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SUMMARY

Topology optimization is a practical tool that allows for improved structural designs.

This thesis focuses on developing both theoretical foundations and computational algo-

rithms for topology optimization to effectively and efficiently handle many materials, many

constraints, and many load cases. Most work in topology optimization is restricted to linear

material with limited constraint settings for multiple materials. To address these issues, we

propose a general multi-material topology optimization formulation with material nonlin-

earity. This formulation handles an arbitrary number of materials with flexible properties,

features freely specified material layers, and includes a generalized volume constraint set-

ting. To efficiently handle such arbitrary constraints, we derive an update scheme, named

ZPR, that performs robust updates of design variables associated with each constraint inde-

pendently. The derivation is based on the separable feature of the dual problem of the con-

vex approximated primal subproblem with respect to the Lagrange multipliers, and thus the

update of design variables in each constraint only depends on the corresponding Lagrange

multiplier. This thesis also presents an efficient filtering scheme, with reduced-order mod-

eling, and demonstrates its application to 2D and 3D topology optimization of truss net-

works. The proposed filtering scheme extracts valid structures, yields the displacement

field without artificial stiffness, and improve convergence, leading to drastically improved

computational performance. To obtain designs under many load cases, we present a ran-

domized approach that efficiently optimizes structures under hundreds of load cases. This

approach only uses 5 or 6 stochastic sample load cases, instead of hundreds, to obtain simi-

lar optimized designs (for both continuum and truss approaches). Through examples using

Ogden-based, bilinear, and linear materials, we demonstrate that proposed topology opti-

mization frameworks with the new multi-material formulation, update scheme, and discrete

filtering lead to a design tool that not only finds the optimal topology but also selects the

proper type and amount of material with drastically reduced computational cost.

xxix



CHAPTER 1

INTRODUCTION

Topology optimization is a powerful computational tool that enables the designs of engi-

neering systems and materials with greater efficiency, higher performance, and better func-

tionality. Given loads and boundary conditions, this powerful tool can be used to obtain the

optimal layout of a design domain. Because of its unique capability, topology optimiza-

tion offers vast potential for various applications and has been applied to many engineer-

ing fields across a wide range of length scales, from structural engineering and aerospace

engineering to material science and biomedical engineering. For example, as shown in

Figure 1.1a, topology optimization is applied to the design of the upper bridge-like struc-

ture spanning across several towers. The optimized structure leads to a design that is not

only innovative and organic but also structurally efficient. By using topology optimization,

the total weight of the Airbus 380 aircraft design was decreased by approximately 1000kg

(per airplane), as shown in Figure 1.1b. Other application examples of topology optimiza-

tion include designing nano-robotics (Figure 1.1c), manufacturable and deformable porous

structures using a single material (Figure 1.1d), facial bone replacement (Figure 1.1e), and

microstructure of materials to achieve engineered properties(Figure 1.1f).

This thesis focuses both the theoretical foundations as well as the algorithmic develop-

ments for topology optimization to enable various innovative applications. More specifi-

cally, we develop theories and computational frameworks for the topology optimization to

effectively and efficiently handle many materials, many constraints, and many load cases.

This thesis explores and contributes to several topics and areas, including Michell’s op-

timality conditions, multi-material topology optimization, nonlinear material properties,

constructible structures, randomized algorithms with stochastic sampling, as well as up-

date algorithms to efficiently handle multi-objective and multi-constraint optimization.
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a b c
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Figure 1.1: Examples of engineering applications of topology optimization. a Conceptual
design for the Zendai bridge (courtesy of SOM) [1]; b optimized airplane wing design and
manufactured model for Airbus 380 aircraft (www.altair.com) [2]; c optimized design and

fabricated model of a micro-gripper [3]; d design and 3D-printed model using a single
material to resemble a deformable structure that approximates the desired elastic behavior
[4]; e optimized bone replacement design and 3D-printed model for facial reconstruction
[5], [6]; f design and fabricated material microstructure with negative thermal expansion

coefficient [7], [8].

1.1 Truss Layout and Continuum Topology Optimization

Topology optimization is a mathematical design tool that determines the location to place

material in a design domain with given load and boundary conditions for a specific objective

(volume, compliance, displacement, frequency, energy dissipation, etc.). In this technique,

either a gradient-based or a non-gradient-based algorithm is used to update the designs iter-

atively. The design domain is usually discretized into small elements, and the finite element

method (FEM) is used to perform structural analysis. Depending on the type of elements

considered, topology optimization can be classified into discrete-element optimization us-

ing truss or beam elements, continuum-element optimization, and a combination of both.

The discrete type is known as the truss layout optimization, which is more suitable for

structural engineering applications and is typically solved by the ground structure method

(GSM). The GSM aims to find the optimal layout of a truss system by sizing cross-sectional
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areas of all the members in the truss. This method can be used to study the flow of forces

within a domain, numerically obtain optimal structures and design truss/lattice networks.

The continuum topology optimization aims to determine the optimal material distribution

within a given design domain discretized by continuum finite elements. Among various

methods for continuum topology optimization, the density-based method is one of the most

commonly used approaches in continuum topology optimization. In addition, some studies

have integrated both truss layout and continuum optimizations for the purpose of designing

high-rise buildings [9] and for the purpose of designing reinforced concrete structures and

studying strut and tie models by considering concrete as a continuum solid and steel rebars

as truss members (see, e.g., [10]–[14]). An alternative approach that extracts discrete struc-

tures from the solution of homogenization-based continuum topology optimization can be

found in [15].

1.1.1 Truss layout optimization

In the literature, several researchers provide closed-form analytical solutions for truss lay-

out optimization. In 1904, Michell [16] has derived the optimality conditions for trusses to

have least-weight trusses with given allowable stresses. Since then, a large amount of work

has followed the pioneering work, for example, the work in [17]–[26]. These analytical

solutions are widely used as benchmark problems for verifying computational frameworks.

However, there are a few problems with analytical solutions. For problems with no known

analytical solutions, numerical approaches can offer close-to-optimal solutions. Among

those approaches, a commonly used technique for optimizing the truss lattice networks is

the GSM (see, e.g., [27]–[31]). In this technique, the design domain is discretized by a

set of nodes, which are interconnected by truss members to form an initial ground struc-

ture (GS). By means of an update scheme and sensitivity information, the final design is

then obtained by gradually removing unnecessary members from the initial GS (subtractive

method). Other GS methods include the adaptively generative/growing method [32]–[34].
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Various objective functions have been examined in the literature, including compliance,

volume, displacement, frequency, and so on. Because the goal of this thesis is to explore

fundamental theories and establish computational algorithms for topology optimization, we

mainly consider compliance (and potential energy) as the objective function. The standard

GSM formulation for minimum compliance problems considering linear elastic materials

is as follows
min

x
C (x) = min

x
f T u(x),

s.t. g(x) =
M

∑
e=1

L(e)x(e)−Vmax ≤ 0 ,

0 < xmin ≤ x(e) ≤ xmax, e = 1, ...,M,

with u(x) = K(x)−1 f,

(1.1)

For an initial GS with M truss members, the vector x ∈ RM is a vector of design variables,

with component x(e) being the cross-sectional area of truss member e. It is subjected to

lower bound xmin and upper bound xmax. Furthermore, L(e) is the length of truss member

e, and Vmax is the prescribed upper bound on the total volume. Other types of constraint

functions include stress, “slenderness constraints” [35], [36], and failure probability con-

straints. Note that the above optimization formulation (1.1) has been proven to be convex in

[37] for a positive definite stiffness matrix and in [38] for a positive semi-definite stiffness

matrix.

In addition to the elastic formulation in (1.1), another common formulation used in

the GSM is the plastic formulation [33], [39], [40], which minimizes the total volume of

the structure under stress constraints. For a linear material with equal tension and com-

pression stress limits, plastic formulation leads to the same optimized structure (up to a

rescaling) as the elastic one (1.1) [17], [41]. In the case of materials with different tension

and compression strengths, the two formulations may lead to the same solution if the ma-

terial properties are defined properly [41]. The theoretical developments in this thesis are

based on the elastic formulation.
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1.1.2 Continuum topology optimization

In the continuum topology optimization, the goal is to determine the optimal material dis-

tribution within a given design domain discretized by continuum finite elements. The con-

tinuum approach has varied applications to mechanical, aerospace, and material design

fields. Among various methods in continuum topology optimization (e.g., density-based,

level set, phase field, evolutionary structural optimization, and so on.), this thesis focuses

on the density-based method.

Similar to the truss layout optimization, this thesis mainly considers compliance as the

objective function. For a given load f, the standard formulation for the minimum compli-

ance design using the density-based method can be written as [30],

min
ρρρ

C (ρρρ) = min
ρρρ

f T u(ρρρ),

s.t. g(ρ̄ρρ) =
M

∑
e=1

v(e)ρ̄(e)−Vmax ≤ 0 ,

0 < ρmin ≤ ρ
(e) ≤ 1, e = 1, ...,M,

with u(ρ̄ρρ) = K(E(ρ̄ρρ))−1 f, .

(1.2)

In this minimization problem, the objective function C is the compliance of the corre-

sponding structure, ρρρ ∈ RM is the vector of design variables (the density field), and M

is the number of elements in the finite element mesh. We define ρ̄ρρ and H as the filtered

physical density and the filter matrix such that ρ̄ρρ = Hρρρ [42]. In order to ensure a positive

definite stiffness matrix K ∈ RdN×dN , a lower bound ρmin is prescribed on ρ(e), where N is

the number of nodes and d is the dimension of the problem, so dN is the number of degrees

of freedom. The volume (area) of element e is given by v(e), and Vmax is the prescribed

upper bound on the total volume. The Young’s modulus E is defined by, for example, the

Solid Isotropic Material with Penalization (SIMP) [43], [44] approach. Other models, e.g.,

RAMP (Rational Approximation of Material Properties) [30], [45], can be used and would
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not alter the conceptual presentation of the topic. For the SIMP approach with the density

filter, we have E(e) = [ρ̄(e)]p(E0), where E0 is the elastic modulus for solid material, and p

is a penalization factor.

If the SIMP approach is used, the formulation (1.2) is known to be convex when p = 1

[46]. Using p > 1 to obtain a solid-void solution, one makes the problem non-convex and,

as expected, the solution obtained from the optimization algorithm may not be the global

minimum.

1.2 Connection Between Topology Optimization and Additive Manufacturing

An important aspect of topology optimization is the realization and fabrication of the de-

signs. In fact, all the engineering applications shown in Figure 1.1 include physical models

manufactured by various techniques. As a fast emerging technique, additive manufacturing

(AM) has been widely used in the engineering science to construct structures that are diffi-

cult or even impossible to fabricate with the traditional approaches. Additive manufacturing

has a natural connection with topology optimization. Topology optimization typically pro-

duces the final topologies that are too complex to be manufactured by traditional methods,

and AM offers a practical approach for the realization of the optimized complex structures.

Several attempts have been made in the literature to bridge the connection between

topology optimization and AM. Some work has proposed to use 3D printing to manufac-

ture material microstructures designed by topology optimization, which typically contain

unconventional materials, for instance, materials with negative Poisson’s ratio [47]–[49].

Other studies apply AM in the biomedical field to manufacture medical devices or biologi-

cal tissues, such as bone implant scaffolds [50]–[53] and facial implants [5], [54]. Several

practical issues of manufacturing topology optimization results have also been discussed.

While the density-based approach typically contains gray regions (intermediate densities),

the interpretation of these regions in AM becomes an issue. With the inspiration from the

SIMP method, the authors in [55] propose to use the lattice cells with different volume

6



fractions to replace intermediate densities at each element, leading to a manufacturable

structure which is a combination of the solids and lattice cells. A similar approach is also

pursued in [56], but with different cells layout. Additionally, designs for additive manufac-

ture need to include requirements associated with minimum feature size, manufacturable

inclination angle, allowable bridging distance, and the robust accommodation of heat trans-

fer, which needs to be accounted in or after the optimization process. Typically, these

design requirements are either accommodated by intuitive modification of the intended ge-

ometry [57], or by the use of support material to enable acute inclination angles and to

transfer heat as required, which adds additional material cost and manufacturing times. In

[58], a method is proposed which modifies the optimal structure to ensure manufacturabil-

ity without the need of support materials. Another issue is the interface between topology

optimization and AM. Typical topology optimization results need to be converted to CAD

before being manufactured. The recent study by [6] creates a piece of software, TopSlicer,

that converts the topology optimization output to AM input (.stl files). A comprehensive

review of the current and future trends in connecting topology optimization with AM can

be found in [59].

To study the connection between topology optimization and AM, we have explored

AM techniques. Various designs obtained using the proposed topology optimization frame-

works, developed in this thesis, are further printed by AM techniques. Figure 1.2 shows

some examples of the printed prototypes, which are manufactured with 3D printing using a

fused filament fabrication (FFF) process. Typical topology optimization results need to be

converted to CAD before being manufactured, in this work, we use the techniques proposed

in [6] to export geometry data to .stl format. We highlight that manufacturing of optimal

trusses generated by the GSM is a challenging task because the GSM formulation by its

nature (a size optimization method) introduces thin members. Those thin members impose

great difficulty in the manufacturing process because their sizes may fall below the resolu-

tion of the printer. Chapter 3 of this thesis addresses the issue mentioned above. With the
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discrete filtering technique described in Chapter 3, we can improve the constructability of

the optimal trusses by using a prescribed threshold to control the resolution of the structure

throughout the entire optimization process.

Topologically op�mized designs Photos of 3D-printed models

Bridge

Twis�ng 
tower

Crane

Figure 1.2: Examples of optimized designs (obtained by proposed methods in this thesis)
and the corresponding 3D-printed models using a fused filament fabrication (FFF)

process. Top: bridge design with material nonlinearity in Chapter 3; middle: twisting
tower design using stochastic sampling in Chapter 6; bottom: multi-material crane design

in Chapter 4.
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1.3 Research Motivation

The limited resources and increasing demand for extreme structures contribute to the im-

portance of studying optimal structures. Analytical solutions and their geometric implica-

tions not only bring insights into functional and creative structural designs, but also provide

analytical benchmarks for numerical methods to verify with. Thus, Chapter 2 provides a

primer of Michell’s optimality conditions [16], which are the first sufficient conditions that

offer analytical closed-form solutions for optimal structures. We explain the main idea of

the original and modified optimality conditions, and discuss the geometric characteristics

of Michell structures, and derive the analytical solution of the Michell torsional sphere.

Topology optimization considering linear material behavior (the prevailing approach in

the literature) has a limited scope, because real materials generally display nonlinear con-

stitutive relationship. For example, specific heat treatment methods change the constitutive

relationships of a material dramatically. Although the influence of material properties on

optimization design is well known, the exact changes that take place may not be predictable

in the optimized design. Thus, it is essential to take into account material nonlinearity.

This thesis proposes frameworks that account for material nonlinearity. Chapter 3 incorpo-

rates material nonlinearity into single material topology optimization with combinations of

Ogden-based and bilinear materials. It also presents an elegant approach to solve nonlin-

ear state equations with singular stiffness matrix. Material nonlinearity is also adopted in

Chapter 4 and 5 for topology optimization considering multiple materials.

From the perspective of computational efficiency, a major challenge associated with

topology optimization that accounts for material nonlinearity is the high computational

cost of the iterative procedure for solving nonlinear structural systems. Moreover, the in-

corporation of the multiple load cases into the nonlinear problems leads to higher computa-

tional cost, because each load case requires an independent iterative nonlinear FE analysis.

To handle material nonlinearity efficiently, a fully reduced-order model in both nonlinear
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state equation and optimization update is proposed in Chapter 3 together with the discrete

filtering scheme. As a result of the smaller sizes of the tangent stiffness matrix and the

sensitivity vector, the fully reduced-order model significantly improves the computational

performance of the optimization algorithm.

One limitation of the GSM is its inability to define a valid final structure that is con-

structable, because a cut-off value is needed to define the final design for the standard

GSM (a sizing problem). If the cut-off threshold is too small, the topology may consist of

a large number of undesirable thin bars, which makes it almost impossible to be fabricated

by neither conventional nor additive manufacturing techniques. On the other hand, if the

threshold is too high, we may obtain a design that violates the global equilibrium as a result

of the removal of some structurally important bars. Thus, in an effort to provide a practical

design tool that manufacturable designs, Chapter 3 of the thesis proposes a discrete filter

that can be used to control the final resolution of the optimized structure and ensure global

equilibrium of the design throughout the entire optimization process.

Multi-material topology optimization is an emerging trend because practical engineer-

ing designs, such as buildings, aircraft, and composite materials typically consist of mul-

tiple material types. The literature on multi-material topology optimization is vast and

growing but mostly deals with the continuum approaches (e.g., the density-based approach

[45], [60]–[63], phase-field approach [64], [65], and level set approach [66]–[69]) as well

as linear material behaviors. Few multi-material topology optimization studies focus on

truss networks as well as nonlinear material behaviors. In addition, most studies in this

field use limited settings of volume constraints. Thus, in Chapter 4 of this thesis, we pro-

pose a general formulation that applies to both truss-layout and density-based optimization

considering material nonlinearity. The proposed formulation handles an arbitrary number

of candidate materials with flexible material properties, features freely specified material

layers, and includes a generalized volume constraint setting.

One challenging of multi-material topology optimization is how to efficiently and effec-
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tively handle the multiple volume constraints. The commonly used design update schemes,

such as the Optimality Criteria (OC) method [31], [70] and the Method of Moving Asymp-

totes (MMA) [71], suffer several drawbacks when applied to multi-material topology opti-

mization. To efficiently handle many constraints in multi-material topology optimization,

Chapter 4 of this thesis derives a novel design update scheme that performs efficient and ro-

bust updates of the design variables associated with each volume constraint independently.

In addition, an alternative derivation of the design update scheme based on the KarushKuh-

nTucker (KKT) conditions of the convex approximated primal subproblem is provided in

Chapter 5.

Multi-material topology optimization may lead to members containing more than one

material in the design, which is another major challenge in this field. The existing tech-

niques in the literature either penalize mixing of material through material interpolations

(e.g., Discrete Material Optimization technique [72]) or introduce material selection con-

straints through discrete design variables (e.g., [62]), both of which is not suitable for multi-

material topology optimization formulation for nonlinear truss-networks. To overcome this

issue, Chapter 5 of this thesis proposes a material selection algorithm for multi-material

truss layout optimization that ensures the selection of a single material for each member.

This algorithm, based on the evaluation of both the strain energy and the cross-sectional

area of each member, performs iteratively and actively throughout the optimization process.

For structural topology optimization to be applied to real-world structural designs, de-

veloping frameworks that account for many load cases is essential. Because practical engi-

neering designs generally involve numerous load cases [73]. However, the incorporation of

many load cases in standard topology optimization is computationally expensive, because

we need to solve the structure response for each load case at every optimization iteration.

For instance, to consider hundreds of load cases in topology optimization, the associated

computational cost can be enormous. To that efficiently and effectively optimize designs

under many load cases, Chapter 6 of this thesis proposes a randomized approach that drasti-
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cally reduces the computational cost of optimizing structures under hundreds of load cases.

This approach only uses a few stochastic sample load cases, instead of hundreds, to obtain

similar optimized designs for both continuum and truss topology optimization.

1.4 Thesis Scope and Organization

This thesis is devoted to developing novel and effective frameworks for topology optimiza-

tion to enable efficient and practical designs and to target the real-life demands of material,

structural design, and manufacturing aspects. We aim to develop both the theoretical foun-

dations and computational frameworks for truss layout and continuum topology optimiza-

tions to effectively and efficiently handle many materials, many constraints, and many load

cases.

The remainder of this thesis is organized as follows: Chapter 2 reviews Michell’s opti-

mality conditions and derive some Michell’s analytical solutions. In Chapter 3, we present

the reduced-order filter scheme that applies to material nonlinear truss topology optimiza-

tion considering multiple load cases. In Chapter 4, we introduce the multi-material formu-

lation and derive the update scheme to handle many linear constraints. Chapter 5 addresses

the material selection scheme for multi-material topology optimization of truss layouts.

In Chapter 6, we introduce the randomized optimization approach and the corresponding

damping scheme for both continuum and discrete topology optimization under many load

cases. Finally, concluding remarks and discussions on the future research directions can be

found in Chapter 7.
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CHAPTER 2

MICHELL STRUCTURES

The limited resources and increasing demand for extreme structures contribute to the im-

portance of studying optimal structures. Understanding optimality conditions and the geo-

metric implications of the optimal structures provide guidance/insights for functional and

creative designs. In 1904, Michell [16] has derived the well-known conditions for trusses to

be optimal, i.e., least-weight trusses with given allowable stresses (also known as minimal

total load path). These conditions are known as Michell’s optimality conditions, which are

the first ones that provide analytical ways to find optimal structures. In his seminal paper

[16], Michell also provides closed-form solutions for several structural problems (Michell

structures), which are widely used as benchmark problems for verifying numerical meth-

ods. Later, Hemp [17] derives modified optimal conditions that correct the previous ones

for the cases with unequal permissible stresses. In [17], Hemp also develops a unified

theory in curvilinear coordinates for deriving the geometry of Michell structures based on

Hencky nets [74], [75]. Since then, a large amount of work has followed the pioneering

work of Michell [16] and Hemp [17], and has provided extensions, corrections, and addi-

tional closed-form solutions, for example, the work in [18]–[26].

The significance of Michell’s optimality conditions is that they not only establish the

first sufficient conditions for optimal structures, but also inform the designers of some char-

acteristics of the optimal structure. For example, the truss members of an optimal structure

must lie in the principal directions of the virtual strain field, and the tension and compres-

sion members in the optimal structure must be orthogonal when they intersect. Moreover,

the derived Michell structures provide analytical benchmarks for numerical optimization

methods to verify against [76]. The goal of this chapter is to elucidate the main idea of

Michell’s optimality conditions. In addition, we introduce the concepts of Hencky nets and
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derive the analytical solutions of several two-dimensional (2D) and three-dimensional (3D)

Michell structures.

The remainder of this chapter is organized as follows. Section 1 states the scope and

reviews several preliminary concepts. Section 2 introduces the original and modified opti-

mality conditions, followed by a proof of the conditions. Section 3 analyzes the types of the

structures that satisfy the conditions, and Section 4 introduces ways to construct optimal

structures. Section 5 derives the closed-form solutions for 2D and 3D Michell structures,

and finally, Section 6 provides a summary of the chapter.

2.1 Introduction and Preliminaries

The first fundamental properties of optimal truss-like continua were established starting

with Michell’s revolutionary paper “The Limits of Economy of Material in Frame-structures”

[16]. This paper was later studied and expanded upon by [18]–[26], which has become the

well-known truss layout optimization theory. The definition of the optimal structure is the

frame that has the least weight in a given domain for given load and boundary conditions

with allowable stresses. Mathematically, for a set of given external load, the optimization

statement is as follows:

min
x ∑

e
x(e)L(e)

s.t. −σC ≤
f (e)axial

x(e)
≤ σT for all e

and equilibrium,

(2.1)

where x(e), L(e), and f (e)axial denote the cross-sectional area, length, and internal axial force

of the eth truss member in the structure, respectively; σT and σC are the tensile and com-

pressive stress limits, respectively. The stress of member e is defined as σ (e) = f (e)axial/x(e).

Note that we have the following assumptions: the structure is in statics (i.e., in equi-

librium) and is subjected to a single load case, and the structural elements considered are
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frames and trusses. To solve this original optimization problem analytically is difficult be-

cause the feasible space is infinite. Instead, Michell establishes the optimal conditions that

provide analytical solutions to problem (2.1) and derives closed-form solutions for several

structural problems, which are widely used as benchmark problems for verifying numerical

methods.

We first introduce two quantities that Michell’s conditions are based upon. The first

quantity is the Maxwell number, which is introduced by Maxwell [77]:

∑
e

f (e)axialL
(e) = ∑

e∈ET

| f (e)axial|L
(e)− ∑

e∈EC

| f (e)axial|L
(e) = Y, (2.2)

where ET and EC denote the sets of tension and compression members. The Maxwell’s

theorem states that for the same boundary and loading conditions, Y , which is commonly

known as the Maxwell number, is independent of the form of structure layouts. Next, we

introduce the Michell number, Z, defined as follows,

∑
e
| f (e)axial|L

(e) = ∑
e∈ET

| f (e)axial|L
(e)+ ∑

e∈EC

| f (e)axial|L
(e) = Z. (2.3)

The Michell number Z is also known as the load path. Different from the Maxwell number

(2.2), both tension and compression members add to the Michell number (2.3). For any

statically determinate truss that is fully stressed (to the stress limits σT and σC), the volume

can be calculated as follows,

V =
∑e∈ET | f

(e)
axial|L

(e)

σT
+

∑e∈EC
| f (e)axial|L

(e)

σC
=

(σT +σC)Z− (σT −σC)Y
2σT σC

. (2.4)

Thus, if the structure is fully stressed, minimizing the quantity Z for a given problem is

equivalent to minimizing the volume V .

As a demonstration of these two quantities, Figure 2.1 shows two trusses, A and B,

under the same load and boundary conditions. Because both trusses are statically determi-
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nate, we can calculate the axial forces in all the members, as shown in Figure 2.1. Using

the axial forces and the geometry and assuming all members are fully stressed to σ , we

can obtain that the Maxwell number, Michell number, and volume for the two structures

according to (2.2), (2.3), and (2.4), as shown in Table 2.1. Note that structures A and B

have the same Maxwell numbers and varied Michell numbers. The Michell numbers (load

paths) of these two structures have indications about their volumes. The structure B, with

a smaller Michell number, has a smaller volume than A.
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2√2

Structure A Structure B

Figure 2.1: A design domain with load and boundary conditions, and two trusses (A and
B) subjected to the same load and boundary conditions. Blue members are in tension and

red members are in compression.

A concept we used in the proof of Michell’s conditions is the principle of virtual work,

which states that, for any structures that satisfy equilibrium, if we let the structure experi-

ence an arbitrary virtual displacement field, δu, which satisfies the displacement boundary

conditions, the following relation holds:

δU−δΩ = ∑
e

f (e)axial(ε
(e)L(e))−∑

j
f j

δu(r j) = 0, (2.5)
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Table 2.1: Maxwell number and Michell number

Structure A B
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√

2σ
)
√

2
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where ε(e) is the virtual strain generated by δu in truss member e; f j and δu(r j) are the

applied force and the corresponding virtual displacement at location r j, respectively.

2.2 Michell’s Optimality Conditions

In this section, we review the original and modified Michell’s optimality conditions, fol-

lowed by the proof of the conditions. Michell’s optimality conditions for a frame to have

the least volume are as follows:

“A frame attains the limit of economy of material possible in any frame-structure

under the same applied force, if the space occupied by it can be subjected to an

appropriate small deformation, such that the strains in all the bars of the frame

are increased by equal fractions of their lengths, not less than the fractional

change of length of any element of the space.” — A. G. M. Michell [16]

Essentially, for the given load and boundary conditions, any frame that satisfies the follow-

ing conditions has the least weight:

Michell Conditions:

1: all the members are fully stressed, namely,

σ
(e) =

f (e)axial

x(e)
=

 +σT ∀e ∈ ET

−σC ∀e ∈ EC

(2.6)
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2: there exists a kinematically admissible virtual displacement field δu, which

generates virtual strains ε(e) in each member as follows,

ε
(e) =

 +ε ∀e ∈ ET

−ε ∀e ∈ EC

(2.7)

In the condition (2.7), ε is the limit on virtual strains for both tension and compression

members. However, the original conditions derived by Michell have been proven to be

valid only for trusses with equal stress limits in tension and compression [17], [20], i.e.,

σT = σC. For unequal stress limits, the original conditions are valid only for a narrow class

of structures [20]. To generalize the optimal conditions for the majority class of problems

(including cases with unequal stress limits, σT 6= σC), Hemp [17] derives modified optimal

conditions for frames to have the least volume of material, stated as follows,

“A pin-jointed framework has the least volume of material, if it can carry its

given forces, with stresses in its tension members equal to σT and stresses in its

compression members equal to −σC and if a virtual deformation of a region

of space, in which the competing framework must lie, satisfies the kinematic

conditions imposed on the framework and gives strains of σ ε/σT in its tension

members, strain of −σ ε/σC in its compression members and has no direct

strain lying outside these limits.” — W. S. Hemp [17]

We denote that σ = (σT +σC)/2. In the modified conditions, Hemp introduces individual

(virtual) strain limits for tension and compression members. We summarize the modified

conditions as follows,
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Modified Michell Conditions (Hemp Conditions):

1: all the members are fully stressed, namely,

σ
(e) =

f (e)axial

x(e)
=

 +σT ∀e ∈ ET

−σC ∀e ∈ EC

(2.8)

2: there exists a kinematically admissible virtual displacement field δu, which

generates virtual strains ε(e) in each member as follows,

ε
(e) =


+ σ

σT
ε ∀e ∈ ET

− σ

σC
ε ∀e ∈ EC

(2.9)

The modified optimality conditions (2.8) and (2.9) are sufficient conditions for frames to

be the lightest. Note that an additional implication of the conditions is that the signs of

σ (e) (caused by the set of external force) and ε(e) (caused by the virtual displacement field)

of each member have to be the same. Hereafter, we denote Michell structures as the ones

satisfy conditions (2.8) and (2.9). In addition, the conditions suggest that all the members

of a Michell structure must lie in the principal directions of the chosen virtual strain field.

Notice that both virtual strain and corresponding virtual displacement fields are continuous,

thus, a Michell structure resembles truss-like continua, which consists of infinitely many

bars and joints.

Next, we provide a proof of the modified Michell’s optimality conditions (2.8) and (2.9)

by comparing the volumes of a Michell structure and an arbitrary structure that satisfy the

same set of loads. For a given set of external force f j applied at location r j, if we find a

Michell structure with volume VM and a proper virtual displacement field δu that satisfies

condition (2.9), then both σ (e) and ε(e) of each member in the Michell structure will achieve

the corresponding stress and virtual strain limits. Thus, by employing the principle of
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virtual work (2.5), the following relation holds for a Michell structure:

∑
j

f j
δu(r j) = ∑

e
(σ (e)x(e))(ε(e)L(e))

= ∑
e∈ET

(σT x(e))
[

σ

σT
εL(e)

]
+ ∑

e∈EC

(−σCx(e))
[
− σ

σC
εL(e)

]
= σ ε( ∑

e∈ET

x(e)L(e)+ ∑
e∈EC

x(e)L(e))

= σ ε VM.

(2.10)

For an arbitrary structure with volume VA that supports the same set of external force,

f j applied at location r j, the stress of each member within the stress limits,

−σC ≤ σ
(e) < σT , (2.11)

if we impose this arbitrary structure with the same virtual displacement field δu, the virtual

strain generated in each member then satisfies the following relation,

− σ

σC
ε ≤ ε

(e) ≤ σ

σT
ε. (2.12)

Plugging relations (2.11) and (2.12) into the principle of virtual work in (2.5), we have

∑
j

f j
δu(r j) = ∑

e
(σ (e)x(e))(ε(e)L(e))

≤ ∑
e∈ET

(σT x(e))
[

σ

σT
εL(e)

]
+ ∑

e∈EC

(−σCx(e))
[
− σ

σC
εL(e)

]
= σ ε( ∑

e∈ET

x(e)L(e)+ ∑
e∈EC

x(e)L(e))

= σ ε VA.

(2.13)

Because the external virtual work ∑ j f j
δu(r j) is independent of the structure layout, by

comparing (2.10) and (2.13), we conclude that VM ≤VA.
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Finally, based on (2.10), we obtain the following expression for VM,

VM =
∑ j f j

δu(r j)

σ ε
. (2.14)

The expression (2.14) suggests that, for a given set of external force and feasible design

space, if we can find a proper virtual displacement field δu that satisfies condition (2.9),

we can directly compute the volume of the Michell structure, even without knowing the

structural layout.

2.3 Types of Structures that Satisfy Michell’s Optimality Conditions

This section introduces two general types of structures that satisfy Michell’s conditions.

Type I: the first type of Michell structures are the trusses with members that are either all

in tension or all in compression. In this case, the proper virtual displacement field that

satisfies (2.9) is either a uniform dilation or contraction (according to either the truss is in

tension or compression). Here, we use the case that all the members are in tension, then a

proper virtual displacement field δu = [δux,δuy]
T is uniform dilation, that is,

∂δux

∂x
=

σ ε

σT
,

∂δuy

∂y
=

σ ε

σT
,

∂δux

∂y
+

∂δuy

∂x
= 0. (2.15)

Solving the above set of partial differential equations (PDEs) (2.15), we get

δux = A1 +By+
σ ε

σT
x, and δuy = A2−Bx+

σ ε

σT
y, (2.16)

where A1, A2 and B are constants represent the rigid body motion components of the virtual

displacement field. Having obtained the form of the virtual displacement field δu that

satisfies condition (2.9), using relation (2.14), we obtain the following expression for the
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volume of the first type of Michell structures for the tension case:

VM =
∑ j f j

δu(r j)

σ ε
= ∑

j

1
σT

(
f j
x x j + f j

y y j) , (2.17)

where f j
x and f j

y are the x and y components of the applied load f j at location r j = [x j,y j]T .

Type II: the second type of Michell structures contains both tension and compression

members. According to the second condition (2.9), there should exist a virtual displacement

δu that has a principal virtual strain of σ ε/σT in all members in tension and a principal

virtual strain of −σ ε/σC in all members in compression. The virtual strain field with

principal strains σ ε/σT and −σ ε/σC form an orthogonal system of lines. This implies

the orthogonality condition of the second type of Michell structures, that is, the tension

and compression members are always perpendicular to each other when they intersect.

Mathematically, we can parametrize the curves of tensile principal virtual strain σ ε/σT

and compressive principal virtual strain σ ε/σC along the two axes α and β as a general

curvilinear orthogonal coordinate system, as shown in Figure 2.2.

x

y

Figure 2.2: Curvilinear orthogonal coordinate system (α,β ).

In order to ensure that the virtual displacement δu exists from the virtual strain field,

such curvilinear coordinate system has to satisfy the compatibility condition, which re-

quires that the angle φ between the tangent of α lines and x-axis has to satisfy this differ-
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ential form,
∂ 2φ

∂α∂β
= 0, (2.18)

or alternatively, the two equations

φ(αk,β )−φ(αk−1,β ) = ∆φα =C1 and φ(α,βk)−φ(α,βk−1) = ∆φβ =C2, (2.19)

where C1 and C2 are constants. The compatibility of the virtual displacement field requires

that the change of angle ∆φα (obtained by turning through two tangent lines to an α line

as it moves through two fixed β lines) along all β lines are the same, and the change of

angle φβ (obtained by turning through two tangent lines to an β line as it moves through

two fixed α lines) along all α lines are the same. This geometric property is demonstrated

in Figure 2.3. The approaches that employ this geometric property to construct Michell

structures can be found in [78], [79]. The sets of orthogonal curves that satisfies (2.18) are

commonly known as the Hencky nets [74], [75], which are introduced in Section 2.4.

lines lines lines lines

Figure 2.3: Geometric implication of the compatibility condition.
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2.4 Construction of Michell Structures

This section introduces several classes of Hencky nets, which are useful tools to construct

Michell structures. Hencky nets (known as Hencky-Prandtl nets [74], [75] for slip lines in

two-dimensional perfectly plastic flow) are essentially orthogonal curvilinear coordinates

that satisfy the compatibility condition (2.18). Techniques for constructing and calculating

Hencky nets can be found in [80], [81]. The use of Hencky nets to derive the geometry and

volume of Michell structures are introduced by Hemp [17].

To find Michell structures using Hencky nets, we first choose the proper Hencky net

(and the associated virtual strain field) that satisfy the displacement boundary conditions

and equilibrium for a given problem. Then, we integrate the virtual strain field (associated

with that Hencky net) to obtain the virtual displacement field. Finally, the closed-form

optimal volume can be calculated through (2.14), and the geometric layout of the Michell

structure can be found on the virtual strain fields of the Henchy nets. In general, the explicit

expression of the Henchy nets in the orthogonal curvilinear coordinate systems with α,β

are cumbersome to obtain [17]. However, some simple Hencky nets can be constructed in

traditional coordinate systems. Thus, the virtual strain fields governed for those Hencky

nets are readily available. Next, we introduce four Hencky nets and provide the corre-

sponding virtual strain fields.

Hencky net 1: the first Hencky net consists of sets of orthogonal and parallel straight

lines, as shown in Figure 2.4a. This Hencky net can be parametrized in Cartesian coordi-

nates as follows,

∂δux

∂x
=

σ ε

σT
,

∂δuy

∂y
=−σ ε

σC
,

∂δux

∂y
+

∂δuy

∂x
= 0. (2.20)

Solving the set of PDEs in (2.20), we obtain the corresponding virtual displacement field,

δux = A1 +By+
σ ε

σT
x, and δuy = A2−Bx− σ ε

σC
y, (2.21)
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where A1, A2 and B are constants represent the rigid body motion components of the virtual

displacement field.

σ ε
σT

x

y
σ ε
σC

-

r

σ ε
σT

σ ε
σC

-

θ

a b

Figure 2.4: Hencky nets in a Cartesian coordinates and b polar coordinates.

Hencky net 2: the second Hencky net is constructed by straight lines and circles, as

shown in Figure 2.4b. This Hencky net can be parametrized in polar coordinates and the

corresponding virtual strain field is as follows,

∂δur

∂ r
=

σ ε

σT
,

1
r

∂δuθ

∂θ
+

δur

r
=−σ ε

σC
,

1
r

∂δur

∂θ
+

∂δuθ

∂ r
− δuθ

r
= 0. (2.22)

Solving the set of PDEs in (2.22), the following virtual displacement field is obtained,

δur =
σ ε

σT
r+A1 cosθ +A2 sinθ , (2.23)

and

δuθ =−
[

σ ε

σT
+

σ ε

σC

]
rθ −A1 sinθ +A2 cosθ +Br, (2.24)

where A1, A2 and B are constants represent the rigid body motion components of the virtual

displacement field. Assuming the virtual displacement field is fixed at r = 1 with no rigid
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body rotation (i.e., B = 0), (2.23) and (2.24) simplify to following expressions,

δur =
σ ε

σT
r, and δuθ =−

[
σ ε

σT
+

σ ε

σC

]
rθ . (2.25)

Hencky net 3: we can construct a Hencky net that is a hybrid of other nets. For this

type of hybrid systems, we need to enforce continuity of the virtual displacement field at

the interfaces of the constituents. The third Hencky net is constructed by a combination of

Cartesian and polar coordinates, as shown in Figure 2.5.

θ

r

rx

y

σ ε
σT
σ ε
σC

-

Region I

Region II

Region III

Region IV

Figure 2.5: Hencky net constructed by Cartesian and polar coordinates.

Regions I and III consist of straight lines and circles. According to (2.23) and (2.24),

the virtual displacement fields in these two regions, denoted by δuI and δuIII, are described
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in polar coordinates as

δuI
r =−

σ ε

σC
r+AI

1 cosθ +AI
2 sinθ ,

δuI
θ =

[
σ ε

σT
+

σ ε

σC

]
rθ −AI

1 sinθ +AI
2 cosθ +BIr ,

δuIII
r =

σ ε

σT
r+AIII

1 cosθ +AIII
2 sinθ ,

δuIII
θ =−

[
σ ε

σT
+

σ ε

σC

]
rθ −AIII

1 sinθ +AIII
2 cosθ +BIIIr .

(2.26)

Unlike regions I and III, regions II and IV consist two sets of orthogonal straight lines

and thus the virtual displacement in these regions can be more conveniently described in

Cartesian coordinates as
δuII

x = AII
1 +BIIy+

σ ε

σT
x ,

δuII
y = AII

2 −BIIx− σ ε

σC
y ,

δuIV
x = AIV

1 −BIVy− σ ε

σC
x ,

δuIV
y = AIV

2 +BIVx+
σ ε

σT
y .

(2.27)

To obtain the undetermined constants, we assume that virtual displacement field is 0 at the

origin and then enforce the continuity at the interfaces between all regions, namely,

δuI
θ (r,−

3π

4
) =−δuII

x (0,y) and δuI
r(r,−

3π

4
) = δuII

y (0,y) ,

δuII
y (x,0) = δuIII

θ (r,
3π

4
) and δuII

x (x,0) = δuIII
r (r,

3π

4
) ,

δuIII
θ (r,

π

4
) = δuIV

x (0,y) and δuIII
r (r,

π

4
) =−δuIV

y (0,y) ,

δuIV
y (x,0) =−δuI

θ (r,−
π

4
) and δuIV

x (x,0) =−δuI
r(r,−

π

4
) .

(2.28)
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Finally, we obtain the following virtual displacement field for Hencky net 3,

δuI
r =−

σ ε

σC
r ,

δuI
θ =

[
σ ε

σT
+

σ ε

σC

]
rθ ,

δuII
x =

[
σ ε

σT
+

σ ε

σC

]
3π

4
y+

σ ε

σT
x ,

δuII
y =−

[
σ ε

σT
+

σ ε

σC

]
3π

4
x− σ ε

σC
y ,

δuIII
r =

σ ε

σT
r ,

δuIII
θ =−

[
σ ε

σT
+

σ ε

σC

]
rθ ,

δuIV
x =

[
σ ε

σT
+

σ ε

σC

]
π

4
y− σ ε

σC
x ,

δuIV
y =−

[
σ ε

σT
+

σ ε

σC

]
π

4
x+

σ ε

σT
y .

(2.29)

Hencky net 4: The forth Hencky net consists of equiangular spirals, as shown in Figure

2.6. This Hencky net can be parametrized in a polar coordinate. Here we consider a special

case σT = σC = σ . The virtual strain field is as follows,

∂δur

∂ r
= 0,

1
r

∂δuθ

∂θ
+

δur

r
= 0,

1
r

∂δur

∂θ
+

∂δuθ

∂ r
− δuθ

r
=−2ε. (2.30)

Solving the PDEs in (2.30), we obtain the following virtual displacement field for this type

of Hencky net,

δur = A1 cosθ +A2 sinθ , (2.31)

and

δuθ =−2εr ln(
r
B
)−A1 sinθ +A2 cosθ , (2.32)

where A1, A2 and B are constants represent the rigid body motion components of the virtual

displacement field. If the circle r = R0 is a fixed support and has zero rotation, then the
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r

θ

x

y -ε

ε

R0

Figure 2.6: Hencky net constructed by equiangular spirals.
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virtual displacement field becomes

δur = 0 and δuθ =−2εr ln(
r

R0
) . (2.33)

2.5 Michell Solutions

In this section, we use Michell’s optimality conditions and Hencky nets to derive the ana-

lytical solutions of several 2D and 3D Michell structures.

2.5.1 Derivation of the 2D Michell solutions

In this subsection, we derive the close-form optimal volume and the geometric layout for

four 2D examples. The first 2D example considers a centrally loaded beam, as shown in

Figure 2.7a, the design domain is limited to the semi-infinite plane above the line AB. We

first assume that all the members of the Michell structure are fully stressed to the stress

limits σT and σC. To find the Michell structure by using Hencky nets, we choose the

proper Hencky net that satisfies the displacement boundary conditions and equilibrium for

the problem in Figure 2.7a. Among the four Hencky nets introduced in Section 2.4, the

second Hencky net with polar coordinates is the proper one (with point O as the origin), as

shown in Figure 2.7b. Other Hencky nets violate the displacement boundary conditions and

equilibrium. Thus, we use the corresponding virtual displacement field (2.25) in the polar

coordinates. The three loaded points O, A, and B have coordinates [rO,θ O]T = [0,0]T ,

[rA,θ A]T = [L,π]T , and [rB,θ B]T = [L,0]T , respectively. By plugging these coordinates into

(2.25), we obtain the expressions for δu. We also observe that δur,O = δuθ ,O = δuθ ,B = 0.

In addition, points A and B contribute to the external virtual work only from the tangential

component (zero force in the radial direction), i.e., f A
r = 0, f A

θ
=−P, f B

r = 0, f B
θ
=P. Thus,

the external virtual work and the closed-form optimal volume can be calculated through
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(2.14) as follows:

δΩ = f A
θ (δuθ ,A)+ f B

θ (δuθ ,B) = PLπ

[(
σ ε

σT
+

σ ε

σC

)]
, (2.34)

and

VM = PLπ

[(
1

σT
+

1
σC

)]
. (2.35)

Following the virtual strain field in the Hencky net 2, we obtain the geometric layout of

this Michell structure, as shown in Figure 2.7c, which consists of infinitely many bars and

joints.

L L

P 2P P
A O B

P 2P P
A O B

a b

c
P 2P P

σ ε
σT

σ ε
σC

-

θ

r

Figure 2.7: Centrally loaded beam with semi-infinite plane domain. a Load and boundary
conditions, the design domain is subjected to the semi-infinite 2D plane above line AB; b

applying Hencky net 2 to the problem; c corresponding analytical solution.

The second example considers the same load and boundary conditions as the first ex-

ample, however, we subject the domain to the infinite 2D plane (instead of semi-infinite),
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as shown in Figure 2.8a. We first assume that all the members of the Michell structure are

fully stressed to the stress limits σT and σC. In this example, Hencky net 3 provides virtual

displacement field (2.29) that satisfies the displacement boundary conditions and equilib-

rium, as shown in Figure 2.8b. In Hencky net 3 with the combination of Cartesian and

polar coordinates, the three loaded points O, A, and B have coordinates [rO,θ O]T = [0,0]T ,

[xA,yA]T = [L/
√

2,L/
√

2]T , and [xB,yB]T = [−L/
√

2,−L/
√

2]T , respectively. Because the

force at point O does not contribute to the external virtual work and points A and B are in

regions II and IV of Hencky net 3, we obtain the virtual displacement at A and B, denoted

by δuII
x,A, δuII

y,A, δuIV
x,B, andδuIV

y,B, by plugging in the corresponding coordinates of A and B

to (2.29). In addition, [ f A
x , f A

y ]
T = [P/

√
2,−P/

√
2]T , and [ f B

x , f B
y ]

T = [P/
√

2,−P/
√

2]T .

Thus, the external virtual work and the closed-form optimal volume can be calculated

through (2.14) as follows:

δΩ = f A
x (δuII

x,A)+ f A
y (δuII

y,A)+ f B
x (δuIV

x,B)+ f B
y (δuIV

y,B)

= PL
(

1+
π

2

)[(
σ ε

σT
+

σ ε

σC

)]
,

(2.36)

and

VM = PL
(

1+
π

2

)[( 1
σT

+
1

σC

)]
. (2.37)

Using the virtual strain fields in the Hencky net 3, we obtain the geometric layout of this

Michell structure consists of infinitely many bars and joints, as shown in Figure 2.8c.

A smaller (restrained) design space may lead to the optimal structure with a larger

volume [16]. Comparing the analytical optimal volume expressions of these two Michell

structures in (2.35) and (2.37), we observe that structure with a larger design space (i.e.,

infinite 2D plane) has smaller optimal volume than the one with a smaller design space

(i.e., semi-infinite 2D plane). Specifically, the ratio of (2.35) to (2.37) is π/(1+π/2).

The third example is the Michell torsional disc. The load and displacement boundary

conditions are shown in Figure 2.9a, where a pair of uniformly distributed torques is ap-
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σ ε
σT

σ ε
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-
θ

rx

y

Figure 2.8: Centrally loaded beam with infinite plane domain. a Load and boundary
conditions, the design domain is subjected to the infinite 2D plane; b applying Hencky net

3 to the problem; c corresponding analytical solution.
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plied at the inner circular (r = R0) and outer circular (r = R) boundaries. For this problem,

assuming that all the members in the Michell structure are fully stressed to the same stress

limit σT = σC = σ , Hencky net 4 in Figure 2.6 provides the proper virtual displacement

field, where the displacement is fixed at the inner circle with radius R0. Using the expres-

sion of the virtual displacement δuθ (and δur = 0) in (2.33), we can compute the external

virtual work as follows:

δΩ =

(∫ 2π

0
−τ0Rdθ

)
δuθ = 4πεR2

τ0ln(
R
R0

) . (2.38)

By defining Ttorsion = 2π(R)2τ0 as the total torque applied and using relation (2.14), we

obtain the volume of the Michell torsional disc as follows,

VM =
2Ttorsion

σ
ln(

R
R0

) . (2.39)

Next, we use the virtual strain field in the Hencky net 4 to obtain the geometric layout of

the Michell torsional disc, which is constructed by equiangular spirals, as shown in Figure

2.9b.

R

R0

a b

r

θ

τ0

τ0

Figure 2.9: Michell torsional disc. a Load and boundary conditions, the design domain is
subjected to infinite 3D space; b corresponding analytical solution.
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The last 2D example considers a cantilever beam. The load and displacement boundary

conditions are shown in Figure 2.10a, where the left circle with radius R0 is a fixed support.

Similar to the Michell torsional disc, we have the stress limit σT = σC = σ . In addition,

Hencky net 4 provides the proper virtual displacement field for this example. Thus, we use

the polar coordinates (r,θ) with point O as the origin and r = R0 on the edge of the left

circle. The location of the point A is denoted by [rA,θ A]T = [L,0]T , hence, point A has the

virtual displacement δur,A = 0 and δuθ ,A = −2εL ln(L/R0). Given that f A
r = 0, f A

θ
= −P,

we can compute the external virtual work and closed-form optimal volume as follows:

δΩ = f A
θ δuθ ,A = 2PLε ln(

L
R0

) , (2.40)

and

VM =
2PL
σ

ln(
L
R0

) . (2.41)

By using the virtual strain field in the Hencky net 4, we obtain the geometric layout of the

Michell cantilever, which is constructed by equiangular spirals, as shown in Figure 2.10b.

R0

L

a b

P P
r

θ
O A

Figure 2.10: Michell cantilever. a Load and boundary conditions, the design domain is
subjected to infinite 3D space; b corresponding analytical solution.
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2.5.2 Derivation of the 3D Michell torsional sphere and torsional cylinder

Michell torsional sphere is one of the few available closed-form solutions for 3D problems,

which suggests that the lightest structure to transfer a pair of distributed torques over small

circumferences is a spherical shape. The load and boundary conditions are provided in

Figure 2.11a, and the design domain is subjected to the infinite three-dimensional space.

The corresponding optimal solution, torsional sphere, is shown in Figure 2.11b. Details

of the derivations are not included in Michell’s paper [16], and the solution is re-derived

in [17], [23]. The derivation by Hemp [17] assumes that (1) σT = σC = σ and (2) the

meridian of the optimal shape is a segment of a circle. With the same assumptions, in

this subsection, we derive the analytical solution of the Michell torsional sphere by using

Michell’s conditions.

a b

τ0

τ0

θ0
H/2

R0

H/2

Figure 2.11: Michell torsional sphere. a Load and boundary conditions, the design
domain is subjected to the infinite 3D space; b corresponding analytical solution.

To begin with, we start by examining the stress state to determine the proper virtual

strain field to use. Because we assume that the optimal structure is on a sphere of radius

R = R0/sinθ0, making use of the spherical coordinate in Figure 2.12a, the stress at any
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given point on the sphere surface is given by

σσσ(r,θ ,φ) =


0 0 0

0 0 τ(θ)

0 τ(θ) 0

 . (2.42)

By using analysis shown in Figure 2.12c, we obtain τ(θ) = τ0(sinθ0)
2/(sinθ)2. The stress

tensor suggests that any location on this spherical surface is under pure shear state, as shown

in Figure 2.12b. Inspired by this stress state, we look for a virtual displacement δu, which

generates virtual strains of the form

εεε(r,θ ,φ) =


0 0 0

0 0 ε

0 ε 0

 . (2.43)

Plugging in the virtual strain (2.43) into the strain-displacement relationship in spherical

coordinates, we arrive at the following set of PDEs:

∂δur

∂ r
= 0 ,

1
r

(
∂δuθ

∂θ
+δur

)
= 0 ,

1
r sinθ

(
δuφ

∂φ
+δur sinθ +δuθ cosθ

)
= 0 ,

1
2

(
1
r

∂δur

∂θ
+

∂δuθ

∂ r
− δuθ

r

)
= 0 ,

1
2r

(
1

sinθ

∂δuθ

∂φ
+

∂δuφ

∂θ
−δuφ cotθ

)
= ε ,

1
2

(
1

r sinθ

∂δur

∂φ
+

∂δuφ

∂ r
−

uφ

r

)
= 0 .

(2.44)

Solving the set of PDEs (2.44) gives the following virtual displacement field δu

δur = 0, δuθ = 0, and δuφ (r,θ) = 2εr sinθ ln(tan
θ

2
). (2.45)
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Figure 2.12: a Spherical coordinate system; b stress state on the spherical surface; c
equilibrium analysis of the sphere.
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Using the expression of the virtual displacement δu in (2.45), we can compute the external

virtual work as follows:

δΩ =
∫ 2π

0

[
−τ0(Rsinθ0)δuφ (R,θ0)dφ

]
+
∫ 2π

0

[
τ0(Rsinθ0)δuφ (R,π−θ0)dφ

]
= 8πεR2 sin2

θ0τ0ln(cot
θ0

2
) .

(2.46)

By defining Ttorsion = 2π(Rsinθ0)
2τ0 = 2π(R0)

2τ0 as the total torque applied and using

relation (2.14), we can obtain the volume of the Michell torsional ball as a function of

Ttorsion as

VM,sphere =
4Ttorsion

σ
ln(cot

θ0

2
) . (2.47)

According to the optimality conditions, all the members in Michell structures must lie

in the principal strain directions, thus, the members for this Michell sphere lie in the prin-

cipal directions of the virtual strain in (2.43), constructing a series of rhumb lines inclined

at angles ±Π/4, which is a grid-like continua consists of infinitely many bars and joints,

as shown in Figure 2.11b. The optimal solution for the case σT 6= σC could be generalized

[20], in this case, the tension and compression members are no longer with same lengths in-

clined at same angles. For example, the tension members would be longer and compression

members shorter for σT > σC.

The second 3D example, torsional cylinder, solves the same load and boundary condi-

tions as the Michell torsional sphere. However, instead of an infinite 3D space, we restrain

the design domain to the cylindrical surface with radius R0 in the 3D space, as shown in

Figure 2.13a. Similar to the torsional sphere, the stress and the virtual strain any given

point on the cylindrical surface in cylindrical coordinates (Figure 2.13b) are given by

σσσ(r,θ ,z) =


0 0 0

0 0 τ(θ)

0 τ(θ) 0

 , and εεε(r,θ ,z) =


0 0 0

0 0 ε

0 ε 0

 . (2.48)
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Using the strain-displacement relationship and solving the corresponding PDEs in cylin-

drical coordinates, we obtain

δur = 0, δuθ (z) =−2εz, and δuz = 0. (2.49)

Using (2.49), we compute the external virtual work as follows:

δΩ =−2πR0τ0δuθ +2πR0τ0δuθ

= 4πR0Hετ0 .

(2.50)

By defining Ttorsion = 2π(R0)
2τ0 as the total torque applied, we can obtain the volume of

the Michell torsional cylinder as a function of Ttorsion as

VM,cylinder =
2HTtorsion

R0σ
=

4Ttorsion

σ
cotθ0 . (2.51)

Using the principal directions of virtual strain field in (2.48), we obtain the layout of this

Michell cylinder as a grid-like continua on the cylindrical surface (Figure 2.13c).
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Figure 2.13: Torsional cylinder. a Design domain with load and boundary conditions, the
design domain is subjected to the cylindrical surface; b cylindrical coordinate system; c

corresponding analytical solution.
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Next, we compare the close-form optimal volumes of the two 3D structures, the ratio

of (2.51) to (2.47) is
VM,cylinder

VM,sphere
=

cotθ0

ln(cot θ0
2 )

. (2.52)

By defining V M = VMσ/4Ttorsion as the normalized volume for the two 3D examples, we

plot V M for torsional cylinder and torsional sphere with varied θ0 in Figure 2.14. The

optimal volumes for both torsional sphere and torsional cylinder approach to zero as θ0

increases to π/2. We observe that, for 0 < θ0 < π/2, the torsional sphere (obtained from

a larger design space) always has smaller optimal volume than the torsional cylinder (ob-

tained from a smaller design space). This observation confirms that a smaller (restrained)

design space may lead to the optimal structure with a larger volume [16]. Relevant discus-

sions can also be found in [23].
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Figure 2.14: Comparison of the optimal volumes of Michell torsional sphere and torsional
cylinder.
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2.6 Summary and Discussion

In this chapter, we review Michell’s original optimality conditions [16] and Hemp’s mod-

ified optimality conditions [17] for trusses to have the least weight with given allowable

stresses. The first condition requires the members to be fully stressed to the tensile and

compressive stress limits (σT ,σC). The second condition requires the existence of a kine-

matically admissible virtual displacement field that gives tensile and compressive principal

virtual strains in all tension and compression members, respectively. Based on the con-

ditions, all the members of a Michell structure must lie in the principal directions of the

chosen virtual strain field, thus, a Michell structure resembles truss-like continua, which

consists of infinitely many bars and joints. Using the principle of virtual work, we provide

a proof of the optimality conditions. In addition, we present two types of Michell structures

and illustrate their geometric properties, i.e., orthogonality and compatibility conditions.

We introduce four types of Hencky nets, which are useful tools to derive the geometry

and volume of Michell structures. Finally, we derive the closed-form solutions for four

2D structures and two 3D structures by using Michell’s conditions and Hencky nets. We

observe that a smaller (restrained) design space may lead to the optimal structure with a

larger volume. For example, with the same load and boundary conditions, if we restrain the

design space to a cylindrical surface rather than the infinite 3D space, the optimal structure

obtained (a torsional cylinder) has larger a volume than the torsional sphere.

We remark that studying Michell’s optimality conditions, the geometric implications,

and derived closed-form solutions not only brings insights for functional and creative struc-

tural designs, but also provides analytical benchmarks for numerical optimization methods

to verify with. However, there are a few problems with analytical solutions. For more

complex problems with no known analytical solutions, computational approaches (e.g.,

ground structure and density-based methods) can offer close-to-optimal solutions. Another

approach using the graphic statics to obtain optimal structures is developed in [82]. Thus,
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Chapters 3-6 of this thesis focus on developing new computational approaches for topology

optimization.
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CHAPTER 3

A NEW DISCRETE FILTERING SCHEME FOR MATERIAL NONLINEAR

TOPOLOGY OPTIMIZATION USING THE GROUND STRUCTURE METHOD

Topology optimization of truss lattices, using the ground structure method, is a practical

tool that allows for improved structural designs. However, in general, the final topology

consists of a large number of undesirable thin bars that may add artificial stiffness and de-

generate the condition of the system of equations, sometimes even leading to an invalid

structural system. Moreover, most work in this field has been restricted to linear material

behavior, yet real materials generally display nonlinear behavior. To address these issues,

in this chapter, we present an efficient filtering scheme, with reduced-order modeling, and

demonstrate its application to two- and three-dimensional topology optimization of truss

networks considering multiple load cases and nonlinear constitutive behavior. The pro-

posed scheme accounts for proper load levels during the optimization process, yielding the

displacement field without artificial stiffness by simply using the truss members that actu-

ally exist in the structure (no spurious members), and improving convergence performance.

The nonlinear solution scheme is based on a Newton-Raphson approach with line search,

which is essential for convergence. In addition, the use of reduced-order information signif-

icantly reduces the size of the structural and optimization problems within a few iterations,

leading to drastically improved computational performance. For instance, the application

of our method to a problem with approximately 1 million design variables shows that the

proposed filter algorithm, while offering almost the same optimized structure, is more than

40 times faster than the standard ground structure method.
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3.1 Introduction

In an effort to attain structural efficiency, a technique used for optimizing the truss lattice

networks is the ground structure method (GSM) (see, e.g., [27]–[31]). In the field of struc-

tural topology optimization of trusses using the GSM, it is important to take into account

material nonlinearity, because real materials generally display nonlinear constitutive rela-

tionship. For example, certain heat treatment methods change the constitutive relationships

of a material dramatically. Although the influence of material properties on optimization

design is well known, the exact changes that take place may not be predictable in the opti-

mized design. Topology optimization considering linear material behavior (the prevailing

approach in the literature [30]) has a limited scope, which can be extended by accounting

for nonlinear material as it can significantly alter the optimized structure layout. In fact,

the studies of material nonlinearity using the GSM (e.g., [39], [41], [83], [84]) show the

importance of accounting for nonlinear material properties and load levels in structural op-

timization. Figure 3.1 further illustrates and motivates the influence of material nonlinearity

in optimization. Two hyperelastic material models with convex specific strain energy, rep-

resenting tension-dominated and compression-dominated Ogden-based materials, lead to

completely different final topologies. In addition, the self-equilibrated filtered structure in

Figure 3.1d (from the compression-dominated material) is a motivation for solving systems

with a singular stiffness matrix.

Structural Engineering Perspective:

From the perspective of structural engineering, one limitation of the standard GSM is its

inability to define a valid final structure and the unlikelihood of manufacturing an optimized

structure. Since a cut-off value is needed to define the final topology for the standard GSM

(a sizing problem), the topology may either consist of a large number of undesirable thin

bars (if the cut-off value is too small) or violate the global equilibrium (if the cut-off value

1The tension-dominated material has (β1,β2) = (4264.0,−0.9) and the compression-dominated material
has (β1,β2) = (1.1,−4253.4), where β1 and β2 are material parameters for Ogden-based material models –
see Section 3.1 for the constitutive model definition.
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Figure 3.1: Influence of material properties in topology optimization: a Hyperelastic
Ogden-based material models with convex1 specific strain energy; b initial ground

structure and boundary conditions; c final filtered topology from the tension-dominated
Ogden-based material model; d either linear elastic material or the

compression-dominated Ogden-based material model yields a self-equilibrated filtered
topology. Blue bars are in tension and the red bar is in compression.

is too large) because of the removal of some structurally important bars. This is illustrated

by means of Figure 3.2, which shows a bridge (Figure 3.2a) with a bilinear material model

(Figure 3.2b). For comparison purposes, Figure 3.2c shows the case when a proper cut-off

is chosen and Figure 3.2d shows the case when global equilibrium is violated because of

an improper choice of the final cut-off value, both of them using the same lower bound on

the design variable, xmin = 1.36×10−8. Figures 3.2e and 3.2f illustrate the final topologies

without a cut-off value. Figure 3.2e is obtained using the standard GSM with an arbitrarily

small lower bound of the design variable, xmin = 1.36× 10−14. As a result, the entire

ground structure is included in the final topology. Figure 3.2f shows the final topology

with xmin = 0 as the lower bound, in which the final topology consists of numerous thin

bars. Note that the zero lower bound on design variables leads to singular tangent stiffness

matrices. In this case, state equations were solved by minimization of potential energy with

Tikhonov regularization [85]. For other methods of solving the state equations, readers

are referred to [86]–[88]. Attempts have been made to treat undesirable thin members

and obtain valid and constructible structures. By introducing discrete variables (either as
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design variables or as the existence variable) into the optimization, the undesirable thin

bars may be avoided. For example, [89] impose a realistic design constraint with a binary

variable (to represent presence or absence) on the braces with geometric nonlinearity, which

only selects braces within specific bound limits. However, these formulations with discrete

variables to treat thin members become mixed integer linear/nonlinear problems. For a

detailed review of the truss optimization with discrete design variables, readers are referred

to [90]. Another approach consists of including “slenderness constraints” using a plastic

formulation [35], [36]. Here we adopt an elastic formulation as motivated by a recent

study by [85], who propose a discrete filter that can be used to control the final resolution

of the optimized structure, resulting in a valid structure in which global equilibrium is

guaranteed. This discrete filter has only been applied to linear optimization problems;

therefore, in an effort to provide a practical design tool that targets the real-life demands of

material, structural design, and manufacturing aspects, we propose a filtering scheme with

reduced-order modeling that accounts for material nonlinearity in this chapter.

Analysis Perspective:

From an analysis perspective, the standard GSM considering material nonlinearity, contains

numerous small area truss members, which can be problematic in two aspects: first, since

small area members are included to solve the structural problem, they add artificial stiffness

to the structure, leading to a degree of unreliability of the optimization results. Moreover,

in the nonlinear finite element method (FEM) of the standard GSM, certain nodes that only

connect to thin members produce small eigenvalues in the stiffness matrix, which could

degenerate the condition of the state equations and result in difficulties in convergence.

Nevertheless, the removal of these thin members can result in a violation of global equi-

librium, as shown in Figure 3.2d. The proposed filter algorithm, however, filters out the

small area members and the associated nodes of the structure thus solving such structural

problems (state equations) solely by using other relevant members in the structure. As a

result, the displacement field is obtained, preventing local instability in the low stiffness re-
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domain and boundary conditions; b bilinear material model with Ec/Et = 0.04
(hyperelastic formulation); c final topology (41 members) considering a lower bound on
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xmin = 1.36×10−8 with an improper cut-off value which shows that global equilibrium
does not hold; e final topology (7,083 members) without the cut-off value considering a

relatively small lower bound on area xmin = 1.36×10−14; f final topology (975 members)
without the cut-off value considering zero lower bound on area xmin = 0. Blue bars are in

tension and red bars are in compression.
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gions (regions associated with the small area members), which improves the convergence

performance in the nonlinear FEM and allows global equilibrium and stability verification

in the actual topology.

Efficiency Perspective:

From the perspective of efficiency, another major problem with the GSM that accounts for

material nonlinearity is the high computational cost of the iterative procedure for solving

nonlinear structural systems. Furthermore, the incorporation of the multiple load cases into

the nonlinear problems leads to higher computational cost, because each load case requires

an independent iterative nonlinear FE analysis. To minimize the cost, a fully reduced-order

model is used in the filtering scheme, which solves both the state and optimization problems

of the filtered structures. As a result of the smaller sizes of the tangent stiffness matrix and

the sensitivity vector, the use of the proposed filtering scheme with the fully reduced-order

model significantly improves the computational performance of the optimization algorithm.

Chapter Context and Content:

This work is based on an elastic formulation with the total potential energy used in both

the objective function and the structural problem2 (see, e.g., [84], [91]–[97]). Other types

of objective functions in nonlinear problems have been studied by other authors (see, e.g.,

[98]–[100]).

The remainder of the chapter is organized as follows. Section 2 presents the standard,

modified standard, and filter formulations adopted for the nonlinear optimization problem

under multiple load cases, followed by sensitivity analysis, convexity proof, and KKT con-

ditions. Section 3 describes the truss models with material nonlinearity, corresponding

potential energy, linearization of the governing equations, and the methods of solving the

state equations. Section 4 introduces the reduced-order model in the state and the opti-

mization problems. Section 5 presents numerical examples in two- and three-dimensions

highlighting the properties of the proposed method, and Section 6 provides concluding

2In general, it can be seen as a surrogate for understanding the field of nonlinear topology optimization.
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remarks with suggestions for extending the work.

3.2 Nested Optimization Formulations for Nonlinear Problems Considering Multi-

ple Load Cases

In this section, we examine the standard and the modified standard nested formulations as

well as the filter formulation of the nonlinear optimization problem considering multiple

load cases. In addition, the sensitivity analysis, convexity proof, a conceptual example with

unbounded solution, and the KKT conditions are presented.

3.2.1 Standard and modified standard formulations (without filter)

First, we present the standard nested formulation and the solution algorithm of topology

optimization for trusses with nonlinear constitutive models and small deformation. The

topology design consists of determining the cross-sectional areas of the truss elements us-

ing the ground structure (GS) approach. By definition, the standard total potential energy

of the structure is Π(u) = U (u)+Ω(u), where u is the displacement vector, U (u) is the

strain energy, and Ω(u) is the total potential of the loads, given by

U (u) =
M

∑
e=1

∫
V (e)

Ψ
(e) (u)dV =

M

∑
e=1

V (e)
Ψ

(e) (u) =
M

∑
e=1

x(e)L(e)
Ψ

(e) (u) , (3.1)

and

Ω(u) =−f Tu, (3.2)

where Ψ(e) (u), x(e), L(e), and V (e) are the specified strain energy function, the cross-

sectional area, the length, and the volume of truss member e, respectively. The specified

strain energy function, Ψ(e) (u), is assumed to be convex and differentiable for any given

u. The parameter n denotes the total number of truss members and f is the external load

vector. We use the following nested formulation for the optimization problem under m`
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load cases:

min
x

J (x) = min
x

m`

∑
j=1
−w jΠ j

(
x,u j (x)

)
s.t. g(x) = LTx−Vmax ≤ 0

0 < x(e)min ≤ x(e) ≤ x(e)max, e = 1, ...,M

with u j (x) = argmin
u

Π j (x,u) , j = 1, ...,m`,

(3.3)

where the objective function3 J (x) = ∑
m`
j=1−w jΠ j

(
x,u j (x)

)
is the additive inverse of a

weighted sum of the total potential energy of the system in equilibrium state from each

load case [84], where Π j is the total potential energy of the equilibrated system under the

jth load f j, w j is the corresponding weight (strictly positive), u j is the equilibrating dis-

placement field (state variable) under load case f j, x and L are the vectors of cross-sectional

area (design variable) and length, respectively, Vmax is the maximum material volume, and

x(e)min and x(e)max denote the positive lower and upper bounds of the design variable of member

e, respectively.

The objective function is based on the min-max formulation described in [96] and [97].

Following common practice [31], in this standard approach, we introduce the strictly posi-

tive lower bound x(e)min to prevent the singular tangent stiffness matrix from forming [31]. As

a result, this standard nested formulation in Eq. (3.3) is a sizing problem. At the end of the

optimization scheme, we use a “cut-off” approach for design variables to define the final

topology. In this chapter, we assume that the specific strain energy is a convex function and

the structural model can carry each load case f j, j = 1, ...,m`, (i.e., the equilibrium con-

dition is satisfied, T
(
x,u j

)
= f j, j = 1, ...,m` ). For the standard formulation (Eq. (3.3)),

these assumptions, with the strictly positive lower bound on design variables, lead to the

convexity of the potential energy with respect to the displacement field u (strict convexity

of the potential energy requires the strictly convex specific strain energy and x(e)min > 0),

3In order to provide a physical explanation for the objective function, notice that when the prescribed
displacements is zero on the boundary Su, J =Uc where Su is the portion of the boundary where displacement
boundary condition is applied and Uc is the complementary energy at the equilibrium configuration (see [84]).
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which ensures the attainability of a finite solution, u j, for each load case f j in the structural

model for any fixed feasible x.

For the modified standard optimization formulation for trusses with material nonlinear-

ity, we relax the lower bound of the design variables and require x(e) ≥ 0 for e = 1, ...,M.

The formulation then becomes,

min
x

J (x) = min
x

m`

∑
j=1
−w jΠ j

(
x,u j (x)

)
s.t. g(x) = LTx−Vmax ≤ 0

0≤ x(e) ≤ x(e)
max

, e = 1, ...,M

with u j (x) = argmin
u

[
Π j (x,u)+

Γ j

2
uTu

]
, j = 1, ...,m`.

(3.4)

In the modified standard formulation, the lower bound of the design variables becomes

the value of zero, showing that truss members can be removed by the update scheme from

the problem [85]. This modification on the lower bound of design variables transforms the

sizing problem in Eq. (3.3) into a topology optimization problem. In addition, to prevent

the possibility of a singular tangent stiffness matrix from forming in the Newton-Raphson

method for the structural nonlinear equations, we introduce a Tikhonov regularization term

[85], [101]–[103], Γ j
2 uTu, for jth load case, where Γ j is the regularization parameter. The

details of the Tikhonov regularization on the potential energy are shown in Section 3.4. For

the modified standard formulation in Eq. (3.4), because we assume that specific strain en-

ergy is a convex function and the structural model can carry each load case f j, j = 1, ...,m`,

(i.e., the equilibrium condition is satisfied, T
(
x,u j

)
= f j, j = 1, ...,m` ), the potential en-

ergy is a convex function with respect to the displacement field u and the obtained u j is a

global minimum. By further including the Tikhonov regularization in the potential energy

in the structural problem, the potential energy becomes strictly convex with respect to u, in

this case, the global minimum u j for load case j is unique.
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3.2.2 Filter formulation

Here, denoting α f as the filter parameter for controlling the resolution of the topology, we

introduce the filter operation as follows:

Filter
(
x,α f ,e

)
=


0, if x(e)

max(x) < αf < 1,

x(e), otherwise.

(3.5)

We perform the filter operation every N f steps during the optimization process to remove

the information associated with the set of truss members with normalized areas below the

filter parameter α f , where N f is prescribed by the user to determine how frequently to

perform the filter operation. We denote x(e)f as the filtered cross-sectional area associated

with truss member e. In order to compare the final resolution of the results, we define the

resolution of the filtered structure, αTop, as follows,

αTop =
min

(
x f
)

max
(
x f
) . (3.6)

Figure 3.3 illustrates the filtering scheme. With the filter operation above, we introduce

the filter formulation for optimization of trusses with material nonlinearity as follows:

min
x

J (x) = min
x

m`

∑
j=1
−w jΠ j

(
x f (x) ,u j (x)

)
s.t. g(x) = LTx f (x)−Vmax ≤ 0

0≤ x(e) ≤ x(e)max, e = 1, ...,M

with u j (x) = argmin
u

[
Π j
(
x f (x) ,u

)
+

Γ j

2
uTu

]
, j = 1, ...,m`

and x(e)f = Filter
(
x,α f ,e

)
, e = 1, ...,M.

(3.7)
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where the subscript f denotes a filtered value. The Algorithm 1 shows the implementation

of our proposed algorithm. We note that this is a simplified procedure aiming at relatively

low values of the filter α f . For a more detailed discussion of the filter, see [85]. In the

numerical examples, we use a relatively small filter, α f = 10−4, because the main pur-

pose of the discrete filter in this work is to improve computational efficiency for nonlinear

topology optimization, yield the displacement field without artificial stiffness, and improve

convergence performance for the nonlinear structural analysis.

αf

 Filter(x, α  , e)f

max(x)
x(e)

0 1 0 0.4 1

2

6

10
 Filter(x  , 0.4, e)

max(x  )
x(e)

r

r
r

a b

Figure 3.3: Illustration of the filter operator: a theoretical and b numerical, displaying the
output of a function with α f = 0.4 and a given random vector xr for e = 1, ...,20.4 The

function, implemented in Matlab, is provided in Appendix A.

3.2.3 Sensitivity analysis

In this chapter, we perform sensitivity analysis in the filtered structure, i.e. by means of a

reduced-order model in the optimization problem, which indicates that the dimension of the

sensitivity vector is the same as that of the filtered design variables. Under the assumption

of global equilibrium, and since u j is the equilibrating displacement field under load case

4The given random vector xr = [7.78, 7.23, 0.76, 4.30, 0.38, 9.25, 3.80, 5.05, 6.94, 3.99, 6.77, 5.24, 7.74,
3.41, 6.10, 9.73, 5.44, 6.33, 2.32, 5.19]T . In the full-order model, the filtered vector xr f =
[7.78, 7.23, 0, 4.30, 0, 9.25, 0, 5.05, 6.94, 3.99, 6.77, 5.24, 7.74, 0, 6.10, 9.73, 5.44, 6.33, 0, 5.19]T . In the
reduced-order model, the filtered vector xr f = [7.78, 7.23, 4.30, 9.25, 5.05, 6.94, 3.99, 6.77, 5.24, 7.74, 6.10,
9.73, 5.44, 6.33, 5.19]T . For related content, see Section 4 (and Figure 3.6).
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Algorithm 1 Optimization with the discrete filter

Initialize: x0, α f , itermax, τopt, tolobj, toleqm
for k = 0,1, ..., itermax do

Filter: x(e),kf = Filter
(
xk,α f ,e

)
, e = 1, ...,M.

for j = 1,2, ...,m do
Solve: u j

(
xk)= argminu

[
Π j

(
xk

f

(
xk) ,u)+ Γ j

2 uTu
]

end for
Compute: J

(
xk), g

(
xk), ∂J

(
xk)/∂x(e), and ∂g

(
xk)/∂x(e) using (3.7), (3.9), and

(3.10)
if J
(
xk)− J

(
xk−1)> tolobj or ||Rk

Top||/||f Top||> toleqm then
quit

end if
Update: xk+1 using Optimality Criteria
if ||xk+1−xk||∞ < τopt then

quit for
end if

end for
xfinal = xk+1

End-filter: x(e),final
f = Filter

(
xfinal,α f ,e

)
, e = 1, ...,M.

Solve: u j
(
xfinal) , j = 1, ...,m`.

if ||Rfinal
Top ||/||f Top||> toleqm then

quit
end if
Compute: J

(
xfinal)

Remove aligned nodes
Plot final topology
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f j, then the sensitivity of the objective function is given by,

∂J (x)
∂x(e)

=−
m`

∑
j=1

w j
∂Π j

∂x(e)
(
x,u j (x)

)
. (3.8)

The external work in Eq. (3.2) for each load case is (explicitly) independent of the design

variables. By using Eq. (3.1), we obtain the sensitivity as,

∂J (x)
∂x(e)

=−
m`

∑
j=1

w j
∂Π j

∂x(e)
(
x,u j (x)

)
=−

m`

∑
j=1

w j

∂

[
∑

n
k=1 x(k)L(k)Ψ(k) (u j

)]
∂x(e)

=−
m`

∑
j=1

w jL(e)
Ψ

(e) (u j (x)
)
.

(3.9)

Note that the sensitivity given by Eq. (3.9) is always non-positive because L(e)Ψ(e) (u j (x)
)
≥

0, j = 1, ...,m`. The sensitivity of the volume constraint for member e is calculated as

∂g(x)
∂x(e)

= L(e). (3.10)

3.2.4 Convexity proof

In this subsection, we investigate the convexity condition of the modified standard topology

optimization formulation in Eq. (3.4), i.e. the optimization formulation considering multi-

ple load cases with hyperelastic nonlinear materials with convex specific strain energy and

design variables x≥ 0 under small deformations. Note that the standard nested formulation

with linear structural model and end-compliance objective function has been proved to be

convex by [37] for positive definite stiffness matrix, and by [38] for positive semi-definite

stiffness matrix. The standard formulation in Eq. (3.3) with hyperelastic truss model and

the objective function of total potential energy under single load case has been proved to be

convex by [84] for positive definite tangent stiffness matrix and small deformations. Since

the constraint function, LTx−Vmax ≤ 0 is convex, we need to study the convexity of the
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objective function,

J (x) =−
m`

∑
j=1

w j min
u

Π j (x,u) =
m`

∑
j=1

w j max
u

[
−Π j (x,u)

]
=

m`

∑
j=1

w j max
u

{
f T

j u−U (x,u)
}
=

m`

∑
j=1

w jJ j (x) ,
(3.11)

to prove the convexity of the optimization formulation. Assuming that the strain energy is

a convex function5 and the structural model can carry each load case f j, j = 1, ...,m`, (the

equilibrium condition is satisfied, i.e., T
(
x,u j

)
= f j, j = 1, ...,m` ), we then have a finite

solution, i.e. u j (x), for each load case f j in the structural model for a fixed x. Under these

conditions, since the strain energy U (x,u) = ∑
M
e=1 x(e)L(e)Ψ(e) (u) is a linear function in x

for a fixed u, then J j (x) is a pointwise supremum function of a set of linear functions in x,

J j (x) = sup
u

{
J j,u (x) |u ∈ RN} , (3.12)

where J j,u (x) = f T
j u−∑

M
e=1 x(e)L(e)Ψ(e) (u) is convex, and N denotes the number of de-

grees of freedom (DOFs). We know that a function defined as the pointwise supremum

of a set of convex functions is convex [104] and the weighted sum (with strictly positive

weights) of convex functions is still convex. Therefore, J (x) is convex under the assump-

tions that specific strain energy of the structural model is convex and the equilibrium con-

dition is satisfied (see [38], [45] for proofs in the linear case under single load case). This

proof is valid even when the tangent stiffness matrix is positive semidefinite, i.e., x ≥ 0

for the design variables and dσ (λ )/dλ ≥ 0 for the nonlinear structural model (no require-

ment on the strict convexity), generalizing the convexity proof of [84] for positive definite

tangent stiffness matrix and small deformations.

5Both Odgen-based and bilinear materials with the condition dσ (λ )/dλ ≥ 0 have convex specific strain
energy – see Section 3.1 for constraints on the model parameters.
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3.2.5 Conceptual example: Unbounded solution

Figure 3.4 illustrates the case with unbounded solution because the structural model cannot

carry the load, i.e., the equilibrium condition cannot be satisfied: T (x,u(x)) 6= f , with

the bilinear model 1 (compression is not allowed in this material). Although the specific

strain energy of this material model is convex, this case results in J (x)→+∞ and leads to

unbounded solution [38], as shown in Figure 3.4c 6. The compression-dominated bilinear

model 2 leads to a self-equilibrated structure in Figure 3.4d. Note that the specific strain

energy of these material models (Figure 3.4a) is convex (not strictly convex). For the

modified formulation (Eq. (3.4)), the potential energy with these material models and

Tikhonov regularization becomes strictly convex. For the standard formulation (Eq. (3.3)),

the potential energy with these material models is convex (not strictly convex).

a b c d

Unbounded
solu�on

0.98 1 1.02

×106

-1.5

1.5

Bilinear model 1
Bilinear model 2

σ

λ

×106

P

P

P

P

Figure 3.4: Topology optimization: Unbounded versus bounded solutions. a Bilinear
material models; b initial ground structure and boundary conditions; c the

tension-dominated bilinear model 1 leads to unbounded solution because the structural
model cannot carry the loads (the equilibrium condition is not satisfied, i.e.,

T (x,u(x)) 6= f ) with this material model; d the compression-dominated bilinear model 2
leads to a bounded solution and self-equilibrated structure.

6Notice that the theoretical unbounded solution is represented by a numerical solution displaying infeasi-
ble displacements (i.e., relatively large values).
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3.2.6 KKT conditions

Since we have shown that the modified standard optimization formulation in Eq. (3.4) is

convex, its KKT conditions are both necessary and sufficient optimality conditions. To

derive the KKT conditions, the Lagrangian of Eq. (3.4) takes the following form by intro-

ducing a Lagrange multiplier φ corresponding to the volume constraint:

L (x,φ) = J (x)+φ

(
M

∑
e=1

x(e)L(e)−Vmax

)
. (3.13)

If we denote x∗ as the optimal solution of design variables, and φ∗ as the optimal solution

for the Lagrange multiplier, we have [31],

∂L

∂x(e)
(x∗,φ∗) ≤ 0, if x(e)

∗
= x(e)max, (3.14)

∂L

∂x(e)
(x∗,φ∗) = 0, if 0 < x(e)

∗
< x(e)max, (3.15)

∂L

∂x(e)
(x∗,φ∗) ≥ 0, if x(e)

∗
= 0, (3.16)

where the derivative of the Lagrangian is given by

∂L

∂x(e)
(x,φ) =−

m`

∑
j=1

w jL(e)
Ψ

(e) (u j (x)
)
+φL(e). (3.17)

Combining Eq. (3.17) with Eqs. (3.14) – (3.16), we obtain the KKT conditions for the

optimal solution (x∗,φ∗) of the optimization formulation in Eq. (3.4):

m`

∑
j=1

w jΨ
(e) (u j (x∗)

)
≥ φ

∗, if x(e)
∗
= x(e)max, (3.18)

m`

∑
j=1

w jΨ
(e) (u j (x∗)

)
= φ

∗, if 0 < x(e)
∗
< x(e)max, (3.19)

m`

∑
j=1

w jΨ
(e) (u j (x∗)

)
≤ φ

∗, if x(e)
∗
= 0. (3.20)
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From Eq. (3.19), we observe that for those members whose optimal design variables

fall between the upper and lower bounds (with inactive area constraints), the weighted sums

of the corresponding specific strain energy over m` load cases in the optimal topology are

identical, which equal to φ∗. Moreover, we note that under the single load case, i.e., m` = 1,

Eq. (3.19) implies that the specific strain energy for all the members with inactive area

constraints in the optimal topology is identical [84], [95], which corresponds to the full

stress design in the linear case [31].

3.3 Truss Model with Material Nonlinearity

We present the theory in which the structural analysis part of the chapter is based upon.

This includes the kinematics, hyperelastic constitutive models, the potential energy, the

linearization of the nonlinear equations, the Tikhonov regularization, and the line search. In

fact, the use of line search to solve topology optimization problems governed by nonlinear

state equations is an important aspect of this work.

3.3.1 Kinematics and constitutive models

To construct the kinematics and constitutive models, we assume small deformation kine-

matics and nonlinear constitutive relationships. For a given truss element, its linearized

stretch λ is computed as [105]

λ = 1+
NT (uq−up

)
L

, (3.21)

where up and uq are the nodal displacement vectors of nodes p and q of the truss element,

N is the member’s unit directional vector, and L is the length of the element. To account

for the nonlinear constitutive relation, we use the energy density function based on [106],

which provides flexibility to specify the material behavior and thus has the capability to

reproduce a variety of hyperelastic models. For the hyperelastic Ogden material, the strain
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energy per unit of the undeformed volume is given as

ΨOG (λ1,λ2,λ3) =
M̂

∑
j=1

γ j

β j

(
λ

β j
1 +λ

β j
2 +λ

β j
3 −3

)
, (3.22)

where λi, i = 1,2,3, denote the principal stretches in three directions, and M̂, γ j, and β j

are material parameters (constants). We assume that the axial stretch of the truss member

is the principal stretch λ1, namely, λ1 = λ , and the stretches in the other two directions are

taken to be λ2 = λ3 = 1, such that Eq. (3.22) becomes

Ψ̂OG (λ ) =
M̂

∑
j=1

γ j

β j

(
λ

β j −1
)
. (3.23)

Accordingly, the principal (Cauchy) stress for the Ogden-based model is obtained as

σOG,1 =
∂ΨOG

∂λ1
and σOG,2 = σOG,3 = 0. (3.24)

Throughout this work, the energy density function is used with M̂ = 2; thus, we obtain

σOG (λ ) =
dΨ̂OG

dλ
(λ ) = γ1

(
λ

β1−1−λ
β2−1

)
, (3.25)

with γ2 = −γ1. By taking the derivative of the stress, the tangent modulus is obtained as

follows:

ET (λ ) =
dσOG

dλ
(λ ) = γ1

[
(β1−1)λ

β1−2− (β2−1)λ
β2−2

]
. (3.26)

Notice that, at undeformed state, the tangent modulus reduces to the Young’s modulus in

linear elasticity, namely,

ET (1) = γ1 (β1−β2) = E0 = Λ+2µ, (3.27)

where Λ and µ are the usual Lamé constants.
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In terms of the convexity of this Ogden-based material model, if the parameters satisfy

the following conditions: β1 ≥ 1, β2 ≤ 1, β1 6= β2, and γ1 > 0, which results in ET > 0

(dσOG (λ )/dλ > 0), then the material model is convex, i.e., Ψ̂OG (λ ) is convex for λ > 0.

The material parameters (β1,β2,γ1) are solved using Eq. (3.27) and the relation

σt

σc
=

σ t

σ c
, (3.28)

where

σ t =
σt

γ0
1
=
(

λ
β1−1
t −λ

β2−1
t

)
and σ c =

σc

γ0
1
=
(

λ
β1−1
c −λ

β2−1
c

)
. (3.29)

Note that σt , σc, E0, λt , λc and γ0
1 are specified by the user. Therefore, the stress-stretch

relationship of the Ogden model is obtained as,

σOG (λ ) =
E0

β1−β2

(
λ

β1−1−λ
β2−1

)
. (3.30)

By varying the set of parameters (β1,β2), this Ogden-based model generates a variety of

material behavior, as shown in Figure 3.5a.

In this work, we also adopt a bilinear material to account for constitutive relationships.

The bilinear constitutive model has a kink at the origin (see Figure 3.5b). To treat this

class of nonsmooth problems, we refer the reader to [107]. Within the same context of the

Ogden-based model, the energy density function can be written as,

ΨBi (λ ) =


1
2Et (λ −1)2 , if λ > 1,

1
2Ec (λ −1)2 , otherwise,

(3.31)

where Et and Ec are the Young’s moduli for tension and compression, respectively. Ac-
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cordingly, the Cauchy stress for the bilinear material is then obtained as,

σBi (λ ) =


Et (λ −1) , if λ > 1,

Ec (λ −1) , otherwise.

(3.32)

Note that this bilinear material model is always convex as dσBi (λ )/dλ ≥ 0. The term

dσBi (λ )/dλ may become zero, which occurs, for example, when the material that is unable

to carry compression (e.g., cables, Ec = 0), that is dσBi (λ )/dλ = 0 in the compression

range.

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
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Figure 3.5: Material models: a Hyperelastic Ogden-based models with different
parameters (β1,β2); b bilinear material model with elastic behavior (different Young’s

moduli for tension and for compression).

3.3.2 Potential energy

A brief derivation of the equilibrium equations is given here for the sake of completeness–

details of the derivation were reviewed in [84]. By definition, the standard total potential

energy of the structure is Π(u) = U (u)+Ω(u). The equilibrium of the structure is en-
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forced by requiring Π to be stationary; that is,

R(u) =
∂U
∂u

+
∂Ω

∂u
= T (u)− f = 0, (3.33)

where T (u) is the internal force vector in terms of the state variable u, and f is the external

force vector. The internal force vector T (u) is given as,

T (u) =
M

∑
e=1

x(e)L(e)∂Ψ(e)

∂u
. (3.34)

In the above relation, ∂Ψ(e)/∂u is obtained as

∂Ψ(e)

∂u
=

dΨ(e)

dλ (e)

∂λ (e)

∂u
. (3.35)

Using Eq. (3.21), we obtain

∂λ (e)

∂u
=

1
L(e)



...

−N(e)

...

N(e)

...


=

1
L(e)

B(e), where B(e) =



...

−N(e)

...

N(e)

...


. (3.36)

Therefore, the local internal force vector is obtained by substituting Eqs. (3.35) and (3.36)

into Eq. (3.34), which gives

T (u) =
M

∑
e=1

x(e)σ (e)B(e). (3.37)
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3.3.3 Linearization of the nonlinear algebraic equations (Newton-Raphson method)

In solving the nonlinear system of equations, the residual force R(u) of Eq. (3.33) can be

linearized and rewritten for iteration k as follows:

R
(

uk+1
)
= R

(
uk
)
+Kt

(
uk
)

∆uk, (3.38)

where Kt is the global tangent stiffness matrix,

Kt

(
uk
)
=

∂R
∂u

(
uk
)
=

∂T
∂u

(
uk
)
. (3.39)

The nonlinear structural problem is solved using the Newton-Raphson method [108]:

R
(

uk+1
)
= R

(
uk
)
+Kt

(
uk
)

∆uk = 0, (3.40)

therefore,

Kt

(
uk
)

∆uk =−R
(

uk
)
= f −T

(
uk
)
, (3.41)

and

uk+1 = uk +∆uk, (3.42)

where Kt =∑
M
e=1 K(e)

t , and K(e)
t is the element tangent stiffness matrix in global coordinates.

For a given truss element e with nodes p and q, the associated internal force vector t(e) and

local tangent stiffness matrix k(e)t are expressed as follows:

t(e)
(

u(e)
)
= x(e)σ (e)

(
u(e)
)−N(e)

N(e)

 , (3.43)

and

k(e)t =
∂ t(e)

∂u(e)
=

kpp kpq

kqp kqq

 , (3.44)
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where

kpp = kqq =−kpg =−kqp =
x(e)

L(e)

dσ (e)

dλ (e)
N(e)

(
N(e)

)T
. (3.45)

3.3.4 Solving the state equations: Tikhonov regularization

To prevent the possibility of a singular tangent stiffness matrix from forming in the Newton-

Raphson method of the structural nonlinear equations in the proposed scheme, we introduce

a regularization term ([85], [101]–[103]). The total potential energy accounting for the

Tikhonov regularization term is written as

Π
Γ (u) =U (u)+Ω(u)+

Γ

2
uTu, (3.46)

where Γ is a positive Tikhonov regularization parameter. By taking the derivative of the

above equation,

RΓ (u) =
∂ΠΓ

∂u
=

∂U
∂u

+
∂Ω

∂u
+Γu = T (u)− f +Γu = 0. (3.47)

In the Newton-Raphson method, the residual force RΓ (u) of Eq. (3.47) can be rewritten

for the iteration k+1 as follows:

RΓ

(
uk+1

)
= RΓ

(
uk +∆uk

)
= RΓ

(
uk
)
+

∂RΓ
(
uk)

∂uk ∆uk, (3.48)

where
∂RΓ

(
uk)

∂uk = Kt

(
uk
)
+ΓI. (3.49)

Hence, the linearized equilibrium equation of the nonlinear system becomes

[
Kt

(
uk
)
+ΓI

]
∆uk = f −T

(
uk
)
−Γuk. (3.50)
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In above equations, the term ΓI is the regularization term for the tangent stiffness matrix.

We select the value of Γ as

Γ =
Γ0

N
tr
(
Kt,Top

)
, (3.51)

where typically Γ0 = 10−8, and Kt,Top is the stiffness matrix of the filtered structure that

will be discussed in the subsequent section. Note that the term Γuk on the right-hand side

of Eq. (3.50) can be neglected since Γ has relatively small value and we seek to satisfy

equilibrium condition, T
(
uk)= f .

3.3.5 Inexact line search

In an effort to improve the convergence of the first several iterations of the nonlinear FEM

(the structural configuration tends to be more flexible than the solution being sought),

we adopt an inexact (Armijo-type) line search strategy ([109]; [110]; [111]) within the

Newton-Raphson procedure, which modifies Eq. (3.42) to

uk+1 = uk +ξ
k
∆uk. (3.52)

A scalar step length ξ k is calculated in each iteration, which guarantees a decrease in the

potential energy, Π
(
uk+1). The rationale is to search along uk +ξ ∆uk to find ξ = ξ k such

that

Π

(
uk+1

)
= Π

(
uk +ξ

k
∆uk
)
≤Π

(
uk
)
+ τξ

k
∇Π

(
uk
)T

∆uk, (3.53)

where τ is the guard constant, e.g., τ = 10−4. Note that ∇Π
(
uk) = R

(
uk). If the current

step length ξ
k

is unsatisfactory, the following procedure is used to decrease the step length.

We first calculate a quadratic polynomial and minimize the interpolant based on Eq. (3.53),

obtaining a scale κ of the step length for the next potential step length:

κ =−
ξ

k
∇Π

(
uk)T

∆uk

2
(

Π

(
uk +ξ

k
∆uk
)
−Π

(
uk
)
−ξ

k
∇Π

(
uk
)T

∆uk
) , (3.54)
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and updating ξ k as ξ k = κξ
k
. If a relatively small scalar value, e.g., κ < 0.1, is obtained,

we simply use κ = 0.5. Under the assumptions in Section 2.1, the Newton-Raphson method

with this line search method ensures the convergence to a displacement field that is a sta-

tionary point [110] in the potential energy. Furthermore, if the potential energy is strictly

convex with respect to u, which is the case in this chapter with the Tikhonov regularization,

then the stationary point (u) is the unique global minimum.

3.4 Reduced-Order Model

This section introduces the fully reduced-order model (ROM) in nonlinear topology op-

timization with GSM using the discrete filter. The ROM is applied to both the nonlinear

structural system analysis (the state problem) and the optimization analysis.

3.4.1 Reduced-order model in nonlinear structural system analysis

Utilizing the reduced-order model, after each filtering process, we form a reduced-sized

structure and a new set of degrees of freedom (DOFs). The subscript (Top) represents the

new set of variables associated with the filtered structure. Solving the nonlinear structural

problem requires filtering out the topology from the ground structure based on the following

mapping of variables:

u = QuTop, (3.55)

where the matrix Q maps the DOFs between the ground structure and the actual topology

after applying the filter. This matrix is defined based on the nodes connected with those

elements with finite cross-sectional area value (larger than zero) and the associated new set

of DOFs. Based on this mapping, we establish the associated structural problem as follows

([85]):

TTop
(
uTop

)
= f Top, (3.56)
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(
Kt,Top +ΓI

)
∆uk

Top = f Top−Tk
Top = Rk

Top, (3.57)

and

uk+1
Top = uk

Top +∆uk
Top, (3.58)

where Kt,Top, f Top, and Tk
Top are the tangent stiffness, the external and internal load vectors,

respectively, associated with the actual topology, defined by

Kt,Top = QTKtQ, f Top = QTf , and Tk
Top = QTTk. (3.59)

For simplicity, we use notations Tk, Tk
Top, and Rk

Top to denote T
(
uk), TTop

(
uk

Top

)
, and

RTop

(
uk

Top

)
. A mapping example for the ROM in the nonlinear structural system analysis

is presented in Appendix B. As mentioned in Section 2.1, the tangent stiffness matrix from

the formulation in Eq. (3.7) can be singular when truss members are removed. Therefore,

we minimize the potential energy with the Tikhonov regularization. After solving for uTop,

we use this displacement field to calculate the sensitivity of the filtered structure. Thus,

for the proposed filtering scheme, during and after the optimization process we check the

global equilibrium residual by

||Rk
Top|| ≤ ρ||f Top||, (3.60)

where ρ represents the tolerance. We choose the value of ρ as 10−4 throughout this chapter.

For the standard GSM, we check the global equilibrium residual on the structure after

applying the final cut-off, i.e. a posteriori. For the linear cases with the filter that are used

in the examples, we check the global equilibrium residual using

||KTopuTop− f Top|| ≤ ρ||f Top||. (3.61)
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We remove information about the deleted members, including the areas, stiffness ma-

trix, from the problem. We do not simply set areas of the removed members to zero or

store nodes, but instead, remove the information from the entire problem, as shown in Fig-

ure 3.6. This reduced number of truss members significantly influences the size of the

global stiffness matrix. Typically, the formation and inversion of the stiffness matrix is one

of the most time-consuming parts of nonlinear FEM. To quantify the influence of using the

ROM, we conduct studies in Sections 5.1 and 5.3. As we will see, the size of the problem

significantly decreases as the iteration proceeds.

The application of the filtering scheme with the ROM in truss optimization that accounts

for material nonlinearity has the advantage of solving structural problems in the filtered

topology. As a result of the smaller sizes of the tangent stiffness matrices, the use of the

ROM incorporated into the proposed scheme significantly improves the performance of the

computations in the iterative Newton-Raphson algorithm.

3.4.2 Reduced-order model in optimization analysis

To reduce the order of information needed in the sensitivity analysis and update scheme to

achieve fully reduced-order in the entire optimization process, we further use the reduced-

order model in the optimization analysis, because we assume that the null area members do

not return to the topology. This situation is automatically considered by the construction

of the optimality criteria (OC) [70], which is the update scheme that we choose. The size

of the information input for the update (i.e., vectors of sensitivity and design variables) is

the same as that used for solving the nonlinear structural system. Note that the proposed

scheme uses reduced-order information in sensitivity and design variable vectors with the

removal of information associated with null-area members; this excludes the sensitivity in-

formation of members with zero areas but non-zero nodal displacement (because according

to Eq. (3.9), the sensitivities of those null-area members are not zero). As a result, regard-

less of which update scheme is adopted (the optimality criteria or the method of moving
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asymptotes (MMA) by [71]), the removed members will not return to the topology once

they have been removed. Therefore, although the OC by its construction does not allow the

return of the members, it is sufficient for the reduced-order model and is adopted in this

chapter.

However, we note that the return of the bars may be helpful when a large filter value

is used. Application of a large filter may lead to the removal of many bars, and thus the

resulting structure may not be in equilibrium, or the objective may increase dramatically

(large displacement). For instance, if some structurally important members are removed,

large displacements may occur. In such cases, the excluded sensitivity information is po-

tentially useful for accomplishing the optimization and maintaining equilibrium, in which

case the MMA could be used, which enables the return of the bars.
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Figure 3.6: Design variables during the optimization process: a full-order model; b
reduced-order model.

3.5 Numerical Examples

This section illustrates the proposed formulation using four representative examples. The

first example verifies the methodology in two dimensions; the second example demon-

strates how altering the material constitutive relation changes the final topology. Then we

compare the optimized structures from the proposed scheme under single and multiple load

cases with those from the linear plastic formulation under single load case. The last two

examples, which are in three dimensions, establish the capability of the proposed method,
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including a practical structural design with various materials. All of the examples, except

Example 2, use hyperelastic Ogden-based materials under small displacements. Example

2 uses bilinear material models. The examples are illustrated by Table 3.1.

Table 3.1: Numerical examples.

Example Dimension Description Feature

1 2D
Central load in a simply sup-
ported square domain Verification

2 2D
Long-span bridge design using
bilinear materials

Comparison of elastic and
plastic formulations of the
ground structure

3 3D
Central load on top surface of
a laterally constrained paral-
lelepiped

Influence of load level in the
nonlinear response

4 3D Arch bridge
Potentially translational de-
sign: from academia to struc-
tural engineering practice

For all of the examples, we generate the initial ground structure and remove overlapped

bars [30]. For the generation of three-dimensional (3D) initial ground structures and the

plotting of the 3D final structures, we employ the software GRAND3 and the collision

zone technique by [112], [113]. The CPU run-time in this chapter reflects the time spent

on the optimization process, not including the time spent on problem formulation. Both

the standard GSM in Eq. (3.3) with a final cut-off and the proposed filter formulation in

Eq. (3.7) may lead to structures with unstable nodes, i.e., hinges connecting two collinear

members that cause mechanism. In this work, for the standard formulation after the final

cut-off, we remove unstable nodes (and floating members) by replacing the two collinear

members with one long member that takes the larger area from the two, and the resulting

objective value decreases. For the proposed filter, we remove unstable nodes by replacing

the two collinear members with one long member that takes the same area, and the resulting

objective value stays unchanged. All the data presented in this chapter are obtained after

removing unstable nodes. For both methods, we check the final topologies to ensure that
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they are at equilibrium. However, we do not verify the instability of the members because

the issue of stability is beyond the scope of this work. All examples have the initial tangent

modulus, E0 = 7× 107(= Et for Example 2); the stopping criteria: τopt = 10−9; move

value: move = x0×104, where x0 is the initial guess of the design variables; and damping

factor for the OC update scheme:η = 0.5. For the standard GSM, we apply a cut-off value

that defines the final structure at the end of the optimization process; the cut-off value for

Examples 1 and 3 is 10−2 for the cases that use the standard GSM. For the cases with the

proposed filtering scheme, we use a relatively small filter, α f = 10−4, in all the examples

during the optimization process, and the filter operation is performed at every optimization

step, i.e., N f = 1. The lower and upper bounds for the standard GSM are defined by

xmin = 10−2x0 and xmax = 104x0, respectively. For the proposed filter algorithm, xmin = 0

and xmax = 104x0 (unbounded in practical terms).

3.5.1 Central load in a simply supported square domain

The purpose of Example 1 is to verify the present methodology with the results obtained

from standard GSM using two hyperelastic Ogden-based material models without the filter-

ing scheme [84]. We also study the influence of material models on the resulting structural

topology by comparing the two Ogden-based models with a linear model. The geometry,

load, and support conditions (two fixed supports) are shown in Figure 3.7a. The initial

ground structure contains 6,920 non-overlapped members and 169 nodes using full-level

generation. We use two Ogden-based material models, illustrated in Figure 3.7b. The figure

shows that the tension of Material 1 (β1 = 188,β2 =−68) is stronger than its compression,

and the compression of Material 2 (β1 = 71,β2 = −182) is stronger than its tension. We

use a small filter α f = 10−4 throughout the optimization process.

The filtering scheme yields topologies almost identical to those obtained using the stan-

dard GSM with a final cut-off for both linear and nonlinear materials, as shown in Figure

3.8, and in the chapter by [84]. This comparison verifies the proposed filtering scheme.
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Figure 3.7: Example 1 with a full-level ground structure (12×12 grid) and 6,920
non-overlapped bars: a Geometry (L = 6m), load (P = 100kN) and support conditions; b

Ogden-based material models. Material 1 is tension dominated, while Material 2 is
compression dominated.

The choice of material models significantly influences the final topology. Note that each

material model results in a unique topology, and each differs from the linear case. If a

material used in practical design exhibits nonlinear behavior, an analysis based on a linear

material may be misleading. Various topologies resulting from the use of several materials

show the importance of accounting for material nonlinearity. In addition, since single load

case is used here, we observe that in every model considering material nonlinearity, the

members in the optimized structure all have the same value of strain energy density, which

corresponds to the full stress design in the linear case, as discussed in Section 2.6. The final

topologies, corresponding convergence plots for the objective function, and stress-stretch

plots are shown in Figures 3.8a, 3.8c, and 3.8e. The normalized cross-sectional areas for

the truss members in the final designs are shown in Figures 3.8b, 3.8d, and 3.8f for linear

material, Ogden-based materials 1 and 2, respectively.

Table 3.2 presents a summary of the data associated with Example 1, all the data are

obtained after removing unstable nodes. From the CPU run-time comparison, the com-

putational efficiency using the filtering scheme is greater than those without the proposed
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Figure 3.8: Results of the optimization for Example 1: a Final topology of the linear
model; b corresponding final normalized cross-sectional areas for the truss members of
the linear model; c final topology and convergence plot of Ogden-based Material 1; d

corresponding final normalized cross-sectional areas for truss members of Ogden-based
Material 1; e final topology and convergence plot of Ogden-based Material 2; f

corresponding final normalized cross-sectional areas for truss members of Ogden-based
Material 2. The blue bars are in tension and the red bars are under compression.
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filter, which shows the advantages of using the filtering technique, particularly for a non-

linear problem. Figure 3.9 further shows the size reduction history for optimization using

Ogden-based Material 2 with the proposed filtering scheme, the numbers of nodes and truss

members at optimization steps 50, 150, 250, and 355 (final step) are shown together with

the corresponding topologies during the optimization process. The numbers of truss mem-

bers and nodes in the problem are reduced dramatically by the use of the proposed filtering

scheme (with ROM) during the optimization process. For the nonlinear cases, note that

the objective values from the proposed filtering scheme are smaller than those without the

filtering scheme even though both cases generate identical topologies (for the same ma-

terial), and from the Max |u| column (maximum value of the absolute displacement), the

structures from the proposed filter have less maximum displacement than those with the

standard GSM (the maximum displacement for all cases occurs at the loading point). When

the proposed filter is applied, it takes into account only the members that appear in the fil-

tered topology at every optimization step. However, for cases of the standard GSM, all the

small area members in the nonlinear FEM process are taken into consideration throughout

the optimization process; the members with small area, not plotted in the final topology,

still support the load and contribute to the stiffness and objective function (total potential

energy at the equilibrium configuration) of the structure, and after applying the cut-off,

the resulting objective values increase. This observation shows that the proposed filtering

scheme addresses the artificial stiffness problem associated with the standard GSM.

3.5.2 Long-span bridge design using bilinear materials

This example shows the influence of different levels of tension and compression of the

yield stresses in structural optimization and improvement in the final resolution after using

the filter technique. The optimized structures obtained by the proposed algorithm with the

single load case and multiple load cases (i.e., the elastic nonlinear formulation with a filter)

are then compared with those obtained by the plastic linear formulation with the single load
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Table 3.2: Numerical information for Example 1 (Figure 3.7, 3.8, and 3.9). For the
standard GSM, we use an end filter with α f = 10−2 at the end of the optimization.

Model
J (x∗)
(kN ·m)

Ψ(u(x∗))(
kN/m2) Max|u|

(cm)
Max λ Min λ

#
Opt.
Steps

CPU
(sec)

α f αTop

Linear
(Filter)

1.096 68.48 2.19 1.0014 0.9986 465 20 10−4 0.3143

Mat.1
(Filter)

1.073 65.62 2.12 1.0013 0.9986 353 24 10−4 0.3494

Mat.2
(Filter)

1.073 65.67 2.12 1.0014 0.9987 355 24 10−4 0.3485

Mat.1
(Standard)

1.085∗ 67.12 2.15 1.0013 0.9986 428 300 N/A 0.3497

Mat.2
(Standard)

1.085∗ 67.18 2.15 1.0014 0.9987 432 302 N/A 0.3487
∗ The objective value in standard GSM for both Materials 1 and 2 before applying final cutoff is 1.081.

case given in [41]. A schematic plot for plastic behavior is shown in Figure 3.10. A bridge

is modeled using a two-dimensional (2D) domain, shown in Figure 3.11a for the single

load case and Figure 3.11b for the multiple load cases. The domain is discretized by an

18×7 grid, followed by the generation of a full-level initial ground structure that contains

7,083 non-overlapping members and 152 nodes. For the multiple load cases, the weighting

factor for each load case is the same, i.e., w1 = w2 = 0.5. To study how an alteration of

the tension and compression yield stresses can change the final topology, we use various

bilinear materials, each has a unique ratio between the compression and tension Young’s

moduli, denoted by Ec/Et . For a linear material with equal tension and compression stress

limits, elastic and plastic formulations lead to the same optimized structure up to a rescaling

[17], [41]. In the case of materials with different tension and compression strengths, the two

formulations may not lead to the same solution unless the material properties are defined

properly. To compare the results of the elastic nonlinear and plastic linear formulations,

the relationship between yield stresses in the plastic formulation and Young’s moduli in the
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elastic formulation is as follows [41],

σc

σt
=

√
Ec

Et
. (3.62)

The compression-tension ratios Ec/Et that we use here are 1, 0.09, 0.04, and 0.0225, shown

in Figure 3.12, where Et = 7×107. In the plastic formulation, the absolute yield stress for

tension is fixed, and the absolute yield stress for compression varies from 1 to 0.15. We use

a small filter α f = 10−4 throughout the optimization process.

Cauchy stress, σ

Stretch,
σ

σ

λ1

Figure 3.10: Stress-stretch diagram for plastic behavior with different stress limits for
tension and for compression.

Figure 3.13 shows the final topologies of the long-span bridge for the four material

models considered. While the top and bottom figures in each sub-figure show the opti-

mized structures from the proposed scheme (i.e., the elastic nonlinear formulation with the

filtering scheme for single load case and multiple load cases), those in the middle in each

sub-figure show the optimized structures from the plastic linear formulation for single load

case by [41]. An observation of the final topologies using different ratios of compression-

tension strength ratio reveals that the optimized structure transforms from an arch bridge to

a suspension bridge. A weaker compression modulus results in fewer bars under compres-

sion and more bars under tension. As we decrease the ratio, the arch gradually disappears.

Tables 3.3 and 3.4 provide summaries of the numerical information for single load case

and multiple load cases in Example 2, respectively. All the data are obtained after removing
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Bilinear Model & Single Load Case

Bilinear Model & Single Load Case Bilinear Model & Single Load Case

a
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Bilinear Model & Single Load Case
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Figure 3.13: Optimized structures for a Material 1 with Ec/Et = 1 and σc/σt = 1; b
Material 2 with Ec/Et = 0.09 and σc/σt = 0.3; c Material 3 with Ec/Et = 0.04 and

σc/σt = 0.2; d Material 4 with Ec/Et = 0.0225 and σc/σt = 0.15. The blue bars are in
tension and the red bars are under compression. The brown bars represent results from

multiple load cases (online version in color).
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unstable nodes. Since the tension is fixed and the compression properties vary, a compar-

ison of the final objective values of the different material models indicates the stiffness of

each structure differs. When the tension and compression moduli are balanced (Material

1), the final topologies (Figure 3.13a) for both the single and multiple load cases have the

smallest objective values among all materials, which suggest that those structures have the

greatest stiffnesses for this design problem. We confirm this observation by comparing the

maximum displacement and strain energy density of all the materials, the topology of Ma-

terial 1 exhibits the smallest deflection and strain energy density. In contrast, the topology

using Material 4 (i.e., Figure 3.13d), which has the weakest compressive strength, exhibits

the most flexible optimal structures for both single and multiple load cases. Since tension is

preferable, the distributed loads must be supported by truss members under tension, form-

ing a suspension bridge in which compression does not appear in the topology except in

the supporting two columns. Nevertheless, optimization using Material 4 requires the least

amount of computational time. Therefore, the different tension and compression strengths

of truss members significantly influence the optimization of a structure.

We further compare the optimized structures from the proposed algorithm (i.e., the

elastic nonlinear formulation with a filter) under single load case with those from the plastic

linear formulation under single load case used by [41]. The comparison shows that the two

formulations lead to similar optimal structures for each material and that the proposed

filtering scheme improves the resolution of the final topologies and eliminates some of

the small area members from the final topology, shown in Figures 3.13a, 3.13c and 3.13d.

Comparison between the single and multiple load cases shows that the designs accounting

for multiple load cases provide alternative structures, showing the capability of the elastic

formulation in accounting for multiple load cases as oppose to the plastic formulation.
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Table 3.3: Numerical information for the long-span bridge (Example 2) considering the
elastic formulation with the proposed filter under single load case.

We use α f = 10−4 during the optimization process.

Et/Ec
J (x∗)
(kNm)

Ψ(u(x∗))(
kN/m2) Max|u|

(cm)
Max λ Min λ

#
Opt.
Steps

CPU
(Sec)

αTop
#Top
Elem.

1 1.92 38.4 1.43 1.0010 0.9990 2,284 49 0.0165 50
0.09 12.25 245.0 8.98 1.0026 0.9912 950 23 0.000382 58
0.04 21.96 439.3 18.05 1.0035 0.9823 585 17 0.00657 41

0.0225 29.57 591.4 25.85 1.0041 0.9726 272 12 0.0265 30

Table 3.4: Numerical information for the long-span bridge (Example 2) considering the
elastic formulation with the proposed filter under multiple load cases.

We use α f = 10−4 during the optimization process.

Et/Ec
J (x∗)
(kN ·m)

∑
2
j=1 w jΨ

(
u j (x∗)

)(
kN/m2) #Opt.

Steps
CPU
(Sec)

αTop
#Top
Elem.

1 5.40 108.1 6399 216 0.00111 117
0.09 31.28 625.6 2891 116 0.000198 94
0.04 56.60 1132.0 1193 66 0.000207 96

0.0225 75.77 1515.4 224 32 0.00532 52

3.5.3 Top central Load on a laterally constrained parallelepiped domain

In this example, we first show the influence of the load level on the resulting topology when

both linear and nonlinear material behavior are taken into account, followed by the demon-

stration of the computational capability of the proposed method on models with varying

number of design variables. We use a small filter α f = 10−4 throughout the optimization

process, followed by a larger filter α f = 10−2 in the final step of the optimization to con-

trol the resolution of the final topology. After the last filter, we ensure equilibrium of the

final structure by checking the global equilibrium. The comparison of different load levels

utilizes a coarse discretization with an Ogden-based material and has three imposed load

levels (5kN, 20kN, and 100kN). This comparison also includes a linear material with one

imposed load level (5kN) since the linear case is independent of the load level. We use a

14×14×5 grid for the coarse discretization and generate a level 5 initial ground structure

containing 279,653 non-overlapped members. The geometry, the load, and support condi-
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tions are shown in Figure 3.14a, and the Ogden-based material model with greater strength

in tension is shown in Figure 3.14b.
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Figure 3.14: A laterally constrained rectangular domain with single load case. a Problem
domain (L = 1m), load, and boundary conditions; b Ogden material model. This material

shows stronger behavior in tension than in compression.

Figure 3.15 shows the optimized topologies for the nonlinear material under three load

levels: P = 5kN, P = 20kN, and P = 100kN. Note that Figure 3.15a also represents the

topology of the linear material case. At the 5kN load, the nonlinear material case yields

the same topology as the linear material case. The small differences in their objective and

displacement values are due to the minor nonlinearity that exists at this load level in the

nonlinear material case. As the load level increases, the topology of the linear model does

not change; the corresponding topologies of the nonlinear cases, however, change dramat-

ically. As a consequence of the relatively stiffer tension strength of the chosen material

model, a higher load leads to a relatively larger stretch, which results in more truss mem-

bers under tension than at the lower load levels. This observation shows the importance

of accounting for material nonlinearity. In addition, to demonstrate the influence of the

line search method, which is described in Section 3.4, we solve the nonlinear model of

P = 100kN by the Newton-Raphson method with and without the line search method. The

nonlinear FEM iterations for first, second, and final optimization steps are shown in Table

3.5. In the initial optimization step, while the case without the line search method fails to
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converge, the case with the line search converges within 11 FEM iterations. As a result, the

Newton-Raphson method with line search reaches the optimal solution. Table 3.6 presents

a summary of the numerical information for the comparison of different load levels with

Max |u| confirming the small displacement assumption used in this work, all the data are

obtained after removing unstable nodes.

Table 3.5: Influence of the line search method for the case P = 100kN with
Newton-Raphson (Example 3).

NR with line search NR without line search

Opt. step FEM iter. Step length, ξ
||RTop||
||f Top||

Opt. step FEM iter. ||RTop||
||f Top||

1

1 0.0313 7.408×10−1

2 0.250 1.277
3 1.000 9.015
4 1.000 3.323
5 1.000 1.206
...

...
... Fails to converge.

12 1.000 1.095×10−9

2

1 1.000 2.778×101

2 1.000 1.000×101

...
...

...
9 1.000 1.378×10−9

522 (Final)
1 1.000 2.800×10−5

2 1.000 5.023×10−9

Furthermore, we demonstrate the potential of the filtering scheme in dealing with prob-

lems with a relatively large number of design variables by comparing the computational

efficiency of the proposed filtering scheme with that of the standard GSM without the pro-

posed filter. For a fair comparison, both approaches (filter and standard GSM) use the same

Ogden-based material (Figure 3.14b), initial grid (18×18×6), connectivity level (level 7),

and load level (P = 1,000KN), leading to the same initial ground structures with 1,062,090

non-overlapped members and 2,527 nodes. The final topologies for both cases are shown in

Figure 3.16, and their associated numerical data are recorded in Tables 3.7 and 3.8. Using

the standard GSM, since numerous small area bars are not plotted on the final topology

while still supporting the structure, after the final cut-off, we observe a larger maximum
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Figure 3.15: Final topologies for imposing different load levels from the proposed filtering
scheme with a level 5 ground structure (14×14×5 grid) and 279,653 non-overlapped
bars using a Ogden-based material and linear material, each carrying a 5kN load (these

two materials under 5kN load lead to the same topology); b Ogden-based material
carrying a 20kN load; and c Ogden-based material carrying a 100kN load (online version

in color).
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Table 3.6: Numerical information for Example 3 (Figure 3.14) - influence of the load level
considering material nonlinearity. We use α f = 10−4 during the optimization process

followed by an end filter with α f = 10−2.

J (x∗)
(kN ·m)

Ψ(u(x∗))(
kN/m2) Max|u|

(cm)
Max λ Min λ

#
Opt.
Steps

CPU
(sec)

αTop
#Top
Elem.

Linear
5kN

0.00724 0.59 0.29 1.0000∗∗ 0.9999 3,005 85 1.00 24

NonL
5kN

0.00759 0.40 0.31 1.0000∗∗ 0.9999 3,005 800 1.00 24

NonL
20kN

0.0968 4.87 0.97 1.0004 0.9996 707 634 0.143 48

NonL
100kN

1.856 64.42 3.15 1.0010 0.9984 522 582 0.0108 132
∗∗ The exact maximum stretch value for both linear (P = 5kN) and nonlinear (P = 5kN) cases is 1.000023.

displacement and a larger objective value.

The proposed filter approach, while offering a nearly identical topology and objective

value as the standard GSM, drastically reduces the computational cost. The CPU time used

in the optimization process is almost 45 times as fast (54 minutes vs. 40.3 hours), as shown

in Table 3.7, all the data are obtained after removing unstable nodes. As explained previ-

ously, the use of the proposed filtering scheme with the ROM reduces the sizes of design

variables, the stiffness matrices, and the sensitivity vectors, which significantly decrease the

CPU time and memory usage; the standard GSM maintains a constant size during the entire

optimization process. To quantify the influence of using the proposed filtering scheme with

the reduced-order model on the nonlinear optimization problem, we measure the sizes of

the DOFs and design variables at optimization step 1 (initial step), 10, 100, and 962 (final

step) during the optimization process for the case with 1000kN load level with the proposed

scheme (Figure 3.16a). The size reduction history, recorded in Table 3.8, shows that after

performing only 10 steps in the optimization process (962 steps in total), the size of the

design variables reduces to nearly 1% of its original size.
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a b

1000kN 1000kN

Figure 3.16: Results of the optimization for the comparison of the filtering scheme with
the standard GSM using a level 7 ground structure (18×18×6 grid) and 1,062,090

non-overlapped members at a 1,000kN load level: a The final topology obtained from the
proposed filtering scheme (α f = 10−4), CPU time 54 minutes; and b the final topology

(almost identical with a) obtained from the standard GSM performed in 40.3 hours.

Table 3.7: Numerical information for Example 3 (Figure 3.14) - comparison of filter with
standard GSM. For both the filter approach and the standard GSM, we use an end filter

with α f = 10−2 at the end of the optimization.

J (x∗)
(kN ·m)

Ψ(u(x∗))(
kN/m2) Max|u|

(cm)
Max
λ

Min
λ

#
Opt.
Steps

CPU α f αTop
#Top
Elem.

NonL
1000kN
(Filter)

63.53 998 8.41 1.0024 0.9947 962 54
mins 10−4 0.0109 425

NonL
1000kN
(Standard)

63.74† 1,001 8.43 1.0024 0.9948 1,050 40.3
hours

N/A 0.0101 417††

† The objective value in the standard GSM before applying the final cutoff (end filter) is 63.72.
†† The number of truss elements in the standard GSM during the entire optimization process is 1,062,090.

Table 3.8: Size reduction history for the proposed filter with reduced-order modeling
(NonL, 1000kN & Filter).

Opt. step
DOFs Design Variables

Size % of initial size Size % of initial size
# 1 (initial) 7,581 100% 1,062,090 100%

# 10 2,457 32.4 % 13,850 1.3 %
# 100 645 8.5% 1,094 0.1%

# 962 (final) 303 4% 437 0.04%
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3.5.4 Arch bridge

To illustrate the influence that nonlinear materials may have on actual structures, we use a

3D bridge design with three Ogden-based materials. The bridge domain in Figures 3.17a

and 3.17b has simple supports, a cantilever, a non-designable layer that represents the

bridge deck, and a void zone for practical design purposes [113]. In an effort to obtain

constructible structures, we use a 10× 6× 10 grid to discretize the domain followed by

the generation of a full-level initial ground structure that contains 231,567 non-overlapping

members. To represent the effect of the bridge deck, we use a layer of beam elements ex-

cluded from the optimization process but included in the nonlinear FEM analysis. To study

how any alteration in the material behavior changes the optimized structure, we use three

Ogden-based materials, shown in Figure 3.17c. Material 1 (β1 = 1,850, β2 = −695) has

higher tensile strength than compressive strength, Material 2 (β1 = 723, β2 = −720) has

the same tension and compression, and Material 3 (β1 = 698, β2 = −1,845) is relatively

stronger in compression than tension. It should be noted that, in addition to a small filter

(α f = 10−4) used in the entire optimization, we use a larger filter (α f = 10−2) in the fi-

nal step of the optimization to control the resolution of the final topology. We ensure the

equilibrium of the final structure with the global equilibrium check. Figure 3.18 shows the

optimized structures obtained using the three materials. A detailed summary of the numer-

ical results is provided in Table 3.9, and all the data are obtained after removing unstable

nodes.

The various topologies obtained from using the three materials shows the importance

of accounting for material nonlinearity. As shown from both Figure 3.18 and Table 3.9,

while having only a minor effect on the computational cost of the optimization problem,

the choice of material models markedly influences the optimized structures. Optimization

using Material 2 with identical compressive and tensional behaviors yields a final topol-

ogy that resembles an arched bridge, with a significantly larger volume of compression

members than of tension members, indicating that the structure requires more compression
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Figure 3.17: 3D bridge design with a level full ground structure (10×6×10 grid) and
231,567 non-overlapped members. a Design domain (L = 10m) with load and boundary
conditions; b design domain with void zone; c Ogden-based material models: Material 1
has high tensile strength, Material 2 has a close-to-linear constitutive relationship, and

Material 3 has high compressive strength.
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members because of the nature of the design problem. When Material 1 (with a stronger

tension behavior) is used for the design, the overall topology features are similar to those

obtained with Material 2, but the final topology contains fewer long compression bars, es-

pecially those with small areas in the arch region (because long and thin compression bars

result in a large internal energy and, therefore, a large objective), which leads to a clearer

topology. We also notice that the total volume of the compression members for Material 1,

compared to the one obtained for Material 2, increases and the objective value decreases.

top view3D view side view 1

side view 2

top view3D view side view 1

side view 2

top view3D view side view 1

side view 2

a

c

b

Figure 3.18: Final topologies from the proposed filtering scheme using: a Material 1; b
Material 2; and c Material 3. Blue represents bars in tension and red represents bars in

compression.

When we use Material 3, with stronger compressive behavior, the final topology shows

patterns that differ from those obtained for both Materials 1 and 2, especially in the arch re-
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gion. The fan area of the arch contains fewer tension members with larger cross-sectional

areas that are all connected by long compression members. Indeed, Material 3 exhibits

the clearest final topology, as shown by αTop values. Moreover, as a result of the relatively

weaker tension behavior, the total volume of the tension bars increases. The objective value

is the smallest of the three cases because, as mentioned previously, the structure requires

compression members in this problem. A comparison of the heights of the three optimized

structures in Figure 3.20 shows that higher tensile strength in a material leads to a higher

arch in the optimized design. As the tensile strength of the material decreases and compres-

sive strength increases, the height of the arch gradually decreases. The design with Material

3 has the lowest height 5.2L. The observed differences in the final topologies associated

with the three materials with various constitutive relationships demonstrate the importance

of accounting for nonlinearity in material models in the practical design optimizations of

3D structures. This example shows that the proposed filtering scheme, which combines the

practical demands of material behavior and manufacturing, is a functional design tool. The

optimized bridge design with Material 3 (Figure 3.18c) is further manufactured by the 3D

printing technique using a fused deposition modeling (FDM) process, as shown in Figure

3.19. This bridge model is directly manufactured without post-processing of the numerical

result.

top viewside view 1

side view 2

3D view

Figure 3.19: 3D printed model of the optimized bridge design with Material 3 using a
FDM process. The dimension of the manufactured model is 11.5 in × 3.5 in × 3 in.
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Figure 3.20: Comparison of bridge heights for optimized structures using three materials.

Table 3.9: Numerical information for Example 4 with the proposed reduced-order filter.
We use α f = 10−4 during optimization process followed by an end filter with α f = 10−2.

Mate
rial

J (x∗) Ψ

(u(x∗)) Max|u| Max λ Min λ
Tension
Vol.

Compr.
Vol.

CPU
(sec)

αTop

1 370.6 3,934 1.15 1.0030 0.9926 19.8% 80.2% 771 0.0474
2 394.2 4,742 1.20 1.0066 0.9935 30.4% 69.6% 643 0.0115
3 259.9 2,773 0.72 1.0074 0.9972 41.0% 59.0% 637 0.121

3.6 Summary and Discussion

This chapter proposes an efficient reduced-order discrete filter that can be applied to truss

optimization considering single and multiple load cases, and nonlinear constitutive behav-

ior. The proposed scheme utilizes reduced-order modeling on both the state and optimiza-

tion problems. It examines two types of materials: hyperelastic Ogden-based and bilinear

materials, both of which offer alternative options for material behavior. Using a Tikhonov

regularization, we solve the singular state equations in the modified standard formulation

with design variable x≥ 0 (see Eq. (3.4)). This modification on the lower bound of design

variables transforms the sizing problem (standard formulation) into a topology optimization

problem (modified standard formulation). We prove the convexity of the modified standard

formulation (Eq. (3.4)) under the assumptions of convex energy density function and equi-

librium satisfaction. This proof is valid even when the tangent stiffness matrix is positive
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semidefinite. Furthermore, as shown by the KKT conditions (see Section 2.6), our formula-

tion leads to constant weighted sum of specific strain energy under m` load cases for those

members whose optimal design variables are in the optimum range 0 < x(e)
∗
< x(e)max (Eq.

(4.12)). An inexact (Armijo-type) line search is adopted in the Newton-Raphson method,

which is shown to improve convergence in the first few FEM iterations of the nonlinear

structural problem. The line search is essential for convergence.

Based on the present investigation and outcome of the examples, we conclude that the

discrete filter with material nonlinearity is a practical tool that accounts for real-life de-

mands of materials, layout, and manufacturing. While traditional topology optimization

typically assumes linear material behavior, which may be limiting; we examine material

nonlinearity in the optimization that takes into account the effect of proper load levels.

Through several examples, we observe the difference in topologies resulting from changes

in the material models and load levels, which shows the importance of accounting for

nonlinear material behavior in practical design optimization of 2D and 3D structures. In

addition, while the optimized structures under single load case obtained from the proposed

algorithm (elastic nonlinear formulation with filter) and those from the plastic linear for-

mulation lead to similar structures, the designs accounting for multiple load cases provide

alternative structures, illustrating the capabilities of the elastic formulation in accounting

for multiple load cases and nonlinear behavior.

With the proposed filtering scheme, we solve structural problems solely from infor-

mation about truss members remaining in the structure. In addition, through comparison

with the standard GSM, we conclude that while including the small area members that are

below the cut-off (i.e., standard GSM) to solve nonlinear structural problems may result

in artificial stiffness and convergence difficulties, excluding them with the Tikhonov reg-

ularization technique (with or without the filtering scheme) provides better control in the

condition number of the tangent stiffness matrix. Moreover, since we can use the proposed

filter to control the final resolution of the optimized structure, the results may be achieved
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without post-processing.

The use of the (fully) reduced-order modeling in the proposed filtering scheme sig-

nificantly reduces the size of both the structural and optimization problems within a few

optimization steps, leading to drastically improved computational performance. Through

one study conducted in this chapter (see Section 5.3), the proposed filter algorithm, while

offering almost the same optimized structure, was 45 times faster than the standard GSM

for nonlinear optimization problems.
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CHAPTER 4

MULTI-MATERIAL TOPOLOGY OPTIMIZATION WITH MULTIPLE

CONSTRAINTS: A GENERAL FORMULATION BASED ON THE ZPR UPDATE

ALGORITHM

Multi-material topology optimization is a practical tool that allows for improved structural

designs. However, most studies are presented in the context of continuum topology op-

timization – few studies focus on truss topology optimization. Moreover, most work in

this field has been restricted to linear material behavior with limited volume constraint set-

tings for multiple materials. To address these issues, we propose an efficient multi-material

topology optimization formulation considering material nonlinearity. The proposed formu-

lation handles an arbitrary number of candidate materials with flexible material properties,

features freely specified material layers, and includes a generalized volume constraint set-

ting. To efficiently handle such arbitrary volume constraints, we derive a design update

scheme that performs robust updates of the design variables associated with each volume

constraint independently. The derivation is based on the separable feature of the dual prob-

lem of the convex approximated primal subproblem with respect to the Lagrange multi-

pliers, and thus the update of design variables in each volume constraint only depends on

the corresponding Lagrange multiplier. Through examples in 2D and 3D using combi-

nations of Ogden-based, bilinear, and linear materials, we demonstrate that the proposed

multi-material topology optimization framework with the presented update scheme leads

to a design tool that not only finds the optimal topology but also selects the proper type and

amount of material. The design update scheme is named ZPR (phonetically, zipper), after

the initials of the authors’ last names (Zhang-Paulino-Ramos Jr.).
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4.1 Introduction

Topology optimization is a powerful computational design tool used to find optimal lay-

outs of structures and material microstructures. Within the field of topology optimization,

multi-material topology optimization is an emerging trend because practical engineering

designs, such as buildings, aircraft, and composite materials typically consist of multiple

material types. The literature on multi-material topology optimization is vast and growing

but mostly focuses on the continuum setting. With the density-based approach, various gen-

eralizations and extensions of the Solid Isotropic Material with Penalization (SIMP) [114]

or other material interpolation schemes for single-material topology optimization are made

to accommodate multiple materials. For example, Sigmund and Torquato ([60]) and Gib-

iansky and Sigmund ([61]) present extensions of the SIMP model to three-phase materials

(two material phases plus one void phase) and apply them to the design of material mi-

crostructures with extreme thermal expansion and extreme bulk moduli. Hvejsel and Lund

([62]) generalize the SIMP scheme and the Rational Approximation of Material Properties

(RAMP) scheme [45] to include an arbitrary number of material phases. However, in or-

der to enforce the selection of, at most or exactly, one material at each design subdomain,

their study uses a large number of sparse linear constraints. A similar generalization of the

SIMP scheme that includes an arbitrary number of material phases is made by Stegmann

and Lund ([72]), who use the Discrete Material Optimization (DMO) in the design of lam-

inated composite structures. Another variation of the scheme by Yin and Ananthasuresh

([63]) proposes a peak function approach that uses only one density variable to interpolate

the effective material properties as opposed to multiple density variables. Their scheme

uses a Gaussian distribution peak function as the weight of each material phase, and the

selection of a given material phase is made if the density variable corresponds to a material

peak. In addition to the density-based approach, phase-field [64], [115], [116] and level set

[66]–[69] approaches have also been used for multi-material topology optimization formu-
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lations.

While the majority of existing studies of multi-material topology optimization deal with

the continuum setting, only a small number of studies in multi-material topology optimiza-

tion include discrete elements, e.g., truss and lattice networks. Among these studies, [117]

propose a multi-material formulation to optimize lattice structures, incorporating manu-

facturing constraints. Their study uses the Young’s modulus of each truss as the design

variables and optimizes them on a layout with fixed cross-sectional areas. Other studies

have attempted to integrate truss elements into continuum topology optimization by con-

sidering concrete as a continuum solid and steel rebars as truss members (see, e.g., [10]–

[14]) for the purpose of designing reinforced concrete structures and studying strut and tie

models. However, in the literature, few multi-material topology optimization studies focus

on truss layout optimization, which is the emphasis of our work.

A promising technique to optimize truss layouts is the ground structure method (GSM),

see, e.g., [27], [28], [30], [31], [118], [119]. In this technique, the design domain is dis-

cretized by a set of nodes, which are interconnected by truss members to form an initial

ground structure (GS). By means of an update scheme and sensitivity information, the final

design is then obtained by gradually removing unnecessary members from the initial GS

(subtractive method).

For the initial assignment of material layers in the GSM in the present chapter, each

candidate material is associated with a design layer (ground structure); thus, users are free

to specify the location of each material. The multiple material layers can either share or

split the design domain, or combine both, as demonstrated in Figure 4.1. Scenario 1 (Figure

4.1c) shows the case where the initial ground structures associated with the four materials

are overlapping and is designed to enable automatic assignment of the materials. Scenario

2 (Figure 4.1d) can be used to fulfill various design requirements such as assigning certain

materials in specific locations of a structure. As shown in Figure 4.1e, sharing & splitting

can be combined to enable a more flexible design space.
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Candidate materials:a

c d eScenario #2: splitScenario #1: share Scenario #3: share & split

bDesign domain

Figure 4.1: Illustration of the combinations of material layers: a Design domain; b
candidate materials; c Scenario #1, four materials share the domain (initial ground

structures of all materials overlap) enabling automatic material assignment; d Scenario #2,
four materials split the domain, which can be used to fulfill certain design needs; e

Scenario #3, four materials share & split the domain, which enables a more flexible design
space. (Online version in color.)
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One limitation of most existing work in multi-material topology optimization is that

only linear material behavior is considered (for the study that considers nonlinear material

behavior, see [115] for multi-material phase-field topology optimization under finite defor-

mation). However, real materials generally display nonlinear constitutive relations. Studies

of material nonlinearity in single material topology optimization (e.g., [39], [41], [83],

[84], [120]) have demonstrated the impact of accounting for nonlinear material behavior

in structural optimization. For instance, it has been shown that various optimal topologies

can be obtained in material nonlinear cases by changing the material behavior and load

level. In the case of multiple materials with linear material behavior, an individual volume

constraint has to be assigned to each candidate material to ensure its presence in the opti-

mized topology. If one total/global volume constraint is assigned to all the linear candidate

materials, the optimizer always favors the best linear candidate material, e.g. the stiffest

material in the minimum compliance optimization, and final topologies consisting of only a

single material type can occur, as shown in Figure 4.2b. However, if the nonlinear material

behavior is incorporated in multi-material topology optimization, the optimizer naturally

avoids consistently favoring the stiffest linear material and, therefore, enables a more gen-

eral setting of volume constraints. As demonstrated in Figure 4.2c, when a global volume

constraint is assigned to two nonlinear candidate materials (one tension-dominated and the

other compression-dominated), the resulting topology contains both nonlinear candidate

materials. To address the aforementioned issues, we incorporate material nonlinearity into

multi-material optimization because it produces various optimized structures and enables

enhanced freedom of volume constraints.

From the optimization formulation perspective, another limitation of multi-material

topology optimization is related to the limited settings of volume constraints and the subse-

quent need for a tailored update scheme. Most studies on multi-material topology optimiza-

tion either use a total/global volume constraint for all materials (e.g., [10]–[13], [62], [63]),

which may lead to issues with linear materials (see Figure 4.2b); or assign an individual
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Figure 4.2: Multi-material topology optimization (with one total/global volume
constraint): Linear versus nonlinear materials. a Design domain; b two linear material
models, initial material distribution (schematic GSs), and the corresponding optimized
structure that favors the stiffer linear material; c two nonlinear Ogden-based material

models, initial material distribution (schematic GSs), and the corresponding optimized
structure that contains both nonlinear materials. (Online version in color.)
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volume constraint to each material (e.g., [60], [61], [64], [66], [68], [115], [116]), which

may impose higher demands on computational implementations and update schemes. A

more general setting, e.g., the combination of both types of constraints for various design

scenarios, is rarely considered. In an effort to enable a more general setting of the vol-

ume constraints for multi-material topology optimization, an update scheme that handles

multiple constraints is naturally needed. Although the Optimality Criteria (OC) method is

a robust update scheme for single material topology optimization (see, for example, [31],

[70]) , it generally deals with one constraint, and thus, cannot be directly applied into

multi-material topology optimization. An OC method that handles multiple constraints is

discussed in [121], and an extension of the OC method to handle multiple displacement

constraints is presented in [122]; both methods require the calculation of coupled Lagrange

multipliers. On the other hand, the multi-material topology optimization literature typically

adopts general-purpose update schemes, such as sequential linear programming [60] or the

Method of Moving Asymptotes (MMA) [71]. An active-phase algorithm that extends the

OC method for multi-material topology optimization is proposed by Tavakoli and Mohseni

([116]). Similar to the Gauss-Seidel and Jacobi iterative optimization methods, the active-

phase algorithm arranges the material phases by stiffness and performs sequential binary

updates using the OC method. This active-phase algorithm is further studied in the work

of [123] and [124] with improved performance. However, the active-phase algorithm only

applies to linear material behavior and loses efficiency as the number of candidate materials

increases. When nonlinear material behavior is considered in multi-material topology opti-

mization, the sequential binary updates of the active-phase algorithm become challenging

with respect to arranging a pre-defined ordering scheme for nonlinear candidate materials.

Therefore, an effective and efficient update method, tailored for multi-material topology op-

timization with an arbitrary number of volume constraints and capable of handling general

nonlinear material behavior, is needed.

Taking into account the aforementioned limitations, we propose an efficient multi-
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material optimization formulation. This formulation incorporates nonlinear material be-

havior and is designed to account for an arbitrary number of candidate materials with gen-

eral scenarios of volume constraints. In this study, we present a design update scheme,

called ZPR (Zhang-Paulino-Ramos Jr.), that is capable of handling an arbitrary number of

volume constraints. This tailored update scheme performs efficient and robust updates of

the design variables associated with each volume constraint (in an independent fashion).

A comparison between topology optimization considering single and multiple materials is

shown in Figure 4.3, which shows various conceptual designs of a long-span bridge by ex-

ploring various candidate materials within the proposed topology optimization framework.

If only one linear candidate material (e.g. steel-like) is considered, we always obtain an

arch bridge design as shown on the left of Figure 4.3, regardless of the stiffness of the ma-

terial. However, if we choose to consider two bilinear candidate materials: concrete-like

(compression-dominated material) and cable-like (tension-dominated material), the opti-

mal design becomes a suspension bridge, as shown in the middle of Figure 4.3. In another

case, if we use three types of candidate materials, a bridge design, which combines the

features of both the arch bridge and the suspension bridge, is obtained. This example high-

lights that the proposed topology optimization framework allows the structural engineers

and architects to explore various materials types, as well as material combinations, to come

up with innovative designs tailored for the properties and behaviors of the selected materi-

als.

The remainder of the chapter is organized as follows. Section 2 proposes the multi-

material topology optimization formulation using the GSM, followed by sensitivity analy-

sis, Karush-Kuhn-Tucker (KKT) conditions, incorporation of a discrete filter, and remarks

of the proposed formulation. Section 3 presents the ZPR design update scheme and is fol-

lowed by its detailed derivation. Section 4 describes selected material nonlinear models and

their corresponding strain energy density functions. Section 5 presents numerical examples

in two- and three-dimensions, highlighting the properties of the proposed formulation, and
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Figure 4.3: Topology optimization of long-span bridge: Single versus multiple materials.
Left: single material bridge design; middle: optimized design using two materials; right:

optimized design using three materials. (Online version in color.)

Section 6 provides concluding remarks with suggestions for expanding our work.

4.2 Multi-Material Topology Optimization

This section introduces the proposed formulation of multi-material topology optimization

using the GSM, its sensitivity analysis, the KKT conditions, and the incorporation of the

discrete filter. We further provide some remarks on the proposed formulation.

4.2.1 Formulation

First, we present the proposed multi-material topology optimization formulation for trusses

with the assumption of small deformation. The topology design consists of determining the

cross-sectional areas of the truss members using the GSM. Assuming a total of m types of

materials, we denote xi as the design variables (cross-sectional areas of the truss elements)

associated with material i, where i = 1, ...,m are the material indices. We also assume a

total of nc independent volume constraints, where 1≤ nc≤ m, and denote G j as the set of
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material indices associated with the jth volume constraint. The proposed formulation of

multi-material topology optimization using the GSM is given as

min
x1,...,xm

J (x1, ...,xm) = min
x1,...,xm

−Π(x1, ...,xm,u(x1, ...,xm))

s.t. g j (x1, ..., xm) = ∑
i∈G j

LT
i xi−V j

max ≤ 0, j = 1, ...,nc,

xmin ≤ x(e)i ≤ xmax, i = 1, ...,m, and e = 1, ...,Mi,

with u(x1, ...,xm) = argmin
u

Π(x1, ...,xm,u) .

(4.1)

The objective function J is the negative total potential energy of the system in the equilib-

rium state, where Π is the total potential energy of the equilibrated system, and u(x1, ...,xm)

is the equilibrating displacement field (state variable). The term V j
max is the prescribed up-

per bound on the total volume associated with the jth volume constraint, g j; xmin and xmax

are the lower and upper bounds of the design variables; x(e)i is the cross-sectional area

of truss member e with the ith material; Li is the length vector corresponding to the ith

material; Mi is the number of truss members in the ground structure of the ith material.

As a demonstration of the notation in the proposed multi-material optimization formula-

tion (4.1), Figure 4.4 and Table 4.1 summarize the parameters for a case with four ma-

terials (m = 4, M1 = 5,M2 = 6,M3 = 9,M4 = 9) and three volume constraints (nc = 3,

G 1 = {1,2},G 2 = {3},G 3 = {4}).

The total potential energy of the entire system Π is defined as

Π(x1, ...,xm,u) =
m

∑
i=1

Mi

∑
e=1

x(e)i L(e)
i Ψ

(e)
i (u)− f T u, (4.2)

where L(e)
i and Ψ

(e)
i (u) are the length and strain energy density function of the eth mem-

ber of material i, and f is the external force vector. The strain energy density function,

Ψ
(e)
i (u), is assumed to be convex and differentiable for any given u. The expressions of

Ψ
(e)
i (u) for Ogden and bilinear materials are described in Section 3.3.1. According to Eq.
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Material 1

Material 2

Material 3

i = 1

1, 21

32

1

2

Material 4

x1, M1 = 5

x2, M2 = 6

x3, M3 = 9

x4, M4 = 9

(8)

(1)

(1) (2)
(3) (6) (7)

(9)

(1)
(2)

(5)

(2) (5)

(6)

(4)

(3) (4)

Vol. constraint 1:

Vol. constraint 2:

(8)

(1) (2)
(3)

(9)

43

3Vol. constraint 3:

(3)

(5)(4)

(6) (7)(5)(4)

Figure 4.4: Illustration of parameters in multi-material optimization formulation: four
materials share & split the design domain (m = 4, M1 = 5,M2 = 6,M3 = 9,M4 = 9) with

three volume constraints (“Material 1” and “Material 2” share one volume constraint
while “Material 3” and “Material 4” have individual constraints, nc = 3,

G 1 = {1,2},G 2 = {3},G 3 = {4}). (Online version in color.)
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Table 4.1: Illustration of parameters in multi-material optimization formulation (Figure
4.4).

Materials, m = 4 Mi xi = {x(e)i }T , i = 1, ...,m, e = 1, ...,Mi

1 M1 = 5 x1 = {x
(1)
1 ,x(2)1 ,x(3)1 ,x(4)1 ,x(5)1 }T

2 M2 = 6 x2 = {x
(1)
2 ,x(2)2 ,x(3)2 ,x(4)2 ,x(5)2 ,x(6)2 }T

3 M3 = 9 x3 = {x
(1)
3 ,x(2)3 ,x(3)3 ,x(4)3 ,x(5)3 ,x(6)3 ,x(7)3 ,x(8)3 ,x(9)3 }T

4 M4 = 9 x4 = {x
(1)
4 ,x(2)4 ,x(3)4 ,x(4)4 ,x(5)4 ,x(6)4 ,x(7)4 ,x(8)4 ,x(9)4 }T

Vol.
constraints,

nc = 3
G j g j = ∑i∈G j LT

i xi−V j
max ≤ 0, j = 1, ...,nc

1 G 1 = {1,2} g1 = LT
1 x1 +LT

2 x2−V 1
max ≤ 0

2 G 2 = {3} g2 = LT
3 x3−V 2

max ≤ 0

3 G 3 = {4} g3 = LT
4 x4−V 3

max ≤ 0

(4.2), the total potential energy Π is interpolated as a linear function of the design vari-

able (after the strain energy density function of each member, Ψ
(e)
i (u), is obtained through

the nonlinear structural analysis). The nonlinear structural equations are solved through

Newton-Raphson method, the Tikhonov regularization, and inexact line search. The de-

tails of the derivation are referred to Section 3.3.3, 3.3.4, and 3.3.5.

Here, we compute the sensitivity for the above optimization formulation. The sensitiv-

ity of the objective function is as follows,

∂J

∂x(e)i

(x1, ...,xm) =−
∂Π

∂x(e)i

(x1, ...,xm,u(x1, ...,xm))

−
[

∂Π

∂u
(x1, ...,xm,u(x1, ...,xm))

][
∂u

∂x(e)i

(x1, ...,xm,u(x1, ...,xm))

]
.

(4.3)

Under the assumption of global equilibrium, u is the equilibrating displacement field under

external load f in the objective function, therefore, the second term on the right-hand-side

of Eq. (4.3) vanishes. By using Eq. (4.2) and the fact that the term f T u is (explicitly)
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independent of the design variables, we obtain the sensitivity as

∂J

∂x(e)i

(x1, ...,xm) =−
∂Π

∂x(e)i

(x1, ...,xm,u(x1, ...,xm)) =−L(e)
i Ψ

(e)
i (u(x1, ...,xm)) . (4.4)

Note that the sensitivity given by Eq. (4.4) is always non-positive because

L(e)
i Ψ

(e)
i (u(x1, ...,xm))≥ 0, and the computation of sensitivity does not involve an adjoint

vector. The sensitivity of the jth volume constraint for member e is calculated as

∂g j (x1, ...,xm)

∂x(e)i

=


L(e)

i if i ∈ G j,

0 otherwise.

(4.5)

4.2.2 KKT conditions

In this subsection, we show the KKT conditions of the multi-material optimization formu-

lation (4.1). To derive the KKT conditions, the Lagrangian takes the following form by

introducing a set of Lagrange multipliers φ
j
V , j = 1, ...,nc, corresponding to the volume

constraints:

L
(

x1, ...,xm,φ
1
V , ...,φ

nc
V

)
= J (x1, ...,xm)+

nc

∑
j=1

φ
j
V

(
∑

i∈G j

LT
i xi−V j

max

)
. (4.6)

If we denote x∗1, ...,x
∗
m as the optimal solutions of design variables and φ

1,∗
V , ...,φ

nc,∗
V as the

corresponding Lagrange multipliers; for any i ∈ G j, j = 1, ...,nc, we have:

∂L

∂x(e)i

(
x∗1, ...,x

∗
m,φ

1,∗
V , ...,φ

nc,∗
V

)
≤ 0, if x(e),∗i = xmax, (4.7)

∂L

∂x(e)i

(
x∗1, ...,x

∗
m,φ

1,∗
V , ...,φ

nc,∗
V

)
= 0, if xmin < x(e),∗i < xmax, (4.8)

∂L

∂x(e)i

(
x∗1, ...,x

∗
m,φ

1,∗
V , ...,φ

nc,∗
V

)
≥ 0, if x(e),∗i = xmin, (4.9)
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where the derivative of the Lagrangian is given by

∂L

∂x(e)i

(
x1, ...,xm,φ

1
V , ...,φ

nc
V

)
=−L(e)

i Ψ
(e)
i (u(x1, ...,xm))+φ

j
V L(e)

i , ∀i ∈ G j. (4.10)

Combining Eq. (4.10) with Eqs. (4.7) – (4.9), we obtain the KKT conditions for the optimal

solution
(

x∗1, ...,x
∗
m,φ

1,∗
V , ...,φ

nc,∗
V

)
of the optimization formulation (4.1) as follows (for any

i ∈ G j, j = 1, ...,nc):

Ψ
(e)
i (u(x∗1, ...,x

∗
m)) ≥ φ

j,∗
V , if x(e),∗i = xmax, (4.11)

Ψ
(e)
i (u(x∗1, ...,x

∗
m)) = φ

j,∗
V , if xmin < x(e),∗i < xmax, (4.12)

Ψ
(e)
i (u(x∗1, ...,x

∗
m)) ≤ φ

j,∗
V , if x(e),∗i = xmin. (4.13)

From Eq. (4.12), we observe that at the optimal design, the strain energy density values for

the members (with inactive box constraints) within the same volume constraint are identical

(equal to the optimal solution of the associated Lagrange multiplier, φ
j,∗
V ), regardless of the

material type. This idea is further verified by a numerical example in Section 5.3. For

instance, let’s assume that “Material 1” and “Material 2” have different material models. If

these two materials are assigned to one constraint, the members associated with “Material

1” and “Material 2” in the optimal design should have the same values of strain energy

density (even though the material behaviors differ). This observation concerning multi-

material topology optimization is analogous to the full-stress design in the linear case with

single material [31].

4.2.3 Incorporation of the discrete filter into the proposed multi-material formulation

To improve the computational efficiency and define structures that satisfy global equilib-

rium, we implement the discrete filter [85], [120] into the nonlinear multi-material topology

optimization framework in Eq. (4.1). To control the resolution of the topology, the filter

parameter α f is introduced in Eq. (3.5).
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We perform the filter operation during the optimization process to remove the infor-

mation associated with the set of truss members with normalized areas below the filter

parameter α f . Therefore, the complete multi-material topology optimization formulation

with the discrete filter is as follows:

min
x1,...,xm

J (x1, ...,xm) = min
x1,...,xm

−Π(x1(x1), ...,xm(xm),u(x1, ...,xm))

s.t. g j (x1, ..., xm) = ∑
i∈G j

LT
i xi(xi)−V j

max ≤ 0, j = 1, ...,nc,

0≤ x(e)i ≤ xmax, i = 1, ...,m, and e = 1, ...,Mi,

with u(x1, ...,xm) = argmin
u

{
Π(x1(x1), ...,xm(xm),u)+

Γ

2
uTu

}
,

x(e)i = Filter
(
xi,α f ,e

)
, i = 1, ...,m, and e = 1, ...,Mi,

(4.14)

where xi denotes the filtered design variables associated with the ith material. In formula-

tion (4.14), the lower bound is taken as xmin = 0 to account for the removal of members,

which transforms the sizing problem in (4.1) into a topology optimization problem. A

Tikhonov regularization term Γ

2 uTu is added to the total potential energy in the state equa-

tion to prevent singular stiffness matrices [85], [101]–[103].

4.2.4 Remarks

The properties of the proposed multi-material topology optimization framework relate to

several aspects. First, the optimization formulations in Eqs. (4.1) and (4.14) are capable

of handling a general number of materials. The constitutive relationship of each material

is flexible (e.g., linear, bilinear, or nonlinear). For example, we can obtain a variety of ma-

terials by changing the parameters of the Ogden-based model (see Section 4). Second, the

specific choice of the material model is independent for each material. For instance, we can

use an Ogden-based model for certain material layers and a bilinear model for others. Third,

in the optimization formulation, the assignment of volume constraints for multiple materi-
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als contains general scenarios, meaning that the number of volume constraints satisfies the

relation 1 ≤ nc ≤ m. As a demonstration, Table 4.2 summarizes three possible combina-

tions of volume constraints if three materials (m = 3) are used in the optimization problem.

Figure 4.5 shows the three representative scenarios of the volume constraint assignment,

i.e., sharing (Figure 4.5c), splitting (Figure 4.5d), and a combination of sharing & splitting

(Figure 4.5e). The case of assigning a total/global volume constraint to all materials corre-

sponds to nc = 1 and G 1 = {1,2,3} (Figure 4.5c), and the case of assigning individual vol-

ume constraint to each material corresponds to nc = m = 3, G 1 = {1},G 2 = {2},G 3 = {3}

(Figure 4.5d). To handle an arbitrary number of volume constraints, we propose a design

update scheme in Section 3. This update scheme performs efficient and robust updates of

the design variables associated with each volume constraint in an independent fashion.

Table 4.2: Three possible combinations of volume constraints for three materials

Materials
Scenarios of volume constraints

(Figure 4.5c) (Figure 4.5d) (Figure 4.5e)
1

V 1
max

V 1
max V 1

max
2 V 2

max V 2
max3 V 3

max

4.3 The ZPR Design Update Scheme

In this section, we present the ZPR (zipper, phonetically) design update scheme. In the pro-

posed multi-material formulations in Eqs. (4.1) and (4.14), we have multiple (nc) volume

constraints. Accordingly, we need an update scheme that can handle multiple constraints.

The standard OC method is a robust and efficient update scheme for single material topol-

ogy optimization, however, it only handles a single volume constraint. Consequently, the

OC method cannot be directly applied to the proposed multi-material formulations in Eqs.

(4.1) and (4.14), unless only one volume constraint is used, i.e., nc = 1. To address such

limitation, we present the ZPR design update scheme, which is capable of handling an ar-

bitrary number of volume constraints while preserving the efficiency and effectiveness of
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Mat. 1 
Mat. 2
Mat. 3

Mat. 2

Mat. 3

Mat. 1 Mat. 1

Mat. 2
Mat. 3

a Candidate materials:
b Total vol. constraint

c d eScenario #2: split
3 vol. constraints

Scenario #1: share
1 vol. constraint

Scenario #3: share & split
2 vol. constraints

Vmax

V1
max

V1 
max

V3
max

V2
max V1 

max

V2 
max

Figure 4.5: Potential combination of volume constraints: a Candidate materials; b total
volume constraint, Vmax; c Scenario #1: three materials share the (single) total volume
constraint, nc = 1, G 1 = {1,2,3}; d Scenario #2: three materials split the total volume

constraint, (i.e., each material is associated with an individual constraint, nc = 3,
G 1 = {1},G 2 = {2},G 3 = {3}); e Scenario #3: three materials share & split the volume

constraint (i.e., “Material 1” has an individual constraint while both “Material 2” and
“Material 3” share another volume constraint, nc = 2, G 1 = {1},G 2 = {2,3}). (Online

version in color.)
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the standard OC method. The proposed ZPR design update scheme allows for the separa-

tion and independent updating of design variables associated with each volume constraint.

In computational implementations, the ZPR update scheme loops over the set of volume

constraints. For the jth volume constraint, only the associated design variables are updated

by using the Lagrange multiplier associated with the jth volume constraint.

In the remainder of this section, we present the derivation of the ZPR design up-

date scheme for the proposed optimization formulation in Eq. (4.1) containing an arbi-

trary number of volume constraints (nc). The first step of the derivation is to perform

an explicit convex approximation of the objective at each optimization step [31]. In this

convex approximation, we first introduce a set of intervening variables yi(xi) such that

y(e)i (x(e)i ) = (x(e)i )−α , i = 1, ...,m, and e = 1, ...,Mi, where α is an arbitrary and strictly pos-

itive number. At the kth optimization step, we then approximate the objective function as a

linear function of yi as follows:

J (x1, ...,xm) ≈ Jk (x1, ...,xm) = J
(

xk
1, ...,x

k
m

)
+

m

∑
i=1

[
∂J
∂yi

(xk
1, ...,x

k
m)

]T [
yi(xi)− yi(x

k
i )
]

= J
(

xk
1, ...,x

k
m

)
+

m

∑
i=1

[
bi(xk

1, ...,x
k
m)
]T [

yi(xi)− yi(x
k
i )
]
, (4.15)

where xk
i and yi(xk

i ) are the design and intervening variables, respectively, at the kth opti-

mization step of material i. Notice that for a given optimization step k, the vector bi(xk
1, ...,x

k
m)

is a constant vector whose component (e) is given by

b(e)i (xk
1, ...,x

k
m) =

∂J

∂y(e)i

(xk
1, ...,x

k
m) =−

(x(e),ki )1+α

α

∂J

∂x(e)i

(xk
1, ...,x

k
m), (4.16)

where ∂J/∂x(e)i (xk
1, ...,x

k
m) is the eth component of the sensitivity vector of the ith material

at step k. Therefore, the approximated subproblem of the original problem at the kth step
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is given by

min
x1,...,xm

Jk (x1, ...,xm) = min
x1,...,xm

m

∑
i=1

[
bi(xk

1, ...,x
k
m)
]T

yi(xi)

s.t. ∑
i∈G j

LT
i xi−V j

max ≤ 0, j = 1, ...,nc,

x(e),ki,L ≤ x(e)i ≤ x(e),ki,U , i = 1, ...,m, and e = 1, ...,Mi,

with y(e)i (x(e)i ) = (x(e)i )−α , i = 1, ...,m, and e = 1, ...,Mi,

(4.17)

where x(e),ki,L = max(xmin,x
(e),k
i −move) and x(e),ki,U = min(xmax,x

(e),k
i +move) are the lower

and upper bounds of the design variables in the subproblem, and move is the prescribed

move limit. In vector notation, the lower and upper bounds are denoted as xk
i,L and xk

i,U.

When we introduce a set of Lagrange multipliers φ
j

V for each volume constraint, the above

Lagrangian function of the subproblem in Eq. (4.17) takes the form

L k (x1, ...,xm,φ
1
V , ...,φ

nc
V
)

=
m

∑
i=1

[
bi(xk

1, ...,x
k
m)
]T

yi(xi)+
nc

∑
j=1

φ
j

V

(
∑

i∈G j

LT
i xi−V j

max

)

=
nc

∑
j=1

{
∑

i∈G j

[[
bi(xk

1, ...,x
k
m)
]T

yi(xi)+φ
j

V LT
i xi

]
−φ

j
VV j

max

}
. (4.18)

The dual objective function is given by

Dk (
φ

1
V , ...,φ

nc
V
)

= min
xk

1,L≤x1≤xk
1,U ,...,xk

m,L≤xm≤xk
m,U

L k (x1, ...,xm,φ
1
V , ...,φ

nc
V
)

=
nc

∑
j=1

{
min

xk
i,L≤xi∈G j≤xk

i,U
∑

i∈G j

[[
bi(xk

1, ...,x
k
m)
]T

yi(xi)+φ
j

V LT
i xi

]
−φ

j
VV j

max

}
. (4.19)

Notice that the dual objective function has a clear separable structure and thus can be recast
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as Dk(φ 1
V , ...,φ

nc
V ) = ∑

nc
j=1 D j,k(φ

j
V ), where D j,k(φ

j
V ) has the form

D j,k
(

φ
j

V

)
= min

xk
i,L≤xi∈G j≤xk

i,U
∑

i∈G j

{[
bi(xk

1, ...,x
k
m)
]T

yi(xi)+φ
j

V LT
i xi

}
−φ

j
VV j

max. (4.20)

The optimality condition of the first term on the right-hand-side of Eq. (4.20) takes the

form
∂

{[
bi(xk

1, ...,x
k
m)
]T yi(xi)+φ

j
V LT

i xi

}
∂x(e)i

=−αb(e)i (xk
1, ...,x

k
m)
(

x(e)i

)(−α−1)
+φ

j
V L(e)

i = 0, ∀i ∈ G j,

(4.21)

which gives

x(e)∗i = Q(e),k
i

(
φ

j
V

)
=

[
αb(e)i (xk

1, ...,x
k
m)

φ
j

V L(e)
i

] 1
1+α

, ∀i ∈ G j. (4.22)

Having obtained x(e)∗i , we then check if the assumption that it is within the interval

[x(e),ki,L ,x(e),ki,U ] holds. The final form of the primal-dual relationship is given by

x(e)∗i =Q(e),k
i

(
φ

j
V

)

=



x(e),ki,L if
[

αb(e)i (xk
1,...,x

k
m)

φ
j

V L(e)
i

] 1
1+α

< x(e),ki,L[
αb(e)i (xk

1,...,x
k
m)

φ
j

V L(e)
i

] 1
1+α

if x(e),ki,L ≤
[

αb(e)i (xk
1,...,x

k
m)

φ
j

V L(e)
i

] 1
1+α

≤ x(e),ki,U

x(e),ki,U if
[

αb(e)i (xk
1,...,x

k
m)

φ
j

V L(e)
i

] 1
1+α

> x(e),ki,U

,∀i ∈ G j.
(4.23)

Inserting the above primal-dual relation into the dual function, we obtain the dual problem:

max
φ 1

V ,...,φ
nc
V

Dk (
φ

1
V , ...,φ

nc
V
)
=

nc

∑
j=1

max
φ

j
V

D j,k
(

φ
j

V

)
. (4.24)

Notice that the dual objective function is also separable, and the stationary condition with
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respect to φ
j

V yields:

∂Dk

∂φ
j

V

= ∑
i∈G j

Mi

∑
e=1

L(e)
i x(e)∗i

(
φ

j
V

)
−V j

max = 0. (4.25)

Observe that the above equation is a monotonic algebraic equation of φ
j

V [31], and thus can

be solved by various algorithms, such as the bisection method. In addition, the calculation

of the Lagrange multipliers can be done independently. We hereby denote φ
j∗

V as the solu-

tion to the jth of Eq. (4.25). The update of the eth component of the design variables then

takes the form:

x(e),k+1
i = Q(e),k

i

(
φ

j∗
V

)
, ∀i ∈ G j. (4.26)

By plugging in the sensitivity information (Eq. (4.4)), a simplified expression for the design

variable update of the ZPR update scheme can be obtained as

x(e),k+1
i =



x(e),ki,L if
[

Ψ
(e)
i (u(xk

1,...,x
k
m))

φ
j∗

V

]η

x(e),ki < x(e),ki,L[
Ψ

(e)
i (u(xk

1,...,x
k
m))

φ
j∗

V

]η

x(e),ki if x(e),ki,L ≤
[

Ψ
(e)
i (u(xk

1,...,x
k
m))

φ
j∗

V

]η

x(e),ki ≤ x(e),ki,U

x(e),ki,U if
[

Ψ
(e)
i (u(xk

1,...,x
k
m))

φ
j∗

V

]η

x(e),ki > x(e),ki,U

,∀i ∈ G j.

(4.27)

In the above expression, the parameter η is introduced as η = 1/(1+α), which is com-

monly referred as the damping factor. It can be either constant (e.g. [31]) or adaptive

([70]).

We remark that from Eqs. (4.26) and (4.27), the update of the design variable depends

only on the Lagrange multiplier of the corresponding volume constraint. Therefore, in

the case of multiple volume constraints, the design variables associated with each volume

constraint can be updated independently. Note that because the update of design variables

in each volume constraint is independent, the update can be done either in sequence or

in parallel. The procedure of multi-material topology optimization with the ZPR design

update scheme using sequential updates is illustrated in Algorithm 2.
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Algorithm 2 Multi-material topology optimization with the ZPR design update scheme

Initialize: x0
1, ...,x

0
m, itermax, τopt

for k = 0,1, ..., itermax do
Solve: u

(
xk

1, ...,x
k
m
)
= argminu

[
Π
(
xk

1, ...,x
k
m,u
)]

Compute: J
(
xk

1, ...,x
k
m
)
, g j (xk

1, ...,x
k
m
)
, ∂J

(
xk

1, ...,x
k
m
)
/∂x(e)i ,

and ∂g j (xk
1, ...,x

k
m
)
/∂x(e)i

for j = 1,2, ...,nc do
Compute φ

j
V∗ by solving Eq. (4.25)

Update x(e),k+1
i = Q(e),k

i

(
φ

j∗
V

)
, ∀i ∈ G j according to Eq. (4.27)

end for
if max

(
||xk+1

1 −xk
1||∞, ..., ||xk+1

m −xk
m||∞

)
< τopt then

quit
end if

end for
Remove aligned nodes
Plot final topology

4.4 Material Nonlinear Models

In this section, we briefly review the theory of hyperelastic constitutive models on which

the structural analysis part of the chapter is based. For details of the derivation, readers

are referred to the studies by [84], [120]. For the kinematics and constitutive models, we

assume small deformation kinematics and nonlinear constitutive relationships. We compute

the linearized stretch λ for the truss element in Eq. (3.21).

We account for nonlinear constitutive relationships by using the energy density function

based on [106], which allows for various materials to be represented and has the capability

to reproduce a variety of hyperelastic models. The strain energy density function and tan-

gent modulus for this hyperelastic Ogden material is expressed in Eqs. (3.25) and (3.26).

The tangent modulus (in an undeformed state) reduces to Young’s modulus in linear elas-

ticity, as shown in Eq. (3.27).

Note that the material model is convex, i.e., Ψ̂OG (λ ) is convex for λ > 0, if the param-

eters satisfy the following conditions: β1 ≥ 1, β2 ≤ 1, β1 6= β2, γ1 > 0, and subsequently
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ET > 0 (dσOG (λ )/dλ > 0). The stress-stretch relationship of the Ogden model is ex-

pressed Eq. (3.30). By varying the set of parameters (β1,β2), as shown in Figure 3.5a, this

Ogden-based model generates a variety of material behaviors.

Another constitutive model used in this chapter is the bilinear material. The bilin-

ear constitutive model has a kink at the origin (see Figure 3.5b). To treat this class of

nonsmooth problems, we refer the reader to [107]. Using the same format of the Ogden-

based model to describe the bilinear model, the energy density function and stress are

in Eqs. (3.31) and (3.32). Note that this bilinear material model is always convex as

dσBi (λ )/dλ ≥ 0.

4.5 Numerical Examples

In this section, we provide several numerical examples to demonstrate the proposed multi-

material topology optimization using the GSM. Example 1 verifies the proposed multi-

material methodology by comparing the results obtained from the proposed scheme with

the results obtained from the single material topology optimization. Example 2 compares

different combinations of initial material distributions and their optimized results. Example

3 demonstrates combinations of volume constraints and their optimized results. The last

example considers multiple load cases and illustrates the application of the proposed multi-

material formulation to a 3D crane design using a combination of various material models

and general volume constraint setting.

We generate the initial ground structures without overlapped members in each mate-

rial layer using the collision zone technique by [112], [113] and plot final topologies in

3D using the program GRAND3 [113]. It is worth noting that we do not verify the sta-

bility of members. For studies that address stability issues, readers are referred to [35],

[36], [125]–[127]. The ground structure method without stability constraints may lead to

structures with aligned nodes, i.e., hinges connecting two collinear members. The proce-

dure for removing aligned nodes consists of identifying the nodes that connect only two

118



collinear members (except those nodes connecting to load or displacement boundary con-

ditions). Then we remove the aligned node by replacing two collinear members with one

long member that takes the larger (or equal) area from the two. Therefore, the resulting ob-

jective value decreases (or remains unchanged). For all GSM results, we remove aligned

nodes and floating members and check the final topologies to ensure that they are at global

equilibrium. A detailed explanation can be found in the references [120], [128]. The non-

linear solution scheme is based on a Newton-Raphson approach with line search (see [120]

for a detailed explanation). For all the examples, the discrete filter is used to obtain valid

structures and improve computational efficiency (see Section 4.2.3). We use the filter value

α f = 10−4 during the optimization process, and the filter operation is performed at ev-

ery optimization step. Consistent units are implied throughout, and all the examples have

initial tangent modulus, E0 = 7× 107kPa; stopping criterion: τopt = 10−9; move value:

move = 104x0, where x0 is the initial guess of the design variables; and initial damping

factor for the ZPR design update scheme: η = 0.5. Subsequent damping factors are up-

dated according to the scheme provided by [70]. The upper bound for the design variable is

defined by xmax = 104x0. All of our examples are solved by the ZPR design update scheme

proposed in Section 3. The examples are summarized in Table 4.3.

4.5.1 Verification of the multi-material topology optimization framework

The first example verifies the proposed multi-material methodology and the ZPR design

update scheme by comparing the results obtained from the proposed formulation (using two

bilinear materials) with the results obtained from the standard GSM using a single (bilinear)

material. We use a 2D box domain, discretized by a 30×10 grid. The geometry (L = 10m),

load (P= 100kN), and support conditions (two fixed supports) are shown in Figure 4.6. The

total prescribed maximum volume takes the following value, Vmax = 0.15m3.

For the single material case, using a level-10 initial ground structure with 19,632 non-

overlapped members and 341 nodes, we perform optimization with a bilinear material (Et =

119



Table 4.3: Brief description of the numerical examples.

Example Dimension Material model Description Feature

1 2D 2 bilinear

Opposite loads
in a simply
supported rectan-
gular domain

Verification

2 2D 4 Ogden based

Opposite loads
in a simply
supported rectan-
gular domain

Influence of initial mate-
rial distributions

3 2D
2 bilinear and
1 linear

Long-span bridge
design

Generality of formula-
tion including combina-
tions of volume con-
straints

4 3D
2 Ogden based
and 1 linear

Crane design sub-
jected to multiple
load cases

Potentially translational
design: from academia
to structural engineering
practice

a

3L

L

P

P

P

Figure 4.6: Example 1: geometry (L = 10m), load (P = 100kN), and boundary conditions.
The domain is discretized using a 30×10 grid.

7E and Ec = 2E, E = 107kPa). For the two multi-material cases, two materials share

the entire domain. Hence, we use two layers of level-10 initial ground structures (one

for each material) with 39,264 members (truss members within each material layer are

not overlapped), 341 nodes, and two bilinear materials (Et1 = 7E, Ec1 = 0 and Et2 = 0,

Ec2 = 2E). The combination of these two materials is designed to reproduce the results

from the single material case. For multi-material cases, two scenarios of assignments for

volume constraints are used. In one scenario, two materials are assigned to one total volume
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constraint (nc = 1), i.e., V 1
max = Vmax; in another scenario, each material is assigned to an

individual volume constraint (nc = 2), i.e., V j
max = 0.5Vmax, j = 1,2. Note that in all single

and multiple materials cases, the prescribed maximum volume, Vmax, is the same. The

initial ground structures, material models, and optimized structures obtained using one

bilinear material and two bilinear materials are shown in Figures 4.7 and 4.8, respectively.

The associated numerical information is summarized in Table 4.4.

The multi-material formulation with one volume constraint (Figure 4.8c) yields a struc-

ture and an optimal objective value identical to those obtained using the single material

formulation (Figure 4.7c). This comparison verifies the proposed formulation and the ZPR

design update scheme. In addition, for the case that two materials share the entire domain

and are assigned to one volume constraint, the optimizer assigns materials to appropriate

locations with proper amounts according to each material’s property. For the case with two

constraints (Figure 4.8d), the optimized structure differs from the one volume constraint

case (Figure 4.8c) and has a slightly (3.7%) higher objective value.

Table 4.4: Numerical information for Example 1 (Figures 4.6, 4.7, and 4.8), E = 107kPa.

2D cases J (x∗i ) Material Volume Final #
(kN ·m) Et Ec constraint, V j

max Vfrac Elements
1 material 1.136 7E 2E Vmax 1.00 48

2 materials
1.136

7E 0
Vmax

0.63 25
(1 vol. constraint) 0 2E 0.37 19

2 materials
1.179

7E 0 0.5Vmax 0.5 42
(2 vol. constraints) 0 2E 0.5Vmax 0.5 33

4.5.2 Opposite loads in a simply supported rectangular domain

In the second example, we demonstrate the different scenarios of initial material distribu-

tions using four Ogden-based materials in the proposed methodology and compare their

optimized results. The design domain with load and boundary conditions (L = 10m,P =
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Single material, one vol. constraint

Initial GS 

1

        Et=7E, Ec=2E
Material

Material model

b

a

c

1.0 Vmax
(Vol. constraint 1)

σ (kPa)

λ (m/m)

Figure 4.7: Example 1: single material topology optimization. a The material model of
one bilinear material; b the initial level-10 (schematic) GS; c the corresponding optimized

structure (cf. Figure 4.8c). (Online version in color.)
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Multi-material, one vol. constraint

Multi-material, two vol. constraints

Material models

Initial GS for each material (share)b

a

c

1

σ (kPa)

λ (m/m)

Et=7E, Ec=0

Mat. 2 

Mat. 1 

Et=0, Ec=2E

d

1.0 Vmax
(Vol. constraint 1)

0.5 Vmax
(Vol. constraint 2)

0.5 Vmax
(Vol. constraint 1)

Figure 4.8: Example 1: multi-material topology optimization. a Material models of two
bilinear materials; b two layers of identical initial level-10 (schematic) GSs; c the

optimized structure of two bilinear materials with one total volume constraint (cf. Figure
4.7c); d the optimized structure of two bilinear materials with two individual volume

constraints. (Online version in color.)
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1000kN) and material models are shown in Figures 4.9a and 4.9b. We compare two sce-

narios of initial material distributions. In the first scenario, four materials share & split

the domain (Figure 4.9c), resulting 55,818 members and 341 nodes. The total prescribed

maximum volume takes the following value, Vmax = 0.15m3. Each material is associated

with an individual volume constraint (nc = 4), as shown in Table 4.5. The initial GS for

each material and the corresponding optimized structures are shown in Figure 4.9c. The

multi-material framework with materials sharing & splitting the domain leads to a structure

without overlapping members (selecting at most one material for each subdomain). In the

final design without any overlapping members, the values of strain energy density of all the

truss members for the same material are identical [84], [120].

In the second scenario, four materials share the entire domain (Figure 4.9d). Four layers

(one for each material) of identical level-10 initial ground structures (based on a 30× 10

grid) with a total of 78,528 members and 341 nodes are used. Similar to the first scenario,

the total prescribed maximum volume takes the value, Vmax = 0.15m3, and each material

is associated with an individual volume constraint (nc = 4), see Table 4.5. The initial GSs

for the second scenario and the corresponding optimized structures are shown in Figure

4.9d. The associated numerical information is summarized in Table 4.5. In the optimized

structure, we observe that the selection of more than one material for some truss members

(i.e., overlapping of truss members from different materials) occurs when materials share

the entire domain. In this case of selecting more than one material, truss members with

several materials may have unequal strain energy density values. While the selection of

multiple materials at certain subdomains is beyond the scope of the present work, the results

with overlapping members may be realized through composite materials.

4.5.3 Long-span bridge design using linear and bilinear materials

This bridge example investigates different combinations of volume constraints using one

linear and two bilinear materials in the proposed multi-material formulation. The de-
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Final topology for each material

Initial GS for each material (share & split)

Final topology

Final topology for each material

Initial GS for each material (share)

Final topology
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Material 3

Material 4

β1 = 2200, β2 = -5.1

β1 = 7.2, β2 = -2194

β1 = 1043, β2 = -1843

β1 = 1849, β2 = -1039

b

3L

L

P

P

P

a

c d

Design domain

Figure 4.9: Example 2: influence of initial material distributions. a Design domain
(L = 10m,P = 1000kN); b material models: four Ogden-based materials; c initial material

distribution (schematic GSs) and the corresponding optimized structure for the case of
materials sharing & splitting the domain; d initial material distribution (schematic GSs)

and the corresponding optimized structure for the case of materials sharing the entire
domain. (Online version in color.)
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Table 4.5: Numerical information for Example 2 (Figure 4.9).

2D cases J (x∗i ) Material Volume #
(kN ·m) β1 β2 constraint, V j

max Elements

4 materials
35.44

2200.3 -5.1 0.4Vmax 11
7.2 -2194.0 0.4Vmax 11

(share & split)
1043.3 -1843.1 0.1Vmax 10
1848.8 -1039.2 0.1Vmax 10

4 materials
27.53

2200.3 -5.1 0.4Vmax 42
7.2 -2194.0 0.4Vmax 42

(share)
1043.3 -1843.1 0.1Vmax 42
1848.8 -1039.2 0.1Vmax 42

sign domain with load and boundary conditions (L = 1m,P = 100kN) is shown in Figure

4.10a. Two bilinear and one linear materials are used to represent cable-like (“Material

1”), steel-like (“Material 2”), and concrete-like (“Material 3”) materials ([Et ,Ec]
cable =

[17E,0.007E]; [Et ,Ec]
steel = [7E,7E]; [Et ,Ec]

concrete = [0.002E,2E]; where E = 107kPa),

as shown in Figure 4.10b. Three materials share the entire domain, as shown in Figure

4.10c, leading to three identical layers of full-level initial ground structures (based on an

18×7 grid) with 21,249 non-overlapping members and 152 nodes. We use two combina-

tions of assignments for volume constraints. In one combination (three volume constraints,

nc = 3), each material is assigned to an individual volume constraint (Figure 4.11a). In

the other combination (two volume constraints, nc = 2), cable-like and steel-like materials

are assigned to one volume constraint, and the concrete-like material is assigned to another

volume constraint (Figure 4.11b), see Table 4.6. Note that in both combinations, the pre-

scribed maximum volume, Vmax = 0.05m3, is the same. The optimized structures for the

two combinations of volume constraints are shown in Figure 4.11. The associated numeri-

cal information is summarized in Table 4.6. Different combinations of volume constraints

lead to varied optimized structures. The case with two constraints has smaller objective

value than the case with individual volume constraint for each material (i.e., three con-

straints). The amount of usage for the cable-like material decreases when its volume con-
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straint is combined with a steel-like material. The strain energy density for each member in

these two combinations of volume constraints are shown in Figure 4.12. In the optimized

design, we observe that the members within the same volume constraint have the same

strain energy density value regardless of the material type, verifying the KKT conditions

discussed in Section 2.2. In the case that “Material 1” and “Material 2” are assigned to one

volume constraint, the strain energy density values in the optimized structure are the same

even though the properties of the two candidate materials are different.

Table 4.6: Numerical information for Example 3 (Figures 4.10, 4.11, and 4.12),
E = 107kPa.

2D cases J (x∗i ) Material Volume Final #
(kN ·m) Et Ec constraint, V j

max Vfrac Elements

3 materials
20.957

17E 0.001E 0.4Vmax 0.40 35
7E 7E 0.1Vmax 0.10 27

(3 vol. constraints) 0.002E 2E 0.5Vmax 0.50 27

3 materials
14.755

17E 0.001E
0.5Vmax

0.16 31
7E 7E 0.34 31

(2 vol. constraints) 0.002E 2E 0.5Vmax 0.50 31

4.5.4 Three-dimensional crane design subjected to multiple load cases

Using a combination of different materials with a more general volume constraint setting,

we apply the proposed multi-material formulation to a 3D crane design subjected to mul-

tiple load cases. These load cases are implemented using the weighted-sum formulation,

which averages the objective functions from all load cases. For a randomized approach

that efficiently and effectively optimizes structures with many load cases, readers are re-

ferred to the work in [129]. The geometry of the crane (L = 1m,P = 60kN), in Figures

4.13a and 4.13b, has a fixed end and a void zone for practical design purposes [113]. To

obtain constructible structures, we use a 14× 2× 2 grid (with a level 6 GS) for the top

domain and a 2×2×10 grid (with a level 3 GS) for the bottom domain, containing a total

of 10,276 members and 216 nodes. As shown in Figure 4.13c, five equal-weighted load
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λ (m/m)

Initial GS for each material (share)
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Material models
Material 1
(cable-like)

Material 2
(steel-like)

Material 3
(concrete-like)

Et = 17E,  Ec = 0.001*7E

Et = 7E,  Ec = 7E

Et = 0.001*2E,  Ec = 2E

ba

c

Design domain
40/9L 100/9L 40/9L

5L

Figure 4.10: Example 3: influence of volume constraint combinations. a Design domain
(L = 1m,P = 100kN); b material models: two bilinear and one linear materials; c initial

full-level (schematic) GS for each material. (Online version in color.)

cases are applied to the crane. We perform optimization with three materials (one linear

and two Ogden-based materials), as shown in Figure 4.14a. As indicated by the initial GSs

(Figure 4.14b), these three materials share & split the domain, we assign two Ogden-based

materials to the top domain and the linear material to the bottom domain.

Two volume constraints are used (nc = 2) where two Ogden-based materials are asso-

ciated with one constraint, and the linear material is associated with the second constraint.

The total prescribed maximum volume takes the following value, Vmax = 0.014m3. In

addition to a small filter (α f = 10−4) used in the entire optimization, we apply a larger

filter (α f = 10−2) in the final step of the optimization to control the resolution of the final

topology. The optimized structure is shown in Figure 4.15. The associated numerical in-

formation is summarized in Table 4.7. The multi-material framework with multiple load

cases leads to a crane design with a clear layout and no overlapping members. In fact, the

lower part of the crane design exhibits the 2/3 bracing rule [130], which is shown to be

the optimal bracing point for lateral loads. The values of initial and final volume fractions
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Multi-material, two vol. constraints

Multi-material, three vol. constraints
a

b

0.4 Vmax
(Vol. constraint 1)

0.1 Vmax
(Vol. constraint 2)

0.5 Vmax
(Vol. constraint 3)

0.5Vmax
(Vol. constraint 1)

0.5Vmax
(Vol. constraint 2)

Figure 4.11: Example 3: influence of volume constraint combinations. a Optimized
structure for the first volume constraint combination (3 constraints) where each material is

assigned to an individual constraint; b optimized structure for the second volume
constraint combination (2 constraints) where cable-like and steel-like materials are

assigned to one constraint and the concrete-like material is assigned to another constraint.
(Online version in color.)
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Figure 4.12: Example 3: influence of volume constraint combinations. a Strain energy
density for the first volume constraint combination (3 constraints); the members within the

same volume constraint have identical values of strain energy density. b Strain energy
density for the second volume constraint combination (2 constraints); the members within
the same volume constraint have identical values of strain energy density, regardless of the
material type, which verifies the KKT conditions discussed in Section 2.2. (Online version

in color.)

of the two Ogden-based materials in Table 4.7 indicate that the optimizer chooses and dis-

tributes the materials according to their properties. The geometry data of this crane design

(Figure 4.15) is exported to STL (or stereolithography) format using the method proposed

by [6]. The design is then manufactured with 3D printing using a fused deposition model-

ing (FDM) process and painted using multiple colors, each corresponding to one material,

as shown in Figure 4.16.

Table 4.7: Numerical information for Example 4 (Figures 4.13, 4.14, 4.15, and 4.16),
E = 107kPa.

3D case J (x∗i ) Material Constraint Vfrac #
kN ·m type property V j

max initial final Elements
3 mats.

457
Ogden β1 = 1197,β2 =−43

0.4Vmax
0.2 0.20 18

(share Ogden β1 = 45,β2 =−1193 0.2 0.20 26
& split) Linear ET = Ec = 7E 0.6Vmax 0.60 0.60 84
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load case 4                                                     load case 5
......  ......  

6L

6L

9L

2L

2L

2L

a

c

b
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Figure 4.13: Example 4: multi-material crane design with multiple load cases. a Design
domain discretized using a 14×2×2 grid for the top domain and a 2×2×10 grid for the

bottom domain; b design domain with void zone; c five equal-weighted load cases.
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Figure 4.14: Example 4: multi-material crane design with multiple load cases. a Material
models: two Ogden-based and one linear materials; b illustration of the initial material

distribution. (Online version in color.)

4.6 Summary and Discussion

In this chapter, we propose a general multi-material formulation for truss topology opti-

mization using the GSM considering material nonlinearity. This formulation is designed to

handle an arbitrary number of candidate materials. Each candidate material is associated

with an individual layer of the ground structure. Therefore, the location of each material

layer can be freely specified – multiple material layers can either share or split the design

domain, or combine both. For each material, the choice of the constitutive model is flexible

and independent. As shown by the KKT conditions (see Section 2.2), our formulation leads

to identical values of strain energy density for members within the same volume constraint

(and whose optimal design variables are in the optimum range xmin < x(e),∗i < xmax), regard-

less of the material type (see Eq. (4.12) and Figure 4.12). Furthermore, the assignment of

volume constraints is generalized in the proposed formulation (e.g., one volume constraint

can be assigned to either one or multiple materials). To efficiently handle the general-

ization of volume constraints, the ZPR design update scheme is utilized, which performs

efficient and robust updates of the design variables associated with each volume constraint
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top view

3D view

front view side view 

Ogden 1

Ogden 2 Linear 

Figure 4.15: Example 4: the optimized structure for the 3D crane design – no overlapping
members are observed in the final design. (Online version in color.)

133



top view

3D view

front view side view 

a b

1 in

Figure 4.16: Example 4: printed model of the optimized crane design with three materials
using FDM process. a 3D view; b top, front, and side views. The dimension of the

manufactured model is 12.8 in × 2.3 in × 10.2 in. (Online version in color.)

independently.

By means of several 2D and 3D examples, using combinations of Ogden-based, bilin-

ear, and linear materials, we verify and demonstrate the effectiveness of the proposed multi-

material formulation and the ZPR design update scheme. The incorporation of material

nonlinearity is shown to naturally eliminate the tendency of multi-material optimization,

using linear materials, to favor the stiffest material. In addition, different initial material

distributions are found to provide a variety of optimized structures. In certain scenarios

(e.g., the scenario of multiple materials sharing the domain), the selection of more than

one material for truss members (the overlapping of truss members from different materi-

als) in the final design may occur, which may denote a composite material configuration.

Furthermore, the comparison of different combinations of volume constraints shows that

fewer constraints on the material volume lead to stiffer optimized structures. In the case of

one total/global volume constraint with all materials sharing the entire domain, we achieve

automatic assignment of the materials, that is, the optimizer chooses and distributes the

materials according to their properties. In this case, the stiffest optimized structures are
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achieved. Multiple load cases using a combination of various materials and a more general

volume constraint assignment are considered in the 3D crane design. The multi-material

framework with multiple load cases leads to a crane design exhibiting the 2/3 bracing rule

[130], which has been shown to be the optimal bracing point for lateral loads. The opti-

mized crane was manufactured with 3D printing (using FDM) and painted using multiple

colors that are consistent with the material assignment scheme.

Given the present investigation and outcome of the examples, we conclude that the

proposed multi-material topology optimization framework, which accounts for material

nonlinearity using the ZPR update scheme, leads to a design tool that not only finds the

optimal topology but also selects the proper type and the amount of material. The ZPR

design update scheme is flexible and customized to handle a general number of volume

constraints – it is also applicable to continuum topology optimization with multiple volume

constraints.
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CHAPTER 5

MULTI-MATERIAL TOPOLOGY OPTIMIZATION WITH MULTIPLE

CONSTRAINTS: COMBINING THE ZPR UPDATE WITH A

GROUND-STRUCTURE ALGORITHM TO SELECT A SINGLE MATERIAL

PER OVERLAPPING SET

Multi-material topology optimization often leads to members containing composite mate-

rials. However, in some instances, designers might be interested in using only one material

for each member. Therefore, we propose an algorithm that selects a single preferred ma-

terial from multiple materials per overlapping set. We develop the algorithm, based on the

evaluation of both the strain energy and the cross-sectional area of each member, to control

the material profile (i.e., number of materials) in each subdomain of the final design. This

algorithm actively and iteratively selects materials to ensure a single material is used for

each member. In this work, we adopt a multi-material formulation that handles an arbitrary

number of volume constraints and candidate materials. To efficiently handle such volume

constraints, we employ the Zhang-Paulino-Ramos (ZPR) design variable update scheme

for multi-material optimization, which is based upon the separability of the dual objective

function of the convex subproblem with respect to Lagrange multipliers. We provide an

alternative derivation of this update scheme based on the Karush-Kuhn-Tucker (KKT) con-

ditions. Through numerical examples, we demonstrate that the proposed material selection

algorithm, which can be readily implemented in multi-material optimization, along with

the ZPR update scheme, is robust and effective for selecting a single preferred material

among multiple materials.
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5.1 Introduction

Multi-material topology optimization may lead to members containing more than one ma-

terial. Thus, in this chapter, we propose a material selection algorithm that ensures the

selection of a single material for each member. This algorithm, based on the evaluation of

both the strain energy and the cross-sectional area of each member, performs iteratively and

actively throughout the optimization process. In the context of truss layout optimization us-

ing the ground structure method (GSM), we consider three scenarios of initial assignment

of material layers. As shown in Figure 4.5, the multiple material layers can either share

(Scenario #1) or split (Scenario #2) the design domain, or combine both (Scenario #3).

Through an illustrative example in Figure 5.1, we demonstrate the difference between

optimization processes without controlling the number of materials in each subdomain

(typical approach) and with controlling the selection of at most one material from each

subdomain by using the proposed algorithm. The design domain and boundary conditions

are provided in Figure 5.1a, while Figure 5.1b displays the material models in which “Ma-

terial 1” has a larger Young’s Modulus than “Material 2” in both tension and compression

regions. The initial ground structures (GS) of the two bilinear materials share the entire

domain, and each material is assigned to an individual volume constraint. As demonstrated

by Figure 5.1c, overlapping of two materials occurs in the optimized design when we allow

the selection of more than one material. On the other hand, the final result of employing the

material selection algorithm (Figure 5.1d), which ensures the selection of a single material,

shows that each truss member in the optimized design contains at most one material.

Based on the aforementioned description, the remainder of the chapter is organized

as follows. Section 2 provides motivation and a review of related work on multi-material

topology optimization. Section 3 describes the proposed multi-material topology optimiza-

tion formulation, followed by the sensitivity analysis and the incorporation of a discrete

filter. Section 4 introduces an alternative derivation of the ZPR design variable update
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Figure 5.1: Demonstration of the algorithm that selects one single material among
multiple materials at each subdomain. a Design domain; b two bilinear material models:

“Material 1” has a larger Young’s Modulus than “Material 2” in both tension and
compression regions; c multi-material topology optimization that allows the selection of
more than one material from each subdomain; d multi-material topology optimization
with the algorithm that selects at most one material from each subdomain. Dotted lines

represent removed members. (Online version in color.)
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scheme, which is based on the Karush-Kuhn-Tucker (KKT) conditions. Section 5 proposes

an algorithm that selects a single preferred material among multiple materials. Section 6

presents numerical examples in two and three dimensions, highlighting the properties of

the proposed material selection algorithm, and Section 7 provides concluding remarks.

5.2 Motivation and Related Work

Topology optimization with multiple materials is a powerful design tool because it not only

finds the optimal topology but also selects the proper type and amount of materials. One

common feature of practical engineering designs is that they typically consist of multi-

ple material types, such as high-rise buildings and composite materials in the macro- and

micro-scale, respectively. The literature on multi-material topology optimization mainly

deal with the continuum setting, such as the density-based approach. Various generaliza-

tions and extensions of the Solid Isotropic Material with Penalization (SIMP) [114] and

other material interpolation schemes in the single-material topology optimization are made

to accommodate multiple materials – see, e.g., [60]–[63], [72]. In addition to density-

based formulations, phase-field [64], [115], [116] and level set [66]–[69] approaches have

also been used for multi-material topology optimization formulations.

In addition to the continuum setting, some studies perform multi-material topology op-

timization using discrete elements, e.g., truss and lattice networks. Among these studies,

most focus on integrating truss elements into continuum topology optimization for the pur-

pose of designing reinforced concrete structures and strut-and-tie models, see, e.g., [10]–

[14]. However, few multi-material topology optimization studies focus on truss networks

using the GSM.

Another limitation in multi-material topology optimization literature is that it mostly

assumes material linearity, yet real materials generally display nonlinear constitutive re-

lations. In addition, most studies on multi-material topology optimization use a limited

setting for volume constraints. These studies either assign a total volume constraint for all
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candidate materials (e.g., [10]–[13], [62], [63]), which may cause issues if linear materials

are used; or assign an individual volume constraint to each material (e.g., [60], [61], [64],

[66], [68], [115], [116]), which may impose higher computational demand on formula-

tion and update scheme implementations. A general setting, i.e., the combination of both

types of constraints for various design purposes, and a tailored update scheme that handles

arbitrary volume constraints, are needed in multi-material optimization.

To address the aforementioned limitations, we adopt our multi-material topology opti-

mization framework [131] utilizing the ZPR update scheme, which can handle an arbitrary

number of candidate materials with flexible material properties and a general setting of

volume constraints. The ZPR design variable update scheme separates the updates of the

design variables associated with each volume constraint and performs updates indepen-

dently in series or in parallel. The update scheme is derived based on the separable feature

of the dual objective function of the convex subproblem with respect to the Lagrange mul-

tipliers. The update of design variables thus depends only on the Lagrange multiplier of

its associated volume constraint. Thus, the ZPR update scheme is capable of handling an

arbitrary number of volume constraints while preserving efficiency. In addition to volume

constraints, the ZPR update scheme can be used to handle other types of linear constraints.

The adopted multi-material formulation may lead to members containing more than

one material (i.e., members with composite materials). In general, this phenomenon oc-

curs under three conditions, which need to be satisfied simultaneously. First, two or more

materials are assigned to share a domain in the initial material assignment (e.g., the ini-

tial ground structures in Figures 4.1a and 4.1c). Second, among the materials that share a

domain, one material is stronger at least within a certain range of stretch values (e.g., in

Figure 5.1b, “Material 1” is stronger than “Material 2” in the entire range of stretch values).

Third, these materials are associated with individual volume constraints.

In the literature, several attempts have been made in continuum multi-material topol-

ogy optimization to overcome the issues of selecting more than one material. One common
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strategy is to consider the “product interpolation” in the Discrete Material Optimization

(DMO) technique [72], which is based on a penalization scheme. However, this approach

does not completely eliminate selecting of multiple materials at subdomains, especially

at material interfaces. In order to enforce the selection of at most or exactly one mate-

rial at each design subdomain, material selection constraints are introduced by employing

discrete variables, which converts the optimization to a mixed integer problem, see, e.g.,

reference [62]. In the context of truss topology optimization with multiple materials, the

above-reviewed approaches cannot be directly nor efficiently adopted, and currently no

work allows for control of the material profile (i.e., number of materials) in each truss

member of the final design.

The goal of this chapter is to propose an effective algorithm that enforces a single

material selection in each subdomain in the multi-material topology optimization of trusses.

We highlight that the proposed algorithm is active and iterative in nature and performed

throughout the optimization process. This is conceptually different from the following two

post-processing approaches. Post-processing of the final designs with composite materials,

i.e., removing truss members with less contribution at the end of optimization step, causes

a decrease in volume and an increase in displacement, and most importantly, may remove

all the truss members with less favorable materials leading to designs only containing the

most favorable material. Additionally, treating all composite members at the same time

may, again, lead to designs only containing the most favorable material.

5.3 Multi-Material Topology Optimization

This section introduces the adopted multi-material topology optimization formulation and

its sensitivity analysis, followed by the incorporation of a discrete filter. Within the context

of the GSM and assuming a total of m candidate materials, the framework consists of

m layers of initial ground structures. We assume that the ith GS layer with material i

(where i = 1, ...,m is the material index) contains Mi truss members and denote xi as the
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associated vector of design variables. The eth design variable component, x(e)i , is the cross-

sectional area of the eth truss member of material i. Additionally, the formulation contains

nc independent volume constraints, where 1 ≤ nc ≤ m. For the jth volume constraint, we

denote G j as the set of material indices associated with that volume constraint.

The formulation for such multi-material truss topology optimization is given as follows:

min
xxx1,...,xxxm

J (xxx1, ...,xxxm) = min
xxx1,...,xxxm

−Π(xxx1, ...,xxxm,u(xxx1, ...,xxxm))

s.t. g j (xxx1, ..., xxxm) = ∑
i∈G j

LT
i xxxi−V j

max ≤ 0, j = 1, ...,nc,

xmin ≤ x(e)i ≤ xmax, i = 1, ...,m, and e = 1, ...,Mi,

with u(xxx1, ...,xxxm) = argmin
u

Π(xxx1, ...,xxxm,u) .

(5.1)

where J is the objective function, u(xxx1, ...,xxxm) is the equilibrating displacement field (state

variable), Π is the total potential energy, V j
max is the prescribed upper bound on the total

volume associated with the jth volume constraint, g j; xmin and xmax are the prescribed lower

and upper bounds of the design variables, and Li is the length vector of the ith material.

As a demonstration of the notation in multi-material optimization formulation (5.1), Figure

4.4 and Table 4.1 summarize the parameters for a case with three materials (m = 3, M1 =

5,M2 = 5,M3 = 9) and two volume constraints (nc = 2, G 1 = {1},G 2 = {2,3}).

In the topology optimization formulation (5.1), we aim to maximize the total potential

energy of the multi-material truss system in its equilibrium state. The total potential energy

Π of the truss system is defined in (4.2), i.e., the difference of the total internal strain energy

Ψ
(e)
i (u) and the external work done by the applied force f . The sensitivity information of

the objective function and volume constraints with respect to the design variable are in (4.4)

and (4.5), respectively.

In this work, we assume small deformation and nonlinear constitutive relations pro-

vided that the strain energy density function, Ψ
(e)
i (u), is convex and differentiable for any

given u. We account for the nonlinear constitutive relationship through the Ogden-based
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model [106] and the bilinear model. The strain energy density function for the Ogden-

based model is given (3.25). The strain energy density function for the bilinear model is

defined in (3.31). For more details of these material models, readers are referred to Chapter

3.3.1.

The above multi-material topology optimization formulation has several features. It

is capable of handling an arbitrary number of materials with flexible initial material as-

signment (i.e., the materials can either share or split the design domain, or combine both)

and independent constitutive relations (e.g., each candidate material can be either linear,

bilinear, or nonlinear). The assignment of volume constraints is general – we can assign a

total/global volume constraint to all the materials, an individual volume constraint to each

material, or a combination of both.

The discrete filtering technique in the GSM is proposed in [85] and is extended in [120]

to problems considering nonlinear materials. The discrete filtering allows users to con-

trol the resolution of the design and ensure global equilibrium of the final topology. For

optimization with nonlinear structural analysis, the discrete filtering is further shown to sig-

nificantly improve computational efficiency [120]. Therefore, in this chapter, the discrete

filtering technique is incorporated in the multi-material optimization formulation, as shown

in (4.14). The modified formulation (4.14) relaxes the lower bound of design variables to

xmin = 0 to account for the removal of members. Thus, a Tikhonov regularization term

(Γ/2)uTu is used in the total potential energy to prevent singular tangent stiffness matrices

in the structural equations.

5.4 Alt-ZPR: Alternative Derivation of the ZPR Update Scheme

The Zhang-Paulino-Ramos or ZPR (zipper, phonetically) design variable update scheme

[131] is adopted here for multi-material topology optimization. This design variable up-

date scheme is capable of updating an arbitrary number of volume constraints while pre-

serving efficiency and robustness. In particular, the ZPR update scheme separately and
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independently updates the design variables associated with each volume constraint.

The derivation of the ZPR update scheme that utilizes primal-dual relationship is pre-

sented in reference [131]. Here we show an alternative derivation of this update scheme

using the Karush-Kuhn-Tucker (KKT) conditions. At each optimization step k, we intro-

duce a convex approximation of the objective function over the intervening variable yi(xxxi)

such that y(e)i (x(e)i ) = (x(e)i )−α , i = 1, ...,m, and e = 1, ...,Mi, as follows:

J (xxx1, ...,xxxm) ≈ Jk (xxx1, ...,xxxm) = J
(

xxxk
1, ...,xxx

k
m

)
+

m

∑
i=1

[
∂J
∂yi

(xxxk
1, ...,xxx

k
m)

]T [
yi(xxxi)− yi(xxx

k
i )
]

= J
(

xxxk
1, ...,xxx

k
m

)
+

m

∑
i=1

[
bi(xxxk

1, ...,xxx
k
m)
]T [

yi(xxxi)− yi(xxx
k
i )
]
, (5.2)

where α is a strictly positive arbitrary number, xxxk
i and yi(xxx

k
i ) are the design and intervening

variables at the kth optimization step for material i, and bi(xxxk
1, ...,xxx

k
m) is a constant vector,

whose component is given as the following function of the corresponding eth component

of the sensitivity vector:

b(e)i (xxxk
1, ...,xxx

k
m) =

∂J

∂y(e)i

(xxxk
1, ...,xxx

k
m) =−

(x(e),ki )1+α

α

∂J

∂x(e)i

(xxxk
1, ...,xxx

k
m). (5.3)

Using the approximated objective function Jk, we obtain a subproblem at step k, formulated

as follows:

min
xxx1,...,xxxm

Jk (xxx1, ...,xxxm) = min
xxx1,...,xxxm

J
(

xxxk
1, ...,xxx

k
m

)
+

m

∑
i=1

[
∂J
∂yi

(xxxk
1, ...,xxx

k
m)

]T [
yi(xxxi)− yi(xxx

k
i )
]

s.t. ∑
i∈G j

LT
i xxxi−V j

max ≤ 0, j = 1, ...,nc,

x(e),ki,L ≤ x(e)i ≤ x(e),ki,U , i = 1, ...,m, and e = 1, ...,Mi,

with y(e)i (x(e)i ) = (x(e)i )−α , i = 1, ...,m, and e = 1, ...,Mi,

(5.4)

where G j is the set of material indices associated with jth volume constraint, x(e),ki,L =

max(xmin,x
(e),k
i −move) and x(e),ki,U =min(xmax,x

(e),k
i +move) are the upper and lower bounds
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of the design variables that are determined through the prescribed allowable move limit,

move.

By introducing a set of Lagrange multipliers φ
j

V , j = 1, ...,nc, the Lagrangian of the

subproblem in Eq. (5.4) takes the following form:

L
(
xxx1, ...,xxxm,φ

1
V , ...,φ

nc
V
)
=

m

∑
i=1

[
bi(xxxk

1, ...,xxx
k
m

)
]T yi(xxxi)+

nc

∑
j=1

φ
j

V

(
∑

i∈G j

LT
i xxxi−V j

max

)
.

(5.5)

Notice that the above Lagrangian is a separable function for each volume constraint,

L
(
xxx1, ...,xxxm,φ

1
V , ...,φ

nc
V
)
=

nc

∑
j=1

L j
(

xxxi, ...,xxxm,φ
j

V

)
=

nc

∑
j=1

{
∑

i∈G j

[[
bi(xxxk

1, ...,xxx
k
m)
]T

yi(xxxi)+φ
j

V LT
i xxxi

]
−φ

j
VV j

max

}
. (5.6)

The KKT conditions of the subproblem (5.4) require that

∂L

∂x(e)i

=
∂L j

∂x(e)i

=−αb(e)i (xxxk
1, ...,xxx

k
m)
(

x(e)i

)(−α−1)
+φ

j
V L(e)

i = 0, ∀i ∈ G j, (5.7)

and
∂L

∂φ
j

V

= ∑
i∈G j

LT
i xxxi−V j

max = 0, j = 1, ...,nc. (5.8)

We denote x(e)∗i as the solution of the above KKT conditions. From (5.7), we can write the

solution x(e)∗i as

x(e)∗i = Q(e),k
i

(
φ

j
V

)
=

[
αb(e)i (xxxk

1, ...,xxx
k
m)

φ
j

V L(e)
i

] 1
1+α

, ∀i ∈ G j. (5.9)

By further incorporating the lower and upper bounds, xxxk
i,L, and xxxk

i,U, of the design variables,
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the expression for x(e)∗i is modified as

x(e)∗i = Q(e),k
i

(
φ

j
V

)

=



x(e),ki,L if
[

αb(e)i (xxxk
1,...,xxx

k
m)

φ
j

V L(e)
i

] 1
1+α

< x(e),ki,L[
αb(e)i (xxxk

1,...,xxx
k
m)

φ
j

V L(e)
i

] 1
1+α

if x(e),ki,L ≤
[

αb(e)i (xxxk
1,...,xxx

k
m)

φ
j

V L(e)
i

] 1
1+α

≤ x(e),ki,U

x(e),ki,U if
[

αb(e)i (xxxk
1,...,xxx

k
m)

φ
j

V L(e)
i

] 1
1+α

> x(e),ki,U

, ∀i ∈ G j.

(5.10)

By plugging (5.10) back into Eq. (5.8), we obtain

∂L

∂φ
j

V

= ∑
i∈G j

Mi

∑
e=1

L(e)
i x(e)∗i

(
φ

j
V

)
−V j

max = 0, j = 1, ...,nc. (5.11)

Notice that the jth equation of the above system is an algebraic equation as a function

φ
j

V , therefore, each optimal Lagrange multiplier φ
j∗

V can be solved independently by its

corresponding equation. We then have a decoupled system with respect to the volume

constraints.

Finally, the update of the eth component of design variables xxxk+1
i is taken as the optimal

solution in subproblem (5.4):

x(e),k+1
i = Q(e),k

i

(
φ

j∗
V

)
, ∀i ∈ G j. (5.12)

When applied to the multi-material optimization problem in Section 5.3, the ZPR design

variable update scheme in Eq. (5.12) takes the following specific form:

x(e),k+1
i =



x(e),ki,L if
[

Ψ
(e)
i (u(xxxk

1,...,xxx
k
m))

φ
j∗

V

]η

x(e),ki < x(e),ki,L[
Ψ

(e)
i (u(xxxk

1,...,xxx
k
m))

φ
j∗

V

]η

x(e),ki if x(e),ki,L ≤
[

Ψ
(e)
i (u(xxxk

1,...,xxx
k
m))

φ
j∗

V

]η

x(e),ki ≤ x(e),ki,U

x(e),ki,U if
[

Ψ
(e)
i (u(xxxk

1,...,xxx
k
m))

φ
j∗

V

]η

x(e),ki > x(e),ki,U

,∀i∈G j,

(5.13)
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where η = 1/(1+α), which is commonly known as the damping factor. This factor can

be either constant [31] or adaptive [70].

We note that from Eqs. (5.12) and (5.13), the updates of design variables are also

decoupled in the sense that the update corresponding to jth volume constraint only depends

on its associated optimal Lagrange multiplier, φ
j∗

V . This feature, along with the decoupled

solution of φ
j∗

V in (5.11), allows the associated design variables of each volume constraint

to be updated independently, highlighting one of the main advantages of the ZPR design

variable update scheme.

5.5 Algorithm to Select a Single Preferred Material Per Overlapping Set

As discussed in Section 5.2, under the conditions of 1) multiple materials share the design

domain, 2) one of the materials (at least partially) dominates the others, and 3) each of

those materials is assigned with an individual volume constraint, optimization formulations

(4.1) and (4.14) may lead to final topologies with overlapping sets/connectivities. This

is shown in the optimized structure in Figure 5.1c. An overlapping set/connectivity is

defined as the truss members with different material properties and with non-zero cross-

sectional areas that share the same end nodes. The presence of overlapping connectivities

may lead to difficulties in defining a unique material property of each truss member in

the final topology. In this section, we propose a simple and effective material selection

algorithm to ensure that each connectivity (truss member) of the final topology contains

at most one material. The basic concept and procedure of the proposed algorithm are

illustrated by the example in Figure 5.1.

Assume that at a given optimization step, we have identified all sets of overlapping

members. Each of these sets contains all the non-zero area members that share the same

end nodes. The basic idea of the material selection algorithm is to select the best mem-

ber within each set according to a pre-defined criterion and remove other members. The

removal is performed by assigning member cross-sectional areas to zero, and applying
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Tikhonov regularization in the structural analysis to regularize the tangent stiffness ma-

trices (regardless of whether the discrete filter is used). Notice that when a member is

removed, the total volume of the associated material decreases, and thus, the optimizer

assigns the removed materials to other locations in the following optimization steps. By

doing this, the optimization effectively redistributes the overlapped materials to other loca-

tions. If all the overlapped members at one material layer are removed at the same time,

there might be no available members from that material layer to redistribute to the design

(because each candidate material can only be redistributed within its associated material

layer). To prevent this, a threshold (parameter), αselect ∈ [0,1], is defined such that this

removing-and-redistributing procedure is performed gradually. In the material selection

algorithm, the threshold is applied as follows: the normalized area of each member (ratio

of the cross-sectional area to the maximum cross-sectional area in its associated material

layer) is first computed, and the removal is then performed to the overlapping sets whose

ratios are larger than (or equal to) the prescribed threshold, αselect.

We adopt uniform area distribution as the initial guess for design variables, i.e. the

initial ratio of member area to the maximum area of the corresponding material layer is

one. As a result, if the selection algorithm is applied at the initial optimization step, all

overlapping connectivities will be immediately removed according to the previously de-

fined threshold. Additionally, no redistribution of removed material can be done in the

subsequent optimization steps. To avoid this, we allow the optimizer to freely develop

topologies with non-uniform members areas and initiate the material selection algorithm

after Nselect optimization steps.

In addition to the parameters αselect and Nselect, a criterion needs to be defined to de-

termine the best member among the multiple materials in each overlapping set. In this

work, we define the criterion to be the strain energy of the member per unit length, i.e.

xΨ (because the overlapping connectivities have the same lengths, the member length L is

excluded in the criterion). For a set of overlapping members, we select the member with
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the largest strain energy (per unit length). The choice of this criterion is consistent with

the objective function in (4.2), because members with larger strain energy (per unit length)

contribute to larger total potential energy of the entire structure. Thus, members with larger

strain energy are preferred because they are more efficient. More specifically, the proposed

material selection algorithm follows the steps listed below:

1 Detect all sets of overlapping members (connectivities with more than one material se-

lection).

2 Within each overlapping set, detect the member with the largest strain energy per unit

length.

3 For this detected member in the current set, if its normalized cross-sectional area (with

respect to the maximum cross-sectional area in its associated material layer) exceeds

or equals to the prescribed threshold αselect go to Step 4, otherwise go to Step 5.

4 Select the member that has the largest strain energy per unit length and keep its cross-

sectional area. Remove other members in the current set by assigning their cross-

sectional areas to be zero.

5 Proceed to the next overlapping set.

To formalize the proposed algorithm, we introduce the following notation. Assuming

that there are in total of p overlapping sets, we denote x̃ j as the vector containing all the

design variables in the jth set, where x̃(i)j is the ith component of x̃ j. Accordingly, the

vector of corresponding material indices of the jth set is defined as m̃ j with its ith com-

ponent denoted as m̃(i)
j . The associated energy density function is denoted as Ψ

m̃(i)
j

. As

an illustration, Figure 5.2 shows the overlapping of three materials at a connectivity (sub-

domain) and the corresponding notation. A design consisting of overlapping materials is

shown in Figure 5.2a. The 1st overlapping set/connectivity consists of the 4th member of

“Material 1”, the 2nd member of “Material 2”, and the 5th member of “Material 3”, as
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shown in Figure 5.2b; therefore, we write x̃1 = {x̃(1)1 , x̃(2)1 , x̃(3)1 }T = {x(4)1 ,x(2)2 ,x(5)3 }T and

m̃1 = {m̃
(1)
1 , m̃(2)

1 , m̃(3)
1 }T = {1,2,3}T (Figure 5.2c). Based on the introduced notation, the

procedure described in Step 1 to Step 5 are formally given in Algorithm 3.
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Figure 5.2: Demonstration of overlapping of three materials and corresponding notation. a
A design consisting of overlapping connectivities; b overlapping connectivity set #1

containing: 4th member of “Material 1”, 2nd member of “Material 2”, and 5th member of
“Material 3”; c corresponding notation. (Online version in color.)

Algorithm 3 describes the procedure of selecting a single material from each overlap-

ping connectivity at each optimization step. Incorporating Algorithm 3 in the optimization

process, the entire implementation is described in Algorithm 4. In Section 5.6.1, we in-

clude studies that demonstrate influences of the main algorithmic parameters (Nselect and

αselect) on the final topologies and objective values.

We remark that the above-presented material selection algorithm can also be applied

with the discrete filter scheme [85], [120] to control the resolution of the final topology

and to improve the computational efficiency. Typically, the discrete filter starts at the initial

step of the optimization process. However, in this case the discrete filter may remove

the potential members to redistribute the removed overlapping materials. The study in

[120] indicates that the discrete filter can remove up to 99% of the members in the first

few optimization steps after the filter is applied, which may significantly reduce the space

of potential members to redistribute the removed overlapping materials (when we start to
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Algorithm 3 Algorithm to select a single preferred material
1: Input: xxx1, ...,xxxm, αselect
2: Detect p sets of members with more than one material selection, x̃1, ..., x̃p.
3: for j = 0,1, ..., p do
4: Detect member i∗ with the largest strain energy per unit length among x̃ j such that

x̃(i
∗)

j Ψ
m̃(i∗)

j
= max(x̃(1)j Ψ

m̃(1)
j
, ..., x̃(n)j Ψ

m̃(n)
j
), (5.14)

5: where n indicates the length of vector x̃ j.
6: if x̃(i

∗)
j /max(xxx

m̃(i∗)
j
)≥ αselect then

7:

x̃(i)j =

 x̃(i)j , if i = i∗

0, otherwise.
i = 1, ...,n (5.15)

8: end if
9: end for

10: Update xxx1, ...,xxxm based on corresponding components of x̃1, ..., x̃p
11: Output: New xxx1, ...,xxxm

apply Algorithm 3 after Nselect steps). Thus, in the optimization algorithm, we propose to

apply the discrete filter after Nfilter optimization steps, where Nfilter > Nselect is a prescribed

parameter.

5.6 Numerical Examples

In this section, we provide several numerical examples to demonstrate the proposed ma-

terial selection algorithm in the multi-material topology optimization using the GSM. Ex-

ample 1 investigates the main parameters of the selecting algorithm, Nselect and αselect.

Example 2 demonstrates the selecting algorithm using four Ogden-based materials and

compares the optimized results to the multi-material case without the selecting algorithm.

Using one linear and two bilinear material models, Example 3 illustrates the selecting algo-

rithm in a simplified bridge design. The last example shows the application of the proposed

multi-material formulation to a three-dimensional cantilever beam design.

We generate non-overlapped (within the same material layer) initial ground structures
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Algorithm 4 Multi-material topology optimization with the proposed algorithm that selects
a single preferred material

1: Initialize: xxx0
1, ...,xxx

0
m, itermax, τopt, Nselect, Nfilter

2: for k = 0,1, ..., itermax do
3: Solve: u

(
xxxk

1, ...,xxx
k
m
)
= argminu

[
Π
(
xxxk

1, ...,xxx
k
m,u
)]

4: Compute: J
(
xxxk

1, ...,xxx
k
m
)
, g j (xxxk

1, ...,xxx
k
m
)
, ∂J

(
xxxk

1, ...,xxx
k
m
)
/∂x(e)i , and ∂g j (xxxk

1, ...,xxx
k
m
)
/∂x(e)i

5: for j = 1,2, ...,nc do
6: Compute φ

j
V∗ by solving Eq. (5.11)

7: Update x(e),k+1
i = Q(e),k

i

(
φ

j∗
V

)
, ∀i ∈ G j according to Eq. (5.13)

8: end for
9: if k ≥ Nselect then

10: Apply Algorithm 3 to the sets of overlapping members
11: if k ≥ Nfilter then
12: Apply discrete filter according to Eq. (3.5)
13: end if
14: if max

(
||xxxk+1

1 − xxxk
1||∞, ..., ||xxxk+1

m − xxxk
m||∞

)
< τopt and k > Nselect then

15: quit
16: end if
17: end for
18: Remove aligned nodes
19: Plot final topology
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using the collision zone technique in [112], [113] and plot final topologies in 3D using the

program GRAND3 [113]. For all results in the GSM, we remove aligned nodes and floating

members and check the final topologies to ensure that they are at global equilibrium. A

detailed explanation can be found in reference [128]. It is worth noting that we do not

verify the instability of the members, because the issue of stability is beyond the scope of

this work. The nonlinear solution scheme is based on a Newton-Raphson approach with

line search (see the reference [120] for a detailed explanation). For all the examples, the

discrete filter is used during the optimization process to obtain valid structures and improve

computational efficiency.

For the constitutive models of the numerical example, we employ linear model, bilinear

model, and (hyperelastic) Ogden-based [106] model, which allows varied control of con-

stitutive relationships and has the capability to reproduce a variety of hyperelastic models.

For details of the constitutive models and strain energy density functions that form the basis

of the structural analysis, readers are referred to the studies in [84], [120].

Consistent units are implied throughout and examples have the initial tangent modulus,

E0 = 7×107, unless otherwise stated; stopping criterion: τopt = 10−9; move value: move =

104x0, where x0 is the initial guess of the design variables; and initial damping factor for the

ZPR update scheme: η = 0.5. Subsequent damping factors are updated according to the

scheme provided by the study in [70]. The upper bound for the design variable is defined

by xmax = 104x0. All examples are solved using the ZPR design variable update scheme

described in Section 5.4, and all cases that enforce the selection of a single material employ

the material selection algorithm described in Algorithm 3.

5.6.1 Parametric study using a cantilever beam

In this example, we demonstrate the effectiveness of the proposed material selection al-

gorithm and investigate the main parameters, Nselect and αselect. The design domain (L =

2,P = 1000) and material models are shown in Figures 5.3a and 5.3b. Three materials
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share the entire domain, as shown in Figure 5.3c. Three layers (one for each material) of

identical full-level initial ground structures (based on a 8× 6 discretization) with a total

of 3,702 members and 63 nodes are used. The total prescribed maximum volume takes

the following value, Vmax = 0.024. Each material is associated with an individual volume

constraint (nc = 3), as shown in Table 5.1.

To investigate the impact of the step number to initiate the selection algorithm (Algo-

rithm 3), Nselect, we choose Nselect = 1,2,20,40,60,100,200,300,360. In all the cases,

αselect = 0.05, αf = 0.005, and we initiate the discrete filter at optimization step 365,

Nfilter = 365. Figure 5.4 shows the optimized objective function value for each Nselect and

the final topologies from representative Nselect. For comparison purposes, the optimized ob-

jective value and the final topology obtained from the multi-material formulation without

the selection algorithm is also plotted in Figure 5.4. The data are summarized in Table 5.1.

Several observations can be made based on Figure 5.4 and Table 5.1. When the se-

lection algorithm is not used, the final topology has the smallest objective function value

and every member contains more than one material (18 overlapping connectivities). The

cases applying the selection algorithm with αselect = 0.05 lead to final topologies with

single-material members and no overlapping connectivity for all Nselect values. The later

we initiate the selection algorithm, the lower final objective function value obtained; in ad-

dition, initiating later tends to result in more complex structures and a higher computational

time. Moreover, for the cases with Nselect ≥ 100, i.e., Nselect = 100,200,300,360, we obtain

identical J(xxx∗i ) values and optimized structures. These observations suggest that initiating

the selection algorithm early in the optimization process provides access to various solu-

tions, while initiating it later in the optimization results in a similar solution. By varying

Nselect to initiate the selection algorithm, various optimized structures with similar J(xxx∗i )

can be obtained, all without overlapping connectivity (i.e., each member contains a single

material).

The next study demonstrates the effect of αselect on the optimization results. The
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threshold, αselect, determines if the material selection algorithm is performed on each

connectivity. The value of αselect varies between 0 ≤ αselect ≤ 1, where αselect = 0 cor-

responds to applying the selection algorithm to all the overlapping connectivities, and

αselect = 1 corresponds to never applying the selection algorithm. We choose αselect =

0,0.01,0.05,0.1,0.3,0.5,0.75,1. In this study, Nselect = 60, α f = 0.005, and Nfilter = 365.

Figure 5.5 shows the optimized objective function value for each αselect and final topologies

from representative αselect. The data are summarized in Table 5.1.

We observe that larger αselect (more conservative, closer to 1) leads to a lower opti-

mized objective function value. However, if αselect ≥ 0.3, the resulting structures contain

members with more than one material. On the other hand, smaller threshold values (more

drastic), e.g., αselect ≤ 0.1, lead to structures with single preferred material at every subdo-

main. The threshold, αselect, allows the designer to choose the complexity of the design and

whether the material profile contains either single materials or composite materials. For the

examples in the remainder of this chapter, we choose αselect = 0.05 for the selection algo-

rithm unless otherwise stated to effectively and efficiently select a single material among

multiple materials.

Table 5.1: Numerical information for Example 1 (see Figures 5.3, 5.4, and 5.5).

Study of Nselect Study of αselect

Nselect αselect J (xxx∗i )
#Overlapping

Nselect αselect J (xxx∗i )
#Overlapping

connectivities connectivities
1

0.05

27.954

0
60

0.00 27.604 0
2 27.501 0.01 27.487 0

20 27.498 0.05 27.475 0
40 27.487 0.10 27.452 0
60 27.475 0.30 27.432 4
100 27.452 0.50 27.432 12
200 27.452 0.75 27.432 12
300 27.452 1.00 27.432 18
360 27.452
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Figure 5.3: Example 1: Cantilever beam with three Odgen-based materials. a Design
domain (L = 2,P = 1000); b material models: three Ogden-based materials; c initial

material distribution: the three materials share the entire domain. (Online version in color.)

5.6.2 Opposite loads in a simply supported rectangular domain

This example demonstrates the selection algorithm using four Ogden-based materials in

2D and compares the optimized results with the multi-material case without the material

selection algorithm (i.e., no control on the number of the materials selected for each con-

nectivity). The design domain with load and boundary conditions (L = 10,P = 1000) and

material models are shown in Figures 5.6a and 5.6b. Four materials share the entire domain

(Figure 5.6c). Four layers (one for each material) of identical level-10 initial ground struc-

tures (based on a 30×10 grid) with a total of 78,528 members and 341 nodes are used. The

total prescribed maximum volume takes the following value, Vmax = 0.15. Each material

is associated with an individual volume constraint (nc = 4), as shown in Table 5.2. For the

case employing the selection algorithm, we start to select preferred material at Nselect = 30

with the ratio αselect = 0.05. For both cases (with and without the selecting algorithm), the

filter parameters are α f = 0.001 and Nfilter = 100.

Both the optimized structures and convergence plots for the cases with and without

156



J(
x*

)

Nselect
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Nselect = 100, 200, 
          300, 360

w/o Algorithm 1
(18 overlapping)

Multi-material 
with Algorithm 3
Multi-material 
w/o  Algorithm 3

Figure 5.4: Example 1: Study of the step number to initiate the selecting algorithm, Nselect,
(Nselect = 1,2,20,40,60,100,200,300,360) versus the resulting optimized objective value.

The final topologies (from representative cases) are included. Other parameters:
αselect = 0.05, αf = 0.005, and Nfilter = 365. (Online version in color.)
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Figure 5.5: Example 1: Influence of αselect on the optimization results, αselect
(αselect = 0,0.01,0.05,0.1,0.3,0.5,0.75,1) versus the resulting optimized objective value.

The final topologies (from representative cases) are included. Other parameters:
Nselect = 60, α f = 0.005, and Nfilter = 365. (Online version in color.)
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enforcement of the selection of one material are shown in Figures 5.7a and b. The associ-

ated numerical information is summarized in Table 5.2. An optimized structure with every

member containing more than one material (66 overlapping connectivities in total before

removing aligned nodes) is obtained in the case without the selection algorithm. “Material

1” and “Material 4” are selected for the members in tension; “Material 2” and “Material 3”

are selected for the members in compression. As shown in Figure 5.8, the multi-material

framework with the selection algorithm leads to a structure in which members contain at

most one material (no overlapping connectivity) and a slightly larger objective value. In

addition, we observe an increase in the objective function at the step the selection algo-

rithm is initiated, i.e. Nselect = 30. This corresponds to the removal of certain overlapping

members, as shown in Figure 5.7b. The convergence of the objective function at other steps

is smooth.

Table 5.2: Numerical information for Example 1 (see Figures 5.6, 5.7, and 5.8).

2D cases J (xxx∗i ) Material Volume # #Overlapping
β1 β2 constraint, V j

max Elements connectivities

4 materials
27.510

2200.3 -5.1 0.4Vmax 33

66
7.2 -2194.0 0.4Vmax 33

(standard)
1043.3 -1843.1 0.1Vmax 33
1848.8 -1039.2 0.1Vmax 33

4 materials
27.562

2200.3 -5.1 0.4Vmax 24

0
7.2 -2194.0 0.4Vmax 24

(Algorithm 3)
1043.3 -1843.1 0.1Vmax 16
1848.8 -1039.2 0.1Vmax 16

5.6.3 Long-span bridge design using linear and bilinear materials

This multi-material bridge example illustrates the material selection algorithm using one

linear and two bilinear material models. The design domain (with load and boundary con-

ditions) is shown in Figure 5.9a. Two bilinear and one linear materials are used and share

the entire domain, as shown in Figures 5.9b and 5.9c, leading to three identical layers of

full-level initial ground structures (based on a 18× 7 grid) with 21,249 non-overlapping
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Figure 5.6: Example 2: Opposite loads in a simply supported rectangular domain. a
Design domain (L = 10,P = 1000); b material models: four Ogden-based materials; c
initial material distribution: four materials share the entire domain. (Online version in

color.)
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Figure 5.7: Example 2: Opposite loads in a simply supported rectangular domain. a
Optimized structure and convergence plot without the proposed selection algorithm

(α f = 0.001, Nfilter = 100) that contains 66 overlapped connectivities (before removing
aligned nodes); b optimized structure and convergence plot with the proposed selection

algorithm (αselect = 0.05, Nselect = 30, α f = 0.001, Nfilter = 100) that selects a single
material among multiple materials – no overlapping connectivity is observed in the final

design. (Online version in color.)
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Figure 5.8: Example 2: Zoom-in regions of the optimized structure obtained from the
proposed selection algorithm, no overlapping connectivity is observed in the final design.

(Online version in color.)
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members and 152 nodes. Each material is assigned to an individual volume constraint, see

Table 5.3. Here we optimize the bridge problem with and without the proposed algorithm

that removes overlapped members from multiple materials. In the case employing the se-

lection algorithm, we choose Nselect = 30, αselect = 0.05. For both cases (with and without

the selection algorithm), the filter parameters are α f = 0.001 and Nfilter = 100.

The optimized structures for the case with and without the enforcement of the selection

of one material are shown in Figures 5.10a and b. The associated numerical information

is summarized in Table 5.3. The results verify the proposed algorithm that selects a single

preferred material. In the optimized structure, we observe that the selection of more than

one material for some truss members (i.e., overlapping of truss members from different

materials) occurs in the case without the proposed selection algorithm. This leads to an

optimized bridge design that contains 25 overlapped composite members and a smaller

objective value. This optimized structure contains members with “composite” materials –

“Material 2” and “Material 3” are selected for the members in compression. On the other

hand, the case with the proposed algorithm leads to the result containing no overlapped

members and larger objective value.

Table 5.3: Numerical information for Example 3 (see Figures 5.9 and 5.10), Eo = 107.

2D cases J (xxx∗i ) Material Volume # # Overlap.
Et Ec constraint, V j

max Elements connect.
3 materials

20.920
17Eo 0.001Eo 0.4Vmax 35

25(standard) 7Eo 7Eo 0.1Vmax 25
0.002Eo 2Eo 0.5Vmax 25

3 materials
21.417

17Eo 0.001Eo 0.4Vmax 42
0(Algorithm 3) 7Eo 7Eo 0.1Vmax 11

0.002Eo 2Eo 0.5Vmax 16

5.6.4 Three-dimensional cantilever beam

Using a combination of different materials, we apply the proposed material selection algo-

rithm to a 3D cantilever beam. The geometry, load, and boundary conditions (L = 1,P =
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Figure 5.9: Example 3: Multi-material bridge design. a Design domain; b material
models: two bilinear and one linear materials; c initial material distribution for each

material. (Online version in color.)
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Multi-material with Algorithm 3

Multi-material (standard)

25 overlapping connectivities
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a

b

Figure 5.10: Example 3: Multi-material bridge design. a Optimized bridge design without
the selection algorithm contains 25 overlapped connectivities (α f = 0.001, Nfilter = 100);

b optimized bridge design with the proposed selection algorithm that selects a single
material among multiple materials at each subdomain (αselect = 0.05, Nselect = 30,

α f = 0.001, Nfilter = 100). (Online version in color.)
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60) are shown in Figure 5.11a. To obtain constructible structures, we use a 6× 2× 2 dis-

cretization (with a level 3 GS) for the domain containing 5,000 members and 63 nodes.

We perform optimization with four Ogden-based materials, as shown in Figure 5.11b, and

these four materials share the entire domain. Four volume constraints are used (nc = 4).

The total prescribed maximum volume takes the following value, Vmax = 0.024. For the se-

lection algorithm, we choose Nselect = 30, αselect = 0.05 and initiate the filter at Nfilter = 60.

In addition to a small filter (α f = 10−4) used throughout the optimization, we use a larger

filter (α f = 10−2) in the final step of the optimization to control the resolution of the final

topology.

The optimized structure for the case with enforcing the selection of one material is

shown in Figure 5.12. The associated numerical information is summarized in Table 5.4.

The result indicates that the multi-material framework with the material selection algorithm

can also effectively produce a structure with single-material members (i.e., no overlapping

connectivity) in three dimensions.

a

P

3L L

L

×106

-3

-2

-1

0

1

2

3

Stretch,
0.998 0.999 1 1.001 1.002

Material models

Ca
uc

hy
 S

tr
es

s,
 σ

Material 1

Material 2

Material 3

Material 4

β1 = 2200, β2 = -5.1

β1 = 7.2, β2 = -2194

β1 = 1043, β2 = -1843

β1 = 1849, β2 = -1039

b

λ

Figure 5.11: Three-dimensional multi-material cantilever beam design. a Design domain
discretized using a 6×2×2 grid; b material models: four Ogden-based materials. (Online

version in color.)

5.7 Summary and Discussion

In this chapter, we investigate the issue of selecting more than one material that occurs

in multi-material topology optimization in the context of truss layout optimization. We
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Figure 5.12: The optimized structure for the 3D cantilever design with the selection
algorithm (enforcing the selection of one material) with αselect = 0.05, Nselect = 30,

α f = 0.0001 (optimization), α f = 0.01 (end), Nfilter = 30; no overlapping connectivity is
observed in the final design. (Online version in color.)
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Table 5.4: Numerical information for Example 4 (see Figures 5.11 and 5.12)

3D case J (xxx∗i ) Material Volume # #Overlapping
β1 β2 constraint, V j

max Elements connectivities

4 materials
51.01

2200.3 -5.1 0.4Vmax 14

0
7.2 -2194.0 0.4Vmax 14

(Algorithm 3)
1043.3 -1843.1 0.1Vmax 9
1848.8 -1039.2 0.1Vmax 9

examine the conditions (need to be satisfied simultaneously) in which the selection of mul-

tiple materials on a certain connectivity occurs, i.e., more than one material sharing the

domain, each of them associated with an individual volume constraint, and one material

being stronger at least within a certain range of stretch values. To ensure the selection of

a single material at each subdomain, we propose an algorithm (Algorithm 3) that selects

a preferred material among multiple materials based on the evaluation of both the strain

energy and cross-sectional area of each member. This algorithm actively and iteratively

selects materials to ensure the selection of single material for each member. The Zhang-

Paulino-Ramos (ZPR) design variable update scheme for multi-material optimization is

employed, and we provide an alternative derivation of this update scheme using the KKT

conditions.

Using combinations of Ogden-based, bilinear, and linear materials, we verify the pro-

posed selection algorithm and compare the results to the ones obtained without using the

selection algorithm. We also demonstrate that the algorithmic parameters, i.e., the step

number to initiate and the threshold of the selection algorithm, allow the designers to con-

trol both the complexity of the final design as well as the final material profile to use either

single materials or composite materials. We conclude that the material selection algorithm

for multi-material topology optimization is efficient and effective for selecting a single pre-

ferred material per overlapping set.
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CHAPTER 6

STOCHASTIC SAMPLING FOR DETERMINISTIC STRUCTURAL TOPOLOGY

OPTIMIZATION WITH MANY LOAD CASES: DENSITY-BASED AND

GROUND STRUCTURE FORMULATIONS

We propose an efficient probabilistic method to solve a fully deterministic problem – we

present a randomized optimization approach that drastically reduces the enormous com-

putational cost of optimizing designs under many load cases for both continuum and truss

topology optimization. Practical structural designs by deterministic topology optimization

typically involve many load cases, possibly hundreds or more. The optimal design min-

imizes a, possibly weighted, average of the compliance under each load case (or some

other objective). This means that, in each optimization step, a large finite element prob-

lem must be solved for each load case, leading to an enormous computational effort. On

the contrary, the proposed randomized optimization method with stochastic sampling re-

quires the solution of only a few (e.g., 5 or 6) finite element problems (large linear systems)

per optimization step. Based on simulated annealing, we introduce a damping scheme for

the randomized approach. Through numerical examples in two and three dimensions, we

demonstrate that the randomization algorithm drastically reduces computational cost to ob-

tain similar final topologies and results (e.g., compliance) to those of standard algorithms.

The results indicate that the damping scheme is effective and leads to rapid convergence of

the proposed algorithm.

6.1 Introduction

Structural topology optimization is an important tool that, if properly used, can lead to

significantly improved designs. In the field of structural topology optimization, designs

accounting for many load cases are common practice [73]. Indeed, real-world structural
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designs, for example, high-rise buildings and long-span bridges, generally involve numer-

ous load cases [73]. For the end-compliance minimization formulation, several methods

that include many load cases have been published [30], [132], [133]. The main idea is to

minimize a proper norm of the vector of compliances from all load cases. This chapter con-

centrates on one popular method, the weighted sum formulation that minimizes a weighted

sum of the vector of compliances from all load cases, which requires the solution of the

structural equation for each load case. Another formulation that accounts for many load

cases is the min-max formulation, which minimizes the worst-case compliance of all load

cases, i.e., the infinity norm of the vector of compliances [30], [134]. This formulation also

requires the solution of a large system of linear equations for each load case. Therefore,

in terms of computational cost, it is similar to the aforementioned weighted sum formu-

lation. In this chapter, we propose a randomized algorithm that drastically reduces the

computational cost. Similar techniques have been applied to solve inverse problems – see

[135]–[137] and references therein, and least squares problems – see [138] and references

therein. More general randomization techniques, especially randomized linear algebra,

such as trace estimation and matrix decomposition, are discussed and surveyed in [139]–

[142]. In [143], Avron and Toledo discuss and derive bounds on several trace estimators

and prove a bound on the number of samples required to guarantee a chosen accuracy. Their

results are improved and extended by Roosta-Khorasani and Ascher [144]. More recently,

Saibaba et al. [145] present randomized algorithms for estimates of the trace and deter-

minant of positive semidefinite Hermitian matrices. Their algorithms yield more accurate

estimates; but the estimates are not unbiased. We emphasize that the use of random samples

in our algorithm does not reflect any uncertainty in the load cases but instead arises from

a stochastic optimization approach that avoids solving for a large number of load cases

in each optimization step. In our proposed algorithm, randomization is used to solve a

deterministic optimization problem with deterministic loads that remain fixed throughout

the optimization process. Thus, our randomized algorithm is conceptually different from
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robust topology optimization approaches (see, e.g., [146]–[148]), in which the uncertainty

of the loads is characterized by probability distributions.

The remainder of the chapter is organized as follows. We finish this section with a brief

review of the weighted sum formulation of the standard nested minimum end-compliance

topology optimization with many load cases, using both the density-based method and the

ground structure method (GSM). Section 2 reviews the stochastic sampling techniques we

use to estimate the trace of a general matrix and proposes the randomized algorithm for

minimum end-compliance topology optimization under many load cases. Section 3 dis-

cusses the algorithmic parameters and introduces a damping scheme for the randomized al-

gorithm. Section 4 presents numerical examples in two and three dimensions highlighting

the efficiency and effectiveness of the proposed algorithm, and Section 5 provides conclud-

ing remarks with suggestions for extending the work.

6.1.1 Density-based topology optimization formulation with many load cases

For a set of m` given load cases fi, i = 1, ...,m`, the standard weighted sum formulation for

the minimum end-compliance design with many load cases using the density-based method

can be written as [30],

min
ρρρ

C (ρρρ) = min
ρρρ

m`

∑
i=1

wi f T
i ui(ρρρ),

s.t. g(ρ̄ρρ) =
M

∑
e=1

V (e)
ρ̄
(e)−Vmax ≤ 0 ,

0 < ρmin ≤ ρ
(e) ≤ 1, e = 1, ...,M,

with ui(ρ̄ρρ) = K(E(ρ̄ρρ))−1 fi, i = 1, ...,m` .

(6.1)

In this minimization problem, the objective function C is the weighted-average compliance

of the corresponding structure, ρρρ ∈ RM is the vector of design variables (the density field),

and M is the number of elements in the finite element mesh. We define ρ̄ρρ and H as the

filtered physical density and the filter matrix such that ρ̄ρρ = Hρρρ [42]. In order to ensure
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a positive definite stiffness matrix K ∈ RdN×dN , a lower bound ρmin is prescribed on ρ(e),

where N is the number of nodes and d is the dimension of the problem, so dN is the num-

ber of degrees of freedom. The volume (area) of element e is given by V (e), and Vmax is

the prescribed upper bound on the total volume. The weight and the displacement vector

associated with load case fi ∈ RdN are given by wi (wi > 0, ∑
m`
i=1 wi = 1) and ui ∈ RdN ,

respectively. The Young’s modulus E is defined by, for example, the Solid Isotropic Ma-

terial with Penalization (SIMP) [43], [44] approach. Other models, e.g., RAMP (Rational

Approximation of Material Properties) [30], [45], can be used and would not alter the con-

ceptual presentation of the topic. For the SIMP approach with the density filter, we have

E(e) = [ρ̄(e)]p(E0), where E0 is the elastic modulus for solid material, and p is a penaliza-

tion factor. The gradient (sensitivity) of the objective function corresponds to a weighted

sum of the sensitivities of each individual loading case, which can be expressed as

∇C(e)
ρ =

∂C
∂ρ(e)

=−
m`

∑
i=1

wi u T
i

∂K
∂ρ(e)

ui. (6.2)

The formulation (6.1) is known to be convex when p = 1 [46]. Using p > 1 to obtain

a solid-void solution, one makes the problem non-convex and, as expected, the solution

obtained from the optimization algorithm may not be the global minimum.

6.1.2 Ground-structure based formulation with many load cases

The standard weighted sum formulation for the minimum end-compliance design with the

ground structure method (GSM) under many load cases takes the following form,

min
x

C (x) = min
x

m`

∑
i=1

wi f T
i ui(x),

s.t. g(x) =
M

∑
e=1

L(e)x(e)−Vmax ≤ 0 ,

0 < xmin ≤ x(e) ≤ xmax, e = 1, ...,M,

with ui(x) = K(x)−1 fi, i = 1, ...,m` .

(6.3)
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The vector x ∈ RM is a vector of design variables, with component x(e) being the cross-

sectional area of truss member e. It is subjected to lower bound xmin and upper bound xmax.

Furthermore, M is the number of truss members in the ground structure (GS), L(e) is the

length of truss member e, and Vmax is the prescribed upper bound on the total volume. For

the ith load case fi ∈ RdN , wi and ui ∈ RdN are the corresponding weight factor and dis-

placement vector. As in the density-based method, the sensitivity of the objective function

in the GSM is the weighted sum of the sensitivities from each load case:

∇C(e)
x =

∂C
∂x(e)

=−
m`

∑
i=1

wiu T
i

∂K
∂x(e)

ui. (6.4)

The standard nested formulation of the end-compliance objective function with a single

load case has been proven to be convex in [37] for a positive definite stiffness matrix and in

[38] for a positive semi-definite stiffness matrix. The formulation (6.3) with multiple load

cases is easily proven to be convex.

6.1.3 Synopsis

The optimization algorithm contains three main components: solving the structural equi-

librium problem for a set of given design variables, computing the gradient of the objective

function, and updating the design variables. In this chapter, we use the density-based and

GS methods – both methods utilize the Optimality Criterion (OC) algorithm [70] as the

update scheme, which only requires gradient information of the objective function and the

volume constraint. The convergence criterion for optimization used in formulations (6.1)

and (6.3) is that the maximum change in design variables drops below a given tolerance,

τopt.

The overall computational cost of the standard optimization formulations (6.1) and

(6.3) can be estimated by the total number of structural equations (large linear system)

solves, i.e., m`×Nstep, where Nstep is the number of optimization steps. For realistic three-
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dimensional (3D) problems, where the mesh size, the number of design variables, and the

number of load cases are large, the associated computational cost is enormous. Thus, in

this chapter, we propose a randomized approach that reduces the problem with many load

cases (m`) to a sequence of optimization steps with only a few load cases (n�m`) to solve

per step and that yields results similar to those from the standard weighted sum approach.

6.2 Stochastic Sampling and Topology Optimization

This section proposes a stochastic sampling approach for the minimum end-compliance

topology optimization formulations with many load cases. First, we briefly review a stochas-

tic sampling technique to estimate the trace of a general matrix. Then, the stochastic sam-

pling technique is applied to the minimum end-compliance topology optimization with

many load cases using both density-based and GS methods.

6.2.1 Stochastic sampling of matrices

For a general matrix A ∈ Rq×q, stochastic sampling techniques can be used to estimate the

trace of A. We discuss one popular approach here, the Hutchinson trace estimator [139],

but several alternatives exist, e.g., the Gaussian estimators and unit vector estimators – see

[143], [144] and references therein. Let ξξξ ∈ Rq be a random vector containing entries that

are independent and identically distributed (i.i.d.) with value±1 each with probability 1/2.

This distribution is known as the Rademacher distribution. It follows immediately that, for

each entry, the expectation E(ξi) = 0. Because the entries are independent, the expectation

of ξiξ j is given by,

E
(
ξiξ j

)
=


0 , i 6= j ,

1 , i = j .

(6.5)
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Now consider the expectation of the random variable ξξξ
T Aξξξ ,

E
(

ξξξ
T Aξξξ

)
= E

(
q

∑
i=1

q

∑
j=1

ξiAi jξ j

)
=

q

∑
i=1

q

∑
j=1

Ai jE
(
ξiξ j

)
. (6.6)

Because E
(
ξiξ j

)
= 1 only when i = j, and 0 otherwise, we get

E
(

ξξξ
T Aξξξ

)
=

q

∑
i=1

Aii = trace(A) . (6.7)

As a result, the trace of a given matrix A can be estimated using random samples. Here,

we utilize the sample average approximation (SAA) technique, see, e.g., [149], which ap-

proximates the expected value by the average. The sample average or empirical mean for

n samples (or realizations) ξξξ 1,ξξξ 2, ...,ξξξ n, of the random variable ξξξ is defined as

ES

(
ξξξ

T Aξξξ

)
=

1
n

n

∑
k=1

ξξξ
T
k Aξξξ k . (6.8)

According to the Law of Large Numbers (LLN) [150], as the number of (independent)

samples n approaches ∞, the sample average ES

(
ξξξ

T Aξξξ

)
converges to the expectation

E
(

ξξξ
T Aξξξ

)
, which is the trace of A ,

ES

(
ξξξ

T Aξξξ

)
=

1
n

n

∑
k=1

ξξξ
T
k Aξξξ k→ E

(
ξξξ

T Aξξξ

)
= trace(A) . (6.9)

The use of trace estimators can be highly efficient if the matrix A is not explicitly available

and its computation is expensive. We also have that ES

(
ξξξ

T Aξξξ

)
is an unbiased estimator

of E
(

ξξξ
T Aξξξ

)
[149]. Because the expected accuracy of such estimates is given by the

variance, the goal is to obtain the estimates with the smallest variance. The Rademacher

distribution, from which we choose the random vectors ξξξ , was shown in [139] to be the

distribution that yields the smallest variance. Other studies rank various trace estimators

differently according to criteria other than the variance. For further information, readers are

175



referred to, e.g., [143], [144]. For a symmetric matrix A, the variance of ξξξ
T Aξξξ is derived

as

Var
(

ξξξ
T Aξξξ

)
= E

{[
ξξξ

T Aξξξ −E
(

ξξξ
T Aξξξ

)]2
}
= E


[

q

∑
i=1

q

∑
j=1

ξiAi jξ j−
q

∑
i=1

Aii

]2


= E


 q

∑
i, j=1
i6= j

ξiAi jξ j


2
= E


q

∑
i, j=1
i 6= j

q

∑
k,l=1
k 6=l

Ai jAklξiξ jξkξl


=

q

∑
i, j=1
i 6= j

q

∑
k,l=1
k 6=l

Ai jAkl E
{

ξiξ jξkξl
}
=

q

∑
i, j=1
i 6= j

q

∑
k,l=1
k 6=l

Ai jAkl(δikδ jl +δilδ jk)

=
q

∑
i, j=1
i 6= j

(Ai jAi j +Ai jA ji) = 2
q

∑
i, j=1
i 6= j

A2
i j,

(6.10)

where δi j is the Kronecker delta function. In addition, the standard deviation of ξξξ
T Aξξξ is

given by

Dev
(

ξξξ
T Aξξξ

)
=

√
Var
(

ξξξ
T Aξξξ

)
=

√√√√√2
q

∑
i, j=1
i 6= j

A2
i j . (6.11)

The variance and standard deviation can be estimated using a finite number of samples.

Given the samples above, we define the sample variance and sample standard deviation as

VarS

(
ξξξ

T Aξξξ

)
=

1
n

n

∑
k=1

[
ξξξ

T
k Aξξξ k−

1
n

n

∑
`=1

ξξξ
T
` Aξξξ `

]2

, (6.12)

and

DevS

(
ξξξ

T Aξξξ

)
=

√√√√1
n

n

∑
k=1

[
ξξξ

T
k Aξξξ k−

1
n

n

∑
`=1

ξξξ
T
` Aξξξ `

]2

. (6.13)

Below, we use these derivations for estimating the objective function (the compliance), as

well as its gradient or sensitivity. A key issue for efficiency is that both can be estimated

with the same set of random vectors.
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6.2.2 Randomized topology optimization with stochastic sampling

We apply the stochastic sampling technique to both the density-based method and the GSM.

The basic idea is to replace the compliance and its gradient by stochastic estimates and to

use these estimates in the optimization algorithm.

Density-based method

Consider the standard topology optimization formulation in (6.1) with m` load cases fi,

i = 1, ...,m`, and corresponding weights wi. We define a weighted load matrix F ∈ RdN×m

as F =
[√

w1 f1, ...,
√

wm fm
]
. In a similar fashion, we define the weighted displacement

matrix U ∈ RdN×m =
[√

w1 u1, ...,
√

wm um
]
, whose columns are the corresponding dis-

placement fields. The matrix U is defined by the equilibrium equation, U = K−1F. So, we

can write the end-compliance and its sensitivities as traces of symmetric matrices

C (ρρρ) =
m`

∑
i=1

wif T
i ui = trace

(
FT U

)
= trace

(
FT K−1F

)
(6.14)

and

∇C(e)
ρρρ =−

m`

∑
i=1

wiu T
i

∂K
∂ρ(e)

ui =− trace
(

U T ∂K
∂ρ(e)

U
)
=− trace

(
FT K−1 ∂K

∂ρ(e)
K−1F

)
.

(6.15)

With the random variable ξξξ as defined above, the end-compliance and the topology

optimization problem can be expressed as

C (ρρρ) = trace
(
FT K−1F

)
= E

(
ξξξ

T FT K−1Fξξξ

)
= E

[
(Fξξξ )

T K−1 (Fξξξ )
]
, (6.16)
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and
min

ρρρ
C (ρρρ) = min

ρρρ
E
[
(Fξξξ )

T K(ρρρ)−1 (Fξξξ )
]
,

s.t. g(ρ̄ρρ) =
M

∑
e=1

V (e)
ρ
(e)−Vmax ≤ 0 ,

0 < ρmin ≤ ρ
(e) ≤ 1, e = 1, ...,M .

(6.17)

The sensitivity of the objective function can be expressed as

∇C(e)
ρρρ =− trace

(
FT K−1 ∂K

∂ρ(e)
K−1F

)
=−E

[
(Fξξξ )

T K−1 ∂K
∂ρ(e)

K−1 (Fξξξ )

]
. (6.18)

Equations (6.17) and (6.18), stated as a stochastic programming problem, are equivalent to

the standard formulation (6.1) and (6.2). We approximate the compliance and its gradient

by replacing their expectation in the equations above by their sample average estimates.

Given the i.i.d. random sample ξξξ 1,ξξξ 2, ...,ξξξ n as n realizations of the random vector ξξξ , we

define

ĈS (ρρρ) =
1
n

n

∑
k=1

(Fξξξ k)
T K(ρρρ)−1 (Fξξξ k) , (6.19)

and

(∇ĈS
ρρρ)

(e) =
∂ĈS

∂ρ(e)
=−1

n

n

∑
k=1

(Fξξξ k)
T K−1 ∂K

∂ρ(e)
K−1 (Fξξξ k) . (6.20)

We remark that ĈS (ρρρ) and ∇ĈS
ρρρ are unbiased estimators for the compliance and its gradient.

By the LLN, ĈS (ρρρ)→ C (ρρρ) and ∇ĈS
ρρρ → ∇Cρρρ (with probability 1) for any feasible ρρρ as

n→ ∞ [151].

Within each step of the optimization algorithm, we use the same random vectors to

estimate the compliance and its gradient using (6.19) and (6.20). However, to avoid con-

vergence for a specific random load case, a new set of n random vectors is selected at each

optimization step. If n� m`, our proposed algorithm reduces the computational cost from

m`×Nstep to roughly n×Nstep if the convergence of the optimization is not affected.

The idea to approximate the gradient and the objective function in a structural opti-

mization problem is similar to the use of stochastic gradient-based methods in other areas,
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e.g., stochastic gradient descent (SGD) [152], and stochastic meta-descent (SMD) [153],

which are optimization methods mainly for unconstrained optimization problems. Stochas-

tic gradient methods use small sub-samples (also referred as mini-batches) to estimate the

gradient and have been applied in other fields, such as large-scale machine learning [154],

[155]. For our application, the SAA gradient estimate always has a positive angle with

the gradient, and hence the negative SAA gradient estimate is a descent direction for the

unconstrained case. We demonstrate numerically how effective the approximation is in

Section 4. Because the optimization problem for the density-based method with penaliza-

tion is non-convex, deterministic gradient-based methods may not converge to the global

minimum (as expected). The randomized approach leads to solutions that are (roughly) as

accurate in terms of the end-compliance as those from the standard weighted sum approach.

This is demonstrated by the results in Section 4.2.

In general, for stochastic gradient methods, a damping or averaging scheme (also re-

ferred to as a decay schedule of the scalar gain or gain vector adaptation) is needed to

achieve convergence [155]. Various damping or averaging methods for step sizes have been

proposed for different types of problems [156]. For the structural optimization problems

in this chapter, we propose a damping scheme that adjusts the move limits (reminiscent of

a trust region), which especially befits the structural optimization framework. The idea of

the proposed damping scheme is similar to adjusting the size of the update in simulated

annealing [157], [158] and is discussed in detail in Section 6.3.1. Robbins and Monro

[152] have given conditions for the convergence of stochastic gradient methods that use

such damping schemes; see also [155]. A more recent (and accessible) chapter discussing

the convergence of stochastic gradient methods in detail, and considering more general

cases than Robbins and Monro [152], is the one by Bottou, Curtis and Nocedal [159].

The numerical results (see Section 4) show that the convergence of the proposed ap-

proach is typically rapid if our damping scheme is properly used, roughly as fast as for

the standard weighted sum approach and sometimes faster. Because the randomized ap-

179



proach solves only n linear systems at each optimization step, compared with m` for the

standard weighted sum approach, and n� m`, the proposed randomized approach is com-

putationally much more efficient. Moreover, randomized approaches with a proper damp-

ing scheme can be more robust in finding the global minimum for non-convex optimization

problems than deterministic algorithms. We demonstrate this with numerical examples in

Section 4. In general, such increased robustness comes at the price of slower convergence.

To analyze the effects of randomization on the proposed approaches, we consider the

variance and sample variance for the compliance estimate and its gradient.

Var
[
(Fξξξ )T K−1(Fξξξ )

]
= 2

m`

∑
i, j=1
i 6= j

(
FT K−1F

)2
i j , (6.21)

and

Var
[
(Fξξξ )

T K−1 ∂K
∂ρ(e)

K−1 (Fξξξ )

]
= 2

m`

∑
i, j=1
i 6= j

(
FT K−1 ∂K

∂ρ(e)
K−1F

)2

i j
. (6.22)

Similarly, the sample variance of the compliance and its gradient can be expressed as

VarS

[
(Fξξξ )

T K−1 (Fξξξ )
]
=

1
n

n

∑
k=1

(
ξξξ

T
k FT K−1Fξξξ k−

1
n

n

∑
`=1

ξξξ
T
` FT K−1Fξξξ `

)2

, (6.23)

and

VarS

[
(Fξξξ )

T K−1 ∂K
∂ρ(e)

K−1 (Fξξξ )

]

=
1
n

n

∑
k=1

(
ξξξ

T
k FT K−1 ∂K

∂ρ(e)
K−1Fξξξ k−

1
n

n

∑
`=1

ξξξ
T
` FT K−1 ∂K

∂ρ(e)
K−1Fξξξ `

)2

. (6.24)
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Ground structure method

A randomized version of the optimization problem for the GSM with the weighted force

matrix F is analogous to that for the density-based method (6.17). The minimization prob-

lem for the GSM is given by

min
x

C (x) = min
x

E
[
(Fξξξ )

T K(x)−1 (Fξξξ )
]
,

s.t. g(x) =
M

∑
e=1

L(e)x(e)−Vmax ≤ 0 ,

0 < xmin ≤ x(e) ≤ xmax, e = 1, ...,M ,

(6.25)

and the sensitivity of the objective function can be expressed as,

∇C(e)
x =−E

[
(Fξξξ )

T K−1 ∂K
∂x(e)

K−1 (Fξξξ )

]
. (6.26)

Here too, we replace the objective function and its gradient by their sample average

approximation. Using the same assumptions, for an i.i.d. random sample ξξξ 1,ξξξ 2, ...,ξξξ n, the

compliance C (x) and its gradient can be estimated by

ĈS (x) =
1
n

n

∑
k=1

(Fξξξ k)
T K(x)−1 (Fξξξ k) , (6.27)

and

(∇ĈS
x)

(e) =
∂ĈS

∂x(e)
=−1

n

n

∑
k=1

(Fξξξ k)
T K−1 ∂K

∂x(e)
K−1 (Fξξξ k) , (6.28)

where ĈS (x) and (∇ĈS
x)

(e) are the estimated compliance and estimated sensitivity of the

corresponding structure analogous to (6.19) and (6.20). The variance and sample variance

of the objective function and its sensitivity take the same form as (6.21)-(6.24), and there-

fore are not listed. Because the standard optimization formulation for the GSM is convex, it

has a unique global minimum. Hence, we expect the approximated minima obtained with

the randomized method to be equal to or larger than the one obtained from the standard
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formulation. This is confirmed by the results in Section 4.

We conclude this subsection by making a remark on the flexibility of our proposed ran-

domized algorithm for topology optimization. This algorithm can be combined with many

types of update schemes that are based on gradient information, such as the Optimality Cri-

terion (OC) method [70] and the Method of Moving Asymptotes (MMA) [71]. In this work,

because the estimated sensitivities in (6.20) and (6.28) are guaranteed to be non-positive,

we adopt OC as the update scheme for both continuum and truss topology optimization.

The OC method is a highly efficient update scheme that is tailored for self-adjoint problems

and widely used in topology optimization: see, e.g. [160]–[162].

6.2.3 Discrete filter for ground structure method with stochastic sampling

In the GSM, a discrete filter similar to the filter proposed in [85] (see below) is applied to

the truss topology optimization with both the standard and the randomized algorithms to

extract valid structures out of ground structures. The use of the discrete filter reduces the

number of redundant bars and the size of the structural problem within each solve, which

reduces the cost of subsequent optimization steps. For the standard multiple load case

optimization problem (6.3), the discrete filter is expressed in (3.5). The parameter α f is

the prescribed filter value and x(e)k is the design variable for truss member e at the kth step.

The discrete filter is applied to the GS at each step and removes the truss members with

normalized areas smaller than the filter parameter α f .

For the randomized algorithm for the GSM, we define a discrete filter that slightly

differs from the standard discrete filter. To avoid inadvertent removal of truss members due

to an (occasional) poor estimate in the randomized algorithm, the discrete filter removes

truss members only when their normalized areas have remained below the prescribed filter
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value for n f steps, namely,

FilterS (xk,α f
)
=


0, if max

(
x(e)k−n f +1

max
(

xk−n f +1

) , ..., x(e)k
max(xk)

)
< α f < 1 ,

x(e)k , otherwise,

(6.29)

where FilterS(xk,α f ) denotes the filter for the randomized algorithm, and n f is a chosen

number of monitored steps (see the discussion of parameters below). The use of the fil-

ter for the randomized algorithm (FilterS) leads to a more efficient GSM with stochastic

sampling than if the filter were not used (see numerical examples section).

6.3 A Damping Scheme and Algorithmic Parameters for Randomized Optimization

This section introduces a damping scheme to facilitate convergence and demonstrates the

effectiveness of this scheme through a three-bar truss example. We further discuss the

algorithmic parameters that are used in the proposed randomized optimization framework

and comment on the range of values chosen for those parameters.

6.3.1 The proposed damping scheme: effective step ratio and step size reduction

In the randomized algorithm, the structure must be adjusted based on the random linear

combination of load cases that changes at each optimization step. Therefore, the conver-

gence criteria commonly used for the standard structural optimization framework are insuf-

ficient for the proposed framework. Based on ideas from simulated annealing [157], [158],

we propose a damping scheme that evaluates the average progress per step and reduces the

move limit (similar to the scalar gain in SGD) accordingly. We define the effective step

ratio R as follows (using the GSM notation):

R =

1
nstep
||
(
xk−xk−nstep+1

)
||

||xk−xk−1||
, (6.30)
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where nstep is the sample window size (see below). The average step size over a sample

window is divided by the current step length. This effective step ratio serves as an indicator

of the optimizer’s status, i.e., the ratio is relatively large when the optimizer is making

progress; and relatively small (typically smaller than 0.1) when the step is not effective.

Once R is below a prescribed tolerance τstep, i.e., R < τstep, we reduce the allowable move

limit of the optimizer by a prescribed scale factor γ . The move limit is not adjusted in the

first nstep optimization steps.

The effectiveness of the damping scheme is illustrated through a simple numerical ex-

ample for the GSM. This example is not representative for the effectiveness of the ran-

domized algorithm; it is selected to emphasize the poor performance of the randomized

optimization algorithm without a damping scheme. We consider a three-bar truss structure

supported at their left ends and subjected to a set of 9 equal-weighted load cases, f1, ..., f9,

at their right joint, as shown in Figure 6.1. The problem formulation is given as follows:

…… 

load case 1 load case 9load case 2

(2)

(1)

(3)

(2)

(1)

(3)

(2)

(1)

(3)

Figure 6.1: Three-bar truss structure under 9 load cases: initial ground structure, load and
boundary conditions.
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min
x

C (x) =
9

∑
i=1

f T
i ui(x),

s.t.
3

∑
e=1

L(e)x(e)−Vmax ≤ 0 ,

0 < xmin ≤ x(e) ≤ xmax, e = 1, ...,3,

with ui(x) = K(x)−1 fi, i = 1, ...,9 .

(6.31)

We set the volume constraint as Vmax = 0.1, and take initial guess as x0 = Vmax/∑e L(e) =

0.0278. In addition, we choose the lower and upper bounds to be xmin = 10−8x0 and xmax =

104x0, respectively. The initial move limit is taken as move = 10−1x0. The tolerance for

convergence of the optimization is 10−8. For the randomized algorithm, we choose the

sample size as n = 6 (i.e., 6 sample load cases), and select a new sample at each iteration.

We use the proposed randomized algorithm with and without the damping scheme. The

contour plots of the objective function with the optimization history of x(1) and x(2) (x(3)

can be computed from the volume constraint because, in practice, the sum of volumes will

always be equal to Vmax) for both cases are shown in Figures 6.2a and 6.2b. The opti-

mization history from the standard weighted sum approach is plotted for reference. The

standard approach obtains the global minimum of the given problem within 25 steps where

x∗ =
[
x(1),x(2),x(3)

]T
= [0.0344,0.0290,0.0132]T and C (x∗) = 8.1666. The randomized

algorithm without damping does not converge, and the updates become ineffective after

roughly 10 steps (Figure 6.2a). The randomized algorithm with our damping scheme con-

verges to x̂S = [0.0343,0.0290,0.0134]T with C(x̂S) = 8.1667. This is close to the optimal

solution obtained by the standard algorithm. The results are summarized in Table 6.1. For

this small problem, we use nstep = 10, τstep = 0.05, and γ = 2. Because the solution of this

example is relatively trivial, the randomized algorithm with our damping scheme converges

slower than the standard algorithm. For more complicated and realistic problems (e.g., ex-

amples in Section 4), the convergence rates for the randomized and standard algorithms are

comparable.
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Table 6.1: Solution of the 3-bar truss of Figure 6.1 using the standard GSM and
the GSM with stochastic sampling and damping.

Standard GSM Randomized
GSM w/ damping

x(1) 0.0344 0.0344
x(2) 0.0290 0.0290
x(3) 0.0132 0.0134

C∗ 8.1666 8.1667

To verify that the solution from the randomized algorithm with damping converges to a

KKT (Karush-Kuhn-Tucker) point (optimal solution in case of the GSM), we examine the

angle θA between ∇CA (reduced gradient vector of the objective function) and LA (re-

duced gradient vector of the volume constraint) for the standard algorithm, and randomized

algorithm with and without damping, as shown in Figure 6.2c. The solution is a KKT point

if θA = π . For the standard algorithm, θA converges quickly to π . For the randomized

algorithm with damping, θA gradually converges to π (the case without damping does not

converge). Hence, we numerically show that the solution from the randomized algorithm

with damping converges to the optimal solution in the truss optimization framework.

6.3.2 Overview of algorithmic parameters for randomized optimization

This subsection summarizes the important parameters that are used in the randomized op-

timization framework, with some comments on the possible range of values to be used in

practice.

Sample size In the proposed randomized optimization framework, the larger the number

of sample load cases n, the more accurate the estimate of the compliance will be. However,

the computational cost increases with the number of sample load cases, because in each

optimization step we need to solve n systems of equations. Thus, we need to balance

the accuracy of the estimates and the computational complexity. Typically, the results

from the randomized algorithm are relatively insensitive to the number of sample load
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cases. Indeed, with a small number of sample load cases (n� m`) we obtain solutions

comparable to those from the standard algorithm in terms of topology and compliance

value, and sometimes even better in terms of compliance value. It seems that for these

problems the estimated gradient is fairly accurate even for small sample sizes. This is also

demonstrated in the numerical examples in the next section. To provide some insight into

the choice of sample size, a study is conducted using different sample sizes in Section

4.1. For the examples in the remainder of this chapter, we choose the number of sample

load cases n = 6, unless otherwise stated, to demonstrate the accuracy and computational

efficiency of the randomized optimization framework.

Frequency to select a new sample The frequency to select a new sample, ns, or the

number of optimization steps with a fixed random sample, influences the convergence rate

of the optimization. If the frequency is too low, optimization steps are influenced too much

by specific sets of random loads, and convergence may be slow. In this work, we select a

new random sample every step, i.e., ns = 1.

Filter parameters Applying the discrete filter in the GSM reduces the number of redun-

dant bars, which drastically reduces the computational cost, for both standard and random-

ized algorithms. The discrete filter for the randomized algorithm, as discussed in Section

2.3, also helps to limit the effects of the stochastic estimates. For the randomized algorithm,

we choose a relatively small filter size α f = 10−4 and remove truss members when their

normalized cross-sectional areas have remained below α f for n f = 10 cumulative steps.

Further details about the filter parameters can be found in [85], [120]

Parameters in the damping scheme The damping scheme introduced in Section 6.3.1

has four parameters, the effective step ratio (R), the sample window size (nstep), the toler-

ance (τstep), and the scale factor (γ). The parameter choices in this damping scheme are

crucial to the quality of the final solution. We average over a moving window. As the
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window size nstep increases, we average over more steps. If nstep is too large, it slows

down convergence because the algorithm adapts more slowly. In practice, we have found

nstep = 100 is sufficient for problems containing more than one thousand design variables.

At the start of the optimization, the number of steps after which we start to dampen the

allowable move limit is typically chosen to be the same as the window size.

The tolerance for the effective step ratio, τstep, serves as a threshold to determine when

updates become ineffective. Therefore, the choice of τstep affects the rate of convergence

and sometimes the quality of the solutions. In general, a loose tolerance leads to faster

convergence (reduces the move limit more frequently) at the expense of the quality of

design (in terms of the compliance value). One must balance the quality of the results and

the convergence rate. The GSM is more sensitive to τstep than the density-based method.

This is demonstrated in Section 6.4.1. Therefore, a stricter tolerance is needed for the

GSM. In practice, we choose τstep = 0.05 for the GSM and τstep = 0.1 for the density-based

method. For the move limit scale factor γ , we have found that γ = 2 is typically a good

choice.

6.4 Numerical Examples

We present several numerical examples in both two and three dimensions to demonstrate

the effectiveness as well as the computational efficiency of the proposed randomized al-

gorithm for topology optimization. Both density-based method and GSM are used. The

first two examples (Section 6.4.1) investigate the sensitivity of the density-based method

and the GSM to the tolerance τstep (see Eq. (6.30)). Moreover, Example 1 (Section 6.4.1)

shows the relation between sample size and quality of the optimized design. Example 2

(Section 6.4.1) illustrates the effect of the discrete filter in the GSM for the proposed ran-

domized algorithm. The last two examples (Sections 6.4.2 and 6.4.3) in 3D demonstrate the

capability of the proposed algorithm to create practical structural designs at greatly reduced

computational cost.
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To quantify the computational cost of the standard and randomized optimization algo-

rithms, we define Nsolve = n×Nstep as the total number of linear systems of equations to

solve in the optimization process, where Nstep is the number of optimization steps. This is

a measure of the computational efficiency of an optimization formulation. The optimiza-

tion process is considered converged if the current step size (bounded by the move limit) is

below a prescribed tolerance τopt for the optimization process, that is, ||xk−xk−1||< τopt.

For the density-based method (continuum), we incorporate the proposed technique into

the computer program PolyTop [163] in 2D and the topology optimization code in 3D

[164]. For plotting 3D continuum results, we utilize TOPSlicer [6]. All the problems are

initialized as follows. The initial guess is taken as ρ0 =Vmax/∑
M
e=1V (e), where V (e) is the

volume (area) of element e. The convergence tolerance is τopt = 10−2; the initial move

limit is chosen as move = 0.05; the damping factor for the OC update scheme is η = 0.5

(or 1). We use a continuation scheme, in which the penalization factor starts at p = 1 and

each time increases by 0.5 until p = 3 (for 2D problems [163]) or 4 (for 3D problems [6]).

For example, p = [1,1.5,2,2.5,3].

For the GSM (truss-layout), we generate initial ground structures (without overlapped

bars) using the collision zone technique from references [112], [113] and plot final topolo-

gies in 3D using the program GRAND3 [113]. The initial guess of the design variables is

taken as x0 = Vmax/∑
M
e=1 L(e); the convergence tolerance is τopt = 10−8; the initial move

limit is chosen as move= x0×104; the damping factor for the OC update scheme is η = 0.5.

When the discrete filter is used in the GSM, we use n f = 10 and α f = 10−4 during the op-

timization process, unless otherwise stated; the lower and upper bounds on the design vari-

ables are xmin = 0 and xmax = 104x0 (unbounded in practical terms). For the standard GSM

(without the discrete filter), we apply a cut-off value 10−2 that defines the final structure at

the end of the optimization [31]. The lower and upper bounds are defined by xmin = 10−2x0

and xmax = 104x0, respectively. For all results in the GSM, we remove unstable nodes and

floating bars and then check the final topologies to ensure that they are at global equilibrium
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– a detailed explanation can be found in references [128].

In both the continuous and truss-layout optimization, the randomized algorithm uses

the following parameters. Unless otherwise stated, the sample size is chosen to be n = 6;

in the damping scheme, the window size is nstep = 100, and we use step size reduction

factor γ = 2. For the density-based method, we use a tolerance for the effective step ratio

τstep = 0.1, and for the GSM we use τstep = 0.05. Let ρρρ∗ and x∗ represent the optimal

solutions of the standard formulations in (6.1) and (6.3), ρ̂ρρ
S and x̂S represent the optimal

solutions obtained from the randomized algorithm for density-based and GS methods. To

evaluate the quality of the solutions, in the case of the randomized algorithm, we present

the true values of the objective function C(ρ̂ρρ
S
) and C(x̂S) at the approximated solutions

ρ̂ρρ
S and x̂S (instead of their estimators ĈS(ρ̂ρρ

S
) and ĈS(x̂S)) and compare them with those

obtained from the standard algorithm C(ρρρ∗) and C(x∗). The relative difference is defined

as ∆C =
(

C(x̂S)−C(x∗)
)
/C(x∗).

6.4.1 Two-dimensional box domain with 108 load cases

We present a two-dimensional (2D) topology optimization problem whose design domain

and boundary conditions are shown in Figure 6.3. A total of 108 equal-weighted load

cases are applied at three given points, with each point having 36 load cases applied along

different angles (from 0◦ to 350◦). In this section, both the density-based and the GS

methods are used.

Continuum topology optimization with density-based method

Using the density-based method, we demonstrate the reduction of the computational cost

by means of the randomized algorithm. We further investigate the sensitivity of the final

optimized topologies to the tolerance τstep in the damping scheme and the sample size n.

Because the final topology from the standard algorithm is symmetric both horizontally and

vertically, we enforce symmetry of the topologies in the randomized case by enforcing
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Figure 6.3: Two-dimensional box domain with load and support conditions. A total of 108
equal-weighted load cases are applied at three given points with each point having 36 load
cases applied from 0◦ to 350◦ (dotted arrows are the schematic illustrations of non-active

load cases).

horizontal and vertical symmetry of the distribution of the density field [163]. A total num-

ber of 25,600 quadrilateral elements are used to discretize the domain which gives 52,002

degrees of freedom (DOFs). The linear density filter that defines the solid-void boundary

takes the radius of 1 (see Section 1.1). For comparison purposes, the final topology ob-

tained from the standard topology optimization is shown in Figure 6.4a. The final topology

has C(ρρρ∗) = 3.257 and converges after 1048 steps. In each optimization step, we solve 108

linear systems (corresponding to 108 load cases), which leads to a total 113,184 solves.

Because the continuation method is used for the penalization factor, p, the jumps in the

compliance correspond to p = 1.5,2.0,2.5,3.0 (initially p = 1.0) [163].

To investigate the sensitivity to τstep, we consider τstep = 0.1 and τstep = 0.05, and the

results are compared with that from the standard algorithm [30]. For both cases, the number

of sample load cases used is n = 6. Figures 6.4b and c show the optimized topologies

for the randomized algorithm for a single representative trial (one trial is one run of the
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numerical experiment) for each τstep, and Figure 6.4d shows the convergence histories of

the objective function for all cases for the representative trial. Because the sample load

cases are generated randomly at each step, the final optimized topology and its compliance

vary slightly with each trial. Therefore, the associated results in Table 6.2 are averaged

over 5 trials. For the randomized algorithm, we also report the standard deviations of the

compliance for 5 trials – the standard deviations for all the cases are small, indicating that

the randomized algorithm generates results with similar compliance in every instance. For

this example, the standard algorithm leads to a lower compliance and simpler topology.

However, the randomized algorithm for both tolerances uses substantially fewer solves for

final topologies similar to the one obtained with the standard algorithm. For τstep = 0.1, the

number of linear systems to solve is 27 times fewer than for the standard algorithm (113,184

solves vs. 4170 solves), and the convergence of the optimization is more rapid. The final

topologies obtained for the two tolerances and the compliance for each case (see Figure

6.4) suggest that the tolerance in the damping scheme has a minor influence on the final

results in the density-based method. The relative differences between the compliance for

the standard algorithm and those for the randomized algorithm are 1.79% for τstep = 0.05

and 2.45% for τstep = 0.1. It seems that smaller τstep leads to slower convergence but a

slightly better compliance: the optimization with τstep = 0.05 takes an average 1052 steps

to converge while the one with τstep = 0.1 takes an average 695 steps. Therefore, the latter

is more computationally efficient with only Nsolve = 4170 compared with Nsolve = 6312 for

the former one.

Next, we check the quality of the estimated gradients by plotting the angle between the

true gradient and the estimated gradient. The very small angles show that the estimated

gradient is about as effective as the true gradient, and that the negative estimated gradient

is a descent direction. As shown in Figures 6.4e and 6.4f, we plot the angle (θ ), and the

cosine of the angle (cosθ ), between the gradient and the estimated gradient for each of the

two tolerances for one representative trial. The moving averages (over 50 steps) of cosθ ,
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in both cases, are close to 1.0.

The next study demonstrates the influence of sample sizes on optimization results and

the reduction of the computational cost by using the randomized algorithm. In this study,

τstep = 0.1. Figure 6.5 gives the compliances for sample sizes n = 4,5,6,7,20,50 and fi-

nal topologies (from one representative trial). Each data point in Figure 6.5 is obtained by

averaging 5 trials, and the data are summarized in Table 6.2. Several observations can be

made based on Figure 6.5 and Table 6.2. For one, the randomized algorithm leads to simi-

lar optimal topologies and compliances compared with the standard algorithm. For n = 4,

Nsolve is significantly smaller than for the standard algorithm, by a factor of 45 on aver-

age. Moreover, the compliance improves as we increase n, indicating that larger n offers

better estimation during the optimization and ultimately yields stiffer optimal structures.

However, Nsolve also increases as we use more sample load cases. From the optimized

structures and compliances, it seems that n = 6 is sufficient for this problem with greatly

reduced computational cost. The compliance differs from the standard algorithm by only

2.45%. Table 6.2 shows that the cosine of the average angle between the gradient and the

estimated gradient, cos θ̄ , ranges from 0.959 and 0.996 for various sample sizes. Using the

randomized algorithm, we can almost fully recover the original optimal results by either

increasing the sample size (e.g., n = 50) or choosing smaller τstep, as both methods lead to

highly accurate designs.

Truss topology optimization with ground structure method

As example 2, we study again the problem presented in Figure 3, but this time using the

GSM. We demonstrate that our approach greatly reduces the total number of linear solves.

In addition, we investigate the sensitivity of the results to τstep as well as the influence of the

discrete filter on final solutions of the randomized algorithm. We use a full-level GS (16×4

grid) with 2,196 non-overlapped bars to discretize the domain [112], [113]. The optimal

topology and the convergence of the compliance for the standard algorithm are shown in
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Figure 6.4: Results for Example 1 using the density-based method with 25,600
quadrilateral elements and 52,002 degrees of freedom (DOFs). a The optimized topology

obtained by the standard algorithm [30]; b the optimized topology obtained by the
randomized algorithm with n = 6 and τstep = 0.05 (one representative trial); c the

optimized topology obtained by the randomized algorithm with n = 6 and τstep = 0.1 (one
representative trial); d the convergence of the compliance for above cases; e the angle, and
the cosine of the angle, between the gradient ∇Cx and the estimated gradient ∇ĈS

x for the
randomized case with τstep = 0.05 demonstrate that the directions are aligned. f the angle,

and the cosine of the angle, between ∇Cx and ∇ĈS
x for the randomized case with

τstep = 0.1 demonstrate that the directions are aligned.
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Figure 6.5: Study of sample sizes (n = 4,5,6,7,20,50) versus the resulting final
compliance (or end-compliance) using the randomized algorithm in Example 1. The final

topologies (from representative trials) are included.

Figures 6.6a and 6.6d. The optimal compliance for the standard algorithm, C (x∗) = 4.219,

is obtained in 406 steps and Nsolve = 43,848. For the randomized algorithm, we compare

two cases using different tolerances in the damping scheme, τstep = 0.05 and τstep = 0.1.

The results are summarized in Table 6.3, averaged over 5 trials. The optimized structures

and the convergence of the compliance for a single representative trial are shown in Figures

6.6b-d.

In contrast to the results for the density-based method in Section 4.1.1, the results for

the GSM indicate that the choice of τstep has a significant impact on the optimized struc-

ture. Although τstep = 0.05 results in a larger number iterations/optimization steps and a

larger number of linear system solves, Nsolve, compared with τstep = 0.1, its final structure

is simpler, has slightly lower compliance, and is similar to the structure obtained by the

standard algorithm. This suggests that τstep = 0.05 is a better choice for this example. The

convergence rate for the randomized algorithm is about the same as for the standard algo-
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Table 6.2: Results for Example 1 (density-based), averaged over 5 trials.

Density
-based

C(ρρρ∗) C(ρ̂ρρ
S
) ∆C

DevS
(C(ρ̂ρρ

S
))

τstep cos θ̄ n Nstep Nsolve

Standard 3.257 - - - - - - 1,048 113,184

Stoch.
τstep = 0.05 - 3.315 1.79% 0.0200 0.05 0.971 6 1,052 6,312

Stoch.
τττstep=0.1 - 3.337 2.45% 0.0092 0.1 0.971 6 695 4,170

Stoch.
n = 4

- 3.389 4.05% 0.0215 0.1 0.959 4 618 2,472

Stoch.
n = 5

- 3.356 3.05% 0.0033 0.1 0.967 5 684 3,420

Stoch.
n = 7

- 3.334 2.36% 0.0284 0.1 0.976 7 684 4,788

Stoch.
n = 20

- 3.291 1.05% 0.0033 0.1 0.991 20 838 16,760

Stoch.
n = 50

- 3.278 0.65% 0.0081 0.1 0.996 50 850 42,500

rithm. Because the standard optimization problem for the GSM is convex, its solution is

the global minimum; hence, the compliances obtained with the randomized algorithms will

be larger than or equal to those obtained with the standard algorithm. However, the rela-

tive differences in compliance are very small, only 0.09% and 0.35% on average, and the

randomized algorithm achieves these results with considerably less computational effort

(Nsolve = 5627 and 2,322 on average for the randomized algorithm versus Nsolve = 43,848

for the standard algorithm). Symmetry was not enforced for the GSM in the present study.

To show the accuracy of estimated gradient of compliance for both tolerances, we plot

cosθ between the gradient and the estimated gradient for one representative trial in Figure

6.6e. The cosine of the average angle, cos θ̄ , for the two randomized cases are 0.911 and

0.912, indicating that the estimated gradients of both randomized cases are quite accurate

and lead to effective optimization steps.
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Next, we also include the discrete filter [85] in the randomized algorithm and study its

influence on the optimized results. Based on previous observations, we choose τstep = 0.05

and n = 6. We use the following parameters for the discrete filter (see Section 2.3): n f =

10 and α f = 0.0001. Figure 6.7a shows the final topology obtained by the randomized

algorithm with the discrete filter in one representative trial (cf. Figure 6.6b, which was

obtained without the filter). The convergence of the compliance and cosθ in each step

are shown in Figures 6.7b-c. The results, averaged over five trials, are summarized in

Table 6.3. Similar to Example 1, the standard deviations provided in the table for the

randomized algorithm show that the compliance of the optimal structure for each trial is

almost identical. The discrete filter combined with the randomized algorithm leads to a

simpler final topology. From Figure 6.7c, the direction of the estimated gradient seems to be

more accurate than the ones without the discrete filter (Figure 6.6e), which is confirmed by

cos θ̄ = 0.978. This indicates that the removal of some non-useful members helps to limit

the collateral effects of the stochastic estimates. As compared to the standard algorithm,

the discrete filter combined with the randomized algorithm not only leads to a reduction in

the number of linear system solves (Nsolve = 5,442 versus Nsolve = 43,848), but the size of

the linear systems also keeps decreasing due to the discrete filter, which further improves

the computational efficiency.

6.4.2 Three-dimensional bridge design with density-based method

In this section, we demonstrate the quality of the design and the great reduction in com-

putational work of the proposed randomized algorithm using a 3D bridge design in the

non-convex, continuum topology optimization framework. The design domain, load, and

boundary conditions are shown in Figure 6.8a. A total of 144 equal-weighted load cases

are applied to the bridge deck (non-designable layer). Based on the structural symmetry,

we optimize a quarter of the domain, as shown in Figure 6.8b, which reduces the number of

load cases to m` = 36. We use 10,000 brick elements to discretize the quarter domain, re-
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Figure 6.7: Results for the GSM with the discrete filter for Example 2. a The optimized
structure obtained from randomized algorithm with n = 6, τstep = 0.05, and α f = 0.0001;
b the convergence of the compliance; c the cosine of θ between the gradient ∇Cx and the

estimated gradient ∇ĈS
x for the randomized case.
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Table 6.3: Results for Example 2 (GSM), averaged over 5 trials.

GSM C(x∗) C(x̂S) ∆C
DevS
(C(x̂S))

τstep cos θ̄ n Nstep Nsolve

Standard 4.219 - - - - - - 406 43,848

Stoch.
τstep = 0.05 - 4.222 0.09% 0.00068 0.05 0.911 6 938 5,627

Stoch.
τstep = 0.1 - 4.231 0.35% 0.00336 0.1 0.912 6 387 2,322

Stoch.
with Filter
τττstep=0.05

- 4.222 0.09% 0.00099 0.05 0.978 6 907 5,442

sulting in 35,343 degrees of freedom (DOFs). We take Vmax = 0.1×M (where M = 10,000)

and use a quadratic density filter which takes the radius of 2.5 (see Section 1.1). The penal-

ization factor for the continuation scheme takes values p = 1,2,3,4 [6]. The randomized

case uses the following parameter values: the sample size is chosen to be n = 6; the win-

dow size nstep = 100, γ = 2 and τstep = 0.1 (the effective step ratio is calculated in terms of

ρρρ). Figure 6.9 shows the optimized structures obtained using the standard algorithm and

the randomized algorithm. The results are summarized in Table 6.4.

The standard algorithm leads to final topology with C(ρρρ∗) = 542.1 and converges in

968 steps. In each optimization step, we solve 36 linear systems (load cases), which leads

to Nsolve = 34,848. Our randomized algorithm, while offering a nearly identical topology

as the standard algorithm, drastically reduces the computational cost from 34,848 solves

to 4,662 solves and leads to even better compliance C(ρ̂ρρ
S
) = 523.6.

Table 6.4: Results for Example 3 (density-based bridge design).

Study 1 C(ρρρ∗) C(ρ̂ρρ
S
) ∆C τstep n Nstep Nsolve

Standard 542.1 - - - - 968 34,848
Stochastic - 523.6 -3.4% 0.1 6 777 4,662
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Figure 6.8: Three-dimensional bridge design with a the geometry, load and boundary
conditions; b the quarter domain is modeled by a mesh with 10,000 brick elements and

35,343 DOFs.
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b Stochastic, n = 6,           = 0.1, C = 523.6

Standard, ml = 36,  C = 542.1

Figure 6.9: Optimized structures of the 3D bridge design obtained from a the standard
algorithm; b the randomized algorithm with n = 6 and τstep = 0.1.
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6.4.3 Three-dimensional high-rise building design with ground structure method

To illustrate the effectiveness of the randomized algorithm combined with the discrete filter

on a practical engineering design, we optimize a simplified 3D high-rise building (twisting

tower) in the truss topology optimization framework. The domain of the twisting tower,

given in Figure 6.10, has 11 floors with the 1st floor fixed to the ground. The tower twists

a full 90 degrees from its base to its crown. To obtain constructible structures, we use a

4×4×11 grid to discretize the domain followed by the generation of a level 7 initial GS,

containing 3,556 non-overlapping members [113]. The base mesh and the void zone are

shown in Figure 6.10b. As shown Figure 6.10c, 77 equal-weighted load cases are applied

to the building. Based on our previous studies, we choose τstep = 0.05 and n = 6. We apply

the discrete filter for both the standard and the randomized algorithms; specifically, we

choose n f = 10, a small filter value (α f = 0.0001) used during optimization, and a larger

filter value (α f = 0.001) in the final step to control the resolution of the final topology

[85], [128]. Figure 6.11 shows the optimized structures obtained using the standard and

randomized algorithms. A summary of the results is provided in Table 6.5. The geometry

data of this tower design (Figure 6.11) is exported to STL (or stereolithography) format

using the method proposed by [6]. The design is then manufactured with 3D printing

using a fused deposition modeling (FDM) process, as shown in Figure 6.12.

The optimal compliance for the standard algorithm, C (x∗) = 4.388, is obtained in 382

optimization steps and a total of Nsolve = 29,414 linear solves. With the randomized algo-

rithm, we obtain a similar final structure as well as a compliance that is only 0.46% higher

than that obtained with the standard algorithm. These results are obtained at a drastically

reduced computational cost, i.e., Nsolve = 4,410 linear solves. In addition to the reduction

in the number of linear system solves obtained by the randomized algorithm, the discrete

filter also reduces the size of the linear systems as the optimization proceeds, because the

use of the filter scheme reduces the number of design variables, and hence the size of the

stiffness matrices. This significantly decreases the CPU time and memory usage [128],
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contributing to great computational efficiency.

Table 6.5: Results for Example 4 (tower design).

3D GSM C(x∗) C(x̂S) ∆C τstep cos θ̄ n Nstep Nsolve
Standard 4.388 - - - - - 382 29,414

Stochastic - 4.408 0.46% 0.05 0.937 6 735 4,410

6.5 Summary and Discussion

This chapter proposes an efficient randomized optimization approach for topology opti-

mization that drastically reduces the enormous computational cost of optimizing practical

structural systems under many load cases while producing high-quality designs. We apply

this approach to the nested minimum end-compliance topology optimization using both

the density-based method (non-convex) and the ground structure method (convex) by min-

imizing a weighted sum/average of the compliance over many load cases. Minimizing the

weighted average of the compliance over many load cases requires the solution of the state

equations for each load case in every optimization step to compute the (weighted) compli-

ance and its gradient. Because the objective function and its gradient can be defined as the

traces of symmetric matrices, we use the Hutchinson trace estimator (which provides the

lowest variance) combined with the sample average approximation technique, to estimate

both quantities. This reduces the computational cost from m`×Nstep to roughly n×Nstep,

where m` is the number of load cases, and n� m` is the sample size. We further propose

a damping scheme for the randomized algorithm, derived from simulated annealing, to ob-

tain fast convergence. We discuss the algorithmic parameters for our scheme and provide

some information on how to choose them.

The results for several generic examples and practical engineering designs demonstrate

that the proposed randomized algorithm provides high-quality designs at a drastically re-

duced computational cost. Based on the limited number and size of examples investigated,

we show that the proposed randomized algorithm substantially reduces the computational

203



a

c

90
o

11    �oorth

45
o

  6    �oorth

0o

st  1    �oor

load case 1 load case 2                load case 41 load case 42                 load case 77

b

......  

......  

......  

......  

Lateral Load  (rotates in 36 directions)Dead Load Live Load

  6L

  L

  L

Figure 6.10: Twisting tower (inspired by the Cayan tower [165], which is designed by
Skidmore, Owings & Merrill LLP): a geometry; b base mesh with a void zone in the

middle; c load and boundary conditions. One dead load case, 40 live load cases, and 36
lateral load cases (the lateral load is applied at 4 corners on the top floor and rotating in 36

directions).
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3D view front view side view
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3D view front view side view

3D view (top)
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Stochastic, n = 6,           = 0.05, C = 4.408

Standard, ml = 77,  C = 4.388

Figure 6.11: Optimized structures of the 3D twisting tower obtained from: a the standard
algorithm; b the proposed randomized algorithm with n = 6 and τstep = 0.05.
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Figure 6.12: Comparison of the optimized twisting tower (left) and its printed model
(right) using FDM process.
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cost by (e.g., a factor of up to 45 in one of the examples), while obtaining a final compliance

very close to that obtained by the standard algorithm. Our proposed damping scheme leads

to fast convergence of the optimization scheme. In addition, the combination of the dis-

crete filter with the randomized algorithm leads to fewer linear solves with smaller systems,

resulting in great computational efficiency.

The proposed randomized algorithm is flexible and can be combined with any gradient-

based update scheme. In this chapter, we combine this technique with the optimality crite-

ria, but other optimization methods can be used, such as the method of moving asymptotes

(MMA) — see, for example, the book by Christensen and Klarbring [31].
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis explores and contributes several areas and topics, including Michell’s optimality

conditions, multi-material topology optimization, randomized algorithms with stochastic

sampling, nonlinear material properties, constructible structures, as well as efficient up-

date algorithms. We focus on both the theoretical foundations as well as the algorithmic

developments for topology optimization to enable various innovative applications. More

specifically, we develop theories and computational frameworks for the topology optimiza-

tion to effectively and efficiently handle many materials, many constraints, and many load

cases, for both continuum and structural layout optimization methods.

Chapter 2 provides a primer of Michell’s optimality conditions, which are the first

sufficient conditions that provide analytical closed-form solutions for optimal structures.

Michell’s optimality conditions and the derived closed-form solutions not only bring in-

sights into functional and creative structural designs but also provide analytical benchmarks

for numerical methods to verify with. We explain the main idea of the original and modi-

fied conditions followed by a proof of the conditions. In addition, we introduce four forms

of Hencky nets, which are orthogonal curvilinear coordinates used to construct Michell

structures, and derive closed-form solutions for several 2D and 3D Michell structures.

To account for real-life nonlinearities in structural optimization and address the com-

mon issue of the GSM, Chapter 3 proposes a new discrete filter with a reduced-order model

that is applied to truss optimization considering single and multiple load cases, and nonlin-

ear constitutive behavior. The proposed filtering scheme extracts valid structures, controls

design complexity, and transforms the sizing problem into a topology optimization prob-

lem. This framework with the reduced-order modeling significantly reduces the size of

both the structural and optimization problems within a few steps, leading to drastically im-

208



proved computational performance. Through one study (with more than one million design

variable), the proposed filter algorithm, while offering almost the same optimized structure,

was 45 times faster than the standard GSM.

The proposed regularization technique in Chapter 3 to solve nonlinear problems can be

combined with other types of filters, for instance, only applying an end filter at the end of

the optimization process, or applying the filter at different intervals, i.e., N f ≥ 1, instead

of applying at every optimization step. This work provides several directions for future re-

search, including applying the proposed filtering scheme to multi-material optimization and

additive manufacturing [6], optimization accounting for geometric nonlinearity, and com-

bining this technique (the filtering scheme with discrete optimization) with the continuum

optimization (density-based) method.

In Chapter 4, we propose a general multi-material formulation considering material

nonlinearity. This formulation is designed to handle an arbitrary number of candidate ma-

terials, feature freely specified material layers (multiple material layers can either share

or split the design domain, or combine both), and generalized assignment of volume con-

straints. To efficiently handle the proposed formulation with many constraints, we derive

the design update scheme, ZPR, that performs updates of the design variables associated

with each constraint independently. The derivation is based on the separable feature of

the dual problem of the convex approximated primal subproblem with respect to the La-

grange multipliers, and thus the update of design variables in each volume constraint only

depends on the corresponding Lagrange multiplier. The KKT conditions for the proposed

multi-material formulation are examined, which indicates identical values of strain energy

density for members within the same volume constraint, regardless of the material type.

Based on the outcome of this work, we conclude that the proposed multi-material topol-

ogy optimization framework, which accounts for material nonlinearity and uses the derived

ZPR update scheme, leads to a design tool that not only finds the optimal topology but also

selects the proper type and the amount of material. The ZPR design update scheme is
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flexible and customized to handle a general number of volume constraints – it is also ap-

plicable to continuum topology optimization with multiple volume constraints. This work

provides insights for future multi-material topology optimization research. The proposed

multi-material formulation can be applied to the design of lattice structures. In addition,

the connection of multi-material topology optimization to additive manufacturing should

be further explored.

We address the issue of selecting more than one material that occurs in multi-material

topology optimization in Chapter 5. To ensure the selection of a single material at each

subdomain, we propose an algorithm that selects a preferred material among multiple ma-

terials based on the evaluation of both the strain energy and cross-sectional area of each

member. This algorithm actively and iteratively selects materials to ensure the selection of

single material for each member. In this work, the computational framework is based on

the formulation and the ZPR updated algorithm proposed in Chapter 4. In addition, we pro-

vide an alternative derivation of the ZPR update scheme using the KKT conditions. Based

on the investigations using numerical examples, we conclude that the proposed material

selection algorithm for multi-material topology optimization is efficient and effective for

selecting a single preferred material per overlapping set.

Chapter 6 proposes an efficient randomized optimization approach for topology opti-

mization that drastically reduces the enormous computational cost of optimizing practical

structural systems under many load cases while producing high-quality designs. We ap-

ply this approach to both the density-based method and the ground structure method by

minimizing a weighted sum/average of the compliance over many load cases. We use the

Hutchinson trace estimator (which provides the lowest variance) combined with the sample

average approximation technique to estimate both the objective and its gradient. Through

numerical examples, we show that the proposed randomized algorithm substantially re-

duces the computational cost by (e.g., a factor of up to 45 in one of the examples), while

obtaining a final compliance value close to that obtained by the standard algorithm. Our
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proposed damping scheme leads to fast convergence of the optimization scheme.

There are several important directions for future research. Although we have provided

an important proof-of-concept, many questions remain open. One important question con-

cerns optimal choices of parameters for both overall computational cost and quality of

design. In this case, we could consider dynamically varying the parameters. For exam-

ple, if necessary, the quality of designs may be improved by increasing the sample size as

the minimum point is approached. Another important question concerns the choice among

randomized optimization methods/approaches, both in terms of the overall methods as well

as the choices in estimates and approximations. We need to further analyze what topology

optimization problems can be solved efficiently using this approach. Finally, it would be

useful to prove convergence to either a local or global minimum of the topology optimiza-

tion problem under appropriate conditions. Thus, we hope that Chapter 6 will motivate

further the use of stochastic sampling in various areas connected to (large scale) topology

optimization.
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APPENDIX A

FILTER FUNCTION

%--------------------------- Filter Function -----------------------------%1 
% Ref: X Zhang, AS Ramos Jr., GH Paulino, "A Discrete Filter Scheme for   %2 
% Material Nonlinear Topology Optimization Using the Ground Structure     %
% Method".                                                                %

3 

%-------------------------------------------------------------------------%
4 

n=20; % Size of the random vector

5 

alpha_f=0.4; % Filter value

6 

xr=rand(n,1)*10; % Generate the random vector

7 

%% -----------------------------------------------------------------------

8 

% Option 1: Perform filter component-wise (see Eq. 6)

9 

xr_f=zeros(n,1);

10 

for i=1:n

11 

if xr(i)/max(xr)<alpha_f

12 

xr_f(i)=0;

13 

else

14 

xr_f(i)=xr(i);

15 

end

16 

end

17 

%% -----------------------------------------------------------------------

18 

% Option 2: Perform filter for the entire vector

19 

% xr_f=xr;

20 

% xr_f(xr/max(xr)<alpha_f)=0;

21 

%% -----------------------------------------------------------------------

22 

figure

23 

plot(xr/max(xr),xr_f,'ro')

24 

xlabel('x_r^{(i)}/max(x_r)');ylabel('Filter(x_r,\alpha_f,i)');

25 
26 

% Filtered vector with reduced-order modeling 
27 

xr_f=xr_f(xr_f>0);

%% An example of the filter for a randomly generated vector

28
29
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APPENDIX B

MAPPING FOR STATE EQUATIONS USING PROPOSED FILTERING SCHEME

WITH REDUCED-ORDER MODELING

Based on the equations outlined in Section 4.1, this section illustrates the mapping of the

external and internal force vectors and the tangent stiffness matrix from the ground struc-

ture to the topology through a simple example. Figure B.1a shows the ground structure with

numbered DOFs under the prescribed load and boundary conditions. During the optimiza-

tion process, once the members are removed by the filter, area of members become zero,

(e.g., the dashed members in Figure B.1b), we can define the topology and new numbered

DOFs by excluding those zero-area members, as shown in Figure B.1c.
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Figure B.1: Mapping of the state equations from the ground structure to the topology with
the proposed filtering scheme: a Initial ground structure, DOFs, and the load and

boundary conditions; b ground structure and DOFs after the filtering process at iteration k
(dashed lines correspond to bars with zero cross-sectional area); c corresponding topology

and DOFs after filtering process at iteration k.

For the ground structure, the external force vector are given by,

f =
{

0 0 −P 0 0

}T

. (B.1)
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The internal force vector and tangent stiffness matrix are obtained by assembling the con-

tributions from each element,

T =



t(1)1 + t(2)1

t(2)2 + t(3)2 + t(5)2

t(2)3 + t(3)3 + t(5)3

t(4)4 + t(5)4

t(4)5 + t(5)5


, (B.2)

Kt =



k(1)11 + k(2)11 k(2)12 k(2)13 0 0

k(2)22 + k(3)22 + k(5)22 k(2)23 + k(3)23 + k(5)23 k(5)24 k(5)25

k(2)33 + k(3)33 + k(5)33 k(5)34 k(5)35

Sym. k(4)44 + k(5)44 k(4)45 + k(5)45

k(4)55 + k(5)55


. (B.3)

We can define a transformation matrix Q to represent the transformation of the topology

displacements to the ground structural displacements (i.e., u = QuTop),

Q =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


T

. (B.4)

With the transformation matrix, the external force vector for the reduced-order topology is

given by

fTop = QTf =
{

0 0 −P

}T

. (B.5)

Similarly, the internal force vector and tangent stiffness matrix for the reduced-order topol-
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ogy can be obtained as follows:

TTop = QTT =


t(1)1 + t(2)1

t(2)2 + t(3)2 + t(5)2

t(2)3 + t(3)3 + t(5)3

 , (B.6)

Kt,Top = QTKtQ =


k(1)11 + k(2)11 k(2)12 k(2)13

k(2)22 + k(3)22 + k(5)22 k(2)23 + k(3)23 + k(5)23

Sym. k(2)33 + k(3)33 + k(5)33

 . (B.7)

Upon realizing that member 5 is a zero-area member, all the components of its internal force

vector and tangent stiffness matrix are zero. As s result, we obtain the final expression for

the internal force vector and tangent stiffness matrix for the reduced-order topology as

TTop =


t(1)1 + t(2)1

t(2)2 + t(3)2

t(2)3 + t(3)3

 , Kt,Top =


k(1)11 + k(2)11 k(2)12 k(2)13

k(2)22 + k(3)22 k(2)23 + k(3)23

Sym. k(2)33 + k(3)33

 . (B.8)
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APPENDIX C

STOCHASTIC SAMPLING OF LOAD CASES

In this appendix, we present an illustration of the stochastic sampling of load cases. As

Load case 1, f

-a -b -c -d

Sample load case 1, Fξ

a

b
1 Load case 2, f2 Load case 3, f3

Load case 4, f4

1 Sample load case 2, Fξ2

Figure C.1: Demonstration of stochastic sampling of load cases. a Design domain with
four equally-weighed load cases, f 1, ..., f 4, acting independently on different nodes; and b

design domain with two sample load cases based on random vectors ξξξ 1 and ξξξ 2.

shown in Figure C.1 (a), we consider a simply supported rectangle with 4 equally-weighed

load cases, f 1, ..., f 4, acting independently. Numbering the 4 nodes on the top of the rect-

angle from left to right as 1 to 4, we can express the 4 independent load vectors and load
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matrix F as

f 1 =



0

−a

0

0

0

0

0

0



, f 2 =



0

0

0

−b

0

0

0

0



, f 3 =



0

0

0

0

0

−c

0

0



, f 2 =



0

0

0

0

0

0

0

−d



, F =



0 0 0 0

−a 0 0 0

0 0 0 0

0 −b 0 0

0 0 0 0

0 0 −c 0

0 0 0 0

0 0 0 −d



.

(C.1)

From the Rademacher distribution, we randomly select 2 vectors, ξξξ 1 and ξξξ 2, with the

following form

ξξξ 1 =

[
−1 1 1 −1

]T

and ξξξ 2 =

[
1 −1 1 1

]T

. (C.2)

Then, according to Eq. (6.16), we obtain the corresponding sample load cases as

Fξξξ 1 =

[
0 a 0 −b 0 − c 0 d

]T

and Fξξξ 2 =

[
0 −a 0 b 0 − c 0 −d

]T

.

(C.3)

The two sample load cases are shown in the Figure C.1 (b). We can see that in both sam-

ple load cases, all the load cases f 1, ..., f 4 appear simultaneously but may act in opposing

directions.
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Linköping: Springer Science & Business Media, 2009.

[32] W. K. Rule, “Automatic truss design by optimized growth,” Journal of Structural
Engineering, vol. 120, no. 10, pp. 3063–3070, 1994.

[33] M. Gilbert and A. Tyas, “Layout optimization of large-scale pin-jointed frames,”
Engineering Computations, vol. 20, no. 8, pp. 1044–1064, 2003.

[34] T. Hagishita and M. Ohsaki, “Topology optimization of trusses by growing ground
structure method,” Structural and Multidisciplinary Optimization, vol. 37, no. 4,
pp. 377–393, Jan. 2009.

[35] W. Achtziger, “Local stability of trusses in the context of topology optimization
part i: Exact modelling,” Structural and Multidisciplinary Optimization, vol. 17,
no. 4, pp. 235–246, 1999.

221



[36] W. Achtziger, “Local stability of trusses in the context of topology optimization
part II: A numerical approach,” Structural Optimization, vol. 17, no. 4, pp. 247–
258, 1999.

[37] K. Svanberg, “On local and global minima in structural optimization,” in New Di-
rections in Optimum Structural Design, E Gallhager, R. H. Ragsdell, and O. C.
Zienkiewicz, Eds., Chichester: John Wiley and Sons, 1984, pp. 327–341.

[38] W. Achtziger, “Topology optimization of discrete structures,” in Topology Opti-
mization in Structural Mechanics, G. I. N. Rozvany, Ed. Vienna: Springer Vienna,
1997, pp. 57–100, ISBN: 978-3-7091-2566-3.
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