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Isoparametric Graded Finite
Elements for Nonhomogeneous
Isotropic and Orthotropic
Materials
Graded finite elements are presented within the framework of a generalized isoparam
formulation. Such elements possess a spatially varying material property field,
Young’s modulus~E! and Poisson’s ratio~n! for isotropic materials; and principal
Young’s moduli~E11,E22!, in-plane shear modulus~G12!, and Poisson’s ratio~n12! for
orthotropic materials. To investigate the influence of material property variation, b
exponentially and linearly graded materials are considered and compared. Se
boundary value problems involving continuously nonhomogeneous isotropic and o
tropic materials are solved, and the performance of graded elements is compared t
of conventional homogeneous elements with reference to analytical solutions. Such
tions are obtained for an orthotropic plate of infinite length and finite width subjecte
various loading conditions. The corresponding solutions for an isotropic plate are
tained from those for the orthotropic plate. In general, graded finite elements pro
more accurate local stress than conventional homogeneous elements, however, su
not be the case for four-node quadrilateral (Q4) elements. The framework described
can serve as the basis for further investigations such as thermal and dynamic proble
functionally graded materials.@DOI: 10.1115/1.1467094#
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1 Introduction
Recent advances in material processing have allowed manu

turing a wide diversity of functionally graded materials~FGMs!
~@1–3#!. Such materials possess continuously graded prope
with gradual change in microstructure~@4,5#!. The materials are
made to take advantage of desirable features of its constit
phases. For instance, in a thermal protection system, FGMs
advantage of heat and corrosion resistance typical of ceram
and mechanical strength and toughness typical of metals.

FGMs are nonhomogeneous with regard to thermomechan
and strength related properties. Depending on the processing
nique, they may exhibit either isotropic or anisotropic mater
properties. For instance, large bulk FGMs produced by sp
plasma sintering~SPS! technique may be modeled as isotrop
materials ~@6#!. On the other hand, materials processed us
plasma spray technique have generally a lamellar structure~@7#!,
while materials processed by electron beam physical vapor d
sition ~PVD! may have a columnar structure~@8#!. Thus, in study-
ing the mechanics of the former class of materials~fabricated by
SPS!, a nonhomogeneous isotropic model may be appropri
and for the latter class of materials~fabricated by plasma sprayin
or PVD!, a nonhomogeneous orthotropic model may suffice a
first approximation. Thus, both types of material models, i.e., i
tropic and orthotropic, are investigated here.

As the manufacturing of FGMs advances, new modeling te
niques are also developed for such materials~@3,9#!. Here, we
focus on the finite element method for nonhomogeneous mate
using a generalized isoparametric formulation. The graded

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the JOURNAL OF APPLIED MECHAN-
ICS. Manuscript received by the ASME Applied Mechanics Division, July 2, 20
final revision Nov. 14, 2001. Associate Editor: M.-J. Pindera. Discussion on the p
should be addressed to the Editor, Professor Lewis T. Wheeler, Department o
chanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself
the THE AMERICAN SOCIETY OF MECHANICAL ENGINEERSJOURNAL OF APPLIED
MECHANICS.
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ments obtained with this formulation are compared with conv
tional homogeneous elements, as illustrated by Fig. 1. Notice
the graded element incorporates the material property gradie
the size scale of the element, while the homogeneous elem
produces a stepwise constant approximation to a continuous
terial property field such as the one shown in Fig. 1.

This paper discusses and compares the behavior of graded
sus conventional homogeneous elements under various loa
conditions in both isotropic and orthotropic FGMs with respect
analytical solutions which are either available in the literature
derived in this work. The manuscript is organized as follows. T
next subsection presents an example which serves as a motiv
to this work. In this example, the FGM leads to a stress redis
bution with lower stress concentration factor~SCF! than the cor-
responding problem with homogeneous material. Next, a brief
erature survey and comments on previous related work are gi
Section 2 presents some exact solutions for displacements
stresses in orthotropic FGMs. The exact solutions for isotro
FGMs are obtained as particular instances of those for orthotr
FGMs. Section 3 reviews finite element formulations. Section
addresses the generalized isoparametric graded finite elemen
mulation. Sections 5 and 6 present finite element results
stresses in isotropic and orthotropic FGMs, respectively, wh
are compared with analytical solutions. Finally, Section 7 provid
some concluding remarks.

1.1 Motivation. Functionally graded composites, wit
smooth variation of volume fractions, offer various advantag
such as reduction of residual stress~@10#! and increased bonding
strength~@11#!. Moreover, if properly used, such materials ma
also lead to reduction of stress concentration or stress inten
factors ~@12#!. For example, Hasselman and Youngblood~@13#!
found that the maximum tensile thermal stresses in brittle cer
ics can be reduced significantly by spatially varying thermal c
ductivity in a hollow circular cylinder subjected to radially inwar
or outward steady-state heat flow, and Horgan and Chan~@14#!
investigated the effect of material nonhomogeneity on the
sponse of linearly elastic isotropic hollow circular cylinders

1;
per
Me-
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disks under uniform internal or external pressure by vary
Young’s modulus with respect to the radial direction and fou
that the maximum hoop stress in a nonhomogeneous material
not, in general, occur on the inner surface in contrast with a
mogeneous material.

To further motivate the use of FGMs in engineering applic
tions, consider the isotropic FGM link bar of Fig. 2~a!. The bar
has unit thickness, it is subjected to unit axial tension load at
right end, and it is considered in a state of generalized pl
stress. The basic FGM constituents are titanium monoboride~TiB!
and commercially pure titanium~CP Ti! as illustrated by Fig. 2~b!.
The elastic properties of the base materials are~@15#!

ETiB5375 GPa, nTiB50.14

ETi5107 GPa, nTi50.34.

The graded region is incorporated with an exponential mate
variation. Thus Young’s modulus and Poisson’s ratio are functi
of the Cartesian coordinatey ~see Fig. 2!, i.e.,

E~y!5ETie
bEy, n~y!5nTie

bny, (1)

respectively, where 1/bE and 1/bn are the length scales of nonho

Fig. 1 Homogeneous versus graded finite elements. „a… Prop-
erty variation along one coordinate axis; „b… homogeneous el-
ements; „c… graded elements. Notice that the property of the
homogeneous element corresponds to the property at the cen-
troid of the graded element.
Journal of Applied Mechanics
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mogeneity which are given by

bE5
1

W
log~ETiB /ETi!, bn5

1

W
log~nTiB /nTi!, (2)

respectively, whereW is the width of the symmetric model a
shown in Fig. 2~b!. Figure 3~a! shows the finite element mesh fo
the symmetric portion of the link bar with 1000 quadrilateral e
ements of eight nodes~Q8!. These elements are graded finite e
ements as illustrated by Fig. 1 and explained subsequently in
paper. Figure 3~b! shows thesxx stress contour for the homoge
neous link bar~either TiB or Ti! and Fig. 3~c! shows thesxx stress
contour for the FGM link bar~TiB/Ti !. The main stress value
~nodal average! are summarized in Table 1. Notice that the ma
mum stress location in the FGM bar is different from that in t
homogeneous bar—the maximum stress occurs inA8 ~see Fig.
2~b!! for the homogeneous bar, while it occurs inB8 ~see Fig.
2~b!! for the FGM bar. Moreover, the maximum stress is lower
the FGM than in the homogeneous bar. Thus, the FGM lead
stress redistribution with a lower SCF as illustrated by Table 1
Fig. 3. In summary, this example shows, by means of elastic fi
element analysis, thatthe stress response of (inhomogeneo
FGMs differ substantially from those of their homogeneo
counterparts.

1.2 Related Numerical Work. Several numerical models
have been used to investigate FGMs, including integral equat
~e.g., @16–18#!, the higher order model~e.g., @19,20#!, boundary
elements~e.g., @21,22#!, and finite elements~e.g., @10,23–30#!.
This work concentrates on the finite element method for FG
using the isoparametric concept for graded elements.

A few additional comments about the related work by Sant
and Lambros~@30#! are in order. They have also published in th
journal a graded finite element model for nonhomogeneous m
rials. However, their work differs from ours in the sense that th
sample the material properties directly at the Gauss points of
element, while we adopt a generalized isoparametric formulat
Although the two methods are different, they are equivalent
fine mesh discretizations~@31#!. They investigated the behavior o
Fig. 2 FGM link bar „units: N, mm …: „a… geometry and boundary conditions; „b…
symmetric model
JULY 2002, Vol. 69 Õ 503
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Fig. 3 FGM link bar under unit axial tension „units: N Õmm2
…: „a… mesh con-

figuration with 1000 graded Q8 elements; „b… sxx stress distributions for ho-
mogeneous link bar „both TiB and Ti …; „c… sxx stress distributions for FGM bar
„TiB ÕTi…
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four-node quadrilaterals~Q4! for isotropic FGMs only. In addition
to the bilinear element~Q4!, we also investigate the behavior o
eight-node quadrilaterals~Q8! for both isotropic and orthotropic
FGMs. They investigated exponential material variation on
Here, we compare both exponential and linear material variati
Finally, we believe that the generalized isoparametric formulat
is more natural to the finite element method than the Gauss p
sampling of material properties because the generalized form
tion embraces the important isoparametric concept—the s
shape functions are used to interpolate the unknown displ
ments, the geometry, and the material parameters.

2 Some Exact Solutions for Nonhomogeneous
Elasticity

Exact solutions for both isotropic and orthotropic functiona
graded materials~FGMs! will be used as reference solutions fo
the numerical examples that follow. We consider anorthotropic
functionally graded plate of infinite length and finite width su
jected to various loading conditions such as remote fixed g
tension, and bending, as shown in Fig. 4. Both exponential
linear material variations are considered. First, analytical soluti
for stresses and displacements are developed for orthotr
FGMs and, afterwards, they are particularized~e.g., in the limit!
for isotropic FGMs. The analytical solutions for exponentia
graded isotropic FGMs coincide with those of Erdogan and

Table 1 Representative sxx stress values „NÕmm2
… for the link

bar of Figs. 2 and 3

sxx

Location

A8 B8

Homogeneous 2.908 2.137
FGM 2.369 2.601
002
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~@32#! and Paulino and Kim~@33#!. The analytical solutions for
linearly graded isotropic and orthotropic FGMs are new solutio
derived in this work.

2.1 Exponential Material Variation. Consider a plate un-
der generalized plane stress conditions~see Fig. 4! made of a
nonhomogeneous orthotropic material. Assume the Poisson’s

Fig. 4 An isotropic or orthotropic functionally graded plate:
„a… geometry and material properties—the shaded portion indi-
cates the symmetric region of the plate used in this analysis;
„b… fixed grip loading with a schematic of the corresponding
stresses at the end points of the plate; „c… tension loading; „d…
bending loading
Transactions of the ASME
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(n12) constant, and the Young’s moduli and in-plane shear mo
lus with variations given by the following expressions:

E11~x!5E11
0 eb11x

E22~x!5E22
0 eb22x

(3)
G12~x!5G12

0 eb12x

n12~x!5constant,

whereE11
0 5E11(0), E22

0 5E22(0), andG12
0 5G12(0) are the mate-

rial properties at thex50 line ~see Fig. 4~a!!, and the coefficients
b i j above are independent nonhomogeneity parameters chara
ized by

b115
1

W
logFE11~W!

E11~0! G
b225

1

W
logFE22~W!

E22~0! G (4)

b125
1

W
logFG12~W!

G12~0! G ,
whereW is the width of the FGM plate as shown in Fig. 4. Notic
that in this case theb i j parameters have units@Length#21.

For a corresponding nonhomogeneous isotropic materialE
5E115E22, G5G12, n125n), the Poisson’s ratio is assume
constant and the Young’s modulus varies exponentially, i.e.,

E~x!5E0ebx

(5)
n~x!5constant

whereE05E(0). Thenonhomogeneity parameterb is given by

b5
1

W
logFE~W!

E~0! G (6)

which has units@Length#21.

2.1.1 Fixed Grip Loading. For fixed grip loading~see Fig.
4~b!! with «yy(x,6`)5«0, the stress distribution becomes

syy~x!5E22
0 «0eb22x. (7)

Using strain-displacement relations and the boundary conditio
r

Journal of Applied Mechanics
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ux~0,0!50, uy~x,0!50, (8)

one obtains the displacements

ux~x,y!52n12«0

E22
0

E11
0

1

b222b11
@e(b222b11)x21#

(9)
uy~x,y!5«0y.

Notice that for isotropic materials (E5E115E22, G125G, and
n125n), the stress distribution~7! becomes~@32#!

syy~x!5E0«0ebx (10)

and the displacements are obtained in the limit of Eq.~9! as
(b222b11)→0. Thus~@33#!

ux~x,y!52n«0x
(11)

uy~x,y!5«0y.

2.1.2 Tension and Bending. For tension and bending load
~see Figs. 4~c! and 4~d!, respectively!, the applied stresses ar
defined by

N5s tW, M5
sbW2

6
, (12)

whereN is a membrane resultant along thex5W/2 line ~see Fig.
4~a!!, andM is the bending moment. For these two loading cas
the compatibility condition]2«yy /]x250 gives«yy5Ax1B and
thus

syy~x!5E22
0 eb22x~Ax1B! (13)

where the constantsA ~with unit @Length#21) andB ~dimension-
less! are determined from

E
0

W

syy~x!dx5N, E
0

W

syy~x!xdx5M (14)

by assuming

M5NW/2 for tension
(15)

N50 for bending.

Thus, for tension load, the stress distribution is given by Eq.~13!
with
A5
b22N

2E22
0 S Wb22

2 eb22W22b22e
b22W1Wb22

2 12b22

eb22Wb22
2 W22e2b22W12eb22W21

D ,

(16)

B5
b22N

2E22
0 S eb22W@eb22W~2W2b22

2 13b22W24!1W2b22
2 22b22W18#2b22W24

~eb22W21!~eb22Wb22
2 W22e2b22W12eb22W21!

D .
e,
For bending load, the stress distribution is also given by Eq.~13!,
however, the coefficientsA andB for this case are

A5
b22

2 M

E22
0 S b22~12eb22W!

eb22Wb22
2 W22e2b22W12eb22W21

D ,

(17)

B5
b22

2 M

E22
0 S b22Web22W2eb22W11

eb22Wb22
2 W22e2b22W12eb22W21

D ,

respectively. For both tension and bending loads, using the st
displacement relations and the boundary conditions~8!, one ob-
tains the displacements
ain-

ux~x,y!52n12

E22
0

E11
0
H S Ax2

A

b222b11
1BD

b222b11
e(b222b11)x

1
A2B~b222b11!

~b222b11!
2

J 2
A

2
y2

(18)

uy~x,y!5~Ax1B!y.

The constantsA andB refer to the appropriate loading case abov
either tension~Eq. ~16!! or bending~Eq. ~17!!.
JULY 2002, Vol. 69 Õ 505
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For the isotropic case (E5E115E22, G125G, andn125n), the
stress distribution is obtained by Eqs.~16! and ~17! ~for tension
and bending loads, respectively! with b22 replaced byb, which
agree with Erdogan and Wu’s@32# solution. The displacements ar
obtained in the limit of Eq.~18! as (b222b11)→0. Thus~@33#!

ux~x,y!5nS A

2
x21BxD2

A

2
y2

(19)
uy~x,y!5~Ax1B!y.

2.2 Linear Material Variation. Once again, consider a
plate under generalized plane stress conditions, as illustrate
Fig. 4. Assume the Poisson’s ratio (n12) is constant, and the
Young’s moduli and in-plane shear modulus with variations giv
by the following expressions~cf. Eq. ~3!!:

E11~x!5E11
0 1g11x

E22~x!5E22
0 1g22x (20)

G12~x!5G12
0 1g12x

n12~x!5constant,

whereE11
0 5E11(0), E22

0 5E22(0), andG12
0 5G12(0) are the mate-

rial properties at thex50 line ~see Fig. 4~a!! and the coefficients
g i j are independent nonhomogeneity parameters characterize

g115
E11~W!2E11~0!

W

g225
E22~W!2E22~0!

W
(21)

g125
G12~W!2G12~0!

W
.

Notice that in this case theg i j parameters have unit
@Force#/@Length#3.

For a corresponding nonhomogeneous isotropic materialE
5E115E22, G5G12, n125n), the Poisson’s ratio is assume
constant and the Young’s modulus varies linearly, i.e.,

E~x!5E01gx
(22)

n~x!5constant

whereE05E(0). Thenonhomogeneity parameterg is given by

g5
E~W!2E~0!

W
(23)

which has units@Force#/@Length#3.

2.2.1 Fixed Grip Loading. For fixed grip loading~see Fig.
4~b!! with «yy(x,6`)5«0, the stress distribution becomes

syy~x!5«0~E22
0 1g22x!. (24)

Using strain-displacement relations and the boundary conditio

ux~0,0!50, uy~x,0!50,

one obtains the displacements

ux~x,y!52n12«0H g22

g11
x1

E22
0 ln~E11

0 1g22x!

g11

2
g22E11

0 ln~E11
0 1g11x!

g11
2

2S E22
0

g11
2

g22E11
0

g11
2 D ln~E11

0 !J
(25)

uy~x,y!5«0y.
506 Õ Vol. 69, JULY 2002
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For isotropic materials (E5E115E22, G125G, and n125n),
the stress distribution~24! becomes

syy~x!5«0~E01gx!, (26)

and the displacements are obtained from Eq.~25! as

ux~x,y!52n«0x
(27)

uy~x,y!5«0y.

2.2.2 Tension and Bending.For tension and bending load
~see Fig. 4~c! and 4~d!, respectively!, the applied stresses are d
fined by Eq.~12!, i.e.,

N5s tW, M5
sbW2

6
,

whereN is a membrane resultant applied along thex5W/2 line
~see Fig. 4~a!!, and M is the bending moment. For these tw
loading cases, the compatibility condition]2«yy /]x250 gives
«yy5Ax1B and thus

syy~x!5~E22
0 1g22x!~Ax1B!, (28)

where the constantsA ~with unit @Length#21) andB ~dimension-
less! are determined from Eq.~14!, i.e.,

E
0

W

syy~x!dx5N, E
0

W

syy~x!x dx5M ,

by assuming~see Eq.~15!!

M5NW/2 for tension
(29)

N50 for bending.

Thus, for tension load, the stress distribution is given by Eq.~28!
with

A5
2g22N

1
6 g22

2 W31g22E22
0 W21~E22

0 !2W
,

(30)

B5
N~E22

0 1g22W!

1
6 g22

2 W31g22E22
0 W21~E22

0 !2W
.

For bending load, the stress distribution is also given by Eq.~28!
with

A5
236M ~2E22

0 1g22W!

g22
2 W516E22

0 g22W
416~E22

0 !2W3
,

(31)

B5

36M ~2E22
0 1g22W!

3g22W
213E22

0 W

2g22W16E22
0

g22
2 W516E22

0 g22W
416~E22

0 !2W3
.

For both tension and bending loads, using the strain-displacem
relations and the boundary conditions.

ux~0,0!50, uy~x,0!50,

one obtains the displacements in closed form, which are given
Transactions of the ASME
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ux~x,y!52n12H 2S E11
0 g22A

g11
2

2
g22B

g11
2

E22
0 A

g11
D x1

g22A

2g11
x21S E22

0 B

g11
2

E11
0 g22B

g11
2

2
E11

0 E22
0 A

g11
2

1
~E11

0 !2g22A

g11
3 D ln~g11x1E11

0 !

2S E22
0 Bg11

2 2E11
0 g11g22B2E11

0 E22
0 g11A1~E11

0 !2g22A

g11
3 D ln~E11

0 !J 2
A

2
y2,

(32)
uy~x,y!5~Ax1B!y.
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For the isotropic case (E5E115E22, G125G, andn125n), the
stress distribution is obtained by Eqs.~30! and ~31! ~for tension
and bending loads, respectively! with g22 andE22

0 , replaced byg
and E0, respectively. The displacements are obtained from
~32! as

ux~x,y!5nS A

2
x21BxD2

A

2
y2

(33)
uy~x,y!5~Ax1B!y.

Notice that the form of the exact solutions for displacements
orthotropic FGMs differs significantly from that for isotropi
FGMs because the former case depend on two principal You
moduli, while in the latter case the explicit moduli dependence
absent.

3 Basic Finite Element Formulation
Displacements for an isoparametric finite element can be w

ten as

ue5(
i 51

m

Niui
e (34)

whereNi are shape functions,ui is the nodal displacement corre
sponding to nodei, and m is the number of nodal points in th
element. For example, for a Q4 element, the standard shape
tions are

Ni5~11jj i !~11hh i !/4, i 51, . . . ,4 (35)

where (j,h) denote intrinsic coordinates in the interval@21,1#
and (j i ,h i) denote the local coordinates of nodei. As usual,
strains are obtained from displacements by differentiation as.

«e5Beue (36)

whereBe is the strain-displacement matrix of shape function d
rivatives, andue is the nodal displacement vector. Thus stra
stress relations are given by

se5De~x!«e (37)

where De(x) is the constitutive matrix, which is a function o
position for nonhomogeneous materials, i.e.,De(x) 5 De(x,y).
The principle of virtual work~PVW! yields the following finite
element stiffness equations~@34#!

keue5Fe (38)

whereFe is the load vector and the element stiffness matrix is

ke5E
Ve

BeT
De~x!BedVe (39)

in which Ve is the domain of element~e!, andT denotes trans-
pose. The reasoning above, at the element level, can be re
extended to the whole domain, which leads to a system of a
braic equations for the unknown displacements~@34#!.
Journal of Applied Mechanics
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4 Generalized Isoparametric Graded Finite Elements
For simplicity of notation, the superscript (e), denoting the

element, is dropped in this section. Material properties~e.g., at
each Gaussian integration point! can be interpolated from the
nodal material properties of the element using isoparametric sh
functions which are the same for spatial coordinates (x,y):

x5(
i 51

m

Nixi , y5(
i 51

m

Niyi (40)

and displacements (u,v):

u5(
i 51

m

Niui , v5(
i 51

m

Niv i . (41)

Thus, by generalization of the isoparametric concept, the Youn
modulusE5E(x) and Poisson’s ration5n(x) are interpolated as

E5(
i 51

m

NiEi , n5(
i 51

m

Nin i (42)

respectively, as illustrated by Fig. 5. Similar expansions can a
be made to two-dimensional orthotropic materials where the f
independent engineering elastic parameters are the princ
Young’s moduli,E11[E11(x), E22[E22(x), in-plane shear modu-
lus G12[G12(x); and Poisson’s ration125n12(x), i.e.,

E115(
i 51

m

Ni~E11! i , E225(
i 51

m

Ni~E22! i ,

(43)

G125(
i 51

m

Ni~G12! i , n125(
i 51

m

Ni~n12! i ,

as illustrated by Fig. 5.
Some material models may be given in terms of the volu

fraction (V) of a material phase, ‘‘p,’’ e.g., the metal phase in
ceramic/metal FGM~@35#!. In this case, the generalized isopar
metric formulation consists of approximatingVp by the standard
interpolation

Vp5(
i 51

m

NiVi
p (44)

whereVi
p ( i 51,2,. . . ,m) are the values ofVp at the nodal points.

This approach offers a convenient framework to couple the fin

Fig. 5 Generalized isoparametric formulation for isotropic or
orthotropic FGMs
JULY 2002, Vol. 69 Õ 507
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element method with micromechanics-based models, e.g.,
consistent scheme.

The above framework allows development of a fully isopa
metric formulation in the sense that the same shape functions
used to interpolate the unknown displacements, the geometry
the material properties. Thus, the actual variation of the mate
properties may be approximated by the element interpola
functions~e.g., a certain degree of polynomial functions!.

5 Numerical Examples
Although the finite element method offers a lot of flexibility i

terms of modeling material property variation, the actual choice
properties and boundary value problems in this section was
tated by the analytical solutions derived in Section 2 for the p
configuration of Fig. 4. Here the analytical solutions are compa
with the numerical ones. The examples are divided into t
groups:

1. isotropic FGM plate
2. orthotropic FGM plate

For each group, two material variations along the Cartesian di
tion x are examined:

1. exponentially graded materials
2. linearly graded materials

and also the following loading conditions are considered:

1. fixed grip
2. tension loading
3. bending loading

The relevant stress values obtained numerically by the fi
element method are compared with the analytical results.
fixed grip loading~see Fig. 4~b!!, the stresssyy is considered. For
tension applied parallel to the material gradation, the stresssxx is
the quantity of interest, while for tension and bending loads
plied perpendicular to the material gradation~see Figs. 4~c! and
4~d!, respectively!, the stresssyy is the relevant quantity. More
over, for a few of the examples, the displacements computed
merically are also compared with the analytical results.

The finite element meshes consist of square elements~Q4 or
Q8! with edges of unit length. For all the examples, 232 Gauss
quadrature was employed. All the numerical stress values repo
here are nodal values extrapolated directly from the Gauss po
and without any averaging. The finite element program develo
in this work was implemented by the authors in a simple co
using MATLAB.

5.1 Isotropic Functionally Graded Plate. Figure 6 illus-
trates an isotropic FGM plate with material variation in the C
tesian directionx subjected to various loading conditions. Figu
6~a! shows the basic geometry, boundary conditions and pro
ties. The finite element mesh consists of 939 Q4 or Q8 elements
~either graded or homogeneous! as illustrated in Figs. 6~b! to 6~d!.
The Young’s modulus varies from

E15E05E~0! to E25E~W! (45)

either exponentially as given by Eq.~5! or linearly as given by Eq.
~22! with E151.0 andE258.0. The independent nonhomogene
parameters are given by Eqs.~6! and~23! for the exponential and
linear material variations, respectively, with

b5~ ln~8/1!!/9 and g57/9. (46)

Consistent units are employed here. The Poisson’s ratio is
stant and it is selected as follows:

n50.3 for tension and bending applied perpendicular to m
terial gradation~Figs. 6~b! and 6~c!, respectively!

n50.0 for tension load parallel to material gradation~Fig.
6~d!!.
508 Õ Vol. 69, JULY 2002
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The behavior of the elements~homogeneous versus graded! is
as follows. Figure 7 shows the stresssyy versusx for an expo-
nentially graded isotropic plate subjected to a uniform displa
ment in they direction with«05D/H. According to Eq.~10!, the
stresssyy is uniform in they-direction and thus the graph of Fig
7 is applicable to the entire range ofy coordinates, i.e., 0<y
<H ~see Fig. 6~a!!. In this case, the solution obtained with grad
Q4 elements matches the exact solution. This is expected bec
the exact displacement field is linear~see Eq.~11! and Fig. 8!,
which is captured by linear isoparametric elements such as
Moreover, because of the linearity of the analytical solution~Eq.
~11!!, a single Q4 element could be used to predict the ex
solution. Figure 7 also shows that the stress obtained with ho
geneous Q4 elements is piecewise constant due to the fact
these elements have a single value for each material prop
which leads to a piecewise constant material property approxi
tion as illustrated by Fig. 1. Therefore such homogeneous
ments predict the actual stress values only at their centroids w

Fig. 6 Isotropic FGM plate with material variation in the
x-direction: „a… geometry, boundary conditions and material
properties; „b… tension load perpendicular to material grada-
tion; „c… bending load; „d… tension load parallel to material gra-
dation. The finite element mesh „9Ã9 quads: either Q4 or Q8 …

is illustrated in parts „b… through „d… with a representative Q4
element at the upper left hand corner

Fig. 7 Stress distribution „syy … using Q4 elements for fixed
grip „«0ÄDÕH… load applied perpendicular to the exponential
material gradation
Transactions of the ASME
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the properties match the material gradation. Moreover, the am
tude of the nodal stress jumps for homogeneous Q4 element
creases with coordinatex in a nearly exponential fashion, as illus
trated by Fig. 7. These observations are consistent with thos
Santare and Lambros~@30#!. Of course, the exact solution is also
recovered with higher-order graded elements, e.g., Q8. The ho
geneous Q8 elements also lead to a piecewise constant n

Fig. 8 Displacements „u x and u y… using Q4 elements for fixed
grip load applied perpendicular to the exponential material gra-
dation in isotropic FGMs

Fig. 9 Stress distribution „syy … using Q4 elements for tension
load applied perpendicular to the exponential material
gradation

Fig. 10 Stress distribution „syy … using Q8 elements for ten-
sion load applied perpendicular to the exponential material
gradation
Journal of Applied Mechanics
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stress profile with the stress at the midnode location along thx
direction matching the exact stress value, which occurs beca
the material properties at the mid-nodes match the actual mat
properties.

Figures 9 and 10 compare nodal stresses interpolated f
stresses at Gauss integration points using graded and hom
neous Q4 and Q8 elements, respectively, which are subjecte
tension loading applied perpendicular to the material gradat
Figures 11 and 12 show such comparison considering linear
terial variation. On the left side of the domain in Figs. 9–12, t
exact solution shows an increasing trend ofsyy with x, while the
homogeneous elements~either Q4 or Q8! give syy as a decreasing
function ofx in each individual element. Notice that this proble
does not occur with the graded elements. In this case, the e
solution for displacements is quadratic~see Eqs.~19! and~33! for
exponential and linear material variations, repectively!, which co-
incides with the order of interpolation for the Q8 element. Mor
over, the material variation for the linear case is captured by
element shape functions. The stress results for the Q8 elem
considering exponential and linear material variations are sho
in Figs. 10 and 12, respectively. As expected, the homogene
Q8 element shows piecewise variation while the graded Q8
ment approaches the analytical solution quite well. The relativ
small differences observed between the analytical and graded
solutions may be attributed to the finite plate length~length/

Fig. 11 Stress distribution „syy … using Q4 elements for ten-
sion loading applied perpendicular to the linear material
gradation

Fig. 12 Stress distribution „syy … using Q8 elements for ten-
sion load applied perpendicular to the linear material gradation
JULY 2002, Vol. 69 Õ 509
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width51 as shown in Fig. 6! utilized in the numerical
calculation—the analytical solution was derived for aninfinitely
long plate of finite width.

A similar comparison is also made for a different loading ca
consisting of bending applied perpendicular to the material gra
tion. Figures 13 and 14 show the behavior of the Q4 and
elements, respectively, for the exponential variation. Figures
and 16 show such comparison for the bending case conside
linear material variation. The stress results for the Q8 elem
considering exponential and linear material variations are sh

Fig. 13 Stress distribution „syy … using Q4 elements for bend-
ing load applied perpendicular to the exponential material
gradation

Fig. 14 Stress distribution „syy … using Q8 elements for bend-
ing load applied perpendicular to the exponential material
gradation

Fig. 15 Stress distribution „syy … using Q4 elements for bend-
ing load applied perpendicular to the linear material gradation
510 Õ Vol. 69, JULY 2002
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in Figs. 14 and 16, respectively. Similar comments to those m
comparing the Q8~homogeneous versus graded! and analytical
solutions for the tension load case also hold for the present b
ing load case.

The above results lead to the following observations. The va
tion of stress with positionx is larger for linear than with expo-
nential material variations~cf. Figs. 9 and 11, 10 and 12, 13 an
15, and 14 and 16!. In general, the amplitude of stress jump
between Q4 elements is larger than between Q8 elements, e
cially for conventional homogeneous elements~cf. Figs. 9 and 10,

Fig. 16 Stress distribution „syy … using Q8 elements for bend-
ing load applied perpendicular to the linear material gradation

Fig. 17 Stress distribution „sxx … using Q4 elements „9Ã9
mesh … for tension load applied parallel to the exponential or
linear material gradation

Fig. 18 Stress distribution „sxx … using Q8 elements „9Ã9
mesh … for tension load applied parallel to the material gradation
Transactions of the ASME
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11 and 12, 13 and 14, 15 and 16, and 17 and 18!. As expected, the
graded elements show superior performance to homogeneou
ements, i.e., the graded elements provide a better approxim
to the exact solution in every element. Essentially, the gra
elements show good performance in terms of actual~i.e., no av-
eraging! nodal stress (syy) along they50 line and the homoge
neous elements behave well in terms of the averaged n
stresses.

Figures 17 and 18 compare nodal stresses of graded ve
homogeneous Q4 and Q8 elements (939 mesh!, respectively,
which are subjected to tension applied parallel to the mate
gradation~see Fig. 6~d!!. The exact solution issxx51.0. Different
from the observation above, it is interesting to observe in Fig.
that the Q4 graded element shows poor performance when c
pared to Q4 homogeneous elements for both material variat
~i.e., exponential and linear!. Although mesh refinement~for a
fixed material gradient! increases the accuracy of the solution, t
same trend of Fig. 17 is observed for a finer mesh, e.g., 18318.
Figure 17 shows that the Q4 graded elements provide piece
continuous solutions to the nodal stresses (sxx), while the homo-
geneous Q4 elements do recover the exact solution. This is
reverse of the effect seen in the previous load cases. Howev
higher order element such as Q8~either graded or homogeneou!
is able to capture the exact solution in this case, as shown in
18.

A few additional remarks, regarding the behavior of Q4 e
ments observed in Fig. 17, are in order. Both graded and ho
geneous elements lead to the same displacements at all node
the same constant strains for each element. Notice that along
y50 line, the nodal stress range has constant amplitude for
exponential material case, while it has decreasing amplitude
the linear material case~see Fig. 17!. The reason for this behavio
is illustrated by Fig. 19 by investigating the strain distribution f
two mesh discretizations (939 and 18318 meshes!. For instance,
for the exponential material case, the nodal strains decrease e
nentially while the Young’s modulus increase exponentially. Th
the multiplication of these two factors cancel each other to giv
constant stress amplitude at the nodal points, as shown in Fig

5.2 Orthotropic Functionally Graded Plate. Figure 20
shows orthotropic FGM plates, with material variation in the C
tesian directionx, subjected to various loading conditions. Figu
20~a! shows the basic geometry, boundary conditions and mate
property variation. The two principal Young’s moduli and in-pla
shear modulus vary proportionally either with an exponen
function of x as given by Eq.~3! or with a linear function ofx as

Fig. 19 Strain distribution „«xx … using Q4 elements „either 9
Ã9 and 18Ã18… for tension load applied parallel to the material
gradation „either exponential or linear …
Journal of Applied Mechanics
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given by Eq.~20!. The independent nonhomogeneity paramet
(b i j and g i j ) are given by Eqs.~4! and ~21! for the exponential
and linear material variations, respectively. The Poisson’s ratio
assumed constant.

For the examples in Fig. 20, the finite element mesh consist
either Q4 or Q8~graded or homogeneous! elements under gener
alized plane stress. The mesh for the geometry of Figs. 20~b! and
20~c! consists of 9318 elements. For the sake of completene
all the properties used in the numerical analyses are given
follows. However, due to space limitations, not all the results a
shown here, but they are reported elsewhere~@36#!. For the fixed
grip case and for tension and bending perpendicular to the m
rial gradation, the following data were used for the finite eleme
analysis:

E11
0 51, E22

0 50.1, G12
0 50.5, n1250.3

in which consistent units are employed. For tension parallel to
material gradation, the following data were used for the fin
element analysis:

E11
0 51, E22

0 50.1, G12
0 50.5, n1250.0.

For the single case of fixed grip loading, only exponential m
terial variation was considered. In this case, theb i j parameters are

b225~ ln8!/95b, b115b/2, b125b/3

so that the range of properties is the following

Fig. 20 Orthotropic FGM plate with material variation in the
x-direction: „a… geometry, boundary conditions and material
properties; „b… tension load perpendicular to material grada-
tion; „c… bending load; „d… tension load parallel to the material
gradation. The finite element mesh „Q4 or Q8 elements … is illus-
trated in parts „b… through „d… with a representative Q4 element
at the upper left hand corner
JULY 2002, Vol. 69 Õ 511
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E115@1,2.828#, E225@0.1,0.8#, G125@0.5,1.0#.

For all other loading cases~i.e., tension and bending perpendicul
to the material gradation, and tension parallel to the material
dation!, the b i j parameters, characteristic of exponential mate
variation, are chosen so that the variations ofE11, E22, andG12
are proportional~@16,17#!, i.e.,

b115b225b125~ ln8!/95b, (47)

and theg i j parameters, characteristic of linear material variati
are given by

g1157/95g, g2250.7/9, g1253.5/9

so that the range of properties is the following:

E115@1.0,8.0#, E225@0.1,0.8#, G125@0.5,4.0#.

Regarding the element behavior~homogeneous versus graded!,
several of the observations made for isotropic materials in
previous section also hold for orthotropic materials. Thus rat
than repeating those common observations, this section focus
new observations and insights. Moreover, the analytical solut
of Section 2 show that, for exponential material gradation~Section
2.1!, the relevant stress quantity only depends on the nonhom
neous parameterb22, and the displacements depend on bothb11
andb22. For linear material gradation~Section 2.2!, the relevant
stress depends ong22, and the displacements depend on bothg11
and g22. This information will be helpful to understand the e
amples reported below.

For proportional variation of material properties~see Eq.~47!!,
the change ofux with x is linear ~rather than the nonlinear func
tion of Eq. ~9!!, which is similar to the behavior of the isotropi
plate under the same boundary conditions, i.e., fixed grip~see Fig.
8!. This behavior can be seen by the following limit:

lim
(b222b11)→0

ux5 lim
(b222b11)→0

H 2n12«0

E22
0

E11
0

1

b222b11

3@e(b222b11)21#J
52n12«0

E22
0

E11
0

x. (48)

Figures 21 and 22 compare nodal stresses interpolated
stresses at Gauss points using graded and homogeneous Q
Q8 elements, respectively, which are subjected to tension
applied perpendicular to the exponential material gradation.
ure 23 shows a comparison of the displacements (ux and uy)

Fig. 21 Stress distribution „syy … using Q4 elements for ten-
sion loading applied perpendicular to the exponential material
gradation in orthotropic FGMs „E11

0 Ä1, E22
0 Ä0.1, G12

0 Ä0.5,
n12Ä0.3…
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computed numerically with those obtained by means of Eq.~18!
for all the element types investigated in the present loading c
The curves foruy indicate that the best elements in terms
matching the analytical solution~Eq. ~18!! are Q8 graded, Q8
homogeneous, Q4 graded and Q4 homogeneous, which is s
how expected. Qualitatively, the nodal stress plots conside
linear material variation are somewhat similar to those of Figs.
and 22 and are not given here~@36#!.

A similar comparison is also made for a different loading ca
consisting of bending applied perpendicular to the material gra
tion. Figure 24 shows a comparison of the displacements (ux and
uy) computed numerically with those obtained by Eq.~18! for all
the element types investigated in the present loading case
expected, the Q8 elements capture the analytical solution~Eq.
~18!! for uy better than the Q4 elements. For the sake of brev
the nodal stress plots are not given here~@36#!.

Finally, a few comments regarding the case of tension load
applied parallel to the material gradation in orthotropic FGM
~Fig. 20~d!! are in order. Qualitatively, the counterintuitive beha
ior of homogeneous versus graded Q4 elements is similar to
case involving isotropic nonhomogeneous materials illustrated
Figs. 17 and 18. Thus, for orthotropic case, the Q4 graded elem
also shows poor performance when compared to the Q4 hom
neous elements for both material variations~i.e., exponential or
linear!. The reasons for such behavior are given in the last t

Fig. 22 Stress distribution „syy … using Q8 elements for ten-
sion loading applied perpendicular to the exponential material
gradation in orthotropic FGMs „E11

0 Ä1, E22
0 Ä0.1, G12

0 Ä0.5,
n12Ä0.3…

Fig. 23 Displacements „u x and u y… along yÄ1 using Q4 and
Q8 elements for tension load applied perpendicular to the ex-
ponential material gradation in orthotropic FGMs „E11

0 Ä1,
E22

0 Ä0.1, G12
0 Ä0.5, n12Ä0.3…
Transactions of the ASME

cense or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s

s

e
l

t

a

l

t
s

e

ted
on,
con-
mo-
nder

of
ents

the
aded

l to
ec-
hich
the

om-
ele-
bust
de
e

ci-

h

-
-

.,
s

-
ac-
ty,

cal
i-

M

pray

e,’’

ng

and

t of
c-

an

tress
’ J.

sk
J.

Z.
ed

e-

an

a-

Downl
paragraphs of the previous section and will not be repeated h
This is the reverse of the effect seen in the previous load case
graded orthotropic materials where the graded elements show
perior behavior to the corresponding homogeneous eleme
Similarly to the isotropic case, a higher-order element such as
~either graded or homogeneous! with 232 Gauss quadrature i
able to capture the exact solution for this loading case.

5.3 Discussion. This study leads to the following remarks
The isotropic FGM plate~see Fig. 6! has length over width ratio
equal to 1 and the orthotropic FGM plate~see Fig. 20! has ratio 2
~for tension and bending loading cases!. Because the analytica
solution ~Section 2! was derived for an infinitely long plate, th
higher the aspect ratio~within limits! the better the numerica
solution~with respect to the analytical one!. For some load cases
e.g., tension and bending perpendicular to the material grada
the homogeneous elementsgive syy as a decreasing function ofx
in each individual element on the left side of the domain, wh
the exact solution shows an increasing trend ofsyy with x for this
portion of the domain. However, thegraded elementsshow the
same trend as the exact solution in each element~see, for ex-
ample, Figs. 11 and 12!. The stress plots show that the graded Q
element gives a smoother stress profile than the graded Q4
ment ~cf. Figs. 9 and 10!. For each loading case, the numeric
values of the stress components other than the relevant no
stress quantity should approach zero. Thus the remainder of
paragraph focus on the maximum magnitude of these stress v
~obtained numerically! which are theoretically zero. In genera
these stress magnitudes are lower with Q8 than with Q4 eleme
For tension parallel to the material gradation, the numerical va
of the stresssxy and syy are exactly zero for all cases invest
gated. For the fixed grip case, the largest magnitude ofsxy is
O(1022) and occurs for the orthotropic plate with Q4 elemen
The largest magnitude ofsxx andsxy is O(1023) or less for all
other analyses for this loading case. For tension and bending
pendicular to the exponential material gradation, the Q4 elem
leads to spurious shear stresses ofO(100) for the orthotropic plate
and ofO(1021) for the isotropic plate. Smaller magnitudes for th
maximum shear stresses are obtained considering linear ma
gradation. The stresssxx is of O(1022) or less for all the analyse
involving these two loading cases.

6 Concluding Remarks
Graded finite elements, which incorporate the material prop

gradient at the size scale of the element, have been prese
using ageneralized isoparametric formulation. Both linear~Q4!

Fig. 24 Displacements „u x and u y… along yÄ1 using Q4 and
Q8 elements for bending load applied perpendicular to the ex-
ponential material gradation in orthotropic FGMs „E11

0 Ä1,
E22

0 Ä0.1, G12
0 Ä0.5, n12Ä0.3…
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and quadratic~Q8! quadrilateral elements have been investiga
in detail. To address the influence of material property variati
both exponentially and linearly graded elements have been
sidered and compared. Several plates with continuously nonho
geneous isotropic and orthotropic materials were considered u
fixed grip, tension, and bending conditions. The performance
graded elements was compared to that of conventional elem
with respect to analytical solutions.

Higher-order graded elements~e.g., quadratic and higher! are
superior to conventional homogeneous elements based on
same shape functions. One should be careful when using gr
elements with linear shape functions~e.g., Q4! as it may lose
accuracy in certain situations such as uniform traction paralle
the material gradient direction. When using this element, we r
ommend to average the nodal properties of the element, w
would convert it to a regular homogeneous element. Thus
value of material properties at the integration points used to c
pute stresses depend on whether first-order or higher-order
ments are used. This simple procedure leads to a more ro
element. A similar procedure is used in the finite element co
ABAQUS ~@37#! for heat transfer analysis and also in th
WARP3D code~@38#!.
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