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1 Introduction ments obtained with this formulation are compared with conven-
'gpal homogeneous elements, as illustrated by Fig. 1. Notice that

Recent advances in material processing have allowed manuf . . :
turing a wide diversity of functionally graded materidBGMs) e graded element incorporates the material property gradient at
([1-3]). Such materials possess continuously graded propertfgg size scale of the element, while the homogeneous element

with gradual change in microstructufg4,5]). The materials are produces a stepwise constant approximation to a continuous ma-
made to take advantage of desirable features of its constitu«t-:%rt'l_al.pmperty f.'eld such as the one shown in F'g: 1

phases. For instance, in a thermal protection system, FGMs tak% hé%ﬁ?gﬁtriodr:?fuhsgﬁ% agge%%rgp;reeriégg bf:;evr'o\;ﬂogﬁdlgg d\?ﬁr'
advantage of heat and corrosion resistance typical of Ceram@%hditions in both isotrogic and orthotropic FGMs with respect to ?
angGmN(lasc r;?gl%ac:nskfgiqg;ir?ggutscjl\j\%thhn?:; ;?/(? Ifoaltr?; rm%trilgéh ani& alytical solutions which are either available in the literature or
and strength related properties. Depending on the processing te %r_lvedbm th'.s work. The manuscrlplt IS (;]r_gﬁnlzed as fOHOWS'.Th.e
nique, they may exhibit either isotropic or anisotropic materi Ext subsection presents an example which serves as a motivation
prope’rties For instance, large bulk FGMs produced by sp this work. In this example, the FGM leads to a stress redistri-
plasma siﬁtering{SPS teéhnique may be modeled as isotropi ution with lower stress concentration fact@CH than the cor-

materials ((6]). On the other hand, materials processed usirﬁSponding problem with homogeneou; material. Next, a brief lit-
' ’ ature survey and comments on previous related work are given.

plasma spray technique have generally a lamellar strucfdie . . :
while materials processed by electron beam physical vapor de@ﬁ_ctlon 2 presents some exact solutions for displacements and

> ; i thotropic FGMs. The exact solutions for isotropic
sition (PVD) may have a columnar structuffe]). Thus, in study- esses in ortr X . .
ing the mechanics of the former class of materi@bricated by FGMs are obtained as particular instances of those for orthotropic

SPS, a nonhomogeneous isotropic model may be appropria eGMs. Section 3 reviews finite element formulations. Section 4

and for the latter class of materiafabricated by plasma spraying addresses the generalized isoparametric graded finite element for-

or PVD), a nonhomogeneous orthotropic model may suffice as ulation. Sections 5 and 6 present finite element results for

first approximation. Thus, both types of material models, i.e., isG€SS€S in isotropic and orthotropic FGMSs, respectively, which
tropic and orthotropic, are investigated here. are compared with analytical solutions. Finally, Section 7 provides

As the manufacturing of FGMs advances, new modeling tecFoMe concluding remarks.
niques are also developed for such materig89]). Here, we 1.1 Motivation. Functionally graded composites, with
focus on the finite element method for nonhomogeneous materigiiooth variation of volume fractions, offer various advantages
using a generalized isoparametric formulation. The graded elgich as reduction of residual streg$0]) and increased bonding
strength([11]). Moreover, if properly used, such materials may
1CTO ‘{V'ZOT g%rre;pogdelhcg fﬂhmﬁ'd be %ddressedﬁEA © also lead to reduction of stress concentration or stress intensity
ontripute: y the Applie echanics Division O MERICAN CIETY OF
MECHANICAL ENGINEERS for publication in the ®URNAL OF APPLIED MECHAN- factors ([12]). For (_example, Hasselman and Youngblc_m@ﬂB])
ICS. Manuscript received by the ASME Applied Mechanics Division, July 2, 2001?0[“"Id that the maX'm“m .tenS”e therma[ stresseg in brittle ceram-
final revision Nov. 14, 2001. Associate Editor: M.-J. Pindera. Discussion on the papes can be reduced significantly by spatially varying thermal con-
should be addressed to the Editor, Professor Lewis T. Wheeler, Department of Niictivity in a hollow circular cylinder subjected to radially inward

chanical Engineering, University of Houston, Houston, TX 77204-4792, a _ ﬁﬂiﬂ
will be accepted until four months after final publication of the paper itself i?]gr outward Steady state heat flow, and Horgan and C( )

the THE AMERICAN SOCIETY OF MECHANICAL ENGINEERSJOURNAL oF AppLiep  INvestigated the effect of material nonhomogeneity on the re-
MECHANICS. sponse of linearly elastic isotropic hollow circular cylinders or
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X mogeneity which are given by

1 1
,BEzwlog(ETiB/ETi)v BV:V_V|09(VTiB/VTi)v )

respectively, wheraV is the width of the symmetric model as
shown in Fig. 2b). Figure 3a) shows the finite element mesh for
the symmetric portion of the link bar with 1000 quadrilateral el-
by © ements of eight node®8). These elements are graded finite el-
ements as illustrated by Fig. 1 and explained subsequently in this
erty variation along one coordinate axis; (b) homogeneous el- paper. I_:lgure G?) shov_vs theo, stre_ss contour for the homoge-
ements; (c) graded elements. Notice that the property of the neous link baxeither TiB or T) and Fig. 3c) shows ther,, stress
homogeneous element corresponds to the property at the cen- contour for the FGM link bar(TiB/Ti). The main stress values
troid of the graded element. (nodal averageare summarized in Table 1. Notice that the maxi-
mum stress location in the FGM bar is different from that in the
) ) ) ~homogeneous bar—the maximum stress occurd\'insee Fig.
disks under unlforn_‘l internal or externa] pressure by varying(p)) for the homogeneous bar, while it occurs B (see Fig.
Young’s modulus with respect to the radial direction and foungb)) for the FGM bar. Moreover, the maximum stress is lower in
that the maXimum hOOp stress in a nonhomogeneous material dﬂ@ FGM ’[han in the homogeneous bar. Thus’ the FGM |eads to
not, in general, occur on the inner surface in contrast with a hgyress redistribution with a lower SCF as illustrated by Table 1 and
mogeneous material. ) ) ) . Fig. 3. In summary, this example shows, by means of elastic finite
To further motivate the use of FGMs in engineering applicasiement analysis, thathe stress response of (inhomogeneous)

tions, consider the isotropic FGM link bar of Figia2. The bar FGMs differ substantially from those of their homogeneous
has unit thickness, it is subjected to unit axial tension load at tRgunterparts

right end, and it is considered in a state of generalized plane

Fig. 1 Homogeneous versus graded finite elements. (a) Prop-

stress. The basic FGM constituents are titanium monobdfida 1.2 Related Numerical Work. —Several numerical models
and commercially pure titaniuCP Ti) as illustrated by Fig. (). have been used to investigate FGMs, including integral equations
The elastic properties of the base materials (B8]) (e.g.,[16-18), the higher order modek.g.,[19,20), boundary
elements(e.g., [21,22)), and finite elementge.g., [10,23-30).
Etig=375 GPa, v1ig=0.14 This work concentrates on the finite element method for FGMs
using the isoparametric concept for graded elements.
E;;=107 GPa, v1;=0.34. A few additional comments about the related work by Santare

The graded region is incorporated with an exponential materi %?n;?rgbrf;a[:g]zﬁig geor;%?\rt' ;2?{;?%‘;%3?&%:5":qulggu'g :Elaie-
variation. Thus Young’s modulus and Poisson’s ratio are functiorlw:sI H 9 hei K differs f in th 9 hat th
of the Cartesian coordinage(see Fig. 2, i.e rals. However, their work differs from ours in the sense that they
B sample the material properties directly at the Gauss points of the
E(y)=Eefe, =y B, 1 element, while we adopt a genergllzed isoparametric fqrmulatlon.
(¥)=En v(y)=r @ Although the two methods are different, they are equivalent for

respectively, where B and 13, are the length scales of nonho-fine mesh discretization§31]). They investigated the behavior of
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Fig. 2 FGM link bar (units: N, mm ): (a) geometry and boundary conditions;  (b)
symmetric model
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Fig. 3 FGM link bar under unit axial tension (units: N /mm?): (a) mesh con-
figuration with 1000 graded Q8 elements;  (b) o, stress distributions for ho-
mogeneous link bar  (both TiB and Ti ); (¢) o, stress distributions for FGM bar
(TiB/Ti)

Table 1 Representative o, stress values (N/mm?) for the link y
bar of Figs. 2 and 3 T
1 o(x) G, G,
Location ~
. 114 L,:
Oxx A B’ Isotropic
Homogeneous 2.908 2.137 L
FGM 2.369 2.601 Ex) P

v

four-node quadrilateral®4) for isotropic FGMs only. In addition  Orthotropic
to the bilinear elementQ4), we also investigate the behavior of E L
eight-node quadrilateralg8) for both isotropic and orthotropic 1(%) — =0
FGMs. They investigated exponential material variation only. £,,(x) 2
Here, we compare both exponential and linear material variations G,,(x)
Finally, we believe that the generalized isoparametric formulatior

is more natural to the finite element method than the Gauss poir Vi —J T 71
sampling of material properties because the generalized formule Ig;

tion embraces the important isoparametric concept—the sam S~ 7
shape functions are used to interpolate the unknown displace (a) (b) (© (d)

ments, the geometry, and the material parameters.
Fig. 4 An isotropic or orthotropic functionally graded plate:

: (a) geometry and material properties—the shaded portion indi-
2 Sf)me Exact Solutions for Nonhomogeneous cates the symmetric region of the plate used in this analysis;
Elasticity (b) fixed grip loading with a schematic of the corresponding

Exact solutions for both isotropic and orthotropic functionallPresses at the end points of the plate;  (c) tension loading; ()
graded material$FGMs) will be used as reference solutions fo ending loading
the numerical examples that follow. We consider athotropic
functionally graded plate of infinite length and finite width sub-
jected to various loading conditions such as remote fixed gri
tension, and bending, as shown in Fig. 4. Both exponential ajile 5y graded isotropic and orthotropic FGMs are new solutions
linear material variations are considered. First, analytical S°|Ut'08§rived in this work.
for stresses and displacements are developed for orthotropic
FGMs and, afterwards, they are particulariZedy., in the limij 2.1 Exponential Material Variation. Consider a plate un-
for isotropic FGMs. The analytical solutions for exponentiallyder generalized plane stress conditidsse Fig. 4 made of a
graded isotropic FGMs coincide with those of Erdogan and Waonhomogeneous orthotropic material. Assume the Poisson'’s ratio

2]) and Paulino and Kin{[33]). The analytical solutions for
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(v12) constant, and the Young's moduli and in-plane shear modu- U(0,0=0, uy(x,0=0, (8)
lus with variations given by the following expressions:

one obtains the displacements
E11(X) = Egleﬁllx

Ey 1
= EQ gB2x Ug(X,Y) = — vypg0— ————[efz FrIX— 1
Ezz(x) Ezze (3) X( y) 12€0 Egl BZZ_ ﬂll[ ] (9)
GqH(X :GO eﬂlzx
12X =Gz Uy(X,Y)=&oY.
v1(X) = constant, Notice that for isotropic materialsE(=E;=E,, G1,=G, and
whereE$,=E,(0), ES,=E,»(0), andG%,= G,,(0) are the mate- ¥12= v), the stress distributiofi7) becomeg[32])
rial properties at the=0 line (see Fig. 4a)), and the coefficients Tyy(X) = E% e (10)
Bi; above are independent nonhomogeneity parameters character- ) . ) o
ized by and the displacements are obtained in the limit of ER). as
(B2o— B11)—0. Thus([33])
—i|o w u (X ): — X
Bllfw 9 Ell(o) x( XY veg (11)
1 [ExW) Uy(X,Y) = &oy.
522:W|09 Ezz(o)} 4) 2.1.2 Tension and Bending. For tension and bending loads
(see Figs. &) and 4d), respectively, the applied stresses are
1 [Gp(W) defined by
B1o=l09 = |
W % G14(0) oy W2
whereW is the width of the FGM plate as shown in Fig. 4. Notice N=oW, M=—g—, (12)

that in this case thg;; parameters have unifsengti %,

For a corresponding nonhomogeneous isotropic mateEal
=E1=E,,, G=G;,, v1o,=v), the Poisson’s ratio is assume
constant and the Young's modulus varies exponentially, i.e.,

E(x)=E%#*

hereN is a membrane resultant along the W/2 line (see Fig.

(a)), andM is the bending moment. For these two loading cases,
the compatibility conditions®e,,/9x*=0 givese,,=Ax+B and
thus

(5) 0yy(X) = E3eP22(Ax+B) (13)

where the constanta (with unit [Lengti %) andB (dimension-
whereE®=E(0). Thenonhomogeneity parametgris given by  less are determined from

v(X)=constant

= 1| E(W) 6 fw (x)dx=N fw (X)xdx=M (14)
=W o) (6) Y I % =
which has unit§ LengtH 2. by assuming
2.1.1 Fixed Grip Loading. For fixed grip loading(see Fig. M=NW/2 for tension
4(b)) with &, (x, =) =¢,, the stress distribution becomes ) (15)
N=0 for bending.
O'yy(x) = Egzsoeﬁzzx- (1)

Thus, for tension load, the stress distribution is given by (E8)
Using strain-displacement relations and the boundary conditionsith

A BoN [ WB5,eP22N —2 By eP2 + WS+ 2 B,
2E%, | ePeWpL\W2— e2hoW y DbV _1 | 16)
_ BooN [ 2PN~ W2B5,+ 3B, W —4) + W2 B5,— 28,/ + 8] — B — 4
2Eg2 (eﬁzzw— 1)(9/322Wﬁ§2W2_ @2B22N 4 2BV _ 1) '
I
For bending load, the stress distribution is also given by(E8), A
however, the coefficientd andB for this case are 0| |Ax—-——+B
S B2z~ Bu (B22~ B11)X
Ux(X,Y) V125 — €
B2M Bool 1— eP2aMy Eqy Bao— B
A= Egz eﬁzzwﬂgzwz_ezﬂzzw-i- 2eB22W_ 1]’ 17
@) A-B(BrBu)| A,
g oM [ paWet el (B B ) 2 18)
ES, | ef22Vp2 \W2—e?hedV 4 pehodV—1 |’

Uy(X,y)=(Ax+B)y.
respectively. For both tension and bending loads, using the strain-
displacement relations and the boundary conditi@)s one ob- The constanté andB refer to the appropriate loading case above,
tains the displacements either tensionEq. (16)) or bending(Eq. (17)).
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For the isotropic caseH=E,=E,,, G1,=G, andv,=v), the
stress distribution is obtained by Eq46) and (17) (for tension
and bending loads, respectivelyith B, replaced byg, which

agree with Erdogan and W(82] solution. The displacements are

obtained in the limit of Eq(18) as (B8,,— B11) —0. Thus([33])

A A
Uy(X,y)= v( §x2+ Bx) - §y2
(19)
Uy(X,y)=(Ax+B)y.

2.2 Linear Material Variation.

Once again, consider a

For isotropic materialsE=E1=E,,, G1,=G, and v{,=v),
the stress distributiof24) becomes

O-yy(X)ISO(EO'i_ ¥X), (26)
and the displacements are obtained from &) as
Uy(X,Y)= —vegX @7)

uy(X,y) =¢ggy.

plate under generalized plane stress conditions, as illustrated by.2.2 Tension and BendingFor tension and bending loads
Fig. 4. Assume the Poisson’s ratio;;¢) is constant, and the (see Fig. 4c) and 4d), respectively, the applied stresses are de-
Young's moduli and in-plane shear modulus with variations giveiined by Eq.(12), i.e.,

by the following expression&f. Eq. (3)):
E11(X) =Efj+ yiuX
Eoa(X) = E9,+ y2X 20)
G 1o X) =Gyt yix
v15(X) = constant,
whereEY;=E1,(0), E9,=E,»(0), andGJ,=G,,(0) are the mate-

rial properties at the&=0 line (see Fig. 4a)) and the coefficients
7;j are independent nonhomogeneity parameters characterized by

Ej(W)—Ey(0)

Y11= W
E2(W) —E2(0)
Yoom (21)
G1(W) —G10)
L VYA
Notice that in this case they; parameters have units

[Force]/[ Length®.
For a corresponding nonhomogeneous isotropic mateHal

=E{;=E,,, G=G4,, v,=v), the Poisson’s ratio is assumed

constant and the Young's modulus varies linearly, i.e.,
E(x)=E%+ yx 22)
v(X)=constant

whereE®=E(0). Thenonhomogeneity parameteris given by

E(W)—E(0)
YT w
which has unitg Force]/[ Length®.

2.2.1 Fixed Grip Loading. For fixed grip loading(see Fig.
4(b)) with &,,(x, =) =¢,, the stress distribution becomes

(24)

(23)

0yy(X) = 0(EQp+ ¥2X).

Using strain-displacement relations and the boundary conditions.

u,(0,00=0,
one obtains the displacements

uy(x,00=0,

Y22 Egz |n(Egl+ Y22X)
U(X,Y) = —vieq) —— X+ ——
Y11 Y11
0 0
B Y2oE11 IN(E1+ v11X)
7’%1
EY,  y,EY
- ( S| In(EY
1 Y11 (25)
Uy(X,Y) =gqy.

506 / Vol. 69, JULY 2002
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N=oW, M=

whereN is a membrane resultant applied along #weW/2 line
(see Fig. 4a)), and M is the bending moment. For these two
loading cases, the compatibility conditiaife,,/dx?=0 gives
ey,=Ax+B and thus

Tyy(X) = (Egpt y2) (AX+B), (28)
where the constanta (with unit [Lengti ~*) andB (dimension-
les9 are determined from Ed14), i.e.,

w w
J oyy(x)dx=N, f Iy (X)X dx=M,
0 0

by assumingsee Eq(15))

M=NW/2 fortension

(29)

( N=0 for bending.

Thus, for tension load, the stress distribution is given by (28)
with

A= —y2N

n ,

§ Vo WP+ y 2 EQ W2+ (ES,) W (30)
B N(ES,+ y20W)

§ VEWE+ v E QW2+ (ES) W

For bending load, the stress distribution is also given by(E8§).
with

— 36M (2E9,+ y25W)
A=—— 0 4 0\2\p3"
Y2 W+ BE2y2W + 6(E3y) “W

(31)
3y, W2+ 3E,W

2y, W+ 6EY,
Yo WP+ 6ES,y,0W* + 6(ED,) *W?

36M (2E9,+ W)

For both tension and bending loads, using the strain-displacement
relations and the boundary conditions.

Ux(0,0=0, uy(x,00=0,
one obtains the displacements in closed form, which are given by
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Uy(X,y)=— Vlz[ _(

E(1)1722A ¥22B Eng YA, Eng E81722B EglEng (E(1)1)2722A 0
 — - Xt o X -  — > —+ 3 IN(y1x+E7y)
Y11 Y1 Y1 Y1 T Y11 Y11 Y11
2B~ EDiyiyaB— ENESy1A+ (ED) yo0A 0 A,
- 3 In(E7y)  — Ey ,
Y11 (32)

Uy(X,y)=(Ax+B)y.

For the isotropic caseH=E;=E,,, G1,=G, andv,,=v), the
stress distribution is obtained by Eq80) and (31) (for tension
and bending loads, respectivelyith y,, and Egz, replaced byy

4 Generalized Isoparametric Graded Finite Elements

For simplicity of notation, the superscript), denoting the
element, is dropped in this section. Material propertieg., at

and E°, respectively. The displacements are obtained from Egach Gaussian integration pointan be interpolated from the
(32 as nodal material properties of the element using isoparametric shape
A A functions which are the same for spatial coordinatey):
ux(x,y)=u(§x2+Bx)—§y2 m m
(33) x=2, Nixi, y=2 N, (40)
uy(x,y)=(Ax+B)y. , " .
) ) ) and displacementau(v):
Notice that the form of the exact solutions for displacements in m m
orthotropic FGMs differs significantly from that for isotropic _ _
FGMs because the former case depend on two principal Young’s u= 2:1 Niui, U_zfl Niv; . (41)

moduli, while in the latter case the explicit moduli dependence

absent. ]Ishus, by generalization of the isoparametric concept, the Young's

moduluse=E(x) and Poisson’s rati@= v(x) are interpolated as

m m
o ' E=> NE. »=2 Ny
3 Basic Finite Element Formulation =1 =1
Displacements for an isoparametric finite element can be wriespectively, as illustrated by Fig. 5. Similar expansions can also
ten as be made to two-dimensional orthotropic materials where the four
independent engineering elastic parameters are the principal
Young’s moduli,E;;=E;(X), Exx=Ej,(X), in-plane shear modu-
lus G1,=G(X); and Poisson’s ratie;,= v15(X), i.e.,

(42)

m
ue= >, Nyuf (34)
i=1
whereN; are shape functionsy; is the nodal displacement corre-
sponding to nodé, andm is the number of nodal points in the
element. For example, for a Q4 element, the standard shape func-
tions are

Eu=2 Ni(Ewi,  Ez= 2 Ni(Ezi,

|—ml |—m1 (43)
GfiZl Ni(G1o)i » m:; Ni(v12); ,
Ni=(1+&&)(1+ np)/4, (35) ) -

where ¢, ) denote intrinsic coordinates in the interyat 1,1]
and (¢ ,#n;) denote the local coordinates of nodeAs usual,

i=1,...,4
as illustrated by Fig. 5.
Some material models may be given in terms of the volume
) ! : ) > fraction (V) of a material phase, “p,” e.g., the metal phase in a
strains are obtained from displacements by differentiation as. aramic/metal FGM([35)). In this case, the generalized isopara-
(36) metric formulation consists of approximating by the standard
interpolation
whereB€ is the strain-displacement matrix of shape function de-
rivatives, andu® is the nodal displacement vector. Thus strain-
stress relations are given by

£e=Reye

m
VP=D" N,VP (44)
=1
WhereVip (i=1,2,...,m) are the values d¥" at the nodal points.

o°=D%(x)® . i .
This approach offers a convenient framework to couple the finite

37

where D¢(x) is the constitutive matrix, which is a function of
position for nonhomogeneous materials, iBS(x) = DS(X,y).
The principle of virtual work(PVW) yields the following finite

element stiffness equatiom&m]) Isotropic FGMs Orthotropic FGMs
. E(x.y) E, (x.)
Keu®=F (38) v(x,y) Vv, (%) ij=1.23

whereF¢€ is the load vector and the element stiffness matrix is

ke= J B De(x)B°d(,
Q

e

(39)

in which Q, is the domain of elemer(g), and T denotes trans-
pose. The reasoning above, at the element level, can be readily
extended to the whole domain, which leads to a system of alggag. 5 Generalized isoparametric formulation for isotropic or
braic equations for the unknown displaceme(h8st]). orthotropic FGMs
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element method with micromechanics-based models, e.g., self- o=
. y w=9
consistent scheme. 7 T T T
The above framework allows development of a fully isopara- T
metric formulation in the sense that the same shape functions are

used to interpolate the unknown displacements, the geometry, and E (x) E (x)
the material properties. Thus, the actual variation of the material = V= constant v=03
properties may be approximated by the element interpolation X

functions(e.g., a certain degree of polynomial functipns

@ (b)
5 Numerical Examples

2

Although the finite element method offers a lot of flexibility in Shiah s
terms of modeling material property variation, the actual choice of \’ﬁ\ | B ; y=00
properties and boundary value problems in this section was dic- =
tated by the analytical solutions derived in Section 2 for the plate E®)
configuration of Fig. 4. Here the analytical solutions are compared v=03 — 6=1
with the numerical ones. The examples are divided into two
groups:

ANEC RO mNe IS

1. isotropic FGM plate

2. orthotropic FGM plate ) (d)
For each group, two material variations along the Cartesian dirddg. 6 Isotropic FGM plate with material variation in the
tion x are examined: x-direction: (a) geometry, boundary conditions and material

properties; (b) tension load perpendicular to material grada-
1. exponentially graded materials tion; (c) bending load; (d) tension load parallel to material gra-
2. linearly graded materials dation. The finite element mesh ~ (9X9 quads: either Q4 or Q8 )
is illustrated in parts  (b) through (d) with a representative Q4

and also the following loading conditions are considered: element at the upper left hand corner

1. fixed grip

2. tension loading

3. bending loading The behavior of the elementaomogeneous versus gradésl

fs follows. Figure 7 shows the stresg, versusx for an expo-

The relevant stress values obtained numerically by the fini - ; - h ; -
element method are compared with the analytical results. ﬂ%?”"a”y graded isotropic plate subjected to a uniform displace-

. . : . : ; t in they direction witheq=A/H. According to Eq.(10), the
fixed grip loading(see Fig. 4b)), the stressr,, is considered. For men 3 X . 0= )
tension applied parallel to the material grgéation, the siwesis stressa, is uniform in they-direction and thus the graph of Fig.

X . . . ; i licable to the entire range gfcoordinates, i.e., €y
the quantity of interest, while for tension and bending loads aé— IS applic . ; . -
plied perpendicular to the material gradatigeee Figs. &) and <H (see Fig. 2)). In this case, the solution obtained with graded

4(d), respectively, the stressr,, is the relevant quantity. More- Q4 elements matches the exact solution. This is expected because
over, for a few of the examples, the displacements computed r]i[ls exact d|splacemen_t f|eld_ is linegsee _Eq.(ll) and Fig. 8,
merically are also compared with the analytical results. which is captured by linear isoparametric elements such as Q4.

The finite element meshes consist of square elem@sor Moreover, because of the linearity of the analytical solutigqg.

Q8) with edges of unit length. For all the examples; 2 Gauss (12)), a single Q4 element could be used to predict the exact

quadrature was employed. All the numerical stress values repor?é)(ﬁuuon' Figure 7 also S.ho".VS tha_t the stress obtained with homo-
gheous Q4 elements is piecewise constant due to the fact that

here are nodal values extrapolated directly from the Gauss poi | ts h indl lue f h terial "
and without any averaging. The finite element program develop S€ elements have a single value for €ach material property,
ich leads to a piecewise constant material property approxima-

in this work was implemented by the authors in a simple co ion as illustrated by Fig. 1. Therefore such homogeneous ele-

using MATLAB. ments predict the actual stress values only at their centroids where
5.1 Isotropic Functionally Graded Plate. Figure 6 illus-

trates an isotropic FGM plate with material variation in the Car-

tesian directiorx subjected to various loading conditions. Figure

6(a) shows the basic geometry, boundary conditions and proper- 10l Exact
ties. The finite element mesh consists 6f ® Q4 or Q8 elements -*- Q4 Graded
(either graded or homogenegus illustrated in Figs. ®) to 6(d). o Q4 Homog
The Young's modulus varies from r

E,=E°=E(0) to E,=E(W) (45)
either exponentially as given by E@) or linearly as given by Eq. e

(22) with E;=1.0 andE,=8.0. The independent nonhomogeneity
parameters are given by Ed$) and(23) for the exponential and
linear material variations, respectively, with

B=(In(8/1))/9 and y=7/9. (46)
Consistent units are employed here. The Poisson’s ratio is con-
stant and it is selected as follows: %1 2 3 4 5 & 7 8 o9
v=0.3 for tension and bending applied perpendicular to ma- X
terial gradation(Figs. b) and @c), respectively - Fig. 7 Stress distribution  (o,,) using Q4 elements for fixed
v=0.0 for tension load parallel to material gradati(fig. grip (e,=A/H) load applied perpendicular to the  exponential
6(d)). material gradation
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Fig. 11 Stress distribution  (o,) using Q4 elements for ten-
sion loading applied perpendicular to the linear material
gradation

stress profile with the stress at the midnode location alongthe
direction matching the exact stress value, which occurs because
the material properties at the mid-nodes match the actual material
properties.

Figures 9 and 10 compare nodal stresses interpolated from
stresses at Gauss integration points using graded and homoge-
neous Q4 and Q8 elements, respectively, which are subjected to
tension loading applied perpendicular to the material gradation.
Figures 11 and 12 show such comparison considering linear ma-
terial variation. On the left side of the domain in Figs. 9-12, the
exact solution shows an increasing trendogf, with x, while the
homogeneous elemeresither Q4 or Q8give o, as a decreasing
function ofx in each individual element. Notice that this problem
does not occur with the graded elements. In this case, the exact
solution for displacements is quadratisee Eqs(19) and(33) for
exponential and linear material variations, repectijehich co-
incides with the order of interpolation for the Q8 element. More-

gradation . o . .
over, the material variation for the linear case is captured by the
1.8 element shape functions. The stress results for the Q8 element
Exadt considering exponential and linear material variations are shown
1.6 -+- Q8 Graded in Figs. 10 and 12, respectively. As expected, the homogeneous
1.4 ~o Q8 Homog Q8 element shows piecewise variation while the graded Q8 ele-
' ment approaches the analytical solution quite well. The relatively
1.2t small differences observed between the analytical and graded Q8
nl solutions may be attributed to the finite plate lengtbngth/
0.8~
0.6/
0.4t 16 '
Exact
0.2¢ -*- Q8 Graded
1.4 5 ~© Q8Homog |
% 6 7 8 09
1.2
Fig. 10 Stress distribution (o) using Q8 elements for ten- -
sion load applied perpendicular to the exponential material o 1
gradation
0.8f
the properties match the material gradation. Moreover, the ampli- 0.6}
tude of the nodal stress jumps for homogeneous Q4 elements in-

creases with coordinatein a nearly exponential fashion, as illus-

0.4

trated by Fig. 7. These observations are consistent with those by o 1t 2 3 4 5 6 7 8 9

Santare and Lambrdfg30]). Of course, the exact solution is also

recovered with higher-order graded elements, e.g., Q8. The horgy. 12 Stress distribution (o,,) using Q8 elements for ten-
geneous Q8 elements also lead to a piecewise constant naglad load applied perpendicular to the  linear material gradation
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(o) using Q4 elements (9X9

bend-  Fig. 17 Stress distribution
exponential or

mesh) for tension load applied parallel to the
linear material gradation

(o) using Q8 elements for

Fig. 14 Stress distribution
exponential material

ing load applied perpendicular to the

gradation
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(o) using Q4 elements for bend-  Fig. 18 Stress distribution  (o,) using Q8 elements (9X9
mesh) for tension load applied parallel to the material gradation

Fig. 15 Stress distribution
linear material gradation

ing load applied perpendicular to the

width=1 as shown in Fig. 6 utlized in the numerical in Figs. 14 and 16, respectively. Similar comments to those made
calculation—the analytical solution was derived for iafinitely comparing the Q8homogeneous versus graglexshd analytical
solutions for the tension load case also hold for the present bend-

long plate of finite width.

A similar comparison is also made for a different loading caseg load case.
consisting of bending applied perpendicular to the material grada-The above results lead to the following observations. The varia-
tion. Figures 13 and 14 show the behavior of the Q4 and Q®n of stress with positiox is larger for linear than with expo-
elements, respectively, for the exponential variation. Figures b®&ntial material variation&cf. Figs. 9 and 11, 10 and 12, 13 and
and 16 show such comparison for the bending case consideriify and 14 and 16 In general, the amplitude of stress jumps
linear material variation. The stress results for the Q8 elememttween Q4 elements is larger than between Q8 elements, espe-
considering exponential and linear material variations are showrally for conventional homogeneous elemefafs Figs. 9 and 10,
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Fig. 19 Strain distribution  (&,,) using Q4 elements (either 9 T
X9 and 18 X 18) for tension load applied parallel to the material I
gradation (either exponential or linear ) vi,= 0.3 E,

11 and 12, 13 and 14, 15 and 16, and 17 and A8 expected, the 12
graded elements show superior performance to homogeneous
ements, i.e., the graded elements provide a better approximat
to the exact solution in every element. Essentially, the grad:
elements show good performance in terms of actual, no av-
eraging nodal stress ¢,,) along they=0 line and the homoge-
neous elements behave well in terms of the averaged no I O O
stresses.

Figures 17 and 18 compare nodal stresses of graded ver (c) ()
homogeneous Q4 and Q8 elementsx@® mesh, respectively,
which are subjected to tension applied parallel to the materfag: 20 Orthotropic FGM plate with material variation in the
gradation(see Fig. 6d)). The exact solution is,— 1.0. Different X-direction:  (a) geometry, boundary conditions and material
from the observation above, it is interesting to observe in Fig. ﬁOpert'eS' (b) tension load perpendicular to material grada-

on; (c) bending load; (d) tension load parallel to the material
that the Q4 graded element shows poor performance when c qdation. The finite element mesh  (Q4 or Q8 elements ) is illus-

pared to Q4 homogeneous elements for both material variatiQfged in parts (b) through (d) with a representative Q4 element
(i.e., exponential and linearAlthough mesh refinemenfor a at the upper left hand corner

fixed material gradientincreases the accuracy of the solution, the

same trend of Fig. 17 is observed for a finer mesh, e.g< 118

Figure 17 shows that the Q4 graded elements provide piecewise

continuous solutions to the nodal stresses,), while _the hor_no_- iven by Eq.(20). The independent nonhomogeneity parameters
geneous Q4 elements do recover th(_e exact solution. This is . and y;;) are given by Eqs(4) and (21) for the exponential
reverse of the effect seen in the previous load cases. Howeveh linear material variations, respectively. The Poisson's ratio is
higher order element such as @8ther graded or homogeneous 3ssumed constant.

is able to capture the exact solution in this case, as shown in Figgor the examples in Fig. 20, the finite element mesh consists of
18. » . ) either Q4 or Q8graded or homogeneouslements under gener-

A few additional remarks, regarding the behavior of Q4 el&lized plane stress. The mesh for the geometry of Figd) 2td
ments observed in Fig. 17, are in order. Both graded and homgyc) consists of % 18 elements. For the sake of completeness,
geneous elements lead to the same displacements at all nodesaﬂqng:]e properties used in the numerical analyses are given as
the same constant strains for each element. Notice that along ffows. However, due to space limitations, not all the results are
y=0 line, the nodal stress range has constant amplitude for t§gown here, but they are reported elsewhEé]). For the fixed
exponential material case, while it has decreasing amplitude @fip case and for tension and bending perpendicular to the mate-

the linear material cassee Fig. 17. The reason for this behavior rja| gradation, the following data were used for the finite element
is illustrated by Fig. 19 by investigating the strain distribution fogma|y5i5;

two mesh discretizations (99 and 18< 18 meshes For instance, 0 o 0
for the exponential material case, the nodal strains decrease expo- E;;=1, E3»=0.1, Gi,=05, »,=0.3

nentially while the Young's modulus increase exponentially. Thyg \nich consistent units are employed. For tension parallel to the
the multiplication of these two factors cancel each other 10 giveifyeria gradation, the following data were used for the finite
constant stress amplitude at the nodal points, as shown in Fig. &ement analysis:

5.2 Orthotropic Functionally Graded Plate. Figure 20 E9=1 E%=01 G%=05 -00
shows orthotropic FGM plates, with material variation in the Car- u=s E22m A 1T U Vim R
tesian directiorx, subjected to various loading conditions. Figure For the single case of fixed grip loading, only exponential ma-
20(a) shows the basic geometry, boundary conditions and materetial variation was considered. In this case, fijeparameters are
property variation. The two principal Young’s moduli and in-plane _ _ _ _
shear modulus vary proportionally either with an exponential B=(IN8)9=6,  Bu=p2, pi=pI3
function ofx as given by Eq(3) or with a linear function ok as so that the range of properties is the following

!
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Fig. 21 Stress distribution  (o,,) using Q4 elements for ten- Fig. 22 Stress distribution  (o,) using Q8 elements for ten-
sion loading applied perpendicular to the  exponential material ~ sion loading applied perpendicular to the  exponential material
gradation in orthotropic FGMs  (E%,=1, E3,=0.1, G9,=0.5, gradation in orthotropic FGMs  (EJ;=1, E3,=0.1, G3,=0.5,
v,,=0.3) v1,=0.3)

E11=[1,2.828, E»=[0.1,08, G1»,=[0.51.0. computed numerically with those obtained by means of (£§)

For all other loading casdse., tension and bending perpendiculafor all the element types investigated in the present _Ioadlng case.
to the material gradation, and tension parallel to the material gri?® curves foru, indicate that the best elements in terms of
dation), the 8;; parameters, characteristic of exponential materigfatching the analytical solutiofEqg. (18)) are Q8 graded, Q8
variation, are chosen so that the variationsEgf, E,,, andG,, homogeneous, Q4 graded and Q4 homogeneous, which is some-

are proportional[16,17), i.e., how expected. Qualitatively, the nodal stress plots considering
linear material variation are somewhat similar to those of Figs. 21
B11= B2o= B1o=(In8)/9= B, (47) and 22 and are not given hef[&6]).
and they,; parameters, characteristic of linear material variation, A Similar comparison is also made for a different loading case
are given by consisting of bending applied pe_rpendlcular to the material grada-
tion. Figure 24 shows a comparison of the displacemantsafd
v11=719=7vy, v»=0.7/9, v,,=3.5/9 u,) computed numerically with those obtained by Etg) for all

the element types investigated in the present loading case. As
expected, the Q8 elements capture the analytical soluftmn
E,;=[1.0,8.0, E»=[0.1,0.8, G;»=[0.5,4.0. (18)) for uy better than the Q4 elements. For the sake of brevity,

. . the nodal stress plots are not given hd’6€)).
Regarding the element behavigomogeneous versus gragled Finally, a few comments regarding the case of tension loading

seve_ral of th? observations made for |.sotrop|c.mater|als n tg plied parallel to the material gradation in orthotropic FGMs
previous section also hold for orthotropic materials. Thus rath ig. 20d)) are in order. Qualitatively, the counterintuitive behav-

than repeating those common observations, this section focuse ar of homogeneous versus graded Q4 elements is similar to the
new ob_servatlons and insights. Moreover, th_e analytical splutloggse involving isotropic nonhomogeneous materials illustrated by
of Section 2 show that, for exponential material gradat®ection F?gs. 17 and 18. Thus, for orthotropic case, the Q4 graded element

. i
2.1, the relevant stress quantity only depends on the nonhomo% S0 shows poor performance when compared to the Q4 homoge-
neous parametgz,, and the displacements depend on BBt o i elements for both material variatigine., exponential or

and B,,. For linear material grqdatiofSection 2.3, the relevant linean. The reasons for such behavior are given in the last two
stress depends op,,, and the displacements depend on bgth ’

and y,,. This information will be helpful to understand the ex-
amples reported below.

so that the range of properties is the following:

For proportional variation of material propertiesee Eq(47)), 10 - ;
the change ofi, with x is linear (rather than the nonlinear func- — Exact
tion of Eq. (9)), which is similar to the behavior of the isotropic al - Q4 Graded
plate under the same boundary conditions, i.e., fixed gep Fig. T ggg‘r’;‘(ﬁ%
8). This behavior can be seen by the following limit: ol -~ Q8Homog
im  u= lim vstgz ! =" -
x= V1200 B T 4l |Ba®
(B22= B10)—0 (B2~ B1)—0 E% Bao=Bu =y gu?‘;
o [
X[elPezB1) — 1] A
) .
of |
E%
=~ V1o =5 X. (48) I
En o 1 2 3 4 5 6 7 8 9

Figures 21 and 22 compare nodal stresses interpolated from
stresses at Gauss points using graded and homogeneous Q4rack3 Displacements (u, and u,) along y=1 using Q4 and
Q8 elements, respectively, which are subjected to tension lo@é elements for tension load applied perpendicular to the — ex-
applied perpendicular to the exponential material gradation. Figenential material gradation in orthotropic FGMs (E%,=1,
ure 23 shows a comparison of the displacements gnd u,)  £9,=0.1, G2,=0.5, v,,=0.3)
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Fig. 24 Displacements (u, and u,) along y=1 using Q4 and
Q8 elements for bending load applied perpendicular to the  ex-
ponential material gradation in orthotropic FGMs (E21=1,
ES,=0.1, G%,=0.5, v;,=0.3)

and quadratid¢Q8) quadrilateral elements have been investigated
in detail. To address the influence of material property variation,
both exponentially and linearly graded elements have been con-
sidered and compared. Several plates with continuously nonhomo-
geneous isotropic and orthotropic materials were considered under
fixed grip, tension, and bending conditions. The performance of
graded elements was compared to that of conventional elements
with respect to analytical solutions.

Higher-order graded elemengs.g., quadratic and higheare
superior to conventional homogeneous elements based on the
same shape functions. One should be careful when using graded
elements with linear shape functioiis.g., Q4 as it may lose
accuracy in certain situations such as uniform traction parallel to
the material gradient direction. When using this element, we rec-
ommend to average the nodal properties of the element, which
would convert it to a regular homogeneous element. Thus the
value of material properties at the integration points used to com-
pute stresses depend on whether first-order or higher-order ele-
ments are used. This simple procedure leads to a more robust
element. A similar procedure is used in the finite element code
ABAQUS ([37]) for heat transfer analysis and also in the
WARP3D code([38]).

paragraphs of the previous section and will not be repeated hef¢knowledgments

This is the reverse of the effect seen in the previous load cases fojye gratefully acknowledge the support from the National Sci-
graded orthotropic materials where the graded elements show g4ce FoundatiotNSP under grant No. CMS-011595Mechan-
perior behavior to the corresponding homogeneous elemengs and Materials Progranand from the NASA Ames Research

Similarly to the isotropic case, a higher-order element such as @@nter (NAG 2-1424 to the University of Illinois at Urbana-
(either graded or homogenegusith 2x2 Gauss quadrature is champaign.

able to capture the exact solution for this loading case.
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