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Π0
E A vector-valued L2 projection which projects a vector onto its average over E

Π0
k A scalar-valued L2 projection which projects vectors from Vk(E) onto Pk(E).

When k = 1 and k = 2, Π0
k = Π∇

E

Π∇
E A scalar-valued projection which projects vectors from V (E) onto P1(E)
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ΠV EM
h (v) VEM approximation of the potential energy in the displacement-based formu-

lation

Ψ(X,F) The remainder part of the stored-energy function

ρh Material density function on Ωh�
A given numerical integration over E that exactly integrate any polynomials
of order 2k−2.

C Right Cauchy-Green deformation tensor C = FT F

F Deformation gradient tensor

f Body force per unit undeformed volume

Fext External force vector

Kρ Global stiffness matrix incorporating spatially varying material densities

Mcov(E) The covariance matrix for element E

nF The outward normal of face F in 3D

ne The outward normal of edge e in 2D in the undeformed configuration

P First Piola-Kirchhoff stress tensor

PF Density filter matrix

pωi(X) A polynomial of order k+1 recovery on patch ωi

s The vector of element stiffness interpreted from material densities

t Applied boundary traction per unit undeformed area

U Global displacement vector

un−1
h Equilibrium displacement field obtained in the previous Newton-Raphson step

uh Equilibrium displacement field

X Position vector in the reference configuration

XE
c The centroid of E

XF A shifted position vector defined on face F as XF .
= X−XF

c .

XF
c The centroid of F

XF
j The jth vertex on face F of element P with local numbering

XF
s The triangulation point on face F of element P
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XP A shifted position vector defined in P as XP .
= X−XP

c .

XP
c The centroid of P

Xi The ith vertex of element E in the undeformed configuration

y The vector of material densities

z The vector of design variables

adj(·) The adjugate operator

θ A user-defined threshold for adaptive mesh refinement

εs
1,u The H1-type skeletal error of the original displacement solution

εs
1,ũ The H1-type skeletal error of the recovered displacement solution

εv
0,u The L2-type displacement error using only vertex values

εv
0,p̂ The L2-type the pressure error using only vertex values

εv
1,u The H1-type displacement error using only vertex values

ε0,u The L2-norm of the displacement error

ε0,p̂ The L2-norm of the pressure error

ε1,u The H1-seminorm of the displacement error

ϕ
(k)
i The ith basis function of the local spaces Mk(E) or Vk(E). k is omitted when

k = 1.

Π̂(v, p̂) Potential energy in the mixed F-formulation

Π̂V EM
h (v, p̂) VEM approximation of the potential energy in the mixed F-formulation

Û∗ (X, q̂) Legendre transformed function of U(X,J) in J

Ŵ (X,F,J) Function introduced such that W (X,F) = Ŵ (X,F,J) when J = detF

Ŵ ∗(X,F, q̂) Function obtained by Legendre transformation of J in Ŵ (X,F,J)

X̂ `
i j The `th internal (Gauss-Lobatto) point on the edge connecting vertices Xi and

X j

X̂i j The middle node of the edge connecting vertices Xi and X j

F̃i The set of faces that connect to X̃i in P̃
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∇̃ Gradient operator with respect to the deformed configuration
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ñF The outward normal of face F̃ in 3D

X̃
F
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X̃
F
s The triangulation point on face F̃ of element P

X̃i The ith vertex of element E in the deformed configuration

ε̃s
1,u The estimated H1-type skeletal error of the original displacment solution

Ẽ A generic element (in 2D or 3D) in the deformed configuration

ẽ A generic edge of element Ẽ in the deformed configuration

F̃ A generic polygon or a generic face of a polyhedron in the deformed configu-
ration

P̃ A generic polyhedron in the deformed configuration

T̃ F
j The triangulated subfaces of F̃

Ξe
i The ith edge DOF of a given function in the patch ω

ΞF
i The ith (internal) facial DOF of a given function in the patch ω

ΞI
i The ith internal DOF of a given function in the patch ω

Ξv
i The ith vertex DOF of a given function in the patch ω

a(·, ·) Continous bilinear form for linear elasticity

aE
h (·, ·) Element-level discrete bilinear form for linear elasticity constructed using

VEM

aρ

h (·, ·) Discrete bilinear form for linear elasticity constructed using VEM incorporat-
ing the spatially varying stiffness

ah(·, ·) Discrete bilinear form for linear elasticity constructed using VEM

d Dimension

E A generic element (either in 2D or 3D) of the mesh Ωh in the undeformed
configuration

e A generic edge of element E in the undeformed configuration

xxx



E0 Young’s modulus
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Ghuh A continuous displacement gradient reconstructed on the mesh skeleton
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I1 First invariant of the right Cauchy-Green deformation tensor C
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J Determinant of deformation gradient J = detF
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M Total number of elements in Ωh
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mS(ρh) Material interpolation function

nMk The dimension of the local finite element space Mk(E).
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NE
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NI
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NE Total number of DOFs in E
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T F
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SUMMARY

Due to its unique and intriguing properties, polygonal and polyhedral discretization is

an emerging field in computational mechanics. This thesis deals with developing finite el-

ement and virtual element formulations for computational mechanics problems on general

polygonal and polyhedral discretizations.

The construction of finite element approximation on polygonal/polyhedral meshes re-

lies on generalized barycentric coordinates, which are non-polynomial (e.g. rational) func-

tions. Thus, the existing numerical integration schemes, typically designed to integrate

polynomial functions, will lead to persistent consistency errors that do not vanish with mesh

refinement. To overcome the limitation, this thesis presents a general gradient correction

scheme, which restores the polynomial consistency by adding a minimal perturbation to

the gradient of the displacement field, and applies it to formulate both lower- and higher-

order polygonal finite elements for finite elasticity problems. With the gradient correction

scheme, the optimal convergence is recovered in finite elasticity problems.

The Virtual Element Method (VEM) was recently proposed as an attractive framework

to handle unstructured polygonal/polyhedral discretizations and beyond (e.g., arbitrary

non-convex shapes). The VEM is inspired by the mimetic methods, which mimics funda-

mental properties of mathematical and physical systems (e.g., exact mathematical identities

of tensor calculus). Unlike the Finite Element Method (FEM), there are no explicit shape

functions in the VEM, which is a unique feature that leads to flexible definitions of the local

VEM spaces. This thesis also develops novel VEM formulations for several classes of com-

putational mechanics problems. First, to study soft materials, we present a general VEM

framework for finite elasticity. The framework features a nonlinear stabilization scheme,

which evolves with deformation; and a local mathematical displacement space, which can

effectively handle any element shape, including concave elements or ones with non-planar

faces. We verify the convergence and accuracy of the proposed virtual elements by means
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of examples using unique element shapes inspired by Escher (the Dutch artist famous for

his so-called impossible constructions). Second, to fully realize the potential of VEM in

mesh adaptation (i.e., refinement, coarsening and local re-meshing), we develop a gradi-

ent recovery scheme and a posteriori error estimator for VEM of arbitrary order for linear

elasticity problems. The a posteriori error estimator is simple to implement yet has been

shown to be effective through theoretical and numerical analyses. Finally, from a design

viewpoint, we present an efficient topology optimization framework on general polyhedral

discretizations by synergistically incorporating the VEM and its mathematical/numerical

features in the underlining formulation. As a result, the tailored VEM space naturally leads

to a continuous material density field interpolated from nodal design variables. This ap-

proach yields a mixed virtual element with an enhanced density field. We present examples

that explore the aforementioned features of our VEM-based topology optimization frame-

work and contrast our results with the traditional FEM-based approaches that dominate the

technical literature.
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CHAPTER 1

INTRODUCTION

Due to its unique and intriguing properties, polygonal/polyhedral discretization is an emerg-

ing area of research in the fields of engineering and mathematics. As more general dis-

cretizations, polygonal and polyhedral meshes have demonstrated several advantages over

the standard triangular/tetrahedral and quadrilateral/hexahedral meshes numerical analysis.

From a geometric point of view, polygonal and polyhedral elements offer more flexibility

in discretization. For example, with the polyhedral elements, we can discretize any com-

plex 3D geometry in an automated fashion using the idea illustrated in Fig. 1 (a). We can

start with a structured mesh of regular hexahedral elements, and then trim the ones which

intersect with the CAD surface to appropriately approximate the boundary [1]. In this ap-

proach, although the majority of elements in the mesh remain to be regular hexahedra,

polyhedra are generated on the boundary of the mesh. Additionally, polygonal and poly-

hedral elements are well suited to modeling complex porous or particulate microstructures.

For example, as illustrated in Fig. 1 (b), any inclusions, irrespectively of their shape, can be

modeled as single polygons, and any mesh can be made periodic by locally inserting nodes

at appropriate locations [2]. Moreover, polygonal and polyhedral elements are attractive in

adaptive mesh refinement and coarsening. For instance, as shown in Fig. 1 (c), adaptivity

using polygonal element can be used in simulating the cyclic competition model, in which

three species competing in a common habitat for a finite set of resources, to greatly im-

proved the computational efficiency without losing accuracy in capturing the interfaces [3].

From an analysis point of view, polygonal and polyhedral meshes exhibit improved perfor-

mance in terms of inf-sup stability and accuracy, as well as in large deformation problems.

For example, as shown in Fig. 1 (d) for fluid mechanics problems, polygonal meshes

are shown in be unconditionally inf-sup stable without the need of any additional treat-

1



ments with linear displacement and piece-wise constant pressure approximations, whereas

the same approximations yield unphysical pressure distribution on quadrilateral meshes.

Additionally, because of the enriched displacement gradient approximation, polygonal ele-

ments are shown to yield more accurate displacement solutions, as shown in Fig. 1 (e), and

to be more tolerant to large localized deformations, as shown in Fig. 1 (f).

To formulate numerical methods on polygonal and polyhedral discretizations, conform-

ing barycentric Finite Element Method (FEM) and the recent Virtual Element Method

(VEM) are the two popular approaches used in the field of computational mechanics.

Other approaches include the Voronoi Cell Finite Element Method (VCFEM) by Ghosh

and coworkers [6]–[9], Discontinuous Galerkin (DG) method [10], [11] and Mimetic Fi-

nite Difference (MFD) [12]. This thesis aims to contribute to the developments of these

two methods in finite elasticity and topology optimization problems. Moreover, to fully

realize the geometrical advantages of polygonal and polyhedral discretizations, this thesis

also contributes to the development of a simple and effective error estimator for adaptivity.

1.1 Research motivation

1.1.1 Polygonal and polyhedral finite element method

Despite their relatively short history of development, polygonal and polyhedral finite el-

ements have been successfully applied to several fields of computational mechanics and

have revealed several advantages over classical finite elements, i.e., triangular/tetrahedral

and quadrilateral/brick elements. For instance, polygonal and polyhedral finite elements

have been shown to better capture crack propagation and branching in computational frac-

ture simulations [13]–[16], to produce numerically stable results in topology optimization

[17]–[19] and fluid mechanics [4], and to better model contact [20] and arbitrary internal

interface [21] in large deformation elasto-plasticity problems. Furthermore, recent stud-

ies have demonstrated that polygonal finite elements also possess great potential in the

study of two-dimensional finite elasticity problems [2], [22]. More specifically, from a
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Figure 1.1: Several examples show the advantages of polygonal and polyhedral discretiza-
tions from both geometry and analysis points of view. (a) An illustration of using trimmed
hexahedral elements for the discretization of complex 3D geometry [1]. In the discretiza-
tion, once an element intersects with the CAD surface, it is trimmed by the CAD surface to
form a polyhedron. (b) A conceptual illustration of considering inclusions of any shape as
one single polygon and the local insertion of nodes on the opposing edges of the unit cell
to form a periodic mesh [2]. (c) An examples of the pattern formation of the cyclic com-
petition model obtained using adaptive refinement and coarsening at a given time step [3].
(d) Comparisons of the velocity and pressure distributions in a lid-driven cavity problem
obtained on a quadrilateral mesh and a polygonal one [4]. The pressure distribution ob-
tained using a quadrilateral mesh is unphysical and forms the checkerboard pattern, while
the one obtained using a polygonal mesh is physical. (e) The comparison of the accuracy
of displacement solutions of the Cook’s problem [5] under refinements of polygonal and
quadrilateral meshes. It is shown that the solutions obtained by the polygonal meshes con-
verge faster to the reference value than the ones obtained by the quadrilateral meshes [2]. (f)
The discretization of a circular disk with two embedded defects using polygonal elements
[2]. Several snapshots of the elastic growth of defects under different levels of hydrostatic
stretch are plotted, demonstrating the capability of polygonal elements in capturing large
and localized deformations [2].

geometrical point of view, polygonal finite elements are well suited to modeling complex

microstructures, such as porous or particulate microstructures and microstructures involv-

ing different length scales, and to dealing with periodic boundary conditions (introducing

hanging nodes). From an analysis point of view, two-field mixed polygonal finite elements

are found to be numerically stable on Voronoi-type meshes, to produce more accurate re-

sults, and to be more tolerant to large localized deformations.

On the other hand, polygonal and polyhedral finite elements also suffer from several

drawbacks. The construction of local finite element spaces on general polygon and poly-

hedral meshes relies on the generalized barycentric coordinates, which are typically non-

polynomial (e.g., rational) functions. Thus, the existing quadratures schemes, typically

designed for integration of polynomial functions, will lead to persistent consistency errors

that do not vanish with mesh refinement [23], [24]. The persistence of consistency er-

rors in turn renders the FEM suboptimally convergent or even non-convergent under mesh

refinement.

Several attempts have been made in the literature to address this issue. For example,
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in the context of scalar diffusion problems, inspired by the virtual element method (VEM)

[25]–[27], Talischi et al. [23] proposed a polynomial projection approach to ensure the

polynomial consistency of the bilinear form, and thereby ensure the satisfaction of the patch

test and optimal convergence for both linear and quadratic polygonal elements. A similar

approach is also adopted by Manzini et al. [24] to solve Poisson problems on polyhedral

meshes. However, those approaches require the existence of a bilinear form, and therefore

extension to general nonlinear problem is non-trivial. From another perspective, borrowing

the idea of pseudo-derivatives in the meshless literature [28], Bishop proposed an approach

to correct the derivatives of the shape functions to enforce the linear consistency property on

general polygonal and polyhedral meshes [13], [29]. Although being applicable for general

nonlinear cases, extension to higher order cases(e.g. quadratic polygonal and polyhedral

finite elements) is not readily implied. Thus, a general scheme that works for both higher-

order polygonal and polyhedral finite elements in nonlinear problems is still needed.

To overcome the above limitations, Chapter 2 of this thesis adopts a general gradient

correction scheme, which restores the polynomial consistency of the finite element ap-

proximation by adding a minimal perturbation to the gradient of the displacement field,

and develops displacement-based and two-field mixed polygonal finite elements for finite

elasticity problems. We demonstrate that the gradient correction scheme recovers the op-

timal convergence for solutions of both lower- and higher-order approximations. With the

capability of accurately and efficiently handling higher-order mixed polygonal finite ele-

ments, Chapter 2 also discusses various choices of approximating the pressure fields for

higher-order mixed polygonal finite elements and investigates their performance on inf-sup

stability and accuracy.

1.1.2 Virtual element method

The performance of polygonal and polyhedral finite elements strongly depends on the qual-

ity of the basis functions. The use of finite elements with more general shapes, such as
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concave polyhedra, are limited by the availability of well-defined shape functions. Partic-

ularly in 3D, most of the existing shape functions for polyhedral finite elements are either

restrictive in element geometries or computationally expensive to compute. For instance,

although closed-form expressions are available, the Wachspress shape functions are re-

stricted to strictly convex and simple polyhedrons (meaning the collection of faces that

include each vertex consists of exactly three faces) [30], and the Mean Value coordinates

are mainly applicable to polyhedrons with simplicial faces [31]. In contrast, while allow-

ing for more general polyhedrons (e.g., concave ones), harmonic shape functions [29], [32],

[33] and max-entropy shape functions [34]–[36] need to be computed numerically at the

quadrature points element by element.

As an alternative approach, VEM is an emerging method first introduced in [37] as a

generalization of FEM in the family of Galerkin methods. Unlike FEM, the basis functions

of the local space in VEM are defined implicitly through a suite set of partial differential

equations (PDEs), and this set of PDEs is never solved throughout the approximation. In-

stead, we apply integration by parts to compute suitable projections of the basis functions

on to polynomials. [37], [38]. Those projections are then used in the VEM approximation

to ensure its consistency together with a suitable stabilization term, which is needed in or-

der to avoid the appearance of hourglass modes. As a result, only numerical integrations

for polynomials (and not for more complex functions) are required in the VEM. These

unique features allow VEM to handle any polygonal and polyhedral meshes (including the

non-convex ones [39], [40]) and to construct various types of elements, including H(div)

and H(curl) conforming elements [41]. The VEM has undergone substantial developments

and has been successfully applied to a wide range of problems. In the field of computa-

tional mechanics, the VEM has been introduced for linear elasticity problems [26], [42],

[43], small deformation nonlinear elastic and inelastic problems [44]–[47], plate bending

problems [48]–[51] and contact problems [52].

Most work in the VEM literature considers either linear or nonlinear problems under
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small deformation (we also mention some more recent work on large deformation elasticity

[53] and elasto-plasticity [54] problems ). The goal of Chapter 3 is to put forward a gen-

eral VEM framework for finite elasticity problems, which is capable of handling general

polygonal and polyhedral elements, including concave ones. More specifically, Chapter

3 presents two VEM formulations including a two-field mixed VEM formulation, which

involves an additional pressure field, and an equivalent displacement-based VEM formula-

tion, which is numerically shown to be free of volumetric locking (as opposed to the stan-

dard displacement-based FEM). To achieve robust performance under large deformations,

the VEM framework adopts an L2 projection of the volumetric strain (i.e. determinant of

the deformation gradient) computable through properly defined local VEM displacement

spaces, and introduces a new stabilization scheme that consistently evolves through defor-

mations.

Among various features of VEM, the flexibility in dealing with general polygonal and

polyhedral meshes makes it appealing for adaptivity. For example, by introducing hanging

nodes, adaptive mesh refinement can be made more efficient with polygonal and polyhedral

elements because it only requires local modifications to the mesh [2]. On the other hand,

the shape generality of polygonal and polyhedral elements (especially the concave ones)

enables easier element agglomeration schemes for adaptive mesh coarsening [55], [56]. As

a result, realizing the full potential of VEM in adaptivity urges the development of accurate

a posteriori error estimators.

Comparing to FEM, a posteriori error estimations in the VEM framework is a more in-

volved task because the basis functions of the local VEM space are unknown in the interior

of elements. Nevertheless, there exist some error estimators in the literature for C0 and C1

VEMs [57]–[60], but all of them are of residual type. Comparing to the residual type er-

ror estimators, the recovery-based error estimators (although supported by a less extended

theoretical background with respect to other methods) are often more favorable in practical

applications because of their simple structure, easy implementation, and effectiveness in
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predicting errors. Thus, Chapter 4 of this thesis outlines a general recovery-based a pos-

teriori error estimation framework for H1 conforming VEM of arbitrary order on general

polygonal/polyhedral meshes. The framework consists of a gradient recovery scheme and

a posteriori error estimator based on the recovered displacement gradient. A skeletal error,

which accurately mimics the behavior of the L2 error of the displacement gradient by only

sampling the displacement gradient on the mesh skeleton, is introduced.

1.1.3 Topology optimization on polyhedral discretization

Topology optimization is a powerful computational tool to design optimal structures under

given loads and boundary conditions. Since the seminal work of Bendsøe and Kikuchi

[61], the field of topology optimization has experienced tremendous growth and had a

major impact in several areas of engineering and technology.

Among various topology optimization approaches, the density-based approach is com-

monly adopted on structured meshes (e.g., uniform grids) with a piece-wise constant den-

sity parametrization, where each element is assigned with a constant density, and a lower-

order Lagrangian-type finite element approximation of the displacement field. However,

this choice of approximation typically suffers from numerical instabilities such as checker-

board patterns and one node connections [62], [63], may lead to mesh-dependent solutions

[64], and has limited ability to discretize complex design domains [17].

As a more general discretization, polygonal elements are shown to be effective in sup-

pressing checkerboard patterns and reducing mesh dependency in the solutions of topology

optimization [17]–[19], [64], [65]. In addition, the geometrical flexibility of polygonal

elements also makes them more versatile in discretizing complex domains and attractive

for mesh adaptations in topology optimization (see, e.g., [66], [67]). However, extend-

ing topology optimization to arbitrary 3D polyhedral meshes is a challenging task con-

sisting of two major challenges: difficulty in solving the structural equations on general

polyhedral meshes and the increased computational cost resulted from mixed approxima-
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tions of displacement and design fields on polyhedral meshes. The latter challenge comes

from the fact that, because a typical polyhedral (e.g., Voronoi) mesh contains significantly

more vertices than elements, the choice of element-wise constant density and node-based

displacement approximations becomes considerably less computationally economical on

polyhedral meshes. In particular, when compared with uniform grids of a similar number

of elements (thus similar numbers of densities and design variables and design resolution),

we need to solve a much larger structural system in each optimization iteration if a polyhe-

dral mesh is considered.

To overcome the above mentioned two challenges, Chapter 5 of this thesis makes full

use of the features of VEM and propose a new VEM-based topology optimization frame-

work on general polyhedral discretizations. More specifically, we adopt the VEM in both

structural and optimization problems. Similarly to [65], we use VEM to solve the elasticity

equation in the structural problem. The capability of VEM in handling arbitrary element

geometry allows us to solve the structural problem more efficiently (i.e., no numerical in-

tegration is needed) and robustly (i.e., with respect to degenerated elements) on polyhedral

meshes. Exploiting the flexibility of VEM in defining local spaces, this chapter also intro-

duces an enriched continuous approximation of material densities using nodal VEM basis

functions. As compared to the standard element-wise constant density approximation, the

continuous approximation contains a greater number of degrees of freedom (DOFs) for any

given polyhedral mesh and can thus improve the quality of structural topology parameteri-

zations.

1.2 Thesis organization

The remainder of this thesis is organized as follows. Chapter 2 introduces lower- and

higher-order polygonal finite element formulations for finite elasticity problems using both

displacement-based and two-field mixed approximations. The convergence of the formula-

tions are ensured by a general gradient correction scheme, whose basic idea is to correct the
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displacement gradient at the element level with a minimal perturbation so that the discrete

divergence theorem is enforced against polynomial functions of suitable order. Chapter 2

also discusses various choices of approximating the pressure fields for higher-order mixed

polygonal finite elements and investigates their performance on inf-sup stability and accu-

racy. Chapter 3 proposes a general VEM framework for finite elasticity which is capable of

handling a more general class of element geometry in 2D and 3D. Two VEM formulations

are presented: a two-field mixed and an equivalent displacement-based, which is free of

volumetric locking. In addition to the standard ingredients in VEM, this framework also in-

troduces a new L2 projection of the volumetric strain, which is exactly computable through

properly defined local displacement spaces, and a nonlinear stabilization technique, which

evolves with the deformations. To fully realize its potential of VEM adaptivity, Chapter

4 focuses on the development of a simple and effective recovery-based a posteriori error

estimator for VEM of arbitrary order of accuracy. To avoid the difficulty of not knowing

the VEM basis functions in the interior of elements, we introduce a skeletal error measure,

which accurately mimics the behavior of the L2 error of the displacement gradient by only

sampling its value on the mesh skeleton. Theoretical and numerical analyses are presented

to demonstrate the accuracy of the a posteriori error estimator on a wide class of polygonal

and polyhedral meshes. In Chapter 5, we present a VEM-based 3D topology optimization

framework on general polyhedral meshes. The framework takes full advantage of the VEM

properties by creating a unified approach in which the VEM is employed in both the struc-

tural and the optimization phases of the framework. Through two numerical examples with

exact solutions, we verify the convergence and accuracy of both the VEM approximations

of the displacement and material density fields. We also present several design examples

involving non-Cartesian domains, demonstrating the main features of the proposed VEM-

based topology optimization framework. Finally, some concluding remarks are provided in

Chapter 6 along with several suggestions for potential extensions of the current work.
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CHAPTER 2

A PARADIGM FOR HIGHER-ORDER POLYGONAL ELEMENTS IN FINITE

ELASTICITY USING A GRADIENT CORRECTION SCHEME

Recent studies have demonstrated that polygonal elements possess great potential in the

study of nonlinear elastic materials under finite deformations. On the one hand, these el-

ements are well suited to model complex microstructures (e.g. particulate microstructures

and microstructures involving different length scales) and incorporating periodic bound-

ary conditions. On the other hand, polygonal elements are found to be more tolerant to

large localized deformations than the standard finite elements, and to produce more ac-

curate results in bending and shear than the standard finite elements. With mixed formu-

lations, lower order mixed polygonal elements are also shown to be numerically stable

on Voronoi-type meshes without any additional stabilization treatments. However, polyg-

onal elements generally suffer from persistent consistency errors under mesh refinement

with the commonly used numerical integration schemes. As a result, non-convergent fi-

nite element results typically occur, which severely limit their applications. In this work, a

general gradient correction scheme is adopted that restores the polynomial consistency by

adding a minimal perturbation to the gradient of the displacement field. With the correction

scheme, the recovery of the optimal convergence for solutions of displacement-based and

mixed formulations with both linear and quadratic displacement interpolants is confirmed

by numerical studies of several boundary value problems in finite elasticity. In addition,

for mixed polygonal elements, the various choices of the pressure field approximations are

discussed, and their performance on stability and accuracy are numerically investigated.

We present applications of those elements in physically-based examples including a study

of filled elastomers with interphasial effect and a qualitative comparison with cavitation

experiments for fiber-reinforced elastomers.
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2.1 Introduction

The finite element space for polygonal elements contains non-polynomial (e.g. rational)

functions and thereby the existing quadratures schemes, typically designed for integration

of polynomial functions, will lead to persistent consistency errors that do not vanish with

mesh refinement [23], [24]. As a direct consequence, the so-called patch test, which pro-

vides a measure of polynomial consistency of conforming discretizations, is not passed

on general polygonal meshes, even in an asymptotic sense. Moreover, the persistence

of the errors in turn renders the finite element method suboptimally convergent or even

non-convergent under mesh refinement. In practice, using a sufficiently large number of

integration points can lower the consistency error. For linear polygonal elements in two

dimension (2D), a triangulation scheme with three integration points per triangle is shown

to be sufficiently accurate for practical problems and mesh sizes [2], [23]. However, for

higher-order polygonal elements, for instance, quadratic elements that will be discussed in

this chapter, the number of integration points of such a scheme can become prohibitively

large. This is also the case for polyhedral elements in three dimensions (3D). For example,

maintaining optimal convergence rates with a linear polyhedral discretization for practi-

cal levels of mesh refinement may require several hundred integration points per element

[24], [68]. As the number of elements increase, the associated computational cost on a

polyhedral discretization can be too expensive for practical applications.

Several attempts have been made in the literature to address this issue. For example,

in the context of scalar diffusion problems, inspired by the virtual element method (VEM)

[25]–[27], Talischi et al. [23] has proposed a polynomial projection approach to ensure the

polynomial consistency of the bilinear form, and thereby ensure the satisfaction of the patch

test and optimal convergence for both linear and quadratic polygonal elements. A similar

approach is also adopted by Manzini et al. [24] to solve Poisson problems on polyhedral

meshes. However, those approaches require the existence of a bilinear form, and therefore
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extension to general nonlinear problem is non-trivial and is still an open question. Borrow-

ing the idea of pseudo-derivatives in the meshless literature [28], Bishop has proposed an

approach to correct the derivatives of the shape functions to enforce the linear consistency

property on general polygonal and polyhedral meshes [13], [29]. With the correction, the

linear patch test is passed and optimal convergence is achieved. Although being applicable

for general nonlinear cases, extension to higher order cases(e.g. quadratic polygonal finite

elements) is not trivially implied.

More recently, Talischi et al. [68] have proposed a general gradient correction scheme

that is applicable to both linear and nonlinear problems on polygonal and polyhedral ele-

ments with arbitrary orders. In essence, the scheme corrects the gradient field at the ele-

ment level with a minimal perturbation such that the discrete divergence theorem is satisfied

against polynomial functions of suitable orders. With a minimum accuracy requirement of

the numerical integration scheme, the correction scheme has been previously shown to re-

store optimal convergence for linear diffusion and nonlinear Forchheimer flow problems

[68]. In this work, we adopt the gradient correction scheme in two dimensional finite elas-

ticity problems and apply it to linear and quadratic polygonal elements. As we will see, the

gradient correction scheme renders both linear and quadratic polygonal elements optimally

convergent.

To enable the modeling of materials with a full range of compressibility, this work

considers displacement-based as well as two-field mixed polygonal elements, the latter of

which contains an additional discrete pressure field. For mixed finite elements, the nu-

merical stability is a critical issue to ensure convergence and therefore has been subjected

to extensive studies in the finite element literature. Generally, the stability condition is

described by the well-known inf-sup condition [69]–[71], which, in essence, implies a bal-

ance between the discrete spaces for displacement field and pressure field [72]. Many of

the classical mixed finite elements are known to be unstable (see, for instance, summaries

in [73], [74]). As a result, some post-processing procedures or stabilization methods are
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needed for those elements (see, for instance, [75]–[78]). In contrast, some recent contri-

butions have suggested that linear mixed polygonal elements coupled with element-wise

constant pressure field are numerically stable on Voronoi-type meshes in both linear and

nonlinear problems if every node/vertex in the mesh is connected to at most three edges [2],

[4], [72]. Furthermore, with the availability of higher order displacement interpolants (see,

e.g. [36], [79]), various mixed approximations for higher order polygonal elements featur-

ing more enriched pressure spaces are made possible. For example, for mixed quadratic

elements, together with quadratic interpolation of the displacement field, the pressure field

can be approximated by either discontinuous piecewise-linear or continuous linearly com-

plete functions. However, their stability, convergence and accuracy is still an open prob-

lem and has not been fully explored in the literature. In this chapter, the performance of

mixed quadratic polygonal elements with different choices of pressure approximations is

presented and studied for the first time with thorough numerical assessments. As a direct

observation, the mixed quadratic polygonal elements also seem to be stable with both dis-

continuous piecewise-linear and continuous linearly complete interpolations of the pressure

field on Voronoi-type meshes for linear elasticity problems. Intuitively, this stability results

from the larger displacement space for polygonal finite elements when compared with the

classical triangular and quadrilateral elements.

The remainder of the chapter is organized as follows. Displacement and mixed vari-

ational formulations of finite elasticity are briefly recalled in Section 2. In Section 3,

finite element spaces and approximations are presented and numerical integration issues

are discussed, including a review of the gradient correction scheme. Section 4 presents a

numerical study of the convergence, accuracy, and stability for both linear and quadratic,

displacement-based and mixed polygonal elements. In Section 5, two examples of practi-

cal relevance are studied with polygonal finite elements: (i) the nonlinear elastic response

of a filled elastomer reinforced with a random isotropic distribution of circular particles

bonded through finite-size interphases, and (ii) the onset of cavitation in a fiber-reinforced
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elastomer. Finally, some concluding remarks are recorded in Section 6.

We briefly and partially introduce the notation adopted in this chapter. For any subset

E of the given domain Ω, E ⊂Ω, we denote by |E| its area or volume and 〈·〉E the average

operator:

〈·〉E
.
=

1
|E|

�
E
(·)dX. (2.1)

If the average is taken for the whole domain Ω, we denote the operator as 〈·〉 with the

subscript Ω omitted. We shall also || · ||L2(E) to denote as the standard L2-norm over E and

|| · || as the standard L2-norm over Ω.

2.2 Finite elasticity formulations

In this section, for later use, two variational formulations of elastostatics are recalled, in-

cluding the classical displacement-based formulation and a general two-field mixed formu-

lation [80]–[83]. Throughout, a Lagrangian description of the fields is adopted.

Consider a body in its stress-free, undeformed configuration that occupies a domain

Ω with boundary ∂Ω. On its boundary, it is subjected to a prescribed displacement field

u0 on ΓX and prescribed surface traction t (per unit undeformed surface) on Γt, such that

ΓX∪Γt = ∂Ω and ΓX∩Γt =∅. Moreover, it is also assumed to be subjected to a body-force

f (per unit undeformed volume) in Ω. A stored-energy function W is used to characterize

the constitutive behavior of the body, which is assumed to be an objective function of the

deformation gradient F. In terms of W , the first Piola-Kirchhoff stress tensor P at each

material point X ∈Ω is given by the following relation:

P(X) =
∂W
∂F

(X,F) , (2.2)

which is used as the stress measure of choice in this chapter.
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2.2.1 Displacement-based formulation

The displacement-based formulation considers the displacement field u as the only inde-

pendent field. The deformation gradient F is then assumed to be a function of u given

by F(u) = I+∇u, where ∇ denotes the gradient operator with respect to the undeformed

configuration and I is the identity in the space of second order tensors. According to the

principle of minimum potential energy, the unknown equilibrium displacement field u is the

one that minimizes the potential energy Π among the set of all kinematically admissible

displacements v:

Π(u) = min
v∈K

Π(v) , (2.3)

with

Π(v) =
�

Ω

(X,F(v))dX−
�

Ω

f ·vdX−
�

Γt
t ·vdS, (2.4)

where K stands for the set of kinematically admissible displacements such that v = u0 on

ΓX.

The weak form of the Euler-Lagrange equations associated with the variational princi-

ple (2.3) is given by:

G(v,δv) =
�

Ω

∂W
∂F

(X,F(v)) : ∇(δv)dX−
�

Ω

f ·δvdX−
�

Γt
t ·δvdS = 0 ∀δv ∈K0,

(2.5)

where the trial displacement field δv is the variation of v, and K0 denotes the set of all the

kinematically admissible displacement fields that vanish on ΓX.

2.2.2 A general two-field mixed variational formulation

The displacement-based formulation is known to perform poorly with standard finite ele-

ments when the material under consideration is nearly or purely incompressible. Mixed

variational principles are typically adopted as the formulation of choice for such problems
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instead. Recently, a new two-field mixed variational principle has been put forth by Chi et

al. [2], which, unlike the commonly used mixed formulations in the finite element litera-

ture, does not require the multiplicative decomposition of the deformation gradient tensor

F [2]. For the reminder of the chapter, the formulation of Chi et al. [2] is referred to as the

F-formulation, whereas the commonly used formulation making use of the multiplicative

decomposition of F into a deviatoric part, F= (detF)−
1
3 F, and a hydrostatic part, (detF)

1
3 I,

is referred to as the F-formulation. In this section, the F-formulation is briefly reviewed.

For the F-formulation, the interested reader is referred to [2], [84]–[90] and references

therein.

The F-formulation consists of finding the equilibrium (u, p̂) ∈K ×Q, such that,

Π̂(u, p̂) = min
v∈K

max
q̂∈Q

Π̂(v, q̂) , (2.6)

with

Π̂(v, q̂) =
�

Ω

{
−Ŵ ∗ (X,F(v) , q̂)+ q̂ [detF(v)−1]

}
dX−

�
Ω

f ·vdX−
�

Γt
t ·vdS. (2.7)

In the above variational principle, Q denotes the set of square-integrable scalar functions

and the “complementary” stored-energy function Ŵ ∗ (X,F, q̂) is defined by partial Legen-

dre transformation:

Ŵ ∗ (X,F, q̂) = max
J

{
q̂(J−1)−Ŵ (X,F,J)

}
, (2.8)

where Ŵ is defined such that Ŵ (X,F,J) =W (X,F) when J = detF.

Unlike the F-formulation, in which the second independent field agrees precisely with

the Cauchy hydrostatic pressure field p .
= trσσσ with σσσ = J−1PFT , the maximizing scalar

field p̂ is a pressure-like field, henceforth referred to as the pressure field, relates to the
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hydrostatic pressure field p via the relation

p = p̂− 1
3detF

∂Ŵ ∗

∂F
(X,F, p̂) : F. (2.9)

The weak form of the Euler-Lagrange equations associated with (2.6)–(2.7) reads as

Gv (v, q̂,δv) =
�

Ω

[
−∂Ŵ ∗

∂F
(X,F(v) , q̂)+ q̂adj

(
FT (v)

)]
: ∇(δv)dX

−
�

Ω

f ·δvdX−
�

Γt
t ·δvdS = 0 ∀δv ∈K 0, (2.10)

Gq̂ (v, q̂,δ q̂) =
�

Ω

[
detF(v)−1− ∂Ŵ ∗

∂ q̂
(X,F(v) , q̂)

]
δ q̂dX = 0 ∀δ q̂ ∈Q, (2.11)

where the trail pressure field δ q̂ is the variation of q̂, and adj(·) stands for the adjugate

operator.

2.3 Polygonal finite elements approximations

This section addresses issues concerning polygonal finite element approximations. In par-

ticular, the constructions of conforming finite dimensional displacement space and pressure

spaces, for both linear and quadratic polygonal finite elements, are presented. Furthermore,

the gradient correction scheme of Talischi et al. [68] is reviewed and the numerical integra-

tion schemes used in this work are discussed. Finally, we record Galerkin approximations

of the weak form of the Euler-Lagrange equations of the variational principles discussed

in the preceding section including the incorporation of the gradient correction scheme for

displacement-based and mixed formulations, and demonstrate the polynomial consistency

of the proposed approximations.
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2.3.1 Finite element spaces

Consider Ωh to be a finite element decomposition of the domain Ω into non-overlapping

polygons, where h is the maximum element size. The boundary of the mesh, denoted as

Γh is assumed to be compatible with the applied boundary condition, that is, Γt
h and ΓX

h are

both unions of edges of the mesh. We also denote E ∈Ωh as the element of the mesh. The

displacement space associated with the discretization is a conforming finite dimensional

space Kh,k that defined as:

Kh,k =
{

vh ∈ [C0 (Ω)]2∩K : vh|E ∈ [Mk (E)]2,∀E ∈Ωh
}
, (2.12)

where k is the order of the discretization. In the above definition, Mk (E) is a finite di-

mensional space defined over each element E whose basis functions are denoted as ϕ
(k)
i

henceforth. In this chapter, we consider linear and serendipity quadratic elements, corre-

sponding to the cases of k = 1 and k = 2, respectively. For the case of k = 1, we will omit

the superscript “(k)” in ϕ
(k)
i and denote the basis functions as ϕi.

For a linear polygonal element E with n edges, the space M1 (E) is a n dimensional

space, with the degrees of freedom at each vertex of E, as shown in Fig. 2.1 (a), which can

be defined by a set of generalized barycentric coordinates ϕi. Quite a few barycentric co-

ordinates can be found in the literature [32], [34], [91]–[96], among which the Mean Value

coordinates [97] are adopted in this chapter. Over element E, the Mean Value coordinate

associated with vertex i is defined as [97]:

ϕi (X) =
wi (X)

∑
n
j=1 w j (X)

, (2.13)

with wi given by

wi (X) =
tan
[

βi−1(X)
2

]
+ tan

[
βi(X)

2

]
||X−Xi||

, (2.14)

where Xi is the position vector of vertex i and ti follow the definition ti = tan(βi/2) in
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Figure 2.1: (a) Illustration of angles βi defined in Mean Value Coordinates interpolant wi.
(b) Contour plot of a Mean Value basis vector ϕi over a convex polygon. (c) Contour plot
of a Mean Value basis vector ϕi over a concave polygon.

which βi is the angle defined in Fig. 2.1(a). By defining

ci =
Xi−X
||Xi−X||2

− Xi+1−X
||Xi+1−X||2

, (2.15)

the ratio Ri
.
= ∇wi/wi is expressed as

Ri =

(
ti−1

ti−1 + ti

)
c⊥i−1

sinβi−1
+

(
ti

ti−1 + ti

)
c⊥i

sinβi
+

Xi−X
||Xi−X||2

. (2.16)

In the above expression, we have made use of the notation a⊥ = [−ay,ax]
T to denote the

90◦ counterclockwise rotation of a given vector a = [ax,ay]
T ∈ R2, and ||a|| to denote the

its Euclidean norm. As a result, the gradients of the Mean Value coordinates are given by

the following [30], [98]:

∇ϕi = ϕi

(
Ri−

n

∑
j=1

ϕ jR j

)
. (2.17)

Unlike the Wachspress coordinates [30], the gradients of the Mean Value coordinates are

shown to stay bounded as the interior angles approaching π [99], meaning that the Mean

Value coordinates are able to handle polygons with collinear vertices. Furthermore, the

Mean Value coordinates are shown to be well defined for concave polygons [100]. Exam-

ples of contour plots of the Mean Value coordinates on a convex and concave polygons are

shown in Fig. 2.1 (b) and (c).

20



For a serendipity quadratic elements (k = 2), M2 (E) is a 2n dimensional space having

the degrees of freedom at the each vertex of E, as well as the mid-point of each edge,

as shown in Figs. 2.2 (a) and (d). According to Rand et al. [79], such a space can be

constructed from linear combination of pairwise products of the barycentric coordinates

ϕi. Its interpolants ϕ
(2)
i are expressed as:

ϕ
(2)
i (X) =

n

∑
j=1

n

∑
l=1

ci
jlϕ j (X)ϕl (X) , i = 1, · · · ,2n. (2.18)

Here, ϕ j are the barycentric coordinates for E, which are the Mean Value coordinates in

this work. The coefficients ci
jl are computed such that any quadratic functions can be

interpolated exactly by ϕ
(2)
i :

p(X) =
n

∑
i=1

[
p(Xi)ϕ

(2)
i (X)+ p

(
X̂i

)
ϕ
(2)
i+n (X)

]
, ∀p ∈P2 (E) , (2.19)

where, X̂i = (Xi +Xi+1)/2, are the positions of the mid-side nodes. By definition, the

coefficients ci
jl depend only on the coordinates of the vertices of E. Therefore, the gradients

of the interpolants ϕ
(2)
i are obtained as:

∇ϕ
(2)
i =

n

∑
j=1

n

∑
l=1

(
ci

jl + ci
l j

)
∇ϕ j (X)ϕl (X) . (2.20)

Although the construction above is derived assuming that the polygonal elements are

strictly convex [79], we find it also seems to be valid for several cases of concave polygons

provided that the barycentric coordinates ϕ j in Eq.(2.18) are well defined over concave

polygons, which holds for Mean Value coordinates. In fact, our numerical assessments in

Section 4 suggest that the finite element solutions with certain non-convex polygonal ele-

ments indeed converge with their optimal rates. Examples of the basis function constructed

using this approach are shown in Figs. 2.2 (b), (c), (e) and (f) on both convex and concave

polygons.
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Figure 2.2: (a) Illustrations of the vertex and mid-edge degrees of freedom of a convex
polygon. (b) Contour plot of a Mean Value basis ϕ

(2)
i associated with a vertex over a

convex polygon. (c) Contour plot of a Mean Value basis ϕ
(2)
i associated with a mid-edge

node over a convex polygon.(d) Illustration of the vertex and mid-edge degrees of freedom
of a concave polygon. (e) Contour plot of a Mean Value basis ϕ

(2)
i associated with a vertex

over a concave polygon. (f) Contour plot of a Mean Value basis ϕ
(2)
i associated with a

mid-edge node over a concave polygon.

Following their definitions, the spaces M1 (E) and M2 (E) contain all the polynomial

functions of order k over E, namely,

Pk (E)⊆Mk (E) , ∀E ∈Ωh, k = 1,2, (2.21)

where Pk (E) is the space of polynomial functions of order k. Their basis functions satisfy

the Kronecker-delta property, that is ϕ
(k)
i
(
X j
)
= δi j with k= 1,2. In addition, any functions

in Mk (E) posses kth order polynomial variations on ∂E.

Regarding the two-field mixed finite elements, an approximation of the additional pres-

sure field is needed. As conforming approximations of Q, either discontinuous or con-

tinuous approximations can be adopted. For discontinuous approximations, the discrete
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pressure space QD
h,k−1 can be defined as:

QD
h,k−1 = {qh ∈Q : qh|E ∈Pk−1 (E) ,∀E ∈Ωh} , (2.22)

where k is the order of the element. As implied by the above definition, the approximated

pressure field may be discontinuous across element boundaries. This type of mixed ele-

ments is similar to the Crouzeix-Raviart (C-R) elements in fluid problems[101]. For the

remainder of the chapter, we denote this family of mixed element as Mk−PD
k−1 elements,

where “M ” denotes the Barycentric Mean Value spaces, “PD” stands for polynomial

spaces which are discontinuous across element boundaries, and k is the order of the el-

ement. For instance, the pressure space of the M1−PD
0 element consists of piecewise

constant functions, which are constant over each element. Similarly, the pressure space

of the M2−PD
1 element contains piecewise linear functions that vary linearly over each

element.

Alternatively, a continuous approximation of the pressure space can be defined in the

following manner:

QC
h,k−1 =

{
qh ∈C0 (Ω) : qh|E ∈Mk−1 (E) ,∀E ∈Ωh

}
. (2.23)

This class of elements resembles the Taylor-Hood (T-H) elements in fluid problems[102]

and they are denoted as the Mk−Mk−1 elements for the remainder of the chapter. For

convention, we define M0 = P0. As a result, the Mk−Mk−1 elements coincide with the

Mk−PD
k−1 elements for the linear case, i.e., k = 1.

In this chapter, we will consider both types of mixed polygonal finite elements up to

quadratic order. As an illustration, the degrees of freedom (DOFs) of the displacement field

and pressure field for those mixed polygonal elements are shown in Fig. 2.3.
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Figure 2.3: Illustration of the degrees of freedom of the displacement field and pressure
field for different mixed polygonal element studied in this chapter : (a) M1−PD

0 elements,
(b) M2−PD

1 elements, and (c) M2−M1 elements.

2.3.2 Numerical integration and gradient correction scheme

Because of the non-polynomial nature of the space defined by the barycentric coordinates,

commonly used quadrature rules for polynomial functions will introduce consistency errors

that are persistent with mesh refinement and lead to non-convergent results in finite elas-

ticity problem. Although higher order quadrature rules can reduce the consistency error,

they may contain a large amount of integration points and consequently make it computa-

tionally expensive to iteratively evaluate stiffness and internal force vectors. To overcome

the above-mentioned issues, we introduce the gradient correction scheme in this work to

polygonal elements in the context of finite elasticity problems [68]. We note that although

the gradient correction theory is applicable to both two dimensional (2D) and three dimen-

sional (3D) problems, the following discussion is restricted to the 2D case.

Consider a general polygonal element E with ∂E denoted as its boundaries and hE as its

diameter. As defined in the previous subsection, Mk (E) and Pk (E) are the finite element

space and polynomial space defined over E,respectively, which are of order k. In addition,
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we denote numerical integration schemes,
�

E , on E as an approximation of the area integral,
�

E . For the remainder of the chapter, the integration scheme is referred to as mth order if

it can integrate polynomial functions of order m exactly. Regarding the boundary integral,

one dimensional Gauss–Lobatto quadrature rule is adopted for the line integral
�

∂E , which

uses two integration points per edge for linear elements and three integration points per

edge for quadratic elements.

Accuracy requirements on numerical integrations A minimum accuracy requirement

is assumed for the candidate numerical integration schemes of
�

E [68]. For a fixed element

order k, hence the fixed order of space Mk (E) and Pk (E), the gradient correction scheme

requires the available integration scheme
�

E to be exact when integrating any polynomial

functions of order at least 2k− 2. For instance, the selected scheme should integrate any

constants (order 0) and quadratic (order 2) functions exactly for linear elements (k = 1)

and quadratic elements (k = 2), respectively. Moreover, the integrations scheme
�

E needs

to be sufficiently rich enough to eliminate spurious energy modes. One example of such a

scheme is the triangulation scheme [4], [103]. It divides each polygonal element into trian-

gles by connecting the centroid to each vertex and applies available polynomially precise

quadrature rules in each triangle. In this chapter, a triangulation scheme with the Dunavant

rules [104] in each subdivided triangle is adopted for both linear and quadratic elements.

According to the above stated requirements, instead of using a one-point rule that exactly

integrates constant functions, the 1st order triangulation scheme containing one integra-

tion per subdivided triangle is used for linear element to avoid spurious energy modes.

For a quadratic element, the 2nd order triangulation scheme is employed, which contains

three integration points per subdivided triangle. Furthermore, the 3rd order triangulation

scheme is also used to investigate the effect of increasing integration orders. Illustrations

of those schemes are shown in Figs. 2.4 (a)-(c). As a side note, the triangulation scheme

requires polygonal elements be star shaped with respect to their centroids, which is the
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case for all the examples presented in this chapter. However, since the gradient correction

scheme is also applicable to other quadrature schemes, as long as they satisfy the accu-

racy requirement stated in the chapter, other more advance quadrature schemes available in

the literature, e.g., [105]–[107], which are specifically designed for integrating polynomial

functions over arbitrary polygonal domains, can also be used as
�

E .

Figure 2.4: Illustration of the “triangulation” schemes for general polygons in physical
domain: (a) 1st order triangulation scheme, (b) 2nd order triangulation scheme and (c) 3rd
order triangulation scheme.

Under the above stated accuracy requirement, the gradient correction scheme corrects

the exact gradient field by adding a small perturbation field to enforce the satisfaction of the

discrete divergence theorem at the element level. In the sequel, we first define the gradient

correction scheme for scalar problems, and then show its extension to vector problems.

Gradient correction for scalar problems For scalar problems, the corrected gradient,

denoted as ∇E,kv =
[(

∇E,kv
)

x ,
(
∇E,kv

)
y

]T
, is taken to be closest vector field to ∇v =[

(∇v)x ,(∇v)y

]T
that solves the following optimization problem:

min
ζζζ

�
E
(ζζζ −∇v) · (ζζζ −∇v)dX (2.24)

subject to

�
E

p ·ζζζ dX =

�
∂E

(p ·n) vdS−
�

E
vdivpdX, ∀p ∈ [Pk−1 (E)]

2 . (2.25)
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The above minimization is performed over all the sufficiently smooth functions such that

the utilized quadrature makes sense. Since quadrature is used, we note that the above

minimization problem only determines ∇E,kv at the quadrature points and the following

analysis shows that the difference of ∇E,kv−∇v equal to an element of [Pk−1(E)]
2 at

those points. Consider a basis of [Pk−1(E)]
2 denoted as

{
ξξξ 1, · · · ,ξξξ nPk−1

}
where nPk−1

is the dimension [Pk−1 (E)]
2. We replace the constraint (2.25) with an equivalent set of

constraints:

�
E

ξξξ a ·ζζζ dX =

�
∂E

(ξξξ a ·n) vdS−
�

E
vdivξξξ adX, a = 1, · · · ,nPk−1. (2.26)

Introduce a set of Lagrange multipliers, λ1, · · · ,λnPk−1 , the Lagrangian of the constrained

optimization problem (2.24)–(2.25) takes the form

L
(
ζζζ ,λ1, · · · ,λnPk−1

)
=

�
E
(ζζζ −∇v) · (ζζζ −∇v)dX

+
nPk−1

∑
a=1

λa

[�
E

ξξξ a ·ζζζ dX−
�

∂E
(ξξξ a ·n) vdS+

�
E

vdivξξξ adX
]
. (2.27)

Taking variation of the Lagrangian with respect to ηηη , the optimality condition of ∇E,kv

gives

Dζζζ L
(
∇E,kv,λ1, · · · ,λnPk−1

)
·ηηη =

�
E

(
∇E,kv−∇v+

nPk−1

∑
a=1

1
2

λapa

)
·ηηη = 0. (2.28)

Therefore, motivated by above analysis, we formally defined ∇E,kv as the vector field

that satisfies the following two conditions:

∇E,kv−∇v ∈ [Pk−1 (E)]
2 , and (2.29)
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�
E

p ·∇E,kvdX =

�
∂E

(p ·n) vdS−
�

E
vdivpdX, ∀p ∈ [Pk−1 (E)]

2 . (2.30)

Furthermore, notice that relation (2.30) holds for any functions in Pk (E). In such

cases, as implied by the minimization problem (2.24) and (2.25), the correction function is

zero and the corrected gradients coincide with the exact ones, implying

∇E,kq = ∇q, ∀q ∈Pk (E) . (2.31)

By definition, we are able to show that for any sufficiently smooth vector fields ψψψ , the

element-level consistency error satisfies the following estimate

�
E

ψψψ ·∇E,kvdX−
�

E
ψψψ ·∇vdX = O

(
hk

E

)
||∇v||L 2(E), (2.32)

where hE is the diameter of E [68].

From a computational perspective, since ∇E,k is a linear map, only the gradient of each

basis function in Mk (E) needs to be corrected in practice. Here, we present a procedure

for computing the corrected gradient of each basis function. We denote
{

ϕ
(k)
1 , · · · ,ϕ(k)

nMk

}
as the basis for Mk (E), where nMk is the dimensions of the space Mk (E). According to

(2.29), we can find a coefficient matrix S such that

∇E,kϕ
(k)
i = ∇ϕ

(k)
i +

nPk−1

∑
a=1

Siaξξξ a, ∀i = 1, ...,nMk. (2.33)

We further define matrices R of size nMk×nPk−1, and M of size nPk−1×nPk−1 with
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the following forms:

Ria =

�
∂E

(ξξξ a ·n)ϕ
(k)
i dS−

�
E

ϕ
(k)
i divξξξ adX−

�
E

ξξξ a ·∇ϕ
(k)
i dX, and

Mab =

�
∂E

ξξξ a ·ξξξ bdX.

(2.34)

Replacing v and p with ϕk
i and ξξξ b in (2.30) yields the following linear system of equations

nPk−1

∑
a=1

SiaMab = Rib, ∀i = 1, ...,nMk and b = 1, ...,nPk−1. (2.35)

Therefore, the coefficient matrix is obtained as S = RM−1.

Gradient correction for vectorial problems When extended to vector field v= [vx,vy]
T ∈

[Mk (E)]
2, the gradient correction scheme takes the form:

∇E,k⊗v =

(∇E,kvx
)T(

∇E,kvy
)T

 . (2.36)

Similar to the scalar case, the corrected gradient satisfies the discrete divergence theorem,

�
E

p : ∇E,k⊗vdX =

�
∂E

(pn) ·vdS−
�

E
v ·divpdX, ∀p ∈ [Pk−1 (E)]

2×2 , (2.37)

and, moreover, for any sufficiently smooth 2nd order tensorial fields ψψψ , the element-level

consistency error satisfies

�
E

ψψψ : ∇E,k⊗vdX−
�

E
ψψψ : ∇vdX = O

(
hk

E

)
||∇v||L 2(E). (2.38)

In computational implementation, assuming the set of basis functions
{

ϕϕϕ
(k)
1 , ...,ϕϕϕ

(k)
2nMk

}
of [Mk (E)]

2 are of the form

ϕϕϕ
(k)
2i−1 =

{
ϕ
(k)
i ,0

}T
, ϕϕϕ

(k)
2i =

{
0,ϕ(k)

i

}T
, i = 1, ...,nMk, (2.39)
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the correction scheme for vectorial problems in practice amounts to correcting each basis

functions as follows

∇E,k⊗ϕϕϕ
(k)
2i−1 =


(

∇E,kϕ
(k)
i

)T

0

 , ∇E,k⊗ϕϕϕ
(k)
2i =

 0(
∇E,kϕ

(k)
i

)T

 i = 1, ...,nMk,

(2.40)

where ∇E,kϕk
i is computed according to the above-mentioned procedure described for

scalar problems.

2.3.3 Conforming Galerkin approximations

Consider the given discretization Ωh of the domain and Γh of its boundary, we define the

numerical integration
�

Ωh
on Ωh, as the summation of the contributions from numerical in-

tegrals
�

E from element levels following typical assembly rules, namely,
�

Ωh
= ∑E∈Ωh

�
E ,

and
�

Γt
h

as the numerical integration on Γt
h based on Gauss–Lobatto rule. In the same fash-

ion, we define the discrete gradient map on the global level, ∇h,k : Kh,k→
[
L 2 (Ωh)

]2×2,

such that it coincides with gradient correction map ∇E,k at the element level,

(
∇h,kvh

)
|E = ∇E,k⊗ (vh|E) , ∀E ∈Ωh and vh ∈Kh,k. (2.41)

The Galerkin approximation of the displacement-based formulation consists of finding

uh ∈Kh,k, such that,

Gh (uh,δvh) = 0, ∀δvh ∈K 0
h,k, (2.42)

where K 0
h,k = Kh,k

⋂
K 0 and Gh (uh,δvh) is the quadrature evaluation of G(u,δv) in Eq.

(2.5) with the exact gradient operator ∇ replaced by ∇h,k, which takes the form:

Gh (uh,δvh) =

�
Ωh

∂W
∂F

(
I+∇h,kuh

)
: ∇h,k(δvhd)X−

�
Ωh

fh ·δvhdX−
�

Γt
h

th ·δvhdS,

(2.43)

and terms fh and th are the approximated body force and boundary traction.
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For the two-field mixed formulation, by introducing the additional finite element space

QD
h,k−1(or QC

h,k−1)⊆ Q, the Galerkin approximation consist of finding (uh, p̂h) ∈Kh,k×

QD
h,k−1(or QC

h,k−1), such that

Gv
h (uh, p̂h,δvh) = 0 ∀δvh ∈K 0

h,k,

Gq̂
h (uh, p̂h,δ q̂h) = 0 ∀δ q̂h ∈QD

h,k−1(orQC
h,k−1).

(2.44)

with Gv
h (uh, p̂h,δvh) and Gq̂

h (uh, p̂h,δ q̂h) being of the form

Gv
h (uh, p̂h,δvh)=

�
Ωh

[
−∂Ŵ ∗

∂F
(
I+∇h,kuh, p̂h

)
+ p̂h adj

(
I+(∇h,kuh)

T)] : ∇h,k(δvh)dX

−
�

Ωh

fh ·δvhdX−
�

Γt
h

th ·δvhdS, (2.45)

Gq̂
h (uh, p̂h,δ q̂h) =

�
Ωh

[
det
(
I+∇h,kuh

)
−1− ∂Ŵ ∗

∂ p̂

(
I+∇h,kuh, p̂h

)]
δ q̂hdX. (2.46)

Notice that since we replace the gradient operators ∇ of both uh and vh in Eqs. (2.43),

(2.45) and (2.46) with ∇h,k, the resulting approximations yield symmetric linearizations.

We finalize this section with several remarks regarding the performance of the above

approximations in patch tests, which are typically adopted to assess the level of consistency

error. In the discussions that follow, we restrict our attention to case where the discretization

exactly represents the domain and boundary conditions, namely, Ωh = Ω, Γt = Γt
h and

ΓX =ΓX
h . As a result, the errors arising from the approximation of the geometry is neglected

in the following discussions.

First, we consider the first-order patch test, in which the exact displacement field is

a linear vector field, that is, u = p1 ∈ [P1 (Ω)]2. We note that by the polynomial com-

pleteness property of the element-level space M1 (E), the exact displacement field is also
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in Kh. Accordingly, with any given stored-energy function W (X,F), the body force f

is zero everywhere in Ω and the boundary traction t on Γt is given by t = Pn, where

P = ∂W (X,F(p1))/∂F. In addition, the associated exact pressure field is found as

p̂0 =


constant detF(p1) = 1

∂Ŵ (X,F(p1),J)
∂J |J=detF(p1)

otherwise

, (2.47)

where the constant pressure for incompressible solids is determined by applied boundary

traction t. We proceed to verify the exact passage of first-order patch test by showing that

uh = p1 and p̂h = p̂0 are solutions to Eqs. (2.42) and (2.44). For displacement-based

approximation, upon recognizing

∇h,kuh = ∇h,kp1 = ∇p1 ∈ [P0 (Ω)]2×2 , (2.48)

and �
E

∇E,k⊗vdX =

�
E

∇vdX, ∀v ∈ [M1 (E)]
2 (2.49)

we have for any trial displacement field δvh ∈K 0
h,k

Gh (p1,δvh) = ∑
E∈Ω

�
E

∂W
∂F

(I+∇p1) : ∇E,k(δvh)dX−
�

Γt
th ·δvhdS

= ∑
E∈Ω

�
E

∂W
∂F

(I+∇p1) : ∇(δvh)dX−
�

Γt
t ·δvhdS

=

�
Ω

P : ∇(δvh)dX−
�

Γt
t ·δvhdS = 0 (2.50)
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In the similar manner, we are able to show that for any δvh ∈K 0
h,k,

Gv
h (p1, p̂0,δvh) = ∑

E∈Ω

�
E

[
−∂Ŵ ∗

∂F
(I+∇p1, p̂0)+ p̂0adj(det(I+∇p1))

]
: ∇E,k(δvh)dX

−
�

Γt
th ·δvhdS = 0, (2.51)

and for any δ q̂h ∈QD
h,k−1(or QC

h,k−1),

Gq̂
h (p1, p̂0,δ q̂h) = ∑

E∈Ω

�
E

[
det(I+∇p1)−1− ∂Ŵ ∗

∂ p̂
(I+∇p1, p̂0)

]
δ q̂hdX = 0. (2.52)

We note the equality (2.52) comes from the fact that

det(I+∇p1)−1− ∂Ŵ ∗

∂ p̂
(I+∇p1, p̂0) = 0, (2.53)

according to (2.47) and the definition of Ŵ ∗. As a result, both displacement-based and

mixed approximations of order k(k ≥ 1) exactly pass the first-order patch test. In fact, our

numerical studies in the subsequent section confirm that the first-order patch test is passed

up to machine precision errors.

In contrast, higher order patch test may not be exactly passed in general for finite elas-

ticity problems because of the general forms that ∂W/∂F, ∂Ŵ ∗/∂F and ∂Ŵ ∗/∂ p̂ may

take. However, the following analysis demonstrates that the associated consistency errors

converge to zero with the same rate as the finite element approximation errors (we recall

that the approximation errors are typical order k for the kth order element) [108], imply-

ing the higher order patch test will be passed asymptotically with mesh refinement. For

instance, in the kth order patch test, the exact displacement is taken as a kth order polyno-

mial field, i.e., u = pk ∈ [Pk (Ω)]2, and the body force f, boundary traction t, and pressure

field p̂ can be computed accordingly through constitutive and equilibrium equations. For
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displacement-based finite element approximation, we have for any δvh ∈K 0
h,k,

Gh (pk,δvh)

= ∑
E∈Ω

�
E

∂W
∂F

(I+∇pk) : ∇E,k(δvh)dX−
�

Ω

fh ·δvhdX−
�

Γt
th ·δvhdS

=

�
Ω

∂W
∂F

(I+∇pk) : ∇(δvh)dX+O
(

hk
)
||∇(δvh)||−

�
Ω

fh ·δvhdX−
�

Γt
th ·δvhdS

=

(�
Ω

f ·δvhdX−
�

Ω

fh ·δvhdX
)
+

[�
Γt
(t− th) ·δvhdS

]
+O

(
hk
)
||∇(δvh)||

= O
(

hk
)
||∇(δvh)||,

(2.54)

where the second equality comes from the estimate (2.38) and the second to last equality is

a consequence of the assumed exactness requirements of the volume and boundary integra-

tion scheme [42], [109]. For mixed approximation, we can also show in the similar manner

that,

Gv
h (pk, p̂,δvh) = O

(
hk
)
||∇(δvh)||, (2.55)

for any δvh ∈Kh,k, and, based on the assumed exactness of volumetric integral
�

E ,

Gq̂
h (pk, p̂,δ q̂h) = O

(
hk
)
||δ q̂h||, (2.56)

for any δ q̂h ∈ QD
h,k−1(or QC

h,k−1). Although not presented in this work, our numerical

studies indicate that both displacement and mixed approximations indeed asymptotically

pass the higher order patch test with their respective optimal convergence rates.

2.4 Numerical assessment

In this section, we present a series of numerical tests to assess the performance of the

displacement-based and two-field mixed polygonal elements. Both linear and quadratic

elements are considered and investigated. Through the patch test and convergence studies,

the effectiveness of the gradient correction scheme in ensuring the convergence of polyg-
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onal finite element solutions is demonstrated. Moreover, for mixed polygonal elements,

numerical evaluations and discussions on the numerical stability and accuracy for different

choice of pressure approximations are also provided.

Throughout the section, plane strain conditions are assumed and material behavior is

considered to be Neo-Hookean as characterized by the following stored-energy function:

W (F) =
µ

2
[F : F−3]−µ(detF−1)+

3κ +µ

6
(detF−1)2 , (2.57)

where µ and κ denote the initial shear and bulk moduli of the material response. The

corresponding Legendre transformation (2.8) is given by

Ŵ ∗ (F, q̂) =−µ

2
[F : F−3]+

3(µ + q̂)2

2(3κ +µ)
. (2.58)

Unless otherwise stated, triangulation rules with minimally required orders of accu-

racy are adopted, which we recall are 1st and 2nd order for linear and quadratic polygonal

elements, respectively. In terms of the technique for solving the nonlinear system of equa-

tions, the standard Newton-Raphson method is employed and each loading step is regarded

as converged once the norm of the residual reduces below 10−8 times that of the initial

residual. The polygonal meshes used in this section are generated by the general purpose

mesh generator for polygonal elements, PolyMesher [110].

2.4.1 Displacement-based polygonal finite elements

In this subsection, we provide numerical experiments assessing the performance of the

displacement-based polygonal elements with the gradient correction scheme. For compar-

ison purposes, results from triangulation rules but without the correction of the gradients

are also provided. In all of the examples considered we use µ = κ = 1. Two global error

measures are adopted, the L2-norms and H1-seminorms of the displacement field errors,
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which are defined as

ε0,u = ||u−uh|| and ε1,u = ||∇u−∇uh||, (2.59)

and evaluated with an 8th order triangulation rule in all the remaining numerical examples.

Patch test We begin with the standard patch test on a unit square domain Ω = (0,1)2,

as depicted in Fig. 2.5 (a). On the boundary of the unit square ∂Ω, an exact displacement

field is applied, which is linear in both X and Y directions:

ux (X) = 2X , uy (X) =−0.5Y. (2.60)

Structured polygonal meshes and the centroid Voronoi Tessellation (CVT) meshes are con-

sidered, as shown in Fig. 2.5 (b) and (c). Each of the structured polygonal mesh consists of

hexagons in the interior and pentagons and quadrilaterals on the boundary. In order to take

into account irregular element shapes, the elements in the mesh are slightly elongated in X

direction.

We summarize the numerical results of the patch test in Tables 2.1 and 2.2. In the tables,

only the more representative H1-seminorm of the displacement error is presented, and each

data for the CVT mesh is obtained by taking an average of errors from a set of three meshes.

Without applying the gradient correction scheme, the errors for both linear and quadratic

polygonal elements stay constant over the mesh refinement, indicating that the patch test

is not passed. Although not presented here, we have observed the same non-vanishing

consistency errors with triangulation rules of higher order. In contrast, the errors remain

close to machine precision levels for both linear and quadratic polygonal elements when

the gradients are corrected, indicating that the patch test is passed. For quadratic elements,

an evident accumulation of numerical errors under mesh refined, which is possibly due to

the accumulation of numerical errors in computing the shape functions and their gradients.
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We note that the similar behavior has also been observed in references [23], [68], where

the same construction of quadratic shape function is adopted as this chapter.

(a) (b) (c)

1

1Ω

∂Ω

μ=κ=1

Y

X

Figure 2.5: (a) Problem setting for the patch test. (b) An illustration of the structured
hexagonal-dominant mesh with 48 elements. (c) An illustration of the CVT mesh with 50
elements.

Table 2.1: Results of ε1,u for the patch test for both linear and quadratic polygonal elements
on structured hexagonal-dominant meshes.

# element h
Linear polygonal elements Quadratic polygonal elements
Uncorrected Corrected Uncorrected Corrected

130 0.088 0.1168 5.16E−14 1.15E−2 4.77E−13
520 0.044 0.1282 1.03E−13 1.08E−2 3.88E−12

2,080 0.022 0.1339 2.15E−13 1.03E−2 3.38E−11
18,720 0.0073 0.1377 5.99E−13 9.98E−3 9.10E−10

Table 2.2: Results of ε1,u for the patch test for both linear and quadratic polygonal elements
on CVT meshes.

# element h
Linear polygonal elements Quadratic polygonal elements
Uncorrected Corrected Uncorrected Corrected

100 0.1 0.141 4.16E−14 2.27E−2 2.99E−13
500 0.045 0.118 9.25E−14 1.18E−2 3.35E−12

2,000 0.022 0.119 1.86E−13 1.24E−2 2.64E−11
20,000 0.0071 0.119 5.92E−13 1.16E−2 8.56E−10

Convergence study A convergence study is performed in which we consider a boundary

value problem where a rectangular block of size π

3 ×π is subjected to a certain distribution

of body forces [111] so as to be bent into a semicircle; see Fig. 2.6 (a). More precisely, the
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displacement field is given by

ux (X) =−1+(1+X)cosY −X , uy (X) = (1+X)sinY −Y, (2.61)

and the body force by

fx (X) =−cosY (X +1)(3κ−2µ)

3
, fy (X) =−sinY (X +1)(3κ−2µ)

3
. (2.62)

Similar to the patch test discussed above, we first make use of hexagonal-dominated

meshes, an example of which is displayed in Fig. 2.6 (b). In order to investigate the effect

of the integration order on the convergence and accuracy of the results, we also consider

the integration rules that are one order higher than the minimally required one, namely 2nd

order for linear elements and 3rd order for quadratic elements. The convergence results are

summarized in Figs. 2.7 (a)-(d). For linear polygonal elements, it is clear from the figures

that the 1st order integration is not a sufficient scheme to ensure optimal convergence of

the finite element solutions without the gradient correction scheme. The L2-norm of the

displacement error shows severely deteriorated convergence and a lack of convergence is

observed for the H1-seminorm of the displacement error. This is due to the dominance of

consistency errors observed in the patch test, which do not vanish under mesh refinement.

The 2nd order triangulation rule, on the other hand, seems sufficient to ensure enough

accuracy and optimal convergence for the range of mesh sizes considered even without

the gradient correction scheme. We should note, however, that with further refinement

of the mesh, the consistency error will gradually become dominant and the convergence

rates of the error norms are expected to decrease accordingly. Unfortunately, it is not the

case for quadratic polygonal elements. Without the correction of gradients, both 2nd and

3rd order triangulation rules show severely deteriorated convergence in the L2-norm of the

displacement error and non-convergence in the H1-seminorm of the displacement error,

which indicates that the consistency error plays a dominant role on the convergence of the
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finite element solutions for quadratic polygonal elements.

π

X
180o

π/3

Y

μ=κ=1

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.6: (a) Schematic of the bending of a compressible (µ = κ = 1) rectangular block
into semicircular shape. (b) An example of a structured hexagonal-dominant mesh con-
sisting of 45 elements. (c) An example of the concave octagonal mesh consisting of 27
elements. (d) An example of a CVT mesh consisting of 50 elements. (e) An example of a
degenerated Voronoi mesh with small edges consisting of 40 elements. (f) An example of
a structured quadrilateral mesh consisting of 48 elements. (g) An example of a triangular
mesh consisting of 96 elements.

With the application of the gradient correction scheme, on the contrary, we recover the

optimal convergence rates for both linear and quadratic polygonal elements, namely 2 and

1 for the L2-norm and H1-seminorm of the displacement errors, respectively, for linear

elements, and 3 and 2 for those of the quadratic elements, respectively. Another key ob-

servation is that the gradient correction scheme allows the usage of the minimally required

order of integration to achieve the same level of accuracy as with higher order integrations.

As shown in Figs. 2.7 (a) and (b), the error norms are almost identical for 1st and 2nd order
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triangulations rules for linear polygonal elements when the gradients are corrected. This

suggests that a 1st order integration rule with gradient correction can be used in practice

without sacrificing accuracy, which leads to more efficient implementations. Typically, a

triangulation rule of order 1 contains n integration points for a n-gon. Compared to the com-

monly used 2nd order triangulation rule for linear polygons in the literature, which contains

3n integration points per n-gon instead, the 1st order triangulation rule can roughly reduce

two thirds of the computational cost in forming the stiffness matrices and internal force

vectors. The same observations are also made for the quadratic polygonal elements, i.e.,

the solutions errors are almost identical for 2nd and 3rd integration rules. This indicates

that, when the gradient correction scheme is applied, the minimally required 2nd order

integration is also sufficient in practice for quadratic polygonal elements.

We also consider a set of concave meshes, an example of which is shown in Fig. 2.6

(c) and use the minimally required integration orders, which are 1st and 2nd orders for

linear and quadratic polygonal elements respectively. The numerical results are shown

in Fig. 2.8 (a) and (b), which confirm the optimal convergence rates when the gradients

are corrected. In fact, the optimal convergence implies the applicability of the quadratic

shape functions and the gradient correction scheme adopted in this work to certain concave

polygonal elements.

We conclude this subsection with a brief study on the accuracy of the polygonal el-

ements. The polygonal meshes adopted are the CVT meshes and degenerated Voronoi

meshes with small edges, as shown in Figs. 2.6 (d) and (e) respectively. Both linear and

quadratic polygonal elements are considered. For comparison purpose, we also include the

quadrilateral and triangular meshes, examples of which are shown in Figs. 2.6 (f) and (g).

Similarly, the triangular and quadrilateral finite elements use the standard iso-parametric

construction and are up to quadratic order (for quadratic quadrilateral elements, we use the

8-node serendipity elements). For each type of element, we plot in Figs. 2.9 (a) and (b) the

error norms ε0,u and ε1,u against the total number of nodes under the refinement of mesh,
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Figure 2.7: Plots of the error norms against the average mesh size h for the structured
hexagonal-dominant meshes: (a) the L2-norm of the error in the displacement field for lin-
ear polygonal elements, (b) the H1-seminorm of the error in the displacement field for lin-
ear polygonal elements, (c) the L2-norm of the error in the displacement field for quadratic
polygonal elements and (d) The H1-seminorm of the error in the displacement field for
quadratic polygonal elements.

which reflects the size of the global system of equations and thus correlates with the cost

of solving them. Each data point for the CVT meshes is obtained from an average of the

errors in three meshes. As we can see from the results in the Figs. 2.9 that the structured

quadrilateral meshes provide the most accurate solutions for a given number of nodes in

both linear and quadratic cases. This may be attributed to the fact that the exact displace-

ment field for this problem is multiplicatively separable in X and Y and is thus particularly

well-suited for approximation by the tensor product in structured quadrilateral meshes. In

terms of the L2-norm of the displacement error, the polygonal meshes (the CVT mesh and

degenerated Voronoi meshes with small edges) yields similar accuracy to the triangular
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Figure 2.8: Plots of the error norms against the average mesh size h for the concave oc-
tagonal meshes: (a) the L2-norm and H1-seminorm of the displacement errors for linear
polygonal elements, and (b) the L2-norm and H1-seminorm of the displacement errors for
quadratic polygonal elements. Only the minimally required orders of integration are used
here, i.e., 1st order for the linear polygonal elements and 2nd order for the quadratic ones.

meshes in the linear case, where as in the quadratic case, they are more accurate than the

triangular meshes. One the other hand, in terms of the H1-seminorm of the displacement

error, the polygonal meshes yields more accurate results than the triangular meshes in both

linear and quadratic cases, meaning that the polygonal meshes are able to approximate the

gradient of the displacement field more accurately. Moreover, the comparison between the

results from the CVT and degenerated Voronoi meshes with small edges shows that the ef-

fect of small edges in the accuracy of polygonal elements is small, indicating the polygonal

meshes are tolerant to the presence of small edges.

2.4.2 Two-field mixed polygonal element

In this subsection, together with the gradient correction scheme, the performance of two-

field mixed polygonal elements on stability, accuracy and convergence are numerically

evaluated. Three types of mixed polygonal finite elements are considered here, namely,

M1−PD
0 elements, M2−PD

1 elements, and M2−M1 elements. In this subsection, the

material is considered to be incompressible with µ = 1 and κ = ∞ and thus characterized
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Figure 2.9: Comparisons of the error norms against the average mesh size h between polyg-
onal meshes (CVT meshes and Voronoi meshes with small edges) and meshes with stan-
dard triangular and quadrilateral finite elements: (a) the L2-norm and H1-seminorm of the
displacement errors for linear elements, and (b) the L2-norm and H1-seminorm of the dis-
placement errors for polygonal elements. For the polygonal meshes the results are obtained
width corrected gradients.

by the standard Neo-Hookean stored-energy function

W (X,F) =


µ

2
[F : F−3] if detF = 1

+∞ otherwise
. (2.63)

In addition to the measure of displacement errors defined in (2.59), we also consider the

L 2-norm of the errors in the pressure field,

ε0,p̂ = ||p̂− p̂h||. (2.64)

Numerical stability for linear elasticity For mixed finite element methods involving

approximations of the displacement and pressure fields, the satisfaction of the stability

condition is crucial to guarantee convergence [69]–[71]. In the context of finite elasticity,

the stability condition is formally defined by the generalized inf-sup condition [70], [71].

It states that for a given uh ∈Kh,k, there exist a strictly positive, size-independent constant

43



C0, such that

βh(uh) = inf
qh∈QD or C

h,k−1

sup
vh∈Kh,k

�
Ω

qh adj
(
I+(∇uh)

T) : ∇vhdX
||∇vh|| ||qh||

≥C0. (2.65)

Note that the above condition depends on the deformation state uh in addition to variations

vh and q̂h, which is nontrivial to verify. Instead, we only verify the inf-sup condition for

linear elasticity in this work, that is

β
0
h = inf

qh∈QD or C
h,k−1

sup
vh∈Kh,k

�
Ω

qhdivvhdX
||∇vh|| ||qh||

≥C0, (2.66)

which can be viewed as a special case of (2.65) when uh = 0. For meshes consisting of

lower order polygonal mixed elements, Beirãoda Veiga et al. [72] have derived a geomet-

rical condition to guarantee the satisfaction of (2.66) if every internal node/vertex in the

mesh is connected to at most three edges. For higher order mixed elements, however, the

analogous condition is still an open question and is subjected to future research. Here, we

numerically evaluate the stability of mixed linear and quadratic polygonal elements. To

that end, we adopt the so-called inf-sup test proposed by Chapelle and Bathe [74]. We

note that while passing the inf-sup test only constitutes a necessary condition for the sat-

isfaction of the inf-sup condition (2.66), its predictions are shown to reliably match the

analytical results [74], [110]. In the test, we consider a unit square domain with imposed

boundary conditions as shown in Fig. 2.10 (a). Three families of Voronoi-type meshes are

considered here, namely the structured hexagonal, CVT and random Voronoi Meshes, as

shown in Fig. 2.10 (b)–(d). In general, the Voronoi-type meshes satisfy the geometrical

condition of Beirão da Veiga et al. [72], including the random Voronoi mesh considered

here (although they may contain very small edges). However, we note that in several cases,

Voronoi meshes from degenerated seeds alignments may be in violation of the geometrical

condition and lead to the failure of the inf-sup condition, for instance, the case where the

Voronoi seeds are aligned in a Cartesian grid, forming a Cartesian mesh. For all types of
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meshes considered, we compute the stability index β 0
h of linear and both types of mixed

polygonal elements and plot them as functions of the average mesh size h in Figs. 2.10

(e)–(g). Each point in the plot for CVT and random Voronoi meshes represents an average

of the results from a set of three meshes. As suggested by the results of the test, all three

types of mixed polygonal finite elements are numerically stable on all families of meshes

considered. For comparison purposes, the test results for most of the classical triangular

and quadrilateral elements can be found in [73], [74] and hence are not listed here for the

sake of conciseness. We note that while the classical mixed linear and quadratic elements

with continuous pressure approximations (the T-H family) are unconditionally stable [69],

most of those with discontinuous pressure approximations (the C-R family), such as lower

order mixed triangular and quadrilateral elements, are numerically unstable [69], [73], [74].

Patch test A patch test study is performed on a unit square domain Ω = (0,1)2, which is

subjected to a uniaxial displacement loading on its right edge, as shown in Fig. 2.11 (a).

The analytical displacement is a linear field of the form:

ux (X) = 2X , uy (X) =−2
3

Y, (2.67)

and the pressure type field p̂ defined in the F-Formulation is a constant over the domain

with a value of p̂ =−1
9 .

The same sets of structured polygonal meshes and CVT meshes are used as that in the

patch test study of the displacement-based elements, samples of which are shown in Fig.

2.11 (b) and (c). The patch test results are provided in Tables 2.3–2.6 for mixed linear and

quadratic polygonal elements. Again, with the gradient correction scheme, all the error

norms stay close to machine precisions for all three type of mixed elements on both sets of

meshes, which are not the case for those with uncorrected gradients.
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Figure 2.10: (a) Dimensions and boundary conditions for the Inf-Sup test. (b) An exam-
ple of the structured hexagonal dominant mesh with 56 elements. (c) An example of the
randomly generated CVT mesh with 50 elements. (d) An example of the random Voronoi
mesh with 50 elements. (e) Plot of the computed value of the stability index as a function
of the average mesh size h for structured hexagonal dominant meshes. (f) Plot of the com-
puted value of the stability index as a function of the average mesh size h for CVT meshes.
(g) Plot of the computed value of the stability index as a function of the average mesh size
h for random Voronoi meshes.

1

1 u

Y

X

Ω
μ=1
κ=∞

(a) (b) (c)

Figure 2.11: (a) Problem setting for first-order patch test; (b) an example of the structured
hexagonal-dominated mesh used in the patch test with 48 elements. (c) an example of the
CVT mesh used in the patch test with 50 elements.
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Table 2.3: Results of patch test with gradient correction for mixed linear polygonal ele-
ments with structured hexagonal-dominant meshes.

# element h ε1,u ε0,p̂
M1−PD

0 elements Uncorrected Corrected Uncorrected Corrected
130 0.088 1.87E−01 5.17E−14 1.08E−02 3.22E−15
520 0.044 1.80E−01 1.05E−13 1.09E−02 7.07E−15

2,080 0.022 1.74E−01 2.20E−13 8.36E−03 1.34E−14
18,720 0.0073 1.70E−01 6.16E−13 4.55E−03 4.56E−14

Table 2.4: Results of patch test with gradient correction for mixed linear polygonal ele-
ments with CVT meshes.

# element h ε1,u ε0,p̂
M1−PD

0 elements Uncorrected Corrected Uncorrected Corrected
100 0.088 1.56E−01 4.16E−14 4.95E−03 2.16E−15
500 0.044 1.41E−01 9.71E−14 5.65E−03 5.46E−15

2,000 0.022 1.36E−01 1.91E−13 6.33E−03 1.30E−14
20,000 0.0073 1.46E−01 6.09E−13 6.47E−03 4.31E−14

Table 2.5: Results of patch test with gradient correction for mixed quadratic polygonal
elements with structured hexagonal-dominant meshes.

# element h ε1,u ε0,p̂
M2−PD

1 elements Uncorrected Corrected Uncorrected Corrected
130 0.088 1.37E−02 5.59E−13 1.08E−03 1.10E−13
520 0.044 1.26E−02 3.95E−12 8.61E−04 2.84E−13

2,080 0.022 1.20E−02 3.45E−11 6.41E−04 1.81E−12
18,720 0.0073 1.17E−02 9.26E−10 3.75E−04 4.05E−11

M2−M1 elements Uncorrected Corrected Uncorrected Corrected
130 0.088 1.37E−02 4.89E−13 9.68E−04 5.111E−14
520 0.044 1.26E−02 3.93E−12 8.85E−04 2.02E−13

2,080 0.022 1.20E−02 3.43E−11 6.97E−04 1.00E−12
18,720 0.0073 1.17E−02 9.28E−10 4.27E−04 1.87E−11

Convergence study We proceed to evaluate the accuracy and convergence of the mixed

polygonal finite elements with a boundary value problem where an incompressible rectan-

gular block of dimensions π

3 ×π is bent into semicircular shape. For this boundary value

problem, it is possible to work out an analytical solution [80], [112]. Specifically, the
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Table 2.6: Results of patch test with gradient correction for mixed quadratic polygonal
elements with CVT meshes.

# element h ε1,u ε0,p̂
M2−PD

1 elements Uncorrected Corrected Uncorrected Corrected
100 0.088 1.97E−02 3.75E−13 2.26E−03 1.08E−13
500 0.044 1.65E−02 3.15E−12 1.68E−03 4.88E−13

2,000 0.022 1.43E−02 2.84E−11 1.48E−03 3.34E−12
20,000 0.0073 1.40E−02 8.72E−10 1.37E−03 9.90E−11

M2−M1 elements Uncorrected Corrected Uncorrected Corrected
100 0.088 1.56E−02 3.14E−13 1.90E−04 4.08E−14
500 0.044 1.48E−02 3.40E−12 7.38E−05 1.68E−13

2,000 0.022 1.47E−02 2.68E−11 3.60E−05 8.15E−13
20,000 0.0073 1.44E−02 8.74E−10 1.14E−05 1.94E−11

displacement field and its gradient read as

ux = r (X)cosY − r
(
−π

6

)
− π

6
−X , uy = r (X)sinY −Y

ux,x =
cosY
r (X)

−1, ux,y =−r (X)sinY,

uy,x =
sinY
r (X)

, uy,y = r (X)cosY −1,

(2.68)

where the function r (X) is given by

r (X) =
√

2X +β with β =

√
4π2

9
+4. (2.69)

Additionally, one can also obtain the pressure field p̂:

p̂ =−µ

2

[
1

r (X)2 − r (X)2 +µβ

]
. (2.70)

Figure 2.12 (a) shows a schematic of the problem. In order to avoid the development of

surface instabilities [113] and guarantee the uniqueness of the finite element solutions, the

displacement is prescribed on the left side of the block.

In addition to the optimal convergence rate for the error measures of the displacement
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Figure 2.12: (a) Schematic of the bending of an incompressible (µ = 1 and κ = ∞) rectan-
gular block into semicircular shape. (b) An example mesh utilized in the convergence tests
with 45 elements [110].

field discussed in previous subsections with displacement-based elements, we expect the

optimal convergence rate for its L2 pressure error to be 1 for linear mixed elements and 2 for

mixed quadratic elements with either M2−PD
1 or M2−M1 elements. The results of the

convergence test are shown in Figs. 2.13 (a)-(i) for all three types of mixed finite elements

considered. When no gradient correction scheme is used, we observe the same behavior

regarding the convergence of displacement field solution as those of the displacement-

based elements. In terms of the pressure field, although the 1st order integration leads to a

degenerated convergence rate, the optimal convergence rate is obtained with the 2nd order

integration scheme for linear mixed elements. For mixed quadratic elements, however, the

degeneration of the convergence rate becomes more severe and increasing the integration

order again proves to be not as helpful as in the linear case. In contrast, with the correction

scheme, optimal convergence in both displacement field and pressure field are recovered

for both mixed linear and quadratic elements. Again, the same level of accuracy for both

displacement and pressure field is achieved with a minimally required order of triangulation
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Figure 2.13: Plots of the error norms against the average mesh size h: (a) the L2-norm of
the displacement error, (b) the H1-seminorm of the displacement error, and (c) the L2-norm
of pressure error for M1−PD

0 elements; (d) the L2-norm of the displacement error, (e)
the H1-seminorm of the displacement error, and (f) the L2-norm of the pressure error for
M2−PD

1 elements; (g) the L2-norm of the displacement error, (h) the L1-seminorm of the
displacement error, and (i) the L2-norm of the pressure error for M2−M1 elements.

rule.

We conclude this section by examining the accuracy of different types of mixed ele-

ments in enforcing the incompressibility constraint for the displacement field. To quantify

the accuracy, we define ε0,J as the L2-norm of the error between detF and 1,

ε0,J = ||detF(uh)−1||. (2.71)
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Figures 2.14 (a) and (b) show the convergence of ε0,J as a function of mesh size and total

number of DOFs, respectively, for both hexagonal and CVT meshes [110]. For the CVT

meshes, each data point is obtained by averaging values from a set of three meshes with

the same number of elements. As we can see, the rate of convergence of ε0,J to 0 is 1 for

mixed linear polygonal elements and roughly 2 for both types of mixed quadratic polygonal

elements. In addition, with either similar mesh size or total number of DOFs, M2−M1

elements seem to better enforce the incompressibility constraint on both hexagonal and

CVT meshes for this problem.
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Figure 2.14: Plots of L2 error in satisfying the incompressibility constraint versus (a) the
average mesh size h and (b) the total number of DOFs.

2.5 Applications

This section presents physically-based applications of the above-developed polygonal finite

elements. Two problems are studied: (i) the nonlinear elastic response of an incompress-

ible elastomer reinforced with a random isotropic distribution of rigid circular particles

bonded through finite-size interphases, and (ii) the onset of cavitation in a fiber-reinforced

elastomer. These example problems are aimed at demonstrating the ability of polygonal

elements to model the complex behavior of nonlinear elastic materials over a wide range of
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length scales and deformations. For both examples, the inclusions are considered to be in-

finitely rigid and the variational formulation proposed by Chi et al. [114] is adopted, which

treats the presence of rigid inclusions as a set of kinematic constraints on the displace-

ment DOFs of their boundaries. Again, the polygonal meshes considered in this section are

generated by PolyMesher [110].

2.5.1 Elastomers reinforced with particles bonded through interphases

Experimental evidence has by now established that filled elastomers contain stiff “inter-

phases” or layers of stiff “bound rubber” around its inclusions [115], and that these can

significantly affect their macroscopic response when the fillers are submicron in size [116],

[117]. In most cases of practical interest, filler particles happen to be indeed submicron in

size. In the sequel, motivated by the recent work of Goudarzi et al. [117], we investigate

the nonlinear elastic response of an elastomer filled with a random isotropic distribution

of circular particles bonded through finite-size stiff interphases by means of the polygonal

finite element framework presented in this chapter.

Figure 2.15 shows the unit cell that we consider for the problem at hand, which is

assumed to be repeated periodically in the e1 and e2 directions so as to approximate a

truly random and isotropic distribution of particles. The unit cell contains a total of 50

monodisperse rigid particles at an area fraction of cp = 25%. Each particle is bonded

to the matrix through an interphase of constant thickness t, which is taken to be 20% of

the particle radius, resulting in a total area fraction ci = 11% of interphases. The matrix

phase is modeled as an incompressible Neo-Hookean solid with stored-energy function

given by (2.63) with µm = 1. Further, the constitutive behavior of the interphases is also

taken as incompressible Neo-Hookean, but ten times stiffer than the matrix phase, namely,

µi = 10µm = 10.

We employ the commonly used mixed formulation in this example (the F-formulation)

and study the nonlinear elastic behavior of such material by polygonal meshes with mixed
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Figure 2.15: (a) The unit cell considered in the problem. (b) The linear polygonal mesh
comprised of 39,738 elements and 76,020 nodes in total, with 66,095 nodes in the matrix
phase. (c) The quadratic polygonal mesh comprised of 20,205 elements and 95,233 nodes
in total, with 67,325 nodes in the matrix phase. (d) The quadratic triangular mesh com-
prised of 58,814 CPE6MH elements and 118,141 nodes in total, with 71,179 nodes in the
matrix phase. (e) The linear quadrilateral mesh comprised of 108,742 CPE4H elements and
109,323 nodes in total, with 68,819 nodes in the matrix phase. (f) The quadratic quadrilat-
eral mesh comprised of 36,444 CPE8H elements and 109,986 nodes in total, with 66,502
nodes in the matrix phase.
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linear and quadratic elements [110]; see Figs. 2.15 (b) and (c). For the quadratic polyg-

onal mesh, elements with both discontinuous and continuous pressure approximations are

considered, namely, the M2−M1 and M2−PD
1 elements. For comparison purposes,

finite element meshes of 4-node hybrid linear quadrilateral elements (termed CPE4H), 6-

node hybrid quadratic triangular elements (termed CPE6MH) and 8-node hybrid quadratic

quadrilateral elements (termed CPE8H), are also included, the depictions of which can be

found in Fig. 2.15 (d)–(f). For a fair comparison, all the meshes are chosen such that they

have a similar number of nodes in the matrix phase. For the polygonal mesh, we use the

same convergence criterion as the other examples, that is, each loading step is regarded

as converged once the norm of the residual reduces below 10−8 times that of the initial

residual. Whereas for the results by ABAQUS, we use its default set of convergence cri-

teria, among which the permissible ratio of the largest solution correction to the largest

corresponding incremental solution is |∆u|/|umax|= 10−2, the largest residual to the corre-

sponding average force norm is 5×10−3. In addition, the largest permissible absolute error

in satisfying the incompressibility constraint is10−5 in the ABAQUS default convergence

criteria.

The boundary conditions are as follows [116]

u(1,Y )−u(0,Y ) = 〈F〉− I,

u(X ,1)−u(X ,0) = 〈F〉− I,

p(1,Y ) = p(0,Y ) and

p(X ,1) = p(X ,0) .

(2.72)

and We consider two loading conditions: (i) pure shear where 〈F〉= λe1⊗e1+λ−1e2⊗e2

and (ii) simple shear where 〈F〉 = I+ γe1⊗ e2 with λ > 0 and γ ≥ 0 denoting the applied

stretch and amount of shear, respectively.

Here, it is important to remark that the periodic boundary condition of pressure in (2.72)
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Figure 2.16: Plots of the macroscopic first Piola-Kirchhoff stress as functions as the applied
stretch/shear for the cases of applying both periodic displacement and pressure boundary
conditions and applying only periodic displacement boundary condition under (a)-(b) pure
and (c) simple shear. The plots are obtained using M2−M1 elements.

cannot be enforced, in general, when using elements with discontinuous pressure fields,

such as the M2−PD
1 , M1−PD

0 , CPE4H, CPE6HM, and CPE8H elements. On the other

hand, it can be enforced when using elements with continuous pressure fields, such as the

M2−M1 elements. To gain insight into the effects of not enforcing the periodicity of

pressure, Figs. 2.16 (a)-(c) show plots of the macroscopic stress response for loading cases

(i)-(ii) against the applied stretch/shear making use of M2−M1 elements with and with-

out the enforcement of periodicity of pressure in (2.72). As it can be seen from the plots,

the macroscopic stress from applying both periodic displacement and hydrostatic pressure

boundary conditions are, for all practical purposes, identical to the ones from only applying

the periodic displacement boundary conditions. Moreover, the unit cell considering only

periodicity in the displacement field reaches a larger global stretch. Based on these observa-

tions, for the results presented in the remainder of this example, only periodic displacement

boundary conditions are applied.

Figures 2.17 (a)-(d) depict the deformed configurations of the unit cell obtained with

M2−M1, M2−PD
1 , M1−PD

0 , CPE4H, CPE6MH, and CPE8H elements, at their respec-

tive maximum global stretches, λmax = 2.9132,2.6456,2.2515,1.9524,1.4308, and 2.5861.

The fringe scales correspond to the maximum principal stretches of each element, with
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those having a value of 8 and above being plotted as red. Similarly, Figs. 2.18 (a)-(c) de-

pict the deformed configurations of the unit cell at the same level of global stretch λ = 2

obtained with M2−M1, M2−PD
1 , and M1−PD

0 elements, with the elements whose

maximum principal stretches are larger than or equal to 5 plotted red. In addition, the rel-

evant components of the macroscopic first Piola-Kirchhoff stresses 〈P〉 as functions of the

global stretch λ or shear γ are shown in Figs. 2.19 (a)-(c) for loadings (i)-(ii), and com-

pared with the available analytical solution in the literature for elastomers reinforced by a

random and isotropic distribution of polydisperse circular particles [117], [118].

Several observations can be made from Figs. 2.17, 2.18, and 2.19. For starters, the

macroscopic responses computed from all types of elements agree reasonably well with

the analytical solution for all loading cases. Yet, the ones from quadrilateral and polyg-

onal discretizations reach significantly larger global deformations than the ones from the

triangular mesh. We note that, because of the high effective area fraction considered in

this example (cp + ci = 36%) and the resulting high level of heterogeneity and localization

in the deformation field, remeshing remedies would be of little help to make the unit cell

with the triangular meshes (CPE6MH elements) stretch farther, as demonstrated in [119].

Comparing the polygonal meshes and quadrilateral meshes, except for the case of pure

shear (λ < 1), where the quadrilateral mesh with CPE8H elements stretch farther, polyg-

onal meshes can research larger deformation states than the quadrilateral ones, especially

under pure shear (λ > 1) with M2−M1 and M1−PD
0 elements. Moreover, although

all the polygonal elements produce almost identical deformed configurations at λ = 2, as

shown in Figs. 2.18 (a)-(c), the quadratic polygonal elements exhibit better performance

than the linear ones in reaching a larger deformation state. As shown by Figs. 2.17 and

2.19, the unit cell discretized with the M2−M1 and M2−PD
1 elements reach signifi-

cantly larger global deformations than the one with the M1−PD
0 elements under pure

shear. In addition, the linear polygonal elements produce slightly stiffer macroscopic be-

havior than quadratic polygonal elements. This is because the quadratic elements provide
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Figure 2.17: The final deformed configuration reached by (a) M2 −M1 elements, (b)
M2−P1 elements, (c) CPE8H elements (solved in ABAQUS), (d) M1−P0 elements, (e)
CPE4H elements (solved in ABAQUS), and (f) CPE6HM elements (solved in ABAQUS).
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Figure 2.18: The deformed configuration at λ = 2 obtained by (a) M2−M1 element, (b)
M2−PD

1 element, and (c) M1−PD
0 element elements.
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Figure 2.19: Plots of the macroscopic first Piola-Kirchhoff stress as functions as the applied
stretch/shear for different type of elements under (a) pure shear (λ ≥ 1), (b) pure shear
(0 < λ < 1) and (c) simple shear.
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a richer functional approximation of displacements and so they can better represent the

curvatures in the highly stretched regions (see, e.g., the red regions in Figs. 2.17 (a)-(c)

and Figs. 2.18 (a)-(c)) than the linear ones. We also notice that although yielding almost

identical macroscopic responses as the M2−PD
1 elements, the M2−M1 elements seem

to be able to reach a slightly larger global stretch than M2−PD
1 elements under pure shear

(λ = 2.91 as compared to λ = 2.65).

To further understand the performance of each of the four types of elements, we com-

pute the error norm ε0,J associated with the satisfaction of the incompressibility constraint.

The results are summarized in Table 2.7. In essence, the linear mixed polygonal elements

are seen to deliver results with larger errors than the quadratic ones. Furthermore, the re-

sults from the M2−PD
1 elements are more accurate in satisfying the incompressibility

constraint than the M2−M1 elements on the same mesh, which is a consequence of the

larger number of global pressure DOFs that the M2−PD
1 mesh contains. As a result, the

M2−M1 elements are able to reach a larger global stretch than the M2−PD
1 elements

under pure shear.

Table 2.7: Error in the approximation of the incompressibility constraint under different
loading conditions.

# of Pressure DOFs ε0,J (λ = 2) ε0,J (λ = 0.6) ε0,J (γ = 0.6)
M1−PD

0 elements 39,738 0.1180 0.0757 0.0355
M2−PD

1 elements 60,615 0.0295 0.0163 0.0071
M2−M1 elements 37,495 0.0508 0.0341 0.0177

2.5.2 The onset of cavitation in fiber-reinforced elastomers

An interesting phenomenon of re-emerging interest that occurs in elastomers is the so-

called phenomenon of cavitation, namely, the sudden growth of pre-existing defects into

largely enclosed cavities under sufficiently large loads [120]. Cho and Gent [121] studied

this phenomenon in fiber-reinforced elastomers by means of some ingenious experiments.

As shown in Fig. 2.20 (a), they fabricated specimens consisting of two steel tubes of length
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Table 2.8: Summary of the experimental results by Cho and Gent [121] with different initial
distance between two steel tubes.

Specimen No. L(mm) D(mm) d (mm) d/D δ (mm) εe
# 1 12.5 9.5 0.43 0.045 0.034 0.08
# 2 12.5 9.5 0.91 0.095 0.255 0.28

L and diameter D, parallel aligned at an initial distance d, bonded by a layer of transparent

silicone rubber. The surfaces of the steel tubes were polished and treated with a primer so

as to prevent debonding. The specimens were subjected to uniaxial tension transverse to

the tubes. The onset of cavitation could then be monitored visually through the transparent

rubber.

In this subsection, motivated by the work of Lefèvre et al. [122], we reproduce theo-

retically (via a 2D plane-strain model) two of the experiments of Cho and Gent [121] by

means of the polygonal finite element framework presented in this chapter. Among the

several sets of experiments that they reported, we choose two with dimensions given in

Table 2.8. In the table, we also include the values of the measured “macroscopic” strain εe

at which cavitation occurred. In addition, Fig. 2.20 (d) shows a photograph of the cavity

formed between the two steel tubes in the specimen with initial distance d = 0.43mm.

Given that the length of the steel tubes L = 12.5 mm is more than one order of mag-

nitude larger than their initial distance d for both cases (d = 0.43 mm and 0.91 mm), and

that the cavities observed in the experiments are somewhat cylindrical in shape, as shown

by Fig. 2.20 (d), we idealize the experiment as a two-dimensional plane-strain problem

and restrict attention to the growth of cylindrical defects. More specifically, we consider a

square block of side H = 300 mm in which two cylindrical fibers are embedded adjacent

to each other. The size of the block is large enough to avoid the interaction between the

fibers and the outer boundary. The block is subjected to uniaxial tension in the direction

of alignment of the fibers. As in the experiments, the “macroscopic” strain is defined as

ε
.
= h/H− 1, where h is the deformed length of the block in the direction of applied ten-

sion. Figures 2.20 (b) and (c) show schematic descriptions of the model in its undeformed
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Figure 2.20: (a) Schematic of the experimental setup of Cho and Gent [121]. (b) A two-
dimensional plane-strain model of the experiment in the undeformed configuration. (c)A
two-dimensional plane-strain model of the experiment in the deformed configuration. (d)
A photograph of the lateral view (X direction) of the cavity formed between the two steel
tubes for the case of d = 0.43mm [121].

and deformed configurations. The silicone rubber is modeled as a one-term compressible

Lopez-Pamies material [123]:

W (F) =
31−α

2α
µ
[
(F : F)α −3α

]
−µ (detF−1)+

(
µ

2
+

κ

2
− αµ

3

)
(detF−1)2 . (2.73)

Its Legendre transformation Ŵ ∗ (F, q̂) is given by:

Ŵ ∗ (F, q̂) =−31−α

2α
µ
[
(F : F)α −3α

]
+

(µ + q̂)2

2
(
µ +κ− 2

3αµ
) . (2.74)

The shear modulus µ of the rubber is taken to be 1 and, to reasonably model the nearly

incompressible behavior of the silicone rubber, its bulk modulus κ is taken to be 1000.

The material parameter α is taken to be 0.6 here in order to ensure appropriate growth
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conditions that allow for cavitation in 2D [124]. Moreover, again, the fibers are treated as

infinitely rigid bodies (since the shear modulus of the steel is in the order of 80 GPa) that

are perfectly bonded to the rubber. In all of the calculations for this example problem, we

employ the F-formulation of Chi et al. [2].

From a computational point of view, the modeling of cavitation is challenging with

standard finite elements because of the extreme local deformations that take place around

the boundaries of the growing defects [125], [126]. In the literature, use has been made of

structured quadrilateral discretizations which have proved successful in a variety of prob-

lems (see, e.g., [122], [126]). However, such an approach is not deemed viable to deal

with material systems with realistically complex microstructures. Unstructured polygonal

discretizations, on the other hand, have recently shown potential as a viable approach [2].

To further examine the performance of different types of mixed polygonal elements for

cavitation problems, we consider unstructured polygonal discretizations and consider all

three types of mixed polygonal elements in this example.

Following the analysis of Lefèvre et al. [122], we begin by monitoring the onset of

cavitation for the two cases with initial fiber distances d = 0.41 and 0.91 mm. Although

the actual growth of defects in rubber is a complex process that may involve irreversible

inelastic deformations (e.g., fracture), cavitation criteria based on purely elastic deforma-

tions have been shown to provide accurate qualitative agreement with experimental obser-

vations, suggesting that the elastic behavior of rubber plays a key role in the occurrence

of the phenomenon [122]. For a review of those criteria, the interested reader is referred

to the papers by Lopez-Pamies et al. [127], [128]. For the problem under investigation

here, we make use of the cavitation criterion derived by Lopez-Pamies [129] for compress-

ible isotropic solids under general plane-strain loading conditions. The criterion states that,

under plane-strain conditions, defects inside a compressible isotropic solid may suddenly

grow into cylindrical cavities whenever the principal stretches (λ1,λ2) satisfy the following
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condition:
∂Φ

∂λ1
(λ1,λ2)−

∂Φ

∂λ2
(λ1,λ2)

λ1−λ2
= 0, (2.75)

where Φ(λ1,λ2) stands for the stored-energy function, written in terms of the in-plane

principal stretches, characterizing the elastic response of the rubber under plane-strain con-

ditions. Upon recognizing that F : F = λ 2
1 +λ 2

2 + 1 and detF = λ1λ2, the criterion (2.75)

reduces to

κ +2µ− 2αµ

3
+31−α

µ
(
λ

2
1 +λ

2
2 +1

)(α−1)−λ1λ2

(
κ +µ− 2αµ

3

)
= 0 (2.76)

when specialized to the stored-energy function (2.73).

To monitor the onset of cavitation criterion (2.76), we make use of a polygonal mesh

with 30000 M1−PD
0 elements, which are graded so that smaller elements are placed in

between the fibers [110]. Figures 2.21 shows the mesh utilized for the case with d = 0.43

mm. Figures 2.22 (a) and (b) depict the deformed states of the region between the two rigid

Figure 2.21: The polygonal mesh used of the model of initial distance d = 0.41mm, which
consists of 30000 polygonal elements.

fibers with initial distances d = 0.41 mm and 0.91 mm at four levels of the applied macro-

scopic strain. In the figures, those elements whose average in-plane principal stretches sat-

isfy the criterion (2.76) are plotted in red, indicating the possible onset of cavitation at the

material points that they sit on. We emphasize that except for the elements plotted, no other

elements are found to satisfy the cavitation criterion during the entire loading process. For
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both cases of d = 0.41 mm and 0.91 mm, the criterion is first satisfied at the rubber/fiber

interfaces. As the macroscopic strain increases, the satisfaction of the criterion quickly

propagates to the midpoint between the fibers and then continues to grow outward. For the

case of larger interfiber distance, d = 0.91 mm, the onset of cavitation at the rubber/fiber

interfaces occurs at a significantly larger macroscopic strain, ε ≈ 8.835%, as compared to

ε ≈ 5.66%. Similarly, the onset of cavitation at the midpoint between the fiber also occurs

at a considerably larger macroscopic strain, ε ≈ 9.635%, for the case of d = 0.91 mm, as

compared to ε ≈ 5.86% for the case of d = 0.43 mm. Qualitatively, these relative values

are in fair agreement with the reported experimental data summarized in Table 2.8.

Figure 2.22: The deformed configurations of the region between two fibers under four
levels of macroscopic strains for cases (a) d = 0.43mm and (b) d = 0.91mm. The material
points at which the cavitation criterion (2.76) are satisfied are plotted in red.

With the knowledge that the onset of cavitation might first occur at the rubber/fiber

interfaces on the inner sides of the fibers and then propagates to the midpoint between the

fibers, we proceed to introduce pre-existing defects at those locations in the finite element
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models to study their actual growth and interaction. Thus, three vacuous defects that are

circular in shape are introduced in each finite element model with an initial radius Rc =

2µm. Two of them are placed 1µm away from the inner side of each fiber at the rubber/fiber

interfaces while the third one is placed at the midpoint between the fibers. Both linear

and quadratic polygonal meshes are considered, containing 25,000 and 10,000 elements

respectively. As an example, Fig. 2.23 (a) shows the linear polygonal mesh utilized in the

case with the initial distance d = 0.43 mm [110]. We also consider structured quadrilateral

meshes of ABAQUS CPE4H elements to serve as reference solutions [122], which are

structured radially along each defect to accommodate its growth. Figure 2.23 (b) shows the

structured quadrilateral mesh utilized in the case with the initial distance d = 0.43 mm

Figure 2.23: (a) The linear polygonal mesh used for the model of initial distance d =
0.41mm contains three defects. The mesh consists of 25,000 elements. (b) The quadri-
lateral mesh used of the model of initial distance d = 0.41mm, which consists of 40,843
linear quadrilateral elements.
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Figures 2.24 (a) and (b) show snapshots of deformed states of the regions between the

fibers obtained by M1−PD
0 elements for cases with initial distances d = 0.43 mm and 0.91

mm, respectively, at four stages of macroscopic strains, ε = 6.39,9.89,14.89, and 30.39%.

The results obtained by mixed quadratic polygonal elements are identical and therefore

are not shown here. To gain more quantitative insight, we also quantify the current-to-

undeformed area ratios ai/Ai and am/Am of the defects at the interfaces and midpoints.

The results are displayed in Figs. 2.25 (a) and (b) as functions of the applied macroscopic

strain ε . For comparison purposes, these figures include results computed with a structured

quadrilateral mesh of ABAQUS CPE4H elements [122]. An immediate observation is

that all the mixed polygonal elements, namely, the M1−PD
0 , M2−PD

1 , and M2−M1

elements are able to capture the entire growth history and interactions between the defects

and agree with the ABAQUS results. Physically, the results indicate that the defects at the

interfaces grow indeed first but that, upon further loading, the defects at the midpoint start

to grow as well. Further loading results in the contraction of the interfacial defects and

the concentration of all of the growth in the midpoint defects, which eventually become

visible cavities. This intricate behavior appears to be in qualitative agreement with the

experiments of Cho and Gent, at least for the specimen with initial interfiber separation

d = 0.43 mm. The reason behind such a behavior is that the midpoint is the farthest point

from the stiff rubber/fiber interface and therefore is the location where the growth of a

cavity is the least energetically expensive [122]. Furthermore, if we heuristically define

that cavitation occurs whenever a defect grows 1000 times in area say, the specimen with

initial fiber distance of d = 0.43 mm cavitates at a macroscopic strain around ε ≈ 6% while

the one with initial fiber distance of d = 0.91mm cavitates at around ε ≈ 10%. These values

are in good agreement with the prediction given by the criterion (2.76) as well as with the

experimental observations. We emphasize that such an agreement is remarkable given that

the computations carried out here account only for the elastic deformation of the defects,

whereas in the experiments inelastic growth of defects by fracture does occur.

67



Figure 2.24: With three defects introduced in the model, the deformed configurations of
the region between two fibers under four levels of macroscopic strains for cases (a) d =
0.43mm and (b) d = 0.91mm.

Figure 2.25: The growth histories of the three defects quantified by the ratio of their de-
formed areas to their initial areas as functions of the applied macroscopic strain ε for both
cases of d = 0.43 mm and d = 0.91 mm: (a) the defects on the matrix/fiber interface, and
(b) the defect in the middle of the two fibers.
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2.6 Concluding remarks

The modeling of nonlinear elastic materials with standard finite elements under finite defor-

mations is a challenging task due to, by and large, the invariably large local deformations

induced by their heterogeneity. Recently, lower order polygonal elements have shown po-

tential in modeling such a class of materials. To further examine the capabilities of polyg-

onal elements to model nonlinear elastic materials, this chapter has generalized existing

displacement-based and mixed polygonal elements to higher order and has provided a study

of their performance under finite deformations. One critical aspect of the generalization is

the numerical integration scheme. Because polygonal elements contain functions of non-

polynomial nature in their finite element spaces, they typically suffer from consistent errors

with the existing integrations schemes. As shown by numerical tests here, the consistent

errors do not vanish under mesh refinement when a standard integration scheme is used,

which lead to non-convergent finite element results. This problem becomes even more se-

vere when using higher order elements. To address this issue, this chapter has proposed to

employ a gradient correction scheme which can be applied to both displacement-based and

mixed polygonal elements of arbitrary order with any numerical integration scheme that

satisfy the corresponding minimal order requirement. With the correction scheme, both

linear and quadratic polygonal elements have been shown to yield optimally convergent

results with displacement-based and mixed approximations. Furthermore, two choices of

the pressure field approximations have been discussed for the mixed polygonal elements,

namely, the discontinuous approximation and continuous approximation, and their perfor-

mances on numerical stability and accuracy have been investigated. Our numerical studies

indicate that both families of mixed polygonal elements are numerically stable in linear

elasticity problems without any additional stabilization treatments up to quadratic order.

The comparison of performance in the accuracy (for instance, errors in satisfaction of in-

compressibility constraint) between the different types of mixed polygonal element, on the
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other hand, appears to be problem specific (c.f., the discussions in the examples of bending

of a rectangular block into a semicircle and particle reinforced elastomer), and thus needs

further study. For demonstration purposes, we have employed the proposed polygonal el-

ements to model the nonlinear response of particle reinforced elastomers with interphases

and the onset of cavitation in fiber-reinforced elastomers. These challenging physically-

based applications have indicated that the proposed polygonal elements are well suited to

deal with complex microstructures including particulate microstructures and those involv-

ing different length scales, and appears to be more tolerant to large local deformation than

the standard finite elements (triangles and quads).
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CHAPTER 3

SOME BASIC FORMULATIONS OF THE VIRTUAL ELEMENT METHOD

(VEM) FOR FINITE DEFORMATIONS

We present a general Virtual Element Method (VEM) framework for finite elasticity, which

emphasizes two issues: element-level volume change (volume average of the determinant

of the deformation gradient) and stabilization. To address the former issue, we provide and

exact evaluation of the average volume change in both 2D and 3D on properly constructed

local displacement spaces. For the later issue, we provide a new stabilization scheme that is

based on the trace of the material tangent modulus tensor, which captures highly heteroge-

neous and localized deformations. Two VEM formulations are presented: a two-field mixed

and an equivalent displacement-based, which is free of volumetric locking. Convergence

and accuracy of the VEM are verified by means of numerical examples, and engineering

applications are demonstrated.

3.1 Introduction

In this chapter, we put forth a Virtual Element Method (VEM) framework for finite elastic-

ity problems. The introduced VEM framework allows for general two-dimensional polyg-

onal and three-dimensional polyhedral meshes. Two VEM formulations are presented: a

two-field mixed VEM formulation and an equivalent displacement-based VEM formula-

tion, which is free of volumetric locking. We highlight that both VEM formulations utilize

the average volume change (the volume average of the determinant of the deformation gra-

dient) in the element level, which can be computed exactly for both polygonal and polyhe-

dral virtual elements under any given deformation fields. For polyhedral virtual elements,

the local displacement space is properly constructed such that the average volume change

can be exactly computed. We study various choices of constructing the loading terms and
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the stabilization terms for the VEM. A new stabilization scheme is further proposed for

isotropic materials, which is based on the trace of the material tangent modulus tensor.

We conduct thorough numerical assessments to evaluate the convergence of the proposed

VEM. Through an application example, the performance of the proposed VEM is demon-

strated in a problem that involves heterogeneous and localized deformations.

The remainder of this chapter is organized as follows. Section 2 provides motivations

of this chapter and summarizes the related chapter in the VEM literature. Section 3 re-

views the displacement-based and two-field mixed variational principles for finite elastic-

ity. Section 4 introduces the constructions of displacement and pressure VEM spaces, to-

gether with derivations of the exact average volume changes of virtual elements under given

displacement fields. In Section 5, a two-field mixed VEM approximation and its equiva-

lent displacement-based counterpart are presented together with detailed discussions on the

construction of loading and stability terms. A new stabilization scheme is also proposed in

this section. Several numerical assessments are presented in Section 6 to evaluate the con-

vergence as well as the accuracy of the proposed VEM approximations. In Section 7, a two

dimensional application example is presented, which studies the nonlinear elastic response

of a filled elastomer, to showcase and evaluate the performance of the VEM formulations

in problems involving large heterogeneous and localized deformations. Section 8 contains

several concluding remarks and future research directions.

3.2 Motivation and related work

Due to their unique and intriguing properties, polygonal and polyhedral elements have been

attracting high level of attention in the computational mechanics community. Despite their

relatively short history of development, polygonal and polyhedral finite elements have been

successfully applied to several fields of computational mechanics and have revealed several

advantages over classical finite elements, i.e., triangular/tetrahedral and quadrilateral/brick

elements. For instance, polygonal and polyhedral finite elements have been shown to bet-
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ter capture crack propagation and branching in computational fracture simulations [13]–

[16], to produce numerically stable results in topology optimization [17]–[19] and fluid

mechanics [4], and to better model contact [20] and arbitrary internal interface [21] in large

deformation elasto-plasticity problems. Furthermore, recent studies have demonstrated that

polygonal finite elements also possess great potential in the study of two-dimensional finite

elasticity problems [2], [22]. More specifically, from a geometrical point of view, polyg-

onal finite elements are well suited to modeling complex microstructures, such as porous

or particulate microstructures and microstructures involving different length scales, and to

dealing with periodic boundary conditions (introducing hanging nodes). From an analysis

point of view, two-field mixed polygonal finite elements are found to be numerically stable

on Voronoi-type meshes, to produce more accurate results, and to be more tolerant to large

localized deformations.

One the other hand, polygonal and polyhedral finite elements also suffer from draw-

backs. First, while the performance of the finite element results strongly depends on the

quality of the shape functions, the use of polygonal and polyhedral elements with gen-

eral shapes, such as concave polyhedrons, are limited by the availability of well-defined

shape functions. Particularly in 3D, most of the existing shape functions for polyhedral

finite elements are either restrictive in element geometries or computationally expensive

to compute. For instance, although closed-form expressions are available, the Wachspress

shape functions are restricted to strictly convex and simple polyhedrons (meaning the col-

lection of faces that include each vertex consists of exactly three faces) [30], and the Mean

Value coordinates are mainly applicable to polyhedrons with simplicial faces [31]. In con-

trast, while allowing for more general polyhedrons (e.g., concave ones), harmonic shape

functions [29], [32], [33] and max-entropy shape functions [34]–[36] need to be computed

numerically at the quadrature points element by element. Moreover, especially for nonlin-

ear and three-dimensional problems, efficient yet consistent numerical quadrature rule on

general polygons and polyhedrons are difficult to construct and typically contain numer-
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ous quadrature points (see [68], [130], [131] for some recent papers to alleviate this issue),

which is also undesirable from a computational perspective.

The Virtual Element Method (VEM) has been recently introduced as a generalization

of the finite element method (FEM). The VEM is able to handle general polygonal and

polyhedral meshes [37], [38] as it abstracts from the shape functions, which are essential

to any FEM approximation. Unlike FEM, the shape functions in VEM are constructed im-

plicitly, and the approximations of the weak forms are decomposed into consistency and

stability terms, both of which are directly computed from the degrees of freedoms (DOFs)

of the unknown fields. By doing this, only numerical quadratures of polynomials (and not

of more complex functions) is needed in VEM. These favorable features make the VEM

an attractive framework to efficiently deal with general meshes in 2D and 3D. While most

of the studies in the VEM literature consider linear problems in 2D (see, e.g. [25]–[27],

[37], [38], [42], [48], [132]–[134]), some attempts have been made for nonlinear [44],

[135] and 3D [26] problems. In the context of structural mechanics, VEM has been intro-

duced in [42] for (possibly incompressible) two dimensional linear elasticity, in [26] for

three dimensional linear elasticity, in [44] for general two dimensional elastic and inelastic

problems under small deformations, and in [52] for simple contact problems.

The goal of this chapter is to put forward a VEM framework for finite elasticity prob-

lems, which is capable of handling general polygonal and polyhedral elements, including

concave ones, in both 2D and 3D. Two formulations are presented: a two-field mixed VEM

formulation, which involves an additional pressure field, and an equivalent displacement-

based VEM formulation, which is numerically shown to be free of volumetric locking on a

wide class of meshes (as opposed to the standard displacement-based FEM). Both formula-

tions make use of the exact average volume change (the volume average of the determinant

of the deformation gradient) of each element, the analytical expressions of which are de-

rived in both 2D and 3D case under given displacement fields. For polyhedral elements in

3D, the analytical expression for this average volume change is obtained through a proper
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definition of the local displacement VEM space. In both 2D and 3D, the VEM formula-

tions are shown to deliver optimally convergent results, even for meshes with non-convex

elements. Moreover, since nonlinear elastic materials are characterized by non-convex

stored-energy functions as a result of the large reversible deformation, the stabilization

term plays a crucial role in the performance of the VEM. We study various choices of the

stabilization term and discuss their influence on the performance in finite elasticity VEM

problems. We also propose a new stabilization scheme for isotropic materials, which is

based on the trace of the material tangent modulus tensor. A two dimensional practical

application example is presented, which addresses the nonlinear elastic response of a filled

elastomer, and demonstrates the performance proposed VEM formulations in a problem

that involves large heterogeneous and localized deformations.

3.3 Theoretical background

This section revisits the variational principles for finite elastostatics [80]. Displacement-

based and two-field mixed variational principles are presented. Throughout, Lagrangian

description of the fields is adopted.

Consider an elastic solid that occupies a domain Ω ∈ Rd with ∂Ω being its boundary

in its stress-free, undeformed configuration and d being the dimension. It is subjected

to a prescribed displacement field u0 on ΓX and a prescribed surface traction t (per unit

undeformed surface) on Γt, such that ΓX ∪ Γt = ∂Ω and ΓX ∩ Γt = ∅ for a well-posed

problem. Additionally, we also prescribe a body-force f (per unit undeformed volume) in

the solid. A stored-energy function W is used to characterize the constitutive behavior of

the body, which is assumed to be an objective function of the deformation gradient tensor

F. Throughout this chapter, we further assume that the stored-energy function is composed

of two terms, namely,

W (X,F) = Ψ(X,F)+U (X,J) . (3.1)
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U is the volumetric part of the stored-energy function that depends only on J = detF, such

that i) U is strictly convex (at least in the neighborhood of J = 1); ii) U achieves minimum

0 at J = 1, and iii) U →+∞ as J→+∞. For instance, in the case of purely incompressible

solids, U takes the form

U (X,J) =

 0 if J = 1

+∞ otherwise
. (3.2)

Once U(X,J) is identified, Ψ(F) is the remaining term of the stored-energy function W (F).

The first Piola-Kirchhoff stress tensor P at each material point X ∈ Ω is given by the fol-

lowing relation:

P(X) =
∂W
∂F

(X,F) =
∂Ψ

∂F
(X,F)+

∂U
∂F

(X,J) . (3.3)

which is used as the stress measure of choice in this chapter.

3.3.1 Displacement-based variational principle

In the displacement-based formulation, the displacement field u is taken to be the only

independent variable. The deformation gradient F is then assumed to be dependent on u

through F(u) = I+∇u, where ∇ denotes the gradient operator with respect to the unde-

formed configuration and I stands for identity in the space of second-order tensors. Simi-

larly, J depends on u through J(u) = detF(u). Based on the principle of minimum potential

energy, the displacement-based formulation consists of seeking the unknown displacement

u which minimize the potential energy Π among all the kinematically admissible displace-

ments v

Π(u) = min
v∈K

Π(v) , (3.4)

with

Π(v) =
�

Ω

[
Ψ(X,F(v))+U (X,J (v))

]
dX−

�
Ω

f ·vdX−
�

Γt
t ·vdS, (3.5)
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where K stands for the set of kinematically admissible displacements such that v = u0 on

ΓX.

The weak form of the Euler-Lagrange equations of the minimization problem is given

by

G(v,δv) =
�

Ω

[
∂Ψ

∂F
(X,F(v))+

∂U
∂F

(X,J (v))
]

: ∇(δv)dX

−
�

Ω

f ·δvdX−
�

Γt
t ·δvdS = 0 ∀δv ∈K 0, (3.6)

where the trial displacement field δv is the variation of v, and K 0 denotes the set of all the

kinematically admissible displacement fields that vanish on ΓX.

3.3.2 A general two-field mixed variational principle

For nearly and purely incompressible materials, the two-field mixed variational principle

is typically utilized. Under the assumption of (3.1), different types of two-field mixed

variational principles can be derived based on different forms of the decompositions. In the

F-formulation, Ψ is assumed to be a general function on F, i.e., no multiplicative decompo-

sition of the deformation gradient is used, whereas, in the commonly used F-formulation,

Ψ is assumed to solely depend on the deviatoric part of the deformation gradient, that is,

F = J−1/3F. In the latter case, Ψ is the stored-energy induced by the deviatoric component

of the deformation.

This section briefly reviews the F-formulation proposed in [2]. For the F-formulation,

the derivation follows similar procedures and therefore is not presented here. The interested

readers are referred to [80], [86], [88], [136], [137] and references therein.

The basic idea is to introduce a Legendre transformation of the term U(J) in the stored-

energy function as follows [2]

Û∗ (X, q̂) = max
J

q̂(J−1)−U (X,J) . (3.7)
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Since U (J) is assumed to be convex over J, then the duality of the transformation yields

U (X,J) = max
q̂

q̂(J−1)−Û∗ (X, q̂) . (3.8)

Direct substitution of (3.8) into the displacement-based formulation (3.4) and (3.5) renders

the following two-field mixed variational principle, which seeks the unknown displacement

field u and pressure-like field p̂ such that

Π̂(u, p̂) = min
v∈K

max
q̂∈Q

Π̂(v, q̂) , (3.9)

where Π̂(v, q̂) is of the form

Π̂(v, q̂) =
�

Ω

{
Ψ(X,F(v))+ q̂ [J (v)−1]−Û∗ (X, q̂)

}
dX−

�
Ω

f ·vdX−
�

Γt
t ·vdS,

(3.10)

and Q denotes the set of square-integrable functions. Unlike the commonly adopted F-

formulation, whose unknown pressure field is the equilibrium Cauchy hydrostatic pressure

field p .
= trσσσ , the additional unknown field p̂ in the F-formulation is found to be a pressure-

like scalar field which relates to p through

p = p̂+
1
3J

∂Ψ

∂F
(X,F) : F. (3.11)

The weak forms of the Euler-Lagrange equations from (3.9) and (3.10) are obtained as

Gv (v, q̂,δv) =
�

Ω

[
∂Ψ

∂F
(X,F(v))+ q̂

∂J
∂F

(F(v))
]

: ∇(δv)dX

−
�

Ω

f ·δvdX−
�

Γt
t ·δvdS = 0 ∀δv ∈K 0, (3.12)

Gq̂ (v, q̂,δ q̂) =
�

Ω

[
J (v)−1− ∂Û∗

∂ q̂
(X, q̂)

]
δ q̂dX = 0 ∀δ q̂ ∈Q, (3.13)
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where the trial pressure field δ q̂ is the variation of q̂.

3.4 Virtual element spaces and projection operators

Consider Ωh to be a tessellation of the domain Ω into non-overlapping polygon/polyhedral

elements with h being the maximum element size. The boundary of the mesh, denoted as

Γh is assumed to be compatible with the applied boundary condition, that is, Γt
h and ΓX

h are

both unions of edges/faces of the mesh. In the following presentation, we use F to denote a

generic polygonal (an element in 2D or a face in 3D) and P to denote a generic polyhedron.

Moreover, we use e to represent a generic edge. When the definitions are independent of

dimensions, we denote E as a generic element with |E| being its area/volume.

3.4.1 Displacement VEM space and projection operators

The global virtual displacement space Kh associated with the mesh Ωh is a conforming

finite dimensional space that defined as:

Kh = {vh ∈K : vh|E ∈ V (E) ,∀E ∈Ωh} , (3.14)

where V (E) is a local VEM space defined on E ∈Ωh.
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Figure 3.1: Illustrations of (a) a two dimensional polygonal element F in its undeformed
configuration, (b) a three dimensional polyhedral element P in its undeformed configura-
tion, and (c) a generic face F of the polyhedral element P.
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Local VEM space in 2D In two dimensions (2D), let us consider a given element F with

m vertices, denoted as Xi = [Xi,Yi]
T , i = 1, ...,m, which are numbered counterclockwise as

shown in Fig. 3.1 (a). We define the local displacement VEM space as [37], [42]

V (F)
.
=
{

v ∈
[
H1 (F)

]2
: ∆v = 0 in F, v|e ∈ [P1 (e)]

2 ∀e ∈ ∂F
}
, (3.15)

where ∆ stands for the Laplacian operator. As inferred by its definition, the VEM space

contains harmonic functions which are implicitly known in the interior of F and explicitly

known to possess linear variations on the edges of F . We note that enforcing the functions

within the local VEM space to be harmonic is a simple choice instead of a requirement.

Other choices can also be made. For instance, another option is to enforce the functions to

have linearly varying Laplacian together with additional constraints to fix the total number

of DOFs. An example of under this philosophy can be found in (4.9). One can also use

other types of PDEs than the Laplace equation. For example, the Stokes equation is used

in [138], [139] to construct the local VEM in order solve the Stokes or Navier-Stokes flow

problems. By using the Stokes equation, one can enforce point-wise divergence-free prop-

erty of the local VEM space, which is shown to produce solutions with improved accuracy

and robustness for Stokes and Navier-Stokes flow problems [138], [139]. Moreover, the

VEM space V (F) is linearly complete, namely, [P1(F)]2 ⊆ V (F). In order to guarantee

the continuity of the global displacement space Kh, the degrees of freedom (DOFs) of the

V (F) are taken at the vertices of F , which are identical to those in the first-order finite

element spaces on general polygons.

By construction, we are able to compute the area average of the gradient of any given

function v ∈ V (F) using only the DOFs of v and geometrical information of F . Indeed,

using integration by parts, for any given function v in V (F) it holds:

1
|F |

�
F

∇vdX =
1
|F | ∑

e∈∂F

�
e
v⊗nedS, (3.16)
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where ne is the outward norm vector associated with edge e. Realizing that the functions in

V (F) possess linear variations on each edge of F , the edge integral on the right-hand side

of the above relation can be expressed as

∑
e∈∂F

�
e
v⊗nedS =

1
2

m

∑
i=1

v(Xi) · (|ei|ni + |ei−1|ni−1) , (3.17)

yielding
1
|F |

�
F

∇vdX =
1

2|F |

m

∑
i=1

v(Xi) · (|ei|ni + |ei−1|ni−1) . (3.18)

where |ei| is the length of the ith edge, as shown in Fig. 3.1 (a). For convenience, in

the sums we follow the standard convention that i+ 1 = 1 whenever i = m and i− 1 = m

whenever i = 1.

Local VEM space in 3D We proceed to define the displacement VEM space in 3D.

To begin with, let us consider a polyhedron P whose boundary consists of planar faces

as shown in Fig. 3.1 (b). Suppose that P contains m vertices, which are numbered as

Xi = [Xi,Yi,Zi]
T , i = 1, ...,m. For the ith vertex Xi, we denote Fi as the set of faces that

are connected to it. Moreover, for any given face F ∈ ∂P with mF vertices, we assume

that the vertices are renumbered locally as XF
j , j = 1, ...,mF , such that the numbering is

in a counterclockwise fashion with respect to the outward normal nF pointing out of the

element, as shown in Fig. 3.1 (c). A map GF is utilized to denote the relation between the

global numbering and the local numbering on face F . If the ith vertex of P (with global

numbering) becomes the jth vertex of F (with local numbering), we write XF
j = XF

GF (i)
or

Xi = XG−1
F ( j). Notice that for any given F /∈Fi, GF(i) = /0. Additionally, any given face

F ∈ ∂P is assumed to be star-convex [29] with respect to a point XF
s given by

XF
s =

mF

∑
j=1

β
f
j XF

j , (3.19)
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where the weights β F
j are chosen weights that satisfy β F

j ≥ 0, j = 1, ...,mF and ∑
mF

j=1 β F
j =

1. It follows that for any linear function p ∈ [P1(R)]3,

p
(
XF

s
)
=

mF

∑
j=1

β
F
j p
(
XF

j
)
. (3.20)

By assuming star-convexity of each face, we can introduce triangulations of the all the

faces F ∈ ∂P by connecting all the vertices to XF
s , as shown in Fig. 3.1 (c). We use T F

j ,

j = 1, ...,mF to denote the triangulated subfaces of F , such that T F
j and T F

j−1 are connected

to vertex XF
j , as shown in Fig. 3.1 (c).

The virtual space on P is defined as

V (P) .
=

{
v ∈

[
H1 (P)

]3
: v|∂P ∈

[
C0 (∂P)

]3
, v
(
XF

s
)
=

mF

∑
j=1

β
F
j v
(
XF

j
)

and

v|T F
j
∈
[
P1
(
T F

j
)]3

, j = 1, ...,mF , ∀F ∈ ∂P and ∆v = 0, inP
}
. (3.21)

By the above definition, the above space contains harmonic functions which are continuous

and piecewise linear on each face of the element P. Moreover, due to (3.20), we have

[P1 (P)]3 ⊆ V (P). As for the degrees of freedom for V (P), we take the pointwise values

at the vertices of P; these are a valid set of degrees of freedom for the local VEM space.

Under the definition above, the volume average of the gradient for any function v in

V (P) can be computed exactly taking the steps from the 3D analog of Eq. (3.16):

1
|P|

�
P

∇vdX =
1
|P| ∑

F∈∂P

�
F

v⊗nFdS. (3.22)

Notice that since F is assumed to be planar, its outward unit normal vector nF is a constant

vector. Upon realizing that v is piecewise linear on F , the face integral
�

F v⊗nFdS can be
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explicitly carried out by using a vertex-based quadrature rule over each triangulated face:

�
F

v⊗nFdS =
mF

∑
j=1

{
|T F

j |
3
[
v
(
XF

j
)
+v
(
XF

j+1
)
+v
(
XF

s
)]}
⊗nF , (3.23)

where |T F
j | is the (signed) area of T F

j defined as

|T F
j |=

1
2

nF ·
(
XF

j −XF
s
)
∧
(
XF

j+1−XF
s
)
. (3.24)

Again, analogous summing conventions as in (3.17)-(3.18) are used. The above expression

(3.24) can be further recast into a vertex based quadrature rule over F as follows

�
F

v⊗nFdS =
mF

∑
j=1

{[
β F

j

3
|F |+ 1

3
(
|T F

j |+ |T F
j−1|
)]

v
(
XF

j
)}
⊗nF =

mF

∑
j=1

wF
j v
(
XF

j
)
⊗nF

(3.25)

by assigning each vertex XF
j with a weight wF

j of the form wF
j
.
=

β F
j

3 |F |+
1
3

(
|T F

j |+ |T F
j−1|
)

,

where |F | is the (absolute) area of F . Several remarks are worthwhile making on the above

vertex based quadrature rule. First, notice that with the assumption that each F is star-

convex with respect to XF
s , the weight wF

j associated with each vertex is guaranteed to be

strictly positive. On the other hand, for cases where F is not star-convex with respect to XF
s

(including XF
s lies outside of F), the weights wF

j may take negative values. However, we

observe that the resulting vertex based quadrature rule on F still enjoy first-order accuracy,

as will be discussed in detail in Appendix B. Note that, in such non star convex case,

definition (3.21) makes no sense anymore; anyway (thanks to the above observations) it

turns out that one can still implement the above formulas and obtain a convergent scheme.

As a result, the volume average of ∇v takes the final form

1
|P|

�
P

∇vdX =
1
|P| ∑

F∈∂P

mF

∑
j=1

{
wF

j v
(
XF

j
)
⊗nF} . (3.26)

Observe that, as in the 2D case, the above expression only makes use of the DOFs of v and
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the geometric information of P.

In the proposed VEM approximation, we make use of two projection operators [44].

The first projection operator, denoted as ΠΠΠ
0
E , is a tensor-valued L2 projection operator which

projects any given second-order tensor G ∈ [L2(E)]d×d onto its average value over E, that

is,

ΠΠΠ
0
EG =

1
|E|

�
E

GdX. (3.27)

We remark that for any given element E ∈ Ωh and v ∈ V (E), the projection ΠΠΠ
0
E(∇v) is

explicitly computable in both 2D and 3D using the DOFs of v and geometric information

of E, which is a direct consequence of (3.16) and (3.26).

On the other hand, the second projection operator, denoted as ΠΠΠ
∇
E , is a vector-valued

projection operator, which projects from the VEM space V (E) onto [P1(E)]d . It is defined

such that  ∇

(
ΠΠΠ

∇
E v
)
= ΠΠΠ

0
E (∇v)

∑
m
i=1(ΠΠΠ

∇
E v)(Xi) = ∑

m
i=1 v(Xi)

. (3.28)

As we can see, for any given v∈ V (E), ΠΠΠ
∇v becomes a linear function. The first condition

in the above definition ensures that the gradient of the linear function equals to the average

gradient of v over E and the second condition determines the constant component of the

linear function by ensuring that the average value ΠΠΠ
∇
E v of vertices are equal to the average

value of v at vertices. With the two aforementioned conditions, the linear function ΠΠΠ
∇
E v

is uniquely determined and depends only on the DOF values of V (E) and on geometric

information of E.

We close this section with an important observation. Our choice (3.21) for the defini-

tion of V (E) on faces is different from the ones adopted in Chapters 4 and 5, as well as

the ones proposed in [26], [44], [140]. The reason is that, differently from those space def-

initions, a displacement in space (3.21) guarantees that the faces of the deformed element

are piecewise planar. Our choice is therefore more suitable for large deformation problems

and the associated computations.
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3.4.2 Area/volume average of J on general polygonal and polyhedral elements

For a given displacement field v ∈ V (E), let us denote Ẽ as the deformed configuration of

element E and X̃i (where X̃i = [X̃i,Ỹi]
T in 2D or X̃i = [X̃i,Ỹi, Z̃i]

T in 3D) as the position vec-

tor of vertex i of Ẽ such that X̃i = Xi +v(Xi), as shown in Figs. 3.2 (a) and (b). Similarly,

we also utilize ẽ, F̃ , P̃ to denote the deformed edge, deformed polygon/face and deformed

polyhedron, respectively. In addition, we denote by F̃ i the set of deformed faces that are

connected to the ith vertex of P̃. Notice that the faces of a deformed polyhedron may not

be planar, but the deformation changes neither the vertex-face connectivity nor the relation

between the global and local numbering of the vertices that polyhedron. In other words, if

a given F belongs to Fi in the undeformed configuration, we have F̃ ∈ F̃i. Additionally,

if the ith vertex of P is renumbered as the jth vertex on face F in the undeformed configu-

ration, the relations X̃
F
j = X̃

F
GF (i) and X̃i = X̃G−1

F ( j) still hold in the deformed configuration.
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Figure 3.2: Illustrations of (a) a 2D polygonal element F̃ in its deformed configuration,
(b) a 3D polyhedral element P̃ in its deformed configuration, and (c) a generic face F̃ (not
necessarily planar) of the polyhedral element P̃.

The area/volume average of J over element E under v, denoted as JE henceforth, is

defined as

JE (v) =
1
|E|

�
E

J (v)dX. (3.29)

Pushing the integral forward into the deformed configuration and applying the divergence
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theorem, we end up with the following expression

JE (v) =
1
|E|

�
Ẽ

dX̃ =
1

d|E|

�
Ẽ

∇̃ · X̃dX̃ =
1

d|E|

�
∂ Ẽ

X̃ · ñdS̃, (3.30)

where ∇̃ stands for the gradient operator with respect to the deformed configuration and ñ

is the unit normal vector in the deformed configuration.

Computing JE in the 2D case In the 2D case, because any displacement field v =

{vx,vy}T ∈ V (F) varies linearly on each edge e, then ẽ remains straight in the deformed

configuration, as shown in Fig. 3.2 (a). Thus, we can expand (3.30) as

JE(v) =
1

2|F |

�
∂ F̃

X̃ · ñdS̃ =
1

4|F |

m

∑
i=1

X̃i · (|ẽi|ñi + |ẽi−1|ñi−1) , (3.31)

where |ẽi| and ñi denote the length and outward unit normal vector of the ith deformed edge

ẽi.

By introducing a matrix R ∈R2×2 representing a 90◦ counterclockwise rotation, which

is of the form

R =

0 −1

1 0

 (3.32)

and satisfies |ẽi|ñi = R(X̃i− X̃i+1), we simplify the above relation as

JE(v) =
1

4|F |

m

∑
i=1

X̃i ·R
(

X̃i−1− X̃i+1

)
. (3.33)

By direct derivation of (3.33), the first variation of JE with respect to δv = [δvx,δvy]
T ∈

V (F) can be obtained as

DJE (v) ·δv =
1

2|F |

m

∑
i=1

δv(Xi) ·R
(

X̃i−1− X̃i+1

)
. (3.34)

For practical computations, it is convenient to recast the above expressions into matrix
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representation. By introducing H ∈ R2m×2m of the form

H =



0 −R 0 · · · 0 R

R 0 −R · · · 0 0
...

−R 0 0 · · · R 0


, (3.35)

which is a symmetric matrix (since R is skew-symmetric), we can rewrite Eqs. (3.33) and

(3.34) as

JE(v) =
1

4|F |
Ñ

T
HÑ and DJE(v) ·δv =

1
2|F |

δVT HÑ, (3.36)

where Ñ and δV ∈ R2m are given by

Ñ =

[
X̃1 Ỹ1 · · · X̃m Ỹm

]T

and

δV =

[
δvx (X1) δvy (X1) · · · δvx (Xm) δvy (Xm)

]T

,

(3.37)

respectively.

The second variation of JE can be obtained directly in matrix representation by a plain

derivation of (3.36) and recalling the relation between Ñ and v. We obtain the following

result

D(DJE(v) ·δv) ·w =
1
|F |

�
F

(
∇(δv) :

∂ 2J
∂F∂F

(v)
)

: ∇wdX =
1

2|F |
δVT HW, (3.38)

where w = [wx,wy]
T ∈ V (F) is the incremental displacement field and W∈R2m is a vector

of the form

W =

[
wx (X1) wy (X1) · · · wx (Xm) wy (Xm)

]T

. (3.39)

Computing JE in the 3D case The calculation of JE in the 3D case is more complicated

because the planar face F typically deforms into a non-planar F̃ in its deformed configu-
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ration, as shown in Fig. 3.2 (c). As a result, the associated deformed normal vector ñF

become non-constant over F̃ . Yet, each deformed triangulated subface T̃ F
i of the T F

i still

remains planar. If we denote the deformed normal of T̃ F
i as ñF

i and employ a vertex-based

integration rule, we have

JE (v) =
1

3|P|

�
∂ P̃

X̃ · ñdS̃ =
1

3|P| ∑
F̃∈∂ P̃

mF

∑
j=1

[
|T̃ F

j | ñ
F
j ·

1
3

(
X̃

F
j + X̃

F
j+1 + X̃

F
s

)]

=
1

3|P| ∑
F̃∈∂ P̃

mF

∑
j=1

{
1
6

(
X̃

F
j + X̃

F
j+1 + X̃

F
s

)
·
(

X̃
F
j − X̃

F
s

)
∧
(

X̃
F
j+1− X̃

F
s

)}

Further simplification of the above equation yields, after some calculations,

JE (v) =
1

6|P| ∑
F̃∈∂ P̃

mF

∑
j=1

{
X̃

F
s · X̃

F
j ∧ X̃

F
j+1

}
. (3.40)

Notice that, since JE is an algebraic function of the DOFs of v, then its first variation with

respect to any given δv ∈ V (P) is obtained as

DJE (v) ·δv =
1

6|P|

m

∑
i=1

{
δv(Xi) ·

[
∑

F̃∈F̃ i

(
β

F
i

mF F

∑
j=1

X̃
F
j−1∧ X̃

F
j

+ X̃
F
s ∧
(

X̃
F
GF (i)−1− X̃

F
GF (i)+1

))]}
. (3.41)

Following the same procedure above, the second variation of JE is given by

D(DJE(v) ·δv) ·w =
m

∑
i=1

m

∑
j=1

δv(Xi) ·
∂ 2JE

∂ X̃i∂ X̃ j
(v) ·w

(
X j
)
, (3.42)
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where the 3×3 matrixes ∂ 2JE/∂ X̃i∂ X̃ j can be expressed in the form

∂ 2JE

∂ X̃i∂ X̃ j
(v) =

1
6|P| ∑

F̃∈F̃i j

{
β

F
i

[
X̃

F
GF ( j)−1− X̃

F
GF ( j)+1

]
∧

+β
F
j

[
X̃

F
GF (i)+1− X̃

F
GF (i)−1

]
∧
+
(

δGF ( j),GF (i)−1−δGF ( j),GF (i)+1

)[
X̃

F
s

]
∧

}
(3.43)

and F̃i j denotes the set of faces that are connected to both the ith and the jth vertices (with

global numbering) of P. In the above expression, δi, j denotes the Kronecker delta function

and we have made use of the notation

[a]∧ =


0 −az ay

az 0 ax

−ay −ax 0

 (3.44)

for a given vector a = [ax,ay,az]
T .

We remark that in both 2D and 3D cases, JE and its first and second variations are all

algebraic functions that can be exactly computed using only the coordinates of the vertices

in the deformed configuration and the DOFs of fields δv and w.

We also remark that another option of approximating JE is to simply use the projected

gradient. For any given δv, w ∈ V (E), we obtain

JE (v) = det
(
I+ΠΠΠ

0
E (∇v)

)
, (3.45)

DJE(v) ·δv =
∂J
∂F
(
I+ΠΠΠ

0
E (∇v)

)
: ΠΠΠ

0
E (∇(δv)) , (3.46)

D(DJE(v) ·δv) ·w = ΠΠΠ
0
E (∇(δv)) :

∂ 2J
∂F∂F

(
I+ΠΠΠ

0
E (∇v)

)
: ΠΠΠ

0
E (∇w) , (3.47)

As compared to the previous formula of JE derived in this subsection, the above approxi-

mations take simpler forms and are easier for computational implementations, especially in

the 3D case. Moreover, we observe that the approximated JE and its first variation become
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exact for any u and v ∈ [P1(E)]d , meaning that the approximation (3.45) is also first-order

consistent. Therefore, as demonstrated by numerical examples, the above approximations

in the VEM construction can also lead to optimally convergent results. However, we re-

mark that (3.45) is less robust than (3.29) in the sense that, when the level of deformation

increases and the shape of the element becomes more irregular, this approach is more prone

to experience non-convergence in the Newton-Raphson algorithm and may provide less ac-

curate solutions. We will present both approaches of computing JE and its variations in

the numerical examples of this chapter. For convenience, we refer to the VEM following

(3.29), i.e. using expressions (3.36), (3.38) and (3.40)–(3.42), as to the “Robust” approach

and to the VEM using (3.45)–(3.47) as to the “Simple” approach. This is illustrated by

Table 3.1.

Table 3.1: Approaches for computing area or volume average of J = detF over element E.
Approaches Associated equations

Robust (3.36), (3.38), (3.40), (3.41), (3.42)
Simple (3.45), (3.46), (3.47)

3.4.3 Pressure VEM spaces

For the two-field mixed virtual elements used in this chapter, we assume a piecewise con-

stant approximation of the pressure field, which takes constant value over each element

E. This approximation has been shown to lead to numerically stable approximations on

several polygonal meshes in 2D, such as the Centroidal Voronoi Tessellation (CVT) and

structured hexagonal meshes [2], [4], [72]. Accordingly, the finite dimensional pressure

space Qh is then identified with the following definition:

Qh
.
= {q̂h ∈Q : q̂|E = constant∀E ∈Ωh} . (3.48)

90



3.5 Variational approximations

Having defined the displacement and pressure VEM spaces, we proceed to propose the

displacement-based and two-field mixed VEM approximations on the polygonal/polyhedral

mesh Ωh. In particular, we first introduce the two-field mixed Galerkin approximation as-

suming the piecewise constant pressure field and exact integration, as well as an equivalent

displacement-based Galerkin approximation, which also assume exact integration. Sub-

sequently, decomposition of the exact integral into consistency and stability components

is introduced for both approximations, which leads to the final form of the displacement-

based and mixed VEM approximations. Moreover, we discuss different constructions of

stability and loading terms and propose a new stabilization scheme for isotropic solids.

Finally, the polynomial consistency of the VEM approximations is demonstrated.

3.5.1 Two-field mixed and equivalent displacement-based Galerkin approximations with

exact integration

For lower-order mixed elements, whose pressure field q̂h is assumed to be constant over

each element, the Galerkin approximation consists of finding the equilibrating displace-

ment uh and pressure p̂h, such that

Π̂h (uh, p̂h) = min
vh∈Kh

max
q̂h∈Qh

Π̂(vh, q̂h) , (3.49)

where

Π̂h (vh, q̂h)=∑
E

�
E

{
Ψ(F(vh))+ q̂h [J (vh)−1]−Û∗ (q̂h)

}
dX−∑

E

�
E

f·vhdX−
�

Γt
h

t ·vhdS.

(3.50)

For the time being, we assume exact integration over E in our Galerkin approximations.
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Since q̂h takes constant values over E the above formulation can be rewritten as

Π̂h (vh, q̂h) = ∑
E

�
E

Ψ(F(vh))dX+∑
E

{
|E|
[
q̂h|E

(
JE (vh)−1

)
−Û∗ (q̂h|E)

]}
−∑

E

�
E

f ·vhdX−
�

Γt
h

t ·vhdS. (3.51)

Observe that JE appears in the second term on the right-hand side of the above expres-

sion, which can evaluated either exactly (3.29) or approximately (3.45) using the formulas

provided in the preceding section.

We also introduce a displacement-based Galerkin approximation that consists of seek-

ing the unknown displacement field such that

Πh (uh) = min
vh∈Kh

Πh (vh) , (3.52)

where

Πh (vh) = ∑
E

�
E

Ψ(F(vh))dX+∑
E
|E|U (JE(vh))−∑

E

�
E

f ·vhdX−
�

Γt
h

t ·vhdS. (3.53)

By realizing that

∑
E
|E|U (JE(vh)) = max

q̂h∈Qh

{
∑
E
|E|
[

q̂h|E
(

JE(vh)−1
)
−Û∗ (q̂h|E)

]}
(3.54)

as a consequence of (3.8), we note that the displacement-based approximation is equivalent

to the two-field mixed one except for the case of purely incompressible materials, where the

displacement approximation fails because of (3.2). In the finite element method (FEM) lit-

erature, this equivalence is also explored in [141]. Moreover, since d2U/(dJ)2→+∞ as the

material approaches incompressibility, employing the above displacement-based approxi-

mation for nearly incompressible materials will lead to finite element systems with high

condition numbers in the stiffness matrices, possibly resulting in poor convergence perfor-
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mance of the Newton-Raphson method. By contrast, the two-field mixed approximation is

free of the above shortcomings and is valid for materials with any level of incompressibility,

including those that are purely incompressible.

This chapter also considers the standard displacement-based and two-field mixed FEM

approximations on polygonal meshes [2]. The Mean Value coordinates are used to con-

struct the displacement spaces [97] and the gradient correction scheme [68] is also adopted

to ensure the polynomial consistency of the finite element approximations.

3.5.2 Displacement-based and two-field mixed VEM approximations

This subsection proceeds to propose the displacement-based and two-field mixed VEM

approximations. Following the original idea of the VEM, we decompose the exact integrals

associated with Ψ in (3.51) and (3.53) into “consistency” and “stability” terms [37].

The displacement-based VEM approximation then consists of seeking the unknown

displacement field uh such that it satisfies Eq. (3.52) with

Π
V EM
h (vh) = ∑

E
|E|Ψ

(
I+ΠΠΠ

0
E∇vh

)
+

1
2 ∑

E
αE (sh)Sh,E

(
vh−ΠΠΠ

∇
E vh,vh−ΠΠΠ

∇
E vh

)
+∑

E
|E|U

(
JE(vh)

)
−〈f,vh〉h−〈t,vh〉h. (3.55)

In the above expression, 〈f,vh〉h and 〈t,vh〉h stand for the approximated loading terms as-

sociated with body force and surface traction respectively, whose forms will be discussed

in the next subsection. Moreover, notice that the first term on the right-hand side of (3.55)

is first-order consistent, and is thus called the “consistency” term, meaning that if vh is a

first-order polynomial function, this term recovers the first term in (3.53). However, unless

E is a linear triangular/tetrahedral element, the consistency term contains non-physical

kernel that may lead to spurious modes in the displacement solution. A stabilization

term (the second term on the right-hand side of (3.55)) is thus needed to penalize those

non-physical kernels. The stabilization term is made up of two components, αE(sh) and
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Sh,E(vh−ΠΠΠ
∇
E vh,vh−ΠΠΠ

∇
E vh). In fact, Sh,E(·, ·) is a bilinear form given by [44]

Sh,E (vh,wh) = hd−2
E ∑

v∈E
vh (Xv) ·wh (Xv) ∀vh,wh ∈Kh ∀E ∈Ωh (3.56)

with hE = |E|1/d measuring the size of E, whereas αE(sh) is a scalar-valued function of

sh ∈Kh, a detailed discussion on which will be provided on the next subsection.

In the same manner, we also state the final form of the two-field mixed VEM approxi-

mation, which consists of finding the unknown displacement field uh and pressure field p̂h

such that it satisfies Eq. (3.49) with

Π̂
V EM
h (vh, q̂h) = ∑

E
|E|Ψ

(
I+ΠΠΠ

0
E∇vh

)
+

1
2 ∑

E
αE (sh)Sh,E

(
vh−ΠΠΠ

∇
E vh,vh−ΠΠΠ

∇
E vh

)
+∑

E
|E|
[

q̂h|E
(

JE(vh)−1
)
−Û∗ (q̂h|E)

]
−〈f,vh〉h−〈t,vh〉h. (3.57)

While the focus of this chapter is on developing lower order VEM approximations, a

few remarks are worthwhile making on their possible extension to the higher-order VEM

approximations. For higher order VEM approximations, the local VEM spaces are well-

defined and the associated projections are computable [140]. A possible extension using

the “Simple” approach can follow the same methodology presented in this section: one can

decompose the stored-energy function into a consistency part which utilizes higher-order

projections and then stabilize the remaining part. On the other hand, the extension to higher

order VEM considering the “Robust” approach is a more challenging part, which deserves

further theoretical developments.

3.5.3 Discussion on the stabilization parameter αE(sh)

In the sequel, we review and discuss the stabilization parameter αE proposed in [44] for

small deformation nonlinear elastic and inelastic problems. Motivated by the discussions,

we hereby propose a new expression for the stabilization parameter αE , which is based on
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the trace of the Hessian of Ψ.

Norm-based stabilization In the chapter by Beirão da Veiga et. al. [44], the stabilization

parameter αE is given by the following expression:

αE (sh) = |||
∂ 2Ψ

∂F∂F
(
I+ΠΠΠ

0
E∇sh

)
|||, ∀sh ∈Kh (3.58)

where ||| · ||| denotes any norm of a fourth order tensor. In the remainder of the chapter, we

refer this choice as the norm-based stabilization. As a common choice, the norm induced

by the Euclidean vector norm is considered in this chapter. In this case, the stabilization

parameter αE equals to the absolute value of the largest eigenvalue of the Hessian of Ψ.

Intuitively, this amounts to assigning the moduli of a material in its stiffest direction to

all its directions. As a result, as will be shown in the filled elastomer example, the VEM

approximations adopting this stabilization parameter typically yield over stiff responses in

large deformation analysis. Notice that in this norm-based stabilization, unlike the original

form of αE used in [44], which essentially uses the Hessian of the entire stored-energy

function W , we only use that of the first component of the stored-energy function Ψ (similar

to the selective integration concept in the FEM literature).

The choice of sh ∈Kh can be any kinematically admissible displacement. Two choices

of sh are discussed in [44], which are sh = 0 and sh = un−1
h , where un−1

h is the equilibrium

displacement field obtained in the last Newton-Raphson step. The former choice amounts

to evaluating αE in the undeformed configuration. For this choice, αE is a constant scalar

that is independent of the deformation state and, as shown in [44], can easily lead to unsat-

isfactory results also in small deformation regimes. By contrast, the latter choice evaluates

αE in the last deformed configuration that is solved by the Newton-Raphson method, im-

plying that αE keeps updating according to the deformation states. The motivation for the

choice sh = un−1
h in [44] (instead of the more natural sh = uh with uh the displacement field

that we are seeking for) is to simplify the Newton-Raphson iterations by avoiding to com-
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pute the derivatives of αE in the associated tangent matrix. On the other hand, when applied

to finite elasticity problems, especially to those involving heterogeneous and large localized

deformations, also this second choice has its own shortcomings. As will be demonstrated

by the filled elastomer example in Section 6, the choice of sh = 0 in αE tends to under sta-

bilize some elements at high deformation levels (which leads to noticeable hourglass-type

deformations in those elements), while choosing sh = un−1
h renders the approximations de-

pendent on the loading histories, possibly making it unsuited for problems involving very

large and heterogeneous deformation fields. It is worthwhile noting that, although sh = uh

is a more intuitive choice, it is also more computationally demanding than sh = un−1
h for

the reason mentioned above.

Trace-based stabilization The expression (3.58) was introduced in [44] in order to ob-

tain a (strictly) positive stabilization factor, that is a reasonable condition for small deforma-

tion regimes. On the other hand, this may become an unreliable choice in large deformation

analysis, where issues related to the physical stability of the material appear. Motivated by

the above discussion, we propose a new stabilization parameter αE which is based on the

trace of the Hessian of Ψ given by

αE (sh) =
1
d2 tr

(
∂ 2Ψ

∂F∂F
(
I+ΠΠΠ

0
E∇sh

))
, ∀sh ∈Kh, (3.59)

where d is the dimension (d = 2,3). We refer to it as the trace-based stabilization. Instead

of taking into account only the largest eigenvalue of the Hessian of Ψ as in the norm-based

stabilization using the Euclidean induced norm, αE in the trace-based stabilization takes

into account all the eigenvalues of the Hessian of Ψ (αE equals the algebraic average of all

the eigenvalues of the Hessian of Ψ). In addition, whereas the norm-based stabilization is

always positive, the trace-based stabilization may take negative values, for instance, when

the eigenvalues of the Hessian are dominantly negative. This issue is closely related to the

physical stability of the material, a detailed analysis of which is beyond the scope of this
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chapter and is subjected to future chapter [142].

When specialized to isotropic materials, explicit expressions can be obtained for αE in

the trace-based stabilization. For isotropic material, Ψ(F) is a function Φ(I1, I2,J) which

solely depends on the three invariants I1, I2 and J of the right Cauchy-Green deformation

tensor C = FT F, where I1 = trC and I2 = 1/2[(trC)2− tr(C2)]. Under this condition, the

proposed stabilization parameter αE is given by:

αE (sh) =
1
d2 tr

[
∂ 2Φ

∂F∂F
(
I1
(
I+ΠΠΠ

0
E∇sh

)
, I2
(
I+ΠΠΠ

0
E∇sh

)
,J
(
I+ΠΠΠ

0
E∇sh

))]
. (3.60)

As will be shown in detail in Appendix A, making use of the Cayley-Hamilton theorem,

the above expression can be further simplified as

αE (sh) =
1
4

[
4I1

∂ 2Φ

∂ I1∂ I1
+
(
8I1 I2−4J2 I1

) ∂ 2Φ

∂ I2∂ I2
+ I1

∂ 2Φ

∂J∂J
+16I2

∂ 2Φ

∂ I1∂ I2
+8J

∂ 2Φ

∂ I1∂J

+2J I1
∂ 2Φ

∂ I2∂J
+8

∂Φ

∂ I1
+2I1

∂Φ

∂ I2

]
. (3.61)

in 2D and

αE (sh) =
1
9

[
4I1

∂ 2Φ

∂ I1∂ I1
+
(
4I1 I2 +12J2) ∂ 2Φ

∂ I2∂ I2
+ I2

∂ 2Φ

∂J∂J
+16I2

∂ 2Φ

∂ I1∂ I2
+12J

∂ 2Φ

∂ I1∂J

+4J I1
∂ 2Φ

∂ I2∂J
+18

∂Φ

∂ I1
+8I1

∂Φ

∂ I2

]
. (3.62)

in 3D, where implicit dependences of I1, I2 and J on ΠΠΠ
0
E∇sh are assumed. The above

explicit expressions are helpful to enable the more intuitive choice of sh = uh in the imple-

mentation, which is found to render the VEM approximations independent of the loading

history, as well as more tolerant to heterogeneous and large localized deformations than the

choice of sh = un−1
h . On the other hand, unlike choosing sh = 0 and un−1

h , αE(uh) becomes

a nonlinear function of uh, resulting in additional terms in the weak forms of the VEM

approximations in practice.
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Table 3.2: Summary of stabilization schemes and choices of sh. A symbol “×××” means that
such choice has not been tested numerically–the reason can be found in the corresponding
footnote.

sh = 0 sh = un−1
h sh = uh

norm-based stabilization X X ×××1

trace-based stabilization ×××2 X X

3.5.4 Construction of the loading terms

We present the constructions of first-order accurate loading terms which, according to [42],

guarantee the optimal convergence of the displacement and its gradient in the L2 error.

To construct the loading term associated with surface traction 〈t,vh〉h, a first-order

Gauss-Lobatto quadrature rule is used in 2D with the quadrature points being the vertices

v on Γt
h,

〈t,vh〉h = ∑
v∈Γt

h

wvt(Xv) ·vh (Xv) , ∀vh ∈Kh, (3.63)

where wv is the weight associated with v defined by a first-order Gauss-Lobatto rule. One

the other hand, the vertex-based quadrature defined by (3.25) over F with mF vertices is

adopted in 3D as follows:

〈t,vh〉h = ∑
F∈Γt

h

mF

∑
j=1

wF
j t
(
XF

j
)
·vh
(
XF

j
)
, ∀vh ∈Kh. (3.64)

Notice that in both 2D and 3D cases, the loading term 〈t,vh〉h yields exact integral when t

is constant on each edge/face of Γt
h, i.e.

〈t,vh〉h =
�

Γt
h

t ·vhdS, ∀vh ∈Kh. (3.65)

Regarding the loading term associated with the body force 〈f,vh〉h, various approaches

1This choice in the norm-based stabilization is significantly more computationally demanding than other
choices and is therefore not considered in this chapter.

2Although this choice can be easily considered, we prefer to disregard it because it shares the same
drawback as choosing sh = 0 in the norm-based stabilization.
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can be utilized. We consider two approaches in this chapter, neither of which needs explicit

knowledge of vh in the interior of each element E. The first approach utilizes a (first-order)

vertex-based quadrature over each element in 2D and 3D,

Approach #1: 〈f,vh〉h = ∑
E

∑
v∈E

wE
v f(Xv) ·vh (Xv) , ∀vh ∈Kh, (3.66)

where Xv denotes the location of vertex v of E and wE
v is the associated weight defined in

[26], [42]. Notice that the first-order accuracy of the nodal quadrature rule in [26], [42] is

only valid for convex elements and certain concave elements in 2D and 3D. For instance,

with the presence of non star-convex elements, certain weights in the nodal become nega-

tive and moreover the first-order accuracy may be no longer satisfied.

We also propose another approach for the construction of the loading term 〈f,vh〉h,

which is of the form

Approach #2: 〈f,vh〉h = ∑
E

f
(
XE

c
)
·
(

ΠΠΠ
∇
E vh

)(
XE

c
)
, ∀vh ∈Kh, (3.67)

where XE
c

.
=
�

E XdX/|E| stands for the centroid of element E, which can be calculated for

any given elements with arbitrary shapes in 2D and 3D. Although the centroid XE
c may

not lie in the interior of E, we can show that this construction of the body force term is

first-order accurate for elements with arbitrary shapes, such as non star-shaped elements, in

both 2D and 3D as long as ΠΠΠ
∇
E is well defined. In fact, a two dimensional example will be

presented in a subsequent section which confirms that VEM with the second load construc-

tion produces optimally convergent results also for non star-shaped elements. The only

limitation of this second choice is that, whenever XE
c /∈ E, loadings that are discontinuous

across mesh edges may yield less accurate results.
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3.5.5 Weak forms of the VEM approximations

With the proposed stabilization parameter and loading terms, the weak form for the displacement-

based VEM approximation (3.52) and (3.55) is given by (assuming the trace-based stabi-

lization scheme in which sh is taken as the current displacement):

Gh (vh,δvh)

= ∑
E
|E|

[
∂Ψ

∂F
(
I+ΠΠΠ

0
E∇vh

)
+

1
2

Sh,E

(
vh−ΠΠΠ

∇
E vh,vh−ΠΠΠ

∇
E vh

)
∂αE

∂F
(vh)

]
: ΠΠΠ

0
E∇(δvh)

+∑
E

αE (vh)Sh,E

(
vh−ΠΠΠ

∇
E vh,δvh−ΠΠΠ

∇
E (δvh)

)
+∑

E
|E|dU

dJ
(JE (vh)) DJE (vh) ·δvh|E

−〈f,δvh〉h−〈t,δvh〉h = 0 ∀δvh ∈K 0
h .

(3.68)

On the other hand, the weak forms of the first variation of the two-field mixed VEM

approximation (3.49) and (3.57) take the following form:

Gv
h (vh, q̂h,δvh)

= ∑
E
|E|

[
∂Ψ

∂F
(
I+ΠΠΠ

0
E∇vh

)
+

1
2

Sh,E

(
vh−ΠΠΠ

∇
E vh,vh−ΠΠΠ

∇
E vh

)
∂αE

∂F
(vh)

]
: ΠΠΠ

0
E∇(δvh)

+∑
E

αE (vh)Sh,E

(
vh−ΠΠΠ

∇
E vh,δvh−ΠΠΠ

∇
E (δvh)

)
+∑

E
|E| q̂h|E (DJE (vh) ·δvh|E)

−〈f,δvh〉h−〈t,δvh〉h = 0 ∀δvh ∈K 0
h ,

(3.69)

and

Gq̂
h (vh, q̂h,δ q̂h) = ∑

E
|E|

{
q̂h|E [JE (vh)−1]− dÛ∗

dq
(q̂h|E) δ q̂h|E

}
= 0 ∀δ q̂h ∈Qh.

(3.70)

We underline that, whenever sh is taken as the displacement at the previous load incre-

ment iteration step un−1
h (see Section 3.5.3), the addendum involving ∂αE/∂F in both the

right-hand sides of (3.68) and (3.69) vanish, and αE(vh) becomes αE(un−1
h ).
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3.5.6 On the VEM patch test

We provide a brief discussion on the performance of VEM approximations in the patch

test. In the discussion that follows, we restrict our attention to cases where the geometry

and boundary conditions are exactly represented by the mesh, namely, no error arises from

the approximation of geometry in the following discussion.

In the patch test, the unknown displacement field is taken to be a linear vector field,

i.e., u = p1 ∈ [P1(Ω)]d . Accordingly, the first Piola-Kirchhoff stress P is a constant tensor

given by P = ∂Ψ(F(p1))/∂F+∂U(J(p1))/∂F. The body force f is 0 everywhere and the

boundary traction t is given by t = Pn on ΓX where n is the outward unit normal vector on

the boundary. Additionally, the known pressure field p̂0 is a constant field taking the value

∂U
∂J (J (p1)) unless in the presence of a purely incompressible solid, in which case p̂0 is

determined by the applied traction t. Furthermore, for any linear function p1 ∈ [P1(Ω)]d ,

∇p1 and F(p1) are constant tensors. It follows that for any E ∈Ωh,

ΠΠΠ
0
E (∇p1|E) = ∇p1 (3.71)

ΠΠΠ
∇
E (p1|E) = p1|E and (3.72)

JE (p1) = J (p1) = det
(

F(p1)
)
. (3.73)

We proceed to verify the exact satisfaction of the patch test with the proposed displacement-

based and two-field mixed VEM approximations by demonstrating that vh = p1 and q̂h = p̂0

are solutions to Eqs. (3.68), (3.69) and (3.70). Let us first consider the displacement-based

VEM approximation. Realizing that exact integration is recovered in the following two

terms as a result of (3.71)–(3.73)

|E|∂Ψ

∂F

(
F(p1)

)
: ΠΠΠ

0
E

(
∇(δvh)

)
=

�
E

∂Ψ

∂F

(
F(p1)

)
: ∇(δvh)dX (3.74)
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and

|E|dU
dJ

(
JE (p1)

)
DJE (p1) ·δvh|E =

�
E

dU
dJ

(
J (p1)

)
∂J
∂F

(
F(p1)

)
: ∇(δvh)dX, (3.75)

we have that for any trial field δvh ∈K 0
h

Gh (p1,δvh)

= ∑
E

�
E

[
∂Ψ

∂F
(F(p1))+

dU
dJ

(J (p1))
∂J
∂F

(F(p1))

]
: ∇(δvh)dX−〈t,δvh〉h

=

�
Ω

[
∂Ψ

∂F
(F(p1))+

dU
dJ

(J (p1))
∂J
∂F

(F(p1))

]
: ∇(δvh)dX−

�
Γt

h

t ·δvhdS = 0,

(3.76)

where the second equality in the above relation follows from the fact that t is constant on

each edge/face together with relation (3.65).

For the two-field mixed VEM approximation, we are able to show in a similar manner

that for any δvh ∈K 0
h ,

Gv
h (p1, p̂0,δvh) = ∑

E

�
E

[
∂Ψ

∂F
(F(p1))+ p̂0

∂J
∂F

(F(p1))

]
: ∇(δvh)dX−〈t,δvh〉h = 0,

(3.77)

and for any δ q̂h ∈Qh

Gq̂
h (p1, p̂0,δ q̂h) = ∑

E
|E|

{
[JE (p1)−1] δ q̂h|E −

dÛ∗

dq
(p̂0) δ q̂h|E

}

= ∑
E

�
E

[
J(p1)−1− dÛ∗

dq̂
(p̂0)

]
δ q̂hdX = 0.

(3.78)

According to the above analysis, both displacement-based and two-field mixed VEM

approximations pass the patch test exactly in 2D and 3D. In fact, although not presented in

this chapter, our numerical studies confirm that the patch tests are passed with errors up to

machine precisions for both displacement-based and mixed VEM approximations.
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3.5.7 A note on the performance of polyhedral elements with non star-convex faces in

patch tests

The discussion in the last subsection is applicable to meshes consisting of polyhedral el-

ements with faces that are star-convex with respect to XF
s . In the case where the element

P contains any face F that is not star-convex with respect to XF
s , the local displacement

VEM space V (P) is not well defined according to its formal definition (3.21) because cer-

tain regions of the triangulated subdomains may lie outside of F . However, our numerical

studies demonstrate that convergence (in terms of DOFs) is still achieved with the VEM

formulations even for meshes with elements containing non star-convex faces. While a

more rigorous theoretical analysis is beyond the scope of this chapter, we demonstrate that

the patch test is strictly passed with our mixed VEM formulation even when the meshes

contain elements with non star-convex faces. A similar analysis can also be applied to the

displacement-based VEM formulation.

To begin with, although the element space V (P) is not well defined when P contains

non star-convex faces, we remark that the projection ΠΠΠ
0
E∇v, is still computable numerically

using the nodal values of v and the vertex based quadrature rule defined in (3.25):

ΠΠΠ
0
E∇v =

1
|P| ∑

F∈∂P

mF

∑
j=1

{
wF

j v
(
XF

j
)
⊗nF} , (3.79)

where the weights wF
j may take negative values. The same also applies to the other projec-

tion ΠΠΠ
∇
E v.

As we will show in detail in Appendix B, with the definition of the vertex-based rule

on F in (3.25) and (3.79), the following expression holds

ΠΠΠ
0
E∇p1 =

1
|P| ∑

F∈∂P

mF

∑
j=1

{
wF

j p1
(
XF

j
)
⊗nF}= 1

|P|

�
P

∇p1dX, ∀p1 ∈ [P1(P)]3 (3.80)

even if P contains non star-convex faces.
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Furthermore, if P contains non star-convex faces, we are able to show that both the

“Robust” and “Simple” approaches of Table 3.1 give exact JE for any linear displacement

field u = p1 ∈ [P1(P)]3, namely,

1
6|P|∑

F̃

mF

∑
j=1

{
X̃

F
s · X̃

F
j ∧ X̃

F
j+1

}
= JE (p1) . (3.81)

Analogous calculations for the first variation of JE show that expressions (3.41) (the “Ro-

bust” approach) and (3.46) (the “Simple” approach) are also valid for the non star-convex

case, i.e.,

DJE(p1) ·δv = |P| ∂J
∂F

(
F(p1)

)
: ΠΠΠ

E
0

(
∇(δv)

)
. (3.82)

Based on (3.79)–(3.82) and realizing that relations (3.71)–(3.73) still hold when P con-

tains non star-convex faces, we are able to show that for any trial fields δvh ∈ K 0
h and

δ q̂h ∈Qh, both the “Robust” and “Simple” approaches give

Gv
h(p1, p̂0,δvh) = 0 and Gq̂

h(p1, p̂0,δ q̂h) = 0, (3.83)

indicating that the patch test is strictly passed for mixed VEM even when E contains non

star-convex faces. Thorough derivations of expressions (3.80)–(3.83) are provided in Ap-

pendix B.

3.6 Numerical assessment

This section presents a series of numerical studies to assess the performance of the

displacement-based and mixed VEM approximations in two- and three- dimensional fi-

nite elasticity problems. In particular, studies on families of subsequently refined meshes

are conducted, through which we demonstrate the performance of VEM formulations on

convergence and accuracy.

Unless otherwise stated, the VEM approximations adopt the trace-based stabilization
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with the choice of sh = uh throughout this section. For any polyhedral element P, a uni-

form β F
i on each face F with mF vertices is assumed for the remainder of the chapter,

namely, β F
i = 1/mF , i = 1, ...,mF . For any given convex polyhedron this choice leads to

well-defined local VEM space V (P) because every face F is guaranteed to be star-shaped

with respect to the resulting XF
s . To solve the nonlinear system of equations, the standard

Newton-Raphson method is utilized; as a stopping criterion, we check at each iteration if

the Euclidean norm of the residual vector reduces below 10−8 times that of the initial resid-

ual. To generate 2D polygonal meshes, the general purpose mesh generator PolyMesher

[110] is used, while for generating 3D polyhedral meshes, the methodology and algorithm

provided in [143] are adopted.

To evaluate the accuracy of the numerical solutions, two global error measures of the

displacement field are used, the L2-norm and H1-seminorm of the displacement error,

which are defined as

ε0,u = ||u−ΠΠΠ
∇
E uh|| and ε1,u = ||∇u−ΠΠΠ

0
E (∇uh) || (3.84)

where the || · || (when applied to functions) stands for the L2 norm over Ω that are evaluated

using a fifth order triangulation quadrature scheme. For the meshes with non star-shaped

elements, the above-defined displacement error measures become difficult to evaluate due

to the failure of the triangulation quadrature scheme. Instead, we adopt the following L2-

type and H1-type displacement error measures, which utilize only the displacement errors

at the vertices of the mesh

ε
v
0,u =

[
∑
E

|E|
m ∑

v∈E
e(Xv) · e(Xv)

]1/2

, (3.85)
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ε
v
1,u =

{
∑
F

hF ∑
e∈F

[
e
(

Xve
1

)
− e
(

Xve
2

)]
·
[
e
(

Xve
1

)
− e
(

Xve
2

)]
/|e|

}1/2

in 2D (3.86)

and

ε
v
1,u =

{
∑
P

hP ∑
F∈∂P

hF ∑
e∈∂F

[
e
(

Xve
1

)
− e
(

Xve
2

)]
·
[
e
(

Xve
1

)
− e
(

Xve
2

)]
/|e|

}1/2

in 3D

(3.87)

where e = u−uh is the displacement error, m is the number of vertices in E, hP and hF de-

note the diameters of polyhedron P and face F , respectively, and ve
1 and ve

2 are the two end-

points of edge e. We remark that expressions (3.86) and (3.87) mimic the H1-seminorms

of the displacement in the following sense: they take differences of the displacement on

the skeleton of the mesh, and those differences are then scaled in order to achieve the same

behavior (with respect to element contractions/expansions) as the L2-norm of the displace-

ment gradient.

For the mixed formulations in addition to the error measures for displacements defined

in (3.84)–(3.87), we consider the L2 pressure errors

ε0,p̂ = ||p̂− p̂h||, (3.88)

where the norms are evaluated using a fifth order triangulation quadrature rule. For meshes

with non star-shaped elements, an L2-type pressure error is defined as

ε
v
0,p̂ =

{
∑
E
|E|∑

v∈E

[
p̂(Xv)− p̂h(Xv)

]2
/m

}1/2

, (3.89)

which utilizes the pressure errors at the vertices of the mesh.
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3.6.1 Displacement-based VEM

This subsection considers the numerical assessments on the performance of both two- and

three-dimensional displacement-based VEM. Throughout this subsection, material behav-

ior is considered to be neo-Hookean with the following stored-energy function [80]:

W (F) =
µ

2
(I1(F)−3)−µ (detF−1)+

3κ +µ

6
(detF−1)2 , (3.90)

where µ and κ are the initial shear and bulk moduli, which are taken to be µ = 1 and

κ = 10 in the remainder of this subsection. Realizing that Ψ(F) = µ/2(F : F− 3) in the

above stored-energy function, we obtain the trace-based stabilization term αE = µ for both

2D and 3D cases according to (3.61) and (3.62), which is independent of the deformation

state u. Additionally, JE is computed exactly using the “Robust” approach (Table 3.1)

leading to (3.33) and (3.40) for 2D and 3D cases respectively. In general, we have found

that computing JE using the “Simple” approach also produces results with similar accuracy

for the meshes with regular elements, e.g., convex elements.

Y
X

Z

1 1

π

(a) (b)

X

X3

π

1

μ, κ

Z

Figure 3.3: (a) Illustration of the 3D boundary value problems where a rectangular block
is bent into semicircular shapes. (b) Illustration of the simplified 2D plane strain problems.
In the problem for the displacement-based VEM, the initial bulk modulus are set as κ = 10
and, in the one for the mixed VEM, κ is taken to be κ → ∞. In all cases, µ = 1.
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This subsection considers a boundary value problem where a rectangular block of di-

mensions 1× 1×π is bent into a semi-circular shape [111], as illustrated in Fig. 3.3 (a).

The rectangular block is defined by −0.5 < X < 0.5, 0.5 < Y < 0.5 and 0 < Z < π in a

Cartesian coordinate system (X ,Y,Z), and the analytical displacement describing the de-

formation is given by

ux (X) =−1+(1+X)cosZ−X , uy (X) = 0, uz (X) = (1+X)sinZ−Z. (3.91)

Accordingly, the body force f = [ fx, fy, fz]
T is computed as

fx (X) =−(1+X)cosZ (3κ−2µ)

3
, fy (X) = 0, fz (X) =−(1+X)sinZ (3κ−2µ)

3
.

(3.92)

Since no deformation occurs in the Y direction, this problem simplifies into a plane strain

problem in the X −Z plane, as shown in Fig. 3.3 (b). In the following studies, displace-

ment boundary conditions are applied everywhere on the boundary in both the original 3D

problem and its 2D simplification.

2D displacement-based VEM We first consider the VEM in 2D and study its perfor-

mance in the boundary value problems under plane strain conditions. To that end, we con-

sider the simplified plane strain problem setup illustrated in Fig. 3.3 (b). Two sets of convex

meshes are considered, the structured hexagonal meshes and the CVT meshes, examples of

which are provided in Fig. 3.4 (a) and (b) respectively. The VEM results include both Ap-

proaches #1 and #2 for treating the body force term, i.e. expressions (3.66) and (3.67). For

comparison purpose, we also conduct an analysis using the standard displacement-based

FEM with the gradient correction scheme [22], [68] on the same sets of polygonal meshes.

Figure 3.5 plots the displacement errors as functions of the average mesh size h. Each data

point for the CVT mesh represents an average of the results from five meshes. It is observed

that VEM with both Approaches #1 and #2 for treating the body force term delivers optimal
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convergence rates (2 for the L2-norm of the displacement error and 1 for the H1-seminorm

of the displacement errors), whose results have almost identical accuracy. When compared

to the FEM, the VEM also gives displacement fields with similar accuracy (although the

VEM results are slightly less accurate in term of the H1-seminorm than the FEM results).

However, the VEM is more efficient than the FEM in the sense that the VEM uses only

one integration point per element whereas the FEM uses n integration points for n-sided

elements.

Figure 3.4: Examples of (a) a CVT mesh consisting of 100 2D elements; (b) a structured
hexagonal mesh consisting of 60 2D elements; (c) a pegasus mesh containing 48 non star-
shaped 2D elements; (d) a bird mesh with 64 non star-shaped 2D elements; (e) a fish
mesh consisting of 132 non star-shaped 2D elements; (f) a “zoo” mesh containing a total
number of 64 non star-shape 2D elements, including 16 pegasus elements, 20 bird elements
and 28 fish elements; (g) a CVT mesh consisting of 100 3D elements; and (h) a distorted
hexahedral mesh consisting of 96 3D elements.
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Figure 3.5: The convergence plots of the error norms as functions of the average mesh size
h for the (a) the CVT meshes and (b) the structured hexagonal meshes.

One major advantage of the VEM is its ability to deal with more general meshes in

an efficient way. To demonstrate this advantage, we consider three sets of Escher-based

meshes [40]: the pegasus mesh as shown in Fig. 3.4 (c), the bird mesh as shown in Fig.

3.4 (d), and the fish mesh as shown in Fig. 3.4 (e). Following the discussion of Section 4,

because the Approach #1 in (3.66) fails with the non star-shaped elements, the body force

term here is constructed using the Approach #2 given by (3.67). Figures 3.6 (a) and (b)

show the two error measures (3.85) and (3.86) as functions of the average mesh size h. In

addition, examples of the deformed shapes of all sets of meshes are shown in Figs 3.7 –

3.9. Our numerical results confirm that optimal converges are obtained in both the L2-type

and H1-type norms of the displacement error. As an additional remark, we point out that

the VEM using the “Simple” approach (see Table 3.1) to compute JE in this case is found

to lead to non-convergent results due to the failure of convergence in the Newton-Raphson

method.

3D displacement-based VEM We proceed to perform numerical assessments of the

displacement-based VEM in 3D. In this case, we consider original 3D problem illustrated
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Figure 3.6: The convergence plots of the displacement error norms against average mesh
size h for both the bird and pegasus meshes: (a) the L2-type displacement error and (b) the
H1-type displacement error.

in Fig. 3.3 (a) with the CVT and the distorted hexahedral meshes, examples of which are

shown in Fig. 3.4 (g) and (h), respectively. We also consider both approaches of treating the

body force term given by (3.66) and (3.67), and the displacement error measures defined in

(3.84) are used here. Figures 3.10 (a) and (b) show plots of the displacement error norms

as functions of the average mesh sizes h. Each data point in the plots for the CVT mesh is

obtained by averaging the results from five meshes. Again, VEM using both Approaches

#1 and #2 of treating the body force term yields an optimally convergent displacement field

with similar accuracy.

3.6.2 Mixed VEM

In this subsection, the performance of the mixed VEM is numerically evaluated. Through-

out the subsection, the material is considered to be purely incompressible which is charac-
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Figure 3.7: The final deformed configuration is shown for the pegasus mesh with 972
elements. This deformed shape is obtained by the displacement-based VEM.

terized by the following stored-energy function [123]:

W (F) =


31−α

2α
µ
[
(I1(F))α −3α

]
if detF = 1

+∞ otherwise
, (3.93)

with the initial shear modulus µ being 1 and the material parameter α being 3. For this

material model, the trace-based stabilization gives

αE =
31−α (α +1)µ

2
Iα−1
1 in 2D and αE =

(2α +7)µ

3α+1 Iα−1
1 in 3D, (3.94)

both of which are nonlinear functions in u.

We consider a similar boundary value problem in which an incompressible rectangular

block of dimension 1× 1×π is bent in to semi-circle shape. As depicted in Fig. 3.3 (a),

the rectangular block is defined by −0.5 < X < 0.5, −0.5 < Y < 0.5 and 0 < Z < π in a

Cartesian coordinate system (X ,Y,Z), with both surfaces X = ±0.5 being traction free. It

is possible to obtain a closed-form solution for this problem [80], [112]. In particular, the
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Figure 3.8: The final deformed configuration is shown for the bird mesh with 735 elements.
This deformed shape is obtained by the displacement-based VEM.

analytical displacement field takes the form [80], [112]:

ux (X) =−r (−0.5)+ r (X)cosZ−0.5−X , uy (X) = 0, uz (X) = r (X)sinZ−Z,

(3.95)

where the function r(X) is given by

r (X) =

√
2X +

√
2. (3.96)

Additionally, one can obtain the analytical pressure field p̂ as

p̂ =

(
22
√

2+25
)

µ

54
−

µ

(
r2 (X)+ 1

r2(X)
+1
)3

54
+

µ

(
r2 (X)+ 1

r2(X)
+1
)2

9r2 (X)
. (3.97)

Unlike the problem in the preceding subsection, the body force f for this problem is 0.

Again, this 3D problem can be simplified into a 2D plane strain problem, as illustrated in

Fig. 3.3 (b). In our following studies of both the 3D problem and its 2D simplification,
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Figure 3.9: The final deformed configuration is shown for the fish mesh with 644 elements.
This deformed shape is obtained by the displacement-based VEM.

in order to avoid the potential development of free surface instability (the performance

of VEM on capturing the physical instability is beyond the scope of this chapter and is

a subject for future investigation), displacement is applied to all the surfaces except the

surface X = 0.5.

2D mixed VEM We first consider the 2D mixed VEM and study its performance on the

accuracy and convergence. We remind that the proposed approximation has been shown to

lead to numerically stable schemes (in the linear regime) on several polygonal meshes in

2D, such as the CVT and structured hexagonal meshes [2], [4], [72]. The 2D plane strain

problem shown in Fig. 3.3 (b) is considered with the following sets of meshes: structured

hexagonal, CVT, and non star-shaped “zoo” meshes made up of pegasus, bird and fish

elements, as depicted in Figs. 3.4 (a), (b) and (f) respectively. In Figure 3.11 we plot

the displacement and pressure error norms as functions of the average mesh sizes h for

the VEM results using both “Robust” and “Simple” approaches to compute JE . The results

obtained form the mixed FEM with the gradient correction scheme for the CVT meshes and
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Figure 3.10: The convergence plots of the error norms as functions of the average mesh
size are shown in (a) for the CVT meshes and (b) for the distorted hexahedral meshes.

the structured hexagonal meshes are also included for comparison purposes. In addition,

an example of the deformed shape of the “zoo” mesh is shown in Fig. 3.12. We remark that

since the “zoo” meshes contain non star-shaped elements, it is difficult to perform mixed

FEM analysis on them, however, the VEM analysis can be naturally conducted. Again,

each data point in the plots for the CVT mesh is an average of five results. It is observed

from the figures that mixed VEM using both “Robust” and “Simple” approaches to compute

JE delivers results that are optimally convergent in terms of both displacement and pressure

errors. While the level of accuracy for the results obtained using the “Robust” and “Simple”

approaches are almost identical with the CVT and structure hexagonal meshes, the results

obtained using the former approach are slightly more accurate than the ones obtained by the

latter approach with the non star-shaped “zoo” meshes, especially in terms of the H 1-type

norm of the displacement errors. This demonstrates the advantage of the “Robust” approach

with respect to the “Simple” approach when dealing with highly irregular and non-convex

meshes. Moreover, the comparison between the VEM and FEM results suggests that they

have a similar level of accuracy. Again, the mixed VEM use only one integration point per

element and thus is more computationally efficient than the mixed FEM.
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Figure 3.11: The convergence plots of the error norms as functions of the average mesh
size for (a) displacement errors and (b) the pressure error in the CVT meshes, (c) the dis-
placement errors and (d) the pressure error in the structured hexagonal meshes, and (e) the
displacement errors and (f) the pressure error in the non star-shaped “zoo” meshes.
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Figure 3.12: The final deformed configuration is shown for the “zoo” mesh. The “zoo”
mesh contains 224 elements with 64 pegasus, 72 bird, and 88 fish elements. This deformed
shape is obtained by the mixed VEM.
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Figure 3.13: Examples for (a) an extruded octagonal meshes with 81 elements and (b) a non
star-shaped “zoo” meshes with 128 elements. This “zoo” mesh is made up of 32 extruded
pegasus elements, 48 extruded bird elements, and 48 extruded fish elements.

3D mixed VEM Our next step consists of performing numerical studies of the 3D mixed

VEM with the original 3D problem shown in Fig. 3.3 (a). We note that, differently from the

2D case [72], the inf-sup condition in the 3D case has not been proven, but it can be numer-

ical investigated as has been done in the 2D (polygonal) FEM context [2], [4]. Similarly to

the displacement-based VEM case, CVT and distorted hexahedral meshes are considered,

as shown in Figs. 3.4 (g) and (h), respectively. Notice that both types of meshes only con-

tain convex elements, hence it is possible to treat them using the standard FEM with the

Wachspress shape functions [30]. On the other hand, we also consider two sets of concave

meshes, the extruded octagonal meshes and the extruded version of the non star-shaped

“zoo” meshes consist of pegasus, bird and fish elements, as shown in Figs 3.13 (a) and (b)

respectively. We note that while all the elements in the extruded octagonal meshes satisfy

the assumption in the definition of the 3D local VEM space, i.e., all the faces of each ele-

ment are star convex with respect to XF
s = 1/mF

∑
mF

j=1 XF
j , all the elements in the extruded

“zoo” meshes contain non star-shaped faces, which violates this assumption. Figures 3.14

and 3.15 show the displacement and pressure errors of the results obtained by the VEM

with both the “Robust” and “Simple” approaches to compute JE , together with illustrations
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of the deformed shapes and the fringe plots of the pressure field p̂h. For the hexahedral

meshes, VEM with both “Robust” and “Simple” approaches to compute JE offers optimal

convergence in the displacement errors. Yet, a slight degeneracy in the convergence of the

pressure error occurs and their pressure fringe plots exhibit checkerboard modes. These

indicate the occurrence of a mild numerical instability. For all the other meshes, optimal

convergence in both displacement and pressure errors are observed for VEM with both

approaches and the pressure fields are more smoothly distributed, suggesting numerical

stability for those meshes. In particular, through the convergence observed in the results of

the extruded “zoo” meshes, we highlight that our VEM formulation ensures convergence

even though the meshes contain elements with non star-shaped faces (which violates our

assumption in defining the local VEM space). Moreover, by comparing the results obtained

from the “Robust” and “Simple” approaches to compute JE , we remark that although both

approaches appear to provide similarly accurate results for regular meshes (the hexahedral

and CVT meshes), the “Robust” approach seems to produce more accurate results when

the meshes become more irregular, e.g. the extruded “zoo” meshes.

3.7 Application example: elastomer filled with rigid inclusions

In this section, we deploy the proposed VEM framework to the study of the nonlinear elas-

tic response of an elastomer filled with an isotropic distribution of rigid circular particles

in 2D. Through this application example, we aim to demonstrate the performance of the

proposed displacement-based and mixed VEM formulations in problems which involve

heterogeneous and large localized deformation fields. In the meantime, the influences of

various choices of stabilization techniques and different approaches to compute JE on the

performance of the VEM in such problems are investigated.

We consider the filled elastomer to be a periodic repetition of a unit cell that contains

a random distribution of a large number of particles constructed by means of a random

sequential adsorption algorithm [116], [144]. Motivated by the polydispersity in size of
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Figure 3.14: The convergence plots of the error norms as functions of the average mesh
size for (a) the displacement errors and (b) the pressure error in the CVT meshes, (c) the
displacement errors and (d) the pressure error in the hexahedral meshes.
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Figure 3.15: The convergence plots of the error norms as functions of the average mesh size
for (a) the displacement errors and (b) the pressure error in the extruded octagonal meshes,
(c) the displacement errors and (d) the pressure error in the extruded “zoo” meshes.
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typical fillers, we consider a particular case with three families of particles with radii

{
r(1),r(2),r3

}
= {r,0.75r,0.5r} with r =

(
c(1)

N(1)π

)(1/2)

, and (3.98)

concentrations {
c(1),c(2),c(3)

}
= {0.5c,0.3c,0,2c} , (3.99)

where N(1) is the number of particles with the largest radius r(1), and c stands for the total

area fraction of particles. In the present example, we take N(1) = 20 and c = 0.35. A

realization of such a unit cell containing a total number of 75 particles at area fraction c =

35% is shown in Fig. 3.16 (a). In addition, the Displacement periodic boundary condition

in (2.72) is applied.

Figure 3.16: Illustrations of the unit cell, which consists of 75 polydispersed particles at a
total area fraction of c = 35%, and the details of the CVT mesh, which consists of 20,000
elements and 40,196 nodes.

Throughout this section, we make use of a CVT mesh as depicted in Fig. 3.16 (b),

which is generated by PolyMesher [110]. The discretization contains a total of 20,000

elements and 40,196 nodes. To apply periodic displacement boundary conditions to this

CVT mesh, we adopt the concept introduced in [2] of locally inserting additional nodes

to achieve periodic nodal distributions on opposite boundaries of the mesh (a procedure

that can be easily applied thanks to the flexibility of polygonal meshes). On the other

122



hand, each particle in the CVT mesh is considered to be infinitely rigid by adopting the

variational formulation proposed by Chi et al. [114], in which its presence is treated as a

set of kinematic constraints on the displacement DOFs.

In the subsequent VEM and polygonal FEM simulations on the CVT mesh, the macro-

scopic deformation gradient is evaluated as

< F >
.
=

∑E |E|
(
I+ΠΠΠ

0
E∇uh

)
|Ωh|

. (3.100)

In addition, to quantitatively evaluate the performance of those simulations, we define the

macroscopic energy of the filled elastomer in the following manner

<W >
.
=

1
|Ωh|∑E

[
Ψ
(
I+ΠΠΠ

0
E∇uh

)
+U (JE(uh))

]
, (3.101)

where JE is evaluated using the “Robust” approach with expression (3.33). When the ma-

trix is purely incompressible, the second term in the above expression is simply zero for

all the elements in the mesh. We also monitor the relation between the macroscopic defor-

mation gradient < F > and macroscopic first Piola-Kirchoff stress < P > in the VEM and

polygonal FEM simulations by equivalently monitoring the displacement-traction relation-

ship at the lower-right corner of the unit cell (the location where we apply displacement in

our simulations).

3.7.1 Filled elastomers with neo-Hookean matrix

In this subsection, the matrix is assumed to be compressible neo-Hookean material, which

is described by the stored-energy function

W (F) =
µ

2
(
F : F−3

)
+

κ

2
(detF−1)2 , (3.102)
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where µ and κ are the initial shear and bulk moduli. Throughout this subsection, the initial

shear modulus is taken to be µ = 1, and the filled elastomer is assumed to be subjected to

uniaxial tension, whose macroscopic deformation < F > gradient has the form < F >=

λ1e1⊗ e1 +λ2e2⊗ e2 where λ1 and λ2 are the macroscopic stretches with λ1 in the tensile

direction.

We first study the influence of various choices of the stability parameter αE(sh) on the

performance of the displacement-based VEM. More specifically, we investigate the four

choices of αE(sh) as shown in Table 3.3. We assume two values of the initial bulk moduli,

κ = 10 and κ = 1000, which represent compressible and nearly incompressible materials

respectively. For all the cases, the target macroscopic stretch λ1 is set as 2.

Table 3.3: VEM stability parameter αE(sh).
Operator Norm: Eq. (3.58) Trace: Eq. (3.59)

sh 0 un−1
h un−1

h uh

As a qualitative comparison, Figs 3.17 (a)–(b) depict the detailed views of the unit cell

at the same applied macroscopic stretches using different choices of αE(sh) in Table 3.3.

These detailed views are taken from the deformed configurations at λ1 = 1.74 for κ = 10

and from those at λ1 = 1.42 for κ = 1000. As a reference, the detailed views obtained

from the standard displacement-based and mixed FEM are also included. Additionally,

Figs. 3.18 (a)-(d) show the comparison of macroscopic responses (energy and relevant

component of stress) as functions of the applied stretch λ1 between the various choices of

αE(sh), with the ones obtained by the displacement-based FEM represented by the dashed

lines.

Several immediate observations can be made. First, the displacement-based FEM ap-

parently suffers from volumetric locking when the matrix becomes nearly incompressible,

i.e., κ = 1000, as it produces over stiff macroscopic energy and stress. On the other hand,

the proposed displacement-based VEM formulation appears free of volumetric locking and

produces more reasonable macroscopic energy and stress. The displacement-based VEM
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Figure 3.17: Detailed views of the unit cell at the same applied macroscopic stretches
obtained using the displacement-based and mixed FEM, and the displacement-based VEM
using different choices of αE(sh) in Table 3.3: (a) the case of κ = 10 at λ1 = 1.74 and (b)
the case of κ = 1000 at λ1 = 1.42.
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Figure 3.18: Comparison of the macroscopic responses obtained by the displacement-based
VEM with various stabilization techniques: (a) Macroscopic energy as a function of the
applied stretch λ1 for the case of κ = 10. (b) Macroscopic energy as a function of the
applied stretch λ1 for the case of κ = 1000. (c) Macroscopic stress as a function of the
applied stretch λ1 for the case of κ = 10. (d) Macroscopic stress as a function of the
applied stretch λ1 for the case of κ = 1000.
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with all the stabilization choices predicts almost identical macroscopic energies, although

we note that the norm-based stabilization with sh = un−1
h and trace-based stabilization with

sh = uh produce a slightly stiffer macroscopic stress than the other two. Moreover, the

detailed views in Figs. 3.17 indicate that the norm-based stabilization with sh = 0 leads to

hourglass modes in the element at high deformation levels (the elements that are plotted in

red). As we have discussed in Section 4, this is a consequence of the under-stabilizations

of αE(0) in those elements. The detailed views of other choices, on the other hand, do

not contain hourglass modes in those elements and all are qualitatively similar to the one

obtained with the mixed FEM.

Another major interest is the ability of the VEM to model large localized and het-

erogeneous deformations. To that end, we quantify the maximum global stretch λ1 that the

displacement-based VEM (with each stabilization choice) can achieve before non-converge

occurs in the Newton-Raplson process; in general, the larger global stretch the unit cell

reaches, the larger localized deformation it induces. Based on this measure, it is apparent

that the norm-based stabilization with sh = 0 is the worst choice for both cases of κ = 10

and κ = 1000. With this choice, the unit cell reaches significantly less maximum global

stretch than the other choices. The same happens with the displacement-based FEM due

to the volumetric locking. On the other hand, as the incompressibility level of the matrix

increases from κ = 10 to κ = 1000, we notice the advantage of using the trace-based sta-

bilization for VEM, as well as choosing sh = uh over sh = un−1
h , in achieving larger global

stretches. We note that since the displacement-based VEM is equivalent to the mixed VEM

as discussed in Section 4, the above observations and discussions also apply to the mixed

VEM formulation.

Our second study investigates the performance of the mixed VEM using different ap-

proaches to compute JE . Both the “Robust” approach (i.e., Eqs. (3.36) and (3.38)) and

the “Simple” approach (i.e., Eqs. (3.45)–(3.47)) are considered. Similarly to the preced-

ing study, we choose two values of initial bulk moduli, κ = 10 and κ = ∞, representing
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compressible and purely incompressible matrices. In this study, we utilize the trace-based

stabilization with sh = uh and the target global stretch is set as λ1 = 2.
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Figure 3.19: Comparison of the macroscopic responses obtained by the mixed VEM with
the two approaches to compute JE : (a) Macroscopic energy as a function of the applied
stretch λ1 for the case of κ = 10. (b) Macroscopic energy as a function of the applied
stretch λ1 for the case of κ = ∞. (c) Macroscopic stress as a function of the applied stretch
λ1 for the case of κ = 10. (d) Macroscopic stress as a function of the applied stretch λ1 for
the case of κ = ∞.

We plot in in Figs. 3.19 (a)–(d) the macroscopic responses (macroscopic energy and

relevant component of stress) as functions of the applied stretch λ1 for the cases of κ = 10

and κ = ∞. It is noted from those figures that although the two approaches yield similar

macroscopic responses, using the exact expression for JE (the “Robust” approach) helps

the unit cell to reach a significantly larger global stretch than using the approximation of
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JE (the “Simple” approach) when the material is nearly or purely incompressible.

We conclude from the above studies that the trace-based stabilizations generally yield

more accurate macroscopic responses than the norm-based ones (when compared with the

results obtained from the mixed FEM). Moreover, choosing sh = uh instead of sh = un−1
h

(although it seems to produce slightly stiffer macroscopic stress), as well as using the “Ro-

bust” approach to compute JE , are more computationally demanding but typically help the

unit cell reach larger global stretches, especially as the matrix is approaching the incom-

pressible limit. Consequently, for the remainder of this Section, the trace-based stabiliza-

tion with sh = uh and the “Robust” approach to compute JE are adopted. We finally remark

that, for such problems, linear and quadratic triangular and quadrilateral (conforming) el-

ements are found to lead to a loss of convergence at much smaller global stretches when

compared to the polygonal methods studied above, especially when the matrix phase is

nearly or purely incompressible (see, e.g., Section 5.1 of [22]).

3.7.2 Filled elastomer with matrix described by other constitutive models

In the sequel, we adopt the mixed VEM formulation to study the nonlinear elastic responses

of the filled elastomer when its matrix is characterized by other material models. The main

purpose of this study is to thoroughly compare the performance of the mixed VEM with

the mixed FEM for various material models. In particular, we consider the incompressible

Mooney-Rivlin model

W (F) =

 C1 [I1(F)−3]+C2 [I2(F)−3] if detF = 1

+∞ otherwise
, (3.103)
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and the incompressible model utilized in [116], [117] to describe a typical silicone rubber

W (F) =


31−α1
2α1

µ1
[
(I1(F))α1−3α1

]
+ 31−α2

2α2
µ2
[
(I1(F))α2−3α2

]
if detF = 1

+∞ otherwise
.

(3.104)

In the Mooney-Rivlin model, we choose the material parameters to be C1 = 0.3 and C2 =

0.2, resulting in an initial shear modulus µ = 2(C1 +C2) = 1. The material parameters for

the typical silicone rubber are taken to be α1 = 3.837, α2 = 0.559, µ1 = 0.032 and µ2 = 0.3

with the initial shear modulus being µ = µ1 + µ2 = 0.332. Two loading conditions are

considered: i) uniaxial tension whose macroscopic deformation gradient < F > is of the

form < F >= λe1⊗ e1 +λ−1e2⊗ e2 and ii) simple shear whose macroscopic deformation

gradient < F > is of the form < F >= I+ γe1⊗ e2, where λ and γ are the applied global

stretch and shear.

Under both loading conditions, Fig. 3.20 depicts the final deformed configurations of

the unit cells with Mooney-Rivlin matrix obtained by the mixed VEM and mixed FEM

at their respective maximum global deformation states. Similarly, Fig 3.21 shows the de-

formed configurations of the unit cell with typical silicone rubber matrix obtained by the

mixed VEM and mixed FEM at their respective maximum global deformation states. The

color scale in each configuration corresponds to the maximum principal stretch of each el-

ement, with those having a value of 5 and above plotted red. Additionally, the macroscopic

responses predicted by the VEM and FEM (macroscopic energies and relevant components

of macroscopic stress) as functions of the applied stretch λ or shear γ are shown in Figs

3.22 and Figs 3.23, respectively for unit cells with Mooney-Rivlin matrix and typical sili-

cone rubber matrix. In the plots, we also show the deformed configurations of the unit cell

at the same levels of global deformations obtained by VEM and FEM, with the elements

whose maximum principal stretches greater than 5 plotted read.

Several observations can be made from Figs 3.20–3.23. First, for both material mod-

els considered, the results obtained from the mixed VEM and mixed FEM are in good
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Figure 3.20: The maximum deformed configurations of the unit cell obtained by the mixed
VEM and mixed FEM for the Mooney-Rivlin matrix under (a) uniaxial tension and (b)
simple shear.
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Figure 3.21: The maximum deformed configurations of the unit cell obtained by the mixed
VEM and mixed FEM for the typical silicone rubber matrix under (a) uniaxial tension and
(b) simple shear.
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Figure 3.22: Comparison of the macroscopic responses obtained by the mixed VEM and
mixed FEM for Mooney-Rivlin matrix: (a) macroscopic energy as a function of the applied
stretch λ under uniaxial tension; (b) macroscopic energy as a function of the applied shear
γ under simple shear; (c) macroscopic stress as a function of the applied stretch λ under
uniaxial tension; (d) macroscopic stress as a function of the applied shear γ under simple
shear.
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qualitative and quantitative agreements. As shown in Figs 3.22 and 3.23, the deformed

configurations obtained by the VEM and FEM share similar patterns at the same global de-

formations levels. The macroscopic responses predicted by the VEM and FEM also match

reasonably well, especially for the macroscopic energy. However, it is worthwhile noting

that, similarly to the case of neo-Hookean matrix presented in the previous subsection,

we also observe stiffer responses in the macroscopic stresses obtained by VEM than the

ones by FEM for the unit cell with Mooney-Rivlin matrix. Furthermore, by comparing the

maximum deformation levels reached by the unit cells modeled respectively by the VEM

and FEM, it appears that the VEM and FEM have similar capabilities of modeling large

localized deformations. As a further investigation, we summarize in Tables 3.4 and 3.5 the

maximum global stretch/shear reached by the VEM and FEM for both material models and

the corresponding maximum local principal stretches. It is interesting to note that for the

unit cell with Mooney-Rivlin matrix, although the VEM yields a larger global stretch in

uniaxial tension, the corresponding maximum local principal stretches in the FEM mesh

is higher. We again underline that, on this same test, standard triangular and quadrilateral

FEM would reach a much smaller global stretch when compared to the polygonal methods

under study [2], [22].

Table 3.4: Summary of maximum principal stretches of among all the elements in the mesh
for the unit cell considering Mooney-Rivlin material and different loading conditions.

Mooney-Rivlin matrix
Uniaxial tension Simple shear

Max. global stretch/shear
VEM 2 1.124
FEM 1.870 1.345

Max. principal stretch
VEM 6.559 4.650
FEM 7.015 8.022

3.8 Concluding remarks

This chapter introduces a VEM framework for two and three dimensional finite elastic-

ity problems. Two VEM formulations are presented, which adopt a displacement-based
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Figure 3.23: Comparison of the macroscopic responses obtained by the mixed VEM and
mixed FEM for typical silicone rubber matrix: (a) macroscopic energy as a function of
the applied stretch λ under uniaxial tension; (b) macroscopic energy as a function of the
applied shear γ under simple shear; (c) macroscopic stress as a function of the applied
stretch λ under uniaxial tension; (d) macroscopic stress as a function of the applied shear
γ under simple shear.
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Table 3.5: Summary of maximum principal stretches of among all the elements in the mesh
for the unit cell considering a typical silicone rubber and different loading conditions.

Typical silicone rubber matrix
Uniaxial tension Simple shear

Max. global stretch/shear
VEM 1.660 1.073
FEM 1.716 1.077

Max. principal stretch
VEM 3.943 3.737
FEM 4.384 3.903

and a two-field mixed variational principles respectively. The displacement-based VEM

formulation appears to be free of volumetric locking as the material becomes nearly in-

compressible, at least for the proposed set of meshes. By construction, the proposed VEM

formulations are able to efficiently handle a more general class of polygonal and polyhe-

dral meshes than the standard FEM, including the ones with non-convex elements. Sev-

eral numerical studies are presented, which confirm the convergence and accuracy of the

VEM formulations. In particular, for three-dimensional problems, our numerical studies

have further shown that the VEM formulations appear to produce convergent results even

for meshes containing non-star shaped elements, which makes the VEM formulation even

more forgiving with respect to the quality of the mesh. We also show that, according to the

definition of VEM spaces, closed-form expressions for the exact average volume changes

over each polygonal/polyhedral elements can be derived. Those closed-form expressions

render the VEM more accurate and robust, especially for irregular meshes, such as those

containing elements with non star-shaped faces and in problems that involve large hetero-

geneous and localized deformations. Furthermore, different constructions of the loading

terms are discussed and various stabilization strategies are studied, which are shown to

have a significant influence on the performance of the VEM formulations in finite elastic-

ity problems, especially those involving large localized and heterogeneous deformations

fields. A stabilization scheme is further proposed in this chapter for isotropic materials,

which is based on the trace of the material tangent modulus tensor. We deploy the pro-

posed VEM formulations to the study of the nonlinear elastic response of a filled elastomer
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in 2D and demonstrate that they are able to capture large localized deformation fields in

such problems.

The aforementioned chapter indicates that the VEM offers room for novel developments

in nonlinear mechanics. We remark that several extensions are of interest, for instance,

studies of the performance of VEM in capturing physical instabilities and development of

more advanced stabilization schemes for finite elasticity problems.
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CHAPTER 4

A SIMPLE AND EFFECTIVE GRADIENT RECOVERY SCHEME AND A

POSTERIORI ERROR ESTIMATOR FOR THE VIRTUAL ELEMENT METHOD

(VEM)

This chapter introduces a general recovery-based a posteriori error estimation framework

for the Virtual Element Method (VEM) of arbitrary order on general polygonal/polyhedral

meshes. The framework consists of a gradient recovery scheme and a posteriori error

estimator based on the recovered displacement gradient. A skeletal error, which accurately

mimics the behavior of the L2 error of the displacement gradient by only sampling the

displacement gradient on the mesh skeleton, is introduced. Through numerical studies on

various polygonal/polyhedral meshes, we demonstrate that the proposed gradient recovery

scheme can produce considerably more accurate displacement gradient than the original

VEM solutions, and that the a posteriori error estimator is able to accurately capture both

local and global errors without the knowledge of exact solutions.

4.1 Introduction

The VEM is a recent generalization of the finite element method (FEM) that is capable of

efficiently handling general polygonal/polyhedral meshes [37]. This feature makes VEM

a suitable framework for mesh adaptations (e.g. adaptive refinement and coarsening). To

realize this potential, we propose a general recovery-based a posteriori error estimation

for VEM of arbitrary order on general polygonal/polyhedral meshes, and demonstrate the

idea in the context of linear elasticity. More specifically, we first introduce an efficient

patch-based gradient recovery scheme for VEM, which reconstructs a more accurate dis-

placement gradient field by least square fitting the displacement degrees of freedom (DOFs)

over each selected patch of elements in the mesh. Based on the recovered gradient, we fur-
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ther introduce a simple yet effective recovery-based a posteriori error estimator. To avoid

explicit constructions of the VEM basis functions, this error estimator evaluates the dis-

placement error on the skeleton of the mesh, which mimics the behavior of the L2 norm

of the displacement gradient error. We conduct thorough numerical studies to assess the

performance of the proposed gradient recovery scheme and error estimator. Though the

numerical examples, the proposed gradient recovery scheme and error estimator are shown

to be accurate on various polygonal/polyhedral meshes and with different types of displace-

ment solutions.

The remainder of this chapter is organized as follows. Section 2 provides motivations

for the chapter and summarizes related work in both VEM and FEM literature. Section

3 reviews the VEM framework for 2D and 3D linear elasticity problems. In Section 4,

we introduce the gradient recovery scheme for lower- and higher-order VEM, and a pos-

teriori error estimator based on the recovered displacement gradient. In Section 5, some

theoretical estimates of the recovered displacement gradient, which provide insights into

the proposed gradient recovery scheme, are provided. Several numerical assessments are

presented in Section 5 to demonstrate the accuracy of the gradient recovery scheme and

a posteriori error estimator on various polygonal/polyhedral meshes and with different

displacement solution types. Section 6 contains several concluding remarks and future

research directions.

4.2 Motivation and related work

Interest in numerical methods that can handle polygonal/polyhedral meshes has been grow-

ing in fields of mathematics and engineering, see [2], [4], [13], [15], [17], [20]–[22], [96],

[103], [110], [145], [146] for a minimal sample of references. Among them, VEM is an

emerging method, first introduced in [37], as a generalization of FEM in the family of

Galerkin methods. In the VEM, the basis functions of the local space are defined implicitly

through a suite set of partial differential equations (PDEs). Unlike FEM, this set of PDEs
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is never solved throughout the approximation. Instead, we apply integration by parts to

compute suitable projections of the basis functions on to polynomials. [37], [38]. Those

projections are then used in the VEM approximation to ensure its consistency together with

a suitable stabilization term, which is needed in order to avoid the appearance of hourglass

modes. As a result, only numerical quadratures for polynomials (and not for more com-

plex functions) are required in the VEM. These unique features allow the VEM to handle

general polygonal/polyhedral meshes (including the non-convex ones [39], [40]) and to

construct various types of elements, including H(div) and H(curl) conforming elements

[41]. The VEM has undergone substantial developments and has been successfully applied

to a wide range of problems. For conciseness, we only focus on the literature of VEM

for structural mechanics here. In structural mechanics, the VEM has been introduced for

linear elasticity problems [26], [42], [43], small deformation nonlinear elastic and inelastic

problems [44]–[47], finite deformation elasticity [39], [53] and elasto-plasticity problems

[54], plate bending problems [48]–[51] and contact problems [52].

Among various features of VEM, the flexibility in dealing with general polygonal and

polyhedral meshes makes it appealing for adaptivity. For example, by introducing hang-

ing nodes, adaptive mesh refinement strategies can be made more efficient with polygo-

nal/polyhedral elements because it only requires local modifications to the mesh [2]. On

the other hand, the shape generality of polygonal/polyhedral elements (especially the con-

cave ones) enables easier element agglomeration schemes for mesh coarsening [55], [56].

To realize the full potential of VEM in adaptivity, development of a posteriori error esti-

mator is essential – this is the focus of this chapter.

A posteriori error estimation is a classic topic in FEM with a vast literature, and it is typ-

ically categorized into many types: here we consider the recovery-based error estimation

type, see e.g. [147]–[154]. For more details about the error estimation in FEM, the inter-

ested readers are referred to references [153], [155] and the references within. Recovery-

based error estimators (although supported by a less extended theoretical background with
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respect to other methods) are often preferable in practical applications because of its simple

structure, easy implementation, and effectiveness in predicting errors. The recovery-based

error estimators require an additional post-processing procedure to obtain recovered solu-

tions (typically of gradient type), which are more accurate than the original ones. Among

various recovery techniques in the literature, the most notable one is the SPR developed

by Zienkiewicz and Zhu [147], [148], [156]. The SPR is adopted in [157] to develop error

estimators for polygonal and polyhedral FEM. Other techniques also include the recov-

ery by equilibrium in patches (REP) [152], [158] and the polynomial preserving recovery

(PPR) [150], [159]–[161]. Comparing to FEM, developing error estimations in the VEM

framework is a more involved task because the basis functions of the local VEM space are

unknown in the interior of elements. Nevertheless, there exist some error estimators in the

literature for C0 and C1 VEMs [57]–[60], but all of them are of the residual type.

In this work, we outline a general recovery-based a posteriori error estimation frame-

work for H1 conforming VEM of arbitrary order on general polygonal/polyhedral meshes.

For the kth order VEM, a polynomial of order k+1 is obtained by a least square fit of the

displacement DOFs over each patch. The recovered displacement gradients on the sample

points (i.e. vertices and edge nodes) in that patch are then taken as the gradient of that poly-

nomial evaluated at those points. Based on the recovered displacement gradient, an error

estimator is obtained through a skeletal error, which evaluates the displacement error on

the skeleton of the mesh. In the proposed framework, because only displacement DOFs are

used in the fitting process and the errors are only evaluated on the mesh skeleton, then we

avoid the difficulty of ignoring the explicit values of the VEM basis functions in the interior

of elements. Through numerical examples, the proposed error estimation scheme is shown

to be accurate for lower- and higher-order VEMs on various polygonal/polyhedral meshes

and with different types of displacement solutions (e.g. smooth displacement fields, dis-

placements with sharp gradients, and ones containing singularities). For linear VEM, the

accuracy and effectiveness of the proposed error estimation framework are further demon-
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strated by comparing it with an SPR-type error estimation as outlined in Appendix C.

4.3 VEM for linear elasticity

In this section, the VEM framework for linear elasticity problem is reviewed. Consider a

solid in its stress-free state that occupies a domain Ω ⊂ Rd with d being the dimension.

The solid is subjected to a prescribed displacement field, u0, on one portion of the solid

boundary ΓX and a traction t on the other portion of the solid boundary Γt, such that ΓX∪

Γt = ∂Ω and ΓX∩Γt = /0. In addition, a body force f is applied in the interior of Ω.

The governing equations of linear elasticity are:

div(Cεεε(u))+ f = 0 in Ω

u = u0 on Γ
X

Cεεε(u) ·n = t on Γ
t,

(4.1)

where C is the elasticity modulus tensor, which possesses major and minor symmetries, i.e.

Ci jkl =Ckli j =C jikl =Ci jlk. Additionally, εεε(u) is the linearized strain tensor:

εεε(u) =
1
2
[
(∇u)T +∇u

]
, (4.2)

where ∇ stands for the gradient operator. The above governing equations for linear elas-

ticity can be recast in variational form, which consists of finding u among the space of

kinematically admissible displacements such that

�
Ω

εεε(δu) :
[
Cεεε(u)

]
dX =

�
Ω

f ·δudX+

�
Γt

t ·δudS ∀δu ∈K 0, (4.3)

where the space K 0 denotes the kinematically admissible displacements that vanish on

ΓX.
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4.3.1 Virtual elements on arbitrary meshes

In this subsection, we review the definition of the local spaces of virtual elements in 2D and

3D [42], [140], [162]. As a declaration of notations, in the following presentation we use F

and P to denote polygons (an element in 2D or a face in 3D) and polyhedrons, respectively.

Moreover, we use e to represent a generic edge in the mesh. Whenever we have definitions

that are independent of dimensions, we use E as a generic element (i.e. generic polytope).

2D virtual elements

Before stating the definition of the local virtual space Vk(F) for 2D virtual elements, we

first introduce a preliminary virtual space denoted by Ṽk(F) as follows

Ṽk(F)
.
=
{

v ∈ H1(F) : v|e ∈Pk(e)∀e ∈ ∂F, ∆v ∈Pk(F)
}
, (4.4)

where ∆ stands for the Laplacian operator and Pk(·) is the space of polynomial functions

whose orders are less or equal to k. By definition, the space Ṽk(F) contains functions whose

Laplacians in the interior of F and boundary variations are both kth order polynomials.

It is immediate that Pk(F) ⊆ Ṽk(F). Furthermore, for any v in Ṽk(F), by knowing the

following three sets of information:

• the values of v at vertices Xv: v(Xv), ∀Xv ∈ F ; (4.5)

• the values of v at X`
e: v(X`

e), ∀e ∈ ∂F, `= 1, ...,k−1; (4.6)

• the moments of v up to order k−2:
�

F
vpk−2dX ∀pk−2 ∈Pk−2(F), (4.7)
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where X`
e is the `th internal integration point of the Gauss-Lobatto rule of order 2k−1 on

edge e, one can compute a projection Π∇
F v ∈Pk(F) such that


�

F ∇(Π∇
F v) ·∇pkdX =

�
F ∇v ·∇pkdX ∀pk ∈Pk(F)

∑Xv∈F Π∇
F v(Xv) = ∑Xv∈E v(Xv) if k = 1

�
F Π∇

F vdX =
�

F vdX if k ≥ 2

. (4.8)

In fact, the computability of the projection Π∇
F v when (4.5)–(4.7) are given becomes more

apparent by applying an integration by parts to the first condition of Eq. (4.8).

Having introduced the preliminary virtual space Ṽk(F), we formally define the 2D local

virtual space Vk(F) as

Vk(F)
.
=

{
v ∈ Ṽk(F) :

�
F

vqdX =

�
F
(Π∇

F v)qdX ∀q ∈
(
Pk/Pk−2(F)

)}
, (4.9)

where
(
Pk/Pk−2(F)

)
stands for the polynomial space in Pk(F) that are L2 orthogonal

to Pk−2(F). By definition, we have Pk(F) ⊆ Vk(F) ⊆ Ṽk(F) and, moreover, the sets of

information of v in (4.5)–(4.7) constitute a complete set of DOFs for Vk(F).

Remark 4.3.1 Using the given set of DOFs of v in (4.5)–(4.7) and, according to (4.9),

we can exactly compute
�

F vpkdX for any pk ∈Pk(F). As will be discussed later, this

is an important property of the local virtual space Vk(F) that allows us to compute a L2

projection of Vk(F) onto Pk(F) [140].

3D virtual elements

For the 3D case, we restrict our attention to polyhedrons with planar faces. Again, as a

preliminary space, Ṽk(P) is introduced as

Ṽk(P)
.
=
{

v ∈ H1(P) : v|F ∈ Vk(F) ∀F ∈ ∂P, ∆v ∈Pk(P)
}
. (4.10)
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In the above definition, we specify that the functions in Ṽk(P) belong to the 2D virtual space

Vk(F) on each face F of polyhedron P. For any v in Ṽk(P), the obvious 3D counterpart

of the projection Π∇
P v defined in (4.8) of v onto Pk(P) can be uniquely determined and

computed provided that we have the following information on v (see [162]):

• the values of v at vertices Xv: v(Xv), ∀Xv ∈ P; (4.11)

• the values of v at X`
e: v(X`

e), ∀e ∈ ∂P, `= 1, ...,k−1; (4.12)

• the moments of v up to order k−2 on face F ∈ ∂P:
�

F
vpk−2dS ∀pk−2 ∈Pk−2(F) ;

(4.13)

• the moments of v up to order k−2 in P:
�

P
vpk−2dX ∀pk−2 ∈Pk−2(P). (4.14)

As compared to the 2D case, an additional set of information of v is needed in 3D, i.e.

(4.13), which includes the moments of v up to order k− 2 on every face of the element.

In particular, by examining the first condition of (4.8), also in the 3D counterpart we can

apply integration by parts to the term on its right-hand side, which yields

�
P

∇v ·∇pkdX =

�
∂P

v(∇pk ·n)ds−
�

P
v∆pkdX. (4.15)

The terms in the above relation can be exactly computed. On one hand, the second term

on the right-hand side of the above relation is known due to (4.14). On the other hand,

because v belongs to Vk(F) on each face F ∈ P, then the first term on the right-hand side

of the above relation is also computable by combining (4.13) and (4.9) (also see Remark

4.3.1).

With Ṽk(P), we are ready to define the virtual space Vk(P) for 3D virtual elements as

Vk(P)
.
=

{
v ∈ Ṽk(P) :

�
P

vqdX =

�
P
(Π∇

P v)qdX ∀q ∈
(
Pk/Pk−2(P)

)}
. (4.16)

Again, it can be shown that (4.11)–(4.14) constitute a complete set of DOFs for Vk(P)
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[162].

Remark 4.3.2 For a given element E in 2D or 3D, although the projection operator Π∇
E

is defined as from Ṽk(E) onto Pk(E), we can also define the projection Π∇
E from Vk(E)

onto Pk(E) using the same set of definitions (4.8). For any v in Vk(E), this projection is

computable using only the DOFs of v, i.e., (4.5)–(4.7) in 2D or (4.11)–(4.14) in 3D.

Two projection operators

In VEM approximations, two L2 projections are utilized, which respectively project a given

function v∈Vk(E) and its gradient onto polynomial functions. The first projection, denoted

as Π0
k : Vk(E)→Pk(E), is defined for any given v in Vk(E) as

�
E

Π
0
kv pkdX =

�
E

v pkdX ∀pk ∈Pk(E). (4.17)

Because any pk ∈ Pk(E) can always be decomposed as pk = pk−2 + qk with pk−2 ∈

Pk−2(E) and qk ∈ (Pk/Pk−2(E)), then we can express the right-hand side of above ex-

pression as

�
E

v pkdX =

�
E

v(pk−2 +qk)dX =

�
E

vpk−2dX+

�
E
(Π∇

E v)qkdX. (4.18)

This shows that the term
�

E v pkdX can be exactly computed using only the DOFs of v in

both 2D and 3D and, thus, the same holds for the projection Π0
kv.

Remark 4.3.3 For linear and quadratic virtual elements, i.e. k = 1 and k = 2, it is shown

in [140] that the projection Π0
kv coincides with Π∇

k v for any v∈ V1(E). For virtual elements

of order k ≥ 3, however, projections Π0
kv and Π∇

E v are different.

The second projection, which is utilized to project ∇v, is denoted as Π0
k−1 : [L2(E)]d→

[Pk−1(E)]d for a kth order virtual elements. For a given v in Vk(E), the projection Π0
k−1∇v
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is defined as

�
E

Π
0
k−1∇v ·pk−1dX =

�
E

∇v ·pk−1dX ∀pk−1 ∈ [Pk−1(E)]d. (4.19)

Applying integration by part to the right-hand side of the above expression gives

�
E

∇v ·pk−1dX =

�
∂E

vpk−1 ·nds−
�

E
vdivpk−1dX, (4.20)

which can is also computable in both 2D and 3D using the DOFs of v. More specifically,

the second term on the right-hand side of the above expression is immediately given by

DOFs (4.7) and (4.14). Moreover, in the 2D case, the first term on the right-hand side of

(4.20) can be exactly integrated using the Gauss-Lobatto rule of order 2k−1 on each edge

using the sets of DOFs (4.5) and (4.6). For the 3D case, on the other hand, by decomposing

pk−1 as pk−1 = pk−2 +qk−1 with pk−2 ∈ [Pk−2(E)]3 and qk−1 ∈ [Pk−1/Pk−2(E)]3, we

can express the first term on the right-hand side of (4.20) as

�
∂P

vpk−1 ·ndS= ∑
F∈∂P

�
F

v(pk−2+qk−1)·ndS= ∑
F∈∂P

[�
F

vpk−2 ·ndS+
�

F
Π

∇
P vqk−1 ·ndS

]
,

(4.21)

which is computable using only the DOFs of v.

4.3.2 Virtual element approximation for linear elasticity

Let us consider a discretization denoted by Ωh of the domain Ω into non-overlapping poly-

gons or polyhedrons, where h stands for the average element size. We also assume that

the boundary of the mesh, denoted by Γh,is compatible with the applied displacement and

traction boundary conditions, namely, both ΓX
h and Γt

h consist of unions of edges and faces

of the mesh. In 3D, we also use F to denote a generic face in the mesh. For a kth order

discretization, the global displacement space Kh,k is a conforming finite dimensional space
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defined as

Kh,k
.
=
{

vh ∈K : vh|E ∈ [Vk(E)]d, ∀E ∈Ωh

}
, (4.22)

where Vk(E) is a kth order local virtual space defined in the preceding subsections. In

each element E, each component of the local displacement v (v = [vx,vy]
T in 2D or v =

[vx,vy,vz]
T in 3D) has the set of DOFs specified in (4.5)–(4.7) and (4.11)–(4.14) respec-

tively for 2D and 3D cases. In the following discussions, we introduce ΠΠΠ
0
k : [Vk(E)]d →

[Pk(E)]d as the action of Π0
k on each component of the vector field, i.e., ΠΠΠ

0
kv= [Π0

kvx,Π
0
kvy]

T

in 2D and ΠΠΠ
0
kv = [Π0

kvx,Π
0
kvy,Π

0
kvz]

T in 3D. Similarly, we also introduce the projection

ΠΠΠ
0
k−1 : [L2(E)]d×d → [Pk−1(E)]d×d for second order tensors as

ΠΠΠ
0
k−1∇v =

(Π0
k−1∇vx)

T

(Π0
k−1∇vy)

T

 in 2D or ΠΠΠ
0
k−1∇v =


(Π0

k−1∇vx)
T

(Π0
k−1∇vy)

T

(Π0
k−1∇vz)

T

 in 3D. (4.23)

When applied to the strain tensor εεε(v), the projection ΠΠΠ
0
k−1εεε(v) stands for

ΠΠΠ
0
k−1εεε(v) =

1
2
[
(ΠΠΠ0

k−1∇v)T +ΠΠΠ
0
k−1∇v

]
(4.24)

Our next step is to introduce the VEM approximation to the continuous problem (4.3),

see for instance [26], [42], [45]. To that end, for any element E, we need to first approxi-

mate the following local bilinear form on the left-hand side of (4.3):

aE(uh,vh) =

�
E

εεε(uh) : [Cεεε(vh)]dX. (4.25)

The VEM approximation aE
h (uh,vh) of aE(uh,vh) is composed of the following two terms:

aE
h (uh,vh) =

�
E

ΠΠΠ
0
k−1εεε(vh) : C : ΠΠΠ

0
k−1εεε(uh)dX+αESh,E(uh−ΠΠΠ

0
kuh,vh−ΠΠΠ

0
kvh), (4.26)
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where the first integral on the right-hand side is evaluated (exactly) using a numerical in-

tegration of order 2k− 2; Sh,E(·, ·) is a bilinear form that is computationally inexpensive

to compute and satisfies the coercivity condition; and αE is a scaling parameter that scales

Sh,E(·, ·) to the same order of magnitude as aE(·, ·). Typical choices of Sh,E(·, ·) and αE are:

Sh,E(uh,vh) = hd−2
E

NE

∑
i=1

ΞΞΞi(uh) ·ΞΞΞi(vh) and αE = traceC =Ci ji j (in indical notation)

(4.27)

where hE
.
= |E|1/d represents the size of element E, ΞΞΞi(v) stands for the ith DOF of v in

E, and NE stands for the total number of such local DOFs in E. In the VEM literature,

the first and second terms of aE
h (uh,vh) are respectively known as the consistency and

stability terms, and they are respectively responsible for the satisfaction of consistency and

stability conditions, which are the two key conditions to ensure the convergence of the

VEM approximation [37], [42].

On the other hand, we approximate the loading term on the right-hand side of (4.3) as

〈f,vh〉h + 〈t,vh〉h = ∑
F

�
F

f ·ΠΠΠ0
kvhdX+ ∑

e∈Γt
h

�
e
t ·vhdX in 2D, (4.28)

and

〈f,vh〉h + 〈t,vh〉h = ∑
P

�
P

f ·ΠΠΠ0
kvhdX+ ∑

F∈Γt
h

�
F

t ·ΠΠΠ0
kvhdX in 3D, (4.29)

where
�

and
�

denote any numerical integrations that are exact for polynomials of order

2k−2 and 2k−1, respectively. We note that, in the 2D case, vh is by definition known as

a polynomial function of order k on each edge. In addition, in the special case of k = 1,

instead of using a integration rule that is exact of order 0 for
�

(i.e. is able to integrate any

constant function exactly), we use a one-point integration rule with the quadrature point

and weight being the centroid and either the area or volume of each element, respectively.
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This integration rule is exact when the integrand is a linear function. For the higher order

VEM in this chapter, we utilize the commonly used triangulation scheme with the above-

stated order of accuracy (more sophisticated choices, for example [107], [163], could be

taken).

We are now ready to state the final form of the VEM approximation for linear elasticity

problems, which consists of finding uh ∈Kh such that

∑
E

[�
E

ΠΠΠ
0
k−1εεε(δuh) : C : ΠΠΠ

0
k−1εεε(uh)dX+αESh,E

(
uh−ΠΠΠ

0
kuh,δuh−ΠΠΠ

0
k(δuh)

)]
= 〈f,δuh〉h + 〈t,δuh〉h, ∀δuh ∈K 0

h , (4.30)

where K 0
h is a subspace of Kh with functions that vanish on ΓX

h .

4.4 A recovery-based a posteriori error estimation for VEM

This section introduces a gradient recovery scheme that reconstructs a more accurate dis-

placement gradient based on the VEM solutions. Making use of the reconstructed displace-

ment gradient, this section further propose an a posteriori error estimator for the VEM,

which estimates the error of the displacement gradient. According to the VEM philosophy,

the gradient recovery scheme presented here will focus on reconstructing displacement

gradients on the skeleton (i.e. union of edges) of the mesh. We also employ an H1-type

skeletal norm for the displacement gradient error estimators. For a given discretization Ωh

and a function v, the H1-type skeletal norm, denoted by εs
1,v, is defined as

ε
s
1,v =

[
∑

F∈Ωh

hF ∑
e∈∂F

�
e
(∇v · τττe) · (∇v · τττe)de

] 1
2

in 2D, (4.31)

150



and

ε
s
1,v =

[
∑

P∈Ωh

hP ∑
F∈∂P

hF ∑
e∈∂F

�
e
(∇v · τττe) · (∇v · τττe)de

] 1
2

in 3D, (4.32)

where hP and hF are the diameter of polyhedron P and polygon F ; and τττe denotes the

unit tangential vector of edge e. We remark that, unlike the regular H1 semi-norm that

integrates over each element in the mesh, the H1-type skeletal norms defined in (4.31)

and (4.32) only sample function gradients along the skeleton of the mesh. These skeletal

norms mimic the regular H1 semi-norms in the following sense: they take H1 semi-norms

on the skeleton of the mesh (so that the norm for a constant function vanishes), and those

differences are then scaled in order to achieve the same behavior (with respect to element

contractions/expansions) as the regular H1 semi-norm. We also remark that, similar mesh-

dependent norms are considered in the Mimetic Finite Difference (MFD) literature [164],

[165].

4.4.1 A gradient recovery scheme for the VEM

We present a gradient recovery scheme for VEM of arbitrary order. This subsection is out-

lined as follows. We will first describe in detail the displacement gradient reconstructions

for linear and quadratic virtual elements, respectively. Afterward, a general gradient re-

covery framework will be outlined for VEM of arbitrary order k. Note that, in the present

section, we assume to have a patch of elements associated with each vertex of the mesh;

the selection of such patches will be discussed later.

Before proceeding, we first introduce the notation utilized in this gradient recovery

scheme. For the ith node in the mesh expressed by Xi = [Xi,Yi]
T in 2D (and Xi = [Xi,Yi,Zi]

T

in 3D) , we denote by ωi a patch of elements associated with it. We will describe the criteria

for how to choose ωi at the end of this subsection. For now, let us assume that a patch ω

is given. We denote by hω a characteristic size of the patch ω , which is taken as the
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maximum distance between the nodes in the patch, and by NE
ω the total number of elements

it contains. For the 2D cases, we use Ξv
i (v), Ξe

i (v) and ΞI
i (v) to denote the ith vertex, edge

and internal DOFs of a given function v in the patch ω , respectively, and Nv
ω , Ne

ω and NI
ω

to denote the total numbers of vertex, edge and internal DOFs in this patch, respectively.

For the 3D case, we additionally denote by ΞF
i (v) and NF

ω the ith (internal) face DOFs and

the total number of (internal) face DOFs in the patch ω , respectively. For instance, if a

given patch consists of 2D linear virtual elements, the vertex DOFs of v are its values at

the vertices of this patch, and there are no edge and internal DOFs. Alternatively, if a given

patch consists of 2D quadratic virtual elements, in addition to the vertex DOFs (as in linear

virtual elements), we have one edge DOF at the mid-node on every edge in this patch, and

each element in the patch has one internal DOF, which is the zero order moment of v over

this element.

Moreover, for a given patch ω , we denote by Pk(ω) the set of polynomial functions of

degree less than or equal to k with dimension nPk. For a given order k, we have nPk =

(k+1)(k+2)/2 in 2D and nPk = (k+1)(k+2)(k+3)/6 in 3D. If we introduce a multi-

index ααα = (α1,α2,α3), we can define the set of basis functions of Pk(ω) as

mω
ααα(X) =

(X−Xω

hω

)α1
(Y −Yω

hω

)α2
(Z−Zω

hω

)α3
, |ααα| ≤ k, (4.33)

where |ααα| = α1 +α2 +α3 and Xω = [Xω ,Yω ,Zω ]
T is the centroid of ω (alternatively, Xω

can also be any point in ω , e.g., the mean of all nodes in ω). We note that while the above

notation is introduced for the 3D case, it also applies to the 2D case with α3 being zero. In

the following discussions, we will reshape the multi-index ααα , |ααα| ≤ k into a scalar index

α , α = 1, ...,nPk and use mω
α (X) to denote the αth basis functions for Pk(ω).
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Displacement gradient recovery for linear elements

We address the displacement gradient recovery of linear virtual elements in both 2D and 3D

cases. Since the gradient recoveries in 2D and 3D follow similar concept and procedures,

we will thoroughly describe the recovery in 2D and then comment on suitable modifications

in the 3D case. For both cases, we attempt to reconstruct a displacement gradient at every

vertex of the mesh, and, for each vertex, the reconstruction is performed in its associated

patches. Once the nodal gradients of all the vertices are obtained, a continuous displace-

ment gradient on mesh skeleton, denoted by Ghuh, can then be obtained by interpolating

those nodal displacement gradients on the mesh skeleton.

For a given patch ωi (associated with Xi) in 2D, the basic idea of the gradient recovery

scheme is to seek a quadratic vector field, denoted by pωi(X) = [pωi
x , pωi

y ]T ∈ [P2(ωi)]
2,

such that its X and Y components satisfy

pωi
x = argmin

ξ∈P2(ωi)

Nv
ωi

∑
j=1

[
Ξ

v
j(ξ )−Ξ

v
j(uh,x)

]2 and pωi
y = argmin

ξ∈P2(ωi)

Nv
ωi

∑
j=1

[
Ξ

v
j(ξ )−Ξ

v
j(uh,y)

]2
,

(4.34)

respectively, where uh = [uh,x,uh,y]
T is the VEM displacement solution.

We can express the quadratic functions pωi
x and pωi

y as linear combinations of the basis

functions of P2(ωi), mωi
α , α = 1, ...,6, as

pωi
x (X) =

6

∑
α=1

mωi
α (X)qωi,x

α and pωi
y =

6

∑
α=1

mωi
α (X)qωi,y

α , (4.35)

where qωi,x
α and qωi,y

α are the coefficients. By further considering the DOFs of pωi
x and pωi

y ,

we arrive at the following matrix expressions:

Pqωi,x =

[
Ξv

1(pωi
x ) Ξv

2(pωi
x ) · · · Ξv

Nv
ωi
(pωi

x )

]T

Pqωi,y =

[
Ξv

1(pωi
y ) Ξv

2(pωi
y ) · · · Ξv

Nv
ωi
(pωi

y )

]T

,

(4.36)
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where P ∈ RNv
ωi
×6 and qωi,x,qωi,y ∈ R6×1 are of the forms

P =



Ξv
1(m

ωi
1 ) Ξv

1(m
ωi
2 ) Ξv

1(m
ωi
3 ) Ξv

1(m
ωi
4 ) Ξv

1(m
ωi
5 ) Ξv

1(m
ωi
6 )

Ξv
2(m

ωi
1 ) Ξv

2(m
ωi
2 ) Ξv

2(m
ωi
3 ) Ξv

2(m
ωi
4 ) Ξv

2(m
ωi
5 ) Ξv

2(m
ωi
6 )

...

Ξv
Nv

ωi
(mωi

1 ) Ξv
Nv

ωi
(mωi

2 ) Ξv
Nv

ωi
(mωi

3 ) Ξv
Nv

ωi
(mωi

4 ) Ξv
Nv

ωi
(mωi

5 ) Ξv
Nv

ωi
(mωi

6 )


(4.37)

and

qωi,x =

[
qωi,x

1 qωi,x
2 · · · qωi,x

6

]T

and qωi,y =

[
qωi,y

1 qωi,y
2 · · · qωi,y

6

]T

. (4.38)

With the introduction of above matrices, we can equivalently rewrite (4.34) as seeking

qωi,x and qωi,y ∈ R6×1 such that

qωi,x = argmin
a∈R6×1

[Pa−bωi,x]T [Pa−bωi,x] and qωi,y = argmin
a∈R6×1

[Pa−bωi,y]T [Pa−bωi,y] ,

(4.39)

where bωi,x and bωi are vectors that collects the DOFs of VEM solution uh in ωi, namely,

bωi,x = [Ξv
1(uh,x), ...,Ξ

v
Nv

ωi
(uh,x)]

T and bωi,y = [Ξv
1(uh,y), ...,Ξ

v
Nv

ωi
(uh,y)]

T . Examining the op-

timality conditions of the above minimization problems, we obtain the following expres-

sions for qωi,x and qωi,y:

qωi,x = (PT P)−1PT bωi,x and qωi,y = (PT P)−1PT bωi,y. (4.40)

Once the vectors of coefficients qωi,x and qωi,y are computed, we obtain the polynomial

functions pωi
x (X) and pωi

y (X), and the value of the reconstructed displacement gradient

Ghuh(Xi) at Xi is taken as

Ghuh(Xi) = ∇pωi(Xi) =

∂ pωi
x

∂X (Xi)
∂ pωi

x
∂Y (Xi)

∂ pωi
y

∂X (Xi)
∂ pωi

y
∂Y (Xi)

 . (4.41)
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In 3D, the recovery scheme follows a procedure similar to the one outlined above except

for two modifications. First, in order to account for the expanding dimension of P2(ωi) in

3D, the matrix P defined in (4.37) is modified as

P =



Ξv
1(m

ωi
1 ) Ξv

1(m
ωi
2 ) Ξv

1(m
ωi
3 ) · · · Ξv

1(m
ωi
10)

Ξv
2(m

ωi
1 ) Ξv

2(m
ωi
2 ) Ξv

2(m
ωi
3 ) · · · Ξv

2(m
ωi
10)

. . .

Ξv
Nv

ωi
(mωi

1 ) Ξv
Nv

ωi
(mωi

2 ) Ξv
Nv

ωi
(mωi

3 ) · · · Ξv
Nv

ωi
(mωi

10)


. (4.42)

Moreover, the recovery scheme is expanded to include the Z component of the displace-

ment vector uh = [uh,x,uh,y,uh,z]
T in 3D. With the modified matrix P, the displacement gra-

dient recovery scheme in 3D consists of seeking qωi,x, qωi,y and qωi,z ∈ R10×1 such that

qωi,x = argmin
a∈R10×1

[Pa−bωi,x]T [Pa−bωi,x]

qωi,y = argmin
a∈R10×1

[Pa−bωi,y]T [Pa−bωi,y]

qωi,z = argmin
a∈R10×1

[Pa−bωi,z]T [Pa−bωi,z] ,

(4.43)

where, similarly to bωi,x and bωi,y, bωi,z is a vector collecting the DOFs of the Z component

of uh as bωi,z = [Ξv
1(uh,z), ...,Ξ

v
Nv

ωi
(uh,z)]

T . Once the coefficient vectors qωi,x, qωi,y and qωi,z

are obtained, the values of the reconstructed displacement gradient field Ghuh at node Xi

are naturally given by

Ghuh(Xi) = ∇pωi(Xi) =


∂ pωi

x
∂X (Xi)

∂ pωi
x

∂Y (Xi)
∂ pωi

x
∂Z (Xi)

∂ pωi
y

∂X (Xi)
∂ pωi

y
∂Y (Xi)

∂ pωi
y

∂Z (Xi)

∂ pωi
z

∂X (Xi)
∂ pωi

z
∂Y (Xi)

∂ pωi
z

∂Z (Xi)

 . (4.44)
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Displacement gradient recovery for 2D quadratic elements

We present a gradient reconstruction scheme for quadratic elements in 2D, in which we

attempt to reconstruct the displacement gradient at every vertex of the mesh, as well as the

mid-side node of every edge. In particular, the displacement gradient for every vertex is

reconstructed within the associated patch, and the one for each mid-side node is obtained by

averaging the reconstructed gradients within both patches associated with the two vertices

of its edge.

Let us first look at the gradient recovery on the vertices. Similar to the linear case, for

a given vertex Xi and its associated patch ωi, we aim to seek a cubic vector field, denoted

by pωi = [pωi
x , pωi

y ]T ∈ [P3(ωi)]
2, such that its components satisfy

pωi
x = argmin

ξ∈P3(ωi)

{ Nv
ωi

∑
j=1

[
Ξ

v
j(ξ )−Ξ

v
j(uh,x)

]2
+

Ne
ωi

∑
j=1

[
Ξ

e
j(ξ )−Ξ

e
j(uh,x)

]2
+

NI
ωi

∑
j=1

[
Ξ

I
j(ξ )−Ξ

I
j(uh,x)

]2}
(4.45)

pωi
y = argmin

ξ∈P3(ωi)

{ Nv
ωi

∑
j=1

[
Ξ

v
j(ξ )−Ξ

v
j(uh,y)

]2
+

Ne
ωi

∑
j=1

[
Ξ

e
j(ξ )−Ξ

e
j(uh,y)

]2
+

NI
ωi

∑
j=1

[
Ξ

I
j(ξ )−Ξ

I
j(uh,y)

]2}
, (4.46)

where we recall that the operator ΞI
j(·) = 1/|E j|

�
E j
(·)dX represents the internal DOF of

the jth element in the patch.

Expanding pωi
x (X) and pωi

y (X) in terms of basis functions mωi
α (X) of P3(ωi), α =

1, ...,10, as

pωi
x (X) =

10

∑
α=1

mωi
α (X)qωi,x

α and pωi
y (X) =

10

∑
α=1

mωi
α (X)qωi,y

α , (4.47)
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we obtain the following relations in matrix forms as

Pqωi,x =

[
Ξv

1(pωi
x ) · · · Ξv

Nv
ωi
(pωi

x ) Ξe
1(pωi

x ) · · · Ξe
Ne

ωi
(pωi

x ) ΞI
1(pωi

x ) · · · ΞI
NI

ωi
(pωi

x )

]T

,

(4.48)

and

Pqωi,y =

[
Ξv

1(pωi
y ) · · · Ξv

Nv
ωi
(pωi

y ) Ξe
1(pωi

y ) · · · Ξe
Ne

ωi
(pωi

y ) ΞI
1(pωi

y ) · · · ΞI
NI

ωi
(pωi

y )

]T

,

(4.49)

where matrices P ∈ R(Nv
ωi
+Ne

ωi
+NI

ωi
)×10 and qωi,x, qωi,y ∈ R10×1 are given by

P =



Ξv
1(m

ωi
1 ) Ξv

1(m
ωi
2 ) Ξv

1(m
ωi
3 ) · · · Ξv

1(m
ωi
10)

. . .

Ξv
Nv

ωi
(mωi

1 ) Ξv
Nv

ωi
(mωi

2 ) Ξv
Nv

ωi
(mωi

3 ) · · · Ξv
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ωi
(mωi

10)

Ξe
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ωi
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1(m
ωi
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1(m
ωi
3 ) · · · Ξe

1(m
ωi
10)

. . .

Ξe
Ne
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(mωi
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Ne

ωi
(mωi
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Ne

ωi
(mωi
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Ne
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(mωi

10)
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1(m
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3 ) · · · ΞI

1(m
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10)

. . .

ΞI
NI
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(mωi

1 ) ΞI
NI

ωi
(mωi

2 ) ΞI
NI

ωi
(mωi

3 ) · · · ΞI
NI

ωi
(mωi

10)



, (4.50)

and

qωi,x =

[
qωi,x

1 qωi,x
2 · · · qωi,x

10

]T

and qωi,y =

[
qωi,y

1 qωi,y
2 · · · qωi,y

10

]T

. (4.51)

We can then rewrite Eqs. (4.45) and (4.46) as finding qωi,x and qωi,y ∈ R10×1 such that

qωi,x = argmin
a∈R10×1

[Pa−bωi,x]T [Pa−bωi,x]

qωi,y = argmin
a∈R10×1

[Pa−bωi,y]T [Pa−bωi,y] ,

(4.52)
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where bωi,x and bωi,y are vectors consisting of both edge and internal DOFs of uh,x and uh,y

in the patch, i.e.

bωi,x =

[
Ξv

1(uh,x) · · · Ξv
Nv

ωi
(uh,x) Ξe

1(uh,x) · · · Ξe
Ne

ωi
(uh,x) ΞI

1(uh,x) · · · ΞI
NI

ωi
(uh,x)

]T

.

(4.53)

and

bωi,y =

[
Ξv

1(uh,y) · · · Ξv
Nv

ωi
(uh,y) Ξe

1(uh,y) · · · Ξe
Ne

ωi
(uh,y) ΞI

1(uh,y) · · · ΞI
NI

ωi
(uh,y)

]T

.

(4.54)

The above equations yield

qωi,x = (PT P)−1PT bωi,x and qωi,y = (PT P)−1PT bωi,y. (4.55)

Having obtained coefficient vectors qωi,x and qωi,y, we can reconstruct the displacement

gradient Ghuh at vertex Xi using Eq. (4.41).

Let us then look at the reconstruction of the mid-edge nodes. If we denote by X̂i j the

middle node of the edge connecting vertices Xi and X j, i.e. X̂i j = 1/2(Xi +X j), we define

the recovered values of the displacement gradient at X̂i j as the average value of the ones

obtained from both patches associated with the two end vertices, namely,

Ghuh(X̂i j) =
1
2

[
∇pωi(X̂i j)+∇pω j(X̂i j)

]
=

1
2

∂ pωi
x

∂X (X̂i j)+
∂ p

ω j
x

∂X (X̂i j)
∂ pωi

x
∂Y (X̂i j)+

∂ p
ω j
x

∂Y (X̂i j)

∂ pωi
y

∂X (X̂i j)+
∂ p

ω j
y

∂X (X̂i j)
∂ pωi

y
∂Y (X̂i j)+

∂ p
ω j
y

∂Y (X̂i j)

 , (4.56)

where we recall that pωi and pω j are the reconstructed cubic vectorial functions for patch ωi

and ω j, respectively. Note that the above construction is different than taking the average

of the reconstructed gradient at the two vertices (a choice that would lead to a loss of

accuracy).
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Remark 4.4.1 By comparing with the definition (4.34) for linear elements, the ones

(4.45) and (4.46) for quadratic elements also considers internal DOFs of uh for each patch.

This requires evaluating not only the edge DOFs of the basis functions mωi
α (X) but also

their internal DOFs when forming the matrix P defined in (4.50). While the edge DOFs

of mωi
α (X) are their values at the selected points of edges, the evaluation of their internal

DOFs (the moments of mωi
α ) requires the use of at least a 3rd-order numerical integration

rule, which imposes addition computational expense on the simulation (recall that only

a 2nd order integration is needed to exactly compute the stiffness matrix). As we will

demonstrate in the numerical examples, it is possible to neglect the consideration of in-

ternal DOFs in the definitions (4.45) and (4.46) without sacrificing too much accuracy in

reconstructions. Doing this, however, leads to a more efficient gradient recovery scheme,

as it avoids the integration of basis functions mωi
α (X) to obtain their internal DOFs as we

form the matrix P.

A displacement gradient recovery for virtual elements of arbitrary order

Although not numerically evaluated in this chapter, this subsection outlines an extension

of the displacement gradient recovery scheme for virtual elements of arbitrary order k in

both 2D and 3D. Similarly to before, this subsection first describes the reconstructions at

the vertices, and then states the reconstructions at the edge nodes of the mesh.

For the vertex Xi with its associated patch ωi, the first step of the gradient recov-

ery scheme for kth order virtual elements is to reconstruct a polynomial function pωi ∈

[Pk+1(ωi)]
d via a least square fitting of all the DOFs of uh in ωi. More specifically, in the

2D case, the polynomial function pωi = [pωi
x , pωi

y ]T is obtained following a similar definition
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as for quadratic virtual elements. In the component form, we define

pωi
x = argmin

ξ∈Pk+1(ωi)

{ Nv
ωi

∑
j=1

[
Ξ

v
j(ξ )−Ξ

v
j(uh,x)

]2
+

Ne
ωi

∑
j=1

[
Ξ

e
j(ξ )−Ξ

e
j(uh,x)

]2
+

NI
ωi

∑
j=1

[
Ξ

I
j(ξ )−Ξ

I
j(uh,x)

]2}
(4.57)

pωi
y = argmin

ξ∈Pk+1(ωi)

{ Nv
ωi

∑
j=1

[
Ξ

v
j(ξ )−Ξ

v
j(uh,y)

]2
+

Ne
ωi

∑
j=1

[
Ξ

e
j(ξ )−Ξ

e
j(uh,y)

]2
+

NI
ωi

∑
j=1

[
Ξ

I
j(ξ )−Ξ

I
j(uh,y)

]2}
. (4.58)

For the 3D case, because of the presence of face DOFs, the above component-wise defini-

tion of pωi = [pωi
x , pωi

y , pωi
z ]T is expanded to also include those face DOFs. In particular, we

seek

pωi
x = argmin

ξ∈Pk+1(ωi)

{ Nv
ωi

∑
j=1

[
Ξ

v
j(ξ )−Ξ

v
j(uh,x)

]2
+

Ne
ωi

∑
j=1

[
Ξ

e
j(ξ )−Ξ

e
j(uh,x)

]2
+

NI
ωi

∑
j=1

[
Ξ

I
j(ξ )−Ξ

I
j(uh,x)

]2
+

NF
ωi

∑
j=1

[
Ξ

F
j (ξ )−Ξ

F
j (uh,x)

]2}
(4.59)

(and the analogous one for the other two components pωi
y , pωi

z ) where we recall that the

face DOF operator ΞF
i (·), i = 1, ...,NF

ωi
, takes the moments of its argument up to order k−2

on the faces in patch ωi. In practice, the polynomial function pωi is calculated following

identical procedures described in the preceding subsections for linear and quadratic virtual

elements, namely, using the matrix P, which contains the edge, internal (and face, in 3D)

DOFs of the basis functions mωi
α of Pk+1(ωi), and vectors bωi,x, bωi,y and bωi,z, which

consist of those DOFs of the X , Y and Z components of uh, respectively. For the sake of

brevity, those procedures are not repeated here.

Once we obtain the polynomial function pωi(X) for each patch ωi, the recovered dis-
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placement gradient at vertex Xi is computed by evaluating pωi at this vertex, which is

identical to the linear and quadratic cases, i.e.

Ghuh(Xi) = (∇pωi)(Xi). (4.60)

For higher-order virtual elements, i.e. k ≥ 2, the gradient recovery scheme also seeks

to reconstruct Ghuh at k−1 internal points on each edge, which coincides with the internal

integration points of the Gauss-Lobatto rule of order k+1 on that edge. Assuming that X̂
`
i j,

` = 1, ...,k− 1, is the `th internal point of the edge that connects vertices Xi and X j, we

generalize a suitable definition of the values of Ghuh at this point from (4.56) as follows

[159]

Ghuh(Xi) = α
`
i j(∇pωi)(X̂

`
i j)+(1−α

`
i j)(∇pω j)(X̂

`
i j), (4.61)

where α`
i j is the ratio of the distance between X̂

`
i j and Xi, and the length of the edge, namely,

α`
i j = ||X̂

`
i j−Xi||/||Xi−X j||.

Remark 4.4.2 The displacement gradient recovery scheme is tailored for the a posteriori

error estimator using the H1-type semi-norms (4.31)–(4.32) defined on the skeleton of the

mesh. To that end, we only reconstruct the displacement gradient on edges of the mesh, that

leads to a computationally cheaper procedure. Nevertheless, by following the same lines,

our recovery scheme could be easily extended in order to yield also the internal degree of

freedom values of the reconstructed gradient.

Remark 4.4.3 According to Remark 4.4.1, it is possible to neglect the internal and

facial DOFs of uh in the recovery process. As suggested by the numerical examples for

quadratic virtual elements, this may lead to almost identically reconstructed displacement

gradients, and render the recovery scheme more efficient. For virtual elements of order

k ≥ 3, however, more investigations are needed.
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Reconstruction of the displacement gradient Ghuh

In this subsection, we present the procedures to reconstruct a continuous displacement

gradient on the mesh skeleton using the recovered values of Ghuh at k+1 equally-spaced

points on every edge in the mesh skeleton. In the remaining, for a given generic edge e in

the skeleton, we denote G`
e by the recovered values of the displacement gradient on the `th

point on this edge.

The basic idea of the reconstruction is to interpolate the recovered values of Ghuh at the

k+1 edge nodes using C0 continuous shape functions on each edge. More specifically, for

a generic edge e, we interpolate Ghuh as:

Ghuh(ξ ) =
k+1

∑
`=1

N(k)
` (ξ )G`

e, (4.62)

where N(k)
` (ξ ) is the 1D Lagrangian shape function (of order k) associated with the ` edge

node on e, with ξ varying from 0 to Le, in which Le is the length of edge e.

In Fig. 4.1, we provide an illustration of the displacement gradient reconstruction for

linear virtual elements, together with the adopted 1D shape functions on a generic edge e.

F

2
1

ξ

Le

Le

1

1

1 2

1 2

N    (ξ )(1)
1

N    (ξ )(1)
2

P

e
e

e

Figure 4.1: An illustration of the displacement gradient reconstruction for linear virtual
elements in 2D and 3D. The displacement gradient on each edge e is interpolated from the
reconstructed nodal values using 1D linear shape functions.
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As a side note, in addition to reconstructing a displacement gradient only on the mesh

skeleton, one can also choose to reconstruct a displacement gradient over the entire Ω us-

ing suitable basis functions. For linear virtual elements in 2D, for instance, a continuous

displacement gradient over Ω can be reconstructed by interpolating the values at vertices

obtained from the recovery procedure using nodal vector-valued basis functions of degree

1. Alternatively, one can use both the recovered displacement1 and displacement gradient

on the vertices and perform a C1 reconstruction of the displacement field using C1 basis

functions [48], [135]. The reconstructed displacement gradient is then taken as the gradi-

ent of the reconstructed displacement. The advantage of this alternative approach over the

former one is that, in addition to giving a continuous displacement gradient, the alterna-

tive approach also provides a displacement with higher continuity (i.e. C1) and potentially

higher accuracy over the original displacement solutions (which is only C0 continuous).

Aside from the above comments, however, we stick to recovering a C0 displacement gradi-

ent on the mesh skeleton in the remainder of the chapter.

4.4.2 Suitable choices of patches

In the gradient recovery scheme, the selection of patches is a crucial component. In the

sequel, we describe the criteria of how to select the patches. For a vertex Xi, we choose its

associated patch in the same fashion as in the finite element literature. As illustrated in Fig.

4.2 (a) and Fig. 4.3 (a) for 2D and 3D cases respectively, the patch ωi is defined to be the

union of all the elements that connect to Xi. In 3D, this patch definition also applies to the

boundary facial vertices, as shown in Fig. 4.3 (b).

Similar to the finite element literature, special attention needs to be paid when selecting

boundary patches as they are likely to contain insufficient DOFs to uniquely determine

the polynomial functions in the recovery process (in this case, the matrix PT P associated

with that patch is singular). For instance, if chosen based on the criterion stated above,

1Instead of evaluating the gradient of the reconstructed polynomial function at vertices as in (4.41), a
recovered displacement is obtained by evaluating the reconstructed polynomial at the vertices

163



the patches associated with boundary vertices in 2D (cf. Fig. 4.2 (b)) and boundary edge

vertices in 3D (cf. Fig. 4.3 (c)) will typically contain only two elements. Those patches are

most likely to contain insufficient DOFs, especially for higher order elements. In addition,

for general polygonal and polyhedral discretization, similar scenarios may occur even for

patches that belong to internal vertices. Therefore, to ensure the robustness of the recovery

scheme, we propose to monitor NE
ω , which is the number of elements the patch contains.

If NE
ω is less than three, we propose to enlarge the vertex patch by including another layer

of elements. An enlarged patch is defined to be the union of patches associated with all

the vertices that the original patch contains. This criterion will automatically include the

boundary patches (i.e. the patches associated with boundary vertices in 2D (cf. Fig. 4.2

(b)) and boundary edge vertices in 3D (cf. Fig. 4.3 (c))) that were discussed previously.2

4.4.3 Error evaluation and a posteriori error estimation for the VEM

We discuss approaches to evaluate the errors of both the original and recovered displace-

ment using the H1-type skeletal norm defined in (4.31) and (4.32). On top of the discussions

on error evaluations, we further present a posteriori error estimation based on the recovered

displacement gradient Ghuh, which also makes use of the H1-type skeletal norm defined in

(4.31) and (4.32).

Error evaluation

According to (4.31) and (4.32), the original displacement error from VEM simulations

using the H1-type skeletal norm is given by

ε
s
1,u =

[
∑

F∈Ωh

hF ∑
e∈∂F

�
e
(∇uh · τττe−∇u · τττe) · (∇uhτττe−∇u · τττe)de

] 1
2

in 2D, (4.63)

2An even safer procedure to select whenever to enlarge the vertex patches would be a direct check on the
non-singularity of the matrix PT P. Nevertheless, the procedure proposed here is cheaper and turns out to be
robust in all the numerical experiments.
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Xi

X i

ωi ωi

Nodal value to 
be determined 
from the patch
Vertex DOFs
Edge DOFs

Internal DOFs

Xi

X i

ωi
ωi

(a) (b)

(c) (d)

Figure 4.2: Examples of (a) internal and (b) boundary patches in 2D for linear virtual
elements. Examples of (c) internal and (d) boundary patches in 2D for quadratic virtual
elements.

and

ε
s
1,u =

[
∑

P∈Ωh

hP ∑
F∈∂P

hF ∑
e∈∂F

�
e
(∇uh · τττe−∇u · τττe) · (∇uhτττe−∇u · τττe)de

] 1
2

in 3D,

(4.64)

where u is the exact displacement. For the VEM of order k, the displacement solution uh

possesses kth order variation on a generic edge e, which can be interpolated from the edge

DOFs of uh on the k+1 equally spaced points of this edge (including the two end points).

For this generic edge e, let us denote U`
e as `th DOF of uh on e. We can interpolate uh and
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 Internal vertex patch Boundary facial vertex patch Boundary edge vertex patch

X i
Xi

Xi

ωi
ωi

ωi

(a) (b) (c)

Figure 4.3: Examples of patches in 3D a polyhedral mesh: (a) an internal patch, (b) a patch
on a face of the boundary, and (c) a patch on an edge of the boundary.

∇uh · τττe along this edge as

uh(ξ ) =
k+1

∑
`=1

N(k)
` (ξ )U`

e and (∇uh · τττe)(ξ ) =
k+1

∑
`=1

dN(k)
` (ξ )

dξ
U`

e, (4.65)

where N(k)
` (ξ ) is the 1D shape function (of order k) associated with U`

e on e, with ξ varying

from 0 to Le, and Le is the length of edge e. In practice, based on the above parametrization,

the original displacement error is evaluated using a Gauss-Lobatto rule of a suitable order

on each edge.

For the error evaluation of the recovered fields, the reconstruction Ghuh in (4.62) is

used, replacing ∇uh in the original displacement error (4.63) – (4.64). In practice, simi-

lar to the original displacement error discussed above, the skeletal error of the recovered

displacement gradient is evaluated as

ε
s
1,ũ =

[
∑

F∈Ωh

hF ∑
e∈∂F

�
e
(Ghuh · τττe−∇u · τττe) · (Ghuhτττe−∇u · τττe)de

] 1
2

in 2D, (4.66)

and

ε
s
1,ũ =

[
∑

P∈Ωh

hP ∑
F∈∂P

hF ∑
e∈∂F

�
e
(Ghuh · τττe−∇u · τττe) · (Ghuhτττe−∇u · τττe)de

] 1
2

in 3D,

(4.67)
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where we interpolate Ghuh along edge e as

(Ghuh)(ξ ) =
k+1

∑
`=1

N(k)
` (ξ )G`

e (4.68)

with N(k)
` (ξ ) being the 1D Lagrangian shape function (of order k) associated with the `

edge node on e, ξ varying from 0 to Le; and G`
e being the recovered values of Ghuh on the

`th point on edge e. In practice, the above integrals can be evaluated using a Gauss-Lobatto

rule of suitable order on each edge.

A recovery-based a posteriori error estimator

In the proceeding subsection, the error evaluations make use of the exact displacement

gradients ∇u, which are typically unknown in practice. Thus, this subsection proposes a

recovery-based a posteriori error estimator, which is based on the reconstructed displace-

ment gradient, to estimate the original skeletal errors (4.63) – (4.64) without knowing ∇u.

The main idea behind this estimator is to replace the exact displacement gradient with the

reconstructed one in the original error evaluations (4.63) – (4.64). Provided that the recon-

structed displacement gradient is more accurate than the original ones, as expected, doing

so should yield a reasonable estimation of the original error [148], [153].

The error estimator, denoted by ε̃s
1,u, makes use of the reconstructed displacement gra-

dient Ghuh on the mesh skeleton. Over a generic element E, we can express the estimated

error using as

ε̃
s
1,u|E =

{
hF ∑

e∈∂F

�
e
(Ghuh · τττe−∇uh · τττe) · (Ghuhτττe−∇uh · τττe)de

} 1
2

in 2D, (4.69)
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and

ε̃
s
1,u|E =

{
hP ∑

F∈∂P
hF ∑

e∈∂F

�
e
(Ghuh · τττe−∇u · τττe) · (Ghuhτττe−∇u · τττe)de

} 1
2

in 3D,

(4.70)

where the Ghuu and ∇u · τττe) are interpolated using (4.68) and (4.65) on every edge e of

element E, respectively. In practice, the above integrals can be evaluated exactly using

Gauss-Lobatto rules of at least order 2k on edge e. We note that the above local error

estimations are useful in the adaptive refinement and coarsening analysis to pinpoint which

regions to refine and which regions to coarsen [156]. Once the estimated error is known

for each element, the estimated global error is computed by summing the local error from

every element as:

ε̃
s
1,u =

[
∑

E∈Ωh

(
ε̃

s
1,u|E

)2

] 1
2

. (4.71)

In the subsequent numerical studies, we will verify the skeletal errors by comparing

them with the standard error measures. To that end, we also consider the more standard L2

errors of both the original and recovered displacement gradients given as

ε1,u =

[
∑

E∈Ωh

�
E
(∇u−∇uh) · (∇u−∇uh)dX

] 1
2

, (4.72)

and

ε1,ũ =

[
∑

E∈Ωh

�
E
(∇u−Ghuh) · (∇u−Ghuh)dX

] 1
2

, (4.73)

respectively. In the L2 errors above, both the original displacement uh and recovered dis-

placement gradients Ghuh are interpolated using the barycentric coordinates – we use the

mean value shape functions in 2D [97] and Wachspress shape functions in 3D [30] for

the linear VEM, and the serendipity shape functions constructed from mean value shape

functions based on [79] for the quadratic VEM. The Wachspress shape functions are only

applicable to convex elements, whereas the mean value shape functions, as well as the

168



serendipity shape functions constructed from them, are applicable to both convex and non-

convex elements [22]. Regarding numerical integration, all the integrals are evaluated using

a fifth order quadrature rule.

To conclude this section, we summarize in Table 4.1 the notation of all the error mea-

sures we have presented. The subsequent numerical examples will follow those notations.

Table 4.1: Summary of the notations of the errors used in the numerical studies.
skeletal norm L2 norm

Err. of ∇uh εs
1,u (by Eqs. (4.63)–(4.64)) ε1,u (by Eq. (4.72))

Err. of Ghuh εs
1,ũ (by Eqs. (4.66)–(4.67)) ε1,ũ (by Eqs. (4.73))

Estimated err. of ∇uh ε̃s
1,u (by Eqs. (4.69)–(4.70)) n/a

4.5 Some theoretical estimates

In the present section we develop some theoretical estimates for the post-processed error

εs
1,ũ in (4.66). Note that the present derivations should not be intended as a proof, as they

hinge on some reasonable but not demonstrated assumption. Instead, the purpose of this

section is to give some theoretical backbone to our construction.

In the following, we will use the standard notation for Lp spaces and Hk Sobolev spaces.

In order to keep the derivations simple, we will restrict our attention to the case of k = 1

in 2D. The generalization to 3D follows almost identically while higher order cases can be

tackled following the same lines. In the following, we assume that the (family of) meshes

are shape regular, in the sense [37] that every element is star shaped with respect to a ball of

the uniformly comparable radius and every edge has a length that is uniformly comparable

to the diameter of the parent elements. Under such assumptions, one can derive that (see

for instance [166]) the original error (4.63) satisfies

ε
s
1,u ≤Ch‖u‖H2(Ω), (4.74)
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where here and in the sequel C will denote a generic constant, possibly different at each

occurrence, independent of the mesh size h.

For any sufficiently regular tensor valued function v, let us now define the operator ||| · |||

as

|||v|||2 = ∑
F∈Ωh

|||v|||2F where |||v|||2F = hF ∑
e∈∂F

�
e
||v · τττe||2de. (4.75)

Note that, by definition, the error in the skeleton norm is given by:

ε
s
1,ũ = |||∇u−Ghuh|||. (4.76)

We recall that, given any element F ∈ Ωh, each of its vertices Xi (with i running in some

integer set I ) is associated with a patch of elements ωi (see Section 4.4.2). Moreover, we

here denote by ωF = ∪i∈I ωi the union of such patches. Note that the operator Gh depends

only on the pointwise values of uh at the vertices of Ωh, and thus it can be obviously

extended to any function space for which pointwise values make sense, e.g. [H2(Ω)]2.

Given any w ∈ [H2(Ω)]2 and any vertex Xi of the mesh, we denote by pωi
w ∈ [P2(ωi)]

2

the polynomial built by our least square procedure with input values given by evaluating

w at the vertices of ωi. The VEM function Ghw at Xi is then computed, as usual, as

Ghw(Xi) = ∇pωi
w (Xi). We moreover observe that our post-processing construction is P2

preserving, in the sense that for all F ∈Ωh it holds

∇p|F = Ghp|F ∀p ∈ [P2(ωF)]
2. (4.77)

We start by showing a stability result for the operator Gh. In order to do so, we need the

following reasonable assumption (see Remark 4.5.1):

(A1) There exists a constant C? such that, for all w ∈ [H2(Ω)]2, F ∈Ωh and all vertices Xi

of F , it holds

‖pωi
w ‖L∞(F) ≤C? max

X j vertex in ω i
‖w(X j)‖.
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Let us now take any w ∈ [H2(Ω)]2. Given the definition of ||| · |||F , first by a Holder inequal-

ity and then recalling that Ghw is linear on edges, we have

|||Ghw|||2F ≤C h2
F‖Ghw‖2

L∞(∂F)≤C h2
F max

Xi vertex of F
‖Ghw(Xi)‖2 =C h2

F max
Xi vertex of F

‖∇pωi
w (Xi)‖2,

where the last identity follows from the definition of Gh. From the above bound, first by

a trivial inequality, then with a standard inverse estimate for polynomials (on star-shaped

domains), we get

|||Ghw|||2F ≤C h2
F max

Xi vertex of F
‖∇pωi

w ‖2
L∞(F) ≤C max

Xi vertex of F
‖pωi

w ‖2
L∞(F).

We now conclude our stability estimate for Gh by applying assumption (A1)

|||Ghw|||2F ≤C max
Xi vertex of F

(
max

X j vertex in ω i
‖w(X j)‖2

)
=C max

X j vertex in ωF
‖w(X j)‖2 (4.78)

Let now a generic F ∈ Ωh. Using the P2 preserving property (4.77), adding/subtracting

terms and the triangle inequality easily yield

|||∇u−Ghuh|||F ≤ |||∇(u−p)|||F + |||Gh(p−u)|||F + |||Gh(u−uh)|||F =: T1+T2+T3, (4.79)

for any polynomial p ∈ [P2(ωF)]
2, with the obvious meaning of the three terms T1,T2,T3.

The first term is bounded by a standard scaled trace inequality and approximation results

for polynomials on star-shaped domains, yielding

T1 ≤C‖∇(u−p)‖L2(F)+hF |∇(u−p)|H1(F) ≤Ch2
F |u|H3(F).

The second term is bounded using (4.78) and again standard approximation results for

polynomials

T2 ≤ max
X j vertex in ωF

‖p(X j)−u(X j)‖ ≤Ch2
ωF
|u|H3(ωF )

,
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while again (4.78) yields

T3 ≤C max
X j vertex in ωF

‖u(X j)−uh(X j)‖2.

Now, by definition of ||| · ||| and bounding all diameters with h, it is easy to check that

equation (4.79) and the bounds above for T1,T2,T3 finally give

ε
s
1,ũ = |||∇u−Ghuh||| ≤Ch2|u|H3(Ω)+C

(
∑

F∈Ωh

max
X j vertex in ωF

‖u(X j)−uh(X j)‖2
)1/2

.

(4.80)

The above bound is to be compared with (4.74). It shows that the accuracy of the post-

processed gradient Ghuh depends directly on the values of u− uh at the vertices of the

mesh. Therefore if such values are particularly accurate (as is typically the case), the post-

processed gradient will strongly benefit. In the extremely positive case that uh = uI (that

is the interpolant of u) the second term vanishes and one obtains an O(h2) convergence

rate. The same happens in the presence of some super-convergence phenomena of uh to u

at vertices. In many situations, Ghuh will be more accurate than ∇uh but still of the same

order in h.

One can get a better understanding of the last term by assuming that all elements in the

mesh have a comparable diameter (which is just to make the argument simple). Indeed, in

such case, the number of elements in the mesh behaves as h−2 and thus we get immediately

∑
F∈Ωh

max
X j vertex in ωF

‖u(X j)−uh(X j)‖2 ≤Ch−2 max
X j vertex in Ωh

‖u(X j)−uh(X j)‖2.

Therefore the last term in (4.80) (considering also the square root) behaves as

h−1 max
X j vertex in Ωh

‖u(X j)−uh(X j)‖,

which (by standard approximation estimates for (u−uh) in the L∞ norm) is guaranteed to
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be O(h) for regular enough u, but could be far better in the presence of a super convergence

property at vertices.

Remark 4.5.1 Assumption (A1) represents the (uniform in the mesh family) stability of

the polynomial least-square procedure, and depends on the position of the vertices in each

patch ωi. Roughly, it is sufficient that the set of vertices in each patch ωi uniquely deter-

mines a least square P2 interpolant (that is, any P2 polynomial that takes value zero at all

such points must vanish) and “stays far from” degenerate cases in which such condition is

lost. Proving such an assumption would be possible focusing on given element patterns.

4.6 Numerical examples

In this section, both 2D and 3D numerical studies are presented to show the accuracy

and effectiveness of the recovered displacement gradient and the (both local and global)

recovery-based a posteriori error estimators. Various types of displacement solutions are

considered here, including ones with both small and large (but finite) gradients, and addi-

tional one with singularity. Throughout, we set Young’s modulus and Poisson’s ratio of the

solids to be E0 = 10 and ν = 0.35, respectively, and consider plane strain condition for the

2D examples. Consistent units are adopted throughout the chapter.

4.6.1 Numerical investigation in a 2D unit square

In the 2D numerical studies, we test the proposed scheme on a unit square domain Ω =

(0,1)2, as depicted in Fig. 4.4 (a). We assume two exact displacement fields. The first

displacement field u = [ux,uy]
T is given by

ux = sin(X)eY and uy = Y 2−2X , (4.81)
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which is referred to as the “smooth solution” due to its smoothness and regularity. The

second displacement field u takes the form of [57]

ux = 16X(1−X)Y (1−Y )atan(
25X−100Y +50

4
) and uy = 2X2 +4Y. (4.82)

We refer to this displacement field as the “steep solution” as its X component has a sharp

(but finite) gradient along the line X−4Y +2= 0. In the numerical studies, the assumed ex-

act displacements u are applied on the entire boundary of the unit square ∂Ω. We consider

various types of polygonal discretizations: random Voronoi, centroid Voronoi Tessellation

(CVT), and structured hexagonal meshes, as shown in Figs. 4.4 (b)–(d), respectively. We

test both linear and quadratic VEMs.

1

1

(a) (b) (c) (d)

Ω

Figure 4.4: (a) Problem setup and dimensions of the unit square. (b) An example of the
random Voronoi mesh. (c) An example of the CVT mesh. (d) An example of the structured
hexagonal mesh.

Linear VEM (k = 1)

Let us first verify the accuracy of the skeletal error by comparing it with the standard error

measures. To that end, we plot in Figs. 4.5 (a)–(f) the convergence of the skeletal errors of

both the original and reconstructed displacement gradients (solid lines) for the smooth and

steep solutions. In the plots, those skeletal errors are compared with the standard L2 error

of the original and reconstructed displacement gradients (dashed lines). It is immediate

from the comparisons that, for both the smooth and steep solutions, the proposed skeletal
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Figure 4.5: Comparing the convergence behaviors between the skeletal errors (εs
1,u and

εs
1,ũ) and the standard ones (ε1,u and ε1,ũ) for 2D linear VEM. Smooth solution: (a) random

Voronoi meshes, (b) CVT meshes, and (c) structured hexagonal meshes. Steep solution:
(d) random Voronoi meshes, (e) CVT meshes, and (f) structured hexagonal meshes.

norm is able to capture the correct convergence behavior of the L2 error of both the original

and reconstructed displacement gradients. Thus, for the remainder of this study, only the

skeletal errors will be utilized.

We then study the accuracy of the recovered displacement gradient Ghuh. To do so, we

depict in Figs. 4.6 (a)–(f) the comparisons between the (global) errors of Ghuh and those

of the original displacement gradient ∇uh for the smooth and steep solutions. In the case

of the smooth solution, we observe that Ghuh is far more accurate than ∇uh for all families

of meshes considered. Only for the structured hexagonal meshes, Ghuh exhibits supercon-

vergent behavior – the convergence rate being roughly 1.5 as compared to 1 for those of

the original displacement gradient. On the other hand, in case of the steep solution, Ghuh

exhibits superconverent behaviors for all families of meshes – its errors start to converge at

a higher convergence rate (i.e. rate of 2) with respect to the original displacement gradient
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Figure 4.6: Comparing the accuracy between the original errors (εs
1,u) and the recovered

ones (εs
1,ũ) for 2D linear VEM. The recovered errors include ones obtained from the pro-

posed scheme and an SPR-type scheme introduced in Appendix C. Smooth solution: (a)
random Voronoi meshes, (b) CVT meshes, and (c) structured hexagonal meshes. Steep so-
lution: (d) random Voronoi meshes, (e) CVT meshes, and (f) structured hexagonal meshes.

(i.e. rate of 1) as the meshes are refined. Finally, we also perform an SPR-type recovery

scheme (see the detailed description in Appendix C) and plot the errors of the reconstructed

Ghuh in Figs. 4.6 (a)–(f). By comparing the accuracy of Ghuh obtained from the proposed

recovery scheme and the SPR-type recovery scheme, we conclude that the proposed re-

covery scheme seems to yield more accurate reconstructions than the SPR-type recovery

schemes.

Lastly, the accuracy of both global and local error estimators is studied. In Figs. 4.7

(a)–(f), we plot the convergence of the global error estimator computed from Ghuh for the

smooth and steep solutions on all families of meshes. For the local error estimators, we

show in Figs. 4.8–4.10 fringe plots of the element-wise error estimators and exact errors

for random Voronoi, CVT and structured hexagonal meshes, respectively. The compar-
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Figure 4.7: Comparing the accuracy between the original errors (εs
1,u) and the estimated

ones (ε̃s
1,u) for 2D linear VEM. The estimated errors include ones obtained from the pro-

posed scheme and an SPR-type scheme introduced in Appendix C. Smooth solution: (a)
random Voronoi meshes, (b) CVT meshes, and (c) structured hexagonal meshes. Steep so-
lution: (d) random Voronoi meshes, (e) CVT meshes, and (f) structured hexagonal meshes.

isons demonstrate that the error estimator introduced in this work is effective for various

polygonal discretizations, and is capable of accurately estimating both the global and lo-

cal displacement errors, especially for the smooth solution case. For the steep solution,

although the error estimators are less accurate on coarse meshes, they quickly converge to

the exact errors as the meshes are refined.

Quadratic VEM (k = 2)

For quadratic VEM, a similar set of numerical tests are conducted for both smooth and

steep solutions on the three families of meshes shown in Fig. 4.4 (b)–(d). To begin with,

the use of skeletal errors is verified by comparing them with the standard L2 errors of the
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Figure 4.8: Fringe plots of the element-level exact errors and estimated ones for 2D linear
VEM on random Voronoi meshes.
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displacement gradients. Figs. 4.11 (a)–(f) plot the skeletal errors of both original and

the recovered displacement gradients and compare their convergence to the corresponding

L2 errors. From the comparisons, we observe that, for both steep and steep solutions,

the skeletal errors of both the original and recovered displacement gradients agree well

(in terms of rate and trend of convergence) with the standard L2 errors. This observation

provides us confidence in using the skeletal error in the following tests.

Furthermore, we plot in Figs. 4.12 (a)–(f) errors of the recovered displacement gra-

dients obtained with and without the internal DOFs (see Remark 4.4.1) as functions of

average mesh size h. The errors of the original displacement gradient are also included in

the plot as references. We can see from the figures that neglecting the internal DOFs in

the recovery scheme almost does not affect the accuracy of recovered displacement gra-

dient. Thus, for the sake of computational efficiency, we conclude that it is favorable to

neglect the internal DOFs in the recovery scheme. Additionally, similar to the observations

in linear VEM, the recovered displacement gradients are more accurate than the original

ones and, in case of the steep solution, they exhibit super-convergent behaviors – the rate
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Figure 4.11: Comparing the convergence behaviors between the skeletal errors (εs
1,u and

εs
1,ũ) and the more standard ones (ε1,u and ε1,ũ) for 2D quadratic VEM. Smooth solu-

tion: (a) random Voronoi meshes, (b) CVT meshes, and (c) structured hexagonal meshes.
Steep solution: (d) random Voronoi meshes, (e) CVT meshes, and (f) structured hexagonal
meshes.

of convergence is roughly 3.

Finally, we investigate the accuracy of both global and local error estimators by com-

paring them with the exact errors in cases both of the smooth and steep solutions. For the

global error estimator, we depict in Figs. 4.13 (a)–(f) the convergence of both the estimated

and exact errors as the meshes are refined and, for the local error estimator, Figs. 4.14–4.16

show the fringe plots of the element-wise distributions of the estimated and exact errors for

random Voronoi, CVT and hexagonal meshes, respectively. It is apparent from both com-

parisons that the global and local error estimators can effectively and accurately predict the

exact errors and, as the meshes are refined, the predictions become more and more accu-

rate. Moreover, aligned with previous conclusions, the recovered displacement gradients

obtained without considering the internal DOFs yield almost identical estimated errors to
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Figure 4.12: Comparing the accuracy between the original errors (εs
1,u) and the recov-

ered ones (εs
1,ũ) for 2D quadratic VEM. The recovered errors include ones obtained from

the proposed scheme and an SPR-type scheme introduced in Appendix C. Smooth solu-
tion: (a) random Voronoi meshes, (b) CVT meshes, and (c) structured hexagonal meshes.
Steep solution: (d) random Voronoi meshes, (e) CVT meshes, and (f) structured hexagonal
meshes.

the ones computed including the internal DOFs, which confirms again that we can neglect

the internal DOFs in the recovery procedure (see Remark 4.4.1 ).

4.6.2 Numerical investigation in a 2D “L”-shaped domain

In this numerical example, we consider an L-shaped domain, whose dimensions are given

in Fig. 4.17 (a). The domain is clamped on its top edge and subjected to a constant shear

τ = 1 pointing downward on its right edge. In this subsection, we will consider three

families of polygonal meshes, i.e. random Voronoi, CVT and concave octagonal meshes,

as shown in Figs. 4.17 (b)–(d), respectively. We will then assess the performance of the

proposed gradient recover scheme and the global and local error estimators under uniform
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Figure 4.13: Comparing the accuracy between the original errors (εs
1,u) and the estimated

ones (ε̃s
1,u) for 2D quadratic VEM. The estimated errors include ones obtained from the pro-

posed scheme and an SPR-type scheme introduced in Appendix C. Smooth solution: (a)
random Voronoi meshes, (b) CVT meshes, and (c) structured hexagonal meshes. Steep so-
lution: (d) random Voronoi meshes, (e) CVT meshes, and (f) structured hexagonal meshes.

mesh refinement. In Section 7, we will restrict our attention to a CVT mesh and evaluate

the effectiveness of the proposed error estimator under various adaptive mesh refinement

strategies. For this boundary value problem, singularity exists in the displacement and

stress solutions at the reentrant corner of the domain. Thus, one goal of this example is to

showcase that the proposed error estimator is able to capture this singularity in the solution

and can effectively drive the adaptive mesh refinement.

We first study the accuracy of the proposed gradient recovery scheme and the error es-

timators under uniform mesh refinement. Because we do not know the exact solution for

this boundary value problem, only the estimated errors when linear (k = 1) and quadratic

(k = 2) virtual elements are considered. For quadratic VEM, the gradient recovery is con-
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Figure 4.14: Fringes plots of the element-level exact errors and estimated ones for 2D
quadratic VEM on random Voronoi meshes.

ducted excluding the internal DOFs. In Fig. 4.18 (a)–(c), we plot the convergence of

estimated global errors for both linear and quadratic virtual elements on Random Voronoi,

CVT, and octagonal meshes, respectively. We can see that, for all families of meshes, the

estimated errors all converge at a degenerated rate of 0.5 irrespective of the order of the

virtual element. This behavior agrees with theoretical results in the literature [167], in-

dicating the effectiveness of the proposed error estimators. Moreover, we also depict the

distributions of element-wise error estimators for linear and quadratic VEMs in fringe plots

4.19 and 4.20, respectively. It is immediate to appreciate that the proposed error estimators

are able to capture the singularity of the displacement at the reentrant corner for both linear

and quadratic meshes.

4.6.3 Numerical investigation in a 3D unit cube

In the last example, we present a 3D study on a unit cube Ω = (0,1)3, as depicted in Fig.

4.21. The exact displacement solution u = [ux,uy,uz]
T is given by

ux = sin(X)eY+2Z, uy = cosZ and uz = X3−2Y 2, (4.83)
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Figure 4.15: Fringes plots of the element-level exact errors and estimated ones for 2D linear
VEM on CVT meshes.

which is applied to the entire boundary of the unit cube ∂Ω. In this study, we consider var-

ious types of polyhedral discretizations: truncated octahedral, CVT, distorted hexahedral,

and extruded octagonal meshes, as shown in Figs. 4.21 (b)–(e), respectively. Only linear

virtual elements are considered here.

Similar to the 2D studies, we first verify the use of skeletal errors in 3D by comparing

them with the standard L2 errors of the displacement gradients. Figures 4.22 (a)–(d) show

the comparison of these two types of errors for both original and recovered displacements

on truncated octahedral, CVT, distorted hexahedral, and extruded octagonal meshes, re-

spectively. The comparisons indicate that, for these mesh types, the skeletal errors agree

well with the standard L2 errors of the displacement gradients. Moreover, Figs. 4.22 (a)–

(d) compare the accuracy between the original and recovered displacement gradients and

showcase that, for all types of meshes, the recovered displacement gradients are more ac-

curate than the original ones. It is also interesting to note that, for the extruded octagonal

meshes, the recovered displacement gradient exhibits superconvergence – the rate of con-

verge is 2. In addition, comparing with the SPR-type scheme introduced in Appendix C,

the proposed recovery scheme consistently gives more accurate recovered displacement

gradients on all types of meshes.
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Figure 4.16: Fringes plots of the element-level exact errors and estimated ones for 2D linear
VEM on hexagonal meshes.
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Figure 4.17: (a) Dimensions, load and boundary conditions of the L-shape beam example.
(b) An example of the random Voronoi mesh. (c) An example of the CVT mesh. (d) An
example of the concave octagonal mesh.

Lastly, we investigate the accuracy of error estimators by comparing them with the

exact errors. To that end, Figs. 4.23 (a)–(d) show the convergence of both the estimated

and exact global errors under mesh refinements for the truncated octahedral, CVT, distorted

hexahedral, and extruded octagonal meshes, respectively. For the local error estimator, on

the other hand, Figs. 4.24–4.27 show the fringe plots of the element-wise estimated and

exact errors for those meshes. From the comparisons, we conclude that the error estimators

(using both the proposed recovery scheme and the SPR-type scheme) can accurately predict

the exact errors on both global and local levels.
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Figure 4.18: Convergence of the estimated errors as functions of the average mesh size h
for linear and quadratic VEMs on (a) random Voronoi meshes, (b) CVT meshes, and (c)
concave octagonal meshes.

Figure 4.19: Fringe plots of element-level estimated errors for linear VEM on random
Voronoi meshes (left column), CVT meshes (middle column) and concave octagonal
meshes (right column).
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Figure 4.20: Fringe plots of element-level estimated errors for quadratic VEM on ran-
dom Voronoi meshes (left column), CVT meshes (middle column) and concave octagonal
meshes (right column).

4.7 On the use of the error estimators for adaptive mesh refinement

We study the effectiveness of the gradient recovery scheme and error estimators under

adaptive mesh refinements. In this section, we restrict our attention to the CVT mesh and

consider both linear and quadratic virtual elements. We consider the L-shaped problem

in Section 6.2 and take the initial mesh to be the CVT one shown in Fig. 4.17 (c) with

100 elements. We then progressively refine this CVT mesh following a solve → esti-

mate→ mark→ refine procedure: once the estimated error for each element is computed

based on the VEM solution, we first mark those elements whose estimated errors are above

θ maxE∈Ωh(ε̃
s
1,u|E), where θ is a user-defined threshold set to be 0.2 throughout this exam-

ple, and then perform refinement on those marked elements. In order to demonstrate the

effectiveness of the proposed gradient recovery scheme and error estimators for a wide va-
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Figure 4.21: (a) Problem setup and dimensions of the unit cube. (b) An example of the
truncated octahedral meshes. (c) An example of the CVT meshes. (d) An example of the
distorted hexahedral meshes. (e) An example of the extruded octagonal meshes.

riety of adaptive refinement strategies, we consider the following three adaptive refinement

strategies in the literature:

Strategy 1: In this strategy, each marked element is bisected through its centroid

along the eigenvector corresponding to the smaller eigenvalue of the covariance ma-

trix Mcov [168]. For element E, the covariance matrix Mcov(E) is defined as

Mcov(E) =
1
|E|

�
E
(X−XE

c ) · (X−XE
c )dX, (4.84)

where XE
c is the centroid of E. A schematic illustration of this strategy is shown in

Fig. 4.28 (b).

Strategy 2: In this strategy, each marked element with n vertices is subdivided into n

quadrilateral elements by connecting the midpoint of each edge to its centroid [58],

[169]. A schematic illustration of this strategy is shown in Fig. 4.28 (c).
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Figure 4.22: Comparing the convergence behaviors between the skeletal errors (εs
1,u and

εs
1,ũ) and the standard ones (ε1,u and ε1,ũ) for 3D linear VEM on: (a) truncated octahe-

dral meshes, (b) CVT meshes, (c) distorted hexahedral meshes, and (d) extruded octagonal
meshes. Because the extruded octagonal meshes contain concave elements, the 3D Wach-
spress shape functions are not applicable [30]. Thus, we do not consider the standard error
for the extruded octagonal meshes.
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Figure 4.23: Comparing the accuracy between the original errors (εs
1,u) and the estimated

ones (ε̃s
1,u) for 3D linear VEM on: (a) truncated octahedral meshes, (b) CVT meshes, (c)

distorted hexahedral meshes, and (d) extruded octagonal meshes. The estimated errors
include ones obtained from the proposed scheme and an SPR-type scheme introduced in
Appendix C.
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Figure 4.24: Fringes plots of the element-level exact errors and estimated ones for 3D linear
VEM on truncated octahedral meshes.

Figure 4.25: Fringes plots of the element-level exact errors and estimated ones for 3D linear
VEM on CVT meshes.
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Figure 4.26: Fringes plots of the element-level exact errors and estimated ones for 3D linear
VEM on distorted hexahedral meshes.

Figure 4.27: Fringes plots of the element-level exact errors and estimated ones for 3D linear
VEM on extruded octagonal meshes.
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Strategy 3: In this strategy, each marked element with n vertices is subdivided into

n+1 CVT elements using Lloyd’s algorithm. The initial seeds of Lloyd’s algorithm

are placed at the centroid this element as well as the midpoints of the lines connecting

the centroid and the vertices [66], [170]. A schematic illustration of this strategy is

shown in Fig. 4.28 (d).

We note that the above adaptive refinement strategies will naturally introduce hanging

nodes to the elements adjacent to the ones that are refined. In our implementation of both

Strategies 2 and 3, in order to save degrees of freedom, those hanging nodes are not re-

garded as regular vertices. For instance, in Strategy 2, let us assume that a quadrilateral

element with one hanging nodes needs to be refined. If the hanging node is considered as

a regular vertex of that element, then the element will be subdivided into five elements.

Instead, our implementation does not consider this hanging node as a regular vertex and,

thus, will split this element into only four elements.

Figures 4.29 (a) and (b) show the convergence of the estimated global errors ε̃u,s as

functions of the total number of nodes with the above-mentioned adaptive mesh refinement

strategies using linear and quadratic virtual elements, respectively. It is observed from both

figures that, unlike the cases of uniform refinement shown in Figs. 4.18 (a)–(c), all the

three adaptive mesh refine strategies driven by the proposed error estimator are able to re-

store the optimal convergence rates of the H1-type displacement error (i.e. 0.5 for linear

and 1 for quadratic VEM) with respect to the total numbers of nodes, demonstrating the

effectiveness as well as the flexibility of the proposed gradient recovery scheme and error

estimator. Moreover, three representative meshes are selected for each strategy at three

similar global error levels and are plotted in Figs. 4.30 and 4.31 for linear and quadratic

VEMs, respectively. We conclude from both figures that all the three adaptive refinement

strategies effectively capture the problematic regions of the domain: the reentrant corner

and the two ends of the clamped top edge. We also observe that, compared to the re-

finements with linear virtual elements, the ones with quadratic virtual elements are more
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localized to those problematic regions because of the higher potential local accuracy in the

approximation. Finally, we comment that, for both linear and quadratic VEMs, Strategy 2

seems to produce the most accurate result under a similar number of nodes (although this

may be problem-dependent), and Strategy 3 is more aggressive than the other ones in the

sense that it achieves similar levels of global errors using fewer numbers of refinements.

Initial mesh Refinement strategy 1 Refinement strategy 2 Refinement strategy 3

(a) (b) (c) (d)

Figure 4.28: (a) An illustration of an initial CVT mesh with the gray element being marked
for refinement. (b) A schematic illustration of the adaptive refinement strategy 1, where the
marked element is bisected into two elements. (b) A schematic illustration of the adaptive
refinement strategy 2, where the marked element is subdivided into 6 quadrilateral ele-
ments. (d) A schematic illustration of the adaptive refinement strategy 3, where the marked
element tessellated into 7 CVT elements.
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Figure 4.29: Convergence of the estimated errors as functions of the total numbers of nodes
with the three adaptive mesh refinement strategies for (a) linear VEM, and (b) quadratic
VEM.
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4.8 Concluding remarks

This chapter introduces a general recovery-based a posteriori error estimation framework

for lower and higher order VEM on polygonal and polyhedral meshes, and demonstrates

the theory in the context of linear elasticity. Within the error estimation framework, we first

recover a more accurate displacement gradient through least square fitting the displacement

DOFs over each patch in the mesh. Based on the recovered gradient, an error estimator

is obtained by evaluating the difference between the recovered and original displacement

gradients on the skeleton of the mesh. This skeletal error is shown in the numerical studies

to capture the standard L2 norm of the displacement gradient error extremely well. With

thorough numerical studies, the introduced error estimation is shown to be accurate for

both linear and quadratic virtual elements on various polygonal/polyhedral meshes and

with various types of displacement solutions (e.g. smooth ones, ones with sharp gradients,

and ones containing singularities). For linear VEM, the accuracy and effectiveness of the

proposed error estimation framework are further demonstrated by comparing it with an

SPR-type error estimation as outlined in Appendix C. For higher-order VEM, the numerical

studies also suggest that we can neglect the internal displacement DOFs (which are in the

form of function moments over the elements) in the gradient recovery procedure without

sacrificing accuracy. We note that, although being proposed for VEM and linear elasticity

problems, the error estimation framework can also be readily employed for polygonal and

polyhedral FEM and nonlinear elasticity problems.

In terms of future work, we remark that the proposed recovery-based a posteriori error

estimation offers an effective tool for adaptive VEM analysis. Future extensions of this re-

search include developing novel and efficient mesh adaption strategies for VEM on polyg-

onal/polyhedral discretization. Another promising area of research consists of extending

the ideas presented here to nonlinear fracture mechanics problems [171].
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2nd refinement   =0.083s
1, 3rd refinement   =0.065s

1,1st refinement   =0.116s
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Figure 4.30: When linear virtual elements are considered, some representative meshes
using (a) adaptive refinement strategy 1, (b) adaptive refinement strategy 2, and (c) adaptive
refinement strategy 3. The representative meshes are selected so that the three meshes in
each column of this figure have a similar level of estimated global error.
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Quadratic VEM (k=2)
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Figure 4.31: When quadratic virtual elements are considered, some representative meshes
using (a) adaptive refinement strategy 1, (b) adaptive refinement strategy 2, and (c) adaptive
refinement strategy 3. The representative meshes are selected so that the three meshes in
each column of this figure have a similar level of estimated global error.
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CHAPTER 5

VIRTUAL ELEMENT METHOD (VEM)-BASED TOPOLOGY OPTIMIZATION:

AN INTEGRATED FRAMEWORK

We present a Virtual Element Method (VEM)-based topology optimization framework us-

ing polyhedral elements, which allows for easy handling of non-Cartesian design domains

in three dimensions. We take full advantage of the VEM properties by creating a unified ap-

proach in which the VEM is employed in both the structural and optimization phases of the

framework. In the structural problem, the VEM is adopted to solve the three-dimensional

elasticity equation. Compared to the finite element method (FEM), the VEM does not re-

quire numerical integration and is less sensitive to degenerated elements (e.g. ones with

skinny faces or small edges). In the optimization problem, we introduce a continuous ap-

proximation of material densities using VEM basis functions. As compared to the standard

element-wise constant one, the continuous approximation enriches geometrical represen-

tations of structural topologies. Through two numerical examples with exact solutions,

we verify the convergence and accuracy of both the VEM approximations of the displace-

ment and material density fields. We also present several design examples involving non-

Cartesian domains, demonstrating the main features of the proposed VEM-based topology

optimization framework.

5.1 Introduction

Topology optimization is a powerful computational tool to design optimal structures under

given loads and boundary conditions. Since the seminal work of Bendsøe and Kikuchi [61],

the field of topology optimization has experienced tremendous growth and had a major im-

pact in several areas of engineering and technology. For an overview of this field, we refer

the interested readers to textbooks [172]–[174] and review papers [175], [176]. Among var-
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ious topology optimization approaches, the density-based approach is commonly adopted,

in which the geometry is parametrized by a material density function and the displacement

field is approximated by finite elements. Because of its simplicity and efficiency, the choice

of piece-wise constant density parametrization, where each finite element is assigned with

a constant density, is typically employed in conjunction with lower-order Lagrangian-type

displacement approximation. However, this choice of density parametrization suffers from

numerical instabilities such as checkerboard patterns and one node connections [62], [63].

In a general setting, Jog and Haber [177] formulated the topology optimization as a mixed

variational problem and demonstrated how different choices of displacement and density

interpolations affect the appearance of numerical instabilities. Along this direction, differ-

ent choices of displacement and density approximations were investigated. For instance,

Matsui and Terada [178] and Rahmatalla and Swan [179] employed continuous approx-

imations of the density fields interpolated by Lagrangian finite element basis functions.

This approach, sometimes known as Continuous Approximation of Material Distribution

(CAMD), is effective in preventing the checkerboard patterns but may lead to other forms of

numerical instabilities such as “islanding” and “layering” with linear finite elements [179].

Alternatively, Guest et al. [180] introduced nodal design variables and employed a projec-

tion map with an embedded length scale to construct an element-wise constant density field.

Other related efforts also include the use of higher-order displacement approximations [62],

[178], [181], non-conforming elements [182], [183], and approximating density and dis-

placement fields on different discretizations [184], [185]. The multi-resolution topology

optimization approaches (see, e.g. [170], [181], [186], [187]) belong to the last family.

In addition to various types of numerical instabilities, topology optimization is typically

performed on structured meshes (e.g. uniform grids), which may lead to mesh-dependent

solutions [64] and limited ability to discretize complex design domains.

In recent studies, polygonal finite elements have been shown to be effective in sup-

pressing checkerboard patterns and reducing mesh dependency in the solutions of topology
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optimization [17]–[19], [64], [65]. Moreover, as compared to standard FEM uniform grids,

polygonal elements are more versatile in discretizing complex domains. To this effect, a

robust mesh generator, named PolyMesher, able to discretize arbitrary 2D domains with

polygonal elements, has been developed [110]. Other efforts in developing polygonal and

polyhedral meshers also include [188] and [189]. In addition, the geometrical flexibility

of polygonal finite elements also makes them attractive for mesh adaptations in topology

optimization (see, e.g. [66], [67]). However, most of the above-mentioned investigations

are in 2D and efficient extensions to 3D problems possess several challenges.

The first challenge comes from the difficulties of polyhedral FEM [190]. For polyhedral

finite elements, one major difficulty is associated with obtaining the shape functions and

their gradients. Although several shape functions exist in the literature with closed-form ex-

pressions, most of them are limited to certain classes of element geometry. For example, the

Wachspress shape functions only work with strictly convex and simple polyhedra (mean-

ing the collection of faces that include each vertex consists of exactly three faces) [30], and

the Mean Value coordinates are mainly applicable to polyhedra with simplicial faces [31].

Those limitations in the element geometry could potentially affect the accuracy of the poly-

hedral FEM when dealing with degenerated elements, such as the ones with skinny faces or

small edges. Other types of shape functions, such as harmonic [29], [33] and max-entropy

[34], [35], allow for more general polyhedra (e.g. concave ones). However, their values and

gradients at integration points can only be computed numerically, which could be undesir-

able from a computational perspective for large-scale problems. Another difficulty of the

polyhedral FEM is associated with numerical integration [29], [130], [131]. Because there

is no iso-parametric mapping for polyhedral finite elements, numerical integration needs

to be performed in the physical domain. Due to the non-polynomial nature of their shape

functions, efficient yet consistent numerical integration rules are difficult to construct on

general polyhedral finite elements. Ensuring convergence of the numerical solution typi-

cally requires a prohibitively large number of integration points in each element (see [22],
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[68], [107] for some recent work that attempts to overcome this difficulty).

In this work, we also identify another major challenge to use polyhedral meshes in 3D

topology optimization, which is related to the computational efficiency. As mentioned in

the preceding paragraphs, typically topology optimization adopts an element-wise constant

density approximation and a lower-order displacement approximation with the degrees of

freedom (DOFs) located at the vertices of the mesh. As a polyhedral mesh (e.g. Centroidal

Voronoi Tessellation (CVT)) typically contains significantly more vertices than elements,

this typical choice of density and displacement approximations becomes considerably less

computationally economical on polyhedral meshes. In particular, when compared with

uniform grids of a similar number of elements (thus similar numbers of densities and design

variables), we need to solve a much larger structural system in each optimization iteration

if a polyhedral mesh is considered.

The Virtual Element Method (VEM) [37] is a recently proposed approach that has the

potential to overcome the difficulties of the polyhedral FEM. The VEM can be viewed

as a generalization of the FEM and is able to effectively handle arbitrary polygonal and

polyhedral meshes. One main feature of the VEM is that its shape functions are defined

implicitly through a suitable set of Partial Differential Equations (PDEs). Instead of solving

the PDEs for the values of shape functions and their gradients at the integration points, the

VEM constructs a set of projection operators which project the shape functions and their

gradients onto polynomial functions of suitable orders [37], [38]. By construction, these

projections can be exactly computed using only the DOFs of the unknown fields. Another

major feature of the VEM is that it decomposes the weak forms into consistency and stabil-

ity terms, both of which can be directly formed using the projections of the shape functions

and their gradients as well as the DOFs of the unknown fields [37]. As a result, for any

element geometry, the VEM only needs to integrate polynomials (and not non-polynomials

as in the polyhedral FEM). For lower-order VEM, which is the focus of this chapter, no

numerical integration is needed. Because of such attractive features, the VEM has gained
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significant visibility in the computational mechanics community. For instance, the VEM

has been developed for linear elasticity [26], [42], [43], small deformation nonlinear elastic

and inelastic [44]–[47], finite deformation elasticity and elasto-plasticity [39], [53], [54],

[191], plate bending [48]–[51], and damage and fracture problems [192], [193], to name

a few. We also mention that the VEM has been adopted to solve the state equations in

topology optimization on unstructured polygonal [64] and polyhedral [65] meshes as well

as on Escher-based tessellations [40].

In this work, we propose a new VEM-based topology optimization framework on gen-

eral polyhedral discretizations. To address the above-mentioned challenges of efficiently

formulating topology optimization on polyhedral meshes, we adopt the VEM in both struc-

tural and optimization problems. Similarly to [65], we use VEM to solve the elasticity

equation in the structural problem. The capability of VEM in handling arbitrary element

geometry allows us to solve the structural problem more efficiently (i.e. no numerical inte-

gration is needed) and robustly (i.e. with respect to degenerated elements) on polyhedral

meshes. Exploiting the flexibility of VEM in defining local spaces, this work also intro-

duces an enriched continuous approximation of material densities using nodal VEM basis

functions. As compared to the standard element-wise constant density approximation, the

continuous approximation contains a greater number of DOFs for any given polyhedral

mesh and can thus improve the quality of structural topology parameterizations. Moreover,

this work explores various approaches of discretizing complex domains in 3D, including

regular polyhedra-dominated and unstructured polyhedral meshes, and investigate their in-

fluences on the quality and the numerical stability of solutions in the topology optimization.

Several design examples are presented on non-Cartesian domains to demonstrate the main

features of the VEM-based topology optimization framework. To complement the library

of educational codes (e.g. [3], [17], [194]–[198]) in the topology optimization and VEM

literature, the source code for a MATLAB implementation, named PolyTop3D, is devel-

oped accompanying this chapter.
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The remainder of this chapter is organized as follows. Section 2 provides an overview

of the theory and implementation of VEM for 3D linear elasticity problems. Section 3 in-

troduces the proposed VEM-based topology optimization together with a simple numerical

example comparing the performance of the proposed continuous density parametrization

with the standard element-wise constant one. In Section 4, we present a set of design exam-

ples featuring non-Cartesian domains to highlight the main features of the proposed VEM-

based topology optimization framework. Section 5 contains several concluding remarks

and future research directions. In Appendix D, the implementation of the PolyTop3D is

presented and the computational efficiency of the code is demonstrated.

5.2 VEM Basics: theory and implementation

We consider an elastic solid Ω ∈ R3 with its boundary denoted by ∂Ω. The solid is sub-

jected to a prescribed displacement u0 on one portion of the boundary ΓX and a traction

t on the other portion Γt, such that ΓX ∪Γt = ∂Ω and ΓX ∩Γt = /0. In the interior of Ω,

the solid is subjected to a body force f. For a given displacement field u, the linearized

strain tensor εεε(u) is obtained as εεε(u) = 1/2[∇u+(∇u)T ], where ∇ stands for the gradient

operator. The stress tensor is given by the constitutive relationship

σσσ = Cεεε, (5.1)

where C is the elasticity tensor.

The weak form of the elasticity problem consists of finding the displacement u among

the space K of kinematically admissible displacements,

a(u,δu) = `(δu), ∀δu ∈K 0, (5.2)

where δu is the variation of u, K 0 stands for the space of kinematically admissible dis-
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placements that vanish on ΓX, and

a(u,v) =
�

Ω

[Cεεε(u)] : εεε(v)dX `(v) =
�

Ω

f ·vdX+

�
Γt

t ·vdS. (5.3)

5.2.1 Virtual spaces on polygonal and polyhedral elements

For a general polyhedral element P consisting of planar faces, this subsection describes the

construction of the local virtual space V (P) following the technique introduced in [140],

[199]. In this technique, the construction of the virtual space for P depends on the virtual

spaces on the faces of P. Therefore, before introducing the construction of the virtual space

on P, we will first describe the construction of virtual spaces on faces of P. The reason

why we choose this construction is that we find it yields functions which are positive in

the interior and on the faces of P. We also note that, in the literature, there exist different

approaches to construct local virtual spaces on general polyhedral elements. The interested

readers are referred to [26], [39], [140], [162] for further information.

Virtual space on polygons

Here we introduce the definition of the virtual space V (F) on a generic face F of P, which

is assumed to be a planar polygon. The basic idea is to first introduce a preliminary space

denoted by Ṽ (F) as

Ṽ (F) =
{

v ∈ H1(F) : v|e ∈P1(e) ∀e ∈ ∂F, ∆v ∈P0(F)
}
, (5.4)

where e denotes a generic edge of face F and Pk(·) is the polynomial space of order k. For

the preliminary space Ṽ (F), a set of DOFs consists of [37], [140]

• the values of v at vertices of F , (5.5)

• the mean value of v over F , i.e.
1
|F |

�
F

vdX, (5.6)
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where |F | stands for the area of face F .

By identity

2
�

F
vdX =

�
F

vdivXFdX =−
�

F
∇v ·XFdX+

�
∂F

vXF ·nds, (5.7)

we can equivalently replace the DOF (5.6) by the following integral [200]

�
F

∇v ·XFdX, (5.8)

where XF .
= X−XF

c with XF
c being the centroid of face F . In fact, once we know the above

integral, we can compute the mean value of v over F using the DOFs (5.5) and the identity

(5.7).

Having defined the preliminary virtual space Ṽ (F), we can define the formal virtual

space V (F)⊂ Ṽ (F) on face F such that

V (F) =

{
v ∈ H1(F) : v|e ∈P1(e) ∀e ∈ F, ∆v ∈P0(F), and

�
F

∇v ·XFdX = 0
}
.

(5.9)

By definition, we can show that P1 ⊆ V (F) and (5.5) constitutes a complete set of DOFs

of V (F). Using this set of DOFs, we can exactly compute moment of v on F according to

the identity (5.7) as

�
F

vdX =
1
2

�
∂F

vXF ·ndS =
1
2 ∑

e∈∂F

�
e
vXF ·nedS, (5.10)

where ne denotes the outward norm vector of edge e. Noticing that XF ·ne = (X−XF
c ) ·ne

takes constant value for any points on edge e (which is assumed to be straight), we can

simply evaluate it at any point ae on e, i.e. XF ·ne = (ae−XF
c ) ·ne, ∀ae ∈ e.
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Virtual space on polyhedrons

Once we know the virtual space on each face F , we are ready to define the virtual element

space V (P) on P. Following the same concept, we define the final form of the virtual space

V (P) as

V (P) =
{

v ∈ H1(P) : v|F ∈ V (F) ∀F ∈ ∂P, ∆v ∈P0(P),
�

P
∇v ·XPdX = 0

}
, (5.11)

where XP .
= X−XP

c with XP
c being the centroid of P. Similarly to V (F), we can define

the set of DOFs of V (P) as the values of its functions on the vertices of P. Because V (P)

includes the polynomial space P1(P), i.e. P1(P) ⊆ V (P), we can define a projection

operator Π∇
P : V (P)→P1(P) such that for any v ∈ V (P),

�
P

∇(Π∇
P v) ·∇p1dX =

�
P

∇v : ∇p1dX ∀p1 ∈P1(P)

∑
Xv∈P

v(Xv) = ∑
Xv∈P

Π
∇
P v(Xv).

(5.12)

Because both ∇Π∇
P v and ∇p1 are constant vectors, the first condition in (5.12) can be

simplified as

∇(Π∇
P v) =

1
|P|

�
P

∇vdX =
1
|P| ∑

F∈∂P

�
F

vnFdF, (5.13)

where |P| denotes the volume of element P and nF is the (constant) outward unit normal

vector of face F . This condition ensures that the gradient of the projection Π∇
P v equals the

average gradient of v over P. Recalling from the definition of V (F) that, given the value

of v at the vertices of F , we can compute the moment of v over F (see Eq. (5.10)), and

consequently, we can explicitly compute the boundary integral on the right-hand side of

(5.13) using the DOFs of v and geometric information of P. On the other hand, the second

condition in (5.12) determines the constant component of the projection by ensuring that,

when evaluated at the vertices of P, the average value of Π∇
P v is equal to the average value

206



of v. Furthermore, making use of the following identity

3
�

P
vdX =

�
P

vdivXPdX =−
�

P
∇v ·XPdX+

�
∂P

vXP ·ndS, (5.14)

and the definition of V (P), we can express the moment of v over P as

�
P

vdX =
1
3 ∑

F∈∂P

�
F

vXP ·nFdF. (5.15)

Realizing that XP ·nF = (X−XP
c ) ·nF is constant for any points X on planar F , we can

simply evaluate this quantity at any point aF on face F , i.e. XP = (aF −XP
c ) ·nF , ∀aF ∈ F .

Thus, we can compute the moment of v over P exactly as

�
P

vdX =
1
3 ∑

F∈∂P
(XP ·nF)

�
F

vdF, (5.16)

using only the DOFs of v (recalling Eq. (5.10)).

Some implementation details

Consider a polyhedron P consisting of m vertices numbered as X1, ...,Xm and denote Fi as

the set of faces that are connected to the ith vertex. Suppose that a face F ∈Fi ∈ R3 has

mF vertices XF
j , j = 1, ...,mF , we locally renumber those vertices in a counterclockwise

fashion with respect to the outward normal nF which points out of the element. We also

utilize a map GF to denote the relation between the global numbering and local numbering

of the vertices on face F . If the ith vertex of P (under global numbering) is numbered

as the jth vertex of F (under local numbering), we write j = GF(i). Figure 5.1 shows an

illustration of the above notation for a hexahedral element. Following this notation, this

subsection provides the implementational details to construct the virtual space V (P). In

particular, we focus on the procedures of calculating the projection Π∇
P ϕi and the moment

�
P ϕi, where ϕi is the basis function of V (P) associated with the ith vertex.
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Figure 5.1: Illustration of the global and local numbering conventions and the mapping,
GF(i), between them on a regular hexahedral elements.

Based on the definition of projection operator Π∇
P in (5.12), we can express Π∇

P ϕi as

Π
∇
P ϕi = (∇Π

∇
P ϕi) · (X− X̂

P
)+

1
m
, (5.17)

where X̂
P .
= 1/m∑

m
j=1 Xi is the algorithmic mean of the position vectors of the vertices

of P. To compute this projection, we first need to know the moment of ϕi on F, ∀F ∈Fi.

Using relation (5.10) and realizing that ϕi varies linear on ∂F , we can compute the moment

of ϕi on F as

�
F

ϕidF =
1
2 ∑

e∈∂F
(XF ·n)e

�
e
ϕidS

=
1
2 ∑

e∈∂F
(Xi−X f

c ) · (ne
�

e
ϕidS) (evaluate XF = X−XF

c at vertex Xi)

=
1
4
(XGF (i)+1−XGF (i)−1)∧nF · (Xi−X f

c ),

(5.18)

where ∧ stands for the cross product and the convention is used: GF(·)+ 1 = 1 whenever

GF(·) = mF , and GF(·)−1 = mF whenever GF(·) = 1. Substituting the above relation into

(5.13), we can show that

∇Π
∇
P ϕi =

1
|P| ∑

F∈Fi

�
F

ϕi nFdF =
1

4|P| ∑
F∈Fi

(Xi−XF
c )∧ (XGF (i)+1−XGF (i)−1) (5.19)
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and, by (5.17), we arrive at the following expression for Π∇
F ϕi:

Π
∇
P ϕi =

1
4|P| ∑

F∈Fi

(Xi−XF
c )∧ (XGF (i)+1−XGF (i)−1) · (X− X̂

P
)+

1
m
. (5.20)

Moreover, since Π∇
P ϕi ∈P1(P) ⊆ V (P), we can alternatively express Π∇

E ϕi as a linear

combination of the set of basis functions ϕ1, ...,ϕm as

Π
∇
P ϕi =

m

∑
j=1

PP
(i j)ϕ j, (5.21)

where PP
(i j) is the (i, j)th components of a matrix PP ∈ Rm×m of the form

PP
(i j) =

1
4|P| ∑

F∈Fi

(Xi−XF
c )∧ (XGF (i)+1−XGF (i)−1) · (X j− X̂

P
)+

1
m
. (5.22)

In terms of implementation, we form PP using matrix multiplication as follows. We first

define GP ∈ Rm×3 as a matrix collecting the information of ∇Π∇
P ϕi, i = 1, ...,m:

GP =


∂Π∇

P ϕ1
∂X

∂Π∇
P ϕ1

∂Y
∂Π∇

P ϕ1
∂ z

...
...

...
∂Π∇

P ϕm
∂X

∂Π∇
P ϕm

∂Y
∂Π∇

P ϕm
∂ z

 , (5.23)

and compute PP as

PP =


x1− 1

m ∑
m
i=1 xi y1− 1

m ∑
m
i=1 yi z1− 1

m ∑
m
i=1 zi 1

...
...

...
...

xm− 1
m ∑

m
i=1 xi ym− 1

m ∑
m
i=1 yi zm− 1

m ∑
m
i=1 zi 1


[

GP 1
m1
]T

, (5.24)

where 1 ∈ Rm×1 is a column vector with all components being 1.

For later use, we also provide the expression to compute the moment of ϕi over P,
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which, according to expressions (5.16) and (5.18), takes the form

�
P

ϕidX =
1
3 ∑

F∈Fi

(XP ·nF)

�
F

ϕidF

=
1
3 ∑

F∈Fi

[
(Xi−XP

c ) ·nF] �
F

ϕidF (evaluate XP = X−XP
c at vertex Xi)

=
1

12 ∑
F∈Fi

[
(Xi−XP

c ) ·nF][(XGF (i)+1−XGF (i)−1)∧nF · (Xi−XF
c )
]

(using (5.18))

=
1

12 ∑
F∈Fi

(XGF (i)+1−XGF (i)−1)∧ (Xi−XP
c ) · (Xi−XF

c ).

(5.25)

5.2.2 VEM approximations for 3D linear elasticity

Theoretical background

We consider a discretization, denoted by Ωh, of the solid Ω into non-overlapping polyhedra

consisting of planar faces, where h denotes the average element size. We denote Γt
h and

ΓX
h as the portions of the mesh boundary where the traction and displacement boundary

conditions are applied, respectively. We define the discrete global displacement space Kh⊂

K as

Kh
.
=
{

vh ∈K : vh|P ∈ [V (P)]3
}
. (5.26)

Over each element P, the local displacement v = [vx,vy,vz]
T belongs to the vectorial space

[V (P)]3, having three displacement DOFs for each vertex of P. In the following discussion,

we define the projection operator for vector fields ΠΠΠ
∇
P : [V (P)]3→ [P1(P)]3 as the action

of Π∇
P on every component of the vector field, e.g., ΠΠΠ

∇
P v = [Π∇

P vx,Π
∇
P vy,Π

∇
P vz]

T .

Similarly to Chapter 4, the element-level discrete bilinear form is decomposed into

the consistency term and the stability term, and they are responsible for the satisfaction

of the two key conditions, namely consistency and stability, respectively, to ensure the

convergence of the VEM approximation [37]. In the stability term, we define the bilinear
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term Sh,P(·, ·) and parameter αP as:

Sh,P(uh,vh) = hP ∑
Xv∈P

uh(Xv) ·vh(Xv) and αP = traceC=Ci ji j (in indical notation),

(5.27)

where hP
.
= |P|1/3 represents the size of element P and Xv stands for the vertices that belong

to P. This gives the final form of the element-level discrete bilinear form as

aP
h (uh,vh) = |P|εεε

(
ΠΠΠ

∇
P uh) : C : εεε

(
ΠΠΠ

∇
P vh
))

+αPSh,P

(
uh−ΠΠΠ

∇
P uh,vh−ΠΠΠ

∇
P vh

)
. (5.28)

On the other hand, we define the discrete loading term `h(vh) as [39]

`h(vh) = ∑
F∈Γt

h

|F |t(XF
c )(ΠΠΠ

∇
F vh)(XF

c )+ ∑
P∈Ωh

F(XP
c )(ΠΠΠ

∇
E vh)(XP

c ), (5.29)

where ΠΠΠ
∇
F vh is the projection of vh|F onto [P1(F)]3 defined in the same way as ΠΠΠ

∇
P vh;

and t(XF
c ) and F(XP

c ) are the values of traction and body forces evaluated at X = XF
c and

X = XP
c , respectively (we recall that XF

c and XP
c are the centroids of face F and element P,

respectively). The above approximation essentially utilizes one-point rules on face F and

element P, both of which are exact for integrating any linear function.

We are now ready to state the final form of the VEM approximation for 3D linear

elasticity problems, which consists of finding uh ∈Kh such that

ah(uh,δuh) = ∑
P

aP
h (uh,δuh) = `h(δuh) ∀δuh ∈K 0

h , (5.30)

where K 0
h is a subspace of Kh with functions that vanish on ΓX

h .
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Some implementation details

For a given element P, we consider a set of basis functions, ϕϕϕ1, ...,ϕϕϕ3m, for the local dis-

placement space [V (P)]3 of the form

ϕϕϕ3i−2 = [ϕi,0,0]T , ϕϕϕ3i−1 = [0,ϕi,0]T , ϕϕϕ3i = [0,0,ϕi]
T , i = 1, ...,m (5.31)

where we recall ϕ1, ...,ϕm is the set of basis functions for V (P). With the set of basis

functions, any displacement field v = [vx,vy,vz]
T ∈ [V (P)]3 can be interpolated using its

DOFs (the values at the vertices) as

v =
m

∑
i=1

[
ϕϕϕ3i−2vx(Xi)+ϕϕϕ3i−1vy(Xi)+ϕϕϕ3ivz(Xi)

]
. (5.32)

Moreover, by definition, the projection ΠΠΠ
∇
P ϕϕϕ j, j = 1, ...,3m is given by:

ΠΠΠ
∇
P ϕϕϕ3i−2 = [Π∇

P ϕi,0,0]T , ΠΠΠ
∇
P ϕϕϕ3i−1 = [0,Π∇

P ϕi,0]T , ΠΠΠ
∇
P ϕϕϕ3i = [0,0,Π∇

P ϕi]
T , i= 1, ...,m.

(5.33)

According to (5.28), we evaluate the ( j,k)th component of the element stiffness matrix

kP ∈ R3m×3m as

kP
( jk) = aP

h (ϕϕϕ j,ϕϕϕk) = |P|εεε(ΠΠΠ∇
P ϕϕϕ j) : C : εεε(ΠΠΠ∇

P ϕϕϕk)+αPSP(ϕϕϕ j−ΠΠΠ
∇
P ϕϕϕ j,ϕϕϕk−ΠΠΠ

∇
P ϕϕϕk).

(5.34)
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More specifically, we can define matrices BP ∈ R6×3m and D ∈ R6×6 of the form

BP =



∂Π∇
P ϕ1

∂X 0 0 . . .
∂Π∇

P ϕm
∂X 0 0

0 ∂Π∇
P ϕ1

∂Y 0 . . . 0 ∂Π∇
P ϕm

∂Y 0

0 0 ∂Π∇
P ϕ1

∂ z . . . 0 0∂Π∇
P ϕm

∂ z
∂Π∇

P ϕ1
∂Y

∂Π∇
P ϕ1

∂X 0 . . .
∂Π∇

P ϕm
∂Y

∂Π∇
P ϕm

∂X 0

0 ∂Π∇
P ϕ1

∂ z
∂Π∇

P ϕ1
∂Y . . . 0 ∂Π∇

P ϕm
∂ z

∂Π∇
P ϕm

∂Y
∂Π∇

P ϕ1
∂ z 0 ∂Π∇

P ϕ1
∂X . . .

∂Π∇
P ϕm

∂ z 0 ∂Π∇
P ϕm

∂X


(5.35)

D =



C1111 C1122 C1133 C1112 C1123 C1113

C2222 C2233 C2212 C2223 C2213

C3333 C3312 C3323 C3313

C1212 C1223 C1213

symm. C2323 C2313

C1313


, (5.36)

and rewrite the first term of the above equation in matrix form as

|P|εεε(ΠΠΠ∇
P ϕϕϕ j) : C : εεε(ΠΠΠ∇

P ϕϕϕk) = |P|(BP)T DBP. (5.37)

For the second term of (5.34), we can express it in matrix notation as

αPSh,P(ϕϕϕ j−Π
∇
P ϕϕϕ j,ϕϕϕk−Π

∇
P ϕϕϕk) = αP

(
I−SP)T (I−SP) , (5.38)
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where SP ∈ R3m×3m is given by

SP =



PP
(11) 0 0 . . . PP

(1m) 0 0

0 PP
(11) 0 . . . 0 PP

(1m) 0

0 0 PP
(11) . . . 0 0 PP

(1m)

...
...

... . . . ...
...

...

PP
(m1) 0 0 . . . PP

(mm) 0 0

0 PP
(m1) 0 . . . 0 PP

(mm) 0

0 0 PP
(m1) . . . 0 0 PP

(mm)



(5.39)

with PP defined in (5.24).

Having computed the local stiffness matrix for each element, we can obtain the global

stiffness matrix K = ∑P kP through the standard assembly procedure and solve the linear

system of equation

KU = Fext (5.40)

for the nodal displacement vector U, where Fext is the external force vector. For a given dis-

cretization, the external force vector Fext contains the nodal loads computed from applied

traction t and body force f based on (5.29).

5.2.3 Numerical assessment of the VEM approximation for linear elasticity

In this subsection, the performance of the VEM approximations on convergence and accu-

racy is assessed through a benchmark problem. In the assessment, we evaluate two error

measures of the displacement and stress solutions. The measure of error in the displace-

ment solution is defined as:

ε0,u =

√
∑

P∈Ωh

�
P
(ũh−u) · (ũh−u)dX, (5.41)
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where u is the exact displacement solution and ũh denotes the displacement field obtained

by interpolating the VEM DOFs using the 3D Wachspress shape functions [30]. On the

other hand, we also define the L2 norm of the stress error as

εσσσ =

√
∑

P∈Ωh

�
P
(σσσh−σσσ) · (σσσh−σσσ)dX, (5.42)

where σσσ is the exact stress solution and σσσh is a piecewise constant stress field defined such

that

σσσh|P = C : εεε(ΠΠΠ∇
P uh). (5.43)

For both error measures, the integrals are evaluated using a 4th order integration rule on

each tetrahedral subdivision of P.

We consider a boundary value problem in which a cantilever beam is loaded by end

shear. As described in Fig. 5.2 (a), the beam occupies domain Ω = (−1,1)× (−1,1)×

(0,10) and is subjected to a constant traction t = [0,−τ,0]T on its top surface. According

to [201], the stress solution of such a problem is given by the following expressions:

σxx = σyy = σxy = 0, σzz =
3τ

4
Y Z

σxz =
3τ ν

2π2(1+ν)

∞

∑
n=1

(−1)n

n2 cosh(nπ)
sin(nπX)sinh(nπY )

σyz =
3τ(1−Y 2)

8
+

τν(3X2−1)
8(1+ v)

− 3τ ν

2π2(1+ν)

∞

∑
n=1

(−1)n

n2 cosh(nπ)
cos(nπX)cosh(nπY ),

(5.44)

where ν is Poisson’s ratio. For the stress solution, we can see that, the beam is traction-free

on its four lateral surfaces. Additionally, the displacement solution that corresponds to the
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above stress distributions, up to the addition of a rigid body motion, is given by:

ux =−
3τν

4E0
XY Z

uy =
τ

8E0
(3νZ(X2−Y 2)−Z3)

uz =
τ

8E0

[
3Y Z2 +νY (Y 2−3X2)

]
+

2(1+ν)

E0
w(X),

(5.45)

where E0 is Young’s modulus, w(X) is the anti-derivative of σyz with respect to Y , and L is

the length of the beam, which is 10 in the present case. In our numerical study, the material

properties of the solid are taken to be E0 = 25 and ν = 0.3, and the magnitude of the shear

load is chosen to be τ = −0.1. Consistent units are used throughout this chapter. We

apply the analytical displacement field given in (5.45) on the bottom surface and analytical

traction (calculated from (5.44)) on the top surface. Three families of structured meshes

made up of regular space-filling polyhedra (i.e. regular hexahedra, truncated octahedra and

rhombic dodecahedra) and an additional family of CVT meshes are considered, as shown

in Figs. 5.2 (b)–(e).

The convergence of both displacement error, ε0,u, and stress error, εσσσ , as functions of

the average mesh size h are depicted in Figs. 5.3 (a) and (b), respectively. The results

confirm that optimal convergence rates are obtained for both displacement and stress errors

– the rate of convergence for ε0,u is 2 and that for εσσσ is 1.

5.3 A new VEM-based topology optimization using polytopes

This section introduces a new VEM-based topology optimization framework on polyhedral

meshes, which features continuous design and material density functions. We shall focus

on the classic compliance minimization problems and remark that the proposed framework

is readily applicable to other optimization formations.

For a given discretization Ωh consisting of non-overlapping polyhedra, the topology
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apply disp. u

10

2
2
τ

Figure 5.2: (a) Problem description of a cantilever beam loaded by end shear. (b) An
example of the mesh consists of regular hexahedra. (c) An example of the mesh consists
of truncated octahedra. (d) An example of the mesh consists of Rhombic dodecahedra. (e)
An example of the CVT mesh.
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Figure 5.3: Convergence of the L 2 norms of the (c) displacement error εu and (d) stress
error εσσσ when traction is applied on the top boundary of the block.

optimization formulation for the minimum compliance problems is stated as:

inf
ρh∈Ah

�
Γt

h

t ·uh

s.t.
1
|Ωh|

�
Ωh

ρh−V ≤ 0

with aρ

h (uh,δuh) = `h(δuh) ∀δuh ∈K 0
h ,

(5.46)

where ρh is a material density function, Ah is the space of admissible designs and V is

the allowable volume fraction. To regularized the formulation, the material density func-

tion ρh is defined as the image of a design function ηh under a map Fh (e.g. the density

filter) and the DOFs of the design function ηh are the design variables (DVs). Moreover,

a material interpolation function mS(ρh) is employed to relate the material stiffness to the

value of ρh at any given point. For instance, if the SIMP model is used [202]–[204], we

have mS(ρh) = ε +(1− ε)ρ p
h , where ε is the Ersatz parameter and p is the penalization

parameter. Incorporating the spatially varying stiffness mS(ρh), aρ

h (uh,vh) is the discrete

bilinear form constructed using VEM.

The topology optimization formulation (5.46) can be viewed as a two-field mixed ap-
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Figure 5.4: (a) Illustrations of the mixed elements adopted in the standard topology opti-
mization framework. The displacement DOFs are located at the vertices and each element
contains one DV representing the constant design field. (b) The total numbers of DVs as
functions of the total numbers of displacement DOFs for various discretizations of a unit
cube consisting of the mixed elements shown in (a).

proximation problem involving a discrete displacement space Kh and a discrete design

space Ah [177]. The standard density-based topology optimization framework in the litera-

ture typically employs a continuous displacement field, whose DOFs are the displacements

at the vertices of the mesh, and a piecewise-constant design function, whose value in each

element is the associated DV. The material density within each element takes a constant

value as well. Several examples of mixed elements of this type is shown in Fig. 5.4 (a).

Roughly speaking, for a given discretization, the number of DVs governs the “resolution”

of the topology whereas the number of the displacement DOFs (the size of the state equa-

tion) dictates the computational cost. If we consider a unit cube and discretize it with the

mixed elements shown in Fig. 5.4 (a), we can then plot in Fig 5.4 (b) the total numbers

of DVs as functions of the total numbers of displacement DOFs when those meshes are

refined. We observe that those functions are close to linear and their slopes can be used to

quantify the computational efficiency of the topology optimization framework on various

discretizations: the larger slope is the more computationally efficient the discretization is.
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As shown from the slopes in Fig. 5.4 (b), the mixed approximation in the standard topology

optimization framework leads to considerably more displacement DOFs than of DVs on

various discretizations, which is undesirable from a computational efficiency perspective.

Moreover, Fig. 5.4 (b) also suggests that polyhedral discretizations yield smaller slopes as

compared to the hexahedral ones. This observation indicates that, although polyhedral dis-

cretizations exhibits several geometric advantages in topology optimization [65], they are

less computationally efficient than hexahedral ones in the standard topology optimization

framework.
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Figure 5.5: (a) Illustrations of new mixed elements proposed in this work. The displace-
ment DOFs are located at the vertices and the DVs are assigned to the vertices as well as
mid-edge nodes of each element. (b) The total numbers of DVs as functions of the total
numbers of displacement DOFs for various discretizations of a unit cube consisting of the
mixed elements shown in (a).

Motivated by the above observations and discussions, we propose a new approximation

of the design function (as well as the material density function) for topology optimization

on general polyhedral meshes. The basic idea is to consider a more enriched local design

space with continuous design functions in each element. In terms of DVs, they are placed

at the vertices as well as the mid-edge nodes of the meshes. On the other hand, the dis-

placement approximation is kept the same as in the standard case. This leads to a new

220



mixed approximation for topology optimization on general polyhedral meshes. We note

that the idea of enriching the design space is conceptually similar to the multi-resolution

methodologies [186] in topology optimization. An illustration of several new mixed ele-

ments of this type are shown in Fig. 5.5 (a). Again, consider a unit cube discretized with

those mixed elements, we plot in Fig. 5.5 (b) the total numbers of DVs as functions of the

total numbers of displacement DOFs with mesh refinement. By comparing the slopes of

those functions in Figs. 5.4 (b) and Fig. 5.5 (b), we conclude that the proposed mixed ap-

proximation improves the computational efficiency as compared to the standard topology

optimization framework. More specifically, for a given discretization with a fixed number

of displacement DOFs (thus with roughly fixed computational cost), the proposed mixed

approximation yields a more enriched design field and, thus, can produce topologies with

improved resolutions.

5.3.1 The new VEM-based topology optimization framework

This subsection formalizes the proposed topology optimization framework. In this frame-

work, both the discrete displacement and design fields are constructed using the VEM. As

we can see, because of its flexibility in handling any element geometry as well as local

spaces, the VEM provides an efficient platform to formulate the proposed topology opti-

mization framework.

To introduce the new topology optimization framework, we define the space Ah for

admissible density function ρh as:

Ah = {ρh = Fh(ηh) : 0≤ ρh ≤ 1, ρh|E ∈ V (P), and 0≤ ηh ≤ 1, ηh|E ∈ V (P), ∀P ∈Ωh} .

(5.47)

In the above definition, we assume that both density function ρh and design function ηh

are continuous functions with their DOFs being their values at vertices as well as mid-edge

nodes of the mesh. The density function ρh is defined as the map of a design function ηh
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by the density filter Fh(·). For a discretization Ωh consisting of M elements and ND DVs,

we henceforth introduce two vectors, z = [z1,z2, ...,zND ]
T and y = [y1,y2, ...,yND]

T , where

zi and yi are values of ηh and ρh at the ith DOF of ηh and ρh, respectively.

Since both functions ρh and ηh can be characterized by their DOFs, we adopt the fol-

lowing approach to construct the density filter map Fh(·) between ρh and ηh, which is

based on their DOFs and the associated position vectors. If we denote by S(i) the set of

the indices of DOFs whose positions fall within a sphere of prescribed radius R centered at

Xi (the position vector associated with DOF i), yi (the ith DOF of the density field ρh) is

computed as

yi =
∑ j∈S(i) z j(1−||Xi−X j||/R)q

∑k∈S(i)(1−||Xi−Xk||/R)q , (5.48)

where q is the order of the density filter [205], [206]. Figure 5.6 illustrates this density

filter on a 2D mesh patch. For easier implementation, we express the density filter mapping

between ρh and ηh in a matrix form as

y = PF z, (5.49)

where PF is a constant and sparse matrix with its (i, j)th component given by

PF
(i j) =

max(0,(1−||Xi−X j||/R)q)

∑k∈S(i)(1−||Xi−Xk||/R)q (5.50)

Moreover, within each element P (assuming P has m vertices), the density function ρh

belongs to the VEM space V (P) defined in (5.11). Likewise, if we use yP
i to denote the

ith DOFs of ρh in P, we can express ρh|P in terms of the set of basis functions for V (P),

ϕ1, ...,ϕm, as

ρh|P =
m

∑
i=1

ϕiyP
i . (5.51)
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Figure 5.6: An illustration of a quadratic (i.e., q = 2) density filter mapping for a 2D mesh
patch. The DVs with solid markers are within the filter radius R and thus have non-zero
weights.

The volume constraint function in (5.46) can then be recast as

�
Ωh

ρh

|Ωh|
−V =

∑P∈Ωh ∑
m
i=1(

�
P ϕi)yP

i

∑P∈Ωh
|P|

−V , (5.52)

where we recall from the (5.25) that
�

P ϕi, i= 1, ...,m can be exactly computed by definition

of V (P). To assist easier implementation, we also express the volume constraint function

in matrix notation as

�
Ωh

ρh

|Ωh|
−V =

VT PV y
VT 1

−V =
VT PV PF z

VT 1
−V , (5.53)

where V = [|P1|, |P2|, ..., |PM|]T is a vector collecting element volumes and PV is a constant

matrix with its (i, j)th component being

PV
(i j) =


1
|Pi|

�
Pi

ϕ j if node j ∈ element Pi

0 otherwise

=


1

12 ∑F∈F j⊂Pi(XGF ( j)+1−XGF ( j)−1)∧ (X j−XP
c ) · (X j−XF

c ) if X j ∈ Pi

0 otherwise
.

(5.54)

We also note from the above definition that matrix PV is sparse, and thus it is formed and

stored as a sparse matrix in our implementation.
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In the state equation, the interpolated stiffness function mS(ρh) is utilized, which is

assumed to be an element-wise constant functions, such that within element P, mS(ρh)|P
.
=

mS(< ρh >P), where < ρh >P denotes the volume average of ρh over P:

< ρh >P=
1
|P|

m

∑
i=1

(

�
P

ϕi)yP
i . (5.55)

Having defined the form of the stiffness interpolation function, we propose to incorporate

it in the element-level discrete bilinear form (5.28) as follows

aρ,P
h (uh,vh) = |P|mS(< ρh >P)εεε(ΠΠΠ

∇
P uh) : C : εεε(ΠΠΠ∇

P vh)

+mS(< ρh >P)αPSh,P(uh−ΠΠΠ
∇
P uh,vh−ΠΠΠ

∇
P vh). (5.56)

Furthermore, we can pull mS(< ρh >P) out of the above element-level bilinear form and

get the global discrete bilinear form aρ

h (uh,vh) as

aρ

h (uh,vh) =
M

∑
i=1

mS(< ρh >Pi)a
Pi
h (uh,vh). (5.57)

We note that, although the L2 projection of ρh onto a linear function is computable over

each element [140], we only utilize the L2 projection of ρh onto a constant in each ele-

ment to construct discrete bilinear form. From an implementation perspective, using an

L2 projection of ρh onto a constant instead of a linear function in each element leads to a

significantly simplified computational implementation because, by doing so, no numerical

integration is needed.

Similarly, we introduce a vector s in the implementation whose ith component si is the

value of mS(< ρh >P) for element Pi. Utilizing the matrix PV , the vector s can be expressed

as

s = mS(PV y) = mS(PV PF z). (5.58)
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We can then compute the global stiffness matrix for aρ

h (mS(ρh),uh,vh) as

Kρ =
M

∑
i=1

sikPi. (5.59)

Finally, we arrive at the topology optimization formulation considering nodal densities as

min
z∈[0,1]ND

�
Γt

h

t ·uh = min
z∈[0,1]ND

FT
extU

s.t.
VT PV PF z

VT 1
−V ≤ 0

with KρU = Fext.

(5.60)

We next describe how to compute the gradients of the objective and volume constraint

functions with respect to the design variable z. For the objective function, we first compute

its gradient with respect to the vector s as

∂C
∂ s j

=−UT ∂Kρ

∂ s j
U =−UT kPjU, j = 1, ...,M, (5.61)

and then, using the chain rule, we arrive at

∂C
∂z

= (PV PF )T JmS(P
V PF z)

∂C
∂ s

, (5.62)

where JmS(y)
.
= diag(m

′
S(y1), ...,m

′
S(yND)) is the Jacobian matrix of the stiffness interpola-

tion function mS. The gradient of the volume constraint function can be simply obtained as

∂g
∂z

=
(PF )T (PV )T V

VT 1
. (5.63)

We conclude this subsection by noting that, even with a more enriched space for design

and material density functions, the proposed formulation (5.60), which is formulated in the

VEM context using local projections, can be implemented in a similar code structure to the

PolyTop software [110].
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5.3.2 A verification example

In this subsection, we verify the proposed continuous density approximation through a

simple numerical example and compare its performance with the standard element-wise

density approximation. In particular, we want to compare how these two approximations

perform in terms of capturing the varying density in a simple boundary value problem.
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x y

z

R
R2

1

x y

z

1

1
1

(a) (b) (c)

(d) (e) (f)

soild (ρ=1)
void (ρ=0)

Figure 5.7: (a) Problem description of a unit cube embedded with two hollow tubes. (b)
Geometrical parametrization of a tube. (c) An example of the mesh consists of regular
hexahedra. (e) An example of the mesh consists of truncated octahedra. (e) An example of
the mesh consists of Rhombic dodecahedra. (F) An example of the CVT mesh.

The setup of the boundary value problem is as follows. As shown in Fig. 5.7 (a), we

consider a unit cube Ω and place two hollow (ρ = 0) tubes in it. The rest of the cube

is solid (ρ = 1). The tube whose central axis passing through points [0.22,0.4,0]T and

[1,0.7,0.78]T has a radius of R1 = 0.13, and the other one whose central axis passing

through [0.5,0,0.3]T and [0.3,0.6,1]T has a radius of R2 = 0.06. For this setup, we can

introduce a continuous parametrization ρ(X) of the material density over Ω using smooth
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heaviside functions as

ρ(X) =
1

1+ e−200(r1(X)−R1)
+

1
1+ e−200(r2(X)−R2)

+ ε−1, (5.64)

where ε is a small positive number assigned to ensure the positivity of ρ(X), and r1(X) and

r2(X) are the distances of a given point X to the central axes of the first and second tubes,

respectively. As illustrated in Fig. 5.7 (b), for a tube whose central axis passing through

two given points X1 and X2, r(X) is given by

r(X) =
||(X−X1)∧ (X−X2)||

||X1−X2||
, (5.65)

where || · || stands for the Euclidean norm. Making use of ρ(X), the (continuous) distribu-

tion of the elasticity modulus in Ω is given by C(X) = ρ(X)C0, where C0 is the elasticity

modulus tensor of the solid material. In the present study, the solid material is considered

to be isotropic with Young’s modulus being E0 = 25 and Poisson’s ratio being ν = 0.3.

Adopting the method of manufactured solutions, we assume an exact displacement so-

lution u of the form

ux = Z2eXY uy = 2Y 2Z3 +ZX4 and uz = Z sin(2πX)eY , (5.66)

and prescribe it on the entire boundary of the cube. Accordingly, a body force, which

is computed using the exact displacement solution u and stiffness distribution C(X), is

prescribed in the interior of Ω. Four families of polyhedral meshes are considered: hexahe-

dral, truncated octahedral, rhombic dodecahedral, and CVT; and their examples are shown

in Figs. 5.7 (c)–(F), respectively. To assess the accuracy of the solution, we make use of

the L2 error of the displacement defined in (5.41) and an H1 displacement error, which is

defined as

ε1,u =

√
∑

P∈Ωh

�
P
(∇(ΠΠΠ∇

E uh)−∇u) · (∇(ΠΠΠ∇
E uh)−∇u)dX, (5.67)
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where the integral is evaluated using the same 4th order integration rule on each tetrahedral

subdivision of P.

In the numerical simulations, the material distribution ρ(X) needs to be approximated

in order to compute the stiffness matrix. We consider two approaches here. The first ap-

proach assigns a constant density to each element with the value being ρ(X) evaluated at

the centroid of that element. This approach resembles the situation in the standard density-

based topology optimization where element-wise constant densities are used. On the other

hand, the second approach evaluates ρ(X) at the vertices and mid-edge nodes, and inter-

polates them using VEM basis functions. This approach resembles the situation in the

proposed topology optimization framework where the DVs are located at the vertices as

well as mid-edge nodes of the mesh. Once the material distribution is approximated, the

stiffness matrix of the discretized system for both approaches can be constructed. For the

former approach, the stiffness matrix is constructed using the standard procedure whereas,

in the latter approach, the stiffness matrix is formed following (5.57).

Figures 5.8 (a)–(d) show the convergence of both L2 and H1 displacement errors as

functions of mesh size h for both approaches on the four families of meshes. The stan-

dard elements represent the first approach and the new elements stand for the second ap-

proach. As we can see from the comparisons, the second approach (corresponding to the

proposed topology optimization framework) always gives more accurate displacement so-

lutions than the first approach (corresponding to the standard density-based framework) on

a given mesh. This in turn implies that the material densities interpolated from values on

both vertices and mid-edge nodes provide better approximations of the exact density dis-

tribution ρ(X) than the one constructed from element-wise constant values. Based on this

observation, we argue that, in topology optimization, it is also more favorable to use the

proposed material density approximation because it gives a better parametrization of the

density distribution of the varying topologies.
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Figure 5.8: Convergence of both L2 and H1 displacement errors as functions of the average
mesh sizes h when the standard and proposed mixed elements are used for: (a) regular
hexahedral meshes; (b) truncated octahedral meshes; (c) rhombic dodecahedral meshes;
and (d) CVT meshes.
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5.4 Numerical examples

In this section, we present several examples involving non-Cartesian design domains to

demonstrate the effectiveness and versatility of the proposed VEM-based topology op-

timization framework. For all the design examples, we select the Ersatz parameter as

ε = 10−9 and take Young’s modulus and Poisson’s ratio of the solid phase to be E0 = 100

and ν = 0.3, respectively. During optimization, the Optimality Criteria (OC) [172] is cho-

sen as the design-variable update scheme with the damping parameter and move limit being

η = 0.5 and move = 0.3. The maximum tolerance for the change of design variables in the

convergence criterion is taken to be 0.1%. Moreover, a continuation scheme of the pe-

nalization parameter p is adopted here. We initialize p as p = 1 and increase it every

(maximum) 20 optimization iterations by 1 until p = 3. When p reaches 3, we then set

the maximum allowable optimization iteration number to be 150. For comparison pur-

poses, the topologies obtained by the standard topology optimization framework [65] with

element-wise constant densities are also provided. The same VEM formulation is used to

solve the state equation in the standard framework as in the proposed framework. Unless

otherwise stated, the final topologies are plotted using iso-surface with the cut-off value

being 0.5. To distinguish the topologies obtained using the standard framework and the

proposed one, we plot the results obtained using the standard framework in blue and those

obtained using the proposed framework in red. We also point out that, for a fixed mesh and

fixed set of parameters, the computational time of both proposed and standard frameworks

are closely identical because the sizes of state equations are the same.

5.4.1 Shear loaded disc problem

The first design example is the shear loaded disc problem. As shown in Fig. 5.9, the

design domain is a disc with an outer radius of 6 and an inner radius of 1. The thickness

of the disc is taken to be 2. Fixed in the inner surface, the circumference of this disc is
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Figure 5.9: (a) The geometry, load and boundary conditions of the shear loaded disc prob-
lem. (b) A hexahedral-dominated mesh consisting of 31,791 nodes and 12,180 elements.
(c) A truncated octahedral-dominated mesh consisting of 65,418 nodes and 10,808 el-
ements. (d) A rhombic dodecahedral-dominated mesh consisting of 52,606 nodes and
12,264 elements. (e) A CVT mesh consists of 64,097 nodes and 10,000 elements.
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subjected to eight equidistant shear load of uniform magnitude 1. A volume fraction of

10% is prescribed.

In order to provide a thorough assessment of the performance of the proposed frame-

work on various types of meshes, we consider four meshes in this design example: a

hexahedral-dominated mesh, a truncated octahedral-dominated mesh, a rhombic dodecahedral-

dominated mesh, and a CVT mesh, as shown in Fig. 5.9 (b)–(e), respectively. The first

three meshes consist of regular space-filling polyhedra in the interior of the design domain

and unstructured polyhedra in the boundary regions, while the CVT mesh is made up of

unstructured polyhedra inside of the entire design domain. The statistics of this mesh is

provided in Table 5.1. Notice that the four meshes have similar numbers of elements.

Table 5.1: Statistics of the meshes for the shear loaded disc problem.
Mesh Node # EL. # DV # (Proposed) DV # (Standard)

Hexahedral 31,791 12,180 104,166 12,180
CVT 64,097 10,000 191,256 10,000

Trun. octahedral 65,418 10,808 196,329 10,808
Rhom. dodecahedral 52,606 12,264 171,275 12,264

Figure 5.10: The final topologies obtained from the proposed topology optimization with-
out the density filter on (a) the hexahedral-dominated mesh; (b) the truncated octahedral-
dominated mesh; (c) the rhombic dodecahedral-dominated mesh; and (e) the CVT mesh.

We first design the shear loaded disc problem without applying the density filter. Fig-

ures 5.10 and 5.11 show the final topologies obtained from the proposed and the standard
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Figure 5.11: The final topologies obtained from the standard topology optimization with-
out the density filter on (a) the hexahedral-dominated mesh; (b) the truncated octahedral-
dominated mesh; (c) the rhombic dodecahedral-dominated mesh; and (d) the CVT mesh.
In the designs, those elements whose densities are above 0.01 are plotted.

frameworks, respectively, on the four meshes. Notice that, for the results obtained with

the standard topology optimization framework, we get almost black and white designs

for all the four meshes. Thus, for those results, instead of showing the iso-surface plots

of the final topology, we simply plot those elements whose densities are above 0.01. In

the topology optimization literature, it is well-known that, without density or sensitive fil-

ters, quadrilateral or hexahedral meshes will produce checkerboard patterns in the standard

framework, e.g., see Fig. 5.11 (a). For general discretizations, previous work has demon-

strated that 2D regular hexagonal [18] and 2D and 3D CVT meshes [17], [19], [65] are

free of checkerboard patterns. From our numerical results in Fig. 5.11 (c) for truncated

octahedral and Fig. 5.11 (d) for rhombic dodecahedra, we observe that, unlike the regular

polygonal discretization in 2D, regular polyhedral discretization in 3D tends to generate

patterns indicating numerical instability. Those patterns provide artificial stiffness and are

impractical from a manufacturing perspective. On the contrary, with proposed topology

optimization framework, we obtain physical designs on all four meshes considered, which

resemble a flower, although their iso-surface plots exhibit rough boundaries because of the

absence of regularizations from the density filter.
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Figure 5.12: The final topologies obtained from the proposed topology optimization with
a quadratic density filter of radius R = 0.45 on (a) the hexahedral-dominated mesh; (b) the
truncated octahedral-dominated mesh; (c) the rhombic dodecahedral-dominated mesh; and
(e) the CVT mesh.

Figure 5.13: The final topologies obtained from the standard topology optimization with a
quadratic density filter of radius R = 0.45 on (a) the hexahedral-dominated mesh; (b) the
truncated octahedral-dominated mesh; (c) the rhombic dodecahedral-dominated mesh; and
(e) the CVT mesh.
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We then apply a quadratic density filter (i.e. q = 2) with a radius of R = 0.45, and keep

the other parameter settings unchanged. The results obtained are shown in Figs. 5.12 and

5.13 using the proposed and standard framework, respectively. Several observations can be

made. First, compared to the ones obtained from the standard framework, the designs ob-

tained from the proposed framework have iso-surface presentations with greatly improved

smoothness. This is because, with the proposed framework, we have more DVs as com-

pared to the standard framework on the same discretization, as shown in Table 5.1. Second,

unlike the ones obtained using the standard framework, the optimal topology obtained us-

ing the proposed framework exhibit similar topologies on all meshes, suggesting that the

proposed framework is less sensitive to mesh types than the standard framework.

5.4.2 Hook design

Having investigated the performance of the proposed topology optimization framework

through the last design example, we now apply it to several problems involving non-

Cartesian design domains. Let us first look at the hook problem. As shown in Fig. 5.14 (a),

the design domain in this problem is fixed in the upper half of the circle and is subjected

to a uniformly distributed line load in the negative z direction. The volume fraction of this

problem is set as V = 15% and the radius of the quadratic density filter is R = 2.8. The

polyhedral mesh considered in this problem is made up of regular hexahedra in the interior

and unstructured polyhedral in the regions near the boundary, as shown in Fig. 5.14 (b).

The statistics of this mesh is provided in Table 5.2.

Table 5.2: Statistics of the mesh for the hook problem.
Mesh Node # EL. # DV # (Proposed) DV # (Standard)

Hexahedral 83,235 33,928 275,293 33,928

In Figs. 5.14 (c) and (d), we show the converged designs from both the proposed and

standard topology optimization frameworks. We can see that the design obtained from

the proposed framework (Fig. 5.14 (c)) possesses a smoother iso-surface representation
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than the one obtained from the standard framework (Fig. 5.14 (d)). The main difference

of the two designs is in the fan region of the hook: the one obtained from the proposed

framework has a nice and clear fan region similarly to the design reported in the literature

for a 2D version of this problem [110]; whereas the members in the fan region of the

design obtained from the standard framework seem to be affected by the structure of the

mesh considered.

5.4.3 Wrench design

We also investigate the design of a wrench problem. The design domain of this problem

is depicted in Fig. 5.15 (a). In the domain, the bigger circle is fixed and a half of the

other circle is subjected to a distributed line load along the negative Y direction. Here, we

consider two CVT meshes, a coarse one and a refined one, whose statistics are given in

Table 5.3. Again, a quadratic density filter is applied with a radius of R = 0.05 and the

volume fraction is prescribed as V = 15%. In this design example, we prescribe another

requirement that the final topology has to be symmetric. To achieve this, we use a matrix

PS introduced in [110], which is given by

PS
(`k) =

 1 if the `th and kth DOFs of the density are symmetric in Y direction

0 otherwise
(5.68)

and the vectors Y and s are then given by

Y = PS PF z and s = mS(PV PS PF z) (5.69)

respectively. As we can see, the matrix PS enforces symmetry through mapping the ad-

missible topologies in the design space to symmetric configurations.

Figures 5.16 (a) and (b) depict the final topologies obtained using both the proposed

and standard frameworks for the coarse and refined CVT meshes, respectively. As an
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Figure 5.14: (a) The geometry, load and boundary conditions of the hook problem. (b) A
hexahedral-dominated mesh consisting of 83,235 nodes and 33,928 elements. The final
topologies for the hook problem obtained from the (c) proposed and (d) standard frame-
works. Both topologies are obtained with a quadratic density filter of radius R = 2.8 and
prescribed volume fraction of V = 15%.
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Figure 5.15: (a) The geometry, load and boundary conditions of the wrench problem. (b)
A relatively coarse CVT mesh consisting of 68,339 nodes and 12,000 elements. (b) A rel-
atively refined CVT mesh consisting of 349,748 nodes and 60,000 elements. Both meshes
are symmetric with respect to Y axis and obtained by reflecting the Voronoi seeds along the
Y axis.
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Table 5.3: Statistics of the meshes for the wrench problem.
Mesh Node # EL. # DV # (Proposed) DV # (Standard)

CVT (Coarse) 68,339 12,000 205,724 12,000
CVT (Refined) 349,748 60,000 1,052,109 60,000

immediate observation, the proposed and standard frameworks yield symmetric designs

similar to each other for both the coarse and refined meshes. With the coarse mesh, the

proposed framework yields a clearer and manufacturable design, which resembles the 2D

optimization result in [110], than the standard framework, indicating that the proposed

framework is more effective on relatively coarser meshes.

Figure 5.16: The final topologies for the wrench problem obtained from (a) the coarse mesh
and (b) the refined mesh. The left and right columns of the figure show the topologies
obtained using the proposed and standard frameworks, respectively. All topologies are
obtained with a quadratic density filter of radius R = 0.05 and prescribed volume fraction
of V = 15%.

5.4.4 Serpentine design

In the final design example, we perform topology optimization in a serpentine domain. As

shown in Fig. 5.17 (a), the serpentine domain is fixed on its left face and is subjected to

a point load along the negative Z direction in the middle of the lower edge of the right
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face. A volume fraction of V = 10% is prescribed and a quadratic density filter of radius

R = 0.4 is used. As in the hook example, we consider a mesh composed of regular hex-

ahedra in the interior and unstructured polyhedra in regions near the boundary. The mesh

is plotted in Fig. 5.17 (b) and its statistics is presented in Table 5.4. In Fig. 5.17 (c) and

Figs. 5.18, we show both the final design produced by the proposed framework and the

manufactured design using the FDM 3D printing, respectively. This example demonstrates

that the proposed topology optimization framework can lead to designs that are directly

manufacturable [206].

Table 5.4: Statistics of the mesh for the serpentine problem.
Mesh Node # EL. # DV # (Proposed)

Hexahedral 75,624 33,520 253,675

5.5 Concluding remarks

In this work, we present a 3D VEM-based topology optimization framework on general

polyhedral discretizations. The unique feature of this work is that it takes full advantage

of the VEM and applies it to both structural and optimization problems. In terms of struc-

tural problems, the VEM is adopted to solve the state equation efficiently and effectively.

Because VEM does not require explicit computations of the shape functions and their gra-

dients, it does not need numerical integration and is less sensitive to degenerated polyhedra

(e.g. ones with skinny faces or small edges) as compared to the FEM. In terms of opti-

mization problems, exploiting the great flexibility of VEM in element geometries and local

space definitions, we introduce an enhanced VEM space for the continuous design and

material densities functions, which contain DOFs at the vertices as well as the mid-edge

nodes of the mesh. The total volume of any topologies in this design space can be com-

puted exactly using a properly defined VEM projection operator. As a result, for a given

mesh and under similar computational cost, the proposed VEM based topology optimiza-

tion is shown to produce designs with improved geometrical resolutions as compared to the
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Figure 5.17: (a) The geometry, load and boundary conditions of the serpentine problem.
(b) A regular hexahedral-dominated mesh consisting of 75,624 nodes and 33,520 elements.
(c)The final topologies for the hook problem obtained from the proposed framework with
a quadratic density filter of radius R = 0.4 and prescribed volume fraction of V = 10%.

Figure 5.18: A printed model of the serpentine design using the FDM 3D printing.

241



standard topology optimization framework with element-wise constant DVs and material

densities. We also demonstrate that the VEM-based topology optimization framework can

be implemented in a similar code structure to the PolyTop software [17]. In terms of

discretizating complex domains in 3D, this work explores two approaches: unstructured

polyhedral (i.e. CVT) meshes and regular polyhedra (i.e. hexahedra, truncated octahedra

and rhombic dodecahedra) dominated meshes.

Both of the VEM approximations for the displacement field and material density func-

tion are verified through numerical examples. The convergence of the VEM in solving

the state equations is verified via a benchmark problem involving beam bending. Through

a simple example, we also compare the performance of the proposed continuous density

parametrization with the commonly used element-wise constant one in terms of approxi-

mating varying material density distributions. Moreover, several design examples involving

non-Cartesian domains are presented, showcasing that the VEM-based topology optimiza-

tion framework can produce optimal designs which have smoother boundaries and are less

biased to the initial meshes.

Finally, we remark that the proposed VEM-based topology optimization offers an ef-

fective tool for mesh adaptation in topology optimization. The potential of this research

includes developing efficient mesh adaption strategies for topology optimization by ex-

ploiting the advantages of polyhedral elements.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis aims to develop novel numerical approaches to more effectively solve compu-

tational mechanics problems on general discretizations with emphases on finite elasticity

and topology optimization problems. Additionally, to fully realize the potential of polygo-

nal and polyhedral elements in adaptivity, this thesis also introduces a simple yet effective

recovery-based a posteriori error estimator that is able to accurately capture both local and

global errors on general discretizations without the knowledge of exact solutions. In this

chapter, the contributions of this thesis are summarized and suggestions for future work are

provided.

6.1 Concluding remarks

In Chapter 2, lower- and higher-order polygonal finite element formulations using general-

ized barycentric coordinates are developed for finite elasticity problems. One critical aspect

in the development is related to the numerical integration. Because the generalized barycen-

tric coordinates are typically non-polynomial in nature, the existing integration schemes

used in the standard FEM typically suffer from consistency errors that do not vanish with

mesh refinement. As shown by the numerical studies in Chapter 2, the consistency errors

do not vanish under mesh refinement when a standard integration scheme is used, which

lead to non-convergent finite element results. This problem becomes even more severe in

higher-order cases. To address this issue, Chapter 2 proposes to employ a general gradient

correction scheme which can be applied to the displacement approximation of arbitrary

order with any numerical integration scheme that satisfies the corresponding minimal or-

der requirement. With the correction scheme, polygonal finite elements with both linear

and quadratic displacement approximations have been shown to yield optimally conver-
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gent results in both displacement-based and mixed formulations. Furthermore, the gradient

correction scheme enables us to confidently study various choices of pressure approxima-

tions. In this thesis, two choices of the pressure approximations have been discussed for

the mixed polygonal finite elements, namely, the discontinuous and continuous ones, and

their performance on inf-sup stability and accuracy is investigated. Our numerical studies

indicate that both families of mixed polygonal finite elements seem to be inf-sup stable in

linear and finite elasticity problems without any additional stabilization treatments up to the

quadratic order. For demonstration purposes, we also employed the proposed polygonal fi-

nite element formulations to model the nonlinear response of particle reinforced elastomers

with interphases and the onset of cavitation in fiber reinforced elastomers. These chal-

lenging physically-based applications indicate that the proposed polygonal finite element

formulations are well suited to deal with complex microstructures including particulate mi-

crostructures and those involving different length scales, and appear to be more tolerant to

large local deformation than the standard finite elements (triangles and quads).

The polygonal and polyhedral finite elements are limited by the availabilities of well-

defined shape functions and efficient yet consistent numerical integration schemes. Espe-

cially in 3D, those restrictions considerably limit the element geometry that the method

can handle. As an alternative approach, the VEM is able to handle a significantly more

general class of discretizations in both 2D and 3D than the FEM as it abstracts from the

shape functions. In Chapter 3, we introduce a VEM framework for 2D and 3D finite elas-

ticity problems. Two VEM formulations are presented, which adopt a displacement-based

and a two-field mixed variational principles respectively. The displacement-based VEM

formulation appears to be free of volumetric locking as the material becomes nearly in-

compressible, at least for the proposed set of meshes. By construction, the proposed VEM

formulations are able to efficiently handle a more general class of polygonal and poly-

hedral meshes, including the ones with non-convex elements. Several numerical studies

are presented, which confirm the convergence and accuracy of the VEM formulations. In
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particular, for 3D problems, our numerical studies have further shown that the VEM for-

mulations appear to produce convergent results even for meshes containing non-star shaped

elements, which makes the VEM formulation even more forgiving with respect to the qual-

ity of the mesh. We also show that, with a proper definition of local VEM spaces, an L2

projection of the volumetric strain can be exactly computable in addition to the standard

VEM projections of the displacement and its gradient. The L2 projection of the volu-

metric strain renders the VEM more accurate and robust, especially for irregular meshes,

such as those containing elements with non star-shaped faces and in problems that involve

large heterogeneous and localized deformations. Furthermore, different constructions of

the loading terms are discussed and various stabilization strategies are studied, which are

shown to have significant influence on the performance of the VEM formulations in finite

elasticity problems. A stabilization scheme is further proposed in this chapter for isotropic

materials, which is based on the trace of the material tangent modulus tensor. We deploy

the proposed VEM formulations to the study of the nonlinear elastic response of a filled

elastomer in 2D and demonstrate that they are able to capture large localized deformation

fields in such problems.

Because of their flexible geometry, polygonal and polyhedral elements hold great po-

tential in the adaptive analysis. To realize this potential, Chapter 4 introduces a simple

yet effective recovery-based a posteriori error estimation framework for lower- and higher-

order VEM on polygonal and polyhedral meshes, and demonstrates the theory in the con-

text of linear elasticity. The basic idea of this error estimation framework is to first recover

a more accurate displacement gradient through a least square fitting of the displacement

DOFs over each patch in the mesh. Based on the recovered gradient, an error estimator

is then obtained by evaluating the difference between the recovered and original displace-

ment gradients on the skeleton of the mesh. This skeletal error is shown in the numerical

studies to capture the standard L2 norm of the displacement gradient error extremely well.

With thorough numerical studies, the introduced error estimation is shown to be accurate
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for both linear and quadratic virtual elements on various polygonal/polyhedral meshes and

with various types of displacement solutions (e.g. smooth ones, ones with sharp gradi-

ents, and ones containing singularities). For linear VEM, the accuracy and effectiveness

of the proposed error estimation framework are further demonstrated by comparing it with

an SPR-type error estimation as outlined in Appendix C. For higher-order VEM, the nu-

merical studies also suggest that we can neglect the internal displacement DOFs (which

are in the form of function moments over the elements) in the gradient recovery procedure

without sacrificing accuracy.

Chapter 5 presents a 3D VEM-based topology optimization framework on general poly-

hedral discretizations. The unique feature of this framework is that it takes full advantage of

the VEM and applies it to both structural and optimization problems. In terms of structural

problems, the VEM is adopted to solve the state equation more efficiently and robustly. In

terms of optimization problems, exploiting the great flexibility of VEM in element geome-

tries and local space definitions, we introduce an enhanced VEM space for the continuous

design and material densities functions, which contain DOFs at the vertices as well as the

mid-edge nodes of the mesh. The total volume of any topologies in this design space can

be computed exactly using a properly defined VEM projection operator. As a result, for

a given mesh and under similar computational cost, the proposed VEM based topology

optimization is shown to produce designs with improved geometrical resolutions as com-

pared to the standard topology optimization framework with element-wise constant DVs

and material densities. We verify the convergence both of the VEM approximations for the

displacement field and material density function through numerical examples. Addition-

ally, we also present several design examples involving non-Cartesian domains, showcasing

that the VEM-based topology optimization framework can produce optimal designs which

have smoother boundaries and are less biased to the initial meshes.
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6.2 Suggestions for future work

Through this thesis, we have demonstrated that the VEM and barycentric FEM hold great

promises in the field of computational mechanics. Some potential extensions of the current

work are suggested below.

6.2.1 VEM formulations for other computational mechanics problems

Throughout this thesis, we focus on the development of VEM formulations in linear and fi-

nite elasticity problems considering isotropic materials. In those problems, we have demon-

strated that the VEM framework works for more general discretizations, enables more flex-

ible mesh adaptivity, and better models the large and heterogeneous deformation fields.

The VEM formulation developed in this thesis for finite elasticity problems considers

only lower-order elements. In the future, one could extend this formulation to higher-order

virtual elements. Moreover, several extensions of the VEM formulations developed in this

thesis to other computational mechanics problems are of interest. For instance, one could

incorporate material anisotropy into the VEM formulations, and to apply the formulations

to plasticity, strain gradient elasticity and plasticity problems, as well as problems involving

localization and discontinuities, such as fracture mechanics.

Incorporating material anisotropy Several directions are worthwhile exploring to in-

corporate material anisotropy (e.g. fiber reinforcements) into the VEM framework for fi-

nite elasticity presented in Chapter 3. First, the stabilization scheme used in Chapter 3 is

derived under the assumption that materials are isotropic. The basic idea is to construct the

stabilization energy using a scalar-valued function (i.e. αE) of the invariants of the right

Cauchy-Green deformation tensor. Thus, the stabilization energy is also isotropic and does

not have preferred directions. To account for material anisotropy, one could employ the

representation theorem for isotropic functions [207], [208] and define the stabilization en-

ergy and αE as a scalar-valued function of the irreducible integrity basis associated with the
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anisotropic materials. Second, the local VEM space is defined based on the Laplacian op-

erator, which is an isotropic differential operator. One could explore encoding the material

anisotropy into the local VEM space using anisotropic differential operators.

Strain gradient elasticity and plasticity The classical elasticity and plasticity theories

fail to explain the size effects in materials because they do not include any parameter re-

lated to material length scales. To overcome this limitation, strain gradient elasticity and

plasticity theories, which includes higher-order derivatives of the displacement field, are

proposed, see, e.g., [209]–[217]. The numerical solution of boundary value problems us-

ing strain gradient theories is a challenging task because the underlying partial differential

equations are fourth order, which requires C1 interpolations [218], [219]. To avoid this,

mixed finite element approximations are developed as an alternative [220], which treats

both displacement and strain fields as independent variables. This is undesirable from an

efficiency perspective because it introduces additional DOFs and Lagrange multipliers.

The VEM can naturally handle numerical approximations of arbitrary continuity and

element geometry. Thus, it holds great potential in the numerical solution of boundary

value problems governed by strain gradient elasticity and plasticity theories. Interesting fu-

ture work along this direction includes the development C1 VEM formulations [25], [48],

[221] for strain gradient elasticity and plasticity problems on general polygonal and poly-

hedral discretizations, and comparing the performance of the C1 displacement-based VEM

approximations with the typically adopted mixed approximations.

Local enrichment in VEM for problems involving discontinuities Problems with dis-

continuities and localized features in their solutions are common in the field of computa-

tional mechanics. A representative example is fracture in solids. For such problems, the

Extended/Generalized Finite Element Method (XFEM/GFEM) [222]–[228] is a popular

method which is capable of capturing the discontinuities without local mesh refinement

or remeshing. The basic idea of XFEM/GFEM is to enrich the local function space with
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discontinuity (e.g. Heaviside function) so that the discontinuity in solutions can be cap-

tured even with structured and regular discretization. However, with the enrichment, the

numerical integration at the element level becomes more difficult, and advanced numerical

integration schemes are needed even for quadrilateral elements [107], [229]. The VEM

decomposes the approximation at the element-level into two parts: a consistent term that

preserves suitable polynomial accuracy and a stability term that ensures the stability of the

approximation. By doing so, numerical integration can be simplified and only integrations

of polynomial functions instead of complex ones are needed. Thus, one could integrate

the VEM methodology with the enrichment concept in XFEM/GFEM so that the result-

ing framework preserves the nice features of both methods and overcomes their respective

limitations. Some preliminary investigations of along this direction are presented in [230].

Moreover, since the local function space in VEM is defined implicitly through a suitable set

of PDE, its definition can be quite flexible. Thus, another area of future research includes

exploring ways to embed discontinuity into the definition and governing PDEs of the local

VEM space.

6.2.2 Recovery-based error estimator for finite elasticity problems

Although proposed for linear elasticity problems, the recovery-based error estimator can be

naturally extended for any nonlinear problems with H1 conforming approximations, such

as the finite elasticity problems. However, more numerical investigations in different types

of boundary value problems are needed to evaluate the accuracy of that error estimator for

finite elasticity problems.

6.2.3 Novel adaptive mesh refinement and coarsening schemes using VEM

Chapter 4 shows that the proposed recovery-based errors estimator provides an effective

indicator to drive the adaptive mesh refinement in 2D linear elasticity problems. Future

extensions of this research includes developing novel and efficient mesh adaption strate-
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gies, which take full advantage of the geometric flexibility of polygonal and polyhedral

elements to achieve adaptivity (i.e. refinement, coarsening and re-meshing) with only local

modifications. The adaptive coarsening is particularly interesting. For example, with the

capability of VEM in handling any concave element geometry, one can simply agglomerate

all the elements with a relatively small level of errors together to form a coarsened element

without any local remeshing. In addition, to effectively deal with adaptive refinement and

coarsening on polygonal and polyhedral meshes, especially in 3D and for large-scale sim-

ulations, efficient mesh data structure is essential. The Topological Data Structure (TopS)

[231], which is a compact adjacency-based data structure, potentially provides an efficient

platform for adaptivity on polygonal and polyhedral meshes. Thus, extending the TopS

to include polygonal and polyhedral mesh representations serves as a promising area of

future research. Another promising area of research consists of applying adaptivity refine-

ment and coarsening with polygonal and polyhedral elements to structural dynamics and

nonlinear fracture mechanics problems [171].

6.2.4 Incorporating manufacturing process and requirements into the VEM-based topology

optimization

It is crucial to take into account in topology optimization whether the final designs can

be manufactured and how they are going to be fabricated. Thus, one potential extension

of the VEM-based topology optimization framework developed in this thesis includes the

incorporation of manufacturing constraints [232] (e.g. overhanging angle [233], minimum

[234] and maximum [235] length scales, hole size [236], and geometric complexity [237])

and manufacturing process (e.g. printing direction and the dependence of material property

on printing direction).
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6.2.5 Adaptive topology optimization using VEM

The topology optimization is an iterative process which involves redistribution of mate-

rial densities. With the mesh adaptivity, the efficiency of topology optimization can be

significantly improved, see e.g. [66]. However, most work in topology optimization only

considers adaptivity refinement, whereas the coarsening aspect of the adaptivity receives

relatively less attention. Being able to handle arbitrary concave elements, the VEM offers

an attractive path to develop novel adaptive refinement and coarsening schemes in topol-

ogy optimization. Thus, the potential research includes developing tailored mesh adaption,

especially coarsening, strategies for the VEM-based topology optimization framework in-

troduced in Chapter 5 by exploiting the advantages of the geometric flexibility of virtual

elements.
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APPENDIX A

A TRACE-BASED STABILIZATION PARAMETER αE FOR VEM UNDER

FINITE DEFORMATIONS

We present a detailed derivation of the trace-based stabilization parameter αE in (3.61) and

(3.62). Considering a general function Φ(I1, I2,J), we have αE be expanded as

αE =
1
d2 tr

(
∂ 2Φ

∂F∂F

)
=

1
d2 tr

[
∂ 2Φ

∂ I1∂ I1

∂ I1

∂F
:

∂ I1

∂F
+

∂ 2Φ

∂ I2∂ I2

∂ I2

∂F
:

∂ I2

∂F
+

∂ 2Φ

∂J∂J
∂J
∂F

:
∂J
∂F

+2
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+2

∂ 2Φ

∂ I1∂J
∂ I1

∂F
:

∂J
∂F

+2
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∂ I2∂J
∂ I2

∂F
:

∂J
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+
∂Φ

∂ I1
tr
(
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∂F∂F

)
+

∂Φ

∂ I2
tr
(

∂ 2I2

∂F∂F

)
+

∂Φ

∂J
tr
(

∂ 2J
∂F∂F

)]
, (A.1)

where the dependences of αE , Φ and its derivatives on I1, I2 and J are assumed. In the

above equation, each component can be explicitly expressed as

∂ I1

∂F
:

∂ I1

∂F
= 4I1,

∂ I2

∂F
:

∂ I2

∂F
= 4

[
2I1I2− I1tr

(
C2)+ tr

(
C3)] , ∂J

∂F
:

∂J
∂F

= J2tr
(
C−1) .
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∂F
:

∂ I2

∂F
= 4

[
I2
1 − tr

(
C2)]= 8I2,

∂ I1

∂F
:

∂J
∂F

= 4dJ,
∂ I2

∂F
:

∂J
∂F

= 2(d−1)JI1,

tr
(

∂ 2I1

∂F∂F

)
= 2d2, tr

(
∂ 2I2

∂F∂F

)
= 2(d−1)2 I1, tr

(
∂ 2J

∂F∂F

)
= 0. (A.2)

In the steps that follow, the Cayley-Hamilton theorem (see, for example, [238]) is adopted

to further simplify the following two terms

∂ I2

∂F
:

∂ I2

∂F
= 4

[
2I1I2− I1tr

(
C2)+ tr

(
C3)] , and

∂J
∂F

:
∂J
∂F

= J2tr
(
C−1) . (A.3)

In 2D, the Cayley-Hamilton theorem [238] states that C ∈ R2×2 satisfies the following
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characteristic equation

C2− I1C+det(C)I = 0. (A.4)

The following relation can be extracted from the above characteristic equation:

tr
(
C3)− I1tr

(
C2)= J2I1 and J2tr

(
C−1)= I1, (A.5)

and consequently,

∂ I2

∂F
:

∂ I2

∂F
=
(
8I1 I2−4J2 I1

)
and

∂J
∂F

:
∂J
∂F

= I1. (A.6)

Combining (A.1), (A.2) and (A.6), we obtain the final expression for αE in the 2D case

αE (I1, I2,J) =
1
4

[
4I1

∂ 2Φ

∂ I1∂ I1
+
(
8I1 I2−4J2 I1

) ∂ 2Φ
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∂J∂J
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+2J I1

∂ 2Φ

∂ I2∂J
+8

∂Φ

∂ I1
+2I1
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∂ I2

]
. (A.7)

Similarly, the Cayley-Hamilton [238] in the 3D case states that C ∈ R3×3 satisfies the

following characteristic equation

C3− I1C2 + I2C−det(C)I = 0. (A.8)

As a result, the following expressions can be obtained

tr
(
C3)− I1tr

(
C2)= 3J2− I1I2 and J2tr

(
C−1)= I2, (A.9)

and, thus,
∂ I2

∂F
:

∂ I2

∂F
=
(
4I1 I2 +12J2 I1

)
and

∂J
∂F

:
∂J
∂F

= I2. (A.10)

By combining (A.1), (A.2) and (A.10), we arrive at the final expression for αE for the
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3D case

αE (I1, I2,J) =
1
9

[
4I1

∂ 2Φ

∂ I1∂ I1
+
(
4I1 I2 +12J2) ∂ 2Φ

∂ I2∂ I2
+ I2

∂ 2Φ

∂J∂J
+16I2

∂ 2Φ

∂ I1∂ I2

+12J
∂ 2Φ

∂ I1∂J
+4J I1

∂ 2Φ

∂ I2∂J
+18

∂Φ

∂ I1
+8I1

∂Φ

∂ I2

]
. (A.11)
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APPENDIX B

THE PROOF OF RELATIONS (3.80) – (3.83)

We provide detailed derivations of relations (3.80)–(3.83) in Section 4.7 of Chapter 3 when

the polyhedral element P contains non star-convex faces. First, we are able to show that

the utilized vertex-based quadrature rule on each face F can integrate any linear functions

exactly on F , even if F is not star-convex. Given any linear functions p1 in [P1(P)]3, we

can express it as p1 = a+BX, where a and B are an arbitrary constant vector and a second

order tensor, respectively. The exact face integral
�

F p1⊗nFdS is obtained as

�
F

p1⊗nFdS =

�
F
(a+BX)⊗nFdS = |F |

(
a+BXF

c
)
⊗nF , (B.1)

where XF
c is the centroid of face F . Applying the vertex based rule defined in (3.23) and

(3.25) to the function v = p1, we obtain

�
f
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∑
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[
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(B.2)

Moreover, if we recall the definition of the signed area |T F
j | defined in (3.24), then we

observe that for non star-convex faces

mF

∑
j=1
|T F

j |= |F | ,
mF

∑
j=1
|T F

j |
XF

j +XF
j+1 +XF

s

3
= |F |XF

c , (B.3)
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and thus

[
mF

∑
j=1
|T F

j |a+B

(
mF

∑
j=1
|T F

j |
XF

j +XF
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s
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)]
⊗nF = |F |

(
a+BXF

c
)
⊗nF =

�
F

p1⊗nFdS.

(B.4)

Notice that the above analysis also holds if F is not star-convex, implying that the vertex

based quadrature rule is able to integrate any linear functions exactly even in those cases.

This implies that (3.80) holds even if P contains non star-shaped faces.

Second, if the displacement field is linear, i.e. u = p1, each deformed face F̃ remains

planar and the outward normal vector ñF in the deformed configuration stays constant over

each F̃ . Since the proofs of (3.81) and (3.82) for the “Simple” approach are more straight-

forward, we hereby prove the two expressions for the “Robust” approach. By applying

u = p1 to (3.40) and using (B.3), we obtain

1
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c · ñ
F
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1
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�
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X̃ · ñFdS = JP(p1),

(B.5)

where |F̃ | is the (absolute) area of deformed face F̃ , and X̃
F
c stands for the centroid of the

deformed face F̃ . Again, no assumption is made whether F is star-convex with respect to

XF
s , which proves relation (3.81) in Section 4.7 of Chapter 3.

Additionally, the first variation of JP(p1) with respect to any δv obtained in (3.41) can
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be recast as

DJP (u) ·δv =
1
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Pushing back the above expression to the undeformed configuration using the Nanson’s

formula [80] yields
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and therefore we prove (3.82).
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Finally, relation (3.83) in Section 4.7 of Chapter 3 can be derived as follows:
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APPENDIX C

AN SPR-TYPE RECOVERY SCHEME OF LINEAR VEM

To complement the discussions in Section 5 of Chapter 4, this appendix presents an SPR-

type scheme, which is conceptually similar to the SPR in the FEM literature [147], [148],

[156], for 2D and 3D linear VEM. We will particularly focus on the reconstructing dis-

placement gradient at the vertices of the mesh. A similar scheme is used in [239] to recover

the stress at the vertices of the mesh for 2D linear elastic fracture mechanics problems.

We note that, unlike the gradient recovery scheme proposed in Section 4 of Chapter 4, the

extension of this SPR-type scheme to higher order VEMs is not straightforward.

Following the notations introduced in Section 4 of Chapter 4 and for a given patch ωi,

the basic idea of this SPR-type recovery scheme is to seek a linear tensorial field, denoted

by gωi(X) ∈ [P1(ωi)]
d×d , such that

gωi = argmin
ξξξ∈[P1(ωi)]d×d

NE
ωi

∑
j=1

[
ξξξ (XE j

c )−ΠΠΠ
0
0(∇uh)|E j

]
:
[
ξξξ (XE j

c )−ΠΠΠ
0
0(∇uh)|E j

]
, (C.1)

where NE
ωi

is the total number of elements in patch ωi, E j is the jth element in ωi with its

centroid being XE j
c , and we recall from (4.23) that ΠΠΠ

0
0 is the L2 projection of the displace-

ment gradient onto constant functions. With gωi obtained, the value of the reconstructed

gradient Ghuh at Xi is given by

Ghuh(Xi) = gωi(Xi). (C.2)

Having computed Ghuh at every vertex of the mesh, the remaining steps of the SPR-type

scheme are identical to the ones outlined in Section 4.4.1 of Chapter 4.

Finally, we remark that the rules for choosing patches in this SPR-type scheme are the
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same as the ones described in Section 4.4.2 of Chapter 4 except for the threshold on the

number of elements which decides whether to enlarge the patch. In this SPR-type scheme,

a necessary condition for the recovery (C.1) to have a unique solution is NE
ωi
≥ 3 in 2D and

NE
ωi
≥ 4 in 3D. Thus, the threshold for the SPR-type scheme is set to be 3 in 2D and 4 in

3D. For any patch that contains less number of elements than the threshold, the patch will

be enlarged in the recovery process.
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APPENDIX D

POLYTOP3D: AN EFFICIENT MATLAB IMPLEMENTATION OF THE

PROPOSED VEM-BASED TOPOLOGY OPTIMIZATION FRAMEWORK

An implementation of the proposed VEM-based topology optimization framework into a

modular Matlab code named PolyTop3D, which can handle any non-Cartesian design

domains specified by the users on general polyhedral discretizations (both structured and

unstructured), is developed in this thesis. The PolyTop3D is modularized in a similar

manner to the PolyTop code presented in [110] together with a similar naming convention

for its variables. Thus, we refer the readers to [110] for a thorough introduction of the struc-

ture of the code. We hope that the modularity and flexibility offered by PolyTop3D will

motivate the community to explore the proposed VEM-based framework in other topology

optimization problems.

In the sequel, we demonstrate the efficiency of the code PolyTop3D by benchmarking

it with the Top3D code by Liu and Tovar [196]. For comparison purpose, the cantilever

example presented in Table 4 of [196] is solved on a set of three regular hexahedral meshes

whose statistics are shown in Table D.1. Each element in those meshes is a unit cube.

Throughout this study, the filter radius is set as R = 1.5 and the volume constraint is taken

to be V = 15%. For both codes, a constant penalty parameter of p = 3 is used and 200

optimization iterations are carried out on a desktop computer with an Intel(R) Xeon(R),

3.00 GHz processor and 256 GB of RAM running Matlab R2016a. For all the meshes, the

two codes produce almost identical final topologies and are not shown here for the sake of

conciseness.

In Table D.2, we present a comparison of the total runtimes of PolyTop3D and Top3D

for the three meshes. In addition, Table D.3 shows the breakdown of the total runtime of

the PolyTop3D code into major steps. One immediate conclusion from Tables D.2 and
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D.3 is that the PolyTop3D code is able to achieve similar efficiency to the Top3D code

using more than four times of DVs. The major runtime difference of the two codes comes

from the steps of forming projection matrices, PF and PV (c.f. Eqs. (5.50) and (5.54)),

and VEM shape functions ϕi.

Table D.1: Statistics of three meshes for the cantilever problem
Meshes Dimensions Node # EL. # DV # (PolyTop3D) DV # (Top3D)
Mesh 1 48×16×12 10,829 9,216 41,625 9,216
Mesh 2 72×24×18 34,675 31,104 135,013 31,104
Mesh 3 96×32×24 80,025 73,728 313,649 73,728

Table D.2: Total runtime (sec.) comparison of PolyTop3D with the Top3D code. The
times are reported in seconds for 200 optimization iterations.

Mesh 1 Mesh 2 Mesh 3
PolyTop3D 340.48 2275.20 13517.09
TOP3D 296.22 2085.20 12797.00

Table D.3: Breakdown of the PolyTop3D runtime (sec.) fro 200 optimization iterations.
The times are in seconds with the percentage of total runtime provided in parentheses.

Mesh 1 Mesh 2 Mesh 3
Forming PF and PV 7.66 (2.25%) 144.02 (6.33%) 766.34 (5.67%)

Forming VEM shape func. 23.31 (6.85%) 82.53 (3.63%) 199.47 (1.48%)
Assemble Kρ 124.13 (36.46%) 434.55 (19.10%) 1174.41 (8.69%)

Solving KρU = F 156.20 (45.88%) 1508.18 (66.29%) 11097.56 (82.10%)
Compliance sensitivity 22.73 (6.68%) 79.034 (3.47%) 210.53 (1.56%)

OC update 2.15 (0.63%) 12.61 (0.55%) 31.46 (0.23%)
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