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Gradient Elasticity Theory for
Mode lll Fracture in Functionally
Graded Materials—Part I: Crack
Perpendicular to the Material
Gradation

Anisotropic strain gradient elasticity theory is applied to the solution of a mode Il crack
in a functionally graded material. The theory possesses two material characteristic
lengths,€ and €', which describe the size scale effect resulting from the underlining
microstructure, and are associated to volumetric and surface strain energy, respectively.
The governing differential equation of the problem is derived assuming that the shear
modulus is a function of the Cartesian coordinate y, i.e5G(y)=Gye?Y, where G

and y are material constants. The crack boundary value problem is solved by means of
Fourier transforms and the hypersingular integrodifferential equation method. The inte-

gral equation is discretized using the collocation method and a Chebyshev polynomial
expansion. Formulas for stress intensity factorg, Kare derived, and numerical results

of K,;, for various combinations of, €', and y are provided. Finally, conclusions are
inferred and potential extensions of this work are discus$b@®I: 10.1115/1.1532321

1 Introduction

Classical(local) continuum theories possess no intrinsic lengt
scale. Typical dimensions of length are generally associated wi d metal/ceramice.g., Nb/NBSi; [18] and TiTiB [19]), sys-

the o_veraII geometry of th? _domam under consplerauon. Th_'t‘éms. Comprehensive reviews on several aspects of FGMs can be
classical elasticity and plasticity are scale-free continuum theorigs, - 4 in the articles by Markworth et d20], Erdogan21], and

in which there is no microstructure associated with materiﬁrjai [22], and in the book by Suresh and 'Morteniéﬁ]. ’
points,[1]. In contrast, strain gradient theories enrich the classical-rhiS paper presents a linkage between gradient elasticity and
continuum with additional material characteristic lengths in ordejraded materials within the framework of fracture mechanics. The
to describe the sizéor scalg effects resulting from the underlin- remainder of the paper is organized as follows. First, the consti-
ing microstructures. Recent work on strain gradient theories {give equations of anisotropic gradient elasticity for nonhomoge-
account for sizeor scal¢ effects in materials can be found in theneous materials subjected to antiplane shear deformation are
articles by Wu[2], Fleck and Hutchinsofi3], Lakes[4,5], Smy- given. Then, the governing partial differential equatigROES
shlyaev and Fleck6], and Van Vliet and Van Mief7]. Recent
applications of gradient elasticity to fracture mechanics include
the work by Fannjiang et a[8], Paulino et al[9], Exadaktylos

et al.[10], Vardoulakis et al[11], Aifantis [12], Zhang et al[13],
Hwang et al[14], and the review paper by Hutchinson and Evans
[15]. The present work focuses on anisotropic strain gradient elas-
ticity theory for fracture problems in functionally graded materials
(FGMs). To the best of the authors’ knowledge, this is the fiost

one of the first solutions for FGMs with gradient terms.

The emergence of FGMs is the outcome of the need to accom-
modate material exposure to nonuniform service requirements.
These multiphased materials feature gradual transition in compo-
sition and/or microstructure for the specific purpose of controlling
variations in thermal, structural, or functional properties. The spa-
tial variation of microstructure is accomplished through nonuni-
form distribution of the reinforcement phase with different prop-
erties, sizes, and shapes, as well as by interchanging the roles o
reinforcement and matribase materials in a continuous manner.

This concept is illustrated by Fig. 1, which shows an FGM with a
ontinuously graded microstructure. Typical examples of FGMs
Eﬁ:lude ceramic/cerami@.g., MoS;} /SiC[16] and TiC/SiC[17]),
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are derived and the Fourier transform method is introduced aAd pointed out by Chan et gl27], the constitutive equations of
applied to convert the governing PDE into an ordinary differentigradient elasticity for FGMs have a different form from the ones
equation(ODE). Afterwards, the crack boundary value problem isbove. Thus, for FGMs with material gradation along the Carte-
described and a specific complete set of boundary conditionssian coordinate, the constitutive equations of gradient elasticity
given. The governing hypersingular integrodifferential equation &re
derived and discretized using the collocation method. Next, vari-
ous relevant aspects of the numerical discretization are describefi ~ »(¥) €xkdij +2G(y) (&j; —02V2e) = 204G (Y)1(dei))
in detail. Subsequently, numerical results are given, conclusions (12)
are inferred, and potential extensions of this work are discussed.

Two appendices supplement the paper. One contains the lengthyi; =\(Y) €xdij +2G(Y) €+ 2¢" v [ €9 G(y) + G(y) dkeij |
expression of the regular kernel in the fiigbverning hypersin-
gular integrodifferential equation, and the other provides some (13)
useful formulas for evaluating hypersingular integrals and com- i = 20" G (Y) €+ 202G (y) dyei; - (14)

puting stress intensity factofSIFs. )
Note that the Cauchy stresses are influenced by a term con-

taining the spatial derivative of the shear modulus, and so are the
o ) ) o total stresses; . The term “— 2€Z[akG(y)](akeij)" that appear
2 Constitutive Equations of Gradient Elasticity in (12), but not in(9), can be interpreted as the interaction be-

This section introduces the notation and constitutive equatiofféeen the material gradation and the nonlocal strain gradient ef-
of gradient elasticity, which will be used to investigate antiplantct, which will play a role in the governing partial differential
shear cracks in functionally graded materiéiGMs). In three- €quation(PDE) (17) discussed in the next section. Moreoven if

dimensional space, the displacement components are defined @88dG are constants, the constitutive equations for homogeneous
materials(see Vardoulakis et al11], Exadaktylos et al.10], and

U=u, Uu=v, U=W, (1) Fannjiang et al[8]) are recovered as a particular case of Egs.

and for antiplane shear problems, the following relations hold: (12)—(14). If the shear m_odulu§5 is a f_unctio_n ofy (see Fig. 2
and a mode 1l problem is under consideration, then each compo-

u=v=0, w=w(X,y). (2) nent of the stress field can be written F&7]:
Strains are defined as Oux=Oyy=0,,7=0, 0y,=0
. :1(% . %) @) 0= 2G(y) (6~ €2V %63 — 20°[3,G(Y) 1y € 0
To2\axi o)’
L . ! i I O'yZZZG(y)(eyz_ezvzeyz)_262[‘?yG(y)](0"yEyz)9&0 (15)
where both the indicesi and j run through &;,X5,X3) )
=(x,Y,2z). For antiplane shear problems, the nontrivial strains are Hxxz=2G(Y) € dxex,
1w 1 ow MxyzZZG(y)gz‘?xEyz
€5 = €y =% —- 4
X202 9x Yz 2 gy

Casal[24-264 has established the connection between surface
tension effects and anisotropic gradient elasticity theory. For
material graded in thg-direction, the Casal’'s continuum can be y
extended so that the strain-energy density has the following for

W= 3\(Y)€iiej+G(y) € €ji + G(Y) €2 (dgeif) (Oeji)
+ 0 vl G(y)eje;],  €>0, (5)

which has been generalized for an FGM with Lameduli A
=\ (y) andG=G(y). Moreover,d, = d/ 9%, . When the formula-
tion is derived by means of a variational princigte principle of
virtual work), terms associated with undertake a volume inte- -
gral, and terms associated witi can be reduced to a surface
integral using the divergence theorem. In this sense, the char:
teristic length ¢ is responsible for volumetric strain-gradient
terms, and the characteristic is responsible for surface strain-
gradient terms. Moreovey, , d,v=0, is a director field equal to
the unit outer normah, on the boundaries.

The Cauchy stresses; , the couple stressgs,;; and the total
stressegr;; are defined as y

Tij:&W/afij (6)
Miij = IWId€;j (7

Oij = Tij — Okhbiij - ®)

For homogeneous materialse., A\ and G constanty the stress
fields are expressed in terms of strains and strain derivatives a

0'”-=)\ekk5ij+ZG(6”—€2V26”—) (9)
Tij :}\Ekkﬁij +266ij +ZG€,Vk‘9k€ij (10)

ki) =2G(L e +€26keij). (112) Fig. 2 Mode Il crack in a functionally graded material
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Myxz— ZG(y)(gzayfxzf €' €)
Myyz= ZG(y)(gzﬁyeyz_ U €yy).

w=0,

V2+ 7i
ay

Again, it is worth pointing out that there is an extra termaip, i.e., the perturbed harmonic equation, which has been investigated

ando, as compared to the homogeneous material (see Vard-

by Erdogan and Ozturf8]. However, because the corresponding

oulakis et al[11] p. 4539. term to the coefficient? affects the highest differential in the
goyerning F_>DE(19)_, a singular pt_erturbation is expected as the
3 Governing Partial Differential Equation limit €—0 is considered. By taking botky—0 and{—0, we

obtain the harmonic equation for classical elasticity. Various com-

By imposing the only nontrivial equilibrium equation

bination of parameteré and y with the corresponding governing

oy, 90y, PDE are listed in Table 1.

Ty O (16)

4 Fourier Transform
of G(y) is obtained: Let the Fourier transform be defined by

the following partial differential equatio(PDE) for general form

z?

_ z?_Wi 2 Zﬁ_W) ((9_W7 2 Z&W)
. G(y)(ﬁx v G| 75—V

L[ °G(y) ¢*w ﬂG(y) Fw 9G(y) Pw
- EVARr YA 3T il b
y y ay ay ay X2y

7)
If the shear modulu& is an exponential function of, i.e.,
G=G(y)=Gee”, (18)

Fw)(§)=W(§)= f w(x)e™édx. 23
(w)(& & T ( (23)
The inverse Fourier transform theorem gives

THW) () =w(x) = \/%flw(f)e‘ixfdé, (24)

wherei=,—1. Now let us assume that

1 * .
then (17) can be simplified as W(X,y)= —J’ W(&,y)e ™éd¢, (25)
) V2m J—=
2y4 2v2 W o2 2020 W aW ; ; ; ; ;
—VW=2y(V —+VW—yHl——+ =0, (19) i.e., w(x,y) is the inverse Fourier transform of the function
o Wy W(EY).
or in a factored form Considering each term in E¢L7) term by term, and using Eq.

w=0. (20)

J J
_ o022 p2u2|| w2
1—-v¢ 3y €V)(V +yay

In terms of the differential operator notatiof20) can be writ-
ten in the form as

Y=Y ’ Y j’)y ! Y ély'

whereH,, is the perturbed Helmholtz operatdy, is the perturbed _2y€zvz‘9_w _

Laplacian operator, and the two operators commute, lieL,,
=L,H,. Thus, the PDHE?20) can be considered as a double per-
turbation of the composition of the Helmholtz and harmonic
equations,

(1—€2V?)V2w=0, (22)

that is, one perturbation is to the Helmholtz operator (1

—€2V?), and the other perturbation is to the Laplacian operator V2w

V2. Both the Helmholtz and the Laplacian operators are invariant
under “rigid-body motions.” However, FGMs bring in the pertur-
bation and destroy such invariance. By settipig 0 in (20), one
gets(22), which is the PDE for gradient elasticity.

Another viewpoint of the perturbation is focused on the role of

—2Viw=—¢2

(25), one obtains

Awixy) _d'wxy)  dw(x,y)
X P Ty T T ayR
y y

J— (§4W§ s 2W+a4W) e g
\/— y) 7

ay*
(26)

FPwx,y)  Pw(x,y)

2
2yt IX2ay ay® )
IW(EY)  FPW)

_ \/_ ( §2 (fy ay3)ef|x§ d§
(27)

F*W(X,y) . PPW(X,y)
ox? ay?

1 (- 5 PPW e
:E » —¢& W(fyy)+a—yz e d¢  (28)

the characteristic length. By taking ¢ —0 (at the level of the 202 FW(X,y) 5 y) o XE di (29
differential equation we obtain a lower order of PDE, Y ay? \/— £ (29
: - , . , IW(X,y) 8W(§ y) o ixe
Table 1 Governing partial differential equations ~ (PDESs) in an- v dé. (30)

tiplane shear problems ady V2
Cases Governing PDE References Equations(26) to (30) are addedaccordmg to Eq(19)), and after
(=0,7=0 Laplav‘f;‘fam’m Standard textbooks. simplification, the governing ordinary differential equati@DE)
=0, 7#0 Perturbed Laplace equation: Erdogan and Ozturk [28]. is obtained:
(V2 + 'yai) w=0 4 3 2
(#£0,v=0 Helmholtz-Laplface equation: Vardoulakis et al. [11]. d +2 ’)’€ d —(2¢ 2§2 + ,},262 +1) d_ —y(1+2¢ 252) i
(1-2V) V=0 Fannjiang et al. [8]. dy4 dy2 dy
£#0, v#0 Equation (20): Studied in this paper.

(1-+2£ - V) (V?+14)w=0

Journal of Applied Mechanics
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Table 2 Roots A\, together with corresponding mechanics theory and type of material

Cases Number Roots Mechanics theory References
of roots and type of material

£=0,v=0 2 +¢| Classical LEFM, Standard textbooks.
homogeneous materials

£=0, v#0 2 /24 + €2 Classical LEFM, Erdogan and Ozturk [28].
nonhomogeneous materials

£#£0, v=0 4 gl £/ + 1/ Gradient theories, Vardoulakis et al. [11].
homogeneous materials Fannjiang et al. [8].

£#0, v#0 4 —v/2E£ /Y244 €2, Gradient theories, Studied in this paper.

nonhomogeneous materials
—-y/2E/E+ 2[4 +1/62

5 Solutions of the Ordinary Differential Equation which are adopted in this paper. One may observe that the first
. - . . vo boundary conditiongBCs) in (39) are from classical elastic-
f The_ corresp_ondlng charagterlstlc equation to the ordinary dﬁz’ e.g., linear elastic fracture mechanitsEFM). The last BC
erential equatiofODE) (31) is A : -
regarding the couple-stregs,,, is needed as the higher order
2N+ 290203 — (20282 + Y202+ 1)NZ— y(1+ 2022\ theory is considered.
+(£28+ £9)=0, (32)
which can be further factored as 7 Hypersingular Integrodifferential Equation
[€2N24 y02N — (1+ €22 (N2 + yA— £2)=0. (33) Approach
Clearly the four roots\; (i=1,2,3,4) of the polynomial33) By taking account of the symmetry along tkeaxis, we may
above can be obtained as consider thatw(x,y) takes the following general solution form
(for the upper half-plane
Y Nrag )\_—_y+\/m 34)
) 2 "2 2 1 (= _
w(x,y)= _/_f [A(¢)e'Y+B(§)er]e ™ ed¢, y=0
_ Y mar a2 _ Ym0z 21 J
7\3—7— &+ yolA+ 1167, )\4—7+ &ty 14+ 1/¢7,
(35) — L jw [A( g)ef(y+ v‘4§2+72)y/2
where we let\;<0 and\3;<0. As y—0, we recover the roots V27 ) e
found by Vardoulakis et aJ11] and Fannjiang et a8]. The roots PN s vy .
A, and\, correspond to the solution of the perturbed harmonic +B(§e” VA HAYR1emXedg y=0, (40)

equation, and the roots; and\, match with the solution of the )
perturbed Helmholtz's equation. Various choices of parametersVN€reA(¢) andB(£) need to be determined from the boundary

and y with their corresponding mechanics theories and materignditions(39). As Eq.(40) provides the form of the solution for
types are listed in Table 2. w(x,y), it can be used in conjunction with E€L5) such that

By taking account of the far-field boundary condition
O'yz(xxy) = ZG(Y)(EyZ_ ezvzfyz) - 262[ ayG(y)](ayeyz)

W(X,y)—0 as Vx2+y?— +o, (36) . ,
and withy>0 (the upper half plange one obtains = % M(y,E)A(E)e (F v’yz—+4g‘2)y/2—ixgd§’
T J—x

W(&,y)=A(§)eM +B(§)er?. (37)
Accordingly, the displacement(x,y) takes the form y=0. (41)

1 o _ Notice that the term associated wili{£) has been dropped out
W(X,y)= \/? f [A(&)eMY+B(£)er]e *édé.  (38)  from ay,(X,y). Moreover,
mJ—w

. . Je
Both A(¢) andB(&) are determined by the boundary conditions. ,uyyz(X,y):ZG(y)( 2 (?;Z—e’eyz), y=0,
6 Boundary Conditions Gly) (=
Figure 2 shows the geometry of the mode Il crack problem in = FJ {(E2N3— €' NDA(HMY + (€205
which a functionally graded materigFGM), with shear modulus e
G(y)=Gye"”, bonded to a half-space is considered. Thus the —€'Ng)B(&)eMM e *édg
problem reduces to the upper half-plane, s is treated as the
boundary. By the principle of virtual work, the following mixed G(y) [~ PNy
boundary conditions can be derived: = —f {caly,H)A(g)e iy Hasye
N2 J -
oyA(X,00=p(x), x|<a PN 7y ryr PN
w(x,0=0, X|>a (39) Foa(y HB(ge T HIETTAI e TdE, - (42)
HyyAX,00=0,  —oo<Ix<+oo, where
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Caly, &) =ENI— '\

b% 1
=S (VO €) 4 S (9 2+ 0P+ A8+ 22,

(43)
and
ca(7,6)=0N5— €'\
= 2g+ J ()41
+%('y€2+€')\/m. (44)

In order to derive the Fredholm integral equation, we define the

density as the slope function

d(X)=aw(x,0")/ox. (45)
The second boundary condition (89), and Eq.(45), imply that
d(x)=0, |x|>a, (46)
and
a
J:ad;(x)dx:o, (47)

which is the single-valuedness condition. The definitid§), to-
gether with Eq(40), lead to

l ” .
Ef (—iO[AE)+B(&)]e *dE= p(x), —oo<x<oo.
(48)
By inverting the Fourier transform and usifg6), one obtains

-1 (- .
(if)[A(§)+B(§)]=Ef p(x)e*édx, —om<x<

(49)

=_—1fa H(1)e'dt.
V2m ) -a

The last boundary condition i(89), imposed onu,,AX,y),
provides the following pointwise relationship betwe&(¢) and

B(¢):
B(e)— CE+ (yPH )Y IA+ E+ y(y 07+ L')]2 A
(&)= 0282+ 1+ [ (yl2+ 0')12)(y+ JAE+ 12+ 4107) (©)
=p(v.6A($), (50)

where the notatiop(y,§) is introduced here, i.e.,

282+ (y02+ 0" ) YPA+ E24 y(yE2+€)]2

2+ 1+[(y02+ ") [2)(y+ A&+ 2+ ale?)
(51)

p(v,é)=—

Substituting(50) into (49), one obtains

A(é)= (52)

i &t
1507, g)J plnett,

J_ i
where

1 CEFTLH[(p02+ ) [2](y+ VAE+ Y2+ 4107)

T4p(7.6)  1+[(702+€)I2)(VAEEt y2r A2 —JAE2t 42)
(53)

Journal of Applied Mechanics

ReplacingA(€) in Eq. (41) and using thefirst) boundary condi-
tion for o, (that is, lim,_ o+ o7y (X,y) =p(X), [x|<a) in (39), one
obtains the following integral equation in limit form:

. G(y)J*‘ —M(7.9)
lim

v 2m .
y—0

i&(1+p(y,8)
X fa P(t)e'etdt

e~ (rt VP +asyyi2- xéq g

=p(x), [|x[<a. (54)
By rearranging the order of integration, we obtain
. (y) —Ai(7,€)
m s R ey
xe~ (rtVy +4§2)ylze|§(t—x)d§dt
=p(x), [|x/<a, (55)

which can be rewritten as

G (a2 * )
lim >— | $(t) f K(&y)e €t 9dgdt=p(x), |x|<a,
ot (56)
with the kernel

_)\1('}’:f)
ig[1+p(7,8)]

Asymptotic analysis allows splitting of the kern€(£,y) into
the singulafK..(§,y) =lim|,_,.K(£,y)] and nonsingular parts:

K(£,y)=Ko(£,y) +[K(&y) —Ko(€:3)]s

singular

—(y+Vy2+a8d)yi2

K(&y)= (57)

nonsingular

(58)
where(asy is set to zerp
|§| 5€2')/2 €/,y er 2
K=(£,0)= |§H 8 +T+l_(ﬁ>
2 2 ’
S22 g ezez] (59)

and K(£,0)—-K..(£,0), denoted byN(&,0)=N(£), can be ex-
pressed as a fraction:

P(£)
Q'
with P(&) andQ(¢) described in Appendix A.

Substitution of Eq.(59) into (56), in the sense of distribution
theory,[29], leads to

N(£.0=N(&)= 574 (60)

lim jm K. (&,y)e'tt=2dg

y~>OJr
_2€2 ™ 2 ' '
:W—E(Z(f y+4£") 6" (t—X)
. 5€2218+ €' yl4+1—[€'1(2€)]?

t—x '

and to the following hypersingular integral equation:

JULY 2003, Vol. 70 / 535
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N(E)sin[(t-x)E]

0.03 - ' ! ! ! T ' ! !
0.02

0.01

N(E)sin[(t-x)E]

-0.01

002 ; ; ; ;
]

Fig. 3 Plot of the integrand in Eq.  (62) for €=0.05, ¢'=0.005, y=0.1, r=v3/7, and s
=v2/3. (a) £€[0,5000]; (b) Zoom for the range £€[0,500]. Moreover, as £—0, the limit
of N(&)sin[&(s—n)] is about 22.4 X 1073,

which is an integrodifferential equation with both hypersingular
and Cauchy singular kernels. In addition to the single-valuedness
condition condition in (47), the integrodifferential Eq.(64)

is solved under the physical constrairftsmooth closure

—24?
(r—x)>

1.

T2yt (-
- 2( y+€)6'(1—x)
N 502928+ € y/A+1—[£'/(2£)]?

pa— +k(x,1) | d(2)dt condition”):
—p(), Jxl<a, $(a)=d(-a)=0, (65)
(61) so that the solution can be found uniquége Refs[8] and[30)).
where the regular kernel is
k(D) = wa(g)sirig(t—x)]dg (62 & Numerical Solution
0 The numerical solution of the mode Il fracture boundary value

problem is accomplished by means of the collocation method,
[31,32. The process of obtaining the numerical solution of Eq.
£64) can be divided into the following steps:

with N(€) described in Eq(60). Figure 3 permits to graphically
evaluate the behavior of the integrand of ER). Clearly, such
kernel is oscillatory, but the magnitude of oscillation decreas

and tend to zero ag increases, i.e., ligy,,, N(&)siM&t—x)]=0.
Another point that we need to be cautious about in (B8) is the
behavior at=0 of N(£) =P(£)/Q(¢) asQ(¢) has the factog in
the denominator. However, this would not affect the integrability
of the integrand in Eq(62) because of the term $if{t—x)]. Thus
lim;_ o N(&)sin&(t—x)] exists and is finite, which depends on the
values oft, x, €, €', andy.

As a result of distribution theory29], the differentiation of a
delta function,é(t), has the following property:

* Normalization,

* representation of the density function,

» Chebyshev polynomial expansion,

« evaluation of the derivative of the density function,

« formation of the linear system of equations,

« evaluation of singular and hypersingular integrals, and
« evaluation of nonsingular integral.

Relevant details for each of the above items are given below.

o 8.1 Normalization. By the following change of variables,
j o' (t=x)p(t)dt=—'(x). (63)
- s=[2/(d—c)][t—(c+d)/2],
Thus one may rewrite Ed61) as . d .
R 5 5 ’ oy one may convert the integraf g(t)dt into the form of
Go [ =207 Sy R+ yA+1-(L'/€) /4+/<(x 9 J1,f(s)ds. Because the crack surface is located in the range
a J_ | (t—x)? 1—x ’ (—a,a), a convenient change of variables becomes
G 5 tla=s and x/a=r,
X(di+ = (£ +2£2y)¢'(x)=p(x).  |x|<a,
which is the normalization of the variablésandx, respectively.
(64) Thus Eq.(64) can be written in normalized fashion as
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1 (! [=2(£/a)? d n+1
?jgl[ (s—r)3 E[Un(r)vlfrzkfﬁnﬂ(r), n=0. (73)

+5(€/a)2(ay)2/8+(€'/a)(ay)/4+1—[(4'/a)/(€/a)]2/4 Thus

S—r ©
d
®'(1)=g- JI=12>) AU
+IC(r,s)] D(s)ds+[£'[a+2(£[a)* (ay)|D'(r)]2 n=0
— 1 “

=P(r)/Go, |r|<1, =ﬁn§0 (N+1)ATH(r). (74)

(66) 8.5 Formation of the Linear System of Equations. The

where strategy to determine the coefficier{ss consists of forming a set

_ _ _ of linear algebraic equations. Replacififs) in (66) by the rep-
®(r)=¢(ar), P(ry=p(ar), K(r,s)=ak(ar,as). resentatior(70), and using74) one obtains the governing integral
As clearly seen in Eq(66), the quantitie€/a, ¢'/a, anday are eduation in discretized form:

dimensionless parameters. Thus the following dimensionless pa- w 5 s T
rameters are defined: SN Ap [V Un(s)VL=s et 1+5€ y +€_y
3
~ ~ = _ —r 4
T=tla, T'=¢'la, F=ay, (67) P ()
. . . . . . = 2 o )
which will be used in the humerical implementation and results. 4 E A, (L U(s)VL—s d
- — — —ds
8.2 Representation of the Density Function. The next step 20/ |a=1 ™ Ja S—Fr
of the numerical approach to ttieormalized hypersingular inte- - _
gral Eq.(66) is to establish the actual behavior of the unknown A, 1 5
density functiond(s) around the two crack tips= = 1. For ex- +Z — | NI=sTU()KLr,s)ds
ample, the governing integral equation in classical linear elastic nl !
fracture mechanic$LEFM) has Cauchy singularity if the slope Y P P(r)
function, say®(s) grv, is chosen to be the unknown density L A,(n+ DT, . (r)= . rl<1.
function. A well-known representation 31,32, iz 5 Go
D(s)erm=f(s)/V1-5° [g]<1, (75)

wheref(+1)#0. For the cubic hypersingular integral, E§6), Notice that the running inder starts from 1 instead of (see
the representation ab(s) is found to be[8], (72).

D(s)ce=P(s)=g(s)V1-%7, (68)

whereg(= 1) is finite,g(= 1)#0, and the subscript GE stands for_ 8.6 Evaluation of Singular and Hypersingular Integrals.
gradient elasticity. Thus by approximatigs), one can find the The governing integrodifferential E¢64), and its discretized ver-
numerical solution tab(s). sion, Eq.(75)_, contain _both C_:auchy singular and hypersingular
integrals(cubic singularity, which need to be evaluated. Erdogan
8.3 Chebyshev Polynomial Expansion. The approximation et al.[31,32 have presented formulas for evaluating Cauchy sin-
of g(s) in Eq. (68) is accomplished by means of Chebyshev polygular integrals, and Chan et #B4] have presented formulas for
nomial expansions. Either Chebyshev polynomials of the firaialuating a broad class of hypersingular integrals, which gener-
kind Tp(s), or of the second kintl,(s), may be employed in the alizes previous derivationg31,32,33, in the literature. Here,
approximation, i.e., such integrals are interpreted in the finite-part sense, and listed in
Appendix B(Eg. (93) to (95)).

9= a,To(5) or g(s)=2 AULS).  (69) 8.7 Evaluation of Nonsingular Integral. Combining all
n=0 n=0 the results obtained so far in the numerical approximation, one
The coefficientsa,s or A,s are determined numerically by themay rewrite Eq(75) in the following form:

collocation method. As shown by Chan et[&3], the two expan- 72 =
sions should lead to the same numerical results. In this paper, the — 2 )
expansion usindJ ,(s) is adopted, i.e., 2(1—r2) n; Al ("M Up (1) = (2074 3n+2)Up-4(r)]
i 02=2 DI 71\ 2] @
B(s)= V153, AUy(s), (70) 22 O S AT,
n=0 4 2’2 =
whereU ,(s) is defined, as usual, by "
A (1
sif(n+1)cos (s + —nf 1-s?U d
Un(s)= rtn+1) (5)] n=0,1,2,.... (71) n; )1 SUn(9K(r.s)ds

sifcos X(s)]

Satisfaction of the single-valuedness conditi@¥), or equiva- T +20%y P(r)

lently, f1 ,®(s) ds=0, requires that the following relation holds: N ngl An(N+1)Thi4(r)= < rj<1.
8.4 Evaluation of the Derivative of the Density Function. Thus the last step for applying the collocation method consists of

The term®’(r) in Eq. (66) is evaluated using the expansi(f0) evaluating théregulay integral in(76), which is actually a double

and the fact that integral, i.e.,
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1 1 Q) S
j 1\/11:,2Un(s)lC(r,s)ds xf &%r;ds, (r>1). (82)
— -1
1 After cancellation of the common terms, E&2) can be contin-
:j JV1-s?U,(s)ak(ar,as)ds ued by introducing formula98), and using the representation
-1 (70), i.e.,
1 % N
=f_1\/1—szun(8) fo aN(é)siMaé(s—r)]déds. K, (a)=2y27a _:{5)60 lim (r—1)3’22 —(r;+ D
r—1* n=0

The integral alond0, «) is a Fourier sine transform, and can be
efficiently evaluated by applying fast Fourier transfoffFT)
[36]. The integral alond —1,1] can be readily obtained by the

_ 2
Irl " Ir]
Gaussian quadrature meth¢a7]. X\ =+ Jri-1 ni1- o
i r
9 Stress Intensity Factors(SIFs) B u Nz
Since the(macroscopitpropagation of a crack starts around its T r A
tips, it is very important to study and determine the SIFs at both Jré—13 "

crack tips. In classical linear elastic fracture mechaidsFM), .
the stressr, ,(x,0) has 1{x—a singularity axx—a* (or 1//x+a,
yz Y
asx— —a ), and thus SIFs are defined and can be calculated by =vma (£/a)Go HZJO (N+1)A,. (83)

K@= lim y27(x—a)a,(x,0), (x>a), (77)  Similarly,

x—a’t
o

and Ku(—a)=yma (€/2)Gy > (~1)"(n+1)A,.  (84)
Kn(—a)= lm V2m(—a-x)oyx0, (x<-a). "0
X —a~ Formulas(83) and (84) will be used to obtain numerical results

(78) for SIFs.

However, the same definition may not hold for strain-gradient ) )
elasticity becauser,,(x,0) may have a stronger singularif,3]. 10 Results and Discussion

Thus SIFs will be redefined in the development below. The boundary value problem illustrated in Fig. 2 is considered
First, note that the limit in Eq477) and(78) is taken from the ¢ )| the examples in this paper. To validate the present formu-
region outside the crack surfaces toward both tips, and the integtg|on consider the case whefe ¢’ —0 in a certain special limit
Eq.(64) is the expression far,(x,0) which is valid forlx|>a as  gonggsee Fannjiang et al8]), so that the classical elasticity so-
well as[x|<a, i, lution is represented. The results for classical stress intensity fac-
G (2 —262 5€2y%8+('yl4+1—(€'1€¢)%4  tors(SIFs (Egs.(77) and(78)) are given in Table 3. It is clearly
ayAx,0)= —f {(t_x)g + T—x seen from Table 3 that the present results are in agreement with
mJ-a those of Erdogan and OztufR8]. Note that the SIFs decrease
G monotonically asy increases. Moreover, it is interesting to inves-
+k(x,t)) S()dt+ —(£'+2€2y) ¢’ (x), |x|>a. tigate the asymptotic behavior of the SIFsjas + <. As y—o
2 the stiffness of the medium increases indefinitely and, under finite
(79) loading (pg), the crack-opening displacement and the SIFs
Ku(a) tend to zero. Similarly, agy— —« the stiffness of the

Second, after normalization and with the density functib(t)
expanded by Chebyshev polynomials of the second kind
some integral formulas, which are useful for deriving SIFs, ne
to be developed fofr|>1 (Chan et al[34]), and are listed in
Appendix B(see Eqs(96) to (98)). Notice that the highest singu-

eI%ble 3 Variation of classical (normalized ) stress intensity
factors (SIFs) with the material gradation parameter  y=+v/a

larity in the Eqs.(96) to (98) appears in the last term in E(8), K,jcf’ —
and it has singularityr®—1)"%? asr—1" or r——1". Moti- 5 | Present Study | Erdogan and Ozturk [28]
vated by such asymptotic behavior, we generalize the SIFs for -2.0 1.476 1.481
strain gradient elasticity from those of classical LEFM. Thus -1.6 1.381 1.397
. -1.2 1.293 1.308
€K|“(a): lim 2\ 27T(X_a)(x_a) G'yz(X,O), (80) 08 1.204 1.214
x—a’ 04 1117 1113
(Ky(—a)= lim 2\2=(x+a)(x+a)o,(x,0). (81 -0.2 1.061 1.059
m ) o m( )( )O'yz( ) (81) 0.0 1000 1000
. . 0.2 0.934 0.934
Therefore, the following formulas for the normalized mode Il 04 0.566 0.869
SIFs in the strain-gradient elasticity theory may be derived: 0.6 0.807 G810
= |i 0.8 0.755 0.758
= N — - >
Ky (a) XILT+ 2\2m(x—a)(x—a)ay,(x,0), (x>a) o 5705 75
1.2 0.669 0.671
= lim 2y2m(ar—a)(ar—a)o,/(ar,0, (r>1) 1.6 0.602 0.604
r—1% 2.0 0.556 0.550
o2 3.0 0.458 0.457
=2avma G Iim V2(r—=1)(r—1 5.0 0.359 0.356
& o M V2 s 6.0 0.329 0.324
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Fig. 4 Full crack displacement profile in an infinite medium of Fig. 6 Crack surface displacement under uniform crack sur-
homogeneous material (¥=0) under uniform crack surface  face shear loading o,,(x,00=—p, and shear modulus G(y)
shear Ioadi~ng o,,(x,00=—p, with choice of (normalized) ¢ =Gye? with choice of (normalized ) €=0.2, €'=0.04, and vari-
=0.2and ¢'=0 ous ¥. The dashed line stands for the homogeneous material

(9=0) in a gradient elastic medium.

medium decreases indefinitely, and consequeiifiy(a) tend to The solutions obtained in this study for a nonhomogeneous

infinity. These physically expected trends can be observed fjg!f-plane having shear modul@=G(y), y>0, is also valid for
Table 3. the corresponding infinite medium in whigh=0 is a plane of

Once the slope function is found numerically using the repréymmetry(see Fig. 2, i.e.,
se_ntatlon(68), the crack displacement profile(r,0) can be ob- G(—y)=G(y).
tained as
N Unless otherwise stated, uniform loading is considered on the
r r crack face, i.e.g(X,0)= —pg, and the normalizatiop, /G, has
W(KO):f ‘D(S)ds=J VI=87Y AUn(s)ds. (85) Dpeen employed.yZ

-1 -1 n=0 Further normalized crack displacement profiles for various
Figure 4 shows the normalized crack displacement profile in &mbinations of the gradient paramete¢s((') and material gra-
infinite medium of homogeneous material=0) under uniform dation parametery) are presented in Fig. 5 to Fig. 8. Figures 5
crack surface loading fof = 0.2 andf’ =0. Notice that the crack and 6 show crack displacement profiles for selected valués of
tips form a cusp with zero enclosed angle and zero first derivatiéé, and variousy. Figure 5 considerg=0.05, {'=0 and thus
of the displacement at the crack tifsee(65)). This crack shape is p=¢'/€=0; while Fig. 6 considerg =0.20, ¢'=0.04 and thus
similar to the one obtained by Barenbl§88] using “cohesive p=+¢'/¢=0.2. In both graphs, the broken lines stand for the ho-

zone theory,” but without the assumption regarding existence pfogeneous materialf=0) in a gradient elastic medium. A com-
interatomic forces.

12F s - ...... -
1.8
1.6
14 -
(Do
’“01.2 . :-O
2 e g
.
g L)
= z
6: 0.8 3
X
z 06
0.4 :
0.2 02 . : : KRR S ]
0 -1 -0.8 -06 -04 -0.2 0 02 04 06 08 1
x/a x/a
Fig. 5 Crack surface displacement under uniform crack sur- Fig. 7 Crack surface displacement profiles under uniform

face shear loading o ,,(x,0)=—p, @nd shea~r modulus G(y)  crack surface shear loading a-yz(x,o)=—pg and shear modulus
=G,e?” with choice of (normalized ) £=0.05, ¢’=0, and various ~ G(¥)=Ggye"” with choice of (normalized ) £'=0.05, ¥=0.1, and

y. The dashed line stands for the homogeneous material case various €. The values of ¢ are listed in the same order as the
(y=0). solid-line curves.
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Fig. 8 Crack surface displacement profiles under uniform Fig. 9 Crack surface displacement profiles under discontinu-

crack surface shear loading  o,(x, 0)——pO and shear modulus ous loading p(x/a)=—1+0.5sgn(x/a) and shear modulus
G(y)= Goe’/y with choice of (normalized ) £=0.05, #=0.1, and G(y)=Gye?” with choice of (normalized ) £=0.05, $=0.2, and
various {'. The values of €' (and p=¢/¢') are listed in the same various p={/¢'. The values of p are listed in the same order as
order as the solid-line and dashed-line (p=0) curves repre- the solid-line and dashed-line  (p=0) curves representing the
senting the strain gradient results. strain gradient results.

parison between Figs. 5 and 6 permits to assess the influence dfigure 8 shows crack displacement profiles for0.05,
the gradient parameterst,(¢') on the displacement solution. =0.10 and varioug’. As is apparent from this figure, by main-
Moreover, asy increases the displacement magnitude decreastaining the values of the relative volume energy paraméteon-
which is consistent with similar results by Erdogan and Ozturitant, the crack stiffening effect becomes more pronounced as the
[28] using classical elasticity to model mode 1l cracks in funcrelative surface energy parametérincreases in the rang@®.¢).
tionally graded material6FGMs). It is worth mentioning that, from energy considerations, the pa-
Figure 7 shows crack displacement profiles T6r=0.05, % rameter{’ can take negative valueg39]. Note from Fig. 8 that
=0.10 and variou$. As? increases, the displacement diminishethe effect of a negativé’ leads to a more compliant crack. In
monotonically, or alternatively the crack becomes stiffer, in congeneral, this is a desirable property of the mathematical model in
parison to the classical elasticity theory. regards to describing experimental results and data.

Table 4 Convergence of (normalized ) generalized stress intensity factors (SIFs) for a mode Il crack

5=0, =005 5=10.30, {=0.05

7 =0,p=0 7 =10.01; p=0.20 £=0,p=0 7 =0.01; p=0.20

Krri(~a Kiir(—a Kutg—al Krrr(-a
N Wl Cond. Num. _;()J\/ﬁl Cond. Num. W Cond. Num. po/7E Cond. Num.

11 || 0.97292 9.888 0.99640 17.018 0.89258 15.223 0.90773 15.142

21 || 0.97467 83.559 0.97375 | 1.669e+02 || 0.88381 | 1.509e¢+02 | 0.88337 [ 1.478e+02
31 || 0.97467 | 3.555e+02 {| 0.97355 | 7.131e+02 || 0.88376 | 6.437e402 || 0.88287 | 6.314e+02
41 || 0.97467 | 1.032e+03 | 0.972256 | 2.059¢+03 {| 0.88336 | 1.859¢+03 || 0.88133 | 1.823e+03
51 || 0.97467 | 2.395e+03 || 0.97109 | 4.754e+03 {| 0.88301 | 4.293e+03 || 0.87999 | 4.206e+03
61 || 0.97467 | 4.802e+03 || 0.97113 | 9.501e+03 || 0.88301 | 8.577e+03 || 0.87996 | 8.406e+03

Table 5 Normalized generalized stress intensity factors (SIFs) for a mode Il crack
at various values of [/, /', and ¥

1=005 ¢ =0]6=005 #=001|0=02 #=0|7=02 =004
-2.00 1.42126 1.41617 1.28017 1.26783
-1.00 1.21749 1.21301 1.10392 1.08610
-0.50 1.10374 1.09965 1.00377 0.98768
-0.10 1.00271 0.99903 0.91696 0.90236
0.00 0.97467 0.97113 0.89338 0.87921
0.10 0.94423 0.94086 0.86819 0.85450
0.50 0.82566 0.82282 0.76878 0.75671
1.00 0.70597 0.70324 0.66261 0.65169
2.00 0.54916 0.54592 0.50894 0.49937
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Figure 9 shows crack displacement profiles considering discodMS-9713798 from the Mechanics & Materials Program, and
tinuous loading DMS-9600119 from the Applied Mathematics Program. The first
_ author would like to thank Prof. Y. F. Dafalias, form the Univer-

p(x)=—1+0.5sgrix) sity of California at Davis, for his encouragement and valuable
and€=0.05,%=0.2, and varioup={'/¢. Similar comments to Suggestions to this work.
those regarding Fig. 8 can be made with respect to Fig. 9. More-
over, qualitatively the results displayed in Figs. 7 to 9 are in agree-
ment with those of Vardoulakis et a[11] for homogeneous
materials.

Table 4 shows a convergence study foormalized general-  The Regular Kernel. The regular kerneN(£,0) described in
ized SIFs(see Eqs(80), (81), and(83), (84)) involving nongraded Eq. (60) can be expressed as the fractiBé)/Q(£). Q(&) is
(¥=0) and graded¥+0) gradient elastic materials considering@iven by
both€¢’'=0 and¢'#0 (¢'>0). Note that as the number of col-
location points N) increases, the generalized SIF results con-  Q(¢&)= —i&(VEX+ Y2IA+ 1162+ &2+ 24+ y+ €' 1¢?).
verge for both materialéi.e., nongraded and gradedHowever, (86)
the convergence is worse for the caSe0 than for the case p b d
£'=0. The condition number for all the examples investigated ls(g) can be expressed as

P(£)=P4(§) +P3(§) +P3(£) +P1(£) +Po(£) (87)

Appendix A

always satisfactory.

Table 5 lists the generalized SlFsee Eqs(80), (81)) for gra-
dient elastic materials considering various values of the materialwhich
parametery and usingN=61 collocation points in the numerical
solution. Notice that the SIF monotonically decreasesyds-
creases, which is in full agreement with the early results for clas-
sical elasticity considering nonhomogeneous matefigds Table
3). Consider, for example, the ca$e=0. In this case, the c~rack
stiffening is due to the characteristic material lengthand ¢’
(€'>0) of the structured medium which are responsible for lower
generalized SIFs<1.0) and, consequently, lower energy release
rates during crack propagation. The results indicate that a higher  p,(g)=[1+ y(y02+ ¢')]VE+ y24+ 1/E2\E+ 24
external load, as compared to that of the classical case, must be

PL(&)=€02E2X (NE+ v2IA+ 102\ E2+ y2l14+ &2
—|E|VE+ 1A+ 1~ [ENE+14),  (88)

Pa(£) = 3(y02+ 0" EA(E+ Y214+ 1102+ €2+ y?14)
—(ye2+€")|¢)3, (89)

applied on the crack surfacéer on the remote boundarieto 1.,, 1 €'\? oo

propagate it in a material with microstructure. 1+ 27 U 207%¢ ) — EW 3
A few comments about the determination of characteristic

lengths in continua with microstructure are in order. Shi ef4] 5,, ¢'\? 1 ,

have presented a brief discussion on determination of such lengths -1 g? - 2 T2 44

in the context of Fleck and Hutchinsori3] strain gradient theory,

which is a generalization of Mindlin’s higher-order continuum X |E|(NE+ YA+ 112+ E2+ y214), (90)

theory, [41,42. Experimental work in the field include, for ex-

ample, micro-torsion by Fleck et 443], microbending by Stolk- 1 . " >

ens and Evanp44], and microindentation by Nik45]. The char- P1(§)= 5 ¥(1+y o+ yl)VE™+ y A+ 1/t

acterization of actual materials, with respect to strain gradient

length-scalés), is an ongoing research topic of much interest and v N

impact in the field of applied mechanics. +5(1+ Yyt + 2 VE+ %A

11 Concluding Remarks . ' . 5 202 ( ' 2+ 1 €’}| | (o
This paper has presented a theoretical framework and corre- L2 g7 2¢ 47 ¢, (41

sponding computational implementation for modeling antiplane

shear cracks in functionally graded materié#&Ms) using strain 1, 8, 1 1y

gradient elasticityCasal’s continuum which includes both volu- Po(§)= 7y + v+ g vti+ 5747 (92)

metric and surface energy terms. The characteristic ler{gthad

€', respectively associated to these terms are assumed to be C‘Kppendix B

stant, and the material shear modulus is assumed to vary exponeh-

tially (see Eq.(18)). In this study, the crack is considered to be Singular and Hypersingular Integrals. Closed-form solu-
perpendicular to the material gradient. The present hypersinguiians for evaluating singular and hypersingular integrals are pro-
integrodifferential equation approach leads to a numerically tragided here and can also be found in Chan ef24]. Those inte-
table solution of the fracture problem, and relevant fracture pgrals are interpreted in the finite-part sense.

rameters have been investigated. These results include, for exThe solution of the crack boundary value problem requires the
ample, crack displacement profiles and generalized stress intenfitjowing formulas. Thus fofr|<1, we have

factors. A parametric study including various gradation parameters

(v) and strain gradient parametes ') has been conducted and L[V Uy(s)V1 =52

discussed. A natural extension of this work is the solution of an P . — =r ds=—T,.,(r), n=0,
antiplane shear crack where the crack is parallel to the material

gradation. Another potential extension consists of investigating (93)

the mode | fracture problem.
1 jE U,(s)y1—s?

=—(n+ - =
T (s—r)2 ds (n+ 1)U, (r), n=0
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1 j£1 U, (s)y1—s? -1, n=0,
1

T (s—r)? 5= [(n2+n)U, (r)—(2n2+3n+2)U,_(N]/[4(1—r?)], n=1.
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