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Automatic design of optimal structures

by

William S. DORN, Ralph E. GOMORY
and Herbert J. GREENBERG,

International Business Machines Corporation, Yorktown Heights, N, Y.

SuMmMARY. — The design of optimal structures is reduced to the selection,
by mathematical programming, of a structure which optimizes a criterion
of merit over a large, well-defined class of admissible structures. For the
case of pin-jointed structures, this approach is carried through in detail
with an analysis of the corresponding mathematical optimization problem.
In this approach to design not only the sizes of the members but their
locations as well are determined for the optimal structure. Some properties
of optimal structures are derived and discussed and the ideas are illus-
trated by the design of a series of optimal bridge trusses.
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Force Equilibrium Matrix

* Given the following problem

P*®#P

k< > > >

cosa = 1/4/5 sina = 2/4/5
cos B = 1/~/2 sinf8 = 1/v2
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Force Equilibrium Matrix

* Equations for nodal equilibrium

P&®;P

YE,, + —nqcosa —n,cosf =0
LFay + —nisina —n,sinf =1y,
Y.Fp, :n3cosa+ nyCcosf =1y,
LFpy + —ngsina N3 —nysinff =1,
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Force Equilibrium Matrix

PY ns P
* Equations for nodal equilibrium C e l'd

Taking: cosa - ¢, sina — s,

_ a b _r:
cosfp > cp  sinf - sp ray oy f "%
¢, —cg 0 0 0 0 0 O0-
e —s, 0 0 0 -1 0 ol(™M) (O
a ,8 nz O
0 0 ¢ ¢ 0 0 -1 0]|n, 0
0 0 —sq —sg 0 0 0 —1|]|n, 0
e 0 0 —cg -1 0 0 0|\ms(")o
S« 0 0 s 0 0 0 o0f|@]| |[-P
0 ¢ —¢ 0 1 0 0 off™ =
0 s sz 0 0 0 0 of ) PL




Force Equilibrium Matrix

* Equations for nodal equilibrium

B RREH
Brn Bl'l' r 0
Matrix is square and invertible:
System is statically determinate

SO ) 0 0 0 hob
RN 0 =1 0 ToNIEE.
a ,8 nz 0
0 0 ¢ ¢ 0 0 -1 0||n, 0
0 O —s =sg 0 0 0 =1|fn,g 0
e 0 0 —¢ -1 0 0 o[\ms(™)o|
Sy 0 0 sz 0 0 0 O0f]|a 7
0 ¢ —¢ 0 1 0 0 off™ =
0 s3 s, 0 0 o0 0 of ) PL



Force Equilibrium Matrix

* Equations for nodal equilibrium

6, el (=06)

Brn Bl'l' r O

To solve for n, we only need:
B'n=f

—cy, —cg 0 0 0 (0 O O

5, =s; 0 0 o (=t 0 o](.') [

2

0 0 ¢ ¢ 0|0 -1 0]|n, ﬂ
0 0 —s4 —sg O 0 0 —1)|n,

Cy 0 0 —¢ —-1|0 0 01]|"Ms 0
Sy 0 0 sg 0|0 0 Of]fa =7
0 ¢ —¢ 0 1[0 0 o™ 0

0 s3 s, 0 0 (0 0 ot P




Force Equilibrium Matrix

* Equations for nodal equilibrium

o o] 3= ()

To solve for n, we only need:

B'n =
a =% 0 0 07,y oy
Cq 0 0 _C,B —1 n, 0
P P se 0 0 55 0ngy={_p}
C‘ Ns *d 0 C.B —Cq 0 1 Ny 0
0

d
* Cay rbyf Ibx 15



Directional Cosines

e What are the directional cosines?

Y x

* Note thatin 2D: sina = cosf
cos®a + cos* f =1

e In3Dtoo: cos®a + cos?p +cos’y =1

16



Directional Cosines

e What are the directional cosines?

y NODE; AY

B
N\ —
NODE;

| . \

* For the case of our truss member:

d = NODE; — NODE; } i=aL
L = ldll;

Y x

17



Directional Cosines

e What are the directional cosines?

 The directional cosines are used to construct [B']

18



Automatic Assembly of B!

e (Given

— List of coordinates P ‘ G * P
3 4

— List of element connectivity

_ 2
0 O
NODE = A : .
1 2 - 1 1 1
2 2] < e e =
1 3 d; = NODE3; —NODE; =[1 2]-[0 o0]=[1 2]
d, =NODE, —NODE; =[2 2]-[0 0]=[2 2]
1 4 d; =NODE, —NODE, =[2 2]—[3 0]=[-1 2]
ELEM =2 4 dy =NODE3 —NODE; =[1 2]—[3 0]=[-2 2]
2 3 ds =NODE, —NODE; =[2 2]—[1 2]=[1 O]
3 4 19




Automatic Assembly of B!

Q.
=

I

(@B
=
S~

=
[

I

cosa; Sinaq]|
d, =d,/L, =[cosa, sina;]

d; =d;/L; = [cosaz sinag]

Qs
NS
I
(@B
S
S~
—
N
|

= [cosa, sinay]

&5 =d;/L; = [cosas sinas
) 3 3 05— 4

2 2

 Why is a3 not this angle instead? 4

A: Element is defined from (2) to (4), ®
not from (4) to (2). 2

20




Automatic Assembly of B!

* Looking at the degrees-of-freedom
of the structure

__dlx _d2x 0 0 0
~d;, -d,, O 0 0
0 0 _(}3x _d,\4x 0 DOFs with supports
0 0 —ds, —dy, 0 [ B N (reactions)
1y 0 0 dye —dsy| Bur
dly 0 0 d4y _a5y
0 (in (igx 0 de
0 dZy dgy 0 d\5y ]




Ground Structure Formulation

* The least-volume structure subjected to stress
constraints is

min al’l
a
Elastic
S. t. Ku : f %
—0.<0; <0 ifa;>0
a; > 0

e Remarks:

— Only sizing the members. Nodal locations and
connectivity are fixed.

— Stress constraint does not apply for a vanished member.

— Stiffness matrix includes: force eq, compatibility and
stress-strain relations.

22



Ground Structure Formulation

* Enforcing force equilibrium only:
(no compatibility or stress-strain)

min ar’l

a .
T Plastic
S. t. B'n=f Formulation

—0.<0;<0; ifa;>0
CliZO

e Remarks:

— Only sizing the members. Nodal locations and
connectivity are fixed.

— Stress constraint does not apply for a vanished member.

— For statically indeterminate structures [B] is not

symmetric or invertible. b



Ground Structure Formulation

Q: We are only sizing members. How do we expect to do topology
optimization?

A: The ground structure method relies on raw power: highly
interconnected truss with many nodes and discards the less useful
ones. Note that the starting structure will not be determinate.

Q: Can a member have stress or strain if its area is zero?

A: In theory yes. Given displacements u, the strain in a member is
¢ = Au/l and the stress is 0 = E¢. No area involved!

Q: In the plastic formulation: Is the optimal structure valid?
(compatibility and o — ¢)

A: The size of [B] is Ny, ¢ X N,. We know that the optimal solution
will have at most N, non-zero basic variables — the reduced |B]

is square and the structure is statically determinate: It

automatically complies with compatibility and o — «.
24



Slack Variables & LP Form

 Plastic formulation

min all
d
s. t. BIn=f
—0.<0;<0; ifa;>0
a; >0

* Discontinuity in the stress constraint (vanishing)
— Rewrite in terms of member force (multiply by a)

—o0.a; <n;<oia; Va =0

25



Slack Variables & LP Form

 Plastic formulation

min all
d

s. t. B'n=f
—o.a; <n;<oa; Va =0

* Introducing slack variables in the inequalities

— The positive constants multiplying the slack variables
simplify the resulting expressions

Op _ ) + i

ni+2—s; = o0.q; S; S;
O'C y Cll' = +

+ 2 O-O n O-t O-C

—N: —S. = 0.a: R

i o, i ci ) n; =s; S;

, with g, = (0; + 0,.)/2

26



Slack Variables & LP Form

* Plastic formulation (rewritten in terms of s™ and s7)

st s\1
min (— + —) 1
st s— Ot Oc
s.t.  BT(s" —s7)=f
st s >0
- R S l. ( +\
eorganizing a little... S;
min {1/o; i 1/a.}< -+ ¢
st s— _
Si
KS;\
s. t. [BT : —BT]{ .- =f
Si |

st s* >0 27



Slack Variables & LP Form

fsf\

l
min {1/o, : 1/a.}< -+ ¢
st s— _

Si
(sf\
s.t BT : —BT]{ ...} =f
Si )
st s >0

 What is so special about this?
— The variables have been doubled — bad
— Reduced the number of constraints — good

— Linear Programming form — AWESOME!
* The problem can be solved fast (interior-point method)
* Optimum is global 28



Basic Example

* Given the following problem

0
1
NODE =
e 0
11
1
1
1
ELEM =
2
2
L3

0

0
1.5

1.5

BB WA W N

Assume that
or =0, =1

* Structure is indeterminate (redundant)
— No redundancy — no alternative topologies to chose from



Basic Example

e The LP variables are:

A
(s IR
%l— 51 1.5
52 52 |
+
53 53 Associated with
SI S4 tension y
| lse 1
S =< Sg_ > = <7>
Sl: S8
Sz_ SO Associated with
§3_ $10 compression
SE S11
\S¢ / M
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Basic Example

« Simplex Tableau .
— Basic members are (1), (3), (4), (5) and (6) PloN\o|®
) ) )
v @)

1<t 57
"linopt" ["restr" [slk, slk, slk; slk, slks slkg slk; slkg slky slkio|S4| ST |S7| S10 S6 |S12| S2 S8  S3 |S9 S5|S11
"ob" §-55|0 1.0 O 45 O0 0167 0 55 15 O0|0]|20|0|361 20| 0 |167 133 361|0 0]3.0
slk, coy1 10 O 00 O OO O OO OO O})O|0O}J0O| 00 00000 00 00})0 0O0}0.0
54 cojo0o o0 0 OO O 1.2 O OO 00 O}J7})00y0}-70 OO0} 12 -12 00)0 0]00
slky oo Jjo0o o0 1T 10 O OO O OO OO0 O})Oj|jOOJ0O}|J OO0 OO0} 0O 00 00}|0 0O]O00
S12 0o JO 00 O 10 O 0667 O OO 00 O0OJOJ0OO0J0O)] 00 -1.0}1 1 |0667 -0667 000 0]O0.0
slks cojo o0 O OO 1T 10 O OO 00 O0O}J0O0O}J00J0) 00 0O})O]| 00 0.0 0.0jJ0 0]0.0
S7 00 O -1.0 0 00 O 0667 0O 0O 00 O }O(-10f1) 00 00| O (0667 -066/7 00})0 0]0.0
slk; 00O 00 O OO0 O OO 1T 10 00 O})O|0Oj0O| OO 00O0})0O])O0O 00 00j)0 0]0.0
S5 540 00 O -15 0 -10 O -15 -10 0 |J0|00J0O)] 00 0O} O|-1.0 1.0 0.OJ0 1 |-1.0
S9 18,0 00 O -18 0 -12 0 -18 00 O |JO|00O|j0O|J 00 0O})O}-1.2 12 =-10}1 0]0.0
skko f 00 JO 00 O 00 O OO O 00 10 1 |O|00OjOfj 00 OO|O]|O00 0.0 00| 0 0.0
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Basic Example

* Post-processing of optimal structure

Initial structure  Optimal structure Basic Members Reduced Optimal
Structure (ROS)

K * * ¢ == =m =m =m *

15|l \@|® o/ |®

e/ 0@
Y @) / I
p2e ST

120 =P =2 1 =2

* Structure will be in equilibrium, but may be unstable.

— Some basic members may require a minimum area to
stabilize the structure

32



Fast Ground Structure Generation

* Easy to get carried away and connect every node
with every other node

— In general we do not want overlapping bars
— Example: Assume P = 1landog; = 1

a1 — 10 az — ag — OO
a; = 1.0 a; =00 a;=a3=10

a, =05 a,=a3=0.5

$P $ P

©)
: el
@

A

33



Fast Ground Structure Generation

* The ideais to “stamp” a pattern in all nodes of a
orid
— This pattern has no overlapping bars
— This only works for structured—orthogonal grids

OO  Patem
Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica” 34
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Fast Ground Structure Generation

e Pattern is created with a user-defined level
— Structure is more redundant with higher levels

* Looking at the pattern for a single node

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica” 35
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Fast Ground Structure Generation

e Pattern is created with a user-defined level
— Structure is more redundant with higher levels

* Looking at the pattern for a single node

I e

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica” 36
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Fast Ground Structure Generation

e Pattern is created with a user-defined level
— Structure is more redundant with higher levels

* Looking at the pattern for a single node

o o o
o
Level 3
. pattern
o o o
Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica” 37

Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Fast Ground Structure Generation

* Stamping the pattern in other nodes...

'

~N \\ "o" / ' s
NI 7Z

[ [ [ — [ [

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica” 38
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Fast Ground Structure Generation

* Stamping the pattern in other nodes...
* Keep an eye for members exiting the grid...

o
’i
.“‘ e Remove
*
\ . : / 4

\\.}/A\)&_ 4 Yo .- these bars
~N SNQR M NO A AP L P “—‘
NN~ - -

N HESRRN 7~ -

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica” 39

Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Fast Ground Structure Generation

* Stamping the pattern in other nodes...
* Keep an eye for members exiting the grid...

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica” 40
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Fast Ground Structure Generation

* Stamping the pattern in other nodes...
* Keep an eye for members exiting the grid...
* Repeat for all nodes in the grid...

v, \
. -
- w4 Vow T w4 Vow T X, 4 Vow T w4 View -
\\ PSS OO QA0 i P‘ ‘-‘v"'v‘-" ’1" ‘-‘v"'v‘-" ’1" oY
SN FPIRNAPIINGA
Q| 232K | S2esi | 528
¥ . - - al —

i,

T Tl
e Ay
EDTOS

2 (AT TS -

INIEN NG

"o‘O‘G‘,‘ IC L AT TS
225G -

PSS SRE N\

A e AN

Sokol, T “A 99 line code for discretized Michell truss optimization written in Mathematica” a1
Structural and multidisciplinary optimization 43(2), pp. 181-190, (2010)



Flowchart
— No external loops

— Iterations are done by the interior-
point algorithm

— Might require post-processing
— Ground structure must be built with
no overlapping members

— Can be extended to domains other
than a regular grid: Provided that you
can construct a GS with no
overlapping members

Build the Ground
Structure

Generate matrix BT
and get the lengths 1

Remove the fixed

rows and get forces f

Solve linear program

42



Large Example

* Cantilever domain
Ly=3 L,=1 P=1
30 X 10 mesh — 31 X 11 point grid
Level 10 connectivity — 19632 members

43



Large Example

* Cantilever domain
Ly=3 L,=1 P=1
30 x 10 mesh — 31 X 11 point grid
Level 10 connectivity — 19,632 members

44



Large Example

e How does 19,632 members look like?

* This is notreally a “large problem”:

— This method can easily handle millions of members

45



Large Example

PUBLISH VIEW
1 5GRAND - Ground Structure Analysis and Design Code.
2 % Tomas Zegard, Glaucio H Paulino
3 %% —— MESH GENERATION LOADS/BCS
4 — kappa = 1.0; ColTol = 0.9535589;
== Cutoff = 0.002; Ng = 50; % Plot: Member Cutoff & Humber of plot groups
& % —— OPTICN 1: POLYMESHER MESH GEWERATION ——————————————————————————
7 % addpath('./PolyMesher")
g8 % [NODE,ELEM, SUPP,LOLD] = PolyMesher (@MichellDomain, 600, 30) ;
9 % Lvl = 5; RestrictDomain = @RestrictMichell;
Define domain size and the number 1o % rmpath(*./PolyMesher’)
. 11 % ——— OPTICN 2: STRUCTURED-ORTHOGONAL MESH GEWNERATION —————————————————————
of ngdS 12 — | [NODE,ELEM, SUPF,LOAD] = StructDomain(30,10,3,1, 'Cantilever'); |
13
14 — I Lwvl = 10; RestrictDomain = []; % No restriction for box domain I
" 15 % ——— OPTICN 3: LOAD EXTERNWNALLY GEWNERATED MESH —-—-——-———————————————————————
Define level of Ground Structure o e e
17 % Lvl = 10; RestrictDomain = @RestrictHook;
18 % load MeshSerpentine
13 % Lvl = 5; RestrictDomain = @ERestrictSerpentine;
20 % load MeshMichell
21 % Lvl = 4; RestrictDomain = @RestrictMichell;
22 % load MeshFlower
73 % Lvl = 4; RestrictDomain = @RestrictFlower:
24 %% ——= GROUND STRUCTURE METHOD
Generate Ground Structure 25 — | PlotPolyMesh (NODE,ELEM, SUPP,LOAD) % Plot the base mesh |
26 — [BARS] = GenerateiS (NODE,ELEM, Lvl,RestrictDomain, ColTol): % Generate the G5
27 — Nn = gize (HODE,1); Ne = length(ELEM); Nb = size (BARS,1);
. ae . . 28 — [EC] = GetSupports (SUPP); % Get reaction nodes
Obtain eqUIIIbrlum matrix and 29 — F,L] = GetMatrixBl (NODE, BARS,BC,Nn,Nb); % Get SqQuilibrium Matrix
an — [F] = GetVectorF (LOAD,BC,HNn); % Get nodal force wector
force veCtor 31 - fprintf ('Mesh: Elements %d, Nodes %d, Bars %d, Level #d\n',Ne,Nn,Nb,Lwvl)
32 - BTIBT = [BT -BT):; LL = [L; kappa*L]:; 2izeBIBT = whos ('BTBT'): clear BT L
33 — fprintf ('Matrix [BT -BT]: 3d x %d in %gMB (%gGE full)\n',...
34 length (F), length (LL) ,3izeBTBT .bytes/2"20,16% (2*Nn) *Nb,/2~30)
35
ca“ LP optimizer 36 — | tic, [S,vol,exitflag] = linprog(LL, [], []1,BTBT,F, zeros (2*Nb,1)); |
37 — fprintf ('Cbjective V = #f\nlinprog CPU time = %g =\n',vol,toc);
38
300 = 5 = reshape (5,numel (5)/2,2); % Separate slack variables
40 — L =25(:,1) + kappa*5(:,2); % Get cross-sectional areas
41 — N =25(:,1) — 5(:,2): % Get member forces
42 %% = PLOTTING
43 — PlotGroundStructure (NODE, BARS, A, Cutoff, Ng) 46
44 - PlotBoundary (ELEM, HODE)
script [Ln 13 Col 1



Large Example

* Video of the optimization

— In reality iterations are done internally by the interior-point
method — You will most likely never see this...

Iteration 00
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* Final converged topology

— Optimum is global

— Takes ~5 seconds to run on an average computer
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ELASTIC FORMULATION




Table of Contents

e Mathematical formulation
— Simultaneous formulation
— Nested formulation

* Equilibrium constraint

— Geometry, constitutive and equilibrium equation
* Boolean mapping matrix
* Assembly of global matrix and vector
* Optimization example
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Simultaneous Formulation

* The least-compliance structure subjected to
volume constraints is

min fTu

3 | e
Equilibrium
o xon-r—| e

z Cl]L] < Vmax

j=1

a]20

nl : the number of bars L;: length of bar j
a; : cross-sectional area of bar j
V. : maximum allowed volume of the truss

max *

K(a): global stiffness matrix f: global external force vector _



Nested Formulation

* If the global stiffness matrix is nonsingular, we
may eliminate the displacement vector from
simultaneous formulation

min fTu(a)
a
n
S. L. z Clej < Vrnax
j=1
a; >0

Equilibrium

with  K(a)u(a) =f

constraint

where u(a) is an implicit function defined through the
equilibrium equations K(a)u(a) = f

52



Equilibrium Constraint: Geometry Equation

* Ageneral barjin a truss Uiy u

COS O(j
d: =1 .
J [sm O(]]

" y
| we” 1 e L
» Displacement of the end points

u. u B
];1 _],1x )
u-=[ , where u-1=[ , ]and u-2=[ ,
] u]’z ’ ]‘ UJ,ly ]’ UJ,Zy

* Elongation o;
6j =(wj; —wj,) - d; = Bju;
Where
T] = [— cos o — sin Qj COS O sin aj]

53



Equilibrium Constraint: Constitutive Equation

External force f; on the end points
fi=B'n

Force in the bar n;

n; = gja; = Egja; = Edja;/L;

External force f; can be rewritten as follow

T

fi==7 L;

. >B u] Kju]
] J)

Element stiffness matrix of barj
K; =B;" T(2%) g
- T )B

E
— T 0
K;(a;) = a;B; (LJ)B = a;K;

54



Boolean Mapping Matrix

* Introduce a Boolean “mapping” matrix C which
selects terms from global displacement u to element
displacement u;

u]' = C]u

* Global displacement u

u= [uZx Uzy u4y]T

* Element displacement u; 1 Uiy
u; = [00uy, u2y]T» u; = [0 0 uy, u2y]

uz = [0 Ugy Uy u2y]T

55



Boolean Mapping Matrix

e Boolean Matrix C

3u3x 2u2x
uly
1 Uy

(01 [0 0 0]y [ 0 ] 0 0 0]y [ 0 ] 0 0 0]y
o_ooouj" o_ooouix u4y_001u§x
u,| (1 0 ofl,,” u,| (1 0o of],,” u,| |1 o ofl.,”

Usy Ugy Ugy
u2y _0 1 0_ _uZy_ 0 1 0_ u2y 0 1 O_

I I I
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Equilibrium Constraint: Equilibrium Condition

Equilibrium equation of elementj revisited
fi = 4K;"w; = ;K;"Cu

T _ T 0

Constant matrix k]-0

E E\| sc 2 —sc _g2
K.O — _ B.TB. — - S S
¥ <Lj> | (Lj) —¢* —sc ¢ sc

Note: ¢ = cos oj,S = sin Q;

Global version of stiffness matrix and force vector
of elementj

— T 0 _ T
K, ;=G aK;"C;, f,; =G fj
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Assembly of Global Matrix and Vector

* Global stiffness matrix and applied force vector

nl nl nl nl
— _ T 0 _ il T
K—ZKg.j—ij a;K;"C; f—ng,j—zCi /i
j=1 j=1 =il il
e For entire truss
— Elongations B,C,
§ = Bu B=| :
B,C,
— Stresses
1/(11 O
o= [ : : |B7Tf
0 1/a,
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* Three-bar truss * Displacements of the bars

u; = [O 00 U3y]T, U, = [O 0 Uyp uZy]T,
uz = [0 U3y Upx u2y]T,
u = [uy, Uzy u3y]T

000 000 000
~loo0o ~loo0o0 10 01
=10 002100100
001 010 010
0 d B
Barl | m/2 [0 117 [0 —101]
Bar 2 0 [1 01T [-1 010]
Bar3 | 7m/4 |[1 —1]"/V2 | [-111 —1]/V2 59




e Three-bar truss o Stiffness matrices of the bars
K; =BT r(E%) g
_ B
0 0 0 0
100x1{0 1 0 -1
Ki=="1o 0 0 o
0 -10 1
1 0 -10
100x1| 0O O O O
K2=="1-10 1 o0
O 0 0 O
1 -1 -1 1
K __1o0x2|—1 1 1 -1
37 4wz -1 1 1 -1
 Force vectors of the bars 1 -1 -1 1

fi=[0000]" f,=[0000]" fs=[000P]"

60



* Global versions of the element stiffness
matrices and applied force vectors

2

_ T
K, ;= Ci K;(a;)C;

100X1 U 100X1 00 100X2 -1 1
K, = 0 0 0f K,,= 0 0 0 Kjz==7>|-1 1 -1
0 0 1 0 0 O 1 -1 1
AT
fg;=Ci fj
f,1 =[000]" f,, =[000]" f,; =[0PO0]"

* Global stiffness matrix and applied force vector

3 14+1/V2 —-1//2 12 3 0
K=ZK]- =50 —1/v2 142  —1/2 f=ZCijg,j = H
j=1 1N2 =12 1+1/2 j=1 W




* Solution of the equilibrium condition
u=K1f

u = [ugy Upy usy]T=P/50 x [1 2+ V2 1]T

A3
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Optimization : Example

* Optimize the ground structure

(0,6) (6,6)

: — 7 NS N
— Material has E = 10 AN NSNS
IS EIITIICATS
— LoadisP =1 W S v NS
AR ARS SRR NIRRT
o B 8 S B S, S S
SR A PR I e R DA T AR
R T ST 5 e RS
AL\ LAY A A=
i fT NSNS FETNXST
min u(a R GERIARE A AXTRUXS
XK A TRTENE S, 0@ 9l
AL AR
a //’o".p.“m‘! \",;»’o AT ', st
ZanYAVZ AR, (6 3)
nl F'mm A A O
XX

0 LY
/@92{%16‘({%’# :
ZanA

N AW o

; e
YT

S. t. Cl]L] < Vmax

| — \0.'5‘7 SRR L v":’ 2 AL
J=1 PPSROBYS PERLS
PR AN
%:51» «wal SO FRRNRS \x
a: >0 D ENNERI V. }@;}?; ANASY,
o

\)

SIS

g
D g 5

N S SRR SRR

S ]

>

.] - >, v TP R
_ R R RS R SIS
with  K(a)u(a) =f N RN R
N\ \/ \[/ Y ]

(0,0) (6,0)
e Stepsrequired to run TrussTop.m

1. Generate design domain (initial mesh)

2. Optimization parameters in Ex3 Script.m

3. Run!
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Optimization : Example

* Boundary definition

CoordS = [restr.x restr.y coord.x coord.y];

(6,3) (3,1)

CoordS =[1 1 6 3] CoordS =[0 1 3 1]
’m@ (6,6)

— . NN N\
O0or - RN SSRGS SR A PN
1 4 ‘, qp ‘&) q“"\\ ‘0,0,,1;‘."0, q‘.‘\. x" 3!
[ RSP SALIRAS IS ICINISIEIET/ T A )
XA PR AR RS RS AREL
1 1 0 1; AOK NI 22063 | S| o] POk AR
e\ AN L L e L e g —
N S NSEEINETIN )
Ny AP »\),\‘v - Ve Y, RS 11'./- NS
¢/
1 1 D . PR A I A S AN AT
ARSI NN A NI A A
’ “.0 NSRRI XS4 A S TSNS TSNS q.‘.
A%’”.'if’\"/,‘s’é-’“f ' PR '\\")‘ﬁéf"t'.\‘»{\"/'ﬁ','é N
1 1 O 3 . ] f;:%'# A‘. N ‘;','A":*"A'i; ¢ NATY
’ 7 NN NN
\S’&V’:’.\%“«b.\ R DSk ."i“}"'-."r’trf:
1 1 0 4; KRR DI
’ Zana RN VAN
NAON A BN 7
. T IR > NN =57
110 5; e e
A A R T SIS
Z \ ORI 2R ! SEEN /AN RARN
:I_ :I_ O 6 :| ’ /';'A'A"A, 28 O NP SPSQUEAT SIIPNI APN ,-’A\ AT
0 ,‘\V/‘ SIS 0E) ‘\‘\"‘ > ,'//‘ O ,74 »V,;YA‘.;Z
\"\ ‘:\:‘:ﬁ‘W r‘"j’:ﬁf‘:&} v'fi'ﬂ COEX p'?a";';';‘.‘:;;i‘i o, "::‘.':g £ V‘;’;{'z”"/
N AN N S NN R I
K R IR DI T IR
r / 0\.« ‘.,01,/ 8RS AL RS LA T WSSl P o N R \\..‘\
O / 51»‘.\ Ut AN gy Yt NN 2 NN G T Q) TN
A NEEINBFANBIA PIINR AN
O D= e DY a0 0
_ . S IR | SRR | SR SRR [
CoordS = [ 1 1 O -17; ORI RIS RIS XSRS
QKSR EK KX KA\
I e e e s TN
WZa\VZa NV Z V28 66
. .
(0,0) (6,0)



Optimization : Example

* Load definition

CoordL = [px py coord.x coord.vy];
fy= 2 fx= 1

(6,3) (3,1)
[

CoordL =[0 2 6 3] CoordL =
(0,6) (6,6)

RIS ST IARS SURILANGS L7 o’
SIBLISIIILIIT DI
S v SO
%

N

CoordL = [0 -1 o6 3];

’
/)
Ay,
X
\"G%o 7,
a\ y
[) .f& f
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Y
AL 6‘
@

'\
X
A
W
L\
Ev:
YA
W
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A
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S ST | SASEL D ALY
SR | SR | kS| AOXAR

Al iy

A)

. ~.
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NWSre N S A e 3 s S
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A EINSISALAS TR :
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Optimization : Example

7 Editor - C\Users\Junho Chun\Documents\Class\CEE598SD0_FALL128:13\Grand_ppi\TrussTop_vA\Ex3_Scriptm | o | & |

File Edit Text Go Cell Tools Debug Desktop Window Help A x
7 ZMaterial data ITD
Young’s Modulus s Eo-10~7; *ﬁ
9
Design domain Size and the 10 % Geometry, load and support data
11 | Lx=6; Ly=6 ;NLX=6; NLy=€;
number of grids 12f Coords = [ 110 -11;
13 | Coordl. = [0 -1 ILx Ly/2]:
. - - 14
Supports and loads definition 15 % Ground structure data
16'- Ratio=1.1*sgrt(Lx"2+Ly~2); % Full ground structure I
i17|= Lrea=1;
o 18 — Gtol=.0001; % Tolerance to nonoverlapped bars
Level of initial mesh >
20} fem = GenerateGroundNonOver (Lx, Ly, NLx,NLy, CoordL, CoordS,Area,Eo,Ratio, Gtol)|; I
/ 21 %fem = GenerateGroundOver RD(LX,Ly,NLx,NLy,CoordL,CoordS,Area,Eo,Ratio)
Mesh generator call 22
23 — er=.05; fv=1/450;
24 — Vol=Lx*Ly*er*fv;
25 — Lt= sum([fem.Element.L]);
26 — Area=Vol/Lt;
a7 |= xmax=Area*1074;
28 — xmin=Area*10~-2;
29 — xini=Area;
30 |= move= (xmax-xmin) *10; E
31
32 % Blgorithm parameters
33 ( opt = struct(...
34 'XMin', xmin, ... % Lower bound for design variables
35 '¥Max', Xxmax, ... % Upper bound for design variables
36 'xIni',xini, ... % Initial design variables
I 37 'Vol',Vol,... % Specified volume cosntraint
= A Q 38 'Tol', .5*%10~-8, ... % Convergence tolerance on design vars.
Optlmlzatlon parameters I 35 'MaxIter',4000, % Max. number of optimization iterations
40 'NPlot",10,... % Number of iteraction to plot
41 'OCMove ', move, ... % Allowable move step in OC update scheme
4z 'opd', 0, --.- % 1 to OC and 0 to MOC update scheme
43 'OCEta', .5 % ExXponent used in OC update scheme
44 \ )i
45
46 — fem.1p=100;
47 |= fem.arg = ['Ex3 G5 ' num2str (NLx+l) 'x' num2str(NLy+l)]1; Py
Run TrussTop I_ 48 [x, fem] = TrussTop (fem,opt): - = |



Optimization : Example

* Optimal topology

(0,6)

Tension

Compression

(6,3)

(0,0)
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Questions? Comments?
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