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Abstract  

 

 

Structural optimization aims to provide structural designs that allow for the best performance while 

satisfying given design constraints. Among various applications of structural optimization, 

topology optimization based on mathematical programming and finite element analysis has 

recently gained great attention in research community as well as in applied structural engineering 

fields. One of the most fundamental requirements for building structures is to withstand various 

uncertain loads such as earthquake ground motions, wind loads and ocean waves. The design of 

structures, therefore, needs to ensure safe and reliable operations of structures over a prolonged 

period of time during which they may be exposed to various randomness of excitations caused by 

hazardous events. As such, significant amount of time and financial resources are invested to 

control the dynamic response of a structure under random vibrations caused by natural hazards or 

operations of non-structural components. In this regard, topology optimization of structures with 

stochastic response constraints is of great importance and consideration in industrial applications. 

This thesis discusses the development of structural optimization frameworks for a wide spectrum 

of deterministic and probabilistic constraints in engineering and investigate numerical applications. 

First, the efficient optimization framework for statics and dynamics problems is investigated. 

In many incidences, expensive computational cost and labor hours are so prohibitive that 

optimization processes become impractical or inapplicable.  To alleviate the computational burden 

in dynamic topology optimization, the multiresolution topology optimization approach is adopted. 

Based on the polygonal finite element method and multiresolution topology optimization 

techniques, a method of polygonal multiresolution topology optimization for statics and dynamics 
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problems is developed. This development provides methods to discretize complicated geometries 

and reduce computational cost to obtain topology results of high-resolutions.  

Despite rapid technological advances, incorporating stochastic response of structures into 

topology optimization is considered a relatively new field of research mainly due to computational 

challenges. In order to overcome such technical challenges in this field, a new method is introduced 

for incorporating random vibration theories into topology optimization using a discrete 

representation method for stochastic processes. Furthermore, a novel formulation is developed for 

sensitivity analysis of stochastic responses to use gradient-based optimization algorithms for the 

proposed topology optimization employing the discrete representation method.  

To assess the reliability of a structure subjected to random excitations, the probability of the 

occurrence of at least one failure event over a time interval, i.e. the first-passage probability, often 

needs to be evaluated. In this thesis, a new method is proposed to incorporate probabilistic 

constraints on the first-passage probability into structural design and topology optimization. To 

obtain the first-passage probability effectively during each iteration, the failure event is described 

as a series system event consisting of failure events defined at discrete time points, and the system 

failure probability is obtained with the sequential compounding method. A new sensitivity 

formulation is developed employing the sequential compounding method to facilitate the use of 

gradient-based optimizers for the proposed method.  

Finally, the conventional filter effects are investigated in reliability-based topology 

optimization using the elastic formulation of the ground structure method. In addition, an 

optimization scheme employing the discrete filter is proposed to ensure that optimized solutions 

satisfy the probabilistic constraints and global equilibrium. Moreover, the single-loop approach is 

incorporated to enhance the computational efficiency of the proposed RBTO method. 
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Chapter 1 

Introduction 

 

Building structures are explicitly exposed to uncertain conditions induced by natural and man-

made hazards. The uncertainty of such conditions may exist in applied loading conditions, material 

properties of structural members, force magnitude and directions, or future realization of 

earthquakes in a seismic region. The uncertainty of building components also can coexist and 

interact with conditional uncertainties, and cause undesirable effects on performances of building 

systems and operations. In the field of structural engineering, various methods of design 

optimization have emerged over the past few decades to consider the conditional and material 

uncertainties and their implications in structure design. Structural design optimization is 

commonly performed in a deterministic manner, whereas reliability based design optimization 

focuses on finding optimal solutions that account for the existence of various uncertainties such as 

loads and material properties. Although theories and numerical frameworks of structural design 

and topology optimization for statics problems in both deterministic and probabilistic approach 

have been well developed, optimization for structural dynamics problems as well as the practical 

application of these developments in the broad field need further research and development. 

Optimization of dynamics problems is mainly categorized into the frequency minimization, the 

band gab maximization, and dynamic compliances minimization in the literature. However, only 

limited literature is available for addressing the incorporation of dynamic characteristics in time 

or frequency domain with broader and significant properties into optimization. That is primarily 

due to expensive computational cost and lack of efficient framework which adds to the complexity 

of sensitivity analysis for gradient-based optimization algorithms. In order to design structures 
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with safety criteria governed by natural hazards, a new optimization framework is needed, so 

optimal solutions under stochastic process representing extreme events rather than conventional 

formulations of deterministic and probabilistic design optimization can be provided. 

1.1. Motivation 

Engineering design and analysis of structures subjected to environmental hazards, such as 

earthquake and wind loading, are fundamental aspects of structural engineering. These forces, 

known as stochastic excitations, directly influence the building safety and affect the robustness of 

building performances. Thus, structure engineers strive to optimally design structures that are safe 

and reliable in operations that can withstand the random excitations repeatedly induced by natural 

hazards over time. Due to the randomness of the natural disaster, uncertainties invariably exist and 

cannot be avoided. Accordingly, the performance of the structural system can be best expressed in 

a probabilistic setting so that the inherent uncertainties in loading conditions to which structures 

are exposed can be considered appropriately. The main focus of the present work is identifying the 

optimal structure and structural system that satisfies the given reliability under stochastic 

excitations caused by earthquake ground motions. The present work focuses on developing 

accurate predictions of stochastic responses of a structure to natural hazards or operations and 

providing efficient and robust optimization frameworks for discrete and continuum structures. In 

addition, this dissertation investigates and explores the sensitivity analysis of the system failure 

probability defined in the high-dimension and time domain to employ gradient-based optimization 

methods. 

This chapter includes a brief introductory background on deterministic and probabilistic 

optimization frameworks and discusses discrete- and continuum-based optimization. At the 

conclusion of this chapter, the outline, and scope of the current work as well as the organization 

of the topics in each of the remaining chapters are summarized. 
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1.2. Optimization 

It is difficult to provide structural design solutions through building and testing prototypes due to 

limited time and resources, and prohibitive financial cost. As an alternative method, mathematical 

modeling is developed to perform simulations of the behavior of structures and predict operations 

under various conditions. From the simulation results, the final structural components or structural 

system are decided, and the prototype of those designs are built to validate the expected 

performance and results. If predicted performance does not satisfy the design criteria, however, 

the mathematical model is modified, and the aforementioned design process is repeated until an 

optimal solution is achieved. 

The classical structural optimization can be mainly categorized into size, shape and topology 

optimization (Bendsøe and Sigmund 2003). In size optimization (Figure 1.1 (a)), commonly 

considered design variables are thicknesses or cross sectional areas of structural elements and are 

to be determined. An alternative technique, shape optimization, considers the boundary ∂Ω of the 

shape Ω as the design variable. The shape optimization can reshape boundaries to obtain optimal 

solutions with fixed topology (e.g. the number of holes) of the design domain (Figure 1.1 (b)). 

Topology optimization is optimizing a shape by acting on its topology (Figure 1.1 (c)), where the 

design variable is a material density in the continuum setting or a cross sectional size in the discrete 

setting. Therefore, topology optimization determines the optimal physical size, shape and 

connectivity and generates material layouts. The continuum-based and discrete-based topology 

optimization will be discussed in the following section.  

1.3. Discrete – continuum topology optimization 

Topology optimization is a mathematical tool that has been utilized to explore solutions for various 

engineering problems. Topology optimization of continuum structures seeks for optimal material 

layouts and connectivities in a design domain (Bendsøe and Sigmund 2003). In continuum based 
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topology optimization, the design domain is discretized with finite elements (see Figure 1.2 (a)), 

each of which is assigned as void or solid material through the iterative optimization procedure 

(see Rozvany (2009) and Deaton and Grandhi (2014) for a state-of-the-art review of topology 

optimization). In the field of structural engineering, continuum-based topology optimization has 

been applied to design lateral-load resisting systems (Mijar et al. 1998; Stromberg et al. 2012; 

Bobby et al. 2014; Chun et al. 2016).  

 

 

Figure 1.1: Structural optimization and application: (a) size optimization, (b) shape optimization
(figure on the right: http://altairenlighten.com), and (c) topology optimization (figure on the right:
Sutradhar et al. 2010, PNAS). 
 

F

(a)

Ω

∂Ω

(b)

Ω

∂Ω

(c)



 

5 

Figure 1.2: (a) Continuum-based topology optimization, and (b) discrete-based topology
optimization. 

Topology optimization of discrete structures such as trusses and frames is applied to find optimal 

connectivity of the nodes by the structural elements (see Figure 1.2 (b)). This approach commonly 

implements the ground structure method (Bendsøe and Sigmund 2003; Ohsaki 2010), in which the 

design domain is discretized with spatial nodes and highly interconnected by truss or frame 

elements. Topology optimization is performed on the generated ground structure to minimize an 

objective function while satisfying constraints, and the size of elements and connectivities are 

subsequently determined.   

F

?

(a) (b)
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1.4. Reliability-based design optimization 

Deterministic optimization (DO) for both the continuum and discrete topology optimization 

considers all design parameters such as material properties, loadings, and geometry, as 

deterministic in optimization. However, consideration of uncertainties in loads and material 

properties is also an important aspect of structural engineering as they aid in preventing unexpected 

structural failures that may result in catastrophic damage and/or loss of life. Therefore, 

optimization processes associated with the treatment of uncertainties should be utilized to obtain 

engineering solutions to achieve a satisfactory level of reliability. This approach commonly 

referred to as RBDO, reliability-based design optimization (Frangopol and Maute 2005; 

Tsompanakis et al. 2008). RBDO aims to achieve the optimal design under given probabilistic 

constraints, arising from uncertainties in material properties or loads. For example, Component 

Reliability Based Design Optimization (CRBDO) seeks to satisfy the probabilistic constraint for 

each failure mode. This component-based approach, however, may lead to an overly conservative 

or unsafe design when the failure event in the probabilistic constraint needs to be modeled as a 

system event. The failure probability often needs to be evaluated at a system level because the 

system may fail its operation when a combination of component failure events occur. To address 

this issue, System Reliability Based Design Optimization (SRBDO) methods was developed by 

Nguyen et al. (2010). 

1.5. Robust design optimization 

The variation of parameters and input design variable in the optimization process causes the 

corresponding alterations of the performance of design structures. Ben-Tal and Nemirovski (2000) 

show that solutions to optimization problems can be extremely sensitive to perturbations of the 

parameters. Those sensitivities may result in infeasible solutions. In robust design optimization, 

optimal solutions are commonly obtained by minimizing the performance variance so that the 
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robustness of a design objective is achieved. That is, finding the most insensitive solutions to 

problems is the goal of the robust design optimization. There are many established and proposed 

methods of robust design optimization in the literature. Sigmund (2009) proposed a morphology-

based filter scheme in topology optimization considering manufacturing errors of micro-structures 

so that manufacturing robust optimal topologies can be obtained. Schevenels et al. (2011) extended 

the Sigmund’s method to address non-uniform manufacturing errors with spatially varying 

magnitude. In addition, a robust shape and topology optimization method considering material 

uncertainties was proposed by Chen et al. (2010). Recently, a bi-level formulation for robust 

topology optimization that accounts for the uncertainty of boundary variations was proposed by 

Guo et al. (2013).  

1.6. Thesis scope and organization 

The objective of this dissertation is to provide efficient optimization schemes for deterministic 

statics and dynamics problems and develop novel methods and frameworks to advance structural 

optimization of discrete and continuum structures considering uncertainty caused by natural 

hazards, especially earthquake ground motions. The reminder of the dissertation is organized as 

follows. Chapter 2 presents a polygonal multiresolution topology optimization scheme. The 

efficient topology optimization framework for statics and dynamics problems developed by the 

author is discussed in detail. This development enables obtaining of high-resolution topologies 

while maintaining relatively low computational cost, particularly related to the finite element 

analysis. In Chapter 3, the discrete representation of random vibrations and its statistical quantities 

are discussed. The development of a systematic framework for incorporating random vibration 

theories and reliability analysis into structural optimization is discussed, whose solutions can 

withstand the presence of uncertainty induced by earthquake events. In Chapter 4, the parameter 

sensitivity analysis of system failure probability consisting of a large number of components is 

explored. Adaptation of the sequential compounding method to develop the efficient algorithm for 
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sensitivity analysis is also included. Chapter 5 discusses the first-passage probability and its 

significance in engineering and optimization. It also includes the development of the 

computational framework for stochastic topology and design optimization under first-passage 

probability of practical engineering constraints such as stress, inter-drift ratios, and maximum 

displacement. Chapter 6 explains the implementation of the discrete filtering approach in 

reliability-based topology optimization for truss structures. Finally, the summary and principal 

conclusions of the present work and future directions are described in Chapter 7. 
  



 

9 

Chapter 2 

Polygonal multiresolution topology optimization for 
structural dynamics 

 
Topology optimization method of distribution of a given amount of materials in a design domain 

satisfying loads and boundary conditions has been well-developed and researched. Although 

extensive applications and various theories of topology optimization are rapidly expanding for 

static problems, dynamic problems have received relatively less attention. One of the important 

issues related to optimization in dynamics is the expensive computational costs of finite element 

(FE) analysis and optimization procedure. The resolution of optimal topologies is proportionally 

linked to the mesh size used in FE analysis in a conventional approach to topology optimization. 

Finer meshes in dynamic optimization problems increase computing resources. Another 

shortcoming of a conventional framework is that fixed discretized FE meshes lead to mesh-

oriented results. To obtain a higher resolution with relatively low computational cost, a 

multiresolution topology optimization (MTOP) technique that separately introduces different 

meshes for FE analysis and density / design variable meshes has been developed. In this chapter, 

polygonal finite elements are adopted to reduce the influence of the fixed discretization. 

Unstructured meshes with polygonal elements provide ways to resolve the issue in topology 

optimization. Moreover, irregular polygonal meshes help to overcome difficulties in discretizing 

complicated geometries. Based on the polygonal finite element method and the multiresolution 

topology optimization technique, a method of polygonal multiresolution topology optimization 

(PolyMTOP) is developed for static and dynamic problems. This research addresses ways to 

improve the vibration characteristic of structures subjected to periodic loading by incorporating a 

new method into topology optimization. 
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2.1. Introduction 

In recent times topology optimization has been used in the design of aircraft (Maute and Allen 

2004; Sleesongsom and Bureerat 2013), cars (Yang and Chahande 1995), buildings (Mijar et al. 

1998; Stromberg et al. 2011), and even human bones (Sutradhar et al. 2010). The use of topology 

optimization has increased over the past few decades in part due to improving capabilities of 

computational modeling, but also due to improved understanding of the continuum optimization 

problem. Recent advances such as the solid isotropic material with penalization (SIMP) material 

interpolation model (Bendsøe 1989; Rozvany et al. 1992) has allowed for effective discretization 

of continuum domains, and filtering methods (e.g. Sigmund and Petersson 1998; Petersson and 

Sigmund 1998; Guest et al. 2004; Almeida et al. 2009) have allowed for mesh independent 

solutions. Structural dynamic modeling has similarly evolved in the past years and can include 

modal, time history, or transformed problem analysis. Topology optimization for freely vibrating 

systems has included the design of beams, trusses, plates and other systems (Olhoff 1976; Du and 

Olhoff 2007; Olhoff et al. 2012; Zhou 2013). Typically these systems are designed such that the 

natural frequencies of the structure are changed from the initial configuration. Recent research 

(Yoon 2010a, b; Huang et al. 2010) has introduced dynamic optimization for nonlinear structures. 

Alternatively, Tsai and Cheng (2013) have developed a method for optimizing dynamic structures 

and fixing a specific mode shape. Optimization can also be performed for forced vibration systems 

where a system is designed such that the maximum response (dynamic displacement) for a given 

input frequency is optimized. Recent research has shown that the structural response for resonating 

structures can be maximized (Tcherniak 2002) or, more typically, minimized (Ma et al. 1995; Jog 

2002; Dahl et al. 2007; Jensen 2007; Larsen et al. 2008) for a set of design frequencies. 

Recent advances in finite element (FE) modeling (e.g. Sukumar 2004; Sukumar and Malsch 2006; 

Ghosh 2011) have allowed for the use of polygonal elements in continuum modeling. A significant 

benefit of these elements is that they are well suited for modeling of complex domains and can be 

used to easily create areas of high and low mesh refinement. In topology optimization these 
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elements have been shown to significantly reduce instabilities associated with checkerboard and 

islanding effects, and have been shown to be stable and accurate (Jog and Haber 1996; Talischi et 

al. 2009a, b). Recent educational codes (Talischi et al. 2012a, b) provide a polygonal element 

mesher and a package for efficient topology optimization, and these codes are used as the basis for 

the work presented herein. Furthermore, recent advances in multiresolution modeling have allowed 

for high resolution results with relatively low computational costs. Nguyen et al. (2009, 2012), 

introduce Multiresolution Topology Optimization (MTOP), and use different overlying meshes 

for FE analysis and for the density/design variables, to harvest the higher order accuracy of the 

displacement solution in obtaining higher resolution solutions. Such mesh refinements and 

adaptivity techniques can provide significant improvements in computational speed and solution 

resolution. Other methods have taken advantage of higher-order finite elements to improve the 

speed and quality of topology optimization. For example Parvizian et al. (2011) use a finite cell 

method to separate geometry and FE analysis, while Nguyen et al. (2013) use high-order elements 

to enhance the MTOP approach.  

In this study, the existing polygonal finite element codes (Talischi et al. 2012a, b), with higher 

resolution density and design discretizations to obtain high fidelity multiresolution designs 

(Nguyen et al. 2009) for structural dynamic problems are adapted. This combined modeling 

approach (PolyMTOP), provides adaptable, high resolution structural optimization techniques that 

can be used to tailor the dynamic performance of buildings, vehicles, and other systems. This 

chapter is organized as follows: Section 2.2 provides an overview of the multiresolution approach 

and introduces the formulation for non-matching multiresolution discretizations and polygonal 

finite element; Section 2.3 presents the topology optimization framework for static and dynamic 

problems; Section 2.4 discusses sensitivity analysis of optimization problems and PolyMTOP 

scheme; Section 2.5 provides the projection scheme associated with the proposed method; Section 

2.6 discusses the numerical applications of the proposed method. It shows the approach used in 
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the optimization of static compliance problems and forced vibration problems, and Section 2.7 

presents concluding remarks. 

2.2. Multiresolution approach for polygonal elements 

2.2.1. Non-matching sub-discretizations 

In the multiresolution approach, the design variables in the optimization framework are material 

densities for a predefined portion of the mesh. Subsequently, a projection filter (Section 2.5) is 

used to obtain a mesh independent solution of density variables that are used to represent the actual 

material distribution and to compute stiffness and mass matrices. There are various ways in which 

the design variable can be positioned such that it does not overlap with the FE mesh, for example, 

nodal approaches (Guest et al. 2004; Rahmatalla and Swan 2004; Matsui and Terada 2004) use 

design variables that are placed on individual nodes, or alternatively design variables can be placed 

between nodes such as in Paulino and Le (2008). Alternatively, the multiresolution scheme 

introduced in Nguyen et al. (2009) uses coarser meshes for FE analysis and finer mesh 

discretizations for optimization and design. This generates a high-resolution result without a 

significant increase in computational cost. Furthermore, the same authors showed that by using 

alternative design and density variable placement, and an adaptive multiresolution approach they 

could obtain higher efficiency (Nguyen et al. 2012). Expanding the multiresolution approach to 

polygonal elements, there are various ways in which a polygonal element can be divided such that 

the design mesh is finer than the FE mesh. In this section, several cases are considered where 

elements are divided into non-matching sub-discretizations, however, in all cases, the design 

variables are at the same location as the density variables. For example, Figure 2.1 shows the 

superposition of design and density variables for an eleven sided polygonal element. For non-

matching sub-discretizations, the finite element is divided into convex, Centroidal Voronoi 

Tessellations (CVTs). Figure 2.2 shows the proposed approach, where the naming P5/n7 and 
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P5/n18 respectively are used to indicate the number of edges of the polygon (P) and the number 

of design variables (n) placed inside. This approaches can easily be applied to any type of polygon 

in the FE mesh. This approach uses the same number of sub-discretizations based on randomly 

placed seeds within each element. As shown in Figure 2.3, these seeds are moved using a Lloyd 

algorithm to create CVTs that consist of regularized convex elements (Talischi et al. 2009b). Note 

that the Lloyd algorithm allows the sub-discretizations to be relatively uniform with similar areas 

within each element. 
 

  
(a) (b) 

  
(c) (d) 

 

Figure 2.1: Eleven sided polygon element: (a) Finite element (displacement based), (b) Design
variable mesh, (c) Density variable mesh, and (d) Superposed meshes. 

Dispalcement node Design variable Density variable
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(a) (b) (c) 

Figure 2.2: Sub-discretizations for five sided polygon element: (a) P5/n7, (b) P5/n18, and (c) Mesh
of Pn/n12 elements. 

 
P8/n13 

   

P11/n17 

   
(a) (b) (c) 

Figure 2.3: Illustration of Lloyd’s algorithm optimizing the sub-discretizations of a P8/n13, and a
P11/n17 element: (a) initial distribution of seeds (circles), the corresponding Voronoi diagram,
and the centroid of the Voronoi cells (crosses), (b) the Voronoi diagram after one iteration, and (c)
the Voronoi diagram after 50 iterations. 
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2.2.2. Shape functions for polygonal elements and numerical integration 

The Wachspress shape functions (Sukumar and Tabarraei 2004) are adopted on a reference 

element with coordinate ξ = (ξ1,ξ2) as a polygonal interpolant as: 
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And the interpolants αi(ξ) are of the following form: 
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where A represents the area of the triangle defined with the points in its arguments (see Figure 2.4). 

 

 

Figure 2.4: Triangular areas used to the interpolants, αi. 

By considering a regular polygon in the reference domain, A(pi-1, pi, pi+1) can be factored out of 

Equation 2.2. The simplified expression (Talischi et al. 2012b) for the interpolants can be obtained 

by adopting the notation Ai(ξ)꞉ ꞊ A(pi-1, pi, ξ): 
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The shape function gradients are computed as: 
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Figure 2.5: Numerical integration scheme based on the partition of the sub-divided element. 
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where 
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Numerical integration is performed by sub-dividing the physical or reference element into triangles 

and then using numerical quadrature rules. In this work, 3-point quadrature rules are used on each 

subdivided triangle from the reference n-gon as shown in Figure 2.5. Alternatively, other 

numerical schemes for a polygonal element can be found in (Mousavi et al. 2009; Natarajan et al. 

2009). 

2.2.3. Stiffness and mass matrix computing 

For a discretized finite element mesh, the global stiffness matrix can be calculated as: 
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where Nel is the number of elements, B is the strain displacement matrix of shape function 

derivatives, and D is the constitutive matrix. The constitutive matrix is calculated for a plane stress 

case (Cook et al. 2007) and Young’s modulus is calculated as a function of the density ρ at position 

x on the multiresolution mesh, as 

 
0( ) ( ) pE Ex x   (2.7)  

In Equation 2.7, E0 is Young’s modulus of the solid material and the objective in topology 

optimization is to determine the distribution of material in the domain to satisfy a set of objectives. 

To achieve this, a SIMP model is used to penalize locations of intermediate densities. Alternatively, 

the Rational Approximation of Material Properties (RAMP) scheme (Stolpe and Svanberg 2001) 

can be implemented as: 
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  (2.8)  

where s is the penalization. The value of the density ρ(x) can be between ρmin = 10−3 and 1, and the 

penalization parameter p is chosen to be more than 1 (typically 3 or 4) and can be used in an 

incremental, iterative fashion. This type of model serves to transform the discrete formulation into 

a continuous solvable problem that can be treated numerically. Since the stiffness matrix is linearly 

dependent on the elastic modulus, the penalized density terms (ρ(x)p) are taken out from the 

integration of the stiffness matrix, as shown in Equation 2.7.  Each polygonal element includes 

sub-discretized elements having densities in the multi-resolution approach as illustrated in Figure 

2.6. The element stiffness matrix is constructed by assembling stiffness contributions from sub-

divided elements in a polygon. Thus, the element stiffness matrix is approximated as: 
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and Nn is the number of integration points in each polygonal element, and ρi represents the density 

at each non-conforming element. D(ρi) is the constitutive matrix which is dependent on the density. 

For example, the constitutive matrix for plane stress in 2-D is as the following: 
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The global mass matrix can similarly be calculated by integrating over the domain as: 

 

 

Figure 2.6: Polygonal element (P5/n12) with sub-discretizations and densities. 
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where N denote the element shape functions and ρm represents the mass density of material. The 

element mass matrix (Me) can furthermore be approximated by 
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where q is the penalization factor of density for mass terms, and Hi is used to store the mass matrix 

for each subdivided element in the multiresolution element, as: 
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2.2.4. Verification of polygonal elements 

Mesh variations with quadrilateral, triangular and general polygonal meshes are tested as shown 

in Figures 2.7 (a) through 2.7 (f). The irregular geometry swept panel (Figure 2.7 (a)) is adopted 

from Cook et al. (2007). Figure 2.7 (g) shows the error convergence plot in the estimation of real 

part of displacements in the steady state solution at point C in Figure 2.7 (a) under a harmonic 

excitation. The excitation is applied to the right edge, and its angular frequency is 0.01 rad/s with 

a force magnitude 1. For the force vibration problem, the Rayleigh damping model, C = 0.001M 

+ 0.001K, is used to construct a damping matrix. Because there are no analytical solutions for the 

tested problem, a solution was obtained by using a much finer discretization of about 105 degrees 

of freedom (DOFs) to calculate a reference solution. For the same number of DOFs, the polygonal 

mesh where the Lloyd algorithm was used to refine the mesh (Figure 2.7 (e)), provides a better 

approximation for structural dynamic properties. The results of the polygonal mesh are the average 

errors of five individual simulations. Since a log-log scale is used it can be seen that the polygonal 

element mesh has better accuracy than the other mesh discretizations. 

2.3. Topology optimization 

2.3.1. Static compliance 

A typical objective used for static optimization is the minimization of compliance, which provides 

the stiffest structure for a defined set of loads, and uses a constraint on the volume of the structure. 

The continuum problem is typically solved using finite elements and can be written in discrete 

form as: 
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(a) (b) (c) 

   
(d) (e) (f) 

(g)  

Figure 2.7: (a) Geometry, boundary conditions, and properties for Cook’s swept panel problem
(Cook et al. 2007, p.108), (b) Quadrilateral (Q4) mesh (28 elements, 40 nodes), (c) Triangular (T3)
mesh (56 elements, 40 nodes), (d) Randomized polygonal mesh (30 elements and 58 nodes), (e)
Polygonal CVT mesh (30 elements, 61 nodes), (f) Mesh in (e) divided into a mesh of T3 elements
(156 elements, 91 nodes), and (g) Convergence of steady state solution with respect to mesh DOFs.
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where f and u are the global force and displacement vectors, V is the volume as a function of the 

densities, and VS is the prescribed volume fraction. In the above equation, the density is calculated 

as a function of the design variables d, (ρ = f(d)), and the displacement is calculated from the linear 

equation below: 

 
( ) K u f   (2.16)  

2.3.2. Forced vibrations 

2.3.2.1. Equation of motion 

Forced harmonic vibrations are of importance to practical mechanisms and are often encountered 

in engineering systems. The equation of motion of a linear dynamic system in a discretized form 

is: 
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where u(t), u (t) and u(t) are acceleration, velocity, displacement vectors at time t, respectively. M, 

C, K denote mass, damping, and stiffness matrices, and f(t) is the loading vector as a function of 

time. It is noted that the system matrices are dependent on a set of design variables d. By assuming 

that the system is subjected to time-harmonic excitations, the excitations and displacements can 

be described by the following forms 
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where FR and FI are the vectors of the excitation force amplitude, UR and UI denote the vector of 

the displacement amplitude. ω is the forcing frequency. The substitution Equation 2.18 into 

Equation 2.17 yields the following equation 
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After arranging coefficients of cos(ωt) and sin(ωt), equality condition can be held for all time t as 

following in a matrix form 
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Herein, two complex vectors are introduced such as 

 

2
R I R I,   ,   (i.e. 1)i i i i      U U U F F F �   (2.21)  

The real parts of U and F are denoted by UR and FR, and the imaginary parts of U and F are denoted 

by UI and FI. With the complex vector, Equation 2.20 can be expressed in a compact form of 

complex linear algebraic equations as 

 

2i     K C M U F   (2.22)  

where the dynamic stiffness matrix S is defined as 

 
2i   S K C M    (2.23) 

and thus 

 
SU F    (2.24) 

The complex displacement U in Equation 2.22 can be directly solved by a complex matrix solver. 

Alternatively, Yoon (2010a) implemented the model reduction scheme which can reduce 

computational resources to solve the complex system equation. 

2.3.2.2. Dynamic compliance 

The steady-state response of the system under harmonic excitations was considered in the 

frequency domain to define dynamic compliance (Ma et al. 1995; Jog 2002; Jensen 2007). The 

dynamic compliance can be expressed as 
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where ωs, ωe denote the initial and final angular frequency of the external forces, respectively (i.e. 

the range of frequencies used in optimization). The problem statement of the dynamic compliance 

optimization with the volume constraint VS can be described as 
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2.4. Sensitivity analysis 

To find optimal solutions for the problems defined in Section 2.3, the sensitivity analysis of the 

objective functions, and constraints with respect to the density variables is required. Since these 

are composed of the stiffness and mass terms, the derivatives of Ke and Me are obtained as: 
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and 
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where Nd denotes the number of design variables. Note that the calculation of the sensitivity of the 

density variables with respect to design variables (∂ρi/∂dn) is presented in Section 2.5. 

Subsequently, the sensitivity of static compliance can be calculated from the element displacement 

ue as: 
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2.4.1. Sensitivity analysis of eigenfrequencies 

For free body vibrations, the sensitivity of the fundamental eigenvalue λ for a specific element can 

be calculated as: 
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Where ϕje is the eigenvector map for element e (Haftka and Adelman 1989). Furthermore the 

sensitivity of the first eigenvector for the entire structure can be re-written in vector form as: 
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2.4.2. Sensitivity analysis of dynamic compliance 

Sensitivity analysis for the dynamic compliance defined in Equation 2.25 with respect to a design 

variable dn is derived by a chain rule for mathematical programming: 
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The derivatives of ∂Φ/∂ρi can be obtained as follows 
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where 
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Equation 2.34 is obtained from derivatives of Equation 2.22. It is assumed that FR and FI are 

independent of the filtered density. The term in the first parentheses of Equation 2.33 is used as 
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where ∇UR and∇UI are the gradients of Φ with respect to UR and UI, respectively. Those gradients 

can be computed as 
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Similar to Equation 2.21, let λ = λR+iλI, 
R I

i     U U U and assume M, C and K are 

symmetric. The complex vector form of Equation 2.35 can be described as 
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where F  denotes the complex conjugate of F. In addition, Equation 2.35 can be written in the 

complex form as: 

 

T

2         
i U

F U
K C M λ F

  (2.38)
 

where λ  and  U  denote the complex conjugate of λ and  U . For the linear system, one can 

show that the solution of Equation 2.38 in terms of λ  is proportional to the solution of Equation 

2.22 in terms of U. Therefore, the conjugate of λ  can be computed by a scalar factor, that is 
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T
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

F U
λ U

  (2.39)
 

Finally, substitution of Equation 2.35 and Equation 2.39 into Equation 2.33 yields the following 
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  (2.40) 

where  λ* is the Hermitian transpose of λ. That is λ* T: λ . 

2.5. Projection scheme 

Although the polygonal elements tend to reduce checkerboard and islanding effects in topology 

optimization, they cannot by themselves provide independence for mesh refinement. Instead, a 

projection method can be used to achieve a minimum length scale and mesh independence. 

Previous literature on the subject (Dıaz and Sigmund 1995; Sigmund and Petersson 1998; Bourdin 

2001; Guest 2009; Wang et al. 2011) provide different approaches on filtering the sensitivities and 

densities to obtain mesh independent results. Herein, the previously reported projection method 

(Guest et al. 2004; Almeida et al. 2009) to filter the density variables is used. This approach 

employs a linear function to calculate the density ρ of an element i associated with the surrounding 

design variable mesh. The density of the element would be computed based on the weighted 

average of the nearby design variables as 
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Figure 2.8: Projection scheme from the design variables to the density variable. 

where Ωi is the sub-domain corresponding to density element i, xn is the position of the centroid of 

the design variable dn. The weight function for this linear approach can be defined as 
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where rni is the distance between the centroid of the density element i and the design variable dn, 

and rmin is a user defined variable that defines the length scale of the filter. The sensitivities of the 

element density with respect to the design variables are obtained as: 
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Finally, the projection is written in matrix form P as: 
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where y is a vector of the filtered densities. As such the projection needs to be calculated only once, 

at the beginning of the algorithm, whether a linear (above) or nonlinear projection is used. Figure 

2.8 shows a graphical representation of the filtering scheme. 

2.6. Numerical applications 

2.6.1. Static optimization example 

The multiresolution scheme presented above is applied to the serpentine domain presented in 

Talischi et al. (2012b) (Figure 2.9 (a)), with Young’s modulus E = 100, Poisson’s ratio ν = 0.3, 

and volume fraction VS set to be at 50 % of the design domain. The optimality criteria based 

optimizer is used as the update scheme for the design variables, where Lagrangian multipliers 

control the upper and lower bounds, and a move limit is used to control the step size (Bendsøe and 

Sigmund 2004). A minimum length scale parameter of rmin = 0.3 is used, and a penalty parameter 

p = 4 is used in the SIMP model. The discretization adopted employs 1,000 elements with the 

regular polygonal code, as well as with variants of the different multiresolution approaches. Finally, 

meshes of 10,000 and 20,000 elements are considered with the regular PolyTOP code to compare 

the solutions between the conventional and the PolyMTOP frameworks when a similar number of 

design variables are used. For a sample mesh of 1,000 elements, the distribution of n-gons was 8 

P4, 236 P5, 633 P6, and 123 P7, and the average diameter of the elements was 0.3. This is a typical 

element size distribution produced by the PolyMesher software, and there were no elements lower 

than a P4 or higher than a P7, although the code can use such elements as well. Figure 2.9 shows 

the static optimal results for the different meshes, where the multiresolution approaches provide a 

high resolution solution (Figure 2.9 (e) and 2.9 (f)) that is essentially the same as that of the fine 

finite element case (Figure 2.9 (c) and 2.9 (d)). Table 2.1 shows the averaged parameters and 

computational time for five analyses of each different case1 carried out to 200 optimization 

                                                 
1  A modern (2014) quad-core 3.30 GHz Inter Xeon(R) processor is used for the analysis. 
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iterations. The multiresolution approach takes roughly the same time in the FE analysis as the 

coarse mesh since there is the same number of DOFs in the system, while there is an increase in 

the initialization time (meshing and initial calculation of the K and M matrices) and optimization 

time (calculating gradients and using optimization algorithm). The multiresolution approaches are 

still about four times faster than the fine conventional polygonal mesh, where most of the 

additional time is spent in the FE analysis. From Table 2.1, the meshes with 1,000 elements have 

roughly the same compliance whereas the fine element discretization has a somewhat higher 

compliance. This is because the finer mesh can better estimate the displacement field for the same 

structure. As noted in Nguyen et al. (2009) the MTOP methods can provide mesh independence 

even when a small rmin is used, and in such cases, the MTOP approach could still estimate the 

displacement field accurately. The convergence history of static compliance for the first 50 steps 

of individual analyses is shown in Figure 2.10. Note that all methods follow the same convergence 

pattern and result in essentially the same optimal compliance (only 1 % difference). 

 

 

Table 2.1: Computational time for static optimization using regular and PolyMTOP approaches. 

Discretization Elements 
Design/ 
Density 

Initialization time 
(Seconds) 

Optimization time (Seconds) Static  Total 

  variables PolyMesher K FE Analysis Optimization Compliance time 

Coarse polygonal 1000 100 6.7 1.2 7.4 5.4 4.71 20.7 

Fine polygonal 10000 10000 27.2 11.9 112.6 52.2 4.77 203.9 

Fine polygonal 20000 20000 55.2 23.9 331.7 106.9 4.78 517.7 

PolyMTOP/n10 1000 10000 9.2 10.3 12.8 13.0 4.70 45.4 

PolyMTOP/n20 1000 20000 12.6 21.2 19.5 21.1 4.69 74.4 
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Figure 2.9: Static optimization of serpentine domain (Talischi et al. 2012b): (a) Design domain
discretized with polygonal elements, loading and boundary conditions, (b) 1000 n-gons, (c) 10000
n-gons, (d) 20000 n-gons, (e) Pn/n10 approach, 1000 n-gons, 10000 design variables, and (f)
Pn/n20 approach, 1000 n-gons, 20000 design variables. 



 

31 

 

Figure 2.10: Convergence history for static compliance minimization of serpentine domain (dv =
design/density variables). 

2.6.2. Forced vibration optimization example 

A numerical example for minimization of the dynamic compliance is considered under harmonic 

excitations. The geometry of a curved structure is generated using PolyMesher (Talischi et al. 

2012a) based on the parameters shown in Figure 2.11. The structure is anchored at the bottom end 

and restrained in the horizontal direction at the left end. Harmonic excitations are applied at the 

arrows inscribed in Figure 2.11. For the topology optimization, Young’s modulus E, Poisson’s 

ratio ν and mass density are set to 1 N/m2, 0.3 and 1 kg/m3, respectively. The volume fraction VS 

is constrained to be 40 % of the design domain. The natural mode shapes and frequencies of the 

initial design domain which is the continuum domain completely filled with initial volume fraction 

are shown in Figure 2.12. The initial angular frequency of the forced vibration ωs = 0.0 and the 

final one ωe = 0.015 are set with the magnitude of force F =1, in Equation 2.25. Two loading 

conditions such as a single load case where all four loads act simultaneously and multiple load 

cases where F1, F2, F3, and F4 represent each load case are considered for the optimization problem. 
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Figure 2.11: Geometry of design domain, loadings, and boundary configuration. 

 

Figure 2.12: Natural mode shapes and natural frequencies. 
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For the multiple load cases, the optimization problem can be formulated as minimizing the 

sum of dynamic compliance induced by all loads. Therefore, the optimization problem considering 

multiple load cases can be stated as follows. 
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  (2.45)  

The design domain is discretized with 900 n-gons for both coarse and PolyMTOP analyses, and 

the projection function with a radius rmin = 0.14 is used. The penalization factors for the stiffness 

and mass are chosen as p = 3 and q = 1, respectively. The Method of Moving Asymptotes (MMA) 

(Svanberg 1987) is implemented in this example to solve the optimization problem for dynamic 

compliance. Coarse meshes with the optimal topology are presented in Figure 2.13 (a) and 2.13 

(d) (multiple and single load case respectively), while parts (c) and (f) of that figure show the 

improved solutions through the use of the PolyMTOP approach. The length of the parameter rmin 

is shown graphically as a black line next to the element mesh in cutouts of Figure 2.13 and 

subsequent figures. It is noted that the solution for the single load case is significantly different 

from the multiple load cases problem, particularly the material distributions on the left part of the 

design domain. Furthermore, a fine conventional mesh with 13,500 elements (Figure 2.13 (b) and 

2.13 (e)) is also optimized to verify the solution and to compare the time improvement from the 

PolyMTOP scheme. For all cases, the dynamic response of the initial structure subject to periodic 

excitations is compared with the response of the optimized (Figure 2.14). As can be seen from 

Figure 2.14, the dynamic resonant response in the range of interest (ωs = 0.0 to ωe = 0.015) is 

significantly reduced for all cases through the optimization. While keeping the volume the same, 

the area underneath the dynamic response curve is reduced (Figure 2.14), and there is improved 

dynamic behavior for both the single and multiple load cases. The optimal designs are similar for 

the coarse, the fine, and the MTOP meshes, however, the dynamic resonance, although similar is 
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not identical after the optimization. The difference in the higher frequency response (i.e. above ω 

= 0.03) can be attributed to the different performance of the FE analysis for each method as 

discussed in Section 2.2.3. Finally, the convergence results of the dynamic compliance for the six 

cases are shown in Figure 2.15. Furthermore, topology optimization for the dynamic compliance 

problem is carried out using the SIMP and RAMP continuation schemes. That is, SIMP 

penalization is performed with continuation starting with p = 1 and being incremented by 0.5 until 

4. RAMP penalization s is set to zero for one step, and continuation is subsequently performed by 

doubling s from 1 to 64. 900 n-gon meshes identical to the previous example were implemented 

for this problem in order to investigate the influence of the SIMP, RAMP, and the continuation 

approach on optimal topologies. Figure 2.16 shows optimal topologies for the single and multiple 

load cases with both the SIMP and RAMP schemes using the continuation approach. Based on 

results of part (c) and part (f) in Figure 2.13 and results of part (a) and (b) in Figure 2.16, one can 

notice that the continuation of the penalization factor has affected the optimal solutions, especially 

in the scenario with multiple load cases. Moreover, different topologies are obtained with each 

SIMP and RAMP scheme as shown in Figure 2.16. Although the topologies are different for these 

cases, the optimal dynamic response for all cases is somewhat similar. Note that in the continuation 

cases the optimized response is not necessarily lower than that of the initial configuration since a 

different penalization factor is used in each case. Again, the compliance converges in the same 

manner for all methods. Finally, Figure 2.17 shows the normalized computational time of the cases 

in Figure 2.13 for 50 iterations of the optimization scheme. It can be noted that using a fine mesh 

in PolyTOP alone is about four times more expensive than using the PolyMTOP method with less 

finite elements and a similar number of density, and design variables. 
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Figure 2.13: Comparison of optimal topologies for multipoint forced vibration problem. Multiple
load cases: (a) 900 n-gons, (b) 13500 n-gons, and (c) Pn/n15 approach, 900 n-gons, 13500 design
variables. Single load case: (d) 900 n-gons, (e) 13500 n-gons, and (f) Pn/n15 approach, 900 n-
gons, 13500 design variables. 
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Figure 2.14: The initial and optimized resonant response of the structures: Multiple load cases: (a)
900 n-gons, (b) 13500 n-gons, (c) Pn/n15 approach, 900 n-gons, 13500 design variables. Single
load case: (d) 900 n-gons, (e) 13500 n-gons, and (f) Pn/n15 approach, 900 n-gons, 13500 design
variables. 
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Figure 2.15: Convergence history for optimization of dynamic compliance of multipoint excitation
domain (dv = design/density variables, SL = single load case, ML = multiple load cases). 
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Figure 2.16: Minimization of dynamic compliance. SIMP, continuation of p (1 − 4): (a) Single
load case, and (b) Multiple load cases. RAMP, continuation of s (0 − 64): (c) Single load case, (d)
Multiple load cases, (e) resonant response of the structures (SIMP), and (f) resonant response of
the structures (RAMP). 

 
  

0 0.02 0.04 0.06 0.08 0.1
4

5

6

7

8

9

10

11

12

ω

lo
g|

F
T
U

|

Initial (SIMP): Single
Initial (SIMP): Multiple
Optimized (SIMP): Single
Optimized (SIMP): Multiple

0 0.02 0.04 0.06 0.08 0.1
4

5

6

7

8

9

10

11

12

ω

lo
g|

F
T
U

|

Initial (RAMP): Single
Initial (RAMP): Multiple
Optimized (RAMP): Single
Optimized (RAMP): Multiple

r
min

r
min

r
min

r
min

(a)

(c)

(b)

(d)

(e) (f)



 

39 

 

Figure 2.17: Comparison of normalized computational times for optimization of forced vibration
of multipoint excitation domain (dv = design/density variables, SL = single load case, ML =
multiple load cases). Times are normalized with respect to the SL coarse mesh computation (89
seconds in this case). 

2.7. Concluding remarks 

This chapter introduces a method for combining a coarse finite element mesh with finer design 

and density meshes to obtain high quality optimization solutions for a reduced computational cost. 

Polygonal elements presented in recently published PolyTOP software are shown to approximate 

dynamic behaviors better than other conventional elements and are thereby used as the focus for 

this study. Non-matching sub-discretization is investigated to split up the polygonal elements in 

order to facilitate the multiresolution analysis. The computational approach is shown to be 

particularly beneficial for structural dynamics problems such as forced vibration optimization 

since these problems require substantial time in finite element analysis. The multiresolution 

approach produces solutions with high resolution through an increase in the time required for 

optimizing the design variables. However, the approach can use a smaller number of elements and 

nodes, and can thereby avoid increasing the costlier finite element calculations. Several examples 
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of the polygonal multiresolution topology optimization are shown for static and dynamic cases. 

These include: a curved beam domain and a complex beam domain. The results show that the 

algorithm is effective at producing high resolution results suitable for efficient and 

computationally effective structural design. The efficient scheme for optimization of structures 

with dynamic loads could be useful in civil, mechanical, and aerospace engineering applications 

where the structural dynamic properties need to be controlled. The concepts shown herein could 

further be extended to acoustic and wave propagation problems where eigenfrequency response 

needs to be controlled. 
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Chapter 3 

Structural topology optimization under constraints on 
instantaneous failure probability 

 
Accurate prediction of stochastic responses of a structure caused by natural hazards or operations 

of nonstructural components is crucial to achieve an effective design. In this regard, it is of great 

significance to incorporate the impact of uncertainty on topology optimization of structures under 

constraints on their stochastic responses. Despite recent technological advances, the theoretical 

framework remains inadequate to overcome computational challenges of incorporating stochastic 

responses to topology optimization. Thus, this chapter presents a theoretical framework that 

integrates random vibration theories with topology optimization using a discrete representation of 

stochastic excitations. This chapter also discusses the development of parameter sensitivity of 

dynamic responses in order to enable the use of efficient gradient-based optimization algorithms. 

The proposed topology optimization framework and sensitivity method enable efficient topology 

optimization of structures under stochastic excitations, which is successfully demonstrated by 

numerical examples of structures under stochastic ground motion excitations. 

3.1. Introduction 

Topology optimization aims to identify optimal material layouts of problems through 

mathematical programming while fulfilling given design constraints (Bendsøe and Sigmund 2003). 

Extensive research in the field of topology optimization has led to development of many theories, 

methods and algorithms to overcome well-known issues such as numerical instability in 

checkerboard problems (Diaz and Sigmund 1995; Jog and Haber 1996), mesh dependency 

problems, and ill-posed and lacking solutions in continuum settings (Kohn and Strang 1986; 
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Sigmund and Petersson 1998). A topology problem can be well-posed by using relaxation 

(Bendsøe and Kikuchi 1988) or restriction of the design space (Kim and Yoon 2000; Poulsen 2002; 

Guest et al. 2004). An important example of such advancement in the field is the development of 

Solid Isotropic Material with Penalization (SIMP; Bendsøe 1989; Rozvany et al. 1992; Bendsøe 

and Sigmund 1999), a method designed to obtain physical properties of the intermediate densities. 

However, SIMP can lead to numerical instabilities such as “checker-board” effects, i.e. the 

formation of areas with alternating solid and void distribution in the design domain. To resolve 

issues associated with the checker-board (Diaz and Sigmund 1995) and the mesh dependency, 

various projection schemes (Guest et al. 2004; Sigmund 2007) and filtering techniques have been 

developed previously (Sigmund and Petersson 1998; Bourdin 2001). 

Although the field of deterministic topology optimization has been well developed, various 

technical challenges still exist, especially in achieving reliable solutions under uncertainty. A 

recent trend has shown active research efforts in finding topologies under uncertainty, which is 

often termed as reliability based topology optimization (RBTO) (Maute and Frangopol 2003; Allen 

et al. 2004; Kang et al. 2004; Kharmanda et al. 2004; Kim et al. 2006; Guest and Igusa 2008; 

Rozvany 2008; Lógó et al. 2009; Luo et al. 2009; Chen et al. 2010; Jalalpour et al. 2013). These 

challenges further complicate topology optimization when it is necessary to maintain balance 

between architecture and engineering criteria and to solve large-scale problems for high-rise 

buildings. In order to address these issues, a new method for system reliability-based topology 

optimization (SRBTO; Nguyen et al. 2011) was recently developed so that a probabilistic 

constraint on a system event consisting of multiple component events can be satisfied. This 

methodology provides an effective way to overcome challenges in topology optimization under 

probabilistic constraints on system failure events by incorporating the matrix based system 

reliability (MSR) method (Song and Kang 2009) into topology optimization. Despite these recent 

technical advances, it still remains elusive how uncertain responses of structures under random 

vibrations need to be addressed. It is noted that one of the most fundamental requirements for 
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building structures is to withstand various uncertain loads such as earthquake ground motions, 

wind loads, and ocean waves. The structural design, therefore, needs to ensure safe and reliable 

operations over a prolonged period despite random excitations caused by hazardous events. Such 

a stochastic excitation is often described by a random process f(t), which is the family (ensemble) 

of all possible random time histories (Lutes and Sarkani 2003). Alternatively, the random process 

can be understood as a collection of random variables defined at an infinite number of points along 

the time axis. For instance, at a given time point t = ti, f(ti) is a random variable that represents a 

set of possible realizations across the ensemble. Since the future realization of the random process 

is not completely represented by some specific cases or scenarios, predictions need to be made on 

the basis of probability. Therefore, a reasonable representation of the uncertainty in the random 

process is needed to obtain a meaningful solution for given engineering problems. This has led to 

active research efforts in developing random process models that can describe the uncertainty in 

input stochastic processes during dynamic analysis of structures subjected to random excitations. 

To model and simulate stochastic processes properly, many approaches, algorithms, and 

methods were developed in the past. Some of the most widely used approaches are Monte Carlo 

simulation techniques (Shinozuka 1972; Kitagawa 1996; Liu and Chen 1998), autoregressive 

methods (Spanos and Mignolet 1987; Mignolet and Spanos 1987; Deodatis and Shinozuka 1988; 

Novak et al. 1995), and autoregressive moving average methods (Spanos and Mignolet 1990; 

Gersch and Yonemoto 1977). The spectral representation method (Shinozuka and Jan 1972; 

Shinozuka and Deodatis 1991, 1996; Grigoriu 1993; Grigoriu 2003; Chen and Kareem 2005; Chen 

and Letchford 2005) has been widely utilized to simulate the random process by using a series of 

deterministic basis functions with uncorrelated random coefficients. The discrete representation 

method describes the stochastic processes in terms of a finite number of uncorrelated random 

variables and filters describing frequency contents and nonstationarity of the processes. Der 

Kiureghian (2000), Rezaeian and Der Kiureghian (2008, 2010, 2012) used the discrete 

representation method along with modulating functions to model random ground motions. Konakli 
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and Der Kiureghian (2012) used the discrete representation method to define statistical 

characteristic of ground motions considering various soil properties. Based on the discrete 

representation of input stochastic processes, Fujimura and Der Kiureghian (2007) developed a 

Tail-Equivalent Linearization Method (TELM) to find an equivalent linear system by matching a 

first-order approximation of a tail probability between a linear response and nonlinear response. 

The most recent research on topology optimization has been primarily focused on structures under 

static loadings. Such approaches may fail to address important concerns caused by random 

excitations in structural design practices. For example, lateral-force-resisting structural systems 

should be designed to effectively control random dynamic responses caused by natural hazards or 

operations of non-structural components. In response to such needs and challenges, research 

efforts in topology optimization of structures under constraints on dynamic response have been 

increased recently. However, high computational cost remains as a major obstacle in incorporating 

dynamic/stochastic responses of structures into topology optimization. Some advances have been 

made in the field of research by dealing with dynamic characteristics of the structure under special 

loading conditions instead of actual response time histories under given deterministic or stochastic 

input excitations. For example, Diaz and Kikuchi (1992) dealt with eigenfrequencies as the key 

dynamic characteristic during topology optimization of structures under dynamic loadings. Since 

then, several methods and formulations related to frequencies optimization have been developed 

(Ma et al. 1994; Ma et al. 1995; Jensen and Pedersen 2006; Du and Olhoff 2007). Such a topology 

optimization approach often aims to maximize the fundamental frequency to indirectly control 

dynamic responses. An alternative approach is to minimize the dynamic response of a structure 

for a given dominant frequency of dynamic loadings (Maeda et al. 2006; Rubio et al. 2011). Min 

et al. (1999) used a relaxation-homogenization theory to address minimal compliance during a 

certain time interval in structural topology optimization problems under dynamic loadings. Such 

methods, however, are limited in terms of incorporating general structural behavior addressed in 

actual design practices into objective functions and constraints of topology optimization. 
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In order to overcome these challenges, this chapter introduces a new method that incorporates 

random vibration theories into topology optimization to satisfy probabilistic constraints defined in 

terms of stochastic responses. The discrete representation method of the stochastic process is 

adopted in the chapter because the discretized form of a continuous process has practical 

advantages such as reducing the computational effort, facilitating implementation and identifying 

characteristics of the stochastic process. Moreover, an analytical sensitivity formulation is derived 

to enable the use of gradient-based optimizers. 

The remainder of the chapter is structured as follows. First, the theoretical basis of the discrete 

representation method of random vibration is provided. It is followed by a discussion on how to 

characterize a linear structural system subjected to Gaussian stochastic excitations using the 

structural reliability theory. Next, the details of the proposed topology optimization method and a 

new formulation for parameter sensitivities of dynamic responses are discussed. The chapter 

demonstrates the proposed methods with numerical examples and provides a discussion of the 

results. Finally, the chapter concludes with future directions and possible extension of our findings. 

3.2. Discrete representation of stochastic excitations 

In order to effectively incorporate stochastic processes into topology optimization, this work 

adopts the discrete representation method. In particular, random ground motions are described by 

the discrete representation method for topology optimization of structures under seismic 

excitations. 
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3.2.1. Discrete representation of stochastic process 

The discrete representation method describes an input stochastic process in terms of a finite 

number of standard normal random variables by use of a deterministic function representing the 

frequency content and nonstationarity (Rezaeian and Der Kiureghian 2008, 2012). This allows for 

evaluation of the failure probability associated with stochastic response exceeding a threshold at a 

given time point (“instantaneous failure probability”) or crossing events during a time period 

(“first-passage probability”) using structural reliability analysis methods, such as First- and 

Second-Order Reliability Methods (FORM and SORM; Der Kiureghian 2000, Der Kiureghian 

2005). For example, a zero-mean stationary Gaussian input process f(t) is discretized as 

 T

1

( ) ( ) ( )
n

i i
i

f t v s t t


  s v       (3.1) 

where v = [v1, v2 …, vn]T
 is a vector of n uncorrelated standard normal random variables. Thus, 

E[vi] = 0 and E[vjvk] = δjk in which E[∙] denotes the mathematical expectation and δjk is the 

Kronecker delta. s(t) = [s1(t),…, sn(t)]T
 is a vector of deterministic basis functions representing the 

spectral characteristics of the process. To obtain the basis function, one can use one of the available 

methods such as the Karhunen-Loève orthogonal expansion (Spanos and Ghanem 1989), the 

orthogonal series expansion approach (Zhang and Ellingwood 1994), and the optimal linear 

estimation method (Li and Der Kiureghian 1993).  

3.2.2. Discrete representation of earthquake ground motions 

A stochastic ground motion can be modeled as the response of a linear filter to a random pulse 

train. The filter may represent the characteristic of soil medium, which earthquake ground motion 

passes through. For instance, the response of the linear filter excited by the white noise W(t) can 

be expressed by a convolution integral employing the impulse-response function of the filter, hf 

(·), i.e. 
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 0
( ) ( τ) (τ) τ

t

ff t h t W d    (3.2) 

The power spectral density function of the white noise W(t) is given as constant, i.e. ΦWW(ω) = Φ0. 

The white noise process can be represented approximately by rectangular pulses in closely spaced 

time steps. A random height of the pulse, which may stand for sporadic ground ruptures, is defined 

by the temporal average of W(t) over each time interval, i.e. 

 

1

1

1
( ) (τ) τ,   ( , ]

i

i

t

i i i

t

W t W W d t t t
t



  
       (3.3) 

where t = ti+1  ti. Assuming W(t) is a zero-mean Gaussian process, the integration of Equation 

3.3 results in a Gaussian random variable Wi. The mean of Wi is derived as 

 

1 11 1
E[ ] E (τ) τ E (τ) τ 0

i i

i i

t t

i

t t
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t t

    
      

       
    (3.4) 

The variance of Wi is derived as 
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(3.5) 

where RWW() is the auto-correlation function of W(t), and () is the Dirac delta function. In 

summary, Wi is the zero-mean Gaussian random variable with the variance 2πΦ0 / ∆t. One can also 

show that Wi and Wj (i ≠ j) are uncorrelated. Therefore, the Gaussian white noise process W(t) can 

be represented by a set of uncorrelated standard normal random variables, 

 02π / ,    1, ,i iW t v i n       (3.6) 

where n denotes the number of the time intervals for the time period (0, t). Substituting Equations 

3.3 and 3.6 into Equation 3.2, the filter response of the Gaussian white noise process is 

approximately derived in a discrete form 
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  (3.7) 

In this case, the basis functions in the vector s(t) are thus derived as 0( ) 2π ( )i f is t t h t t     . 

It should be noted that the model in Equation 3.7 is just one example of modeling stochastic ground 

motions by the discrete representation method, and one can construct such a model fitted for the 

characteristics of ground motions at a specific site. For example, Rezaeian and Der Kiureghian 

(2008, 2012) incorporated non-stationarity of spatially varying ground motions into such models 

and developed a method for simulating an ensemble of synthetic ground motions. Konakli and Der 

Kiureghian (2012) developed a conditioning simulation method for generating stationary 

processes and extended the method to non-stationary models. 

3.2.3. Characterization of linear system under stochastic excitations 

If a stochastic excitation is described by the discrete representation method discussed above, the 

stochastic responses of a structural system can be also described by a finite number of random 

variables. For example, a displacement time history u(t) of the linear system under the stochastic 

excitation f(t) is derived as  
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

s v
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 (3.8) 

where ( )sh t is the unit impulse response function of the structural system, and a(t) denotes a vector 

of deterministic basis functions 

 

0

( ) (τ) ( τ) τ,   1,...,
t

i i sa t s h t d i n     (3.9) 
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As a result, failure events defined in terms of dynamic response can be described in the space of 

standard normal random variables v. For example, an ‘instantaneous’ failure event described in 

terms of the displacement of the linear system at time t = t0, i.e. Ef = {u(t0) ≥ u0} where u0 is a 

selected threshold can be represented by a linear half space u0  u(t0) = u0  a(t0)Tv ≤ 0, as illustrated 

in Figure 3.1. From theories of structural reliability, the failure probability P(Ef) is then obtained 

by a closed-form solution P(u(t0) ≥ u0) = [(u0,t0)] where Φ[·] is the cumulative distribution 

function (CDF) of the standard normal distribution, and (u0,t0) = u0/||a(t0)|| is the reliability index. 

The reliability index is alternatively computed by = 0ˆ ( )  *tα v
 
where 0ˆ ( )tα denotes the negative 

normalized gradient vector of the limit-state function evaluated at the so-called design point or 

most probable point (MPP) v*, which is obtained by u0a(t0)/||a(t0)||2 (Der Kiureghian 2000). To 

facilitate finding a(t) in finite element settings without deriving the impulse response function 

necessarily, the following procedure is proposed in this work: First, a random sample of v is created 

by generating n uncorrelated standard normal random variables. Second, an input time history f(t) 

is computed by substituting v into Equation 3.7. Third, the displacement time history 

( ),  1,2,...,iu t i n  of structures for the input time history f(t) is computed using a time integration 

scheme such as Newmark method (1959). Then, substituting the computed time history

( ),  1,2,...,iu t i n , and the random sample of v into Equation 3.8, one can obtain  

 

1 1 1 1

2 1 2 1 2 2 2

3 1 3 1 2 3 2 3 3 3

1 1 1 1 2 1 2 1 1 1

1 1 2 2 1 1

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

                             

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
n n n n n n

n n n n n n n n n

u t a t v

u t a t v a t v

u t a t v a t v a t v

u t a t v a t v a t v

u t a t v a t v a t v a t v
     

 


 
  

   
    







                  (3.10) 

It is noted that ( ) 0 for i ja t i j   because 0(τ) 2π (τ )i f is t h t      in Equation 3.9 is zero for 

<ti. When a uniform step size is used, i.e. 1 ,   1,2,....,i it t t i n     and 0nt t , it is found from 

Equation 3.7 and Equation 3.9 that 

 
0( ) ( ),   1, 2,..., ,     ,...,i n i ja j t a t i n j i n                       (3.11) 
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Figure 3.1: Geometric representation of instantaneous failure at time t0 (MPP: Most Probable
Point). 

Appendix A provides the details of the derivation. As a result, the system equation in Equation 

3.10 is given in the following matrix equation:  

 

1 0 1

2 1 0 0 2

1 0 2 0 3 0 0 1

0 1 0 2 0 1 0 0

( ) ( ) ( ) 0 0 0

( ) (2 ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) ( )

n

n n

n n n

n n n n

u t u t a t v

u t u t a t a t v

u t u t t a t a t a t v

u t u t a t a t a t a t v



 



       
            
      
           
            





       










 (3.12) 

Each element ia  of the vector a can then be calculated using the forward-substitution method or 

solving the following equivalent matrix equations by use of a solver developed for the lower 

triangular matrix: 
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In both methods, the absolute value of the first element in the sample, 1v  needs to be sufficiently 

large for numerical stability. It is found that the procedure using Equation 3.13 is less sensitive to 

the numerical issue. The obtained vector of deterministic basis function a(t0) is used in order to 

compute the reliability index and its associated failure probability aforementioned. 

3.2.4. Stationarity 

In general, evaluating the instantaneous failure probability P(Ef) requires iterative computations 

through random vibration analysis and structural reliability analysis. It generates additional 

demands for computational resources and time in optimization. Using the discrete representation 

method, the instantaneous failure probability can be obtained by the closed-form solution as 

described in Section 3.2.3. It should be noted that the instantaneous failure probabilities are 

constant over the time period if the response achieves stationarity. This stationarity can be 

confirmed by investigating the autocovariance function ( )xxK   (Lutes and Sarkani 2003), which 

can be computed from the following form  

 
1 2ω( )

1 2 1 2( , ) (ω) (ω, ) (ω, ) ωi t t
xx FFK t t H t H t e d

 


    (3.14) 

where (ω)FF is the power spectral density function and (ω, ), 1,2iH t i   denotes an incomplete 

Fourier transform of ( )sh t . Because ( )H   is time-variant, responses of the linear system subjected 

to the stationary process may not be stationary in general. The stationarity of responses can be 

achieved when 1 2,  t t  go to infinity because 1 2(ω, ),  (ω, )H t H t converge to a frequency response 

function (ω)H  which does not depend on time t. For a general single degree-of-freedom oscillator, 

(ω, )H t  can be written as 

 
ξω ωξω ω

cosω sin ω(ω, ) (ω) 1
ω

oto i t
D D

D

i
t tH t H e e        

  
  (3.15) 

where ωo is a natural frequency of the system, ξ  denotes a damping ratio and ωD is a damped 

natural frequency. Based on Equation 3.15, a time t taking ξωote to ε 1�  can be identified as the 
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time that leads to (ω, ) (ω)H t H . For instance, a reduction of ξωote  to about 4 % can be achieved 

by taking ξω πot  . Therefore, one can compute a sufficient time for achieving stationarity using 

the following expression: 

 
4% / 2ot T     (3.16) 

The primary focus of this work is topology optimization of linear structures subjected to the 

stationary Gaussian process, for which the aforementioned closed-form solution of the failure 

probability can be used. To achieve stationarity, the instantaneous failure probability is computed 

at a time point, after stationarity is achieved, according to Equation 3.16. 

3.3. Stochastic topology optimization framework 

This section presents our proposed stochastic topology optimization framework. That incorporates 

the discrete representation method discussed above into the topology optimization for an effective 

treatment of uncertainties in stochastic excitations. 

3.3.1. Topology optimization framework 

In this chapter, a linear elastic and isotropic constituent material with an elasticity tensor 0D  is 

considered. The Solid Isotropic Material with Penalization (SIMP; Bendsøe 1989; Rozvany et al. 

1992; Bendsøe and Sigmund 1999) model is adopted. The SIMP model uses a smooth convex 

function defined by a power function representation, i.e. 

 
ψ( ) px x   (3.17) 

where 0p   is a penalization factor. In order to avoid singularity of a stiffness matrix in finite 

element analysis, one needs to set a lower bound on the element density ρ ( )e d  i.e., 

min0<ρ ρ ( ) 1e d �  with a vector of deterministic design variables, d. The element density can be 

obtained by using a density filtering method such as the projection technique (e.g. Guest et al. 

2004, Sigmund 2007) to avoid checkerboard-patterns. By using a linear “hat” kernel of radius r, 
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the element density can be computed as a weighted average of the design variables within an 

influence domain e  such as 
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w d
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

d   (3.18) 

where ( ) / 0j jw r r r    is a weight, and jr  is the distance between the centroids of element e 

and element j, which lies within the radius r of element e.  

Therefore, an elasticity tensor of an isotropic material in the state of plane stress is determined 

as  
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where E0 denotes Young’s modulus of the solid phase,   is the Poisson’s ratio, and 0D  is the 

elasticity tensor of the solid material, where the density is 1. Using the SIMP model, the stiffness 

matrix of the eth element and its sensitivity are obtained as follows in the element-based 

computational framework (Bendsøe and Sigmund 2003): 

 
0 1 0(ρ )
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  (3.20) 

where 0
eK  is computed by 

 
0 T
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

 
e

e eK B D B   (3.21) 

in which B denotes a strain-displacement matrix of shape function derivatives in the domain e  

of element e. When considering transient problems, one obtains the mass matrix and its sensitivity 

as follows 
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where 0
eM  is the mass matrix of the solid material, and q is the penalization parameter. To 

calculate the mass matrix in the domain of element e, a consistent mass matrix 0
eM  is obtained as 
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0 T  


 
e

e m edM N N   (3.23) 

which has been adopted in this work. Here ρm is the mass density of material and N  is the shape 

function of element e. The numerical examples in this chapter use penalization parameter values 

p = 3 and q = 1, which are widely used in the field of topology optimization (Pedersen 2000; Du 

and Olhoff 2007). As usual, the global stiffness matrix K and mass matrix M for the finite element 

analysis can be assembled over the total number of finite elements ne in the design domain, that is, 

 1 1

(ρ ),         (ρ )
e en

e
e

n

e e e
e 

  K K M M    (3.24) 

3.3.2. Stochastic topology optimization formulation 

For structures under stochastic excitations, a topology optimization problem can be formulated as 
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  (3.25) 

where ( )ρ ρ d   is the element density vector, ( )M ρ , ( )C ρ and ( )K ρ  are the mass, damping and 

stiffness matrices of the design domain, respectively. The quantities ( , ),  ( , ), ( , )t t tu ρ u ρ u ρ     and 

( , )tf ρ denote the acceleration, velocity, displacement and external force vectors at time t. target
fP  

denotes the target failure probability which is allowable failure probability in the probabilistic 

constraints. The force vector for the structure subjected to ground acceleration ( )gu t  which is 

generated in the form of Equation 3.7 can be expressed as ( , ) ( ) ( )gt u t f ρ M ρ l   , in which the 

vector l represents the directional distribution of masses with unity. It can be derived from the 

behavior of structures subjected to earthquake excitation of the base of the structure. The total 

displacement of the mass M by ( , )t tu ρ  is a summation of the relative displacement between the 

ground and the mass by ( , )tu ρ  and the displacement of the ground denoted by ( )gu t l . Because 

elastic and damping forces are only generated by the relative motion ( , )tu ρ , the inertial force 

related to the acceleration becomes  ( ) ( ) ( )gt u tM ρ u l   . Thus, the external force vector is 
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expressed as ( , ) ( ) ( )gt u t f ρ M ρ l   . In this chapter, the damping matrix is constructed by using a 

Rayleigh damping model, C = κ0M + κ1K. The coefficients κ0 and κ1 in the Rayleigh damping 

model are determined under the assumption of 2 % damping ratio for structures. 

Optimization of nonlinear systems and/or systems subjected to non-stationary or non-Gaussian 

processes can also be achieved by modulating various filters (Rezaeian and Der Kiureghian 2008, 

2010) and utilizing structural reliability analysis methods such as FORM and SORM. In order to 

update design variables during optimization procedures, nonlinear optimization algorithms such 

as the sequential quadratic programming (SQP) or the method of moving asymptotes (MMA; 

Svanberg 1987) can be used. In this chapter, MMA is used along with the special purpose 

sensitivity formulation described below. The MMA was chosen because the algorithm can handle 

the multiple constraints effectively and shows faster convergence compared to SQP and interior 

point method in the numerical examples. 

3.3.3. Overall topology optimization process 

Figure 3.2 illustrates the proposed procedure of topology optimization of structures under 

stochastic excitations. The procedure begins with an initial design and a stochastic model of 

excitation. For instance, the Kanai-Tajimi power spectral density model (Clough and Penzien 1993) 

can be implemented to approximately match the spectral characteristics of ground motions. The 

failure probability, i.e. the probability that the current design violates the given probabilistic 

constraint, is computed by structural reliability analysis (Der Kiureghian 2000; Der Kiureghian 

2005). As described above, the instantaneous failure probability of the linear structure under the 

Gaussian excitations can be computed by the closed-form solution. Next, the objective function, 

constraint functions, and their sensitivities are computed to update design variables using an 

optimization algorithm such as MMA. The convergence check based on the total change in the 

material distribution is performed at the end of each iteration. This process is repeated until a 

tolerance threshold of 0.5 % is reached. 
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Figure 3.2: Flow chart for topology optimization under stochastic excitations. 

3.4. Sensitivity calculations 

Computing the sensitivity of structural responses with respect to various design parameters is 

essential for efficient gradient-based optimization. Therefore, various approaches have been 

developed for computing sensitivity of static as well as dynamic responses (Haug and Arora 1978, 

Haftka and Gürdal 1992). Computing gradients of responses of the system under stochastic process, 

however, differs from aforementioned sensitivity calculations, in that this system requires an 

additional layer of complexity due to the randomness of the input process. In this chapter, a new 

sensitivity formulation employing the adjoint method is developed for linear structures subjected 

to stochastic excitations modeled by the discrete representation method. 

Consider the following constraint on the probability of the instantaneous failure event 

described by the discrete representation method: 

 
T target

0 0( ) ( ( ) 0)   
f fP E P u t , Pa ρ v   (3.26) 

Result: Optimal Topology

Yes

No (iterate)
Convergence Criteria 

achieved?

Random Vibration Analysis using dynamic 
FEA, and compute Pfailure

Sensitivity Analysis of objective and constraint 
functions

Update Design Variables using Mathematical 
Programming

Generating Stochastic 
Excitation Model

Initial Design 
ρ = ρInitial 
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Alternatively, the constraint in Equation 3.26 can also be described using the CDF of the standard 

normal distribution and the reliability index, i.e. 

 
target target

0 0 0 0[ β( , , )] ( β )  or  β( , , ) βu t u t     ρ ρ    (3.27) 

where targetβ  denotes the target reliability index which is target(1 ) fP  quantile of the standard 

normal distribution, i.e. target target( β ) fP   . Therefore, the sensitivity of the reliability index with 

respect to the design variables d needs to be evaluated to enable the use of gradient-based 

optimization algorithms. As described above, the reliability index is computed as 
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 

  
ρ

a ρ ρ ρ ρ


   
  (3.28) 

By applying the chain rule to Equation 3.28, the sensitivity of the reliability index with respect to 

the design variable ed d is derived as 
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  (3.29) 

where 

 
2 2 3/2

0 0 0 0 1 0 0( , , ) ( , )[ ( , ) ( , ) ]i i nc u t u a t a t a t     ρ ρ ρ ρ      (3.30) 

In Equation 3.29, the index j represents the j-th element, j = 1,…,ne, and the partial derivative 

ρ /  k ed  can be obtained from the filtering function in Equation 3.18. However, the sensitivity 

formulation in Equation 3.29 cannot be completed as it is because of the implicitly defined 

sensitivities with respect to the element density, i.e. 0( , ) / ρ  i ka t ρ . To enable the sensitivity 

calculation, a new sensitivity calculation procedure based on the adjoint method is developed as 

presented below. 
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3.4.1. Direct differentiation method 

By directly differentiating the second order governing equation in Equation 3.25 with respect to 

ρ k  and rearranging terms, the following equation is obtained. 

 

( , ) ( , ) ( , )
( ) ( ) ( )

ρ ρ ρ

( ) ( ) ( ) ( )
       ( , ) ( , ) ( , )

ρ ρ ρ ρ

  
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t
t t t

u ρ u ρ u ρ
M ρ C ρ K ρ

f M ρ C ρ K ρ
u ρ u ρ u ρ

  (3.31) 

By considering the right hand side of Equation 3.31 as a new force vector, and assuming the 

“response gradients,” ( , )/ ρ   ktu ρ , ( , )/ ρ   ktu ρ  and ( , )/ ρ  
ktu ρ  as new acceleration, velocity and 

displacement vectors, the equation becomes another system equation of equilibrium. Solving 

Equation 3.31 using a method of numerical integration developed for differential equations lead 

to the gradients of the displacement, ( , )/ ρ  
ktu ρ  computed at each time point. From Equation 3.8, 

the sensitivity of a selected degree-of-freedom (DOF) of the displacement vector, i.e. ( ) ( )u t tu , 

is determined as 
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u t tρ a ρ
v   (3.32) 

By means of a procedure similar to the one described in Equations 3.10-3.13, the following matrix 

equation is derived to obtain 0( , ) / ρ  i ka t ρ , i = 1…,n:  
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





    
       
  
 
        
           

  

   

     

   

   

k n k

k n k n k

n k k k n k

n k k k n k n

u t a t

u t a t a t

u t a t a t a t

u t a t a t a t a t

1

2

1

ρ


   
  
  
  
  
  
     




n

k n

v

v

v

v

   

  (3.33) 

One can compute 0( , ) / ρ  i ka t ρ  using the forward substitution method or solving the equivalent 

matrix system of equations. The sensitivity of the reliability index in Equation 3.29 can finally be 

calculated.  
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3.4.2. Adjoint sensitivity analysis 

The basic idea of the adjoint method is introducing an adjoint system of equations so that 

computing implicitly defined terms in sensitivity analysis can be avoided and thus the 

computational cost can be reduced (Haug et al. 1986; Haftka and Gürdal 1992; Choi and Kim 

2005). In the sensitivity analysis of the reliability index, the discretized system in the last line of 

Equation 3.25 is considered as the adjoint system. The equation of motion can be solved 

numerically using one of the time integration schemes such as the central difference method 

(Hulbert and Chung 1996), Houbolt method (Houbolt 1950) or Newmark method (Newmark 1959). 

The implicit Newmark time integration method is presented because the approach shows more 

stable and accurate results for the numerical examples. The Newmark method is based on the 

following time-stepping rules: 

 
1 1( ) ( ) [(1 γ) ] ( ) (γ ) ( )j j j jt t t t t t      u u u u      (3.34) 

 

2 2
1 1( ) ( ) ( ) [(0.5 η) ] ( ) [η ] ( )j j j j jt t t t t t t t       u u u u u     (3.35) 

The parameters γ and η determine the stability and accuracy characteristic of the method (γ = 0.5 

and   η = 0.25 are used in this research). Substituting Equations 3.34-3.35 for 1( )jt u  and 1( )jt u  

into the second-order governing equation in Equation 3.25 at 1jt t  , one can obtain the following 

expression 
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  (3.36) 

Based on a general recurrence relation associated with three sequential displacements (Chan et al. 

1962, Zienkiewicz 1977), the equilibrium equations of motion can be solved for 1( , ) jtu ρ :  
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    (3.37) 

It should be noted that the force vector 1( , )jt f ρ can be replaced by the inertia force vector 

1( ) ( )jf t M ρ 1 for structures subjected to ground excitations aforementioned. The following 

notations are introduced in order to simplify the derivations: 
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  (3.38) 

Substituting Equation 3.37 with Equation 3.38 and differentiating the equation with respect to the 

element density, one can obtain the discretized adjoint system as follows: 
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  (3.39) 

It should be noted that this adjoint system is self-adjoint because M, C and K are symmetric based 

on Equation 3.21 and Equation 3.23. Pre-multiplying the discretized adjoint system with a dofn

dimensional adjoint variable vector 1n j λ  and adding to right-hand side terms of Equation 3.29, 

one obtains 
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 (3.40)  
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It is noted that the first summation on the right-hand side of Equation 3.40 includes gradients of 

a(t) which was introduced to describe a certain degree-of-freedom, i.e. T( ) ( )u t t a v  while the 

added terms in the second summation are expressed with gradients of the displacement vector u 

including all degrees-of-freedom. To derive the sensitivity in Equation 3.40 in terms of derivatives 

of u(t), the terms in the first summation are alternatively described as 
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where z is a binary vector that indicates which degree-of-freedom of ( )ta  indicates. If the 

sensitivity of the l-th degree-of-freedom is of interest, all elements of z vector are zeroes except 

that the l-th element is 1.  

Substituting Equation 3.33 into Equation 3.41, one obtains the following expression 
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Comparing the coefficients of the left and right hand sides of Equation 3.42, one can find  
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The coefficients ,  1,..., ,iT i n  can be obtained by solving Equation 3.43. Substituting Equation 

3.41 into Equation 3.40 and isolating implicitly defined terms ( , ) / ρ  j ktu ρ , one obtains:  
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  (3.44) 

It is noted that this procedure requires knowledge of 1( , )tu ρ , (0, )u ρ  and their partial derivatives 

so that a special starting procedure such as initial displacements by the central difference method 

can be used to generate initial results. The terms including ( , ) / ρ  
j ktu ρ , 1,..., ,j n  are 

identified and grouped in Equation 3.44. Then, the value of the adjoint vector nλ  is found such 

that the coefficients of unknown derivatives ( , ) / ρ  
j ktu ρ , 1,..., ,j n  are zero, i.e. 
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  (3.45) 

Finally, substitution of the value of the adjoint vector obtained from Equation 3.45 into Equation 

3.44 gives the sensitivity from the following equation that does not involve implicitly defined 

derivative terms:   
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3.4.3. Performance of the proposed method for sensitivity calculations 

The performance of the proposed methods for sensitivity calculation is tested through a numerical 

example in terms of efficiency and accuracy. For this purpose, the example considers a structure 

shown in Figure 3.3 (a), which is subjected to the filtered stationary process which is represented 

in the form of Equation 3.1 with the basis functions ( ) exp[ 2.4π( )]  i is t t t  

sin[3.2π( )] ( )   i it t H t t  (Der Kiureghian 2000) where ( )H   is a unit step function. The basis 

functions are normalized such that ||s(t)|| = 1. The continuum structure is discretized with 

quadrilateral elements (Q4). The frame elements illustrated as straight lines in Figure 3.3(a) are 

divided into smaller elements. Those are then connected to the nodes of Q4 elements along the 

straight lines. The thickness of the Q4 element is 0.1m, the size of frame elements is 0.45 m × 0.45 

m, and Young’s modulus E = 21,000 MPa and density m= 2,400 kg/m3 are used to describe the 

material properties of the structure. The uniform distribution of the material density 0.5 over the 

Q4 domain is assumed in the sensitivity calculation. The probabilistic constraint is given on tip-

displacements which are evaluated at red dots as shown in Figure 3.3(a). The failure event fE  

occurs when the average tip-displacement exceeds a given threshold value 0 ( 0.02 m)u  at 0 8t  , 

i.e.   

 
0 0

2
Left Right

f

u u
E u

 
   

 
  (3.47) 

where T
0( , )Left Leftu t a ρ v  and T

0( , )Right Rightu t a ρ v  respectively denote displacements at time t0 

computed using 0( , )ta ρ functions evaluated at the left and the right red dots in Figure 3.3(a), 

respectively. The direct differentiation method (DDM) and the proposed adjoint method (AJM) 

are carried out to calculate the sensitivity 0 0β( 0.02, 8, ) / ju t d   ρ . The finite difference method 

(FDM) with varying perturbations from 110d    to 1610d    is also implemented to verify the 

proposed method. Table 3.1 summarizes sensitivity results from the FDM at selected three 

elements shown in Figure 3.3 (a) and those from the proposed AJM and the DDM. Figures 3.3 (b) 

through 3.3 (d) show normalized sensitivities computed by the three methods. The DDM and 
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proposed AJM yield results that are consistent with those from the FDM. Figure 3.4 shows 

normalized computational times for different levels of discretization of the structure. The 

computational times are normalized by the result of the AJM for 800 finite elements. The proposed 

AJM shows the most efficient performance in terms of computational time while providing 

accurate results. 
 
 

 

Figure 3.3: Sensitivities by different approaches: (a) geometry of the structure, (b) adjoint method,
(c) direct differentiation method, and (d) finite difference method (∆d = 1×10−5). 
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Figure 3.4: Normalized computational time (FDM: finite difference method, DDM: direct
differentiation method, and AJM: adjoint method). 

 

Table 3.1: Sensitivities at the element A, B, and C using the proposed AJM, DDM, and FDM with 
a perturbation ∆d. 

 Elem. A Elem. B Elem. C     

AJM 0.003110 0.008650 0.021623     

DDM 0.003110 0.008650 0.021623     

FDM        
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3.5. Numerical applications 

The proposed method is applied to obtain a lateral bracing system with minimum volume for a 

building structure subjected to stochastic ground motion excitations. The topology optimization 

formulation in Equation 3.25 is used while the objective function ( ( ))objf ρ d  is defined as the 

volume of the structure determined by the material density distribution. The material distribution 

in the design domain is optimized under probabilistic constraints on inter-story drift ratios (ASCE7 

2010, NEHRP 2009) during random excitations of an earthquake event, which are important 

criteria for seismic designs. Topology optimization is performed for a variety of multi-story 

buildings and conditions in order to investigate the impact of prescribed probabilistic parameters, 

characteristics of the filtered white noise, and building dimensions on topology optimization 

solutions.  

3.5.1. Input stochastic process 

In subsequent numerical examples presented in this chapter, the stochastic seismic excitation is 

modeled as the filtered white-noise process. Accordingly, the unit-impulse response function hf() 

in Equation 3.7 follows the Kanai-Tajimi filter model (Clough and Penzien 1993; Fujimura and 

Der Kiureghian 2007), i.e. 
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   (3.48) 

where ωf and fare filter parameters representing the predominant frequency and the bandwidth 

of the process. The corresponding power spectral density (PSD) function (Lutes and Sarkani 2003) 

of the input process is 
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where 0  represents the power spectral density of the underlying white noise process. Typical 

values for predominant frequency and the bandwidth of ground motions on a firm ground are f = 

5 rad/s and f = 0.4. 

3.5.2. Topology optimization of three-story buildings 

Figure 3.5 shows a three-story building with a width of 5 m, a height of 15 m, and a uniform 

thickness of 0.1 m. The design domain, represented by the gray area, is modeled by bilinear 

quadrilateral (Q4) elements, and the material densities in the elements are optimized to minimize 

the volume while satisfying the probabilistic constraints on the inter-story drift ratio. The two 

vertical lines represent the structural columns modeled by frame elements, whose material 

properties or dimensions remain constant during the optimization process. The frame element is 

discretized into many smaller frame elements, which are attached at every node of quadrilateral 

meshes along the column lines and move together with quadrilateral elements. 

 

 

Figure 3.5: Three-story building subjected to stochastic excitations. 
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Young’s modulus E = 21,000 MPa and density m= 2,400 kg/m3 are used as material properties 

to represent normal-weight concrete. The filtering radius r = 0.1625 m and initial volume fraction 

0.7 over the Q4 domain are employed. The coefficients used in the Rayleigh damping model are 

κ0 = 1.93, κ1 = 1.52×104 under the assumption of 2 % damping ratio for the three-story building. 

For each of the floor levels 2, 3 and 4 shown in Figure 3.5, the averages of the inter-story drift 

ratios (∆i/Li) are evaluated at specified points for the left and right columns as the stochastic 

response of the structure. Constraints are given on the probabilities of the failure events, which are 

defined as those exceeding the average inter-story drift ratios for the given threshold value. More 

precisely, the failure event of the i-th floor level is defined as 
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 (3.50) 

where ( 5 m)iL , 0 ( 0.02)iu  , T
0 ,( , )i Leftta ρ and T

0 ,( , )i Rightta ρ  represent the floor height, the threshold 

value of the inter-story drift ratio respectively, as well as a vectors to determine the lateral 

displacement at the left and right columns of the i-th floor level at t = t0, for i = 2, 3, 4. Although 

the events described in Equation 3.50 have a different form from Equation 3.26, it is noted that the 

inter-story drift ratios in Equation 3.50 are still linear functions of the random vector v, i.e. 

T
0( , )itb v . Therefore, the closed-form solution in Equation 3.27 and the sensitivity calculation 

methods developed in Section 3.4 can be still used just by replacing a vectors (displacement) in 

the formulations by b vector (inter-story drift). Table 3.2 provides filter parameters, column size, 

and parameters used for probabilistic constraints, which include the threshold values of average 

drift ratios. The filter parameters in Table 3.2 are considered to represent ground motions on a 

typical firm ground. The threshold value of the inter-story drift ratio is chosen as one of design 

criteria in ASCE7 (2010). 
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Table 3.2: Three-story building: parameters used for design domain, probabilistic constraint, and 
ground motion model. 

 Filter parameters Column size (m × m) 
 0u  

 ωf  ζ f  

Case I 5π 0.4 0.5 × 0.5 0.02 

Case II 5π 0.4 0.5 × 0.5 0.0175 

Case III 5π 0.4 0.6 × 0.6 0.02 

 

In these examples, constraints are given on the instantaneous probability during the strong 

motion duration, during which the earthquake excitation can be approximated as a stationary 

process (Soong and Grigoriu 1993). Even when a stationary input is used for a linear structure, it 

takes a while to achieve the stationarity in the structural response. In order to achieve stationarity, 

the drift ratio at t0=6 s is used when computing the instantaneous failure probability. The 

optimization problem is solved with different column sizes, intensities of filtered Gaussian 

excitations, and target reliability indices which correspond to allowable failure probabilities.  

First, topology optimization solutions are obtained (see Figures 3.6 and 3.7) while the intensity 

of the ground motion is varied for Cases I-III as tabulated in Table 3.2. As the intensity increases, 

the converged topologies become significantly different at the lower level. In particular, the 

intersection point of the bracing at the lower level moves up vertically with increasing intensity, 

and the thickness of the bracing increases at the lower level but remains relatively stable at higher 

levels. The results shown in Figures 3.6 and 3.7 indicate that topology optimization satisfies 

probabilistic constraints for increased intensities by strengthening the lower level first, i.e. by 

placing more materials and changing the geometry of the bracings. This is the reason why the 

bracing of the top level almost remains constant and maintains its 45 degree angle as the intensity 

increases. It is also noted that the points where the bracing meets the column around the second 

floor (termed as “bracing-column points” hereafter) level move up as the intensity increases. Based 

on this observation, an efficient way to control the inter-story drift ratio is strengthening lower 

parts of the structural system. Comparing results of Case I and Case II show that the decreased 
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threshold value of drift ratios (Case II) moves up both bracing-column points and intersection 

points of the bracings at the lower floor level. It is also important to note that a change in the 

threshold value can affect the optimization result as shown in both Case I and Case II. Distinct 

changes of topologies are observed at the lower floor level with additional branches of the material 

distribution for the case with reduced threshold value. The change in the column size (Case III) 

leads to overall increases in the thickness of material distributions. Volumes of the optimization 

solutions are tabulated in Table 3.3. The values in the parentheses are volumes for discrete material 

distributions converted from intermediate densities. A detailed discussion of the conversion 

process and its impact on the results will be included in Section 3.5.3. The volumes of optimization 

solutions for Case I are lower than those of Case II because the lower threshold values of inter-

story drift ratios in Case I requires more strict the constraints. Compared to Case I, the larger 

column size in Case III results in the increased optimized volume. Note that the column size does 

not change during topology optimization, and thus the stiffness and mass matrices of the column 

remain the same. Therefore, in Case III, applied earthquake loads to degrees of freedom along 

column locations would be greater than dynamic forces applied to columns in Case I, resulting in 

the increased volume. 

 

Table 3.3: Volume of final topologies ( targetβ 2.5 , Pf = 0.62 %).  

Ф0 Case I Case II Case III 

250 1.717 (1.734) m3 2.049 (2.059) m3 2.157 (2.169) m3 

300 1.904 (1.928) m3 2.251 (2.278) m3 2.402 (2.419) m3 
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Figure 3.6: Topology optimization solutions to the three-story building example (Φ0 = 250, βtarget

= 2.5, Pf = 0.62 %). (a) Case I: column size 0.5 m × 0.5 m, 0u = 0.02, (b) Case II: column size 0.5
m × 0.5 m, 0u = 0.0175, and (c) Case III: column size 0.6 m × 0.6 m, 0u = 0.02. 

 

 

Figure 3.7: Topology optimization solutions to the three-story building example (Φ0 = 300, βtarget

= 2.5, Pf = 0.62 %). (a) Case I: column size 0.5 m × 0.5 m, 0u = 0.02, (b) Case II: column size 0.5
m × 0.5 m, 0u = 0.0175, and (c) Case III: column size 0.6 m × 0.6 m, 0u = 0.02. 
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Second, the target reliability index of the cases is changed to 2.0 and 3.0 which correspond to 

the target failure probabilities Pf
target = Φ(−2.0) = 2.28 % and Pf

target = Φ(−3.0) =0.13 %, respectively. 

The optimization solutions using changed target reliability indices are illustrated in Figures 3.8 

and 3.9. This shows the impact of changing the target reliability index on optimal bracings. More 

specifically, the increase in the reliability index results in thicker bracings and alters intersection 

points on the first two bottom floor levels. Additional branches of material distributions are also 

observed and the volumes obtained for the cases in Figures 3.8 and 3.9 are summarized in Table 

3.4.  Figure 3.10 shows the convergence histories of the objective function (volume), the reliability 

index and the failure probability of Case II, shown in Figure 3.9 (b), whose parameters are Φ0 = 

300, βtarget = 3.0, u0 = 0.0175. The convergence histories confirm that the proposed topology 

optimization method and the sensitivity formulation can successfully achieve the topology 

optimization solution under constraints on the instantaneous failure probabilities defined in terms 

of the drift ratios. Additionally, a neighborhood in the design domain that satisfies the constraints 

is quickly identified, and the remaining design iterations are to achieve the minimum volume 

within the identified neighborhood. Figure 3.11 shows time histories of inter-story drift ratios 

(Case II, Φ0 = 300, βtarget = 3.0, u0 = 0.0175) of the initial design (i.e. the continuum domain 

completely filled) and the optimal design for an input process randomly generated from the Kanai-

Tajimi filter model. The optimized system shows improved dynamic performance even though 

40.1 % of the original volume is used. 

A manufacturing constraint on pattern repetition in topology optimization (Almeida et al. 2010; 

Stromberg 2011) can be implemented for practical engineering applications. This constraint allows 

engineers to achieve constructability of the structural system such as same connection details, re-

usages of formworks for bracing and considering aesthetic perspective as well. Topology 

optimization results of Case I with βtarget = 2.5, and varying Φ0 of 250 or 300 are shown in Figures 

3.12 and 3.13. The number of pattern repetitions m = 2, 3 and 4 are used to obtain these results. 

Volumes of topology optimization results are summarized in Table 3.5.  
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Table 3.4: Volume of final topologies ( 0 300  ). 

targetβ  Case I Case II Case III 

2.0 1.505 (1.531) m3 1.720 (1.731) m3 1.870 (1.884) m3 

3.0 2.401 (2.409) m3 3.004 (3.022) m3 3.077 (3.100) m3 

 

Table 3.5: Volume of final topologies with the pattern repetition constraint ( targetβ 2.5 , Pf = 
0.62 %). 

Ф0 m = 2 m = 3 m = 4 

250 2.627 (2.656) m3 2.590 (2.616) m3 2.995 (3.037) m3 

300 3.117 (3.144) m3 2.966 (3.001) m3 3.318 (3.363) m3 
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Figure 3.8: Topology optimization solutions to the three-story building example (Φ0 = 300, βtarget

= 2.0, Pf = 2.28 %). (a) Case I: column size 0.5 m × 0.5 m, u0 = 0.02, (b) Case II: column size 0.5
m × 0.5 m, u0 = 0.0175, and (c) Case III: column size 0.6 m × 0.6 m, u0 = 0.02. 

 

 

Figure 3.9: Topology optimization solutions to the three-story building example (Φ0 = 300, βtarget

= 3.0, Pf = 0.13 %). (a) Case I: column size 0.5 m × 0.5 m, u0 = 0.02, (b) Case II: column size 0.5
m × 0.5 m, u0 = 0.0175, and (c) Case III: column size 0.6 m × 0.6 m, u0 = 0.02. 
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Figure 3.10: Convergence history of the problem shown in Figure 3.9 (b): (a) volume, (b) reliability
index, and (c) failure probability. 

 

 

Figure 3.11: Dynamic response comparison of the problem shown in Figure 3.9 (b): (a) Randomly
generated ground motion excitations, (b-c) corresponding dynamic responses of the initial design
and the optimal design. 
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Figure 3.12: Topology optimization solutions to the three-story building example with the pattern
repetition constraint. Φ0 = 250, βtarget = 2.5, Pf = 0.62 %: (a) m = 2, (b) m = 3, and (c) m = 4. 

 
 

 

Figure 3.13: Topology optimization solutions to the three-story building example with the pattern
repetition constraint. Φ0 = 300, βtarget = 2.5, Pf = 0.62 %: (a) m = 2, (b) m = 3, and (c) m = 4. 
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3.5.3. Study of stochastic responses over topology optimization results 

After the topology optimization result is obtained with the constraint on the instantaneous failure 

probability at the time point t0 = 6 s, reliability indices and failure probabilities of the obtained 

topology layout solution at different time points from 0.5 s to 10 s are studied. For this study, the 

topology optimization result with the pattern repetition shown in Figure 3.13 (c) is used. Our 

results show that failure probabilities (and reliability indices) remain constant within the time 

duration considered after approximately 3 seconds (see Figure 3.14). This confirms that the 

optimization solution at the specific time point (t0 = 6 s) by the proposed method under the filtered 

Gaussian input process can represent the reliability of the system during the stationary strong 

motion period. 

 

Figure 3.14: (a) Reliability index and (b) failure probability of the topology optimization solution
in Figure 3.12 (c) with varying time points. 
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converted to one. The optimization results under the pattern repetition constraint (see Figures 3.12 

and 3.13) are processed using converted material densities. The layout solutions of this process are 

illustrated in Figures 3.15 and 3.16. Comparison results between continuous solutions in Figures 

3.11 and 3.12 and interpreted discrete solutions after the post-processing are tabulated in Table 3.6. 

Discrete solutions show increased reliability indices in all cases and result in lower failure 

probabilities.  Dynamic responses of the continuous solution of Φ0 = 300, βtarget = 2.5, and m = 4 

(see Figure 3.13 (c)) in each floor level and the discrete solution (see Figure 3.16 (c)) under a 

randomly generated filtered ground motion are shown in Figure 3.17. Compared to the continuous 

solutions, the overall dynamic responses of the discrete layout solution show reduced magnitudes, 

which indicate the possibility of the lower failure probability.   

Lastly, a cross-comparison among optimization results is performed to study whether different 

model parameters in topology optimization lead to significant changes of structural responses. As 

shown in Figure 3.18, differences in dynamic responses of Case I and Case III under Φ0 = 250, 

βtarget = 2.5 are negligible. The topology optimization result of Case II which has u0 = 0.0175 leads 

to overall reduced magnitude compared to others, resulting in an observable difference in structural 

responses. Further study of optimization solutions from the pattern repetition constraint was 

performed. Figure 3.19 illustrates structural responses of topology optimization results subjected 

to a randomly generated ground motion with Φ0 = 300, βtarget = 2.5, Pf = 0.62 % considered in 

Figures 3.16 (a) through 3.16 (c) with the number of pattern repetitions m.  Structural responses of 

these cases remain relatively constant despite changes in pattern numbers which led to different 

material layouts and final volumes. 
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Figure 3.15: Discrete solutions to the three-story building example with the pattern repetition
constraint. Φ0 = 250, βtarget = 2.5, Pf = 0.62 %: (a) m = 2, (b) m = 3, and (c) m = 4.  

 

 

Figure 3.16: Discrete solutions to the three-story building example with the pattern repetition
constraint. Φ0 = 300, βtarget = 2.5, Pf = 0.62 %: (a) m = 2, (b) m = 3, and (c) m = 4. 
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Figure 3.17: Dynamic response comparison between continuous solution shown in Figure 3.12 (c)
and discrete solution of Figure 3.15 (c). Randomly generated ground motion excitations (a) and
corresponding dynamic responses (b). 
 

 

Figure 3.18: Comparison of topology optimization results to the three-story building example, Φ0

= 250, βtarget = 2.5, Pf = 0.62 %. Randomly generated ground motion excitations (a) and
corresponding dynamic responses (b). (Case I: column size 0.5 m × 0.5 m, 0u = 0.02. Case II:
column size 0.5 m × 0.5 m, 0u = 0.0175. Case III: column size 0.6 m × 0.6 m, 0u = 0.02). 
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Figure 3.19: Comparison of topology optimization results to the three-story building example with
the pattern repetition constraint, Φ0 = 300, βtarget = 2.5, Pf = 0.62 %. Randomly generated ground
motion excitations (a) and corresponding dynamic responses (b). 
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3.5.4. Study of geometric uncertainty of discrete material distribution 

A further study on the geometry uncertainty is carried out. The geometry uncertainty may be 

caused during the converting process in practical fields from continuous topology optimization 

solutions to discrete ones aforementioned in Section 3.5.3. Thus, the cut-off value of material 

density is assumed that it follows the normal distribution with a mean μm_cut-off and a standard 

deviation σcut-off rather than the fixed value 0.5. Therefore, each density value in each finite element 

is compared to a random cut-off value in order to convert to discrete material layouts. Figure 3.20 

shows discrete solutions of Case III (Φ0 = 250, βtarget = 2.5) shown in Figure 3.6 (c) under the 

geometry uncertainty. It is noted that the result is one of 20 simulations of random cut-offs. A 

discrete solution without the geometry uncertainty is provided in Figure 3.20 (a) for comparisons.  

Figure 3.21 shows effects of geometry uncertainties on reliability indices associated inter-story 

drift ratio constraints after 20 simulations. The reliability indices are still between target reliability 

indices from continuous solutions and reliability indices from discrete solutions.  
 

 

Figure 3.20: Discrete solutions under geometry uncertainty: (a) μm_cut-off = 0.5, σcut-off = 0, (b) μm_cut-

off  = 0.5, σcut-off = 0.1, (c) μm_cut-off = 0.5, σcut-off = 0.15, and (d) overlapped outlines of Figures 3.20
(a) through 3.20 (c).  
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Figure 3.21: Reliability indices associated inter-story drift ratio constraints after geometry
uncertainty simulations. (a) ∆4/L4, (b) ∆3/L3, and (c) ∆2/L2. 

3.5.5. Parametric study on impact of ground motion characteristics 

Next, a numerical example of a six-story building is considered for a parametric study on the 

impact of ground motion characteristics. The example employs the same parameters as those used 

for the three-story building example unless specified otherwise. Coefficients κ0 = 0.56 and κ1 = 

5.0×104 are used for the Rayleigh damping model to achieve 2% damping. The column sizes and 

the target reliability indices are as shown in Table 3.7.  

 

Table 3.7: Six-story building: Parameters used for design domain, probabilistic constraint, and 
ground motion model. 
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Three values of the dominant frequency and damping ratio (bandwidth) of the Kanai-Tajimi 

filter are applied respectively, i.e. f = 4.7, 5.0, 5.3 (rad/sec) and f = 0.2, 0.3, 0.4.  The impact 

of the dominant frequency is shown in Figures 3.22 (a) through 3.22 (c), while Figures 3.22 (d) 

and 3.22 (e) demonstrate the impact of the bandwidth parameter. The convergence history of 

volumes for different parameters in damping ratios and dominant frequencies are shown in Figure 

3.23. From the modal analysis of the original structure with the uniform distribution of the material 

density, 0.5 over the Q4 design domain, the first natural frequency of the six-story building is 

approximately 18.06 rad/s (the natural period T1 = 0.348 s). A decrease in the damping ratio of the 

filter (the bandwidth of the process) increases the optimized volume, as shown in Figure 3.23. In 

order to investigate reasons for these results, the power spectral density function of the input 

ground motion is plotted in Figure 3.24 (a). For the given ground motion model, a decrease in the 

filter damping ratio increases the power spectral density at the natural frequency of the building 

structure, which explains the increase in the volume of the optimization solution. Figure 3.24 (b) 

shows that an increase in the predominant frequency of the filter increases the power spectral 

density at the natural frequency. This shows why an increase in the dominant frequency results in 

larger optimized volume for the given example, as shown in Figure 3.23.  

It is observed that characteristics of the ground motion make significant impacts on the 

topologies such as geometries, intersection points, bracing-column points, and the shape of the 

bracings. Additionally, the match between the frequency content of the ground motion and the 

natural frequency of the structure affects how the ground motion characteristics determine 

topological solutions. Therefore, it is important to describe the frequency content of the ground 

motion accurately during topology optimization under stochastic excitations. 
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Figure 3.22: Topology optimization solutions to the six-story building (Φ0 = 2, βtarget = 2.5): (a) ωf

= 4.7π, ζf = 0.4, (b) ωf = 5.0π, ζf = 0.4, (c) ωf = 5.3π, ζf =0.4, (d) ωf = 5.0π, ζf = 0.2, and (e) ωf =5.0π,
ζf =0.3. 
 

 

Figure 3.23: Convergence history of topology optimization solutions shown in Figure 3.22 (Φ0 =
2, βtarget = 2.5): (a) change in the predominant frequency of the random process, (b) change in the
bandwidth of the random process. 
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Figure 3.24: Power spectral density of ground excitations (Φ0 = 2) while changing (a) damping
ratios and (b) predominant frequencies.  

Figure 3.25: Topology optimization solutions to the six-story building example with the pattern
repetition constraint (Φ0 = 2, ωf = 5.0π, ζf = 0.4): (a) m = 3, βtarget = 2.5, (b) m = 4, βtarget = 2.5, (c)
m = 6, βtarget = 2.5, (d) m = 3, βtarget = 2.0, (e) m = 4, βtarget = 2.0, and (f) m = 6, βtarget = 2.0. 
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Figure 3.26: Convergence history of topology optimization solutions shown in Figure 3.25 (Φ0 =
2, ωf = 5.0π, ζf = 0.4): (a) target reliability index βtarget = 2.5, (b) target reliability index βtarget = 2.0.

The pattern repetition constraint of the aforementioned three story building example is further 

applied to the six story building problem. Figure 3.25 shows topology optimization solutions for 

the number of patterns under two target reliability indices βtarget = 2.5 and βtarget = 2.0. The different 

number of pattern repetition constraints in topology optimization result in various material 

distributions so that those can be implemented into aesthetical facades design with structural 

engineering. The convergence histories of solutions over the iterative procedure of the 

optimization are shown in Figure 3.26. 

3.6. Concluding remarks  

In this chapter, a new topology optimization framework is proposed for structures under stochastic 

excitations. For the linear structure subjected to the Gaussian excitation, the instantaneous failure 

probability regarding stochastic response is obtained from the closed form solution by using the 
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sensitivities of the instantaneous failure probability described by the discrete representation 

method. The proposed stochastic topology optimization method and sensitivity formulations are 

applied to numerical examples for optimizing lateral bracing systems under stochastic ground 

motions. In the first numerical example, effects of varying model parameters and prescribed 

probabilistic values, such as column size, intensities of Gaussian white process, thresholds and 

reliability indices are studied. By investigating the failure probabilities of optimization solutions 

at different time points, it is also shown that the instantaneous failure probability can be a 

reasonable indicator for the entire process if the probability is evaluated after stationarity is 

achieved. In addition, studies on changes in structural responses of topology optimization solutions 

considering the standard density method (with the gray region) and the interpreted discrete 

solutions (i.e. black and white) show that the later (discrete) results in reduced overall response 

with respect to the former, which indicats lower failure probability. Effects of ground motion 

characteristics such as the predominant frequency and the damping ratio of the Kanai-Tajimi filter 

model on final topologies are investigated in the second example. In summary, the proposed 

topology optimization method can provide structural engineers with an efficient and accurate 

method to obtain optimal topologies while satisfying probabilistic constraints defined regarding 

instantaneous failure probability under stochastic input excitations. When the stochastic response 

of a structure is non-Gaussian due to either non-linear system or non-Gaussian input excitations, 

the framework proposed in this chapter is still able to compute the failure probability efficiently 

by utilizing structural reliability methods such as FORM or SORM, instead of using the closed-

form solution described in this work. Furthermore, the proposed method can be extended to system 

reliability problems to incorporate the first-passage probability, multiple checkpoint locations in a 

structure or multiple failure modes into topology optimization under stochastic excitations. That 

extension will require evaluating multiple failure events at discretize time points and locations 

using an efficient structural reliability analysis. Also, a sensitivity analysis needs to be altered for 

the extension based on the proposed sensitivity approach in this chapter.  
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Chapter 4 

Sensitivity of system reliability using sequential 
compounding method 

 
Computation of sensitivities of the ‘system’ failure probability with respect to various parameters 

is essential for reliability based design optimization (RBDO) and uncertainty/risk management of 

a complex engineering system. The system failure event is defined as a logical function of multiple 

component events representing failure modes, locations or time points. Recently, the sequential 

compounding method (SCM) was developed for efficient calculations of the probabilities of large-

size, general system events for a wide range of correlation properties. To facilitate the use of 

gradient-based optimization methods in RBDO and uncertainty/risk management under a 

constraint on the system failure probability, a method, termed as Chun–Song–Paulino (CSP) 

method, is developed in this chapter to compute parameter sensitivities of system failure 

probability using SCM. For a parallel or series system, the derivative of the system failure 

probability with respect to the reliability index is analytically derived at the last step of the 

sequential compounding. For a general system, the sensitivity of the probability of the set 

involving the component of interest and the sensitivity of the system failure probability with 

respect to the super-component representing the set are computed respectively using the CSP 

method and combined by the chain-rule. The CSP method is illustrated by numerical applications 

and successfully tested by examples covering a wide range of system event types, reliability 

indices, the number of components, and correlation properties. The method is also applied to 

compute the sensitivity of the first-passage probability of a building structure under stochastic 

excitations, modeled by use of finite elements. 
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4.1. Introduction 

Sensitivity analysis is an important part of determining impacts of input variables on the function, 

system or performance output. Such an analysis not only provides quantitative measures that help 

identify the relative importance of variables in terms of their impact on the results, but also 

facilitate the use of gradient-based optimizers in efforts to optimize the system. In risk-based 

decision making processes to improve or optimize a system subjected to significant uncertainties, 

it is essential to identify relative contributions of various input random variables in terms of 

parameter sensitivities of the failure probability. To this end, various sensitivity-based importance 

measures have been developed. Such measures quantify the relative importance of random 

variables in terms of the difference in the failure probability caused by the changes in the 

distribution parameters proportional to the standard deviations or those made possible by the fixed 

upgrade cost (Hohenbichler and Rackwitz 1986; Der Kiureghian et al. 2007). 

The recent emergence of research in reliability based design optimization (RBDO) 

(Enevoldsen and Sørensen 1994; Tu et al. 1999; Frangopol and Maute 2005; Tsompanakis et al. 

2008; Nguyen et al. 2010; Nguyen 2010) also demands calculating parameter sensitivity of the 

failure probability. In fact, RBDO aims to find the values of design variables that maximize or 

minimize a given objective function describing the performance of the system while satisfying 

probabilistic constraints. A typical RBDO formulation is 

 target

lower upper

min   ( )

.    ( ; ) ,   1,...,

       

obj

i i c

f

s t P E P i n 

 

d
d

d

d d d

     (4.1) 

where fobj(d) is the objective function of a given design optimization problem, e.g. volume, total 

cost, performance measure, d = {d1,…,dn} is the set of the design variables with the lower bounds 

dlower and the upper bounds dupper (box constraints), and Ei and Pi
target respectively denote the event 

that the i-th constraint is violated, i = 1,…,nc (or the i-th failure event), and the corresponding target 

failure probability. Sensitivity analysis of the probabilistic constraints with respect to design 
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variables is a crucial part of the reliability based design optimization especially when a gradient-

based optimization algorithm needs to be utilized. 

In the aforementioned situations of RBDO, if the failure event is described as a system event 

Esys, i.e. a logical function of multiple component events representing failure modes, locations or 

time points, parameter sensitivities of the system failure probability are needed. Among various 

examples of system failure events (Song and Der Kiureghian 2003; Song and Kang 2009), let us 

consider the first-passage probability of a structure subject to stochastic excitations (Vanmarcke 

1975; Song and Der Kiureghian 2006; Fujimura and Der Kiureghian 2007; Lutes and Sarkani 2003; 

Chun et al. 2013). This is the probability that a stochastic response X(t) exceeds a given threshold 

x0 at least once for a given duration (0, ]nt t . This is commonly utilized to find the probability of 

the failure event described within a time interval. One of the available approaches for formulating 

the first-passage probability consists of defining the problem as a series system problem (Fujimura 

and Der Kiureghian 2007), i.e. 

 0 0 0
1

( ) ( max | ( ) |) ( )
n

n

sys t t i
i

P E P x X t P X t x 


 
    

 
      (4.2) 

where ti is the i-th discretized time point, i = 1,…,n. The first-passage probability defined in 

Equation 4.2 requires an evaluation of component failure probability at each time point and the 

statistical dependence between the failures at different time points. If a probabilistic constraint is 

associated with the first-passage probability in RBDO (Chun et al. 2013), an efficient, reliable and 

robust algorithm is required to compute the system failure probability during the iterative 

procedure. 

In general, the sensitivity of the system failure probability with respect to a parameter θ  is 

obtained by a chain rule, i.e. 

 
1

( ) ( ) β

θ β θ

n
sys sys i

i i

P E P E



  
 

        (4.3) 
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where βi is the reliability index of the i-th component failure event. It is noted that the impact of 

the correlation between component failure events on the partial derivative is assumed to be 

negligible. From Equation 4.3, the partial derivatives of the component reliability index with 

respect to the design variables are available from parameter sensitivities of component reliability 

analysis (Hohenbichler and Rackwitz 1986; Bjerager and Krenk 1989). However, the derivative 

of the system failure probability with respect to the reliability index has not yet been clearly 

addressed in the literature. Several methods have been developed to compute parameter 

sensitivities of the system failure probability. Song and Kang (2009) used the Matrix-based System 

Reliability method (Kang et al. 2008) for computing parameter sensitivities for systems under 

statistical dependence, and later the method was further developed (Kang et al. 2012). In Song and 

Kang (2009) and Kang et al. (2012), the sensitivity of the system failure probability was computed 

with respect to the mean and the standard deviation of the input random variables to facilitate the 

decision-making process and system reliability based design optimization (Nguyen et al. 2010; 

Nguyen et al. 2011). Sensitivity-based importance measures (Hohenbichler and Rackwitz 1986; 

Der Kiureghian et al. 2007) were also computed to quantify the relative importance of the design 

variables. Sues and Cesare (2005) proposed a method of computing parameter sensitivity of the 

system failure probability using the results of component reliability analysis by the first-order 

reliability method and Monte Carlo simulations. Song and Der Kiureghian (2005) utilized the 

linear programing bounds method (Song and Der Kiureghian 2003) in order to compute lower and 

upper bounds of the parameter sensitivities of general system events, even with incomplete 

information on component probabilities and their statistical dependence. Despite these proposed 

methods, computing parameter sensitivities of the system failure probability is still challenging if 

the system has a large number of components and/or the correlation properties of component 

failure events do not allow for achieving conditional independence between components given few 

number of common source random variables (Kang et al. 2012). 
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Therefore, in this chapter, a method of computing parameter sensitivity of the system failure 

probability is proposed using the sequential compounding method (SCM; Kang and Song 2010) 

which was recently developed to compute multivariate normal integrals of general system events 

with a wide range of correlation properties even for those with a large number of component events. 

The proposed method, termed as Chun-Song-Paulino (CSP) method, is illustrated and tested by a 

variety of numerical examples. The CSP method is further demonstrated by application to the first-

passage probability of a structure described by a finite element model subjected to stochastic 

excitations. 

The remainder of the chapter is structured as follows. After a brief summary of the SCM (Kang 

and Song 2010), the SCM-based parameter sensitivity formulations are derived for series, parallel 

and general systems (cut-set system) respectively. Numerical examples then illustrate and test the 

CSP method and demonstrate its application to first-passage problems. Finally, concluding 

remarks and discussions on future research needs are provided. 

4.2. Sequential compounding method 

In the sequential compounding method (SCM; Kang and Song 2010), two component events 

coupled by union or intersection operation in the system event are compound sequentially until a 

single compound event eventually represents the system event. Each compounding procedure 

consists of determining the probability of the new compound event and evaluating the correlation 

coefficient between the new compound event and each of the remaining component events. 

First, when two events are coupled by an intersection operation, the compounding process 

starts by obtaining the reliability index of the compound event and  i j i jE E E  as 

 1 1
and 2 j ,β [ ( )] [ ( β , β ; )]       i j i j i i jP E E      (4.4) 

where βiandj denotes the reliability index of the compound event, Ф(·) is the marginal cumulative 

distribution function (CDF) of the standard normal distribution, Ф2(·) is the joint CDF of the bi-

variate standard normal distribution, and ρi,j is the correlation coefficient between the standard 
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normal random variables representing Ei and Ej, which could be obtained from the inner-product 

of the negative normalized vectors of the design points (Der Kiureghian, 2005). After βiandj is 

obtained, the correlation coefficient between andi jE  and each of the remaining component events 

Ek, k = 1,….,n, k≠i,j, denoted by ( and ), i j k , is computed. The correlation coefficient is determined 

such that the compound event can represent i jE E  accurately in computing the probability of 

 i j kE E E , i.e., 

 3 , , , 2 and ( and ),( β , β , β ; , , ) ( β , β ; )          i j k i j i k j k i j k i j k      (4.5) 

In Equation 4.5, ( and ), i j k  is the only unknown variable, which can be obtained numerically by 

nonlinear programing such as: 

 ( andj),
3 , , , 2 and ( and ),

( and ),

( β , β , β ; , , ) ( β , β ; )min   

   .    1 1


   



      

  
i k

i j k i j i k j k i j k i j k

i j ks t
      (4.6) 

The multi-fold integrals of the joint CDFs in the optimization problem can be performed by 

efficient algorithms such as the one by Genz (2004). To further reduce the computational costs for 

solving Equation 4.5 during the optimization process, Kang and Song (2010) proposed an 

approximate procedure as well, which deals with single-fold integrals only. 

Similarly, components coupled by union operation can be compounded as follows. The 

equivalent reliability index orβi j  is obtained by 

 
1 1

or

1
2 j ,

β [ ( )] [1 ( )]

[ (β ,β ; )]

 



    

  

 i ji j i j

i i j

P E E P E E
      (4.7) 

The equivalent correlation coefficients between the compound event Eiorj and each of the 

remaining component events, Ek, k = 1,…., n, k ≠ i, j, denoted by ( or ), i j k , is determined such that 

the compound event can represent i jE E  accurately in computing the probability of 

( )i j kE E E  .  

The efficiency, accuracy, and applicability to series, parallel and general systems have been 

successfully demonstrated by numerical examples (Kang and Song 2010). The examples cover a 
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wide range of system event types, component probability levels, the number of components, and 

correlation properties. In one of the examples, the parameter sensitivity of a general (cut set) 

system consisting up to 1,000 component events was computed accurately and efficiently using 

the SCM. 

4.3. Parameter sensitivity of system failure probability using SCM 

To allow for efficient and accurate calculations of parameter sensitivities for general large-size 

system events and a wide range of correlation properties, the following sensitivity formulations 

are developed for series, parallel and cut-set system events, respectively. 

4.3.1. Series systems 

First, consider a series system event Eseries consisting of n component events. The failure 

probability of the series system can be formulated as a multinormal integral problem 

  1 2
1

β( ) ( ) φ ( ; )
n

j jseries n n
j

ZP E P E E E P d




    
 

 z R z         (4.8) 

where Zj, j = 1,…., n, is the standard normal random variable representing Ej, R is the correlation 

coefficient matrix of Z = {Z1,…, Zn}, and φn(z;R) is the joint probability density function (PDF) 

of the standard normal random variables with R. For a parameter sensitivity calculation in 

Equation 4.3, the sensitivity of the system failure probability needs to be calculated with respect 

to the reliability index of the k-th event Ek, i.e., 

  ( )
φ ( ; )

β β
series

n
k k

P E
d



 


   z R z       (4.9) 

Numerical analysis schemes are commonly implemented to solve Equation 4.9 because the multi-

fold integral defined in Equation 4.8 and its derivative cannot be computed analytically. However, 

such an approach might require large computational cost or suffer numerical issues. For example, 

the finite difference method requires finding an admissible perturbation for accurate results. 
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For SCM-based calculation of sensitivities of P(Eseries) with respect to k, all components in 

the series system except Ek are first compounded to
kSE , i.e.  

 
k k

S pp S
E E


       (4.10) 

where Sk denotes the index set of the components in the series system except k, i.e. 

{1,2,..., ( 1), ( 1),..., }.kS k k n    The sequential compounding process would be completed by 

compounding Ek and 
kSE , i.e. 

 

 

2 ,

( )

( ) ( ) ( )

( β ) ( β ) ( β , β ; )



  

       





k

k k

k k k

series k S

k S k S

k S k S k S

P E P E E

P E P E P E E       (4.11) 

where ,
kk S is the updated correlation coefficient between the component Ek and the compound 

event 
kSE . From Equation 4.11, the sensitivity of the system failure probability with respect to βk 

is obtained as 

 2 ,( β , β ; )( )
φ( β )

β β

  
   

 
k kk S k Sseries

k
k k

P E
      (4.12) 

The partial derivative of the bivariate normal cumulative distribution in the last term of Equation 

4.12 is then computed as followings: 

 

 

 
 

β β

2 ,2 ,

β

2 ,

2
2 β ,

22
,,

φ ( , ; )( β , β ; )

β β

            φ ( β , ; )

β1 1β            exp exp
12π 22 2π 1









 

 









  


 

  

              

 





k Sk

kk k

Sk

k

Sk k

kk

k Sk S k S

k k

k k S

k k S
k

k Sk S

u v dvdu

v dv

v
dv

      (4.13) 

Changing the variable of the integral to 2
, ,' ( β ) / 1   

k kk k S k Sv v , Equation 4.13 is simplified 

as  

 2 , ,

2
,

( β , β ; ) β β
φ( β )

β 1

 



     
    

   

k k k k

k

k S k S S k k S
k

k k S

      (4.14) 
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Finally, substituting Equation 4.14 into Equation 4.12, the sensitivity of the system failure 

probability is derived as 

 ,

2
,

β β( )
φ( β ) 1

β 1





               

k k

k

S k k Sseries
k

k k S

P E
      (4.15) 

It is noteworthy that the proposed Chun-Song-Paulino (CSP) method allows us to compute the 

parameter sensitivity without additional computational cost other than the simple calculation in 

Equation 4.15 because β
kS and ,

kk S are already available from the sequential compounding 

procedure to obtain P(Eseries). It is also seen from Equation 4.15 that when the k-th component is 

statistically independent of the others, i.e. , 0 
kk S  the sensitivity in Equation 4.15 becomes

φ( β )[1 ( β )]
kk S    . Whether independent or not, the sensitivity is always negative. 

4.3.2. Parallel systems 

Similarly, for SCM-based calculation of sensitivities of the parallel system failure probability 

1
( ) ( )

n

parallel jj
P E P E


  with respect to k, all components in the parallel system except Ek are first 

compounded to 
kPE , i.e.  

 
k k

P pp P
E E


       (4.16) 

where Pk denotes the index set of all components in the parallel system except k, i.e. 

{1,2,..., ( 1), ( 1),..., }.kP k k n    The sequential compounding process would be completed by 

compounding Ek  and 
kPE , i.e. 

   2 ,( ) ( β , β ; )   
k k kparallel k P k P k PP E P E E       (4.17) 

From Equation 4.14, the sensitivity is derived as 

 ,

2
,

β β( )
φ( β )

β 1





       
   

k k

k

P k k Pparallel
k

k k P

P E
      (4.18) 
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When the k-th component is statistically independent of the others, i.e. ,
kk P  = 0, the sensitivity in 

Equation 4.18 becomes φ( β ) ( β )
kk P    . Whether independent or not, the sensitivity is always 

negative. 

4.3.3. General systems 

Let us next consider the probability of a general system event described by the union of cut-sets, 

i.e. 

 
1 1

( )
m

m

n n

cut set C j
m m j C

P E P E P E
  

   
            

         (4.19) 

where Cm  denotes the index set of the components that belong to the m-th cut-set. The SCM-based 

sensitivity of the probability in Equation 4.19 with respect to βk is computed as follows. Suppose 

Ek, the component event of interest for sensitivity calculation, belongs to a cut-set Cl. From the 

chain rule, the sensitivity of the probability of the cut-set system with respect to k is derived as 

 

( )( ) ( )

β ( ) β

β ( )( )

β ( ) β

( )( )1

φ( β ) β β

l

l

l l

l l

l

l l

Ccut set cut set

k C k

C Ccut set

C C k

Ccut set

C C k

P EP E P E

P E

P EP E

P E

P EP E

 





 
 

  

  
   

    


   
  

      (4.20) 

In order to complete the calculation in Equation 4.20, all components in the cut set Cl are first 

compounded to determine the reliability index of the super-component representing the cut-set, i.e. 

β
lC . Next, the sensitivity of ( )

lCP E with respect to βk is computed using the CSP method for 

parallel systems. Then, considering Cl as a component in a series system, the sensitivity of the 

system failure probability with respect to β
lC is computed using the CSP method for series systems. 

These are substituted into Equation 4.20 to compute the sensitivity. A similar procedure can be 

derived for a link-set system event, which is the intersection of unions. 
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4.4. Numerical examples 

The CSP method is first illustrated by small-size numerical examples of series and cut-set systems. 

The method is then tested by series and parallel systems with equal or unequal reliability indices 

and a wide range of correlation coefficients. As an application example, the sensitivity of the first-

passage probability of a structure is computed using the CSP method. For a verification purpose, 

the finite difference method (FDM) employing the SCM and the Monte Carlo Simulation (MCS) 

are also carried out. Unless stated otherwise, the five sensitivity calculations by the MCS use a 

sample size of 108 with perturbation sizes ∆β = 10−3 and 10−4. Then, the resulting sensitivities from 

different perturbation values were averaged for comparison with the results obtained using the 

CSP method and the FDM. 

4.4.1. Illustrative example: a series system with three components 

For the illustration purpose of the proposed method, let us consider the series system event 

consisting of three components, i.e.  

  1 2 3( )sysP E P E E E         (4.21) 

Suppose that the components have unequal reliability indices, i.e. β1 = 2, β2 = 1.5 and β3 = 1. The 

correlation coefficient matrix of the standard normal random variables representing the three 

components is given by 

 

1 0.4 0.2

0.4 1 0.4

0.2 0.4 1

 
   
  

R       (4.22) 

Suppose that the sensitivity of the system failure probability in Equation 4.21 with respect to the 

reliability index β1 is of interest. Following the CSP method, two events E2 and E3 are compounded 

so that equivalent component E2or3 is identified. Note that Ek and 
kSE in Equation 4.11 correspond 

to E1 and E2or3 in this example, respectively. From Equation 4.7, the reliability index β1or2 is 

obtained as 0.8471. The equivalent correlation coefficient between E1 and E2or3 is computed as 
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0.3018 using the aforementioned procedure. The series system event then consists of two events 

E1 and E2or3 with their correlation coefficient 0.3018. Using Equation 4.15, the sensitivity with 

respect to β1 is computed as –0.0324. Sensitivities with respect to the other reliability indices are 

also computed similarly and are summarized in Table 4.1. The results are successfully verified by 

the FDM with a perturbation of ∆βi = 10−8, i = 1, 2, 3 and the MCS as shown in Figure 4.1. Effects 

of varying perturbations from 10−1 to 10−16 in the FDM and the MCS on sensitivity results were 

tabulated in Table 4.2. Both FDM and MCS are sensitive to the perturbation size while it is hard 

to predict an optimal perturbation a priori. It is also noteworthy that the MCS, in particular, could 

provide fairly inaccurate results for small perturbations. 

 

 

 

 

 

Figure 4.1: Series system consisting of 3 components: (a) sensitivities calculated by the CSP
method, the FDM and the MCS, and (b) unequal reliability indices. 
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Table 4.1: CSP Sensitivity of the series system failure probability in Example 4.4.1. 

Component βk β
kS  ,

kk S  ∂P(Esys)/∂βk 

k=1 2.0 0.8471 0.3018 −0.0324 

k=2 1.5 0.9359 0.4299 −0.0811 

k=3 1.0 1.3833 0.3753 −0.2085 
 

 

Table 4.2: Sensitivities computed by the FDM employing the SCM and the Monte Carlo 
Simulations (Example 4.4.1). 

 FDM: ∂P(Esys)/∂βk MCS: ∂P(Esys)/∂βk 

∆βk k=1 k=2 k=3 k=1 k=2 k=3 

1.0×10-1 −0.0293 −0.0744 −0.1973 −0.0293 −0.0744 −0.1974 

1.0×10-2 −0.0324 −0.0807 −0.2076 −0.0324 −0.0807 −0.2076 

1.0×10-3 −0.0327 −0.0813 −0.2087 −0.0330 −0.0814 −0.2083 

1.0×10-4 −0.0327 −0.0814 −0.2088 −0.0335 −0.0785 −0.2105 

1.0×10-5 −0.0327 −0.0814 −0.2088 −0.0323 −0.0784 −0.2161 

1.0×10-6 −0.0327 −0.0814 −0.2088 −0.0310 −0.0800 −0.2140 

1.0×10-7 −0.0327 −0.0814 −0.2088 −0.0200 −0.1100 −0.2200 

1.0×10-8 −0.0327 −0.0814 −0.2088 0.0000 −0.1000 −0.1000 

1.0×10-9 −0.0327 −0.0814 −0.2088 0.0000 0.0000 0.0000 

1.0×10-10 −0.0327 −0.0814 −0.2088 0.0000 0.0000 0.0000 

1.0×10-11 −0.0327 −0.0814 −0.2088 0.0000 0.0000 0.0000 

1.0×10-12 −0.0326 −0.0813 −0.2087 0.0000 0.0000 0.0000 

1.0×10-13 −0.0322 −0.0799 −0.2087 0.0000 0.0000 0.0000 

1.0×10-14 −0.0333 −0.0777 −0.2109 0.0000 0.0000 0.0000 

1.0×10-15 0.1110 −0.1110 −0.2220 0.0000 0.0000 0.0000 

1.0×10-16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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4.4.2. Illustrative example: a cut-set system with six components 

As another illustrative example of the CSP method, consider the following cut-set system problem 

consisting of six components where each cut-set subsystem has three components: 

  
1 2 1 2 3 4 5 6( ) ( )sys C CP E P E E P E E E E E E         (4.23) 

The reliability indices and correlation coefficients are given as  

 

1.0 1 0.24 0.12 0.06 0.03 0

1.0 0.24 1 0.24 0.12 0.06 0.03

2.0 0.12 0.24 1 0.24 0.12 0.06
,         

2.0 0.06 0.12 0.24 1 0.24 0.12

1.5 0.03 0.06 0.12 0.24 1 0.24

1.5    0 0.03 0.06 0.12 0.24 1

   
   
   
   
   
   
   


 

  
   

β R       (4.24) 

Suppose that the sensitivity of the system probability with respect to the reliability index of the 

sixth component E6 is of interest. Because E6 belongs to the second cut-set C2, 
2 6( ) / βCP E  , 

2
( ) / βsys CP E  , and 

2
βC are computed using the CSP methods for parallel systems and series 

systems, and the SCM respectively, and substituted to the chain rule formulation in Equation 4.20. 

Figure 4.2 illustrates the procedure for sensitivity calculation of the cut-set system. First, all 

components except the component E6 of interest in the second cut-set are compounded. Therefore, 

an equivalent component EA is found by compounding the subsystem E4E5 and determining its 

reliability index βA = 2.644. The updated system definition and the correlation coefficient matrix 

are given as follows 

    
1 2 1 2 3 6sys C C AE E E E E E E E         (4.25) 

 

1 0.24 0.12 0.067 0

1 0.24 0.113 0.03

     1 0.226 0.06

.   1 0.204

1

sym

 
 
 
 





 
  

R       (4.26) 
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Figure 4.2: Illustration of the CSP method to compute sensitivity for a cut-set system with six
components: (a) system definition, (b) reliability indices and correlation coefficient matrix, (c)
compound component A, updated correlation coefficient matrix, and sensitivity calculation of the
second cut-set system, and (d) sensitivity calculation of the system probability with respect to the
reliability index of the second cut-set. 

Next, the sensitivity of the second cut-set system failure probability with respect to the reliability 

index of interest, 
2 6( ) / βCP E   is computed as –0.001038 using Equation 4.18. Compounding the 

components in the cut-sets, the reliability indices of super-components ED and EB are obtained as  

B

D

βD=βC1
=2.827

βB=βC2
=3.195

R

дP(Ecut-set)/дβC2
1.0 .1757D

D

B

B

1 2 3

A 6

βA=2.664 β6=1.5
дP(EC2

)/дβ6

1.0 0.0.12 .057.24

.24 .113 .03

.06.226

.204

1

1 2 3 A 6

6

A

3

2

R

C2

1 2 3

4 5 6

β1=1.0 β2=1.0 β3=2.0

β4=2.0 β5=1.5 β6=1.5

1.0 .24

.24

.24

.24

.24

.12

.12

.12

.12

.06

.06

.06

0.0.03

.03

1

2

3

5

6

1 2 3 4 5 6

4

R

C1

C2

1 2 3

4 5 6

Ecut-set

Ecut-set

(d)

(c)

(b)

(a)



 

104 

βD = 2.827 and βB = 3.195, respectively. The updated system definition and its correlation 

coefficient matrix are given as follows: 

 
1 2sys C C D BE E E E E         (4.27) 

 
1 0.1757

0.1757 1






 

R       (4.28) 

Using Equation 4.15, the sensitivity of the system failure probability with respect to the reliability 

index of the super-component representing the second cut-set, 
2

( ) / βsys CP E  , is computed as  

–0.002398. Finally, using Equation 4.20, the sensitivity is calculated as 

 

2

2 26 6

( )( ) ( )1

β φ( β ) β β

1
(0.002398

0.002423
= 0.00

0.0010

10

38

26

)

Csys sys

C C

P EP E P E  
   

   



        (4.29) 

 

 

Figure 4.3: Cut-set system with two cut-sets and six components: (a) sensitivities computed by the
CSP method, the FDM and the MCS, and (b) unequal reliability indices. 
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Table 4.3: CSP Sensitivity of the cut-set system failure probability in Example 4.4.2. 

Component 1
( ) / βC kP E   

2
( ) / βC kP E   ( ) / β 

jsys CP E  1 / φ( β )
jC  ∂P(Esys)/∂βk 

k=1 −0.002701 - 

−0.007317 136.25 

−0.002692 

k=2 −0.002205 - −0.002198 

k=3 −0.004804 - −0.004789 

k=4 - −0.001359 

−0.002398 412.41 

−0.001345 

k=5 - −0.000882 −0.000873 

k=6 - −0.001038 −0.001026 

      

 
 
 
 
 
 

Table 4.4: Finite difference sensitivity and Monte Carlo Simulation sensitivity computation in 
Example 4.4.2. 

 FDM: ∂P(Esys)/∂βk 

∆βk k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

1.0×10-1 −0.002641 −0.002182 −0.004434 −0.001254 −0.000847 −0.000983 

1.0×10-2 −0.002703 −0.002195 −0.004767 −0.001345 −0.000870 −0.001027 

1.0×10-3 −0.002709 −0.002195 −0.004802 −0.001353 −0.000870 −0.001023 

1.0×10-4 −0.002709 −0.002195 −0.004805 −0.001354 −0.000870 −0.001023 

1.0×10-5 −0.002709 −0.002195 −0.004806 −0.001354 −0.000870 −0.001023 

1.0×10-6 −0.002709 −0.002195 −0.004806 −0.001354 −0.000870 −0.001023 

1.0×10-7 −0.002709 −0.002195 −0.004806 −0.001354 −0.000870 −0.001023 

1.0×10-8 −0.002709 −0.002195 −0.004806 −0.001354 −0.000870 −0.001023 

1.0×10-9 −0.002709 −0.002195 −0.004806 −0.001354 −0.000870 −0.001023 

1.0×10-10 −0.002708 −0.002195 −0.004805 −0.001353 −0.000869 −0.001023 

1.0×10-11 −0.002709 −0.002188 −0.004807 −0.001354 −0.000866 −0.001021 

1.0×10-12 −0.002668 −0.002223 −0.004774 −0.001332 −0.000890 −0.001001 

1.0×10-13 −0.002246 −0.002246 −0.004454 −0.001106 0.000000 −0.001106 

1.0×10-14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-16 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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Table 4.4 (cont.): Finite difference sensitivity and Monte Carlo Simulation sensitivity computation 
in Example 4.4.2. 

 MCS: ∂P(Esys)/∂βk 

∆βk k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

1.0×10-1 −0.002641 −0.002175 −0.004450 −0.001257 −0.000846 −0.000980 

1.0×10-2 −0.002706 −0.002180 −0.004719 −0.001327 −0.000885 −0.001014 

1.0×10-3 −0.002708 −0.002276 −0.004724 −0.001356 −0.000916 −0.001034 

1.0×10-4 −0.003120 −0.002220 −0.004520 −0.001220 −0.000960 −0.000860 

1.0×10-5 −0.002720 −0.002120 −0.004680 −0.001390 −0.000830 −0.000880 

1.0×10-6 −0.002000 −0.002000 −0.010000 0.000000 0.000000 0.000000 

1.0×10-7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-13 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.0×10-16 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

       

The sensitivities of the system failure probability with respect to the other components are shown 

in Table 4.3. The results are verified by the FDM with a perturbation of ∆β = 10−8, i = 1,…, 6 and 

MCS. Comparison results are provided in Table 4.3 and are shown in Figure 4.3. Effects of varying 

perturbations from 10−1 to 10−16 in the FDM and the MCS on sensitivity results were tabulated in 

Table 4.4. 
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4.4.3. Test example: series system consisting of 20 components with 
equal reliability indices and equal correlation coefficients 

The CSP method is tested for a series system consisting of 20 components that have equal 

reliability indices, i.e. βi = βconstant, i = 1,…, 20 and equal correlation coefficients ρi,j = 0.3, i ≠ j. As 

shown in Figure 4.4, the results by the CSP method are successfully verified by the FDM with a 

perturbation of ∆β = 10−8 and the MCS. 

  

 

Figure 4.4: Sensitivities of series system with 20 components (equal reliability indices and equal
correlation coefficients) computed by the CSP method, the FDM and the MCS: (a) β = 1, (b) β =
2, and (c) β = 3. 

0 5 10 15 20
-0.04

-0.02

0

P
(E

sy
s )

/


i

 

 

CSP FDM MCS

0 5 10 15 20

-4

-2

0
x 10

-3

P
(E

sy
s )

/


i

0 5 10 15 20
-2

-1

0
x 10

-4

P
(E

sy
s )

/


i

Component number,  i

(a) 

(b) 

(c) 



 

108 

4.4.4. Test example: series system consisting of 20 components with 
unequal reliability indices and equal correlation coefficients 

Suppose that a series system has 20 components having equal correlation coefficients ρi,j = 0.3, i 

≠ j and their reliability indices are given by 

 
1

β 2 ,  1,..., 201
19

i

i
i

    
 

      (4.30) 

Figure 4.5 compares the results by the CSP method with those by the FDM with perturbation of 

∆β = 10−8 and the MCS. It is noted that the system failure probability is most sensitive to β20 

because the 20-th component contributes most to the system failure probability. 

 

  

 

Figure 4.5: Sensitivities of the series system with 20 components (unequal reliability indices and
equal correlation coefficients): (a) comparison between the CSP method, the FDM and the MCS,
and (b) component reliability indices. 
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4.4.5. Test example: series system consisting of 20 components with 
equal reliability indices and unequal correlation coefficients 

Consider a series system problem consisting of 20 components having equal reliability indices and 

unequal correlation coefficients determined by 

 , 1 ,  , 1,..., 20
19




  i j

i j
i j      (4.31) 

The distribution of the correlation coefficients in the matrix is visualized in Figure 4.6. The equal 

reliability indices of the components are used, i.e. βi = 2, i = 1,…, 9. Figure 4.7 compares the 

results of sensitivity calculations by the CSP method, the FDM with a perturbation of ∆β = 10−8 

and the MCS, which show symmetry due to the correlation structure.  

 

 

 

Figure 4.6: Correlation coefficient matrix, , 1 /19,  , 1,..., 20   i j i ji j . 
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4.4.6. Test example: series system consisting of 20 components with 
randomly generated reliability indices and correlation coefficients 

The CSP method is tested for a series system consisting of 20 components with randomly 

generated unequal reliability indices (Table 4.5), and correlation coefficients (Figure 4.8). The 

results by the CSP method are verified by the FDM with varying perturbations of ∆β = 10−3, ∆β = 

10−8, ∆β = 10−10 and MCS. It is noted that sensitivity calculations by the FDM may result in a large 

error or even different signs depending on perturbation values, as shown in Figure 4.9. This is the 

motivation of the development of the development of CSP method, which calculates sensitivity 

efficiently and accurately. 

 
 

 

Figure 4.7: Sensitivities of the series system with 20 components (equal reliability indices β = 2.0
and unequal correlation coefficients in Figure 4.6): comparison between the CSP method, the FDM
and the MCS. 
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Figure 4.8: Randomly generated correlation coefficient matrix, ,i j  in Example 4.4.6 and Example
4.4.7. 
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Figure 4.9: Sensitivities of the series system with 20 components (random reliability indices and
unequal correlation coefficients): comparison between the CSP method, FDM, and MCS: (a) FDM
perturbation, ∆(b) FDM perturbation, ∆(c) FDM perturbation, ∆, and
(d) reliability indices. 
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Table 4.5: Reliability indices in Example 4.4.6.  

Component, i βi Component, i βi 

1 2.28384 11 1.45275 

2 1.59273 12 2.14048 

3 1.72373 13 2.16704 

4 1.49318 14 1.75261 

5 1.57674 15 2.88052 

6 2.43578 16 1.78762 

7 1.81745 17 1.89771 

8 2.01840 18 1.90212 

9 2.02029 19 2.51031 

10 2.10169 20 1.15859 

4.4.7. Test example: parallel system consisting of 20 components with 
randomly generated reliability indices 

A parallel system having 20 components with randomly generated reliability indices is tested. For 

the testing purpose, two correlation coefficient matrices are used: a randomly generated one 

(Figure 4.8), and the equal correlation coefficient (0.5). Figure 4.10 (a) and 4.10 (b) show 

comparison results for randomly generated reliability indices in Figure 4.10 (c). The randomly 

generated reliability indices are listed in Table 4.6. To test the method for cases in which 

components have both positive and negative signs, another set of reliability indexes are randomly 

generated as shown in Figure 4.10 (e) and Table 4.6. Sensitivities are calculated with equal 

correlation coefficients (0.5) as shown in Figure 4.10 (d). The CSP method shows overall good 

agreements. 
  



 

114 

 

 

Figure 4.10: Sensitivities of parallel system with 20 components with random reliability indices:
(a) sensitivities with the correlation coefficient matrix in the test example 4.4.6, (b) sensitivities
with equal correlation coefficients ρi,j = 0.5, (c) randomly generated reliability indices, (d)
sensitivities with equal correlations ρi,j = 0.5, and (e)  randomly generated reliability indices. 
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Table 4.6: Reliability indices in Example 4.4.7. 

Component, i 
Fig. 4.10 (c) Fig. 4.10 (e) 

Component, i 
Fig. 4.10 (c) Fig. 4.10 (e) 

βi βi βi βi 

1 −1.30407 −0.09583 11 −0.73897 −0.51614 

2 −1.75792 −0.27721 12 −2.13813 0.21825 

3 −1.27964 −0.27396 13 −2.11614 0.85414 

4 −1.56172 0.37304 14 −1.07950 −0.23074 

5 −1.99004 −0.48342 15 −1.80698 0.33008 

6 −1.41823 −0.14431 16 −1.75581 0.64524 

7 −1.50297 −0.47295 17 −1.75522 0.48637 

8 −1.70968 0.25786 18 −1.14115 0.64556 

9 −1.45271 −0.43553 19 −1.45254 −0.23998 

10 −1.83899 −0.67939 20 −1.30119 0.41603 

      

4.4.8. Test example: parallel system consisting of 65 components with 
equal reliability indices and unequal correlation coefficients 

To test the CSP method for parallel systems and also for systems with larger number of 

components, consider a parallel system consisting of 65 components having equal reliability 

indices βi = −1.5, i = 1,…, 65. The correlation coefficients are given by  

 , 1 ,  , 1,...,65
64




  i j

i j
i j      (4.32) 

The results in Figure 4.11 show relatively larger difference among the CSP method, the FDM with 

perturbation of ∆ and the MCS (106 samples) than the previous examples. It should be 

noted that the probability of the parallel system keeps decreasing as the compounding continues, 

which may make the parameter sensitivity calculations more sensitive to the numerical errors for 

all three approaches. 
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Figure 4.11: Sensitivities of the parallel system with 65 components (equal reliability indices  =
–1.5 and unequal correlation coefficients): comparison between the CSP method, the FDM and the
MCS. 

4.4.9. Application example: sensitivity of the first-passage probability 

The CSP method is applied to calculate the sensitivity of the first-passage probability. Let us 

consider a building subjected to a stochastic earthquake ground motion as shown in Figure 4.12. 

A discrete representation method (Der Kiureghian, 2000) can be used to model the continuous 

stochastic process by use of a finite number of standard normal random variables. In this example, 

the stochastic process of the ground acceleration, f(t), is modeled as a filtered Gaussian process 

using the discrete representation method as follows: 
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        s v      (4.33) 

where  is the constant power spectral density (PSD) of the underlying white noise that enters the 

filter, t is the time step of the discretization,  v = [v1, v2 …, vn]T
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standard normal random variables, hf (·) denotes the impulse-response function describing the filter, 

ti, 1,...,i n  is the discretized time point, and ( )ts  is the vector of the deterministic functions that 

describe the filter characteristics and the intensity of the input process. The displacement time 

history u(t) of a linear structure subjected to the stochastic excitation f(t) is derived as  

 T

1 10 0

( ) (τ) ( τ) τ ( ) ( τ) τ ( ) ( )
t t n n

s i i s i i
i i

u t f h t d v s h t d v a t t
 

        a v      (4.34) 

where ( )sh t is the unit impulse response function of the structural response of interest and a(t) is 

the vector of the deterministic function describing the filter characteristics, the intensity of the 

input process and the dynamic characteristics of the structure. In this example, the stochastic 

seismic excitation is modeled as a filtered white-noise process using the Kanai-Tajimi filter model 

(Clough and Penzien, 1993). Its unit-impulse response function (Fujimura and Der Kiureghian, 

2007) and the power spectral density (PSD) function are given as 

 
2

2 2

2

(2ζ 1)ω
( ) exp( ζ ω ) sin(ω 1 ζ ) 2ζ ω cos(ω 1 ζ )

1 ζ

f f
f f f f f f f f f

f

h t t t t
        
  

     (4.35) 

 
2 2

02 2 2

1 4ζ (ω / ω )
(ω)

[1 (ω / ω ) ] (2ζ ω / ω )


  

 
f g

g f g

     (4.36) 

where f and ζf are the filter parameters representing the predominant frequency and the bandwidth 

of the process respectively. 

For the dynamic finite element analysis, continuum elements in the building model are 

modeled by standard quadrilateral elements (see Figure 4.12). However, other types of elements 

could also be used – see, for example, reference (Talischi et al. 2012a, b). Frame elements model 

the structural columns represented by two vertical lines. Young’s modulus E = 21,000 MPa and 

density m= 2,400 kg/m3 are used as material properties for both the quadrilateral and frame 

elements. The damping matrix is constructed using a Rayleigh damping model such as 

 0 1  C M K      (4.37) 
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where M, C and K are the mass, damping and stiffness matrices of the structure, respectively. The 

coefficients κ0 = 2.34 and κ1 = 1.18×104 are used for the Rayleigh damping model to achieve 2 % 

damping. Table 4.7 shows the Kanai-Tajimi filter parameters, column size, the time interval of 

interest, time step for the dynamic finite element analysis as well as the threshold value of the 

average drift ratio at each time point.  

 

The component failure event is defined at each time point to describe the event that the average 

of the inter-story drift ratios computed at the marked (red) points in Figure 4.12 exceeds the given 

threshold value, i.e. 

 
T T

0 0
0 0

( ) ( ) ( ( , ) ( , ) )
0

2 2
i Left i Right Left Rightu t u t t t

u u
L

   
          

a ρ a ρ v 
     (4.38) 

 

Figure 4.12: Structure geometry and loading configuration for the first-passage probability
application example. 
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where 0u  is the threshold value of the inter-story drift ratio, ( )i Leftu t and ( )i Rightu t  are respectively 

the displacement at the red points in Figure 4.12 at time t = ti, and L is 15 m, and ρ  is the vector 

of the design variables describing the material density distribution in the continuum elements. As 

explained above, the first-passage probability can be computed by obtaining the probability of the 

series system consisting of the component events described in Equation 4.38 defined at 125 

discrete time points. The reliability index of each component failure event is computed from (u0,ti) 

= u0/||a(ti)|| (Der Kiureghian, 2000). The correlation coefficients are obtained by the inner-product 

of the negative normalized gradient vectors at the so-called design point or most probable point 

(Der Kiureghian 2000, 2004). Figure 4.13 shows the correlation coefficient matrix for the 

component failure events of this example. Figures 4.14 (a) and 4.14 (b) show one of the input 

excitation time histories that could be randomly generated from the Kanai-Tajimi filter model 

described above, and the corresponding time history of the average inter-story drift ratio at red 

points.  
 

 

Figure 4.13: Correlation coefficient matrix between component failure events for the first-passage
probability application example. 
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Figures 4.14 (c) and 4.14 (d) respectively show the reliability indices and the failure 

probabilities at the discretized time points. Figure 4.15 shows the sensitivity of the first-passage 

probability with respect to the reliability indices at the discretized points computed by the CSP 

method. The results are successfully verified by the comparison with the results by the finite 

difference method with perturbation of 5β 10  . The calculated parameter sensitivities are useful 

for design or topology optimization under the constraint on the first-passage probability of a 

structural system (Nguyen 2010; Song and Kiureghian 2006; Bjerager and Krenk 1989). 

 
 

 

Figure 4.14: First-passage probability example: (a) a randomly generated excitation, (b)
corresponding dynamic responses of story drift ratio, (c) reliability index (at each time instance),
and (d) failure probability (at each time instance). 
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4.5. Concluding remarks 

In this chapter, an efficient method to compute the parameter sensitivity of series, parallel and 

general system problems using the sequential compounding method (SCM) is developed. For 

series or parallel systems, the proposed Chun-Song-Paulino (CSP) method obtains the parameter 

sensitivity using the intermediate results of the second last sequential compounding. For general 

systems such as cut-set or link-set problems, the CSP method for series and parallel systems are 

used at the cut-set level or system-level to compute the sensitivity of interest. By means of a wide 

range of numerical examples, the accuracy of the CSP method is successfully demonstrated for 

series, parallel and cut-set systems under various conditions on the component reliability indices 

Table 4.7: One-story building example: parameters used for design domain, probabilistic
constraint, and ground motion model. 

0  f ζf 
Column size Thickness tinterval ∆t 

u0 
m m sec sec 

500 5π 0.4 0.5 × 0.5 0.1 5.0 0.04 0.02 

 

 

 

 

Figure 4.15: Sensitivity of the first-passage probability with respect to the reliability indices at 
discrete time points. 
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and correlation coefficients. The accuracy of the sensitivities calculated for parallel systems seems 

to be more sensitive to numerical errors than other types of system events. The method is 

successfully applied to compute the sensitivities of the first-passage probability of the structure 

subjected to a stochastic ground motion. The CSP method is expected to facilitate efficient use of 

gradient-based optimization algorithms for design or topology optimization under constraints on 

system failure probability including the first-passage probability. When the sensitivity is computed 

with respect to each of the component events, the computational efficiency can be further improved 

in future research by recycling intermediate results of sequential compoundings. It is also noted 

that compounding orders may affect the probability and sensitivity computed by the sequential 

compounding method especially when component events are highly dependent. To address this 

issue, optimal orders of compounding procedures or general ordering schemes need to be explored 

in future research. 
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Chapter 5 

System reliability-based design and topology 
optimization of structures constrained by first-passage 
probability 

For the purpose of reliability assessment of a structure subject to stochastic excitations, the 

probability of the occurrence of at least one failure event over a time interval, i.e. the first-passage 

probability, often needs to be evaluated. In this chapter, a new method is proposed to incorporate 

probabilistic constraints on the first-passage probability into reliability-based optimization of 

structural design or topology. For efficient first-passage probability evaluations repeated during 

the optimization, the failure event is described as a series system event consisting of instantaneous 

failure events defined at discrete time points. The probability of the series system event is 

computed by use of a system reliability analysis method termed as the sequential compounding 

method. The adjoint sensitivity formulation is derived for calculating the parameter sensitivity of 

the first-passage probability to facilitate the use of efficient gradient-based optimization algorithms. 

The proposed method is successfully demonstrated by numerical examples of a space truss and 

building structures subjected to stochastic earthquake ground motions. 

5.1. Introduction 

Finding the optimal design of a structural system is one of the most essential tasks in structural 

engineering as it heavily influences the safety, cost, and performance of the structure. The optimal 

design should achieve major design objectives introduced for reliable operation and safety even 

under stochastic excitations caused by natural hazards such as earthquakes and wind loads. Due to 

inherent randomness in natural disasters, significant uncertainties may exist in the intensity and 
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characteristics of the excitations. Accordingly, the performance of such structural systems needs 

to be assessed probabilistically during the optimization process. 

To deal with uncertainties effectively in structural design/topology optimization, various 

optimization algorithms and frameworks were developed recently. For instance, so-called robust 

design/topology optimization algorithms (Asadpoure et al. 2011; Wang et al. 2011; Jansen et al. 

2015) aim to reduce the sensitivity of the optimal performance of a structure with respect to the 

randomness of interest. By contrast, Reliability-based design/topology optimization (Maute and 

Frangopol 2003; Frangopol and Maute 2005; Tsompanakis et al. 2008; Guest and Igusa 2008; 

Rozvany 2008; Nguyen et al. 2011; Jalalpour et al. 2013) aims to find optimal solutions satisfying 

the probabilistic constraints on the structural performance indicators. So far, these studies have 

been mainly focusing on accounting for uncertainties in static loads representing typical load 

patterns of the structure. Recent studies on structural optimization considering dynamic excitations 

employed few deterministic time histories representing possible future realizations (Salajegheh 

and Heidari 2005; Kaveh et al. 2012), or focused on partial descriptors of the dynamic responses 

such as mode frequencies (Filipov et al. 2016). These approaches have intrinsic limitations because 

(1) a single or few sample time histories do not represent all possible realizations of stochastic 

excitations, and (2) it is impossible to assess the probabilities that the structural design does not 

satisfy the constraints on performances, i.e. failure probabilities using this approach. Therefore, 

the probabilistic prediction of structural responses based on random vibration analysis is needed 

in the process for optimal design 

To overcome this technical challenge, the authors recently proposed a new method for 

topology optimization of structures under stochastic excitations (Chun et al. 2016). In the proposed 

method, random vibration analysis based on the use of the discrete representation method (Der 

Kiureghian 2000) and structural reliability theories (see Der Kiureghian 2005 for a review) are 

integrated within a state-of-the-art topology optimization framework. The authors also developed 

a system reliability-based topology optimization framework under stochastic excitations (Chun et 
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al. 2013) to cope with system failure events consisting of statistical dependent components using 

the matrix-based system reliability method (Song and Kang 2009). The developed method helps 

satisfy probabilistic constraints on a system failure event, which consists of multiple limit-states 

defined in terms of different locations, failure modes or time points as it optimizes a structural 

system. 

In these studies by the authors, the instantaneous failure probabilities of the structure were 

evaluated at discrete time points. However, to promote applications of design/topology 

optimization to engineering design practice, the first-passage probability, i.e. the probability of at 

least one occurrence of the failure over a time interval, needs to be estimated during the 

optimization process. This helps promote the use of the proposed stochastic optimization 

framework for the design of the lateral load-resisting system or sizing structural elements under 

stochastic excitations with a finite duration such as earthquake excitations. To this end, this chapter 

introduces a stochastic design and topology optimization method that can handle probabilistic 

constraints on the first-passage probability, and demonstrate the method using numerical examples. 

5.2. Random vibration analysis using discrete representation method  

In the aforementioned reliability based design optimization framework under stochastic excitations 

(Chun et al. 2013; Chun et al. 2016), the authors proposed to perform random vibration analysis 

by use of the discrete representation method (Der Kiureghian 2000) in order to compute the 

instantaneous failure probability of the stochastic response at discrete time points. In the proposed 

approach, for example, a zero-mean stationary Gaussian input excitation process f(t) is discretized 

as 

 T

1

( ) ( ) ( )
n

i i
i

f t v s t t


  s v  (5.1) 

where s(t) (= [s1(t),…, sn(t)]T) is a vector of deterministic functions that describe the spectral 

characteristics of the process, and v = [v1, v2,…, vn]T is a vector of uncorrelated standard normal 
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random variables. Among a few methods available to develop a discrete representation model in 

Equation 5.1, a popular one for ground excitation modelling is using a filter representing the 

characteristic of soil medium and a random pulse train. For example, if a filtered white noise is 

used, the model in Equation 5.1 is constructed as 
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 (5.2) 

in which W(τ) denotes the white noise process whose power spectral density function is constant, 

i.e. WW() = 0, hf(∙) is the impulse response function of the filter, t = titi-1,  and n denotes the 

number of the time intervals introduced for the given time period (0, t). The details of the derivation 

of Equation 5.2 is available in Chun et al. (2016).  

5.2.1. Response of linear system under stochastic excitations 

The responses of linear systems to stochastic excitation can be determined by the convolution 

integral consisting of their impulse response function and the discretized input process in Equation 

5.1. That is, a response time history u(t) of the linear system subjected to the stochastic excitation 

f(t) is derived as  

 T

1 10 0

( ) (τ) ( τ) τ ( ) ( τ) τ ( ) ( )
t t n n

s i i s i i
i i

u t f h t d v s h t d v a t t
 

        a v  (5.3) 

where hs(t) is the impulse response function of the linear structural system, and a(t) denotes a 

vector of deterministic basis functions 
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t
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Deriving the impulse response function in a finite element setting can be computationally 

challenging or cumbersome. To facilitate the process, the authors proposed novel numerical 

procedures in Chun et al. (2016). 

5.2.2. Instantaneous failure probability of linear system under stochastic 
excitations 

In structural reliability analysis, the probability that the outcome of a random vector X is located 

inside the failure domain Ωf, i.e. the failure probability, is computed by an integral  

 ( )
f

fP f d


  X x x  (5.5) 

where fX(x) is the joint probability density function (PDF) of the random vector X. The failure 

domain is defined by the domain where the limit-state function g(x), e.g. capacity minus demand, 

takes the negative sign. In general, computing the multi-fold integral in Equation 5.5 is non-trivial. 

Structural reliability methods such as FORM, SORM (see Der Kiureghian 2005 for a review) 

transform the space of the random variable x into the uncorrelated standard normal space v. Then, 

the limit-state function is approximated by a linear (FORM) or quadratic function (SORM) at the 

design point or the most probable failure point (MPP). For example, in FORM, the failure 

probability is approximated as    

  βfP     (5.6) 

where β is the reliability index, i.e. the shortest distance from the origin of the standard normal 

space to the linearized failure surface, and  denotes the cumulative distribution function (CDF) 

of the standard normal distribution. 

Using the discrete representation method described above, limit-state functions defined for 

displacement or other structural responses can be described in the space of standard normal random 

variable v. For example, the instantaneous failure event Ef defined for a linear structure subjected 

to the Gaussian process in Equation 5.1 is given by 
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where u0 is the prescribed threshold on the displacement response and. In this case, the reliability 

index is computed from the geometric interpretation of the limit-state surface as a closed form 

expression (Der Kiureghian 2000) 

   0
0β , =

|| ( ) ||k
k

u
t u

ta
 (5.8) 

It is noted that the limit-state function in Equation 5.7 is linear in this case, and thus the failure 

probability by Equation 5.6, i.e. Pf = Ω[–β(tk,u0)] does not introduce errors caused by function 

approximation or require nonlinear optimization to find the design point. If the structure behaves 

nonlinearly or the input process is non-Gaussian, one needs to use reliability methods such as 

FORM or SORM to compute the failure probability approximately. Using this discrete 

representation method, one can reduce the computational cost of the random vibration, which 

should be repetitively performed during the optimization processes to compute the instantaneous 

failure probabilities at each updated set of design variables.  

5.2.3. First-passage probability of linear system under stochastic 
excitations 

The first-passage probability is commonly utilized to find the probability of the failure event 

described within a time interval (Vanmarcke 1975; Song and Der Kiureghian 2006; Fujimura and 

Der Kiureghian 2007). One of the available approaches for formulating the first-passage 

probability Pfp is defining the problem as a series system problem such as: 

 0 0 0
1

( max ( )) { ( ) }
n

n

fp t t k
k

P P u u t P u t u 


 
    

 
  (5.9) 

Using the discrete representation, the first-passage probability of a system with nc limit-state 

functions (defined for different failure modes or locations) is described as 
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where i
sysE  denotes the first-passage failure event regarding the ith constraint, Efi(∙) denotes the 

instantaneous failure event of ith limit-state function at time tk, and n is the total number of 

discretized time points. To compute the first-passage probability in Equation 5.10, it is required to 

evaluate the failure probabilities of the component events at each time point within an interval. 

Moreover, an efficient, reliable and robust algorithm is required to evaluate the system failure 

probability with a proper consideration of statistical dependency between the component events. 

It is also desirable to compute the parameter sensitivity of the system failure probability to enable 

the use of efficient gradient-based optimizers. To address these requirements, the sequential 

compounding method (SCM; Kang and Song 2010) and the Chun-Song-Paulino (CSP; Chun et al. 

2015) are adopted in this study. 

5.3. Optimization of structures subjected to stochastic excitation under 
first-passage probability constraints 

Reliability Based Design Optimization (RBDO) of a structure aims to achieve the optimal design 

under probabilistic constraints on uncertain performance, arising from uncertainties in material 

properties or loads. For example, Component Reliability Based Design Optimization (CRBDO) 

approach seeks to satisfy the probabilistic constraint for each failure mode. The CRBDO problem 

can be formulated as  

   target

lower upper

min   ( )

.      ( ) 0 ,   1,...,
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obj

i f c
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d
d

d

d d d

 (5.11) 

where fobj(d) denotes the objective function of the design,  dlower and dupper are the lower and upper 

bounds of the vector of design variables d, respectively. gi() represents the limit-state function 
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whose negative sign indicates violating a given constraint, nc is the number of the constraints,  

P(gi(d) ≤ 0) is the failure probability of the failure event, and Pf
target is the target failure probability. 

The RBDO problem of a structure under first-passage probability constraints can be formulated 

as a System Reliability Based Design Optimization (SRBDO) problem (Nguyen et al. 2011), i.e. 
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1 1
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 (5.12) 

where M, C, and K represent the global mass, damping and stiffness matrices of the structure, 

respectively, and ü, , u, and f are the acceleration, velocity, displacement and force vectors at 

time t, respectively. A proportional damping model known as ‘Rayleigh damping’ (Clough and 

Penzien 1993) is used throughout this chapter. In this approach, the damping matrix is determined 

as a linear combination of the stiffness and mass matrix, that is C = κ0M + κ1K. The coefficients 

κ0 and κ1 in the Rayleigh damping model can are determined to have a certain modal damping 

factors. For earthquake ground excitations, the force vector in Equation 5.12 is determined by a 

vector of effective earthquake forces, i.e. 

 ( , )= ( ) ( )= ( ) ( )gt u t f t f d M d l M d l  (5.13) 

where l represents the directional distribution of mass with unity resulting from a unit ground 

displacement, and gu is the ground acceleration time history.  

Topology optimization under stochastic excitation under the first-passage probability 

constraints can be formulated as follows: 
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where d denotes the vector of design variables, Ω is a set of finite element indices and ρ  is the 

vector of filtered densities defined as: 

 ρ Pd  (5.15) 

where P represents the filtering matrix whose element is determined by 
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A flowchart for topology optimization of a structure constrained by first-passage probability is 

provided in Appendix B. 

Various engineering constraints can be incorporated into the aforementioned formulations of 

reliability based design optimization and topology optimization under first-passage probability. To 

promote applications of the proposed method to truss and building structures, engineering 

constraints on stress in bar, drift ratio, and inter-story drift ratio are derived below.  

5.3.1. First-passage probability constraints on stress in bar elements 

 

Figure 5.1: Bar geometry. 

Consider a bar e in the truss with local node numbers 1 and 2 denoting the end points of the bar as 

shown in Figure 5.1. A unit vector ne pointing from node 1 to node 2 is defined as 
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The global displacement vectors of the end nodes of bar e are written as 
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The stress σ(t) in a truss element e under stochastic excitations can be computed from the stress-

strain relationship based on Hooke’s law as follows: 
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where De denotes Young’s modulus, Le is the length of the element e, ul
e1(t) and ul

e2(t) are end 

displacements along the truss axis, and 

 T T[  ]e e e B n n  (5.20) 

The elongation in Equation 5.19 can be described by using the discrete representation form in 

Equation 5.3, i.e. 
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The instantaneous failure probability at time tk is expressed in terms of stress in the truss element 

e as 
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where σ0e denotes the threshold value of stress. From the geometric representation associated with 

the failure event of element e, the reliability index at time tk is computed as 
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The first-passage probability of the stress limit state function is then computed as  
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where Φn denotes the multivariate normal CDF,  ρi,j represents the correlation coefficient between 

the failure event i and j, and β and R are the vector of the reliability indices and the correlation 

coefficient matrix, respectively. The correlation coefficient matrix R is constructed as 
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where α(ti) = a(ti)/||a(ti)|| denotes the negative normalized gradient vector of the limit-state function 

evaluated at the design point which is obtained by u0a(ti)/||a(ti)||2. 

5.3.2. First-passage probability constraint on drift ratio 

The drift ratio of a structure is defined as the ratio of the drift ∆ to the height H of the structure. 

The instantaneous failure probability given in terms of the drift ratio at time tk is  
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where u0∆ denotes the threshold value of the drift ratio. The shortest distance from the origin in the 

standard normal space to the limit state function at time tk can be obtained from the geometric 

representation as  
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Moreover, the first-passage probability in terms of the drift ratio then can be expressed as  
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5.3.3. First-passage probability constraint on inter-story drift ratio 

In addition, the first-passage probability can be computed in terms of the inter-story drift ratio, 

which is one of the significant design criteria in structural engineering, defined as 

 

 

T

T T
1

( , )
for 2

( , )

( , ) ( , ) for 3, 4,...,

i

ii

i
i i s

i

t
i

Ht

H
t t i n

H


  

  


a d v

d

v
a d a d

 (5.29) 

where ∆i denotes the story drift at floor level I and Hi represents the story height below level i, and 

ns is the number of story levels. The instantaneous failure probability in terms of the inter story-

drift ratios is 
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where u0∆i denotes a threshold value of the inter-story drift ratio and β∆i represents the reliability 

index which can be computed as 
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Finally, the first-passage probability is 
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5.4. Calculating sensitivity of first-passage probability 

To use efficient gradient-based optimization algorithms for RBDO, it is essential to calculate the 

sensitivity of the failure probability with respect to various design parameters. In this chapter, a 

sensitivity formulation employing the adjoint method (Choi and Kim 2005) is derived for linear 

structures subjected to stochastic excitations modeled by the discrete representation method. It is 

noted that the sensitivity of the system failure probability with respect to a parameter θ is obtained 

by a chain rule, i.e. 
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n
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Recently, Chun et al. (2015) proposed the CSP method to compute the derivatives of the system 

failure probability with respect to the reliability index by using the SCM. The CSP method 

computes sensitivities of parallel and series systems, as well as general systems with respect to 

reliability indices efficiently and accurately. 
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5.4.1. Sensitivity of first-passage probability in RBDO 

To facilitate the use of a gradient-based optimizer in RBDO under probabilistic constraints on first- 

passage probability, the sensitivity of the first-passage probability in RBDO is computed using the 

chain rule, i.e. 
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where cj=∂(−Φ[β,R])/∂βj can be computed using Equation 4.12. The partial derivative ∂βj/∂di is 

obtained by 

 
1

3/2

2

1

( , )
( , )

β ( )

( , )

j
k j

cst k j
k ij

j
i

k j
k

a t
C a t

d

d
a t





  
       

  
 
 





d
d

d

d

 (5.35) 

where Ccst is the coefficient determined depending on the constraint used in optimization, e.g. 
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When a uniform time step size is used, i.e. 1 ,   1,2,....,i it t t i n      and 0nt t , Equation 5.35 

can be rewritten from Equation 3.11 as follows (see more details of the derivation in Appendix A):  
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Furthermore, the uniform step size leads to the followings for the parameter sensitivity in Equation 

5.34: 



 

137 

 

1

1
3/2 3/2

2 2

1

1
13/2

2

1

( ) β ( )

( , )
( , ) ...

( , ) ( , )

( , )
( , )

( , )

n
fp sys j

j
ji i

n n n
cst n n

n n
i

k n k n
k n k

n n
n

n
i

k n
k

cst l n l

P E
c

d d

c a tc
C a t

d
a t a t

c a t
a t

d
a t

C a



 



 

  
    

                      
        

 



 



d

d
d

d d

d
d

d



1
1

1 1

( , ) ( , )
( , ) ( , )

n n
n l n s n

n s n
l si i

a t a t
t t

d d
 

 

     
          

 d d
d d

  (5.38) 

where 
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5.4.2. Adjoint variable method 

The sensitivity in Equation 5.38 includes the implicitly defined derivative term of ∂as(tn,d)/∂di, s 

= 1,…, n.  Those implicit derivatives can be computed using the direct differentiation method 

(DDM), the finite difference method (FDM) and the adjoint variable method (AJM) (Choi and 

Kim 2005). Chun et al. (2016) derived an approach of sensitivity calculations associated with 

∂as(tn,d)/∂di using the adjoint variable method. The numerical tests confirmed superior 

performance of AJM compared to DDM and FDM. Based on the AJM derivation, the sensitivity 

of the first-passage probability in Equation 5.38 is rewritten as 
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where 1 n jλ  denotes the adjoint variable vector. ( ),A d ( ),B d and ( )E d  represent followings 

respectively: 
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5.4.3. Sensitivity analysis of first-passage probability in RBTO 

Sensitivity analysis of first-passage probability in stochastic topology optimization is similar to the 

derivation for RBDO described above. The main difference of sensitivity analysis in topology 

optimization comes from the projection method to obtain the filtered density as shown below. 
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where PT is the transpose of the filtering matrix in Equation 5.16. Thus,   
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where the partial derivative of βj(∙) with respect to an element density can be computed as 

explained in Sections 5.4.1 and 5.4.2. 
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5.4.4. Verification of calculated sensitivity 

The adjoint sensitivity method derived for the first-passage probability constraints is tested through 

comparison with the finite difference method to verify accuracy and efficiency. Sensitivity analysis 

is performed for the 2-Bar truss example in Figure 5.2 in which the constraint is given on the first- 

passage probability of a stress limit and a drift ratio limit.  

 

Figure 5.2: 2-Bar truss example used for testing the adjoint sensitivity formulation. 

The stochastic seismic acceleration f(t) is modeled as a filtered white-noise process using the 

Kanai-Tajimi filter model with the intensity Φ0 (Clough and Penzien 1993; Fujimura and Der 

Kiureghian 2007). The unit-impulse response function of the filter and the effective force vector 

caused by the earthquake excitation are determined as follows, respectively: 
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Table 5.1 summarizes the Kanai-Tajimi filter parameters of dominant frequency ωf and bandwidth 

ζf, time interval of interest, and the threshold value of the drift ratio and stress at each time point. 

The cross sectional area of each bar is 0.2 m2. Young’s modulus E = 20,000 MPa and mass density 

ρm= 2,400 kg/m3 are used as material properties. The sensitivity values calculated by the derived 

adjoint method shows a good agreement with those by the FDM as shown in Tables 5.2 and 5.3.  

In addition, the adjoint sensitivity method is tested for the topology optimization problem in 

Figure 5.3 (a). The sensitivities of the first-passage probability with respect to the design variables 

located at the three points A, B and C in Figure 5.3 (a) are computed by the proposed adjoint 

method and the FDM, respectively. The structural columns represented by two vertical lines in 

Figure 5.3 (a) are modeled by frame elements. Young’s modulus E = 21,000 MPa and mass density 

m= 2,400 kg/m3 are used as material properties for both the quadrilateral and frame elements. 

The instantaneous failure event at a discretized time point is considered in terms of an averaged 

drift ratio evaluated at two nodes of interest. Thus, the first-passage event is defined as 
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Table 5.1: Two-bar truss example (Figure 5.2): filtering parameters for ground excitations and
threshold values of probabilistic constraints. 

Φ0 ωf  ζ f  t (sec) ∆t (sec) 0 e  0u  

100 5π 0.4 5 0.1 20 MPa 1/400 
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Table 5.2: Sensitivity comparison of first-passage probability on a stress constraint in 2-bar truss. 

FDM AJM 

∆d ∂Pf/∂d1 ∂Pf/∂d2 ∂Pf/∂d1 ∂Pf/∂d2 

1×101 8.00×106 3.50×105 

1.05×104 1.40×105 

1×102 5.80×105 1.60×105 

1×103 9.90×105 1.40×105 

1×104 1.06×104 1.40×105 

1×105 1.06×104 1.40×105 

1×106 1.06×104 1.40×105 

1×107 1.06×104 1.40×105 

1×108 1.06×104 1.40×105 

1×109 1.05×104 1.40×105 

1×1010 1.04×104 1.80×105 

1×1011 5.60×105 1.10×105 

1×1012 0.00 0.00 

Table 5.3: Sensitivity comparison of first-passage probability on a displacement constraint in 2-
bar truss. 

FDM AJM 

∆d ∂Pf/∂d1 ∂Pf/∂d2 ∂Pf/∂d1 ∂Pf/∂d2 

1×101 1.40×108 1.40×108 

1.06×107 1.27×107 

1×102 7.30×108 8.30×108 

1×103 1.03×107 1.23×107 

1×104 1.06×107 1.28×107 

1×105 1.07×107 1.29×107 

1×106 1.07×107 1.29×107 

1×107 1.05×107 1.30×107 

1×108 8.90×108 1.00×107 

1×109 0.00 0.00 

1×1010 0.00 0.00 

1×1011 0.00 0.00 

1×1012 0.00 0.00 
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     (a)                    (b)                     (c) 

Figure 5.3: Sensitivity comparison: (a) geometry, loading condition, and locations where
sensitivity are reported (Table 5.4), (b) sensitivities from the adjoint method (AJM), and (c)
sensitivities from the finite difference method (FDM). 

 

Table 5.4: Sensitivity comparison of first-passage probability on a displacement constraint in
topology optimization. 

FDM AJM 

∆d ∂Pf/∂dA ∂Pf/∂dB ∂Pf/∂dC ∂Pf/∂dA ∂Pf/∂dB ∂Pf/∂dC 

1×10-1 -0.000452 -0.000293 -0.000569 

-0.000486 -0.000312 -0.000599 

1×10-2 -0.000483 -0.000310 -0.000596 

1×10-3 -0.000486 -0.000312 -0.000599 

1×10-4 -0.000487 -0.000312 -0.000599 

1×10-5 -0.000487 -0.000312 -0.000599 

1×10-6 -0.000486 -0.000312 -0.000599 

1×10-7 -0.000485 -0.000309 -0.000598 

1×10-8 -0.000479 -0.000301 -0.000619 

1×10-9 -0.000444 -0.000391 -0.000632 

1×10-10 0.000250 0.000289 -0.000012 

1×10-11 -0.000166 -0.001532 -0.004141 

1×10-12 0.050625 0.025424 0.036526 
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Figure 5.4: Computational time comparison for sensitivity analysis by the FDM and the AJM. 

The sensitivities of the first-passage probability constraint in Equation 5.46 are shown in Figure 

5.3 (b) and 5.3 (c), which show a good agreement. The sensitivities by the FDM employing a range 

of perturbations (from 10-1 to 10-12) are tabulated in Table 5.4 for comparison with the results by 

the AJM, and the influence of the perturbation size on the results by the FDM. Figure 5.3 shows 

that sensitivities calculated by the FDM and the AJM match well. The computational costs by the 

two methods are compared in Figure 5.4 while varying the number of elements in the problem. 

The computational costs are normalized by that of the AJM for the 100-element case. It is noted 

that the proposed AJM requires dramatically less computational time than the FDM. It should be 

also noted that AJM does not require determining the perturbation size, for which an optimal 

choice is generally not known a priori. The complex-step derivative approximation (Martins et al. 

2003) can alternatively be considered to avoid the loss of precision inherent in the FDM.  
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5.5. Numerical applications 

5.5.1. Two dimensional bracing optimization 

The proposed method is applied to identify optimal member sizes of a lateral bracing system 

subjected to a stochastic earthquake ground motion (See Figure 5.5). The formulation in Equation 

5.12 is used with dlower = 0.02 m2, while the volume of the design domain is considered as the 

objective function. Three types of probabilistic constraints associated with the first-passage 

probability (Case I - compressive stress and Case II – maximum (tip) drift ratio (at node 13 and 

14) and story drift ratios) are considered in optimization respectively. The stochastic seismic 

excitation f(t) is modeled as a filtered white-noise process using the Kanai-Tajimi filter model with 

the intensity Φ0. The lateral bracing system shown in Figure 5.5 is modeled with truss elements.  

 

 

                     (a)                     (b)              (c) 

Figure 5.5: (a) Rendering of a bracing system (image courtesy of Skidmore, Owings & Merrill,
LLP), (b) design geometry, boundary and loading conditions, and (c) element numbering. 
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Young’s modulus E = 21,000 MPa and density m = 2,400 kg/m3 are used as material properties. 

The damping matrix is constructed using the Rayleigh damping model. Table 5.5 summarizes the 

parameter values used for the optimization. An additional mass at each node is applied to represent 

a non-structural mass such as a cladding, and static vertical forces are applied as shown in Figure 

5.5 (b). The structural optimization is performed with the method of moving asymptotes (MMA; 

Svanberg 1987) for three different target reliability indices. 

 

5.5.1.1. Case I: Stress constraint 

A probabilistic constraint on the first-passage probability is employed for the stress time history 

of each element. Figure 5.6 shows the sizes of the truss elements after optimization based on three 

different target first-passage failure probabilities. Because the axial forces in vertical members at 

the lowest level are greater than others during the ground excitation, the sizes of element 3 and 4 

are largest. The convergence history of the objective function and the first-passage probability of 

selected elements over iterations are plotted in Figure 5.7. The proposed method facilitates finding 

optimal member sizes satisfying target failure probabilities under random ground motions during 

the preliminary design stage. To investigate the performance of the optimized system, the stress 

time histories of the optimized structure under a randomly generated earthquake ground motion 

are compared with time histories with those of the initial structure (Figure 5.8). The amplitudes of 

the stress time histories are reduced such that the likelihood of exceeding the threshold values 

Table 5.5: Parameters for a filter of ground motion model and constraints in optimization (2D
bracing optimization example). 

Case Φ0 ωf ζf t (sec) 
∆t 

(sec) 

Initial cross 
section areas 

(m2) 
Threshold value 

I 0.2 5π 0.4 6.0 0.10 0.5 σ0e = 35 MPa 

II 1 5π 0.4 6.0 0.06 0.3 u0Δ = 1/50 

III 1 5π 0.4 6.0 0.06 0.3 u0Δi = 1/50, i=1,2,3,4 
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(dashed line) is below the target probability. In particular, a dramatic reduction of gap between the 

maximum and the minimum stress is observed at element 3. It is also noteworthy that, after 

optimization, stress time histories in bars are more uniform compared to the various stress levels 

observed in the initial structure. 
 

 

Figure 5.6: Optimal truss member sizes under constraints on first-passage probabilities of stress
time histories: (a) βtarget = 1.5 (Pf

target = 0.0668), (b) βtarget = 2.0 (Pf
target = 0.0228), and (c) βtarget =

2.5 (Pf
target = 0.0062). 

GROUND

EL: 0 m

LEVEL 2
EL: 9 m

LEVEL 3

EL: 18 m

LEVEL 4

EL: 27 m

LEVEL 5

EL: 36 m

Volume = 19.68 m3 Volume = 22.82 m3 Volume = 26.28 m3

0.128 0.128
0.328 0.328

0.076 0.076

0.112 0.112

0.199 0.199

0.067 0.067

0.087 0.087

0.090 0.090

0.048 0.048

0.052 0.052

0.020 0.020

0.022 0.022

0.152 0.152
0.380 0.380

0.091 0.091

0.131 0.131

0.229 0.229

0.079 0.079

0.101 0.101

0.103 0.103

0.056 0.056

0.060 0.060

0.020 0.020

0.025 0.025

0.178 0.178
0.438 0.438

0.106 0.106

0.152 0.152

0.262 0.262

0.092 0.092

0.117 0.117

0.116 0.116

0.064 0.064

0.068 0.068

0.022 0.022

0.029 0.029

(a) (b) (c)



 

147 

 

Figure 5.7: Convergence histories of (a) the volume, and (b) first-passage probabilities of element
#3, #9 and #13 with βtarget = 2.5 (Pf

target = 0.0062). 
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Figure 5.8: Investigation of dynamic performances of optimized systems: (a) randomly generated
input ground acceleration used for the test. Comparison between dynamic responses (stresses) of
the initial system and the optimized system (βtarget = 2.5 (Pf

target = 0.0062)): (b) element #3, (c)
element #9, and (d) element #13. 

  

A
cc

el
er

at
io

n,
 g

-2

0

2

σ_
E

L
#3

(t
), 

M
P

a
σ_

E
L

#9
(t

), 
M

P
a

σ_
E

L
#1

3(
t)
, M

P
a

-50

0

50

-50

0

50

Time, s

-50

0

50

σ
0e

=35 MPa Initial structure Optimized structure

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

(a) 

(b) 

(c) 

(d) 



 

149 

5.5.1.2. Case II: Maximum (tip) drift ratio constraint 

A maximum tip drift ratio which is evaluated at node 13 and 14 is utilized for computing first-

passage failure probability. Optimization results shown in Figure 5.9 indicate that the increase in 

ratios of vertical members is significant especially for the bottom level as the target failure 

probability is reduced, which is related to the decrease of the tip drift ratio. Furthermore, varying 

target failure probability leads to significant changes in the size ratio of a vertical element to a 

bracing element, which indicates that the target reliability level affects relative contributions from 

vertical elements and bracings in the optimal structural system. The convergence time histories of 

the objective function (volume) and the first-passage probabilities in Figure 5.10 show that the 

proposed method can achieve target failure probabilities while minimizing volumes. The structural 

optimization reduces dynamic drift ratios (Figure 5.11) although the volume has been significantly 

reduced (Figure 5.10). 
 

 

Figure 5.9: Optimal truss member sizes under first-passage probability for tip drift ratio constraint:
(a) βtarget = 1.5 (Pf

target = 0.0668), (b) βtarget = 2.5 (Pf
target = 0.0062), and (c) βtarget = 3.5 (Pf

target =
0.00023). 
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Figure 5.10: Convergence history: (a) volume, and (b) first-passage probabilities of tip drift ratio
with βtarget = 1.5 (Pf

target = 0.0668), βtarget = 2.5 (Pf
target = 0.0062), and βtarget = 3.5 (Pf

target = 0.00023).

Figure 5.11: Investigation of dynamic performances of optimized systems: (a) randomly generated
input ground acceleration used for the test, and comparison between dynamic responses (tip drift
ratios) of the initial and the optimized systems for (b) βtarget = 1.5 (Pf

target = 0.0668), (c) βtarget = 2.5
(Pf

target = 0.0062), and (d) βtarget = 3.5 (Pf
target = 0.00023).  
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5.5.1.3. Case III: Inter-story drift ratio constraints 

This case considers the inter-story drift ratio for each floor in calculating the first-passage 

probability. Optimal member sizes for three different target failure probabilities are shown in 

Figure 5.12. First-passage failure probabilities of inter-story drift ratios (∆i/Hi, i = 2,…,5) in the 

initial structure are 3.1×10-8, 0.15, 0.61, and 0.68, respectively. After optimization, the first-

passage probabilities are converged to the target failure probabilities as shown in Figure 5.13, 

except for the bottom level which is excluded due to the low likelihood of such failure at the bottom 

level (which is, of course, a feasible solution). Vertical elements at lower levels are still important 

because they make significant contributions to the control of inter-story drift ratios as shown in 

Figure 5.12. Compared to the results from Case II, bracings in the case have less impact on 

controlling dynamic behaviors. Finally, Figure 5.14 shows the significant reduction of inter-story 

drift ratios in the optimized structure compared to that of the initial structure. 
 

 

Figure 5.12: Optimal truss member sizes under first-passage probabilities for inter-story drift ratio
constraints: (a) βtarget = 1.5 (Pf

target = 0.0668), (b) βtarget = 2.5 ( Pf
target = 0.0062), and (c) βtarget = 3.5

(Pf
target = 0.00023). 
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Figure 5.13: Convergence history: (a) volume, and first-passage probabilities of floors with (b)
βtarget = 1.5 (Pf

target = 0.0668), (c) βtarget = 2.5 (Pf
target = 0.0062), and (d) βtarget = 3.5 (Pf

target =
0.00023). 
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Figure 5.14: Investigation of dynamic performances of optimized systems: (a) randomly generated
input ground acceleration used for the test and (b)-(d) comparison between dynamic responses
(inter-story drift ratios) of the initial and the optimized system (βtarget = 3.5 (Pf

target = 0.00023)). 
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5.5.2. Space truss dome optimization 

In this example, the weight of an asymmetric space truss dome composed of 104 elements (Figure 

5.15) is minimized under constraints on the first-passage probability of the drift ratios evaluated 

at the node of interest, the highest elevation. The basic grid of the structure, plan view and section 

views are provided in Figure 5.16. Figure 5.17 shows the element numbering choices of the space 

truss dome. At each node of the structure, additional masses (10,000 kg) representing non-

structural masses such as claddings are equally applied. Young’s modulus E = 210 GPa and mass 

density ρm = 7,850 kg are used as material properties for each truss element. The ground 

acceleration is generated by using the Kanai-Tajimi filter. The filter and optimization parameters 

are presented in Table 5.6. The probabilistic constraint is defined in terms of the tip drift ratio 

evaluated at the top (z = 15 m). For a loading scenario, two direction components of earthquake 

ground excitations at angles (θg1, θg2) shown in Figure 5.16 (b) are considered simultaneously and 

applied to the structure. The target failure probability and a lower bound of design variables are 

set to Pf
target = 0.0013 (βf

target = −Φ[Pf
target ]-1 = 3.0) and 0.02 m2. The optimization formulation 

considering multiple ground accelerations with constraints on drift ratios in both x- and y-

directions is developed as 

 

 

Figure 5.15: A space truss dome example. 
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(a) (b) 

  

(c) (d) 

Figure 5.16: Geometry of a space truss dome: (a) basic grid, (b) plan view and directions of applied
ground accelerations, (c) section view along grid line 1-5, and (d) section view along grid line 3-
7.  
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Table 5.6: Parameters for filters of ground motion models and constraints in optimization (space
truss dome optimization example). 

Φ0_g1 Φ0_g2 ωf ζf t (sec) ∆t (sec) 
Initial cross 
section areas 

(m2) 

Threshold 
value 

4.0 3.0 5π 0.4 6.0 0.06 0.25 
u0Δx = 1/800 
u0Δy = 1/800 
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Figure 5.17: Element numbering choices of the space truss dome: (a) top view, (b) section views. 
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Figure 5.18 shows that the space truss domes optimized with fixed θg1
 while varying θg2 to three 

different angles. Optimal results from the case of the applied ground acceleration with θg1 = 0°, θg2 

= 90° show that the cross- sectional areas of bracings and vertical elements, especially at a lower 

level, are increased in order to reduce displacements in both x- and y-directions and failure 

probabilities. In addition, by getting the angle θg2 closer to θg1, the optimal volume is getting higher. 

By changing θg2 from 90° to 60° (or 30°), the increase in the failure probability in the x-direction 

is much higher than the decrease in the failure probability in the y-direction. The optimized area 

of each element are plotted in Figure 5.19. As expected, truss members, which are closely aligned 

to the applied ground accelerations are enlarged especially for lower levels. Thus, truss members 

are sized more symmetrically in both x- and y- directions for ground accelerations with θg1 = 0°, 

θg2 = 90° compared to θg2 = 30° or θg2 = 60°. Figure 5.20 shows convergence histories of the 

volume and the first-passage probability. The proposed method enables achieving the target failure 

probability with reduced volumes. The comparison of dynamic responses of the initial structure 

and the optimized structure are shown in Figure 5.21 under randomly generated samples of ground 

excitations with the filter parameters reported in Table 5.6. Overall reductions in the drift ratio in 

the optimized structure are observed, which naturally reduces the likelihood of exceedance of the 

threshold value during the excitation.  
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Figure 5.18: Optimized space truss dome corresponding to different angles of ground
accelerations: (a) θg1 = 0°, θg2 = 30°, (b) θg1 = 0°, θg2 = 60°, (c) θg1 = 0°, θg2 = 90°. (Color legends:
Ai = Amin in green, 0.02 m2 < Ai ≤ 0.2 m2 in blue, 0.2 m2 < Ai ≤ 0.4 m2 in brown, 0.4 m2 < A in red).
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Figure 5.19: Optimized cross sectional areas of truss elements corresponding to the ground
accelerations applied at different angles. 
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Figure 5.20: Convergence history: (a) volume, and (b) first-passage probability. 
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Figure 5.21: Comparison between dynamic responses by the initial structure and the optimized
structures: (a) randomly generated ground accelerations (θg1 = 0°, θg2 = 30°), (b) drift ratio in the
x-direction, and (c) drift ratio in the y-direction. 
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5.5.3. Optimization of a bracing system using topology optimization 

The previous numerical application of the bracing system is considered as size optimization for a 

given structural layout. By contrast, topology optimization can identify the optimal bracing layout 

of a structure. To demonstrate this optimization under first-passage probability constraints, the 

proposed method is applied to the design domain under earthquake excitations as shown in Figure 

5.22 (a). During the optimization for minimizing volume, the first-passage failures are defined in 

terms of inter-story drift ratios at each level and a tip drift ratio at the building height (see Figures 

5.22 (b) and 5.22 (c)). The structural columns represented by two vertical lines shown in Figure 

5.22 (a) are modeled by frame elements whose densities remain unchanged throughout the 

optimization process. Young’s modulus E = 21,000 MPa and mass density ρm = 2,400 kg/m3 are 

used as material properties for both the quadrilateral and frame elements. The additional mass of 

4,000 kg is considered at each floor level as shown in Figure 5.22 (a). The damping matrix is 

constructed using a Rayleigh damping model with a 2 % damping ratio. Table 5.7 summarizes the  
 

 
                                              (a)         (b) (c) 

Figure 5.22: (a) Design domain and loading condition, (b) node of interest for a tip drift ratio
constraint, and (c) nodes of interest for inter-story drift ratios. 
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Figure 5.23: Topology optimization results from the four-story building example constrained by
the first-passage probability in term of the tip drift ratio constraint: (a) βtarget = 1.5, Pf

target = 6.68 %,
(b) βtarget = 2.5, Pf

target = 0.62 %, and (c) βtarget = 3.0, Pf
target = 0.13 %, 

 

 

Figure 5.24: Topology optimization results from the four-story building example constrained by
the first-passage probabilities in terms of inter-story drift ratio: (a) βtarget = 1.5, Pf

target = 6.68 %, (b)
βtarget = 2.5, Pf

target = 0.62 %, and (c) βtarget = 3.0, Pf
target = 0.13 %. 
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Figure 5.25: Topology optimization results from the four-story building example constrained by
instantaneous failure probability in terms of inter-story drift ratio constraints: (a) βtarget = 1.5, Pf

target

= 6.68 %, (b) βtarget = 2.5, Pf
target = 0.62 %, and (c) βtarget = 3.0, Pf

target = 0.13 %. 
 

Table 5.7: Parameters for ground motion filter model and constraints of topology optimization
(topology optimization example). 

Φ0 ωf ζf t (sec) ∆t (sec) Init. density Colum size Thres. value 

7.5 5π 0.4 6.0 0.06 0.7 0.6 m × 0.6 m u0Δ = 1/50 

 

Kanai-Tajimi filter parameters of dominant frequency f and bandwidth ζf, column size, time 

interval of interest, and the threshold value u0 of the average drift ratio at each time point.  The 

filtering radius r is 0.25 m, and a prescribed density 0.7 is applied uniformly throughout the mesh. 

Topology optimization results are shown from different target failure probabilities of the inter-

story drift ratios, and the tip-drift ratio constraints are shown in Figures 5.23-5.24. For the tip drift 

ratio constraint, the increase in the thicknesses in lower levels and additional branches of material 

distributions are observed as the target failure probabilities decreases, whereas bracing points and 

topologies remain relatively the same for all three cases under the tip drift ratio constraint in Figure 

5.23. On the other hand, Figure 5.24 shows that connections of topologies to each floor level can 

LEVEL 5
EL: 20 m

LEVEL 2
EL: 5m

LEVEL 3
EL: 10 m

LEVEL 4
EL: 15 m

GROUND
EL: 0 m

Volume = 1.713 m3 Volume = 2.461 m3 Volume = 2.954 m3

(a) (b) (c) 



 

164 

be checked for inter-story drift ratio constraints except the lowest level. As the target failure 

probability is reduced, the second lowest intersection point of bracing and column also decreases 

in elevation, such that in case Figure 5.24 (c), the intersection point is on the second level. 

Intersection points of bracings for upper two levels in both constrained optimization problems are 

at the midpoint of two floors so that X shapes of bracings with 90° are observed. At lower levels, 

the bracing intersection points become higher. In addition, there is a significant increase in material 

distribution in lower levels for the tip displacement constraint, whereas overall thicknesses of 

bracings throughout the building height are increased for the inter-story drift ratio constraint. Thus, 

optimization results show that reinforcing lower regions will be an efficient approach to control 

the tip displacement whereas adjusting each bracing module will lead to successful designs of 

structures fulfilling inter-story drift ratio criteria.  

The instantaneous failure probability of inter-story drift ratios (Chun et al. 2016) is considered 

as the probabilistic constraint in Equation 5.12 (Figure 5.25) to compare with the results under 

constraints on the first-passage probability (Figure 5.24). Because the initial instantaneous failure 

probabilities (See Figures 5.26 and 5.27) are lower than the first-passage probabilities in the four 

story building, bracings are thinner, and the final volumes are reduced after optimization. Both 

constrained optimization results show that x-shape bracings in upper levels remain the same even 

when the target failure probability decreases. Distinct changes in the shape and the intersection 

point of bracings are observables in the lower floors. Optimal volume ratios for the first-passage 

probability constrained problem with the target failure probabilities, 0.62 % and 0.13 % to one 

with 6.68 % are 3.706/2.885 = 1.28 and 4.271/2.885 = 1.48. The ratios for the problem constrained 

by the instantaneous failure probability are 1.44 and 1.72. Thus, less sensitive changes in the failure 

probability of optimized bracing systems considering the first-passage probability constraint are 

expected under geometric uncertainties which may happen during the construction phase. Figures 

5.26 and 5.27 show the convergence history of the volume and the failure probability over all 
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constraints. Those plot clearly demonstrate the ability of the proposed method in rapidly finding 

optimal material distributions which satisfy constraints. 

 

 

Figure 5.26: Convergence history of the four-story building (first-passage probabilities of inter-
story drift ratio constraints): (a) volume, and (b) first-passage probability of each inter-story drift
ratio. 

0 20 40 60 80 100 120 140 160 180

V
ol

um
e,

 m
3

0

2

4

6

8

0 20 40 60 80 100 120 140 160 180

0

0.02

0.04

0.06
∆

5
/H

5

0 20 40 60 80 100 120 140 160 180

0

0.02

0.04

0.06
∆

4
/H

4

0 20 40 60 80 100 120 140 160 180

0

0.02

0.04

0.06
∆

3
/H

3

Iteration
0 20 40 60 80 100 120 140 160 180

F
ir

st
 p

as
sa

ge
 p

ro
ba

bi
lit

y

0

0.02

0.04

0.06
∆

2
/H

2

P
f
target=0.0668 P

f
target=0.0062 P

f
target=0.0013

0

0 2 4

0.02

0.04

0.06

0

0 2 4

0.02

0.04

0.06

0

0 2 4

0.02

0.04

0.06

0

0 2 4

0.02

0.04

0.06

(a) 

(b) 



 

166 

 

Figure 5.27: Convergence history of the four-story building (instantaneous failure probabilities of
inter-story drift ratio constraints): (a) volume, and (b) failure probability of each inter-story drift
ratio. 

For constructability and aesthetic aspect of architecture, a pattern repetition constraint 

(Almeida et al. 2010; Stromberg 2011) can be implemented in the proposed framework. Therefore, 

the different number of patterns or the size of the primary region in optimization will result in 

various topologies, which can provide diverse options of solutions for the architectural and 

engineering schematic design process.  
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5.6. Concluding remarks 

In this chapter, a new optimization framework is proposed to incorporate the first-passage 

probability into size optimization and topology optimization of structures. Using the discrete 

representation method and theories of structural system reliability, the first-passage probability is 

computed efficiently during the optimization process with a proper consideration of the statistical 

dependence between component failure events.  

Parameter sensitivity formulation of the probabilistic constraint on the first-passage probability 

is also derived based on the adjoint method and sequential compounding method to facilitate the 

usage of efficient optimization algorithms. The developed method is successfully applied to the 

lateral bracing system of structures subjected to stochastic ground motions to identify optimal 

member sizes under engineering constraints associated with structural design criteria such as the 

stress, the displacement as well as the inter-story drift ratio. Through the numerical application of 

the space truss dome subject to simultaneous multiple earthquake ground motions, the proposed 

optimization framework provides reliable structural solutions for various loading scenarios.  

For more practical engineering designs, load combinations in the Load and Resistance Factor 

Design (LRFD) specification can be implemented in optimization. Furthermore, the proposed 

method can further be extended to consider the first-passage probability constraint constructed by 

combining different types of failure events such as different time points and locations as well as 

multiple design criteria. The optimized system can withstand future realization of stochastic 

processes with a desired level of reliability. In addition, numerical examples show that the 

proposed topology optimization framework can provide an efficient way for structural engineers 

to obtain optimal design solutions that satisfy probabilistic constraints on the stochastic response 

in the conceptual and schematic design process.  

The proposed method is based on the assumption of stationary process for the earthquake 

ground motions. The stochastic excitation generated by natural hazards (e.g. earthquakes, 

hurricanes) may be non-stationary and/or non-Gaussian. Thus, future research can be focused on 
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developments of optimization frameworks under non-stationary stochastic processes in time 

domain as well as in frequency domain.  
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Chapter 6 

Reliability-based topology optimization by ground 
structure method employing a discrete filtering 
technique 

This chapter proposes the incorporation of the discrete filtering technique into reliability-based 

topology optimization (RBTO) using the elastic formulation of the ground structure method. Some 

of the solutions identified through the conventional filtering scheme for RBTO violate the 

probabilistic constraints. To ensure that optimized solutions satisfy the probabilistic constraints, a 

different technique, the discrete filtering method is adopted, for RBTO. The discrete filtering 

method proposed by Ramos Jr. and Paulino (2016) allows the optimizer to achieve more physically 

realizable truss designs in which thin bars are eliminated while still satisfying global equilibrium. 

The method uses the potential energy approach with Tikhonov regularization to solve the singular 

system of equations that results from imposing the discrete filter. Combining this method with 

RBTO allows for the transformation of the reliability-based truss sizing optimization problem into 

a topology optimization problem accounting for uncertainties. Furthermore, a single-loop 

approach is adopted to enhance the computational efficiency of the proposed RBTO method. 

Numerical examples of two- and three-dimensional engineering designs are given to demonstrate 

features of the proposed method and to illustrate the influence of the discrete filter and parameter 

uncertainties on the optimization results. In order to verify the target failure probabilities of optimal 

solutions achieved by the proposed approach, the First-Order Reliability Method, and the Monte 

Carlo simulations are performed. 
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6.1. Introduction 

Topology optimization is a mathematical tool which has been utilized to identify optimal solutions 

for various engineering problems. In particular, Topology optimization of continuum structures 

seeks for optimal material layouts and connectivities in a design domain (Bendsøe and Sigmund 

2003). In such continuum-based topology optimization, the design domain is discretized with finite 

elements, each of which is assigned to void or solid material through the iterative optimization 

procedure (see Rozvany (2009), and Deaton and Grandhi (2014) for a state-of-the-art review of 

topology optimization). Particularly in the field of structural engineering, continuum-based 

topology optimization has been applied to design lateral-load resisting systems (Mijar et al. 1998; 

Stromberg et al. 2012; Bobby et al. 2014; Chun et al. 2016). On the other hand, topology 

optimization of discrete structures such as trusses and frames is applied to find optimal 

connectivity of the nodes by the structural elements. This approach commonly implements the 

ground structure method (Bendsøe and Sigmund 2003; Ohsaki 2010), in which the design domain 

is discretized with spatial nodes and highly interconnected by truss or frame elements. Topology 

optimization is performed on the generated ground structure to minimize an objective function 

while satisfying constraints, and the size of elements and connectivities are subsequently 

determined. Zegard and Paulino (2014, 2015) developed both two- and three-dimensional 

implementations of ground structure based topology optimization for trusses using the plastic 

formulation. The developed computer codes, GRAND and GRAND3, include an efficient 

algorithm for ground structure generation using restriction zones that allows for ground structure 

generation on arbitrary domains. Furthermore, topology optimization of truss structures 

considering material non-linear behavior was proposed by Ramos Jr. and Paulino (2015). 

In the last decades, deterministic topology optimization (DTO) has been well developed for 

both the continuum and discrete topology optimization. These methods consider all design 

parameters such as material properties, loadings, and geometry as deterministic quantities during 

the optimization. However, consideration of uncertainties in loads and material properties is an 
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important aspect of structural engineering because they help reduce the risk of unexpected 

structural failures that may eventually result in catastrophic damage and/or loss of life. Therefore, 

optimization processes associated with the treatment of uncertainties should be utilized to obtain 

engineering solutions so that a satisfactory level of reliability can be achieved. This is widely 

referred to as a reliability-based design optimization (RBDO; Frangopol and Maute 2005; 

Tsompanakis et al. 2008) or reliability-based topology optimization (RBTO; Maute and Frangopol 

2003; Guest and Igusa 2008; Rozvany 2008). Nguyen et al. (2010) proposed a system reliability 

based design optimization using the Matrix-based System Reliability (MSR) method which can 

consider statistical dependence and compute parametric sensitivity in an efficient way. This 

approach was further applied to the continuum topology optimization (Nguyen et al. 2011). 

Jalalpour et al. (2013) focused on the reliability-based topology optimization of truss structure to 

address geometric imperfections and uncertainty in the material property.  

The traditional formulations in RBDO and RBTO include two nested loops of iterative 

computations: an optimization loop and a reliability analysis loop. The inner loop for reliability 

analysis is to evaluate probabilistic constraints or objective functions for the design variables 

updated by an outer loop for optimization. The solutions to reliability problems can be obtained 

by use of the first-order reliability method (FORM) or the second-order reliability method (SORM) 

(see Der Kiureghian 2005 for a comprehensive review). To reduce computational cost in RBDO 

and RBTO, a single-loop approach has been developed (Du and Chen 2004; Liang et al. 2004, 

2007, 2008; Shan and Wang 2008; Nguyen et al. 2010). This method replaces the inner-loop of 

the reliability analysis by an approximate non-iterative solution, which eventually tends to 

converge to an accurate reliability estimate as the optimal design is achieved through iterations. 

In topology optimization for truss structures, a lower bound of design variables is set to a very 

small value to avoid an ill-posed condition such as a singular matrix. As a result, the converged 

topology still includes the original connectivity from the generated ground structure. To define the 

final topology, the conventional topology optimization for truss structures implements a filtering 
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procedure at the end of optimization. More specifically, the conventional filtering scheme selects 

bars having areas greater than a small arbitrarily assigned cut-off value of the area, which 

subsequently become the bars defining the final optimized topology. However, the selection 

criteria for the lower bound and the cut-off are often ambiguous (Christensen and Klarbring 2009). 

Thus, the conventional filtering method may produce ill-conditioned solutions, such as a singular 

stiffness matrix, hanging members or many thin bars, which may be undesirable in engineering 

and architecture. The conventional filtering scheme in RBTO is highly likely to cause the final 

structure to violate the probabilistic constraints. Therefore, development of a new topology 

optimization framework for truss structures is needed to obtain reliable designs that satisfy global 

equilibrium and that are not dependent on the cut-off.   

To address the aforementioned issues, a discrete filtering method proposed by Ramos Jr. and 

Paulino (2016) is incorporated into RBDO for truss structures so that more physically realizable 

truss designs, i.e. thin bars are eliminated, while still satisfying global equilibrium. As a result, a 

topology optimization problem accounting for uncertainties can be carried out by the reliability-

based truss sizing optimization problem. The computational efficiency of the proposed method is 

further improved by utilizing a single-loop approach (Liang et al. 2004, 2007, 2008; Nguyen et al. 

2010).  

6.2. Single-loop reliability-based topology optimization formulation 

In this section, mathematical formulations of RBTO are first presented. Then, as a method to 

enhance computational efficiency in RBTO, single-loop RBTO approach is reviewed.  

6.2.1. Reliability-based topology optimization 

A general mathematical formulation of reliability-based topology optimization can be written as 
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where f(·) denotes the objective function, d represents the vector of design variables, and μx is the 

vector of the means of random variables in X. g(·) is the limit-state function whose negative value 

indicates violating the given constraint. X denotes the vector of random variables and Pf [·] is the 

failure probability of the limit-state function. K, u, f are the global stiffness matrix, the global 

displacement vector, and the global force vector, respectively. The probability of the failure event 

defined in terms of g(·) can be computed by integrating the joint probability density function (PDF) 

of X in the failure domain, i.e. 

 ( ) 0

( )f

g

P f d


 
X

x x   (6.2)  

By transforming the random variables to the space of uncorrelated standard normal random 

variables, i.e. U=T(X), the failure probability is given by 

 ( ) 0

φ ( ; )f n

G

P d


 
u

u I u   (6.3)  

where U represents the vector of uncorrelated standard normal variables transformed from X. G(·) 

denotes the limit-state function given in terms of U, φn() is the joint PDF of the n standard normal 

random variables. The correlation coefficient matrix of the joint PDF is given as the identity matrix 

I so that the random variables are uncorrelated. 

In general, RBTO consists of an outer loop for optimization and an inner loop for the reliability 

analysis. The reliability analysis forms a loop because reliability analysis methods such as the 

FORM or SORM (Der Kiureghian 2005) finds the “most probable failure point (MPP)”, U* by 

performing optimization, i.e. 

     * arg min    ( , )=0G
u

U U d U  (6.4) 
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In the FORM, for example, the “reliability index” β, i.e. the shortest distance from the origin to 

the limit-state function linearized at U* in the standard normal space is obtained as 
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β *
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U
U

  (6.5)  

The failure probability in Equation 6.3 is approximately evaluated by use of the reliability index 
β as 

 
 βfP      (6.6)  

where Φ is the cumulative distribution function (CDF) of the standard normal distribution. Thus, 

the RBTO problem can be written using the so-called reliability index approach (RIA) (Enevoldsen 

and Sorensen 1994) as follows: 
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Alternatively, the minimum value of the limit-state function on the surface of the hypersphere with 

the radius target can be used to check the violation of the probabilistic constraint. This is referred 

to as the performance measure approach (PMA, Tu et al. 1999), which is formulated as 
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where target
fP

g  is the target
fP -quantile of the limit-state function g, alternatively obtained by 

 
  1 targPMA targ tet e( , ) arg min ( , )  

G
fg PG        d U d U U   (6.9)  

In general, the PMA shows more efficient and robust convergence compared to the RIA, primarily 

because of the different way in which the probabilistic constraint is handled. The PMA minimizes 
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a complex objective function in Equation 6.9 while satisfying a simple constraint function, whereas 

the RIA solves a minimization problem of a simple objective function with a complicated 

constraint function in Equation 6.4. 

6.2.2. Single-loop algorithm for RBTO 

Efficiency in RBDO/RBTO can be improved by replacing the inner loop of the reliability analysis 

by a non-iterative procedure, which is often called single-loop scheme (Liang et al. 2004; Shan 

and Wang 2008). By enforcing the Karush-Kuhn-Tucker (KKT) optimality conditions of the 

probabilistic constraint in the reliability analysis, the constraint is replaced with an approximate 

deterministic constraint. The optimal point in Equation 6.9 should satisfy the following KKT 

optimality conditions: 
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From the geometric interpretation (Liang et al. 2004), the solution U in Equation 6.10 is derived 

as: 
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where JX,U is the Jacobian of the transformation, X to U and X(U) = diag(σ)U + μX, where diag(σ) 

is the diagonal matrix with diagonal entries σi. Thus, the equivalent deterministic optimization 

problem is formulated as 
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Nguyen et al. (2010) proposed a single-loop RBDO algorithm for system reliability analysis using 

the matrix-based system reliability (MSR) method (Song and Kang 2009). Numerical examples 

showed that the proposed single-loop system reliability based design optimization (SRBDO) 

approach is efficient and accurate. This work primarily focuses on single-loop (component) 

reliability topology optimization. Therefore readers interested in system level constraints in 

optimization can refer to Nguyen et al. (2010, 2011). 

6.3. Discrete filtering 

A compliance minimization problem with a volume constraint in deterministic topology 

optimization (DTO) is formulated as 
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where Li is the length of truss element i, ne is the number of truss elements, and A is the vector of 

cross sectional areas. A lower bound on each design variable is commonly assigned to avoid a 

singular stiffness matrix during topology optimization. Conventional topology optimization of 

truss structures using the ground structure approach implements a filtering process with a cut-off 

value, ɛcut-off after the optimization processes is complete. Truss elements smaller than the cut-off 

value are eliminated, and the filtered truss structure is subsequently considered as the final 

topology. This end-filtering process is used to interpret the final structure from the ground structure.  

DTO with the conventional filtering method is illustrated through a cantilever beam 

optimization problem. The rectangular cantilever beam in Figure 6.1 (a) is clamped on the left side 

and loaded by a vertical force F at mid-height of the right side. Using the ground structure approach, 

the structural domain is discretized into a finite spatial distribution of nodes that are each connected  
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to every other node with truss members as shown in Figure 6.1 (b). Figures 6.1 (c) through 6.1 (f) 

show final topologies after optimization according to varying cut-off values (increasing from 0 to 

0.1). It should be noted that the determination of a proper cut-off value is ambiguous and is often 

based on a process of trial and error. For example, a small cut-off value may lead to many thin 

elements, which cannot be practically built, while a larger cut-off value may result in a rigid-body 

motion (mechanism) or hanging member shown in Figure 6.1 (e). In addition, the end-filtering 

process may change the final compliance. 

To address these issues, Ramos Jr. and Paulino (2016) recently proposed a discrete filtering 

scheme that enables filtering of well-defined (e.g. satisfying the global equilibrium) structures 

 

Figure 6.1: Ground structure and filtered structure for DTO employing the conventional filtering
approach: (a) design domain, loading and boundary conditions, (b) ground structure, (c) filtered
structure (ɛcut-off = 0.00), (d) filtered structure (ɛcut-off = 0.0001), (e) filtered structure (ɛcut-off =
0.001), and (f) filtered structure (ɛcut-off = 0.1). 
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from ground structures. The discrete filtering process is performed with updated design variables 

at each optimization iteration according to: 
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After the discrete filtering, global equilibrium is checked to ensure that the filtered structure is well 

defined. If it fails to satisfy global equilibrium, the move limit in the Optimality Criteria (OC) for 

updating design variables is adjusted to a smaller value, and the discrete filtering technique is 

performed again. These steps are repeated until global equilibrium is satisfied or the number of 

checking processes reaches the prescribed maximum iteration. However, some structures 

satisfying global equilibrium may be singular due to aligned hinges and/or detached degrees of 

freedom. To handle the singularity of the structural system, minimization of potential energy with 

Tikhonov regularization is adopted. Thus, it allows for a zero bound on the design variables. The 

regularized compliance minimization problem in DTO can be formulated as: 
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where λ denotes a small positive number and Π(·) represents the potential energy of the system 

defined as: 
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The particular solution of displacements of the linear system is obtained by minimizing the 

potential energy with Tikhonov regularization as follows: 
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  ( ) ( ) K A I u A f  (6.17) 

The structure is considered in global equilibrium if the following inequality holds: 

  ( ) ( )  K A u A f f  (6.18) 

where γ is a prescribed tolerance (e.g. γ = 10−4). 

Incorporating the discrete filtering scheme into RBTO framework, one can obtain an optimal 

topology of a structure under uncertainties using a ground structure model as follows: 
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The proposed optimization algorithm is illustrated by a flowchart as shown in Figure 6.2. This 

work implements Ramos Jr. and Paulino’s (2016) method into single-loop RBTO so that it can 

solve the singularity of the structural system after the discrete filter is carried out, and identify the 

structure in global equilibrium while satisfying the target failure probability. 

6.4. Numerical applications 

RBTO using ground structure method with the discrete filtering approach is demonstrated by 

numerical examples where the design variables are cross sectional areas, and the objective function 

of the optimal design is the minimization of the volume. The probabilistic constraint is defined in 

terms of the compliance with the upper limit, Cmax such as Pf(g: Cmax – C) ≤ Pf
target. Applied forces, 

force direction, and Young’s modulus are considered as random variables assumed to follow a 

normal distribution. It should be noted that the application of the proposed method is not limited 
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to normal distributions. Different combinations of random variables and statistical dependency are 

considered in RBTO that will be stated for each problem.  

 

 

Figure 6.2: Flowchart of the proposed optimization algorithm. 

The optimality criteria (OC) (Bendsøe and Sigmund 2003; Groenwold and Etman 2008; 

Ramos and Paulino 2015) is utilized as the update scheme. After the optimization is complete 

using the single-loop algorithm, the FORM and the Monte Carlo Simulation (MCS) are performed 

to ensure that a filtered structure satisfies the target failure probability. It should be noted that 

minimization of potential energy with Tikhonov regularization is also used to solve the singular 

system in the FORM and the MCS. 
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6.4.1. Comparison of conventional filtering approach and discrete 
filtering approach in RBTO 

Here, the conventional and discrete filters are imposed on a cantilever beam optimal design to 

demonstrate the effects of varying filter input parameters ɛcut-off and αf on the final topologies. The 

cantilever design domain clamped on the left and loaded on the right by a vertical force at two 

thirds-height is discretized with 12 × 6 elements (Figure 6.3 (a)). A full connectivity level ground 

structure is generated as shown in Figure 6.3 (b). To incorporate uncertainties in material 

properties and the load, Young’s modulus E and the force F are modeled as random variables 

following the normal distributions with means (μmE = 10,000 N/m2, μmF = 100 N) and standard 

deviations (σsE = 750 N/m2, σsF = 20 N), respectively. The objective function is the minimization 

of volume, and the probabilistic constraint is defined as Pf (g:5 – C) ≤ 0.005. Initial cross-sectional 

areas are set to 0.5 m2. The optimization results from Equation 6.12 according to varying cut-off 

values ɛcut-off of the conventional filter are illustrated in Figures 6.3 (c) through 6.3 (f). Figure 6.3 

(f) shows that the structural elements contributing to global equilibrium can be removed and the 

sequentially structural system can be in internal mechanisms as a result of the conventional 

filtering process. Also, using a certain cut-off value can lead to a final topology including hanging 

members not connected to the structure. The influence of the cut-off values on actual failure 

probabilities of the optimal topology is checked by use of the FORM and the MCS (Table 6.1). As 

the selected ɛcut-off increases for the filtering process, a failure probability higher than the target 

probability is observed. That is, the conventional filtering approach may lead to the violation of 

the prescribed target failure probability. 

Next, the same optimization problem is solved using the proposed method with varying 

discrete filtering values αf. Figure 6.4 shows filtered structures which are in global equilibrium. In 

all plots, tension members are shown in blue and compression members in red. The thicknesses of 

the lines indicate the normalized area of truss elements to the maximum member area. The filtering 

parameter αf affects details of the final topology as shown in Figure 6.4. Unlike the conventional 
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approach, the proposed method is able to find feasible solutions that satisfy the target failure 

probability as shown in Table 6.1. Figure 6.5 shows the convergence history of the volumes and 

failure probabilities of the conventional and discrete filtering approaches in RBTO for 100 

iterations. The non-smooth zig-zag pattern observed in the convergence plot within the first fifty 

iterations is primarily due to the discrete filtering, which actively eliminates bars with areas smaller 

than the prescribed filtering value, αf. 

 

 

 

Figure 6.3: Ground structure and filtered structures with varying ɛcut-off for RBTO using the
conventional filtering approach: (a) design domain, loading and boundary conditions, (b) full
connectivity ground structure, (c) ɛcut-off = 0.0001, (d) ɛcut-off = 0.001, (e) ɛcut-off = 0.01, and (f) ɛcut-

off = 0.05. 
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Table 6.1: Influence of filtering method on actual probabilities of the optimal topology for the
cantilever beam problem. 

 
Conventional filtering method 

ɛcut-off 

0.05 0.01 0.001 0.0001 

Volume 369.76 383.95 386.41 386.48 

Pf  FORM 1.00 8.02×10-3 5.03×10-3 5.01×10-3 

Pf  MCS 1.00 8.12×10-3 5.09×10-3 5.08×10-3 
 

 
Discrete filtering method 

αf 

0.05 0.01 0.001 0.0001 

Volume 407.39 391.49 387.94 387.93 

||Ku-f||/||f|| 4.42×10-7 3.96×10-7 3.97×10-7 3.65×10-7 

Pf  FORM 5.00×10-3 5.00×10-3 5.00×10-3 5.00×10-3 

Pf  MCS 5.05×10-3 5.06×10-3 5.07×10-3 5.05×10-3 
 

 
Figure 6.4: Filtered structures by RBTO with varying discrete filter values: (a) αf = 0.0001, (b) αf

= 0.001, (c) αf = 0.01, and (d) αf = 0.05. 

(a)

(c) (d)

(b)
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Figure 6.5: Convergence history of the cantilever problem: (a) volume, and (b) failure probability.

6.4.2. Comparison between deterministic design optimization and 
reliability-based design optimization 

In this example of clamped beam (Figure 6.6), the results by DTO and RBTO are compared to 

investigate the influence of the uncertainties on the topologies. Note that, for DTO, the random 

variables in RBTO are replaced by deterministic parameters whose values are the same as the 

mean values. Five statistically independent random variables are used to describe forces (F1, F2, 

F3), force angle (θ) and material property represented by Young’s Modulus (E). All random 

variables are assumed to follow the normal distributions. Figure 6.6 (a) shows the design domain 

fixed on both left and right sides. Three parallel forces with a random angle θ are applied at the 

center region of the top edge of the design domain. The design domain is discretized with 40 

polygonal elements after 100 Lloyd’s iterations (Talischi et al. 2012a) shown in Figure 6.6 (a). On 

the other hand, the ground structure with a level 4 connectivity (1858 design variables) is illustrated 

in Figure 6.6 (b).  
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(a) 

 
(b) 

Figure 6.6: Clamped beam problem: (a) loadings and boundary conditions, and (b) level 4
connectivity ground structure. 
 

Table 6.2 lists the mean value μm and standard deviation σs for each random variable. The target 

failure probability of the compliance limit-state function Pf
target = 0.005, the upper bound of design 

variable Aupper = 1.0 m2, and the discrete filter coefficient αf = 0.01, and Cmax = 8 are used in 

optimization.  

To see the effect of the random variable θ on the final topology, two cases are considered for 

RBTO: (Case I) four random variables of F1, F2, F3, E and deterministic force angle θ, and (Case 

II) five random variables of F1, F2, F3, E, and θ. Figure 6.7 shows the optimal configuration of bar 

connectivities and sizes from DTO and RBTO. Due to the risk caused by the uncertainties, 

increased bar areas and additional connectivities are observed in RBTO compared to those from 

DTO. In addition, dominant directions of bar connectivities are between the forces and supports 

as shown in Figures 6.7 (a) and 6.7 (b). Additional consideration of the random variable θ (Case 

II) results in the creation of arch-shape connectivities towards the center on the bottom in Figure 

6.7 (c), primarily due to the possibility of forces with θ > 45° that cause the further increase in 

compliance. Therefore, the compliance will be reduced by providing the arch-shape connectivities. 
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The convergence history in Figure 6.7 (d) illustrates that the proposed method is able to find the 

optimal solution quickly and efficiently. 

Table 6.2: Parameter values of random variables used for the clamped beam problem. 

E (N/m2) F1 (N) F2 (N) F3 (N) θ (N) 

μmE σsE μmF1 σsF1 μmF2 σsF2 μmF3 σsF3 μmθ σsθ 

100000 7500 600 150 900 90 700 140 45 6.82 
 

 
Figure 6.7: Topology optimization results by discrete filter (αf = 0.01): (a) DTO (volume = 43.06
m3), (b) RBTO − Case I (volume = 60.82 m3), (c) RBTO − Case II (volume = 74.67 m3), and (d)
convergence history. 
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6.4.3. Curved cantilever structure optimization 

Figure 6.8: Curved beam problem: (a) design domain, and (b) loadings and boundary conditions,
and level 3 connectivity ground structure. 

The proposed method is also applied to design a curved cantilever truss clamped on the left side 

to demonstrate how the correlation affects the spatial distribution of structural members. The 

design domain discretized with 30 polygonal elements after 100 Lloyd’s iterations is shown in 

Figure 6.8 (a). The ground structure for a level 3 connectivity is then generated using “GRAND” 

(Zegard and Paulino 2014), which generates a ground structure with a total of 981 truss members. 

The limit-state function is defined on the compliance computed with multiple loads, i.e. g(8 – 

C(A,X)). Young’s Modulus E and forces Fi, i = 1,…, 4 are assumed to be normal random variables. 

The mean and the standard deviation of each random variable are shown in Table 6.3. The target 

failure probability, the upper bound of design variables, and the discrete filter coefficient are set 

to Pf
target = 0.00075, Aupper = 1.5 m2, αf = 0.01, respectively.  The correlation coefficient ρij, i ≠ j, i, 
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j = 1,…, 4 between random forces is varied from 0.0 to 0.75 to investigate the effect of the 

correlations between the uncertain loadings on the final topology. 

 

Table 6.3: Parameter values of the probabilistic constraint and random variables filter used for the
curved cantilever structure problem. 

E (N/m2) F1 (N) F2 (N) F3 (N) F4 (N) 

μmE σsE μmF1 σsF1 μmF2 σsF2 μmF3 σsF3 μmF4 σsF4 

100000 7500 50 10 80 12 45 6.75 35 5.25 

 

 

 

Figure 6.9: Topology optimization results by a discrete filter (αf = 0.01): (a) DTO (volume = 54.73
m3), (b) RBTO, ρij = 0.0 (volume = 90.79 m3), (c) RBTO, ρij = 0.5 (volume = 105.39 m3), and (d)
RBTO, ρij = 0.75 (volume = 113.91 m3). 

The optimization results from DTO and RBTO are shown in Figure 6.9. The line thicknesses 

in the plots are normalized to the upper bound of the cross sectional area which is 1.5 m2. 

Compared to the results from DTO, overall cross sectional areas on top and bottom chords are 

increased in RBTO. Furthermore, additional connectivities of truss elements are clearly observed 

(a) (b)

(c) (d)
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in the RBTO results. Those connectivities in RBTO increase the stiffness of the truss structure so 

that the compliance decreases to satisfy the target failure probability. Furthermore, optimization 

results from RBTO show that the increase in the correlation coefficient results in the higher 

optimized volume, primarily because the positive correlation between forces increases the chance 

of violating the limit-state function by a raised compliance. The convergence histories of the 

objective function and the failure probability over iterations are plotted in Figure 6.10. 

 

 

 

Figure 6.10: Convergence history of the curved beam problem: (a) volume, and (b) failure
probability. 
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6.4.4. Roof structure optimization 

The proposed method is applied to a large space structure fixed on ground level to identify the 

optimal topology while achieving the desired reliability. The problem domain is discretized with 

solid elements as shown in Figure 6.11(a). Figures 6.11 (b) and 6.11 (c) provide top and side views, 

respectively. Based on the discretized domain, the ground structure analysis and design in 3D 

(GRAND3, Zegard and Paulino 2015) were adopted to generate a ground structure using 

restriction zones (Figures 6.12 (a) and 6.12 (b)).  

 
(a) 

  
(b) (c) 

Figure 6.11: Roof structure optimization example: (a) roof structure domain, loadings and
boundary conditions, (b) top view, and (c) side view. 
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The restriction zones prevent truss members in the ground structure from passing through the 

restricted region. Two connectivity levels of the ground structure shown in Figures 6.12 (c) and 

6.12 (d) are generated and used for optimization with initial design variables set to 0.25 m2. 

Young’s modulus and applied forces (Figure 6.11 (a)) are considered as random variables 

following the normal distribution. The compliance under multiple loads is computed as 

 

T

1

( , ) ( ) ( , )
nf

i i
i

C


A X f X u A X   (6.20)  

where nf denotes the number of forces. Parameters of the probabilistic constraint on the compliance 

and random variables and the discrete filter are given in Table 6.4. 

Figures 6.13 and 6.14 show a comparison of the optimized results for level 1 and 4 connectivity 

levels, respectively by DTO and RBTO. The connectivity level leads to the different topologies 

such as different connectivity of members in optimized solutions. Differences in optimal solutions 

between the deterministic and the probabilistic constraints can be clearly observed from the 

optimized results. To achieve the target failure probability, the overall member sizes are increased, 

and more connectivities between bars remain. Figure 6.15 shows optimal topologies based on 

varying filter sizes. It should be noted that those solutions in global equilibrium satisfy the target 

failure probability. Figure 6.16 shows the convergence history of the volume in optimization. The 

resulting volume of high connectivity level is slightly reduced for both DTO and RBTO, as 

expected since a higher number of design variables (connectivities) typically leads to a reduced 

objective. Table 6.5 presents results associated with the roof structure optimization problem. 

 

Table 6.4: Parameter values of the probabilistic constraint and random variables, and the discrete
filter used for the roof structure problem. 

E (GPa) F (kN) 
Cmax Pf

target αf Aupper (m2) 
μmE σsE μmF σsF 

200 40 100 20 10 0.0025 0.01 1.5 
 



 

192 

  
(a) (b) 

(c) (d) 

Figure 6.12: Ground structure: (a) upper restriction surface, (b) lower restriction surface. (c) level
1 connectivity (2,569 design variables), and (d) level 4 connectivity (7,995 design variables). 
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(a) (b) 

Figure 6.13: Final topology by discrete filter (αf = 0.01, level 1 connectivity): (a) DTO, and (b)
RBTO (Pf

target = 0.0025). 
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(a) (b) 

Figure 6.14: Final topology by discrete filter (αf = 0.01, level 4 connectivity): (a) DTO, and (b)
RBTO (Pf

target = 0.0025). 
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Figure 6.15: Final topology by discrete filter (level 4 connectivity, Pf
target = 0.0025): (a) αf = 0.02,

(b) αf = 0.03, and (c) αf = 0.04. 
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Figure 6.16: Convergence history of roof structure optimization. 

 

Table 6.5: Representative parameters for optimal solutions of the roof structure problem. 

 Level 1 connectivity Level 4 connectivity 
 Filter size, αf 
 0.01 0.01 0.02 0.03 0.04 

Volume 2419.73 2361.73 2376.27 2433.11 2531.09 

||Ku-f||/||f|| 3.10×10-6 2.57×10-6 2.69×10-6 3.40×10-5 2.69×10-5 

Pf  FORM 0.0025 0.0025 0.0025 0.0025 0.0025 
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6.4.5. Dam structure optimization 

The optimization problem is focused on a dam structure clamped at a bottom level and at the both 

left and right sides. The design domain is discretized using 216 solid elements and its plan views 

and a section view are as shown in Figure 6.17. The structure is subjected to distributed loads at 

each node in y-direction shown in Figure 6.18. The applied forces and Young’s modulus are 

assumed to follow the normal distribution. All random variables are assumed to be statistically 

independent each other. The ground structure is generated for the level 3 connectivity as shown in 

Figure 6.19 (a).  

 

 

Figure 6.17: Dam structure problem: (a) problem domain definition, boundary conditions, (b)
section view, (c) plan view at elevation 0 m, and (d) plan view at elevation 27 m. 
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Figure 6.18: Supports and loadings configurations. 

 
Figure 6.19: Ground structure and optimized results: (a) level 3 connectivity ground structure, (b)
DTO, and (c) RBTO, Pf

target = 0.01. 
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Figure 6.20: Convergence history of the dam structure. 

Optimization results from DTO and RBTO with Pf
target = 0.01 are plotted in Figures 6.19 (b) and 

(c). Convergence of the objective function is illustrated in Figure 6.20. 

6.5. Concluding remarks 

This chapter presents a framework of single-loop reliability-based topology optimization that 

incorporates the discrete filtering scheme proposed by Ramos Jr. and Paulino (2016). Reliability-

based topology optimization using the ground structure method with the conventional filtering 

scheme (cut-off) often leads to solutions that violate the prescribed failure probability after the 

post processing. The proposed method successfully finds topology optimization solutions that 

satisfy the target failure probability and that are in the global equilibrium. Numerical verifications 

by the first-order reliability method and Monte Carlo simulations confirm that the optimal 

topologies obtained by the proposed approach satisfy the given probabilistic constraints unlike 

those by a conventional filtering scheme. 
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The effects of uncertainties in loads and material property on optimal topologies are clearly 

observed and investigated through comparison with the results of deterministic optimization. 

Using the different discrete filter parameter and the connectivity level of the ground structure result 

in the various topologies with different optimized sizes while satisfying the desired failure 

probability. The variety of optimal solutions offers with the proposed method can allow engineers 

to develop multiple structural design schemes.  

In the present study, a single probabilistic constraint on the compliance is considered. In reality, 

different types of constraints such as displacement constraints and stress constraints under 

uncertainties are also of great interest in structural engineering. Most of the truss structures are 

indeterminate so that single failure (or a component) may not result in failure of the entire structural 

system. Therefore, the aforementioned different failure events and various failure sequences need 

to be considered for more realistic applications of engineering designs. Also, a system failure event 

with statistical dependence between component failure events needs to be addressed in RBTO. 

Those remain as potential future research topics. 
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Chapter 7 

Conclusions and future work 

 

In this thesis, theoretical and computational frameworks are investigated and developed in 

reliability-based design and topology optimization of structures subject to static, dynamic forces 

as well as stochastic excitations. First, concepts of structural topology optimization considering 

fundamental dynamic excitations is tailored and then the numerical scheme to obtain high-

resolution topologies while achieving computational efficiency is developed. Second, efficient 

sensitivity analysis methods of system failure probability are developed so that they allow the 

identification of significant factors in reliable engineering designs, and the use of the gradient-

based optimization algorithms for reliability-based design and topology optimization. Third, the 

inherent stochastic excitations caused by natural or man-made hazards are explored through 

intricate random vibration analysis in optimization. Theoretical and numerical frameworks of 

topology optimization are developed for building structures under stochastic excitations 

considering practical engineering problems. In this chapter, a brief summary and suggested future 

work are presented. 

7.1. Concluding remarks 

One of the challenging issues related to optimization in dynamics is the expensive computational 

costs of the finite element analysis (FEA) in optimization procedures. The resolution of optimal 

topologies (optimal material distributions) is proportionally linked to the mesh size used in the 

FEA in conventional topology optimization. By using two different types of meshes such as a 

coarse finite element mesh to perform the FEA and a fine design variable mesh for optimization, 
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the overall computational cost can be reduced while maintaining high resolution designs. This 

optimization framework is especially beneficial for structural dynamics problems such as forced 

vibration optimization or eigenfrequency optimization, which require intensive computational cost 

compared to static optimization problems. In addition, irregular polygonal meshes based on the 

concept of Voronoi diagrams help overcome difficulties in discretizing complicated geometries of 

design domains. In order to address aforementioned issues, Polygonal multiresolution topology 

optimization (PolyMTOP) was developed. The method is four times (or more) faster than the 

current conventional approach for structural dynamics problems. 

The system failure probability consists of many component failure events in engineering 

constraints, and its estimation commonly involves solving of a multi-fold integral. The lack of 

closed form solution of the integral makes the estimation more challenging because the numerical 

integration is impractical for such large number of random variables and events that need to be 

considered. To overcome these issues, the efficient algorithm of parameter sensitivity analysis of 

system reliability, CSP (Chun-Song-Paulino) method was developed. The CSP method is designed 

for large-scale system failure problems defined in implicit high-dimensions and time domain. It 

performs sensitivity analysis after simplifying the integral spaces of the system failure probability 

from high-dimensions to the equivalent two dimensions. The developed method was successfully 

applied to computing sensitivities of stochastic responses, such as the first-passage probability in 

time domain. This method allows for the incorporation of gradient-based algorithms into 

optimization frameworks in order to efficiently identify optimal solutions for problems with a large 

number of design variables. The CSP method was further developed to derive a new adjoint 

variable method for sensitivity analysis of probabilistic constraints under stochastic processes 

defined in time domain.  

In order to incorporate random processes and structural reliability analysis into optimization, 

the novel stochastic topology optimization framework was developed. Through this framework, 

random excitations such as earthquake ground motions can be considered in the finite element 
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setting and topology optimization. During the development of this new framework, the CSP 

method was adopted to compute gradients of probabilistic engineering constraints associated with 

the stochastic responses, e.g., drift ratios. The stochastic topology optimization framework was 

successfully applied to a conceptual design of lateral-load resisting systems with a desirable level 

of reliability subject to stochastic ground motions. Moreover, the framework was further extended 

to stochastic reliability-based design optimization of truss structures, so that the structure subject 

to ground excitations can be optimized under probabilistic constraints on stresses in elements or 

maximum drifts.  

Finally, the optimization scheme employing the discrete filter was proposed to ensure that 

optimized solutions satisfy the probabilistic constraints, and incorporating single-loop approach to 

enhance the computational efficiency of the proposed RBTO method. The effects of uncertainties 

in loads and material property on optimal topologies were observed and investigated through 

comparison with the results of deterministic optimization. Optimal solutions satisfying the desired 

failure probability and global equilibrium were obtained from the proposed method. Furthermore, 

the variety of optimal solutions can be delivered with the proposed method for applications in 

engineering. 

7.2. Suggestions for future work 

This section discusses some global ideas that may become direct or indirect extensions of this 

work. 

7.2.1. Stochastic topology optimization in frequency domain 

Research efforts have been focused on developing stochastic topology optimization framework 

using the discrete representation method. The discrete representation method handles the 

stochastic processes and derives probabilistic characteristics in time domain. The discretized time 



 

204 

points are considered as random variables in this method. The realization of the component failure 

events, therefore, need to be evaluated for the probabilistic constraint defined within a given time 

interval. Although it is a robust and accurate method, it requires greater computational cost and 

leads to time consuming processes, such as repeated evaluation of the probabilistic constraints. In 

order to overcome these issues, an alternative approach to characterize the stochastic input and 

output process in the frequency domain can be developed. The findings in this thesis can be 

extended and further applied to the interesting stochastic problems related to frequency-based 

concepts, such as power spectral density functions and spectral moments. Various failure analysis, 

such as probability distribution of peaks, crossing rates by using the power spectral density, 

stochastic fatigue analysis, and prediction of the accumulated damage can be performed in 

frequency domain. The applications of the topology optimization in the frequency domain in terms 

of the topics aforementioned still remain unexplored.  

7.2.2. Extension of stochastic optimization framework for multi-hazards 

Recent earthquake and tsunami events have demonstrated the limitations of current structural and 

geotechnical design practices that satisfy only one type of hazard at a time, leaving the structural 

system vulnerable to other hazards occurring concurrently. Therefore, a comprehensive design that 

satisfies more than one hazards will strengthen and enhance the robustness and safety of building 

structures. An effective tool to achieve this improved design is structural optimization. Thus, 

continuation of research in various aspects of natural hazards such as wind loads and ocean waves, 

and derivation of efficient numerical models for analysis and applications need to be explored. 

Algorithms and frameworks presented in this thesis can be implemented and modified to adopt the 

new environmental and structural challenges. Furthermore, the impact of the structural frame and 

connection behavior on optimal topology, and effective schemes for optimal building structure 

design under stochastic excitations need to be also considered.  
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7.2.3. Connection between architecture and engineering through 
visualized analysis, design and optimization tools 

The objective of the extension is to develop a structural design optimization tool for engineers and 

architects so that professional conflicts regarding aesthetics, stability and safety of building 

projects can be considered and addressed. A real-time visualization program for structural analysis 

and design optimization with integrated visual and architectural programming languages such as 

Grasshopper 3D can be developed. Thus, changes in parameters and forms by architects will be 

reflected in structural optimization results considering engineering constraints in a real-time. 

Conversely, various structural options for a design project can be provided to architects, so that 

the functionalities of structural components embedded in architectural views can be visualized and 

analyzed. The final optimized result will be interpreted and transferred to computer-aided design 

(CAD) drawings. This integrated visualization platform will enable professionals to communicate 

and collaborate effectively with each other to successfully complete proposed projects.  

7.2.4. Integration of additive manufacturing into structural design, 
material design and optimization  

This research aims to incorporate emerging efficiencies to transform the proposed and existing 

structural design and topology optimization framework. To that end, 3D printing technology will 

be utilized. Additive manufacturing enables a two-way approach in the framework, in which 

optimal solutions can be physically reproduced through 3D printing and verified through 

laboratory testing. In addition, the three dimensional models can be used to accurately portray 

design concepts and changes. This integration process can also be applied to optimize the 

performance of desirable structures, reducing the gap between optimization and application of 

building structures, extending applications to mechanical, aerospace engineering and materials.  
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7.2.5. Catastrophic hazard and damage modeling for risk-informed 
management 

Finding structural engineering solutions begins with the identification of structural demands and 

challenges. This fundamental yet significant process of risk assessment and management 

of structures are critical in decision making. Structures are constantly exposed to natural and man-

made hazards, creating inherent uncertainties in the performance. This research is targeted at 

deriving mathematical models to represent various aspects of possible failure events that structures 

must withstand during the operation period. Accurate estimation of predicted damage and the 

model’s robustness under uncertain hazards will be studied so that reliable engineering design 

solutions can be proposed. As a long-term research plan, further extension of catastrophic hazards 

modeling for probabilistic estimation of damages to support risk-informed decision-making 

process using machine learning theory can be considered. 

7.2.6. Development of new computer-based simulation and 
interdisciplinary computing program 

In order to increase the research efficiency, a universal computational tool needs to be developed 

to focus directly on developing, validating and disseminating innovative design technologies for 

structures. This tool can be open source and freely available to both research communities and the 

industry so that researchers and practicing professionals can integrate versatile and robust 

engineering computational tools according to specifications of the project. This tool can be used 

as a platform to satisfy safety measures and target costs as well as assessing post-disaster 

functionality. Also, the research involves more computational performance on the multiscale 

framework from emerging high performance computational resources. This project can be 

approached from two different directions to incorporate: (a) general-purpose parallel processors to 

increase capabilities for civil engineering design and applications; (b) massively parallel 

supercomputing for large scale problems such as risk assessment of multiple hazards. 
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Appendix A 

Derivation of Equation 3.11 

 

To derive Equation 3.11 with a uniform time step, the convolution integral in Equation 3.9 is 

carried out for discrete time intervals. An entry of the vector a(tj) can be written as follows: 
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Thus,  
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Therefore, the uniform step size (tn-tn-1 = ∆t, tn = t0) in the convolution integral leads to the 

following expression: 
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Appendix B 

Flowchart of implementation for RBTO of structures 
constrained by first-passage probability 

 

 

Figure B.1: Flowchart for topology optimization of a structure constrained by first-passage 
probability. 

Initialization
 - Define geometry, material property, loading & boundary conditions,
   and initial distribution of density

Generation of a stochastic excitation model
 - Select a filter model (e.g. Kanai-Tajimi filter), intensity, damping ratio, and bandwidth
- Generate filtered ground accleration

Ramdom vibration analysis
 - Perform dynamic finite element analysis of a structure subjected to filtered ground accleration
- Compute a(t) from a displacement vector u(t) obtained from dynamic FEA

First-passage probability of constraint function
 - Compute instantaneous failure probability and reliability index at each discretized time point
- Compute a correlation coefficient matrix R
- Define a series system consisting of instantaneous failure events

   to represent first-passage probability

Evaluation of objective and constraint functions
 - Perform the SCM to compute first-passage probability

Sensitivity analysis of objective and constraint functions
 - Perform the CSP and the AJM for sensitivity analysis of first-passage probability

Update design variables using mathematical programming

Convergence cirteria
Converged?

Results: Optimal topology

Yes

No (iterate)
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