Ground structure

DTO RBTO

 Connectivity Level 4

Equilibrium Error=3.4e-05 Equilibrium Error=3.4e-05

DTO RBTO

Pf, FORM = 15.4% Pf, FORM = 0.0025%

Equilibrium Error=3.1e-05 Equilibrium Error=3.2e-05

Different connectivity levels result in the different 

topologies in optimized solutions

(ANIMATION)

(ANIMATION)

Chun, J., Paulino, G.H, Song, J. Reliability-based topology optimization of truss structures using a discrete filtering technique. To be submitted for journal publication
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𝛼𝑓 = 0.05

Pf, FORM = 0.0025%

Equilibrium Error=3.1e-05

𝛼𝑓 = 0.075

Pf, FORM = 0.0025%

Equilibrium Error=3.2e-05

𝛼𝑓 = 0.09

Pf, FORM = 0.0025%

Equilibrium Error=3.2e-05

Volume = 2579 m3 Volume = 2670 m3 Volume = 2897 m3

Different filter parameters generate a variety of optimal 

solutions for application in engineering

Chun, J., Paulino, G.H, Song, J. Reliability-based topology optimization of truss structures using a discrete filtering technique. To be submitted for journal publication
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 The conventional filter and the discrete filter were reviewed

 The framework of single-loop RBTO employing the discrete filtering scheme 

was developed

 Optimal solutions satisfying the desired failure probability and global 

equilibrium were obtained from the proposed method

 Various optimal solutions can be delivered with the proposed method

RBTO employing the discrete filter remarks
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Summary

1. Introduction 2. Discrete representation of stochastic 

process

3. Parameter sensitivity of system 

reliability

4. Structural design and topology 

optimization under stochastic 

excitations

5. Reliability-based topology optimization 

by ground structure method

j

i

 

 

5 10 15 20

5

10

15

20
-0.5

-0.25

0.25

0.75

0.5

1

0

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1



55

Thank you

National Science Foundation (NSF) : CMMI 1234243

Dr. Song’s research group

University of Illinois, Urbana-Champaign

Dr. Paulino’s research group

Acknowledgment


