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Force Equilibrium Matrix

• Given the following problem

cos 𝛼 = 1/ 5 sin 𝛼 = 2/ 5

cos 𝛽 = 1/ 2 sin 𝛽 = 1/ 2
10



• Equations for nodal equilibrium

Force Equilibrium Matrix

11

∑𝐹𝑎𝑥 ∶ −𝑛1cos 𝛼 − 𝑛2 cos 𝛽 = 0
∑𝐹𝑎𝑦 ∶ −𝑛1 sin 𝛼 − 𝑛2 sin 𝛽 = 𝑟𝑎𝑦

∑𝐹𝑏𝑥 ∶ 𝑛3 cos 𝛼 + 𝑛4 cos 𝛽 = 𝑟𝑏𝑥

∑𝐹𝑏𝑦 ∶ −𝑛3 sin 𝛼 𝑁3 − 𝑛4 sin 𝛽 = 𝑟𝑏𝑦



Force Equilibrium Matrix

• Equations for nodal equilibrium

Taking:    cos 𝛼 → 𝑐𝛼 sin 𝛼 → 𝑠𝛼

cos 𝛽 → 𝑐𝛽 sin 𝛽 → 𝑠𝛽

12

−𝑐𝛼 −𝑐𝛽 0 0 0 0 0 0

−𝑠𝛼 −𝑠𝛽 0 0 0 −1 0 0

0 0 𝑐𝛼 𝑐𝛽 0 0 −1 0

0 0 −𝑠𝛼 −𝑠𝛽 0 0 0 −1

𝑐𝛼 0 0 −𝑐𝛽 −1 0 0 0

𝑠𝛼 0 0 𝑠𝛽 0 0 0 0

0 𝑐𝛽 −𝑐𝛼 0 1 0 0 0

0 𝑠𝛽 𝑠𝛼 0 0 0 0 0

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑟𝑎𝑦

𝑟𝑏𝑥

𝑟𝑏𝑦

=

0
0
0
0
0

−𝑃
0

−𝑃



−𝑐𝛼 −𝑐𝛽 0 0 0 0 0 0

−𝑠𝛼 −𝑠𝛽 0 0 0 −1 0 0

0 0 𝑐𝛼 𝑐𝛽 0 0 −1 0

0 0 −𝑠𝛼 −𝑠𝛽 0 0 0 −1

𝑐𝛼 0 0 −𝑐𝛽 −1 0 0 0

𝑠𝛼 0 0 𝑠𝛽 0 0 0 0

0 𝑐𝛽 −𝑐𝛼 0 1 0 0 0

0 𝑠𝛽 𝑠𝛼 0 0 0 0 0

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑟𝑎𝑦

𝑟𝑏𝑥

𝑟𝑏𝑦

=

0
0
0
0
0

−𝑃
0

−𝑃

Force Equilibrium Matrix

• Equations for nodal equilibrium

𝐁 𝐁𝐧𝐫

𝐁𝐫𝐧 𝐁𝐫𝐫

𝐓 𝐧
𝐫

=
𝐟
𝟎

Matrix is square and invertible:
System is statically determinate
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−𝑐𝛼 −𝑐𝛽 0 0 0 0 0 0

−𝑠𝛼 −𝑠𝛽 0 0 0 −1 0 0

0 0 𝑐𝛼 𝑐𝛽 0 0 −1 0

0 0 −𝑠𝛼 −𝑠𝛽 0 0 0 −1

𝑐𝛼 0 0 −𝑐𝛽 −1 0 0 0

𝑠𝛼 0 0 𝑠𝛽 0 0 0 0

0 𝑐𝛽 −𝑐𝛼 0 1 0 0 0

0 𝑠𝛽 𝑠𝛼 0 0 0 0 0

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑟𝑎𝑦

𝑟𝑏𝑥

𝑟𝑏𝑦

=

0
0
0
0
0

−𝑃
0

−𝑃

Force Equilibrium Matrix

• Equations for nodal equilibrium

𝐁 𝐁𝐧𝐫

𝐁𝐫𝐧 𝐁𝐫𝐫

𝐓 𝐧
𝐫

=
𝐟
𝟎

To solve for 𝐧, we only need:
𝐁𝐓𝐧 = 𝐟
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• Equations for nodal equilibrium

𝐁 𝐁𝐧𝐫

𝐁𝐫𝐧 𝐁𝐫𝐫

𝐓 𝐧
𝐫

=
𝐟
𝟎

To solve for 𝐧, we only need:
𝐁𝐓𝐧 = 𝐟

−𝑐𝛼 −𝑐𝛽 0 0 0

𝑐𝛼 0 0 −𝑐𝛽 −1

𝑠𝛼 0 0 𝑠𝛽 0

0 𝑐𝛽 −𝑐𝛼 0 1

0 𝑠𝛽 𝑠𝛼 0 0

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

=

0
0

−𝑃
0

−𝑃

Force Equilibrium Matrix
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Directional Cosines

• What are the directional cosines?

• Note that in 2D:    sin 𝛼 = cos 𝛽
cos2 𝛼 + cos2 𝛽 = 1

• In 3D too:      cos2 𝛼 + cos2 𝛽 + cos2 𝛾 = 1
16



• What are the directional cosines?

• For the case of our truss member:

ቋ
𝐝 = 𝐍𝐎𝐃𝐄𝐣 − 𝐍𝐎𝐃𝐄𝐢

𝐿 = 𝐝 2

መ𝐝 = 𝐝/𝐿

Directional Cosines

17



• What are the directional cosines?

• The directional cosines are used to construct 𝐁𝐓

Directional Cosines

18



Automatic Assembly of BT

• Given

– List of coordinates

– List of element connectivity

𝐍𝐎𝐃𝐄 =

0 0
3 0
1 2
2 2

𝐄𝐋𝐄𝐌 =

1 3
1 4
2 4
2 3
3 4 19

𝐝𝟏 = 𝐍𝐎𝐃𝐄𝟑 − 𝐍𝐎𝐃𝐄𝟏 = 1 2 − 0 0 = 1 2
𝐝𝟐 = 𝐍𝐎𝐃𝐄𝟒 − 𝐍𝐎𝐃𝐄𝟏 = 2 2 − 0 0 = 2 2
𝐝𝟑 = 𝐍𝐎𝐃𝐄𝟒 − 𝐍𝐎𝐃𝐄𝟐 = 2 2 − 3 0 = −1 2
𝐝𝟒 = 𝐍𝐎𝐃𝐄𝟑 − 𝐍𝐎𝐃𝐄𝟐 = 1 2 − 3 0 = −2 2
𝐝𝟓 = 𝐍𝐎𝐃𝐄𝟒 − 𝐍𝐎𝐃𝐄𝟑 = 2 2 − 1 2 = 1 0



Automatic Assembly of BT

መ𝐝1 = 𝐝1/L1 = cos 𝛼1 sin 𝛼1

መ𝐝2 = 𝐝2/L2 = cos 𝛼2 sin 𝛼2

መ𝐝3 = 𝐝3/L3 = cos 𝛼3 sin 𝛼3

መ𝐝4 = 𝐝4/L4 = cos 𝛼4 sin 𝛼4

መ𝐝5 = 𝐝5/L5 = cos 𝛼5 sin 𝛼5

• Why is 𝛼3 not this angle instead?

A: Element is defined from (2) to (4),
not from (4) to (2). 20



• Looking at the degrees-of-freedom
of the structure

− መ𝐝1𝑥 − መ𝐝2𝑥 0 0 0

− መ𝐝1𝑦 − መ𝐝2𝑦 0 0 0

0 0 − መ𝐝3𝑥 − መ𝐝4𝑥 0

0 0 − መ𝐝3𝑦 − መ𝐝4𝑦 0

መ𝐝1𝑥 0 0 መ𝐝4𝑥 − መ𝐝5𝑥

መ𝐝1𝑦 0 0 መ𝐝4𝑦 − መ𝐝5𝑦

0 መ𝐝2𝑥
መ𝐝3𝑥 0 መ𝐝5𝑥

0 መ𝐝2𝑦
መ𝐝3𝑦 0 መ𝐝5𝑦

=
𝐁

𝐁𝐧𝐫

𝐓

Automatic Assembly of BT

21

DOFs with supports
(reactions)



Ground Structure Formulation

• The least-volume structure subjected to stress 
constraints is

min
𝐚

𝐚𝐓𝐥

s. t. 𝐊𝐮 = 𝐟
−𝜎𝑐 ≤ 𝜎𝑖 ≤ 𝜎𝑡 if 𝑎𝑖 > 0

𝑎𝑖 ≥ 0

• Remarks:
– Only sizing the members. Nodal locations and 

connectivity are fixed.

– Stress constraint does not apply for a vanished member.

– Stiffness matrix includes: force eq, compatibility and 
stress-strain relations. 22

Elastic 
Formulation



Ground Structure Formulation

• Enforcing force equilibrium only:
(no compatibility or stress-strain)

min
𝐚

𝐚𝐓𝐥

s. t. 𝐁𝐓𝐧 = 𝐟
−𝜎𝑐 ≤ 𝜎𝑖 ≤ 𝜎𝑡 if 𝑎𝑖 > 0

𝑎𝑖 ≥ 0

• Remarks:
– Only sizing the members. Nodal locations and 

connectivity are fixed.

– Stress constraint does not apply for a vanished member.

– For statically indeterminate structures [𝐁] is not 
symmetric or invertible. 23

Plastic 
Formulation



Ground Structure Formulation

Q: We are only sizing members. How do we expect to do topology 
optimization?

A: The ground structure method relies on raw power: highly 
interconnected truss with many nodes and discards the less useful 
ones. Note that the starting structure will not be determinate.

Q: Can a member have stress or strain if its area is zero?

A: In theory yes. Given displacements 𝐮, the strain in a member is 
𝜀 = Δ𝑢/𝑙 and the stress is 𝜎 = 𝐸𝜀. No area involved!

Q: In the plastic formulation: Is the optimal structure valid? 
(compatibility and 𝜎 − 𝜀)

A: The size of [𝐁] is 𝑁𝑑𝑜𝑓 × 𝑁𝑒 . We know that the optimal solution 

will have at most 𝑁𝑑𝑜𝑓 non-zero basic variables → the reduced [𝐵]

is square and the structure is statically determinate: It 
automatically complies with compatibility and 𝜎 − 𝜀.

24



Slack Variables & LP Form

• Plastic formulation

min
𝐚

𝐚𝐓𝐥

s. t. 𝐁𝐓𝐧 = 𝐟
−𝜎𝑐 ≤ 𝜎𝑖 ≤ 𝜎𝑡 if 𝑎𝑖 > 0

𝑎𝑖 ≥ 0

• Discontinuity in the stress constraint (vanishing)

– Rewrite in terms of member force (multiply by 𝐚)

−𝜎𝑐𝑎𝑖 ≤ 𝑛𝑖 ≤ 𝜎𝑡𝑎𝑖 ∀ 𝑎𝑖 ≥ 0

25



Slack Variables & LP Form

• Plastic formulation

min
𝐚

𝐚𝐓𝐥

s. t. 𝐁𝐓𝐧 = 𝐟
−𝜎𝑐𝑎𝑖 ≤ 𝑛𝑖 ≤ 𝜎𝑡𝑎𝑖 ∀ 𝑎𝑖 ≥ 0

• Introducing slack variables in the inequalities
– The positive constants multiplying the slack variables 

simplify the resulting expressions

ൢ

𝑛𝑖+2
𝜎0

𝜎𝑐
𝑠𝑖

− = 𝜎𝑡𝑎𝑖

−𝑛𝑖 + 2
𝜎0

𝜎𝑡
𝑠𝑖

+ = 𝜎𝑐𝑎𝑖

𝑎𝑖 =
𝑠𝑖

+

𝜎𝑡
+

𝑠𝑖
−

𝜎𝑐

𝑛𝑖 = 𝑠𝑖
+ − 𝑠𝑖

−

, with 𝜎0 = 𝜎𝑡 + 𝜎𝑐 /2
26



Slack Variables & LP Form

• Plastic formulation (rewritten in terms of 𝐬+ and 𝐬−)

min
𝐬+,𝐬−

𝐬+

𝜎𝑡
+

𝐬−

𝜎𝑐

𝐓

𝐥

s. t. 𝐁𝐓 𝐬+ − 𝐬− = 𝐟

𝐬+, 𝐬− > 𝟎

• Reorganizing a little…

27

min
𝐬+,𝐬−

𝐥/𝜎𝑡 ⋮ 𝐥/𝜎𝑐

𝐬𝒊
+

⋯
𝐬𝒊

−

s. t. 𝐁𝐓 ⋮ −𝐁𝐓
𝐬𝒊

+

⋯
𝐬𝒊

−
= 𝐟

𝐬+, 𝐬− > 𝟎



Slack Variables & LP Form

• What is so special about this?

– The variables have been doubled          → bad

– Reduced the number of constraints      → good

– Linear Programming form                       → AWESOME!

• The problem can be solved fast (interior-point method)

• Optimum is global 28

min
𝐬+,𝐬−

𝐥/𝜎𝑡 ⋮ 𝐥/𝜎𝑐

𝐬𝒊
+

⋯
𝐬𝒊

−

s. t. 𝐁𝐓 ⋮ −𝐁𝐓
𝐬𝒊

+

⋯
𝐬𝒊

−
= 𝐟

𝐬+, 𝐬− > 𝟎



Basic Example

• Given the following problem

𝐍𝐎𝐃𝐄 =

0 0
1 0
0 1.5
1 1.5

𝐄𝐋𝐄𝐌 =

1 2
1 3
1 4
2 3
2 4
3 4

• Structure is indeterminate (redundant)

– No redundancy → no alternative topologies to chose from
29

Assume that
𝜎𝑡 = 𝜎𝑐 = 1



Basic Example

• The LP variables are:

𝐒 =

𝑠1
+

𝑠2
+

𝑠3
+

𝑠4
+

𝑠5
+

𝑠6
+

𝑠1
−

𝑠2
−

𝑠3
−

𝑠4
−

𝑠5
−

𝑠6
−

=

𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6
𝑆7
𝑆8
𝑆9

𝑆10
𝑆11
𝑆12

30

Associated with 
compression

Associated with 
tension



Basic Example

• Simplex Tableau

– Basic members are (1), (3), (4), (5) and (6)

31



Basic Example

• Post-processing of optimal structure

• Structure will be in equilibrium, but may be unstable.
– Some basic members may require a minimum area to 

stabilize the structure
32

Initial structure Optimal structure Basic Members Reduced Optimal 
Structure (ROS)



Fast Ground Structure Generation

• Easy to get carried away and connect every node 
with every other node

– In general we do not want overlapping bars

– Example: Assume 𝑃 = 1 and 𝜎𝑡 = 1

33

𝑎1 = 1.0

𝑎1 = 1.0 𝑎2 = 𝑎3 = 0.0

𝑎1 = 0.0 𝑎2 = 𝑎3 = 1.0

𝑎1 = 0.5 𝑎2 = 𝑎3 = 0.5

Solution is 
not unique



Fast Ground Structure Generation

• The idea is to “stamp” a pattern in all nodes of a 
grid

– This pattern has no overlapping bars

– This only works for structured―orthogonal grids

34

Pattern

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica”
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Fast Ground Structure Generation

• Pattern is created with a user-defined level

– Structure is more redundant with higher levels

• Looking at the pattern for a single node

35

Level 1
pattern

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica”
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



• Pattern is created with a user-defined level

– Structure is more redundant with higher levels

• Looking at the pattern for a single node

Fast Ground Structure Generation

36

Level 2
pattern

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica”
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



• Pattern is created with a user-defined level

– Structure is more redundant with higher levels

• Looking at the pattern for a single node

Fast Ground Structure Generation

37

Level 3
pattern

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica”
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



• Stamping the pattern in other nodes…

Fast Ground Structure Generation

38Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica”
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



• Stamping the pattern in other nodes…

• Keep an eye for members exiting the grid…

Fast Ground Structure Generation

39

Remove 
these bars

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica”
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



• Stamping the pattern in other nodes…

• Keep an eye for members exiting the grid…

Fast Ground Structure Generation

40Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica”
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



• Stamping the pattern in other nodes…

• Keep an eye for members exiting the grid…

• Repeat for all nodes in the grid…

Fast Ground Structure Generation

41Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica”
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Summary

• Flowchart

– No external loops

– Iterations are done by the interior-
point algorithm

– Might require post-processing

– Ground structure must be built with 
no overlapping members

– Can be extended to domains other 
than a regular grid: Provided that you 
can construct a GS with no 
overlapping members

42

Build the Ground 
Structure

Generate matrix 𝐁𝐓

and get the lengths 𝐥

Remove the fixed 
rows and get forces 𝐟

Solve linear program

DONE



Large Example

• Cantilever domain
𝐿𝑥 = 3 𝐿𝑦 = 1 𝑃 = 1

30 × 10 mesh → 31 × 11 point grid
Level 10 connectivity → 19632 members

43



Large Example

• Cantilever domain
𝐿𝑥 = 3 𝐿𝑦 = 1 𝑃 = 1

30 × 10 mesh → 31 × 11 point grid
Level 10 connectivity → 19,632 members

44



Large Example

• How does 19,632 members look like?

• This is not really a “large problem”:
– This method can easily handle millions of members

45



46

Define domain size and the number 
of grids

Generate Ground Structure

Define level of Ground Structure 

Obtain equilibrium matrix and 
force vector

Call LP optimizer

Large Example



Large Example

• Video of the optimization
– In reality iterations are done internally by the interior-point 

method → You will most likely never see this…

47



Large Example

• Final converged topology
– Optimum is global

– Takes ~5 seconds to run on an average computer

48



ELASTIC FORMULATION
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Table of Contents
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Simultaneous Formulation 

51

• The least-compliance structure subjected to 
volume constraints is

min
𝐚,𝐮

𝐟T𝐮

s. t. 𝐊(𝐚)𝐮 = 𝐟

෍

𝑗=1

𝑛𝑙

𝑎𝑗𝐿𝑗 ≤ 𝑉max

𝑎𝑗 ≥ 0

nl : the number of bars   Lj : length of bar j    

aj : cross-sectional area of bar j

Vmax : maximum allowed volume of the truss

K(a): global stiffness matrix f: global external force vector

Equilibrium 
constraint



Nested Formulation 
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• If the global stiffness matrix is nonsingular, we 
may eliminate the displacement vector from 
simultaneous formulation

min
𝐚

𝐟T𝐮(𝐚)

s. t. ෍

𝑗=1

𝒏

𝑎𝑗𝐿𝑗 ≤ 𝑉max

𝑎𝑗 ≥ 0

with 𝐊(𝐚)𝐮(𝐚) = 𝐟

where 𝐮(𝐚) is an implicit function defined through the 
equilibrium equations 𝐊(𝐚)𝐮(𝐚) = 𝐟

Equilibrium 
constraint



Equilibrium Constraint: Geometry Equation

• A general bar j in a truss

𝐝𝑗 =
cos α𝑗

sin α𝑗

• Displacement of the end points 

𝐮𝑗 =
𝐮𝑗,1

𝐮𝑗,2
, where 𝐮𝑗,1=

u𝑗,1𝑥

u𝑗,1𝑦
and 𝐮𝑗,2 =

u𝑗,2𝑥

u𝑗,2𝑦

• Elongation 𝛿𝑗

𝛿𝑗 =(𝐮𝑗,2 − 𝐮𝑗,1) ∙ 𝐝𝑗 = 𝐁𝑗𝐮𝑗

Where 

𝐁𝑗 = −𝐝𝑗

T
𝐝𝑗

T
= [− cos α𝑗 − sin α𝑗 cos α𝑗 sin α𝑗]
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• External force fj on the end points
𝒇𝑗 = 𝐁𝑗

T𝑛𝑗

• Force in the bar 𝑛𝑗
𝑛𝑗 = 𝜎𝑗𝑎𝑗 = 𝐸𝜀𝑗𝑎𝑗 = 𝐸𝛿𝑗𝑎𝑗/𝐿𝑗

• External force fj can be rewritten as follow

𝒇𝑗 =
𝐁𝑗

T𝐸𝛿𝑗𝑎𝑗

𝐿𝑗
= 𝐁𝑗

T 𝐸𝑎𝑗

𝐿𝑗
𝐁𝑗𝐮𝑗 = 𝑲𝑗𝐮𝑗

• Element stiffness matrix of bar j

𝑲𝑗 = 𝐁𝑗
T 𝐸𝑎𝑗

𝐿𝑗
𝐁𝑗

𝑲𝑗 𝑎𝑗 = 𝑎𝑗𝐁𝑗
T 𝐸

𝐿𝑗
𝐁𝑗 = 𝑎𝑗𝑲𝑗

0
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Equilibrium Constraint: Constitutive Equation



Boolean Mapping Matrix

• Introduce a Boolean “mapping” matrix C which 
selects terms from global displacement u to element 
displacement 𝐮𝑗

• Global displacement u

𝐮 = u2𝑥 u2𝑦 u4𝑦
T

• Element displacement 𝐮𝑗

𝐮1 = [0 0 u2𝑥 u2𝑦]T, 𝐮2 = [0 0 u2𝑥 u2𝑦]T

𝐮3 = [0 u4𝑦 u2𝑥 u2𝑦]T
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𝐮𝑗 = 𝐂𝑗𝐮



Boolean Mapping Matrix
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• Boolean Matrix C

0
0

u2𝑥
u2𝑦

=

0 0
0
1
0

0
0
1

0
0
0
0

u2𝑥

u2𝑦

u4𝑦

0
0

u2𝑥
u2𝑦

=

0 0
0
1
0

0
0
1

0
0
0
0

u2𝑥

u2𝑦

u4𝑦

0
u4𝑦

u2𝑥
u2𝑦

=

0 0
0
1
0

0
0
1

0
1
0
0

u2𝑥

u2𝑦

u4𝑦

𝐂1 𝐂2 𝐂3𝐮𝐮1



• Equilibrium equation of element j revisited
𝒇𝑗 = 𝑎𝑗𝑲𝑗

0𝐮𝑗 = 𝑎𝑗𝑲𝑗
0𝐂𝑗𝐮

𝐂𝑗
T𝒇𝑗 = 𝐂𝑗

T𝑎𝑗𝑲𝑗
0𝐂𝑗𝐮

• Constant matrix 𝒌𝑗
0

𝑲𝑗
0 =

𝐸

𝐿𝑗
𝐁𝑗

T𝐁𝑗 =
𝐸

𝐿𝑗

𝑐2 𝑠𝑐
𝑠𝑐

−𝑐2

−𝑠𝑐

𝑠2

−𝑠𝑐
−𝑠2

−𝑐2 −𝑠𝑐
−𝑠𝑐
𝑐2

𝑠𝑐

−𝑠2

𝑠𝑐
𝑠2

Note: 𝑐 = cos α𝑗 , s = sin α𝑗

• Global version of stiffness matrix and force vector 
of element j

𝑲𝑔,𝑗 = 𝐂𝑗
T𝑎𝑗𝑲𝑗

0𝐂𝑗 , 𝐟𝑔,𝑗 = 𝐂𝑗
T𝒇𝑗
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Equilibrium Constraint: Equilibrium Condition



Assembly of Global Matrix and Vector

• Global stiffness matrix and applied force vector

• For entire truss

– Elongations    
𝛅 = ഥ𝐁𝐮

– Stresses

𝛔 =
1/𝑎1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1/𝑎𝑛

ഥ𝐁−T𝐟
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𝐊 = ෍

𝑗=1

𝑛𝑙

𝑲𝑔,𝑗 = ෍

𝑗=1

𝑛𝑙

𝐂𝑗
T𝑎𝑗𝑲𝑗

0𝐂𝑗 𝐟 = ෍

𝑗=1

𝑛𝑙

𝐟𝑔,𝑗 = ෍

𝑗=1

𝑛𝑙

𝑪𝒋
𝑻𝒇𝒋

ഥ𝐁 =
𝐁1𝐂1

⋮
𝐁𝑛𝐂𝒏



Example

59

• Three-bar truss • Displacements of the bars

𝐮1 = [0 0 0 u3𝑦]T, 𝐮2 = [0 0 u2𝑥 u2𝑦]T,

𝐮3 = [0 u3𝑦 u2𝑥 u2𝑦]T,

𝐮 = [ u2𝑥 u2𝑦 u3𝑦]T

𝐂1 =

0
0
0
0

0
0
0
0

0
0
0
1

, 𝐂2 =

0
0
1
0

0
0
0
1

0
0
0
0

, 𝐂3 =

0
0
1
0

0
0
0
1

0
1
0
0

θ 𝐝 B

Bar 1 𝜋/2 [0 1]T 0 − 1 0 1

Bar 2 0 [1 0]T −1 0 1 0

Bar 3 7𝜋/4 [1 − 1]T/ 2 −1 1 1 − 1 / 2



Example
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• Three-bar truss • Stiffness matrices of the bars

𝑲1 =
100×1

2

0
0
0
0

0
1
0

−1

0
0
0
0

0
−1
0
1

𝑲2 =
100×1

2

1
0

−1
0

0
0
0
0

−1
0
1
0

0
0
0
0

𝑲3 =
100×2

4 2

1
−1
−1
1

−1
1
1

−1

−1
1
1

−1

1
−1
−1
1

𝑲𝑗 = 𝐁𝑗
T 𝐸𝑎𝑗

𝐿𝑗
𝐁𝑗

𝒇1 = [0 0 0 0]T 𝒇2 = [0 0 0 0]T 𝒇3 = [0 0 0 P]T

• Force vectors of the bars



Example
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• Global versions of the element stiffness        
matrices and applied force vectors

• Global stiffness matrix and applied force vector 

𝑲𝑔,1 =
100×1

2

0 0 0
0 0 0
0 0 1

𝑲𝑔,2 =
100×1

2

1 0 0
0 0 0
0 0 0

𝑲𝑔,3 =
100×2

4 2

1 −1 1
−1 1 −1

1 −1 1

𝑲𝑔,𝑗 = 𝐂𝑗
T𝑲𝑗(𝑎𝑗)𝐂𝑗

𝐟𝑔,1 = [0 0 0]T 𝐟𝑔,2 = [0 0 0]T 𝐟𝑔,3 = 0 P 0 T

𝐊 = ෍

𝒋=𝟏

𝟑

𝑲𝑗 = 50

1 + 1/ 2 −1/ 2 1/ 2

−1/ 2 1/ 2 −1/ 2

1/ 2 −1/ 2 1 + 1/ 2

𝐟 = ෍

𝒋=𝟏

𝟑

𝐶𝑗
T𝐟𝑔,𝑗 =

0
P
0

𝐟𝑔,𝑗 = 𝐂𝑗
T𝒇𝑗



Example
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• Solution of the equilibrium condition

𝐮 = [u2𝑥 u2𝑦 u3𝑦]T= P/50 × [1 2 + 2 1]T

𝐮 = 𝐊−1𝐟



Optimization : Example 

• Optimize the ground structure
– Material has 𝐸 = 107

– Load is 𝑃 = 1

• Steps required to run TrussTop.m
1. Generate design domain (initial mesh)

2. Optimization parameters in Ex3_Script.m

3. Run!
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min
𝐚

𝐟T𝐮(𝐚)

s. t. ෍

𝑗=1

𝑛𝑙

𝑎𝑗𝐿𝑗 ≤ 𝑉max

𝑎𝑗 ≥ 0

with 𝐊(𝐚)𝐮(𝐚) = 𝐟



• Design domain
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Lx=6; Ly=6; NLx=6; NLy=6;

Optimization : Example 



• Initial mesh
Ratio = 1*sqrt(2);  % Level 1Ratio = 2*sqrt(2);  % Level 2Ratio = 3*sqrt(2);  % Level 3Ratio = 6*sqrt(2);  % Level 6

Optimization : Example 
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• Boundary definition
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CoordS = [ 1 1 0 0; 

1 1 0 1;

1 1 0 2;

1 1 0 3;

1 1 0 4;

1 1 0 5;

1 1 0 6];

CoordS = [restr.x restr.y coord.x coord.y];

Optimization : Example 

CoordS = [ 1 1 0 -1];

or

CoordS =[1 1 6 3] CoordS =[0 1 3 1]



• Load definition
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CoordL = [px py coord.x coord.y];

CoordL = [0 -1 6 3]; 

CoordL =[0 2 6 3] CoordL =[1 0 3 1]

Optimization : Example 
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Optimization : Example 

Young’s Modulus

Design domain size and the 
number of grids

Supports and loads definition

Level of initial mesh

Mesh generator call

Optimization parameters

Run TrussTop



• Optimal topology
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Optimization : Example 

Tension

Compression



Questions? Comments?
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