

The Ground Structure Method

A computational method for optimal frames (pin-jointed frames)

TOP Gang

Advisor: Glaucio H. Paulino
Presentation: 11/7/2016

References (General)

- **General references: Elastic and Plastic Formulations**

Ohsaki, M “Optimization of Finite Dimensional Structures”, CRC Press (2010)

Hemp, WS “Optimum Structures”, Oxford University Press (1973)

Bendsoe, MP; Sigmund, O “Topology Optimization”, Springer (2003)

Kirsch, U “Structural Optimization: Fundamentals and Applications”, Springer-Verlag (1993)

References (Plastic Analysis)

- **Ground Structure Method**

Dorn, WS; Gomory, RE; Greenberg, HJ "Automatic design of optimal structures", Journal de mécanique 3(1), pp. 25-52, (1964)

- **Relevant References**

Sokol, T "A 99 line code for discretized Michell truss optimization written in Mathematica", Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)

Gilbert, M; Tyas, A "Layout optimization of large-scale pin-jointed frames", Engineering computations 20(8), pp. 1044-1064, (2003)

Karmarkar, N "A new polynomial-time algorithm for linear programming", Combinatorica 4(4), pp. 373-395, (1984)

References (Plastic Analysis)

- **Relevant References**

Zegard, T; Paulino, GH "GRAND — Ground structure based topology optimization for arbitrary 2D domains using MATLAB", Structural and Multidisciplinary Optimization 50(5), pp. 861-882, (2014)

Zegard, T; Paulino, GH "GRAND3 — Ground structure based topology optimization for arbitrary 3D domains using MATLAB." Structural and Multidisciplinary Optimization. Accepted. (2015)

Zegard, T "Structural Optimization: From Continuum and Ground Structures to Additive Manufacturing" PhD Dissertation, Department of Civil and Environmental Engineering, UIUC, (2014)

Zhao, T "An implementation of the ground structure method considering buckling and nodal instabilities" MS Thesis, Department of Civil and Environmental Engineering, UIUC, (2014)

References (Elastic Analysis)

- **Relevant References**

Christensen, PW; Klarbring, A "An Introduction to Structural Optimization", Springer (2009)

Heguemier, G; Prager, W "On Michell trusses", International Journal of Mechanical Sciences 11, pp. 209-215

Ben-tal, A; Bendsoe, MP "A new method for optimal truss topology design", SIAM Journal on Optimization 3(2), pp. 322-358

Ramos, AS; Paulino, GH "Convex topology optimization for hyperelastic trusses based on the ground-structure approach." Structural and Multidisciplinary Optimization 51(2), pp. 287-304, (2015)

References (Elastic Analysis)

- **Relevant References**

Zhang, X (Shelly) "Macro-Element Approach for Topology Optimization of Trusses using a Ground Structure Method" MS Thesis, Department of Civil and Environmental Engineering, UIUC, (2014)

Liu, K "Segmental multi-point linearization for topology optimization and reliability analysis" MS Thesis, Department of Civil and Environmental Engineering, UIUC, (2014)

Beghini, L "Building Science Through Topology Optimization." PhD Dissertation, Department of Civil and Environmental Engineering, UIUC, (2013)

Stromberg, L; Beghini, A; Baker, WF; Paulino, GH "Topology Optimization for Braced Frames: Combining Continuum and Discrete Elements." *Engineering Structures*. Vol 37. pp. 106-124, (2012)

Beghini, L; Beghini, A; Katz, N; Baker, WF; Paulino, GH "Connecting architecture and engineering through structural topology optimization." *Engineering Structures*. Vol 59. pp. 716-726, (2014)

PLASTIC FORMULATION

References & Information

- Journal de Mécanique

Journal de Mécanique,
Vol. 3, № 1, Mars 1964.

Automatic design of optimal structures

by

William S. DORN, Ralph E. GOMORY
and Herbert J. GREENBERG,

International Business Machines Corporation, Yorktown Heights, N. Y.

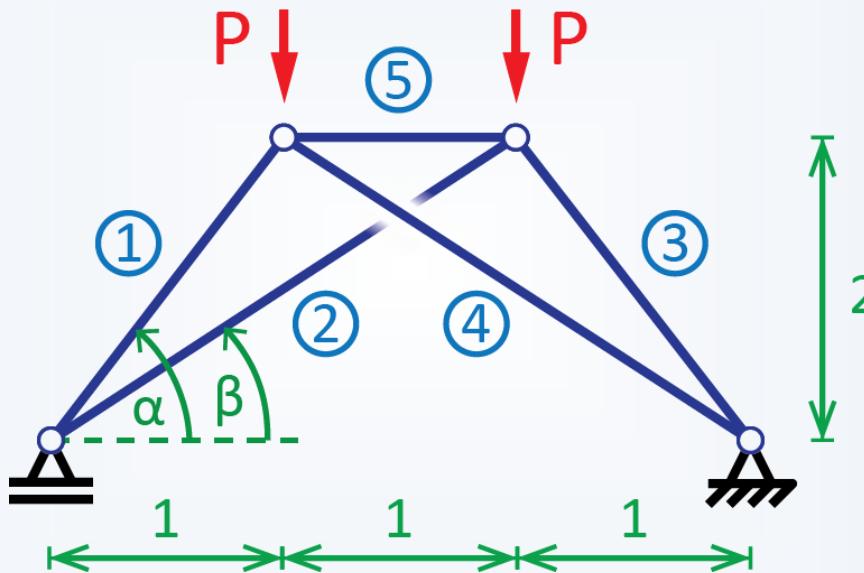
SUMMARY. — The design of optimal structures is reduced to the selection, by mathematical programming, of a structure which optimizes a criterion of merit over a large, well-defined class of admissible structures. For the case of pin-jointed structures, this approach is carried through in detail with an analysis of the corresponding mathematical optimization problem. In this approach to design not only the sizes of the members but their locations as well are determined for the optimal structure. Some properties of optimal structures are derived and discussed and the ideas are illustrated by the design of a series of optimal bridge trusses.

Table of Contents

- Force equilibrium matrix
 - Analysis of a statically determinate truss
 - Directional cosines
 - Automatic assembly of \mathbf{B}^T
- Ground structure formulation
 - Slack variables & LP form
 - Basic example
- Fast ground structure generation
- Large example

Force Equilibrium Matrix

- Given the following problem

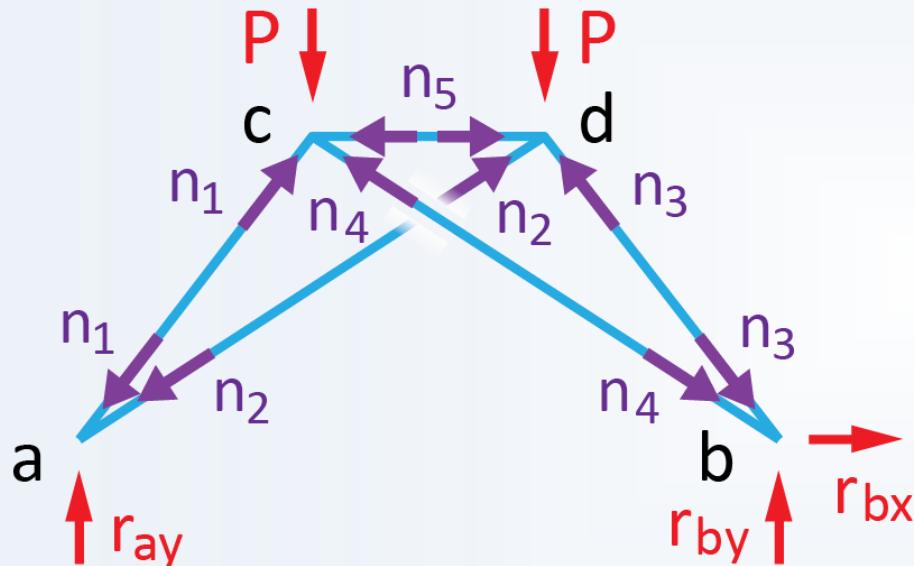
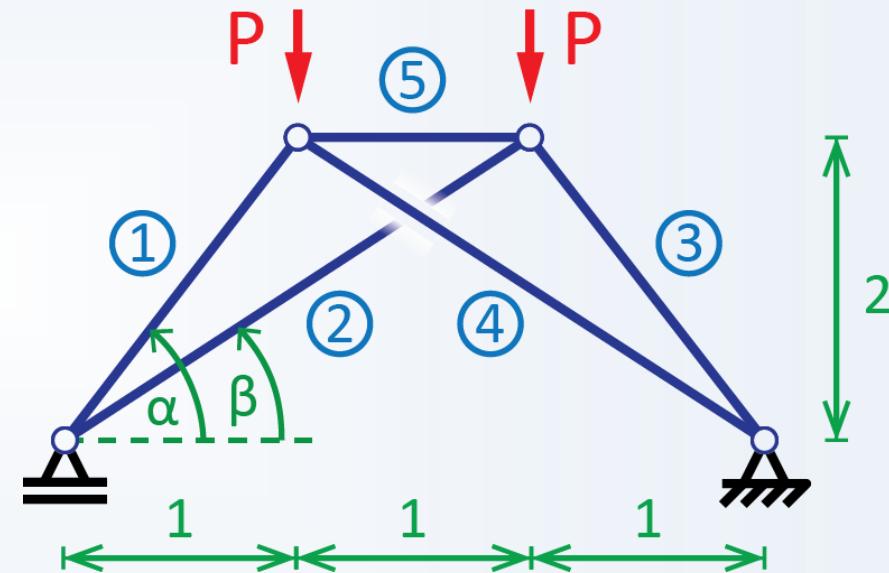


$$\cos \alpha = 1/\sqrt{5} \quad \sin \alpha = 2/\sqrt{5}$$

$$\cos \beta = 1/\sqrt{2} \quad \sin \beta = 1/\sqrt{2}$$

Force Equilibrium Matrix

- Equations for nodal equilibrium



$$\sum F_{ax} : -n_1 \cos \alpha - n_2 \cos \beta = 0$$

$$\sum F_{ay} : -n_1 \sin \alpha - n_2 \sin \beta = r_{ay}$$

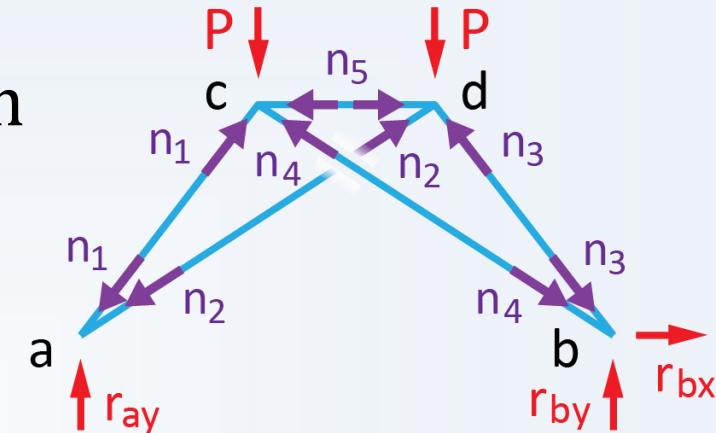
$$\sum F_{bx} : n_3 \cos \alpha + n_4 \cos \beta = r_{bx}$$

$$\sum F_{by} : -n_3 \sin \alpha - n_4 \sin \beta = r_{by}$$

Force Equilibrium Matrix

- Equations for nodal equilibrium

Taking: $\cos \alpha \rightarrow c_\alpha$ $\sin \alpha \rightarrow s_\alpha$
 $\cos \beta \rightarrow c_\beta$ $\sin \beta \rightarrow s_\beta$



$$\begin{bmatrix} -c_\alpha & -c_\beta & 0 & 0 & 0 & 0 & 0 & 0 \\ -s_\alpha & -s_\beta & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & c_\alpha & c_\beta & 0 & 0 & -1 & 0 \\ 0 & 0 & -s_\alpha & -s_\beta & 0 & 0 & 0 & -1 \\ c_\alpha & 0 & 0 & -c_\beta & -1 & 0 & 0 & 0 \\ s_\alpha & 0 & 0 & s_\beta & 0 & 0 & 0 & 0 \\ 0 & c_\beta & -c_\alpha & 0 & 1 & 0 & 0 & 0 \\ 0 & s_\beta & s_\alpha & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{Bmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \\ n_5 \\ r_{ay} \\ r_{bx} \\ r_{by} \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -P \\ 0 \\ -P \end{Bmatrix}$$

Force Equilibrium Matrix

- Equations for nodal equilibrium

$$\begin{bmatrix} \mathbf{B} & \mathbf{B}_{\text{nr}} \\ \mathbf{B}_{\text{rn}} & \mathbf{B}_{\text{rr}} \end{bmatrix}^T \begin{Bmatrix} \mathbf{n} \\ \mathbf{r} \end{Bmatrix} = \begin{Bmatrix} \mathbf{f} \\ \mathbf{0} \end{Bmatrix}$$

Matrix is **square** and **invertible**:
System is statically determinate

$$\begin{bmatrix} -c_\alpha & -c_\beta & 0 & 0 & 0 & 0 & 0 & 0 \\ -s_\alpha & -s_\beta & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & c_\alpha & c_\beta & 0 & 0 & -1 & 0 \\ 0 & 0 & -s_\alpha & -s_\beta & 0 & 0 & 0 & -1 \\ c_\alpha & 0 & 0 & -c_\beta & -1 & 0 & 0 & 0 \\ s_\alpha & 0 & 0 & s_\beta & 0 & 0 & 0 & 0 \\ 0 & c_\beta & -c_\alpha & 0 & 1 & 0 & 0 & 0 \\ 0 & s_\beta & s_\alpha & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{Bmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \\ n_5 \\ r_{ay} \\ r_{bx} \\ r_{by} \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -P \\ 0 \\ -P \end{Bmatrix}$$

13

Force Equilibrium Matrix

- Equations for nodal equilibrium

$$\begin{bmatrix} \mathbf{B} & \mathbf{B}_{\text{nr}} \\ \mathbf{B}_{\text{rn}} & \mathbf{B}_{\text{rr}} \end{bmatrix}^T \begin{Bmatrix} \mathbf{n} \\ \mathbf{r} \end{Bmatrix} = \begin{Bmatrix} \mathbf{f} \\ \mathbf{0} \end{Bmatrix}$$

To solve for \mathbf{n} , we only need:

$$\mathbf{B}^T \mathbf{n} = \mathbf{f}$$

$$\begin{bmatrix}
 -c_\alpha & -c_\beta & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 -s_\alpha & -s_\beta & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
 0 & 0 & c_\alpha & c_\beta & 0 & 0 & -1 & 0 & 0 \\
 0 & 0 & -s_\alpha & -s_\beta & 0 & 0 & 0 & -1 & 0 \\
 c_\alpha & 0 & 0 & -c_\beta & -1 & 0 & 0 & 0 & 0 \\
 s_\alpha & 0 & 0 & s_\beta & 0 & 0 & 0 & 0 & 0 \\
 0 & c_\beta & -c_\alpha & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & s_\beta & s_\alpha & 0 & 0 & 0 & 0 & 0 & 0
 \end{bmatrix}
 \begin{Bmatrix}
 n_1 \\
 n_2 \\
 n_3 \\
 n_4 \\
 n_5 \\
 r_{ay} \\
 r_{bx} \\
 r_{by}
 \end{Bmatrix}
 =
 \begin{Bmatrix}
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 -P \\
 0 \\
 -P
 \end{Bmatrix}_{14}$$

Force Equilibrium Matrix

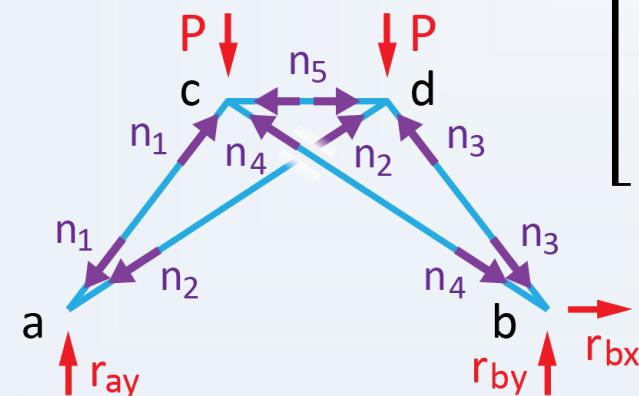
- Equations for nodal equilibrium

$$\begin{bmatrix} \mathbf{B} & \mathbf{B}_{nr} \\ \mathbf{B}_{rn} & \mathbf{B}_{rr} \end{bmatrix}^T \begin{Bmatrix} \mathbf{n} \\ \mathbf{r} \end{Bmatrix} = \begin{Bmatrix} \mathbf{f} \\ \mathbf{0} \end{Bmatrix}$$

To solve for \mathbf{n} , we only need:

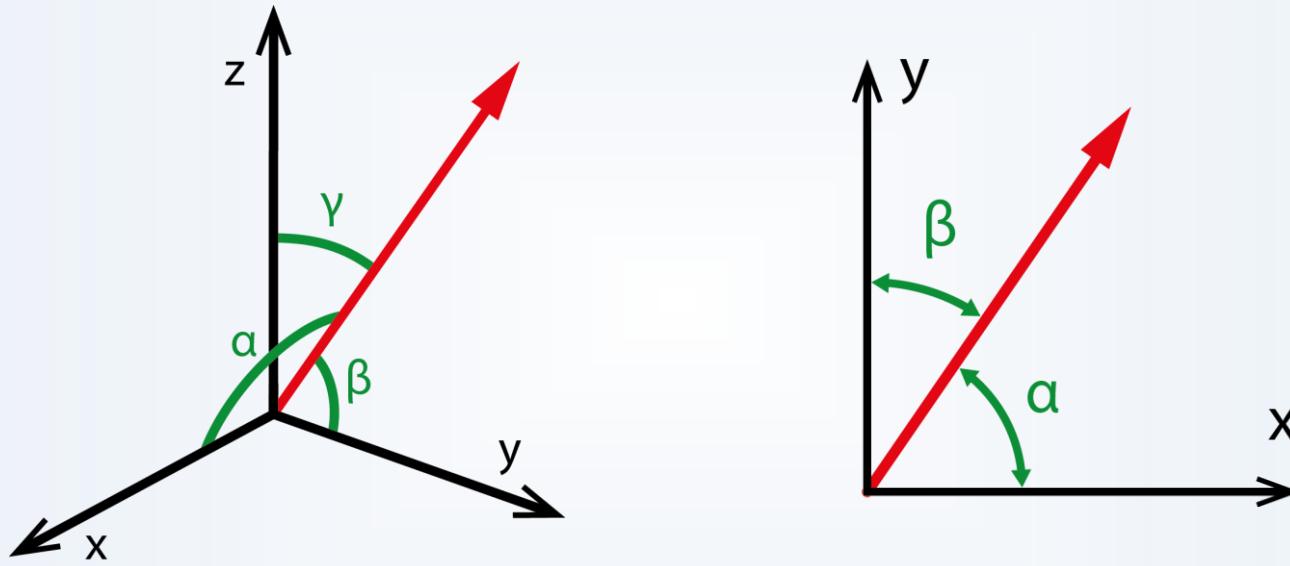
$$\mathbf{B}^T \mathbf{n} = \mathbf{f}$$

$$\begin{bmatrix} -c_\alpha & -c_\beta & 0 & 0 & 0 \\ c_\alpha & 0 & 0 & -c_\beta & -1 \\ s_\alpha & 0 & 0 & s_\beta & 0 \\ 0 & c_\beta & -c_\alpha & 0 & 1 \\ 0 & s_\beta & s_\alpha & 0 & 0 \end{bmatrix} \begin{Bmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \\ n_5 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ -P \\ 0 \\ -P \end{Bmatrix}$$



Directional Cosines

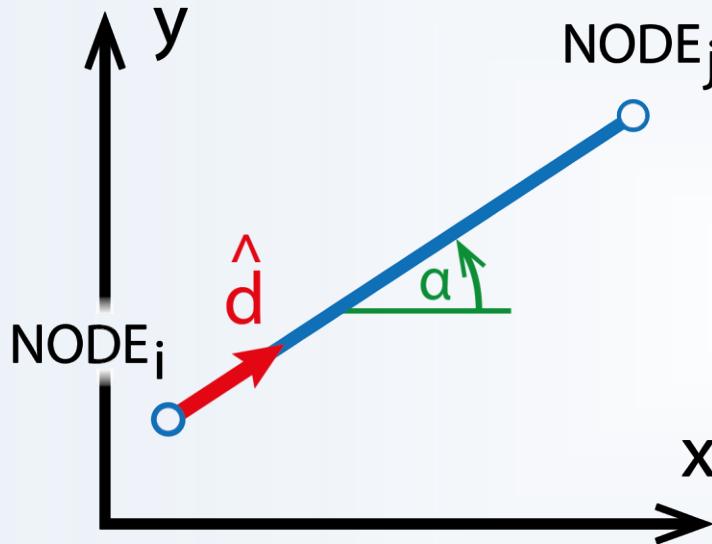
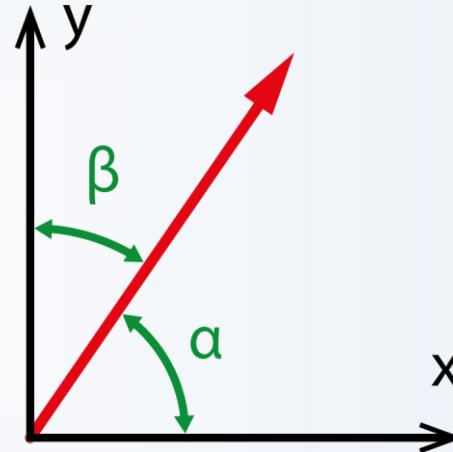
- What are the directional cosines?



- Note that in 2D: $\sin \alpha = \cos \beta$
 $\cos^2 \alpha + \cos^2 \beta = 1$
- In 3D too: $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

Directional Cosines

- What are the directional cosines?

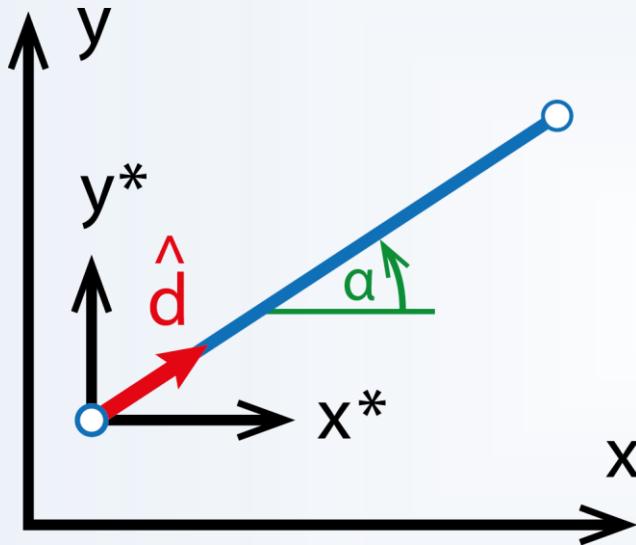
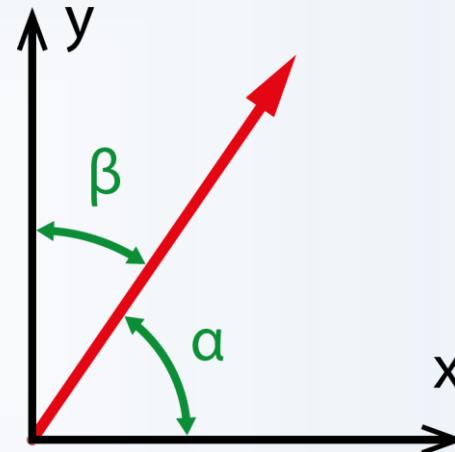


- For the case of our truss member:

$$\left. \begin{aligned} \mathbf{d} &= \mathbf{NODE}_j - \mathbf{NODE}_i \\ L &= \|\mathbf{d}\|_2 \end{aligned} \right\} \hat{\mathbf{d}} = \mathbf{d}/L$$

Directional Cosines

- What are the directional cosines?



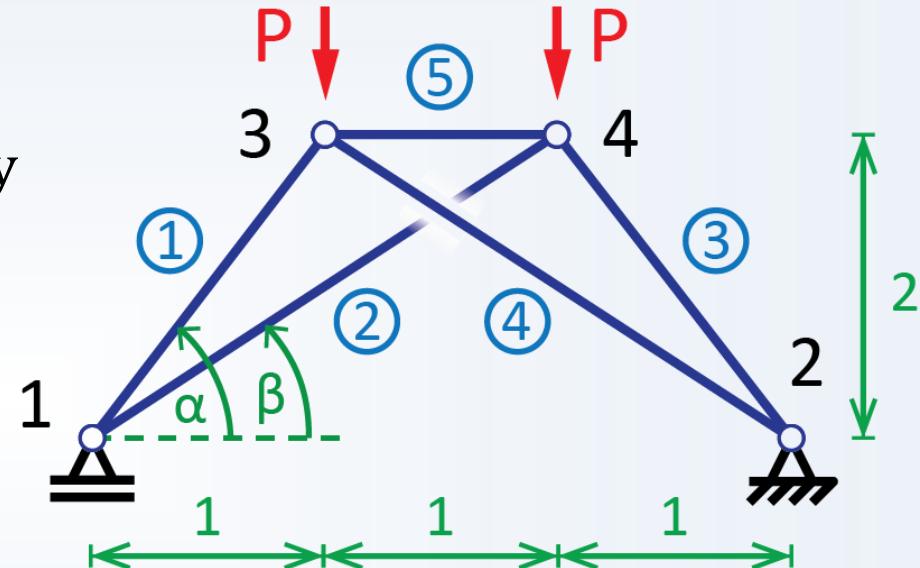
- The directional cosines are used to construct $[\mathbf{B}^T]$

Automatic Assembly of B^T

- Given
 - List of coordinates
 - List of element connectivity

$$\mathbf{NODE} = \begin{bmatrix} 0 & 0 \\ 3 & 0 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$$

$$\mathbf{ELEM} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \\ 2 & 4 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$$



$$\begin{aligned}
 \mathbf{d}_1 &= \mathbf{NODE}_3 - \mathbf{NODE}_1 = [1 \quad 2] - [0 \quad 0] = [1 \quad 2] \\
 \mathbf{d}_2 &= \mathbf{NODE}_4 - \mathbf{NODE}_1 = [2 \quad 2] - [0 \quad 0] = [2 \quad 2] \\
 \mathbf{d}_3 &= \mathbf{NODE}_4 - \mathbf{NODE}_2 = [2 \quad 2] - [3 \quad 0] = [-1 \quad 2] \\
 \mathbf{d}_4 &= \mathbf{NODE}_3 - \mathbf{NODE}_2 = [1 \quad 2] - [3 \quad 0] = [-2 \quad 2] \\
 \mathbf{d}_5 &= \mathbf{NODE}_4 - \mathbf{NODE}_3 = [2 \quad 2] - [1 \quad 2] = [1 \quad 0]
 \end{aligned}$$

Automatic Assembly of B^T

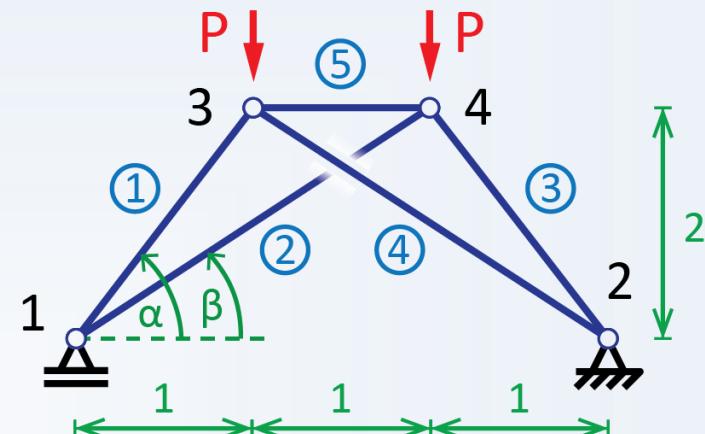
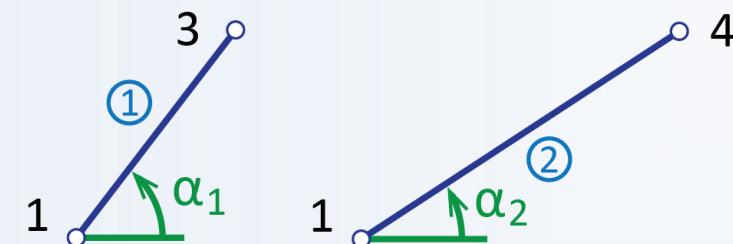
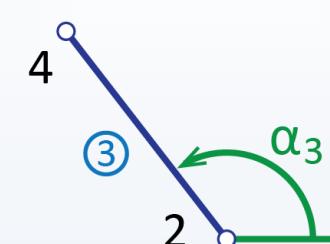
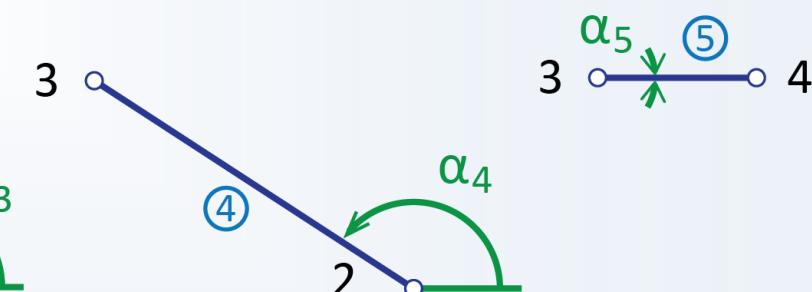
$$\hat{\mathbf{d}}_1 = \mathbf{d}_1/L_1 = [\cos \alpha_1 \quad \sin \alpha_1]$$

$$\hat{\mathbf{d}}_2 = \mathbf{d}_2/L_2 = [\cos \alpha_2 \quad \sin \alpha_2]$$

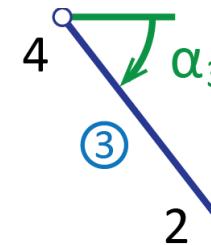
$$\hat{\mathbf{d}}_3 = \mathbf{d}_3/L_3 = [\cos \alpha_3 \quad \sin \alpha_3]$$

$$\hat{\mathbf{d}}_4 = \mathbf{d}_4/L_4 = [\cos \alpha_4 \quad \sin \alpha_4]$$

$$\hat{\mathbf{d}}_5 = \mathbf{d}_5/L_5 = [\cos \alpha_5 \quad \sin \alpha_5]$$



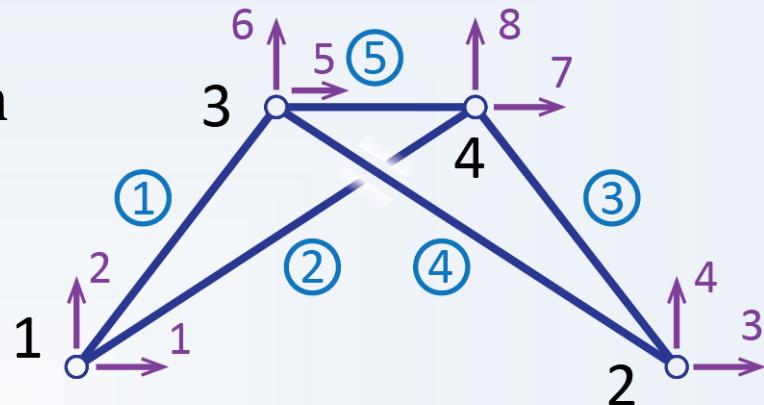
- Why is α_3 not this angle instead?
A: Element is defined from (2) to (4),
not from (4) to (2).



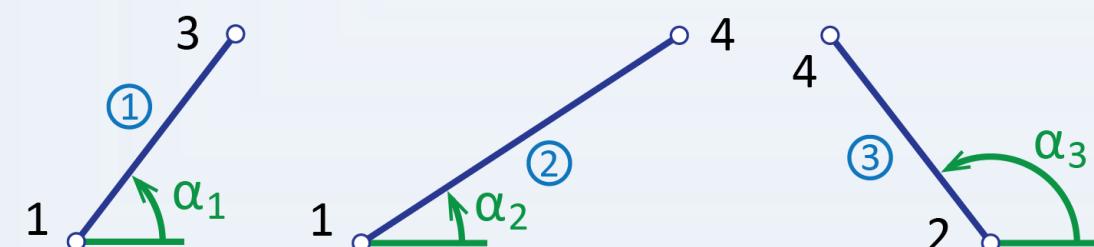
Automatic Assembly of B^T

- Looking at the degrees-of-freedom of the structure

$$\begin{bmatrix} -\hat{d}_{1x} & -\hat{d}_{2x} & 0 & 0 & 0 \\ -\hat{d}_{1y} & -\hat{d}_{2y} & 0 & 0 & 0 \\ 0 & 0 & -\hat{d}_{3x} & -\hat{d}_{4x} & 0 \\ 0 & 0 & -\hat{d}_{3y} & -\hat{d}_{4y} & 0 \\ \hat{d}_{1x} & 0 & 0 & \hat{d}_{4x} & -\hat{d}_{5x} \\ \hat{d}_{1y} & 0 & 0 & \hat{d}_{4y} & -\hat{d}_{5y} \\ 0 & \hat{d}_{2x} & \hat{d}_{3x} & 0 & \hat{d}_{5x} \\ 0 & \hat{d}_{2y} & \hat{d}_{3y} & 0 & \hat{d}_{5y} \end{bmatrix} = [B]_T^T [B_{nr}]$$



DOFs with supports (reactions)



Ground Structure Formulation

- The least-volume structure subjected to stress constraints is

$$\begin{array}{ll}\min_{\mathbf{a}} & \mathbf{a}^T \mathbf{l} \\ \text{s. t.} & \mathbf{Ku} = \mathbf{f} \\ & -\sigma_c \leq \sigma_i \leq \sigma_t \quad \text{if } a_i > 0 \\ & a_i \geq 0\end{array}$$

Elastic
Formulation

- Remarks:
 - Only sizing the members. Nodal locations and connectivity are fixed.
 - Stress constraint does not apply for a vanished member.
 - Stiffness matrix includes: force eq, compatibility and stress-strain relations.

Ground Structure Formulation

- Enforcing force equilibrium only:
(no compatibility or stress-strain)

$$\begin{array}{ll}\min_{\mathbf{a}} & \mathbf{a}^T \mathbf{l} \\ \text{s. t.} & \mathbf{B}^T \mathbf{n} = \mathbf{f} \\ & -\sigma_c \leq \sigma_i \leq \sigma_t \quad \text{if } a_i > 0 \\ & a_i \geq 0\end{array}$$

Plastic
Formulation

- Remarks:
 - Only sizing the members. Nodal locations and connectivity are fixed.
 - Stress constraint does not apply for a vanished member.
 - For statically indeterminate structures $[\mathbf{B}]$ is not symmetric or invertible.

Ground Structure Formulation

Q: We are only sizing members. How do we expect to do topology optimization?

A: The ground structure method relies on raw power: highly interconnected truss with many nodes and discards the less useful ones. Note that the starting structure will not be determinate.

Q: Can a member have stress or strain if its area is zero?

A: In theory yes. Given displacements \mathbf{u} , the strain in a member is $\varepsilon = \Delta u / l$ and the stress is $\sigma = E\varepsilon$. No area involved!

Q: In the plastic formulation: Is the optimal structure valid?
(compatibility and $\sigma - \varepsilon$)

A: The size of $[\mathbf{B}]$ is $N_{dof} \times N_e$. We know that the optimal solution will have at most N_{dof} non-zero basic variables \rightarrow the reduced $[B]$ is square and the structure is statically determinate: It automatically complies with compatibility and $\sigma - \varepsilon$.

Slack Variables & LP Form

- Plastic formulation

$$\begin{array}{ll}\min_{\mathbf{a}} & \mathbf{a}^T \mathbf{l} \\ \text{s. t.} & \mathbf{B}^T \mathbf{n} = \mathbf{f} \\ & -\sigma_c \leq \sigma_i \leq \sigma_t \quad \text{if } a_i > 0 \\ & a_i \geq 0\end{array}$$

- Discontinuity in the stress constraint (vanishing)
 - Rewrite in terms of member force (multiply by \mathbf{a})

$$-\sigma_c a_i \leq n_i \leq \sigma_t a_i \quad \forall a_i \geq 0$$

Slack Variables & LP Form

- Plastic formulation

$$\begin{array}{ll}\min_{\mathbf{a}} & \mathbf{a}^T \mathbf{l} \\ \text{s. t.} & \mathbf{B}^T \mathbf{n} = \mathbf{f} \\ & -\sigma_c a_i \leq n_i \leq \sigma_t a_i \quad \forall a_i \geq 0\end{array}$$

- Introducing slack variables in the inequalities
 - The positive constants multiplying the slack variables simplify the resulting expressions

$$\left. \begin{array}{l} n_i + 2 \frac{\sigma_0}{\sigma_c} s_i^- = \sigma_t a_i \\ -n_i + 2 \frac{\sigma_0}{\sigma_t} s_i^+ = \sigma_c a_i \end{array} \right\} \begin{array}{l} a_i = \frac{s_i^+}{\sigma_t} + \frac{s_i^-}{\sigma_c} \\ n_i = s_i^+ - s_i^- \end{array}$$

, with $\sigma_0 = (\sigma_t + \sigma_c)/2$

Slack Variables & LP Form

- Plastic formulation (rewritten in terms of \mathbf{s}^+ and \mathbf{s}^-)

$$\begin{aligned} \min_{\mathbf{s}^+, \mathbf{s}^-} \quad & \left(\frac{\mathbf{s}^+}{\sigma_t} + \frac{\mathbf{s}^-}{\sigma_c} \right)^T \mathbf{l} \\ \text{s. t.} \quad & \mathbf{B}^T (\mathbf{s}^+ - \mathbf{s}^-) = \mathbf{f} \\ & \mathbf{s}^+, \mathbf{s}^- > 0 \end{aligned}$$

- Reorganizing a little...

$$\begin{aligned} \min_{\mathbf{s}^+, \mathbf{s}^-} \quad & \{ \mathbf{l}/\sigma_t : \mathbf{l}/\sigma_c \} \begin{pmatrix} \mathbf{s}_i^+ \\ \dots \\ \mathbf{s}_i^- \end{pmatrix} \\ \text{s. t.} \quad & [\mathbf{B}^T : -\mathbf{B}^T] \begin{pmatrix} \mathbf{s}_i^+ \\ \dots \\ \mathbf{s}_i^- \end{pmatrix} = \mathbf{f} \\ & \mathbf{s}^+, \mathbf{s}^- > 0 \end{aligned}$$

Slack Variables & LP Form

$$\begin{aligned} \min_{\mathbf{s}^+, \mathbf{s}^-} \quad & \{ \mathbf{l}/\sigma_t : \mathbf{l}/\sigma_c \} \begin{Bmatrix} \mathbf{s}_i^+ \\ \dots \\ \mathbf{s}_i^- \end{Bmatrix} \\ \text{s. t.} \quad & [\mathbf{B}^T : -\mathbf{B}^T] \begin{Bmatrix} \mathbf{s}_i^+ \\ \dots \\ \mathbf{s}_i^- \end{Bmatrix} = \mathbf{f} \\ & \mathbf{s}^+, \mathbf{s}^- > \mathbf{0} \end{aligned}$$

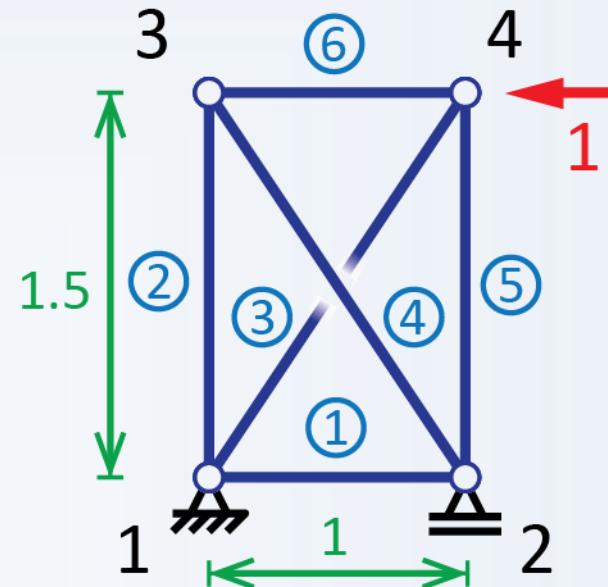
- What is so special about this?
 - The variables have been doubled → **bad**
 - Reduced the number of constraints → **good**
 - Linear Programming form
 - The problem can be solved fast (interior-point method)
 - Optimum is global→ **AWESOME!**

Basic Example

- Given the following problem

$$\mathbf{NODE} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1.5 \\ 1 & 1.5 \end{bmatrix}$$

$$\mathbf{ELEM} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 2 & 3 \\ 2 & 4 \\ 3 & 4 \end{bmatrix}$$



Assume that
 $\sigma_t = \sigma_c = 1$

- Structure is indeterminate (redundant)
 - No redundancy → no alternative topologies to chose from

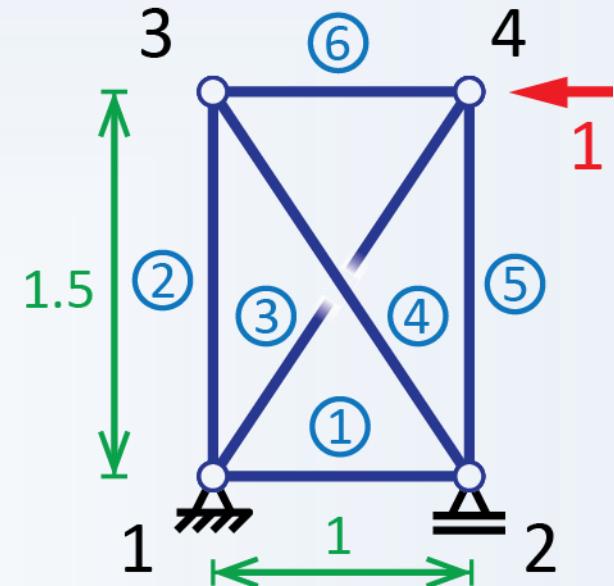
Basic Example

- The LP variables are:

$$S = \begin{Bmatrix} s_1^+ \\ s_2^+ \\ s_3^+ \\ s_4^+ \\ s_5^+ \\ s_6^+ \\ s_1^- \\ s_2^- \\ s_3^- \\ s_4^- \\ s_5^- \\ s_6^- \end{Bmatrix} = \begin{Bmatrix} S1 \\ S2 \\ S3 \\ S4 \\ S5 \\ S6 \\ S7 \\ S8 \\ S9 \\ S10 \\ S11 \\ S12 \end{Bmatrix}$$

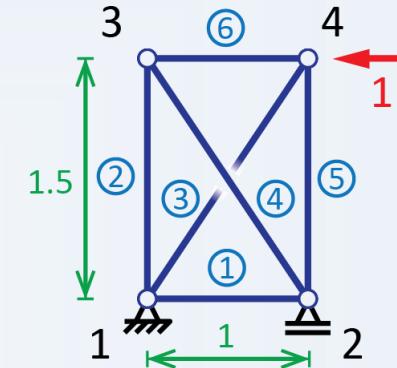
Associated with tension

Associated with compression



Basic Example

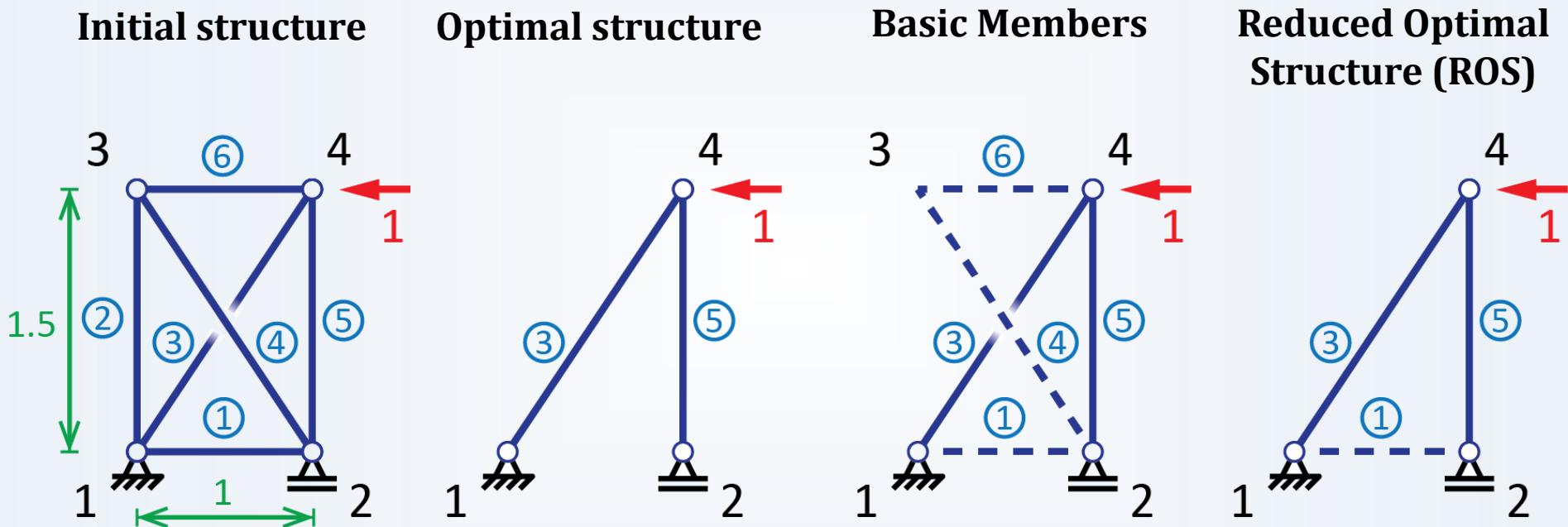
- Simplex Tableau
 - Basic members are (1), (3), (4), (5) and (6)



"linopt"	"restr"	slk ₁	slk ₂	slk ₃	slk ₄	slk ₅	slk ₆	slk ₇	slk ₈	slk ₉	slk ₁₀	S4	S1	S7	S10	S6	S12	S2	S8	S3	S9	S5	S11
"obj"	-5.5	0	1.0	0	4.5	0	0.167	0	5.5	1.5	0	0	2.0	0	3.61	2.0	0	1.67	1.33	3.61	0	0	3.0
slk ₁	0.0	1	1.0	0	0.0	0	0.0	0	0.0	0.0	0	0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0	0	0.0
S4	0.0	0	0.0	0	0.0	0	1.2	0	0.0	0.0	0	1	0.0	0	-1.0	0.0	0	1.2	-1.2	0.0	0	0	0.0
slk ₃	0.0	0	0.0	1	1.0	0	0.0	0	0.0	0.0	0	0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0	0	0.0
S12	0.0	0	0.0	0	1.0	0	0.667	0	0.0	0.0	0	0	0.0	0	0.0	-1.0	1	0.667	-0.667	0.0	0	0	0.0
slk ₅	0.0	0	0.0	0	0.0	1	1.0	0	0.0	0.0	0	0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0	0	0.0
S7	0.0	0	-1.0	0	0.0	0	0.667	0	0.0	0.0	0	0	-1.0	1	0.0	0.0	0	0.667	-0.667	0.0	0	0	0.0
slk ₇	0.0	0	0.0	0	0	0.0	0	1	1.0	0.0	0	0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0	0	0.0
S5	1.5	0	0.0	0	-1.5	0	-1.0	0	-1.5	-1.0	0	0	0.0	0	0.0	0.0	0	-1.0	1.0	0.0	0	1	-1.0
S9	1.8	0	0.0	0	-1.8	0	-1.2	0	-1.8	0.0	0	0	0.0	0	0.0	0.0	0	-1.2	1.2	-1.0	1	0	0.0
slk ₁₀	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1.0	1	0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0	0	0.0

Basic Example

- Post-processing of optimal structure



- Structure will be in equilibrium, but may be unstable.
 - Some basic members may require a minimum area to stabilize the structure

Fast Ground Structure Generation

- Easy to get carried away and connect every node with every other node
 - In general **we do not want overlapping bars**
 - Example: Assume $P = 1$ and $\sigma_t = 1$

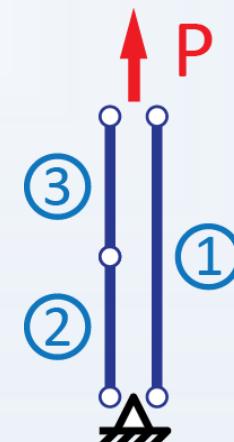
$$a_1 = 1.0$$

$$a_1 = 1.0 \quad a_2 = a_3 = 0.0$$

$$a_1 = 0.0 \quad a_2 = a_3 = 1.0$$

$$a_1 = 0.5 \quad a_2 = a_3 = 0.5$$

Solution is
not unique

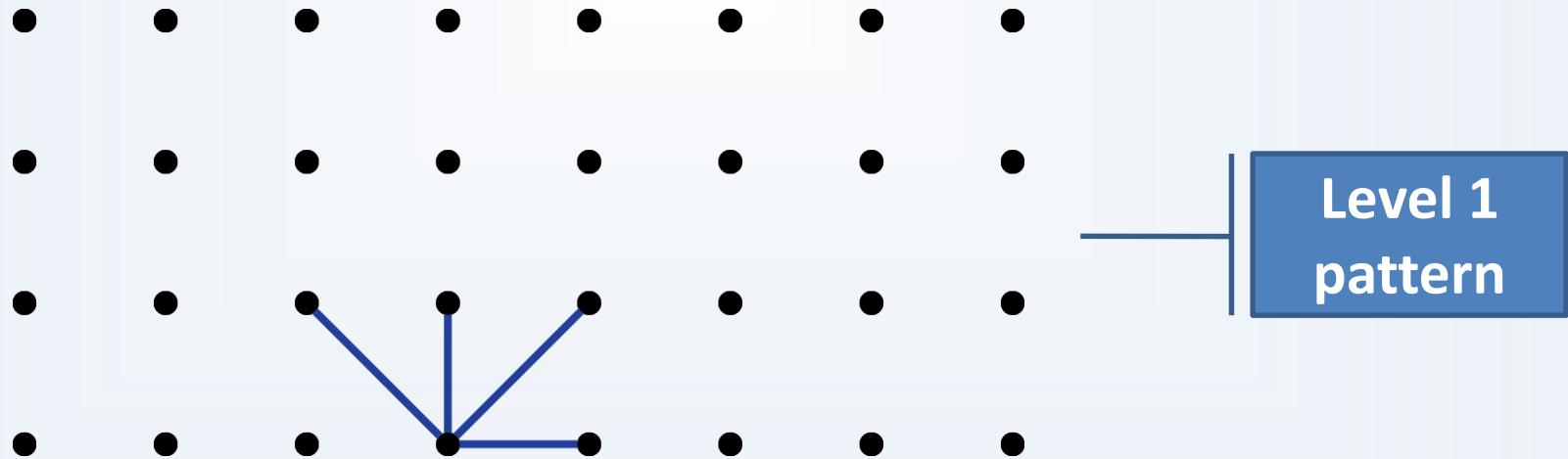


Fast Ground Structure Generation

- The idea is to “stamp” a pattern in all nodes of a grid
 - This pattern has no overlapping bars
 - This only works for structured—orthogonal grids

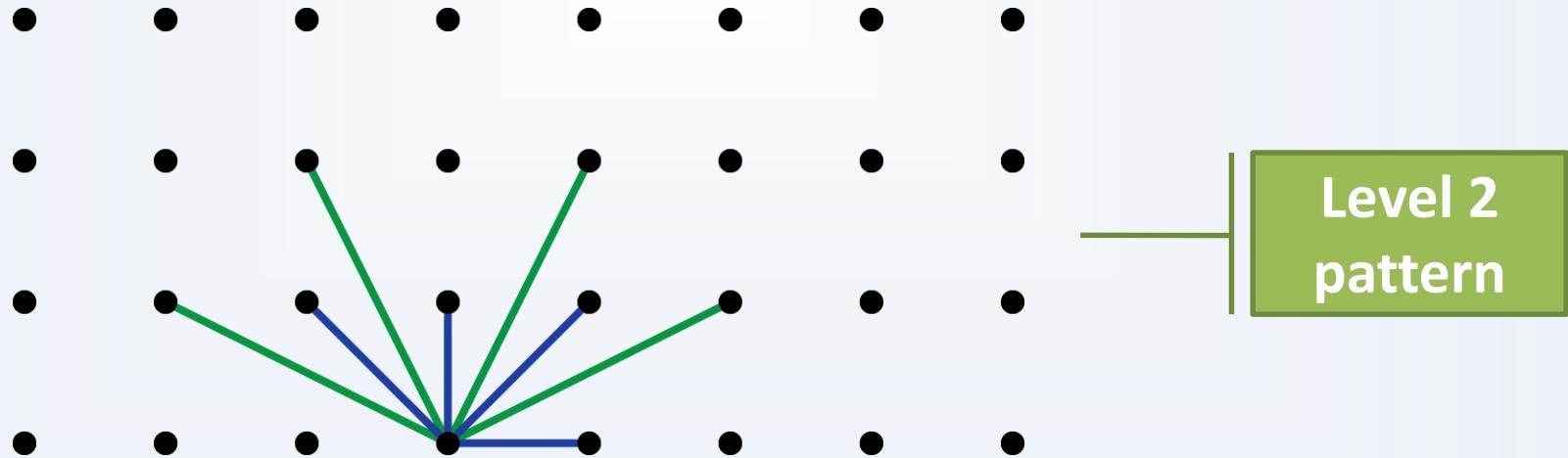
Fast Ground Structure Generation

- Pattern is created with a user-defined level
 - Structure is more redundant with higher levels
- Looking at the pattern for a single node



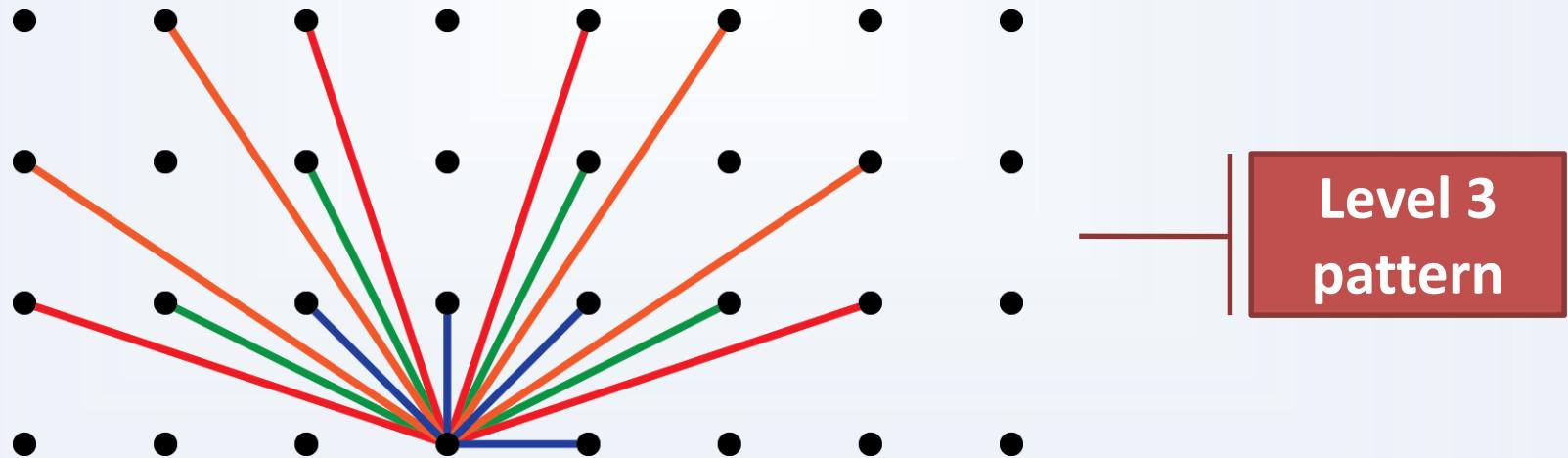
Fast Ground Structure Generation

- Pattern is created with a user-defined level
 - Structure is more redundant with higher levels
- Looking at the pattern for a single node



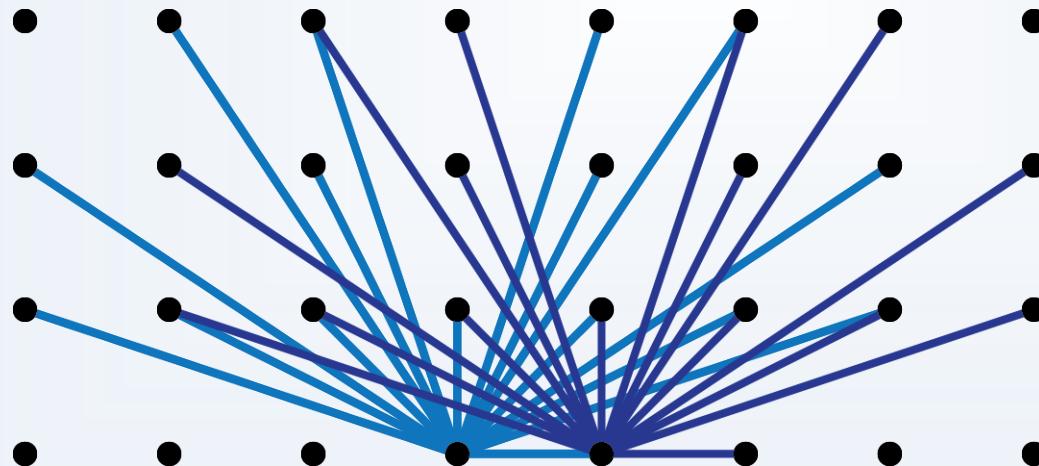
Fast Ground Structure Generation

- Pattern is created with a user-defined level
 - Structure is more redundant with higher levels
- Looking at the pattern for a single node



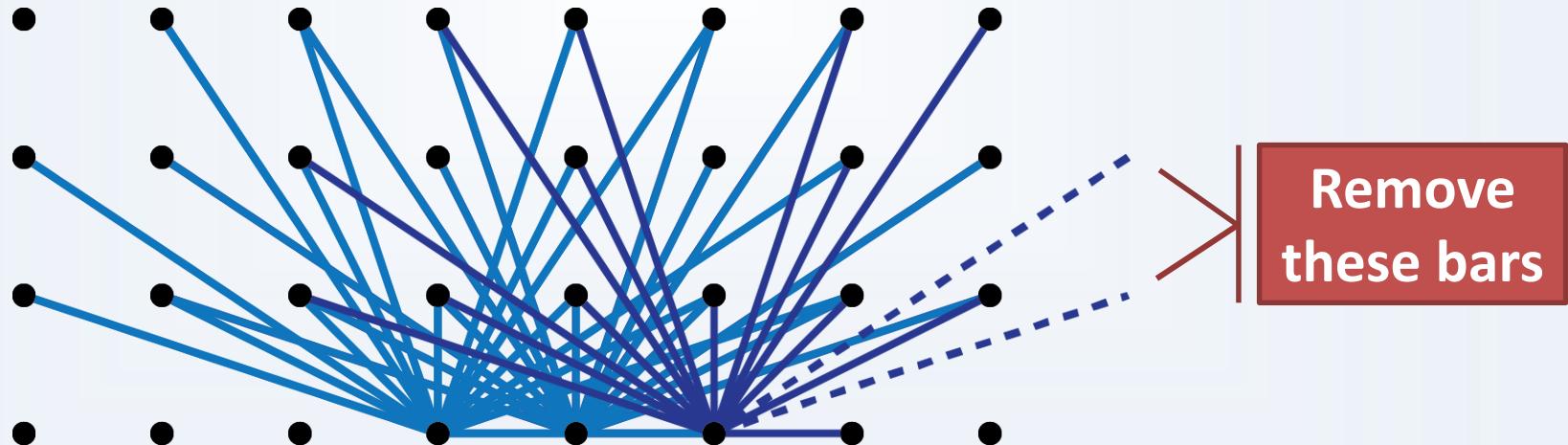
Fast Ground Structure Generation

- Stamping the pattern in other nodes...



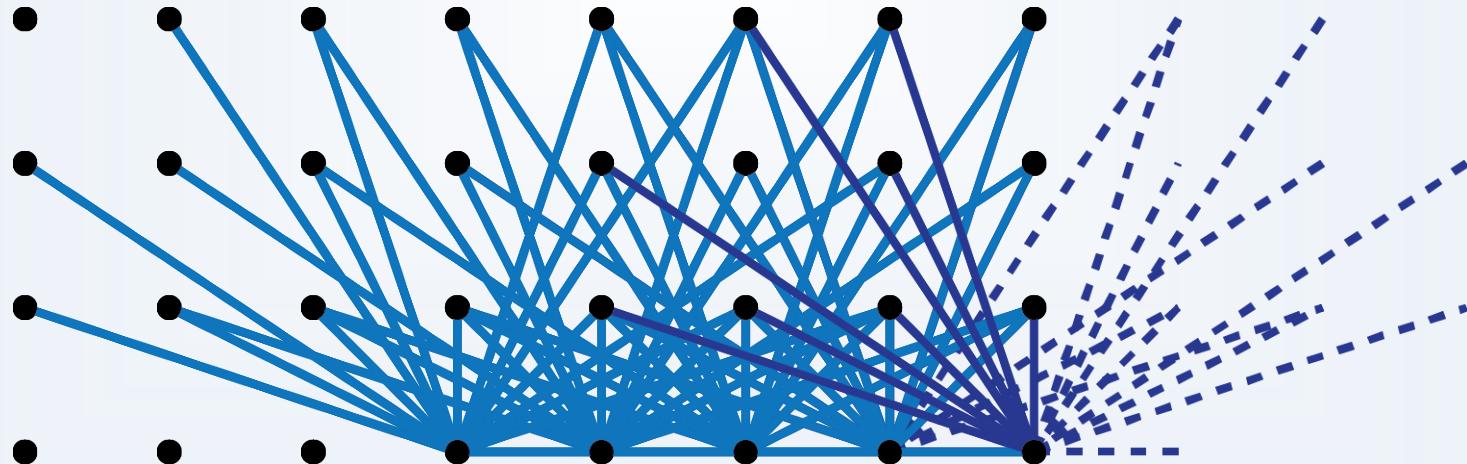
Fast Ground Structure Generation

- Stamping the pattern in other nodes...
- Keep an eye for members exiting the grid...



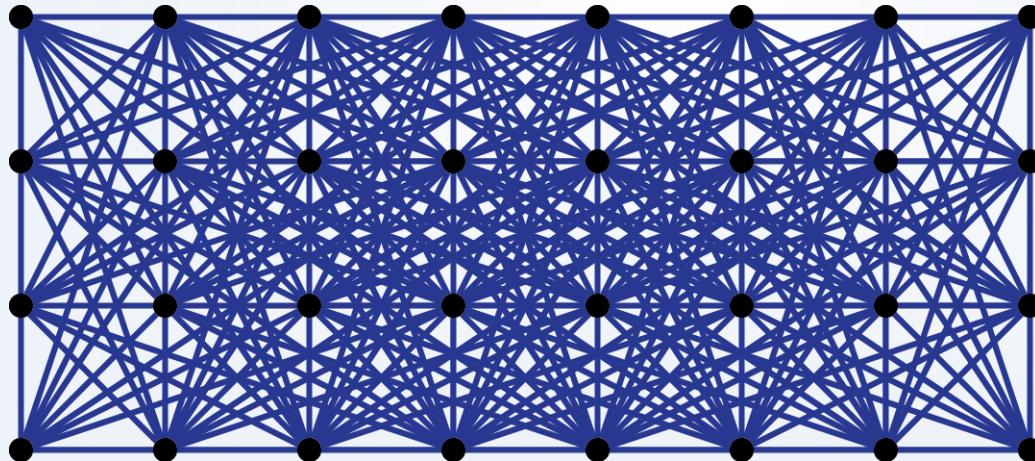
Fast Ground Structure Generation

- Stamping the pattern in other nodes...
- Keep an eye for members exiting the grid...



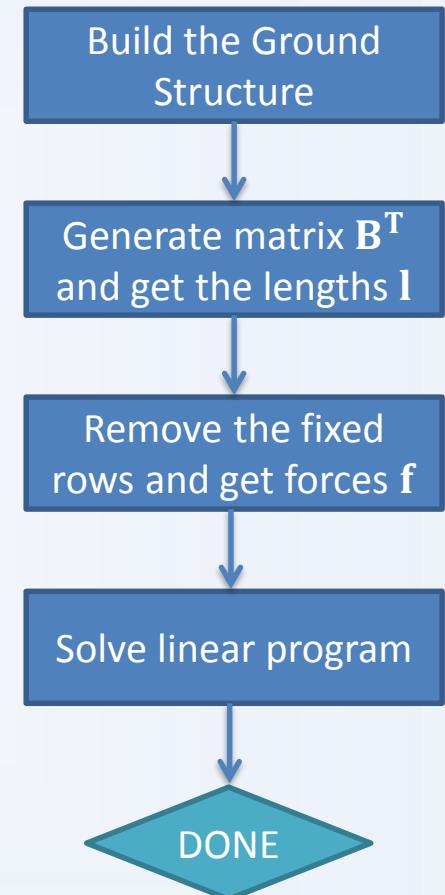
Fast Ground Structure Generation

- Stamping the pattern in other nodes...
- Keep an eye for members exiting the grid...
- Repeat for all nodes in the grid...



Summary

- Flowchart
 - No external loops
 - Iterations are done by the interior-point algorithm
 - Might require post-processing
 - Ground structure must be built with no overlapping members
 - Can be extended to domains other than a regular grid: Provided that you can construct a GS with no overlapping members



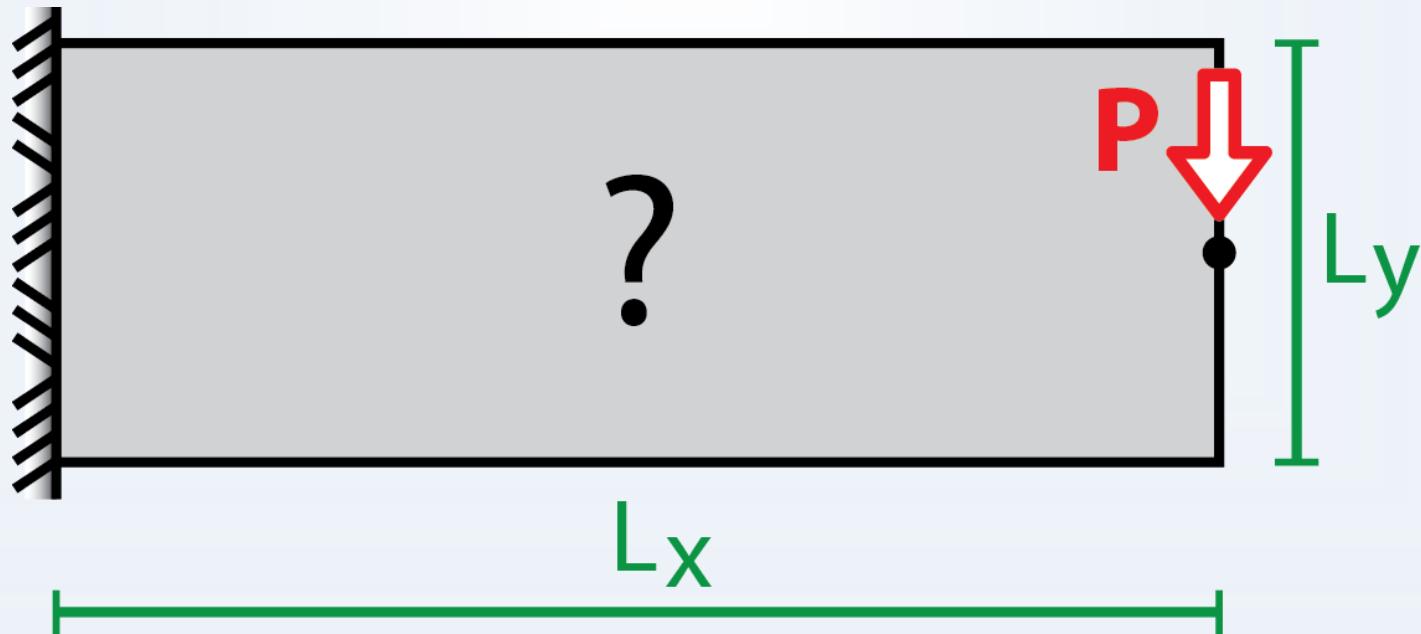
Large Example

- Cantilever domain

$$L_x = 3 \quad L_y = 1 \quad P = 1$$

30×10 mesh $\rightarrow 31 \times 11$ point grid

Level 10 connectivity $\rightarrow 19632$ members



Large Example

- Cantilever domain

$$L_x = 3 \quad L_y = 1 \quad P = 1$$

30×10 mesh \rightarrow 31×11 point grid

Level 10 connectivity \rightarrow 19,632 members

Large Example

- How does 19,632 members look like?
- This is not really a “large problem”:
 - This method can easily handle millions of members

Large Example

Define domain size and the number of grids

Define level of Ground Structure

Generate Ground Structure

Obtain equilibrium matrix and force vector

Call LP optimizer

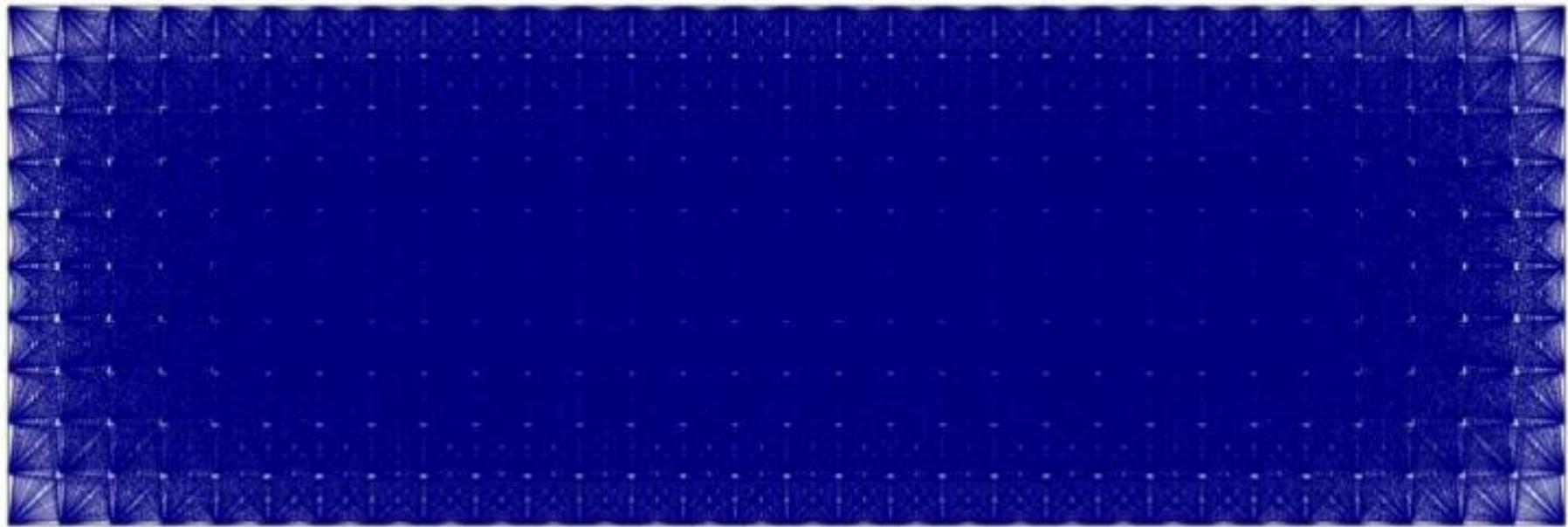
```
C:\Users\tzhao43\Dropbox\SDO 2015\Plastic Formulation\GRAND_v10\GRANDscript.m
```

EDITOR	PUBLISH	VIEW
1 %GRAND - Ground Structure Analysis and Design Code. 2 % Tomas Zegard, Glaucio H Paulino 3 %% === MESH GENERATION LOADS/BCS === 4 - kappa = 1.0; ColTol = 0.999999; 5 - Cutoff = 0.002; Ng = 50; % Plot: Member Cutoff & Number of plot groups 6 - % --- OPTION 1: POLYMESHER MESH GENERATION ----- 7 - % addpath('./PolyMesher') 8 - [NODE,ELEM,SUPP,LOAD] = PolyMesher(@MichellDomain,600,30); 9 - % Lvl = 5; RestrictDomain = @RestrictMichell; 10 - % rmpath('./PolyMesher') 11 - % --- OPTION 2: STRUCTURED-ORTHOGONAL MESH GENERATION ----- 12 - [NODE,ELEM,SUPP,LOAD] = StructDomain(30,10,3,1,'Cantilever'); 13 - 14 - Lvl = 10; RestrictDomain = []; % No restriction for box domain 15 - % --- OPTION 3: LOAD EXTERNALLY GENERATED MESH ----- 16 - % load MeshHook 17 - % Lvl = 10; RestrictDomain = @RestrictHook; 18 - % load MeshSerpentine 19 - % Lvl = 5; RestrictDomain = @RestrictSerpentine; 20 - % load MeshMichell 21 - % Lvl = 4; RestrictDomain = @RestrictMichell; 22 - % load MeshFlower 23 - % Lvl = 4; RestrictDomain = @RestrictFlower; 24 - %% === GROUND STRUCTURE METHOD === 25 - PlotPolyMesh(NODE,ELEM,SUPP,LOAD) % Plot the base mesh 26 - [BARS] = GenerateGS(NODE,ELEM,Lvl,RestrictDomain,ColTol); % Generate the GS 27 - Nn = size(NODE,1); Ne = length(ELEM); Nb = size(BARS,1); 28 - [BC] = GetSupports(SUPP); % Get reaction nodes 29 - [BT,L] = GetMatrixBT(NODE,BARS,BC,Nn,Nb); % Get equilibrium matrix 30 - [F] = GetVectorF(LOAD,BC,Nn); % Get nodal force vector 31 - fprintf('Mesh: Elements %d, Nodes %d, Bars %d, Level %d\n',Ne,Nn,Nb,Lvl) 32 - BTBT = [BT -BT]; LL = [L; kappa*L]; sizeBTBT = whos('BTBT'); clear BT L 33 - fprintf('Matrix [BT -BT]: %d x %d in %gMB (%gGB full)\n',... 34 - length(F),length(LL),sizeBTBT.bytes/2^20,16*(2*Nn)*Nb/2^30) 35 - 36 - tic, [S,vol,exitflag] = linprog(LL,[],[],BTBT,F,zeros(2*Nb,1)); 37 - fprintf('Objective V = %f\nlinprog CPU time = %g s\n',vol,toc); 38 - 39 - S = reshape(S,numel(S)/2,2); % Separate slack variables 40 - A = S(:,1) + kappa*S(:,2); % Get cross-sectional areas 41 - N = S(:,1) - S(:,2); % Get member forces 42 - %% === PLOTTING === 43 - PlotGroundStructure(NODE,BARS,A,Cutoff,Ng) 44 - PlotBoundary(ELEM,NODE)	script	Ln 13 Col 1

Large Example

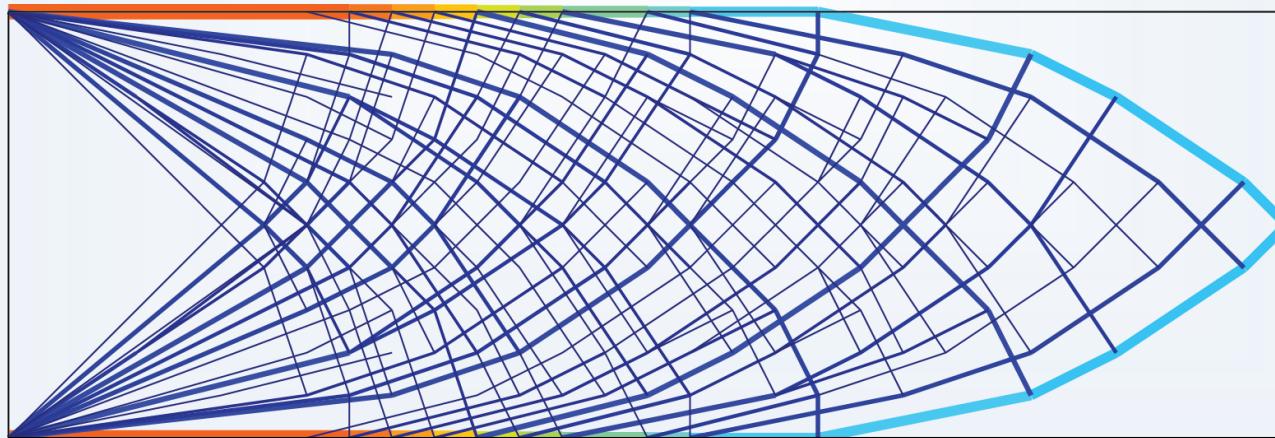
- Video of the optimization
 - In reality iterations are done internally by the interior-point method → You will most likely never see this...

Iteration 00



Large Example

- Final converged topology
 - Optimum is global
 - Takes ~ 5 seconds to run on an average computer



ELASTIC FORMULATION

Table of Contents

- Mathematical formulation
 - Simultaneous formulation
 - Nested formulation
- Equilibrium constraint
 - Geometry, constitutive and equilibrium equation
- Boolean mapping matrix
- Assembly of global matrix and vector
- Optimization example

Simultaneous Formulation

- The least-compliance structure subjected to volume constraints is

$$\begin{array}{ll}\min_{\mathbf{a}, \mathbf{u}} & \mathbf{f}^T \mathbf{u} \\ \text{s. t.} & \mathbf{K}(\mathbf{a}) \mathbf{u} = \mathbf{f} \\ & \sum_{j=1}^{nl} a_j L_j \leq V_{\max} \\ & a_j \geq 0\end{array} \quad \boxed{\text{Equilibrium constraint}}$$

nl : the number of bars

L_j : length of bar j

a_j : cross-sectional area of bar j

V_{\max} : maximum allowed volume of the truss

$\mathbf{K}(\mathbf{a})$: global stiffness matrix

\mathbf{f} : global external force vector

Nested Formulation

- If the global stiffness matrix is nonsingular, we may eliminate the displacement vector from simultaneous formulation

$$\begin{aligned} \min_{\mathbf{a}} \quad & \mathbf{f}^T \mathbf{u}(\mathbf{a}) \\ \text{s. t.} \quad & \sum_{j=1}^n a_j L_j \leq V_{\max} \end{aligned}$$

$$\text{with} \quad \mathbf{K}(\mathbf{a}) \mathbf{u}(\mathbf{a}) = \mathbf{f}$$

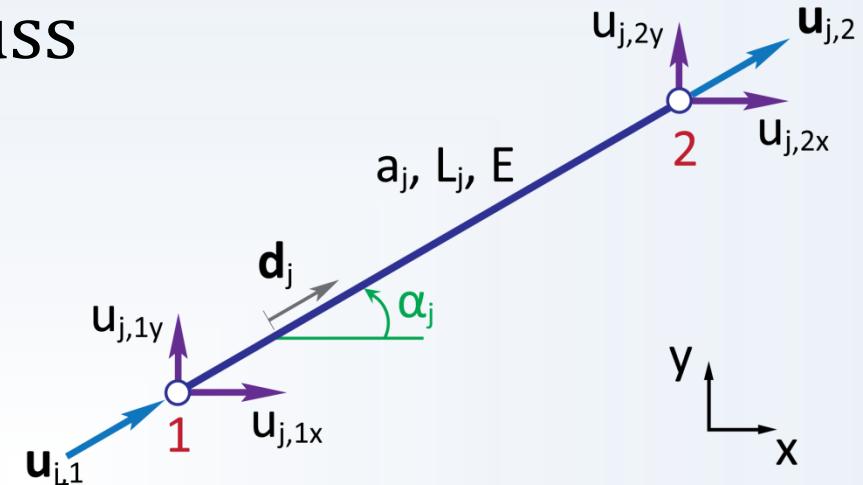
Equilibrium
constraint

where $\mathbf{u}(\mathbf{a})$ is an implicit function defined through the equilibrium equations $\mathbf{K}(\mathbf{a}) \mathbf{u}(\mathbf{a}) = \mathbf{f}$

Equilibrium Constraint: Geometry Equation

- A general bar j in a truss

$$\mathbf{d}_j = \begin{bmatrix} \cos \alpha_j \\ \sin \alpha_j \end{bmatrix}$$



- Displacement of the end points

$$\mathbf{u}_j = \begin{bmatrix} \mathbf{u}_{j,1} \\ \mathbf{u}_{j,2} \end{bmatrix}, \quad \text{where } \mathbf{u}_{j,1} = \begin{bmatrix} u_{j,1x} \\ u_{j,1y} \end{bmatrix} \text{ and } \mathbf{u}_{j,2} = \begin{bmatrix} u_{j,2x} \\ u_{j,2y} \end{bmatrix}$$

- Elongation δ_j

$$\delta_j = (\mathbf{u}_{j,2} - \mathbf{u}_{j,1}) \cdot \mathbf{d}_j = \mathbf{B}_j \mathbf{u}_j$$

Where

$$\mathbf{B}_j = [-\mathbf{d}_j^T \ \mathbf{d}_j^T] = [-\cos \alpha_j \ -\sin \alpha_j \ \cos \alpha_j \ \sin \alpha_j]$$

Equilibrium Constraint: Constitutive Equation

- External force f_j on the end points

$$\mathbf{f}_j = \mathbf{B}_j^T \mathbf{n}_j$$

- Force in the bar n_j

$$n_j = \sigma_j a_j = E \varepsilon_j a_j = E \delta_j a_j / L_j$$

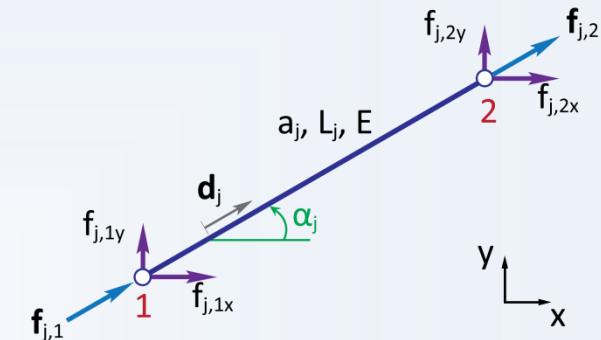
- External force f_j can be rewritten as follow

$$\mathbf{f}_j = \frac{\mathbf{B}_j^T E \delta_j a_j}{L_j} = \mathbf{B}_j^T \left(\frac{E a_j}{L_j} \right) \mathbf{B}_j \mathbf{u}_j = \mathbf{K}_j \mathbf{u}_j$$

- Element stiffness matrix of bar j

$$\mathbf{K}_j = \mathbf{B}_j^T \left(\frac{E a_j}{L_j} \right) \mathbf{B}_j$$

$$\mathbf{K}_j(a_j) = a_j \mathbf{B}_j^T \left(\frac{E}{L_j} \right) \mathbf{B}_j = a_j \mathbf{K}_j^0$$



Boolean Mapping Matrix

- Introduce a Boolean “mapping” matrix \mathbf{C} which selects terms from global displacement \mathbf{u} to element displacement \mathbf{u}_j

$$\mathbf{u}_j = \mathbf{C}_j \mathbf{u}$$

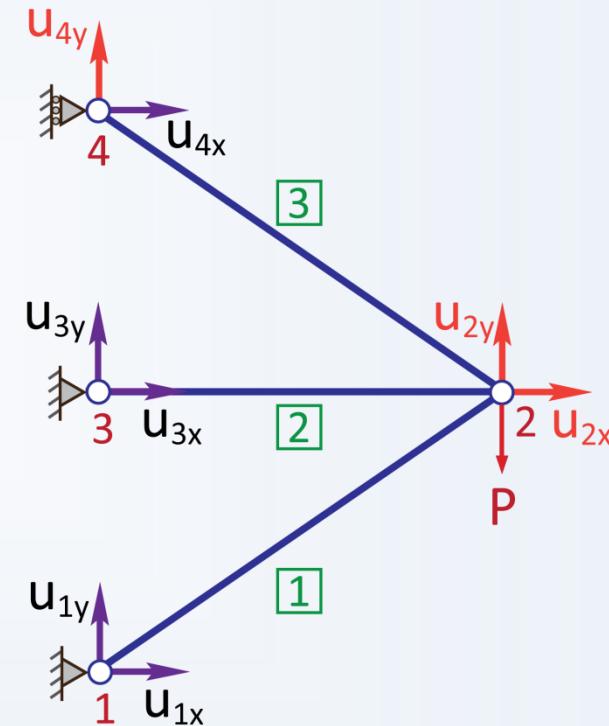
- Global displacement \mathbf{u}

$$\mathbf{u} = [u_{2x} \ u_{2y} \ u_{4y}]^T$$

- Element displacement \mathbf{u}_j

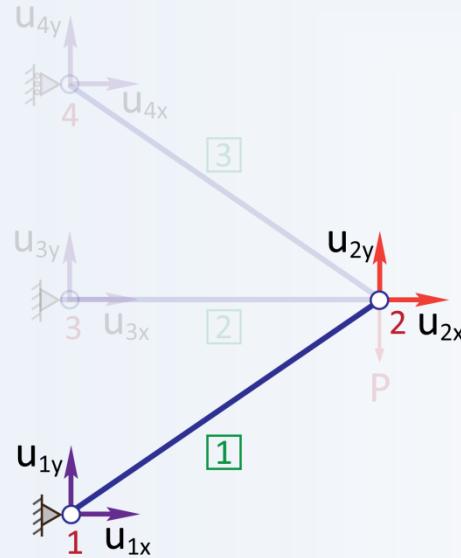
$$\mathbf{u}_1 = [0 \ 0 \ u_{2x} \ u_{2y}]^T, \ \mathbf{u}_2 = [0 \ 0 \ u_{2x} \ u_{2y}]^T$$

$$\mathbf{u}_3 = [0 \ u_{4y} \ u_{2x} \ u_{2y}]^T$$

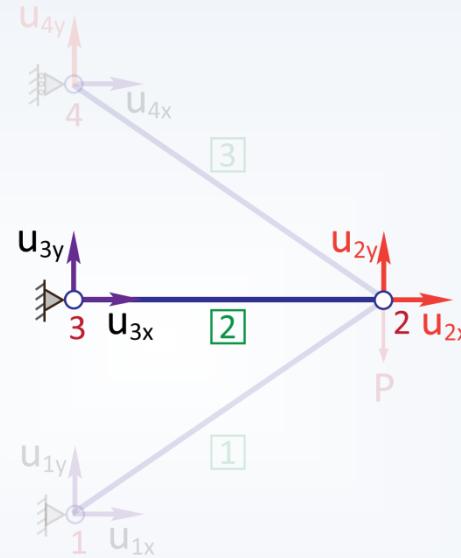


Boolean Mapping Matrix

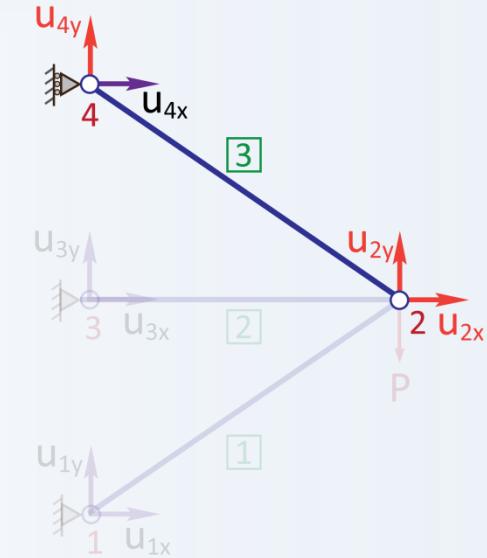
- Boolean Matrix C



$$\begin{bmatrix} 0 \\ 0 \\ u_{2x} \\ u_{2y} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u_{2x} \\ u_{2y} \\ u_{4y} \end{bmatrix}$$



$$\begin{bmatrix} 0 \\ 0 \\ u_{2x} \\ u_{2y} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \underbrace{\begin{bmatrix} u_{2x} \\ u_{2y} \\ u_{4y} \end{bmatrix}}_{\mathbf{C}_2}$$



$$\begin{bmatrix} 0 \\ u_{4y} \\ u_{2x} \\ u_{2y} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}}_{C_3} \begin{bmatrix} u_{2x} \\ u_{2y} \\ u_{4y} \end{bmatrix}$$

Equilibrium Constraint: Equilibrium Condition

- Equilibrium equation of element j revisited

$$\mathbf{f}_j = a_j \mathbf{K}_j^0 \mathbf{u}_j = a_j \mathbf{K}_j^0 \mathbf{C}_j \mathbf{u}$$

$$\mathbf{C}_j^T \mathbf{f}_j = \mathbf{C}_j^T a_j \mathbf{K}_j^0 \mathbf{C}_j \mathbf{u}$$

- Constant matrix \mathbf{K}_j^0

$$\mathbf{K}_j^0 = \left(\frac{E}{L_j} \right) \mathbf{B}_j^T \mathbf{B}_j = \left(\frac{E}{L_j} \right) \begin{bmatrix} c^2 & sc & -c^2 & -sc \\ sc & s^2 & -sc & -s^2 \\ -c^2 & -sc & c^2 & sc \\ -sc & -s^2 & sc & s^2 \end{bmatrix}$$

Note: $c = \cos \alpha_j$, $s = \sin \alpha_j$

- Global version of stiffness matrix and force vector of element j

$$\mathbf{K}_{g,j} = \mathbf{C}_j^T a_j \mathbf{K}_j^0 \mathbf{C}_j, \quad \mathbf{f}_{g,j} = \mathbf{C}_j^T \mathbf{f}_j$$

Assembly of Global Matrix and Vector

- Global stiffness matrix and applied force vector

$$\mathbf{K} = \sum_{j=1}^{nl} \mathbf{K}_{g,j} = \sum_{j=1}^{nl} \mathbf{C}_j^T a_j \mathbf{K}_j^0 \mathbf{C}_j \quad \mathbf{f} = \sum_{j=1}^{nl} \mathbf{f}_{g,j} = \sum_{j=1}^{nl} \mathbf{C}_j^T \mathbf{f}_j$$

- For entire truss

- Elongations

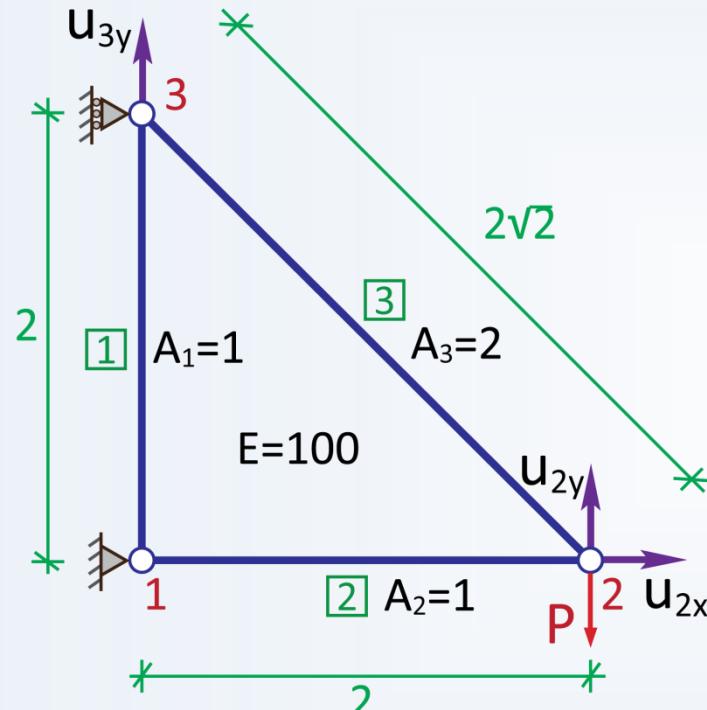
$$\boldsymbol{\delta} = \bar{\mathbf{B}} \mathbf{u} \quad \bar{\mathbf{B}} = \begin{bmatrix} \mathbf{B}_1 \mathbf{C}_1 \\ \vdots \\ \mathbf{B}_n \mathbf{C}_n \end{bmatrix}$$

- Stresses

$$\boldsymbol{\sigma} = \begin{bmatrix} 1/a_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1/a_n \end{bmatrix} \bar{\mathbf{B}}^{-T} \mathbf{f}$$

Example

- Three-bar truss



- Displacements of the bars

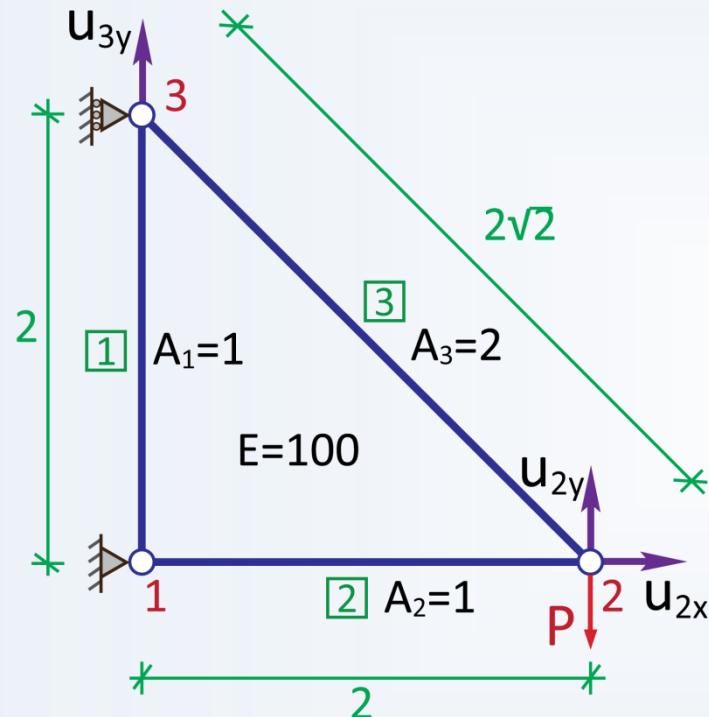
$$\mathbf{u}_1 = [0 \ 0 \ 0 \ u_{3y}]^T, \mathbf{u}_2 = [0 \ 0 \ u_{2x} \ u_{2y}]^T, \\ \mathbf{u}_3 = [0 \ u_{3y} \ u_{2x} \ u_{2y}]^T, \\ \mathbf{u} = [u_{2x} \ u_{2y} \ u_{3y}]^T$$

$$\mathbf{c}_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{c}_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \mathbf{c}_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

	θ	\mathbf{d}	\mathbf{B}
Bar 1	$\pi/2$	$[0 \ 1]^T$	$[0 \ -1 \ 0 \ 1]$
Bar 2	0	$[1 \ 0]^T$	$[-1 \ 0 \ 1 \ 0]$
Bar 3	$7\pi/4$	$[1 \ -1]^T/\sqrt{2}$	$[-1 \ 1 \ 1 \ -1]/\sqrt{2}$

Example

- Three-bar truss



- Stiffness matrices of the bars

$$K_j = \mathbf{B}_j^T \left(\frac{Ea_j}{L_j} \right) \mathbf{B}_j$$

$$K_1 = \frac{100 \times 1}{2} \begin{vmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{vmatrix}$$

$$K_2 = \frac{100 \times 1}{2} \begin{vmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

$$K_3 = \frac{100 \times 2}{4\sqrt{2}} \begin{vmatrix} 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{vmatrix}$$

- Force vectors of the bars

$$\mathbf{f}_1 = [0 \ 0 \ 0 \ 0]^T$$

$$\mathbf{f}_2 = [0 \ 0 \ 0 \ 0]^T$$

$$\mathbf{f}_3 = [0 \ 0 \ 0 \ P]^T$$

Example

- Global versions of the element stiffness matrices and applied force vectors

$$\mathbf{K}_{g,j} = \mathbf{C}_j^T \mathbf{K}_j(a_j) \mathbf{C}_j$$

$$\mathbf{K}_{g,1} = \frac{100 \times 1}{2} \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} \quad \mathbf{K}_{g,2} = \frac{100 \times 1}{2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} \quad \mathbf{K}_{g,3} = \frac{100 \times 2}{4\sqrt{2}} \begin{vmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix}$$

$$\mathbf{f}_{g,j} = \mathbf{C}_j^T \mathbf{f}_j$$

$$\mathbf{f}_{g,1} = [0 \ 0 \ 0]^T$$

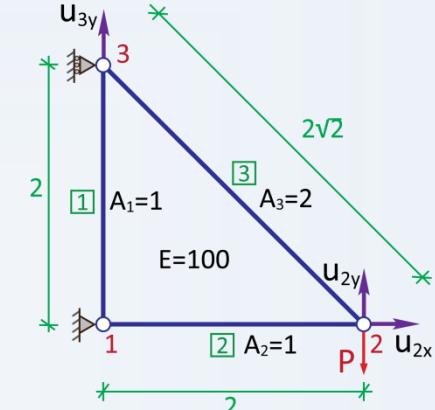
$$\mathbf{f}_{g,2} = [0 \ 0 \ 0]^T$$

$$\mathbf{f}_{g,3} = [0 \ P \ 0]^T$$

- Global stiffness matrix and applied force vector

$$\mathbf{K} = \sum_{j=1}^3 \mathbf{K}_j = 50 \begin{vmatrix} 1 + 1/\sqrt{2} & -1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} & 1 + 1/\sqrt{2} \end{vmatrix}$$

$$\mathbf{f} = \sum_{j=1}^3 \mathbf{C}_j^T \mathbf{f}_{g,j} = \begin{bmatrix} 0 \\ P \\ 0 \end{bmatrix}$$

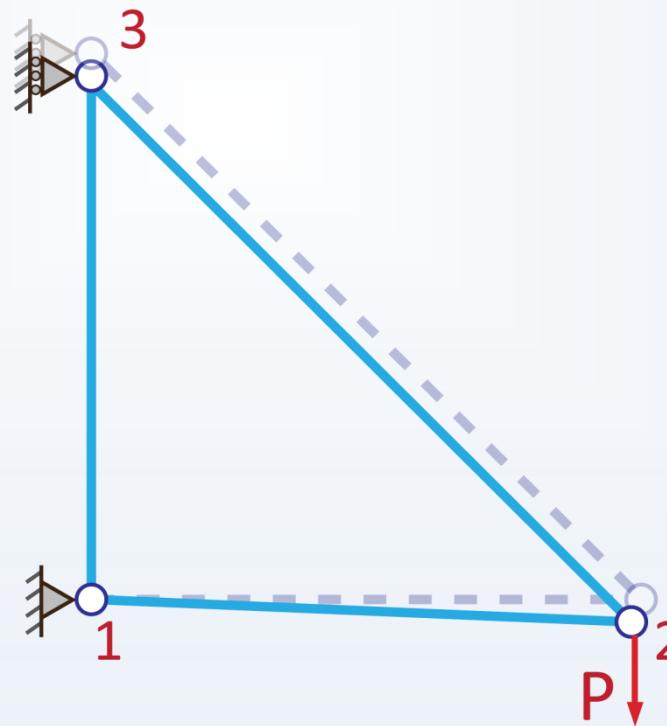


Example

- Solution of the equilibrium condition

$$\mathbf{u} = \mathbf{K}^{-1}\mathbf{f}$$

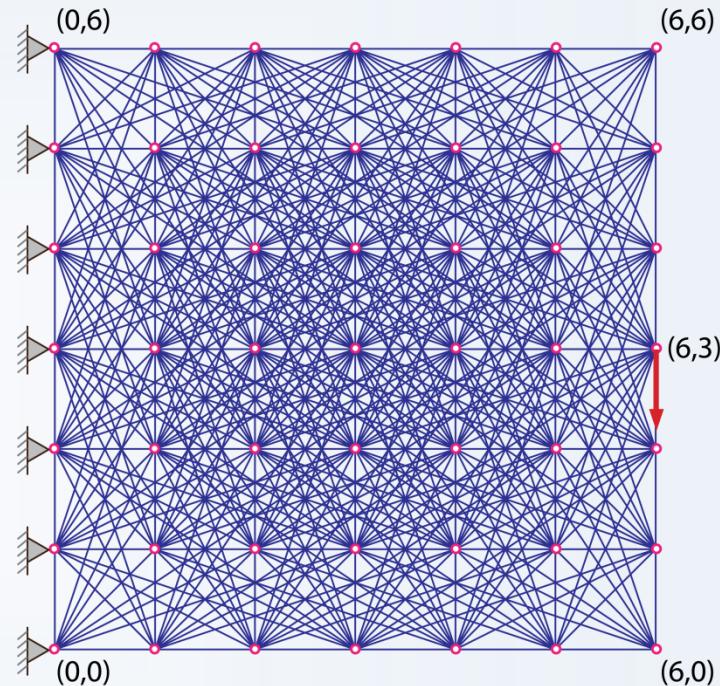
$$\mathbf{u} = [u_{2x} \ u_{2y} \ u_{3y}]^T = P/50 \times [1 \ 2 + \sqrt{2} \ 1]^T$$



Optimization : Example

- Optimize the ground structure
 - Material has $E = 10^7$
 - Load is $P = 1$

$$\begin{aligned} \min_{\mathbf{a}} \quad & \mathbf{f}^T \mathbf{u}(\mathbf{a}) \\ \text{s. t.} \quad & \sum_{j=1}^{nl} a_j L_j \leq V_{\max} \\ & a_j \geq 0 \\ \text{with} \quad & \mathbf{K}(\mathbf{a}) \mathbf{u}(\mathbf{a}) = \mathbf{f} \end{aligned}$$

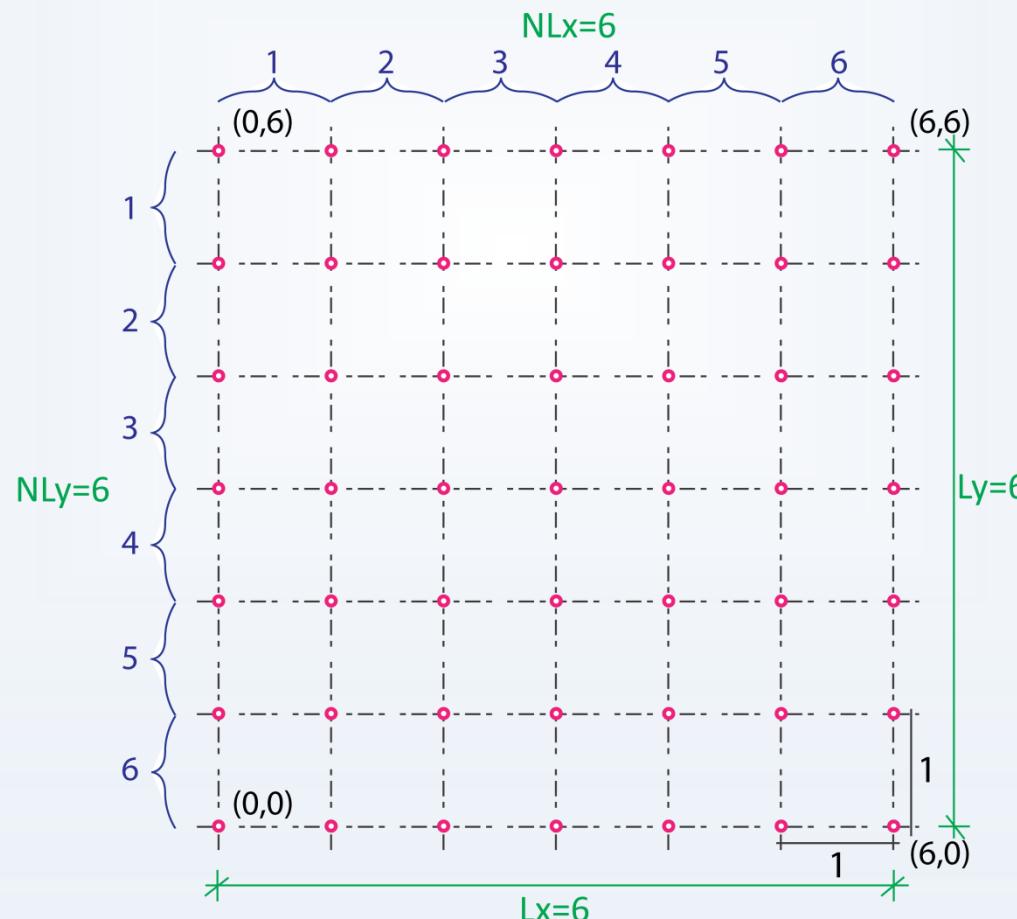


- Steps required to run TrussTop.m
 1. Generate design domain (initial mesh)
 2. Optimization parameters in Ex3_Script.m
 3. Run!

Optimization : Example

- Design domain

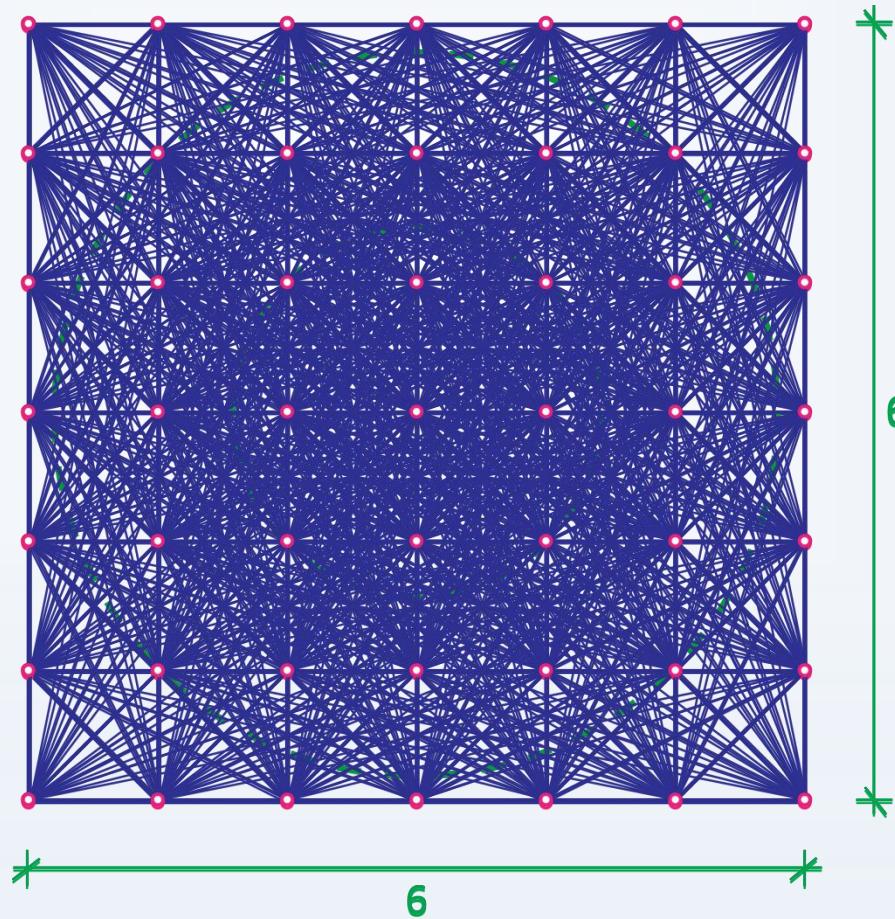
```
Lx=6; Ly=6; NLx=6; NLy=6;
```



Optimization : Example

- Initial mesh

```
Ratio = 6*sqrt(2); % Level 6
```



Optimization : Example

- Boundary definition

```
CoordS = [restr.x restr.y coord.x coord.y];
```


(6,3)

```
CoordS =[1 1 6 3]
```

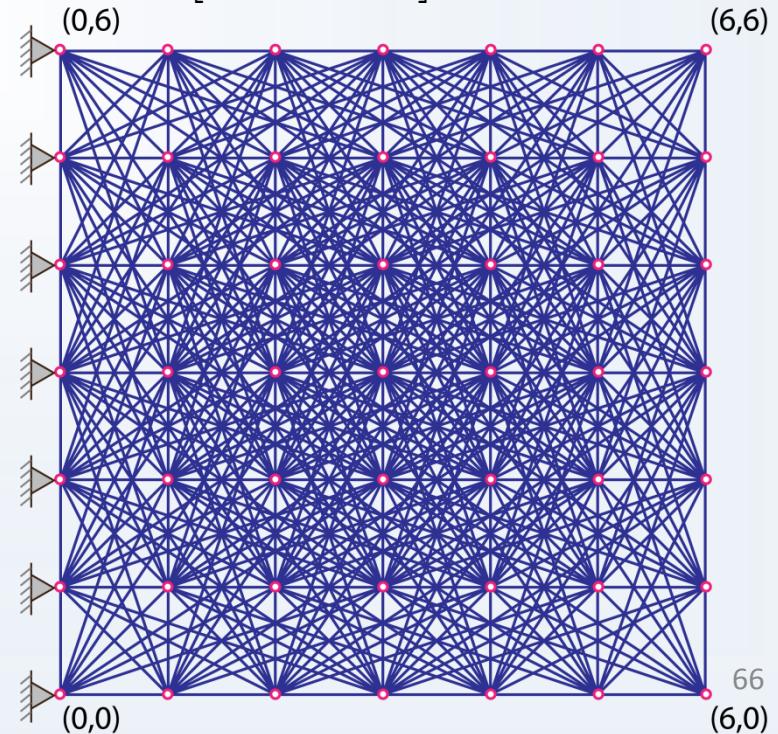
```
CoordS = [ 1 1 0 0;  
          1 1 0 1;  
          1 1 0 2;  
          1 1 0 3;  
          1 1 0 4;  
          1 1 0 5;  
          1 1 0 6];
```

or

```
CoordS = [ 1 1 0 -1];
```


(3,1)

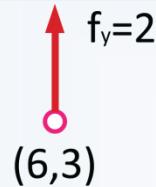
```
CoordS =[0 1 3 1]
```



Optimization : Example

- Load definition

```
CoordL = [px py coord.x coord.y];
```



```
CoordL = [0 2 6 3];
```

```
CoordL = [0 -1 6 3];
```

$f_x=1$


```
CoordL = [1 0 3 1];
```

(0,6)

(6,6)

(0,0)

67

(6,0)

(6,3)

1

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

(6,3)

(0,0)

(6,0)

(6,3)

(0,6)

(6,6)

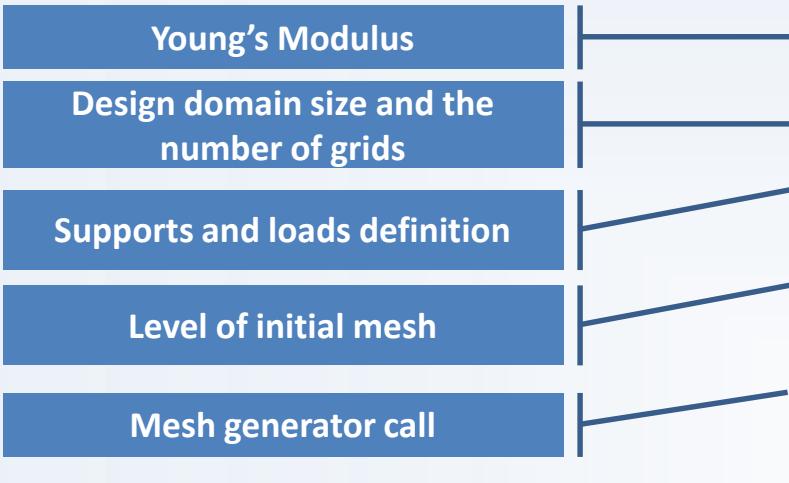
(6,3)

(0,0)

(6,0)

<p

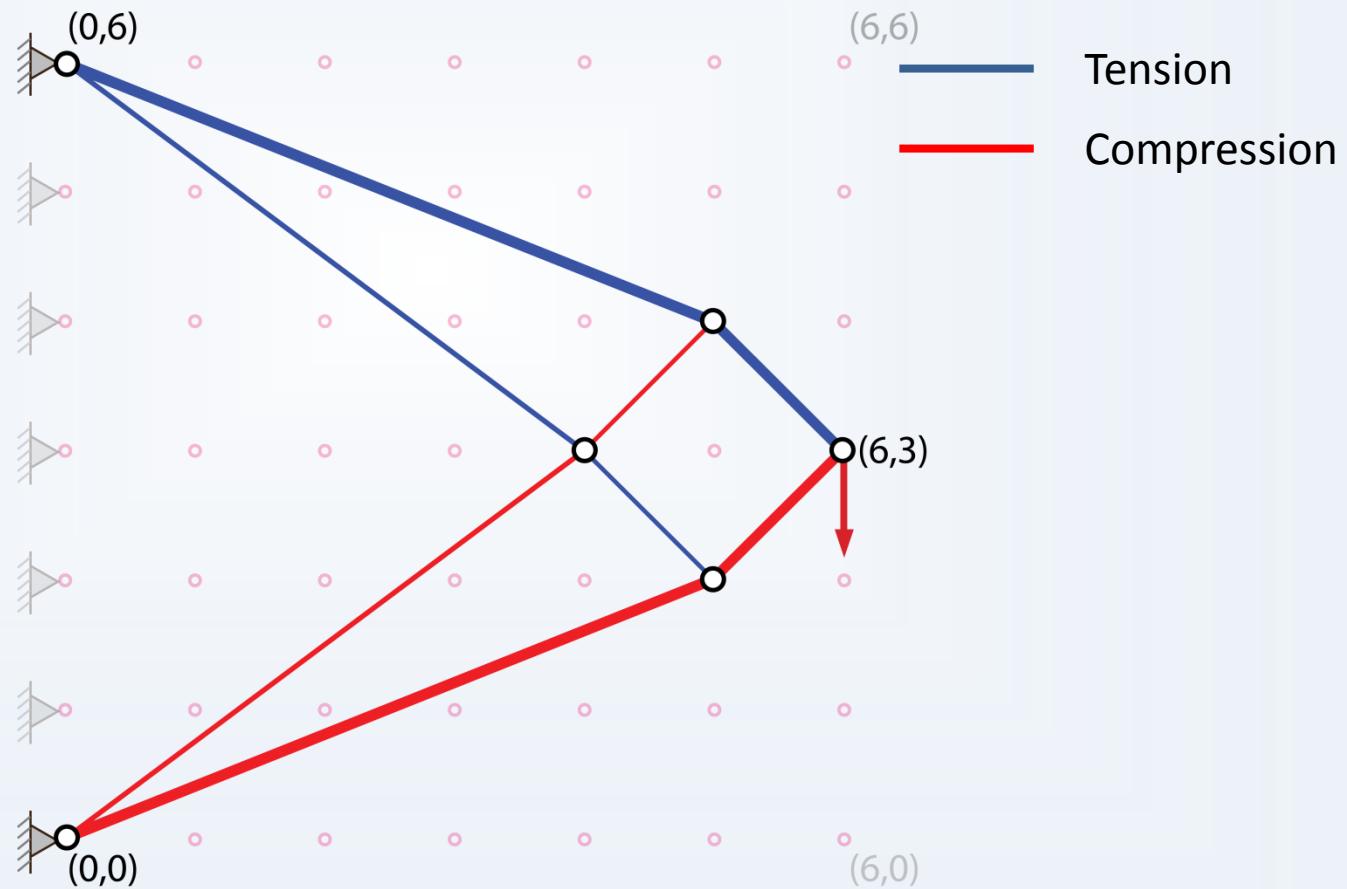
Optimization : Example



```
Editor - C:\Users\Junho Chun\Documents\Class\CEE598SDO_FALL12&13\Grand_ppt\TrussTop_v4\Ex3_Script.m
File Edit Text Go Cell Tools Debug Desktop Window Help
7 % Material data
8 Eo=10^7;
9
10 % Geometry, load and support data
11 Lx=6; Ly=6 ;NLx=6; NLy=6;
12 CoordS = [ 1 1 0 -1];
13 CoordL = [ 0 -1 Lx Ly/2];
14
15 % Ground structure data
16 Ratio=1.1*sqrt(Lx^2+Ly^2); % Full ground structure
17 Area=1;
18 Gtol=.0001; % Tolerance to nonoverlapped bars
19
20 fem = GenerateGroundNonOver(Lx,Ly,NLx,NLy,CoordL,CoordS,Area,Eo,Ratio,Gtol);
21 %fem = GenerateGroundOver_RD(Lx,Ly,NLx,NLy,CoordL,CoordS,Area,Eo,Ratio)
22
23 er=.05;fv=1/450;
24 Vol=Lx*Ly*er*fv;
25 Lt= sum([fem.Element.L]);
26 Area=Vol/Lt;
27 xmax=Area*10^4;
28 xmin=Area*10^-2;
29 xini=Area;
30 move=(xmax-xmin)*10;
31
32 % Algorithm parameters
33 opt = struct(...);
34 'xMin',xmin,... % Lower bound for design variables
35 'xMax',xmax,... % Upper bound for design variables
36 'xIni',xini,... % Initial design variables
37 'Vol',Vol,... % Specified volume constraint
38 'Tol',.5*10^-8,... % Convergence tolerance on design vars.
39 'MaxIter',4000, ... % Max. number of optimization iterations
40 'NPlot',10,... % Number of iteration to plot
41 'OCMove',move,... % Allowable move step in OC update scheme
42 'Upd',0,... % 1 to OC and 0 to MOC update scheme
43 'OCEta',.5 ... % Exponent used in OC update scheme
44 );
45
46 fem.lp=100;
47 fem.arg = ['Ex3 GS ' num2str(NLx+1) 'x' num2str(NLy+1)];
48 [x,fem] = TrussTop(fem,opt);
```

Optimization : Example

- Optimal topology



Questions? Comments?

