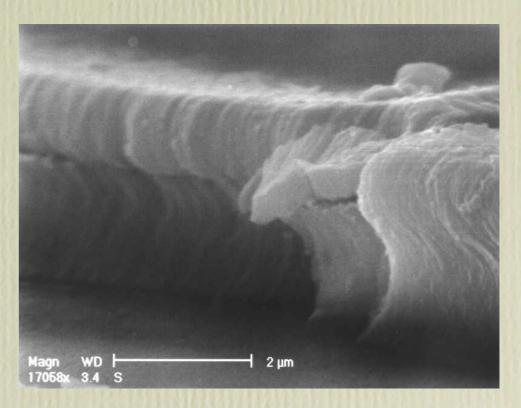
Laboratory for Parallel Computational Mechanics

On Local and Global Mechanical Properties of Particle Systems

Pedro C. Andia


Laboratory for Parallel Computational Mechanics Department of Engineering Science and Mechanics The Pennsylvania State University

Motivation

↔ Evaluate properties such as strain, stress, and elastic moduli at the nanoscale.

→ Interest in using model-based simulations to bridge the continuum scale with the nanoscale.

↔ Understand how the nanostructure of a material influences its mechanical properties at all length scales.

First Approach

→ Based on fundamental concepts of elasticity: isothermal elastic material under a homogeneous and quasistatic deformation process.

↔ Obtained the distribution of residual stresses and elatic moduli in the material.

Second Approach

↔ Desire to estimate effective mechanical properties at the nanoscale in a nonlinear context.

↔ Under a continuum homogenization viewpoint the notion of effective properties have been reviewed.

→ Lagrangian-based approach will help correlate theoretical results to particle systems.

→ It is work in progress.