Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign October 28, 2016

Tailoring the Stiffness of Deployable Origami Structures

PhD Student : Evgueni Filipov

Committee:

Prof. Glaucio H. Paulino (Chair) Prof. Paolo Gardoni Prof. Arif Masud Dr. Mark Schenk Prof. Tomohiro Tachi

Presentation Outline

Origami as Art

Origami as Entertainment

Orchfini by E. Joisel www.ericjoisel.com/gallery.html

Elk 358 by R. Lang

Paper Airplane http://www.foldnfly.com/

Origami Fortune Teller

Origami as Fashion

Origami in Education

Origami Dress

Origami Bracelet

Geometry - A. Tubis 60SME 2014

Gaussian Curvature - T. Hull 2012

Engineering Applications of Origami

- Deployable Pre-Fabricated
 Self-Assembly Compact • •
 - Tunable Multi-Functional
- Adaptable •

Kiefer Technic Showroom

ISS - NASA 2011

Martinez et al. (2012)

Felton et al. (2014)

Marras et al. (2015)

Theory and Analysis

Belcastro and Hull (2013)

Narain et al. (2013)

Demaine and Demaine (2012)

System Design

Chen et al. (2015)

Tachi (2010)

Hawkes et al. (2010)

Black LAB Architects (2014)

C. Hoberman (2012)

Lee et al. (2013)

Living hinge

Miura-ori Tube Origami

Miura-ori → Tube

Kinematic "rigid" folding

Elastic deformations

Elastic Modeling for Origami

S Panel Shear & Stretching

Model with bars elements

Evolution of the *Bar and Hinge* Model

Filipov, Tachi, Paulino (2016) O*rigami 6*

Filipov, Liu, Tachi, Paulino (2016) In Preparation

Preparation

- Simplicity in the design and use 1.
- Insight on stiffness properties 2.
- Scalability 3.
- Model isotropy 4.
- 5. **Material properties**
 - Thickness t
 - Poisson's Ratio ν
 - Young's modulus E
 - Density p
- 6. Large displacements
- **Geometric influence** 7.
- Fold line stiffness 8.

6

N4B5

Nagasawa et al. (2003)

Bar Model for Panel Stretching & Shear

Bar stiffness definitions

S Stiffness of Panel Stretching & Shear

Bending Thin Sheet with Restricted Edges

Constant curvature bending

Straight Cunvature Straight

Bending restricted at edges

- Bending localized in short diagonal
- Stiffness is higher than with constant curvature bending

Lobkovsky AE (1996)

B Geometric Influence on Bending Stiffness

Small displacement bending ($\theta_B = 1^\circ$)

$$M_{BS} = \theta_B \left(0.55 - 0.42 \frac{\Sigma \alpha}{\pi} \right) \, k \left(\frac{D_S}{t} \right)^{1/3}$$

$$K_{BS} = \left(0.55 - 0.42 \frac{\Sigma \alpha}{\pi}\right) k \left(\frac{D_S}{t}\right)^{1/3}$$

Local Stiffness of Prescribed Folds

Bending at prescribed fold line

- Experiments where sample is cut, perforated or cycled
- Virgin loading of pre-creased paperboard samples

Nagasawa et al. (2003)

- Stiffness scales with length L_F and k $K_{FL} = \frac{L_F}{L^*}k$
- *L*^{*} is a length scale factor
- L* may depend on physical and material properties

Experiment Range 600 Length Scale L* (mm) Color 400 Cyclic or cut Virgin 9 200 $L_{v}^{*} = 37t + 12$ 0 0.2 0.40.6 0.8 0 Thickness t (mm)

Global Stiffness of Prescribed Folds

Modeling Prescribed Fold Lines

 Fold line stiffness can be distributed on the outside and/or inside nodes of the N5B8 model

Asymmetric bending of folds (θ_F - top) vs. panels (θ_B - bottom)

Eigenvalue Analyses

Tube Assemblages

Filipov EF, Tachi T, and Paulino GH (2015) PNAS Vol. 112, No. 40

19

NATIONAL ACADEMY OF SCIENCES

Energy Distribution

Cellular Assemblages as Metamaterials

Aizenberg et al. (2005)

Ashby et al. (1985)

Meza et al. (2014)

Heimbs (2013)

- Hierarchical properties (e.g. lattice systems)
- High stiffness to weight ratios
- Novel properties (auxetics or asymmetry)

With origami:

- Self-assembly
- Deployable
- Tunable characteristics

Zipper + Aligned Assemblage

Self-Interlocking Structure

Bridge Structure

Extensions and Future of Zipper Tubes

- Localized adaptations
- Geometric variations
- Tailored applications at different scales
 - Thickness
 - Material
 - Fabrication
 - ...

Generalized Definition for Origami Tube

 $\phi_Z = \phi_Y = 30^\circ$

 $\phi_Z = 10^\circ < \phi_Y = 30^\circ \tag{25}$

Non-straight Origami Tube

 θ

Generalized Definition for Coupled Tubes

Stiffness of Straight Coupled Tubes

Slabs and Arches with Flat Surface

Extend to Polygonal Cross-Sections

Partition and Re-arrange

30

Filipov, Tachi, and Paulino (2016) Proceeding of the Royal Society – A, Vol. 472, No. 2185

Projection Definitions

Reconfiguration with n = 2 Switches

Reconfiguration with More Switches

Physical model, n = 4 switches

Out-of-Plane Compression of a Pipe

Summary of Ph.D. Research

- Improved structural analysis for origami
- Influence of geometry on origami stiffness *locally* and *globally*
- Zipper-coupled systems engage thin sheet in shear/stretching
- Geometric variation of tube cross-sections and profiles
- Structural tuning through reconfiguration

Thank you!

Acknowledgments:

filipov1@illinois.edu

www.efilipov.com