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Abstract

The interaction integral is an accurate and robust scheme for evaluating mixed-mode stress intensity factors. This

paper extends the concept to orthotropic functionally graded materials and addresses fracture mechanics problems with

arbitrarily oriented straight and/or curved cracks. The gradation of orthotropic material properties are smooth func-

tions of spatial coordinates, which are integrated into the element stiffness matrix using the so-called ‘‘generalized

isoparametric formulation’’. The types of orthotropic material gradation considered include exponential, radial, and

hyperbolic-tangent functions. Stress intensity factors for mode I and mixed-mode two-dimensional problems are

evaluated by means of the interaction integral and the finite element method. Extensive computational experiments

have been performed to validate the proposed formulation. The accuracy of numerical results is discussed by com-

parison with available analytical, semi-analytical, or numerical solutions.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are a new class of composites in which the volume fraction of

constituent materials vary smoothly, giving a nonuniform microstructure with continuously graded macro-

properties (Hirai, 1993; Paulino et al., 2002). These multifunctional materials were introduced to take

advantage of ideal behavior of its constituents, e.g. heat and corrosion resistance of ceramics together with

mechanical strength and toughness of metals. In practice, the nature of processing techniques of some
FGMs may lead to loss of isotropy. For example, graded materials processed by a plasma spray tech-

nique generally have a lamellar structure (Sampath et al., 1995) (see Fig. 1(a)), where flattened splats and
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Nomenclature

a half crack length

aij contracted notation of the compliance tensor for plane stress; i; j ¼ 1; 2; . . . ; 6
atipij aij evaluated at the crack tip location; i; j ¼ 1; 2; . . . ; 6
bij contracted notation of the compliance tensor for plane strain; i; j ¼ 1; 2; . . . ; 6
c11, c22, c12 coefficients in the relationship between J and stress intensity factors (KI and KII)

Cijkl or C constitutive tensor for anisotropic materials; i; j; k; l ¼ 1; 2; 3
d translation factor in the hyperbolic-tangent function

e natural logarithm base, e ¼ 2:71828182 . . .
E effective Young�s modulus in orthotropic materials; E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22

p

E0 effective Young�s modulus evaluated at the origin; E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
11E

0
22

p
E11, E22 Young�s moduli with respect to the principal axes of orthotropy

E0
11, E

0
22 Young�s moduli E11, E22 evaluated at the origin

G12 shear modulus in orthotropic materials

GI mode I energy release rate

GII mode II energy release rate

h1, h2 dimensions of the beam specimen
H length of material gradation

H contour integral

Im imaginary part of the complex function

J path-independent J -integral for the actual field

J aux J -integral for the auxiliary field

J s J -integral for the superimposed fields (actual and auxiliary)

J Jacobian matrix

J�1 inverse of the Jacobian matrix
KI mode I stress intensity factor

KII mode II stress intensity factor

K0 normalizing factor for stress intensity factors, K0 ¼ e0E
0 ffiffiffiffiffiffi

pa
p

, E
0 ¼ E0=d2

jKj norm of stress intensity factors, jKj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II

p
L length of a plate

M interaction integral (M-integral)

mi, ni unit normal vectors on the contour of the domain integral

pk, qk coefficients of the asymptotic displacements for orthotropic materials; k ¼ 1; 2
q weight function in the domain integral

r radial direction in polar coordinates

Re real part of the complex function

Sijkl or S compliance tensor for anisotropic materials; i; j; k; l ¼ 1; 2; 3
ui displacements for the actual field; i ¼ 1; 2
uauxi displacements for the auxiliary field; i ¼ 1; 2
W width of a plate

W strain energy density
Waux strain energy density for the auxiliary field

xi local Cartesian coordinates; i ¼ 1; 2
Xi global Cartesian coordinates; i ¼ 1; 2
zk complex variable, zk ¼ xk þ iyk; k ¼ 1; 2
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relatively weak splat boundaries create an oriented material with higher stiffness and weak cleavage planes

parallel to the boundary. Furthermore, graded materials processed by the electron beam physical vapor

a material nonhomogeneity parameter for gradation of E11

ak the real part of lk; k ¼ 1; 2
b material nonhomogeneity parameter for gradation of E22

bk the imaginary part of lk; k ¼ 1; 2
c material nonhomogeneity parameter for gradation of G12

C contour for J and M integrals

C0 outer contour

Cs inner contour

Cþ contour along the upper crack face

C� contour along the lower crack face
d4 stiffness ratio, d4 ¼ E11=E22 ¼ m12=m21
dij Kronecker delta; i; j ¼ 1; 2
ek contracted notation of eij; k ¼ 1; . . . ; 6
eij strains for the actual fields; i; j ¼ 1; 2; 3
eauxij strains for the auxiliary fields; i; j ¼ 1; 2; 3
h angular direction in polar coordinates

j0 shear parameter, j0 ¼ E=ð2G12Þ � m
lk roots of the characteristic equation; k ¼ 1; 2
ltip

k lk evaluated at the crack tip location; k ¼ 1; 2
lk complex conjugate of lk; k ¼ 1; 2
m effective Poisson�s ratio, m ¼ ffiffiffiffiffiffiffiffiffiffiffi

m12m21
p

mij Poisson�s ratio representing the response in direction j due to loading in direction i
rk contracted notation of rij; k ¼ 1; . . . ; 6
rij stresses for the actual fields; i; j ¼ 1; 2; 3
raux

ij stresses for the auxiliary fields; i; j ¼ 1; 2; 3

Fig. 1. Cross-section microscopy of FGMs: (a) lamellar NiCrAlY–PSZ FGM processed by plasma spray technique (Sampath et al.,

1995); (b) columnar ZrO2–Y2O3 thermal barrier coating with graded porosity processed by electron beam physical vapor deposition

(Kaysser and Ilschner, 1995).
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deposition technique can have a columnar structure (Kaysser and Ilschner, 1995) (see Fig. 1(b)), which leads

to a higher stiffness in the thickness direction and weak fracture planes perpendicular to the boundary.

Thus, such materials would be orthotropic with preferential material directions that are perpendicular to

each other. Gu and Asaro (1997) studied orthotropic FGMs considering a four-point bending specimen
with varying Young�s modulus and varying Poisson�s ratio. Ozturk and Erdogan (1997, 1999) used integral

equations to investigate mode I and mixed-mode crack problems in an infinite nonhomogeneous ortho-

tropic medium with a crack aligned with one of the principal material directions considering constant

Poisson�s ratio. Kim and Paulino (2002c, 2003a) evaluated mixed-mode stress intensity factors (SIFs) for

cracks arbitrarily oriented in orthotropic FGMs using the modified crack closure (MCC) method and the

path-independent J �
k -integral, respectively.

The interaction integral method is an accurate and robust scheme for evaluating mixed-mode SIFs. Yau

et al. (1980) proposed the interaction integral method for evaluating SIFs in homogeneous isotropic ma-
terials. The method makes use of a conservation integral for two admissible states of an elastic solid: actual

and auxiliary. Wang et al. (1980) extended the method to homogeneous orthotropic materials. Yau (1979)

also used the method for bimaterial interface problems. Recently, the interaction integral method has been

used for evaluating SIFs in isotropic FGMs (Dolbow and Gosz, 2002; Rao and Rahman, 2002; Kim and

Paulino, 2003b,c). Dolbow and Gosz (2002) employed the extended finite element method; Rao and

Rahman (2002) used the element-free Galerkin (EFG) method; Kim and Paulino (2003b) used the finite

element method (FEM) to investigate FGMs with multiple cracks and material properties determined by

means of either continuum functions (e.g. exponentially graded materials) or micromechanics models; and
Kim and Paulino (2003c) have recently extended the method to evaluate the elastic T -stress. In the

aforementioned papers (in this paragraph) the interaction integral method provided good accuracy for

SIFs, however, it was investigated for isotropic FGMs only. Thus the contribution of this work consists of

developing the interaction integral method for orthotropic FGMs.

This paper is organized as follows. Section 2 presents auxiliary fields appropriate for extracting SIFs

from the interaction integral (M-integral 1) method. Section 3 explains the M-integral formulation for

orthotropic FGMs, its solution procedures and numerical aspects, and the relationships between M and

SIFs. Section 4 presents the features of the finite element implementation. Section 5 presents various ex-
amples, which test different aspects of the proposed formulation. Finally, Section 6 presents some con-

clusions and potential extensions of this work.

2. Auxiliary fields

The presentation below follows Lekhnitskii�s framework (Lekhnitskii, 1968). The generalized Hooke�s
law for stress–strain relationship is given by

ei ¼ aijrj; aij ¼ aji ði; j ¼ 1; 2; . . . ; 6Þ; ð1Þ

where the compliance coefficients, aij, are contracted notations of the compliance tensor Sijkl and

e1 ¼ e11; e2 ¼ e22; e3 ¼ e33; e4 ¼ 2e23; e5 ¼ 2e13; e6 ¼ 2e12;

r1 ¼ r11; r2 ¼ r22; r3 ¼ r33; r4 ¼ r23; r5 ¼ r13; r6 ¼ r12:
ð2Þ

1 Here, the so-called M-integral should not be confused with the M-integral (conservation integral) of Knowles and Sternberg

(1972), Budiansky and Rice (1973), and Chang and Chien (2002). Also, see the book by Kanninen and Popelar (1985) for a review of

conservation integrals in fracture mechanics.
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For plane stress, the aij components of interest are

aij ði; j ¼ 1; 2; 6Þ ð3Þ

and for plane strain, the aij components are exchanged with bij as follows:

bij ¼ aij �
ai3aj3

a33
ði; j ¼ 1; 2; 6Þ: ð4Þ

Two dimensional anisotropic elasticity problems can be formulated in terms of the analytic functions,

/kðzkÞ, of the complex variable, zk ¼ xk þ iyk ðk ¼ 1; 2Þ, i ¼
ffiffiffiffiffiffiffi
�1

p
, where

xk ¼ x þ aky; yk ¼ bkyðk ¼ 1; 2Þ: ð5Þ

The parameters ak and bk are the real and imaginary parts of lk ¼ ak þ ibk, which can be determined from

the following characteristic equation (Lekhnitskii, 1968)

a11l4 � 2a16l3 þ ð2a12 þ a66Þl2 � 2a26l þ a22 ¼ 0; ð6Þ

where the roots lk are always complex or purely imaginary in conjugate pairs as l1, l1; l2, l2.

2.1. Stress and displacement fields

Fig. 2 shows Cartesian and polar coordinate systems originating from a crack tip in an orthotropic

FGM. For evaluating mixed-mode SIFs in FGMs, we select the auxiliary stress and displacement fields as

the crack-tip asymptotic fields given by (see the paper by Sih et al. (1965) for the homogeneous case)

Fig. 2. Cartesian ðx1; x2Þ and polar ðr; hÞ coordinates originating from the crack tip in an orthotropic nonhomogeneous material

subjected to traction (t) and displacement boundary conditions.
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raux
11 ¼ Kaux

Iffiffiffiffiffiffiffi
2pr

p Re
ltip
1 ltip

2

ltip
1 � ltip

2

ltip
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h þ ltip
2 sin h

q
8><
>:

2
64 � ltip

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

1 sin h
q

9>=
>;
3
75

þ Kaux
IIffiffiffiffiffiffiffi
2pr

p Re
1

ltip
1 � ltip

2

ðltip
2 Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h þ ltip
2 sin h

q
8><
>:

2
64 � ðltip

1 Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

1 sin h
q

9>=
>;
3
75;

raux
22 ¼ Kaux

Iffiffiffiffiffiffiffi
2pr

p Re
1

ltip
1 � ltip

2

ltip
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h þ ltip
2 sin h

q
8><
>:

2
64 � ltip

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

1 sin h
q

9>=
>;
3
75

þ Kaux
IIffiffiffiffiffiffiffi
2pr

p Re
1

ltip
1 � ltip

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

2 sin h
q

8><
>:

2
64 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h þ ltip
1 sin h

q
9>=
>;
3
75;

raux
12 ¼ Kaux

Iffiffiffiffiffiffiffi
2pr

p Re
ltip
1 ltip

2

ltip
1 � ltip

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

1 sin h
q

8><
>:

2
64 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h þ ltip
2 sin h

q
9>=
>;
3
75

þ Kaux
IIffiffiffiffiffiffiffi
2pr

p Re
1

ltip
1 � ltip

2

ltip
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h þ ltip
1 sin h

q
8><
>:

2
64 � ltip

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

2 sin h
q

9>=
>;
3
75

ð7Þ

and

uaux1 ¼ Kaux
I

ffiffiffiffiffi
2r
p

r
Re

1

ltip
1 � ltip

2

ltip
1 p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

2 sin h
q�"

� ltip
2 p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

1 sin h
q �#

þ Kaux
II

ffiffiffiffiffi
2r
p

r
Re

1

ltip
1 � ltip

2

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

2 sin h
q�"

� p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

1 sin h
q �#

;

uaux2 ¼ Kaux
I

ffiffiffiffiffi
2r
p

r
Re

1

ltip
1 � ltip

2

ltip
1 q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

2 sin h
q�"

� ltip
2 q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

1 sin h
q �#

þ Kaux
II

ffiffiffiffiffi
2r
p

r
Re

1

ltip
1 � ltip

2

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

2 sin h
q�"

� q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ ltip

1 sin h
q �#

;

ð8Þ

respectively, where Re denotes the real part of the complex function, ltip
1 and ltip

2 denote crack-tip material

parameters evaluated by using Eq. (6), which are taken for bk > 0 ðk ¼ 1; 2Þ, and pk and qk are given by

pk ¼ atip11 ðl
tip
k Þ2 þ atip12 � atip16l

tip
k ;

qk ¼ atip12l
tip
k þ atip22

ltip
k

� atip26 ;
ð9Þ

respectively. Notice that in the above expressions, the material parameters are sampled at the crack tip.

Moreover, the auxiliary stress fields in Eq. (7) are in equilibrium, i.e. raux
ij;j ¼ 0 (no body forces or inertia

effects).
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2.2. Strain field––incompatibility formulation

The auxiliary strain field is chosen as

eauxij ¼ SijklðxÞraux
kl ; ð10Þ

which differs from

eauxij ¼ ðSijklÞtipraux
kl ; ð11Þ

where SijklðxÞ is the compliance tensor of the actual FGM and ðSijklÞtip is the compliance tensor at the crack

tip and, in general, SijklðxÞ 6¼ ðSijklÞtip for x 6¼ 0 as shown in Fig. 3. Thus, the auxiliary strain field in Eq. (10)

is incompatible with the symmetric part of the auxiliary displacement gradient of Eq. (8), i.e.

eauxij 6¼ ðuauxi;j þ uaux
j;i Þ=2: ð12Þ

Although this incompatibility of the strain field vanishes as the contour shrinks to the crack tip, it gives

finite contributions for finite domains. Thus, it must be considered in the formulation, and cannot be

neglected.

2.3. Some remarks on alternative formulations

An alternative for the auxiliary fields is to use the auxiliary stress and displacement fields as given by Eqs.

(7) and (8), respectively, and to evaluate the auxiliary strain fields by using the symmetric gradient of the

auxiliary displacement fields of Eq. (8). For this choice of the stress and strain fields, the stress–strain

relationship is given by

raux
ij ¼ ðCijklÞtipeauxkl ; ð13Þ

where ðCijklÞtip is a constant constitutive tensor evaluated at the crack tip. Thus the constitutive relation is

only satisfied at the crack tip location and, in general, it is not satisfied elsewhere, i.e. CijklðxÞ 6¼ ðCijklÞtip.
Moreover, the auxiliary stress fields are in equilibrium and the auxiliary strain fields are compatible with the

Fig. 3. Illustration of the ‘‘incompatibility formulation’’ accounting for material nonhomogeneity. Notice that, in general, SðxÞ 6¼ Stip

for x 6¼ 0. The area A denotes a representative region around the crack tip.
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auxiliary displacement fields. Dolbow and Gosz (2002) discussed this choice of auxiliary fields. Rao and

Rahman (2002) used these auxiliary fields (referred to as Method I in their paper) and implemented them

using the EFG numerical method.

Another alternative for the auxiliary fields is to choose the auxiliary strain fields by using the symmetric
gradient of the auxiliary displacement fields of Eq. (8), and to evaluate the auxiliary stress fields as follows:

raux
ij ¼ CijklðxÞeauxkl : ð14Þ

Notice that the auxiliary stress field is not in equilibrium, i.e. raux
ij;j 6¼ 0 (no body forces). In this case, the

auxiliary strain field is compatible with the auxiliary displacement field eauxij ¼ ðuauxi;j þ uauxj;i Þ=2. This for-

mulation is the dual counterpart to the incompatibility formulation, and the nonequilibrium formulation is

given by Kim and Paulino (submitted for publication). This choice of the auxiliary fields has also been

discussed by Dolbow and Gosz (2002).

3. The interaction integral: M-integral

The interaction integral (M-integral) is derived from the path-independent J -integral (Rice, 1968) for two

admissible states of a cracked elastic orthotropic FGM. For the sake of numerical efficiency using a

domain-based method such as the FEM, the contour integral is transformed into an equivalent domain

integral (EDI) (Raju and Shivakumar, 1990). The theoretical formulation, the solution procedure, nu-

merical aspects, and the extraction of mixed-mode SIFs are provided below.

3.1. M-integral: incompatibility formulation

The standard J -integral (Rice, 1968) is given by

J ¼ lim
Cs!0

Z
Cs

ðWd1j � rijui;1Þnj dC; ð15Þ

where W is the strain energy density expressed by

W ¼ 1

2
rijeij ¼

1

2
Cijklekleij; ð16Þ

and nj is the outward normal vector to the contour Cs, as shown in Fig. 4. Let us define the following

contour integral:

H ¼
I

C
ðWd1j � rijui;1ÞmjqdC; ð17Þ

where C ¼ Co þ Cþ � Cs þ C�, mj is a unit outward normal vector to the corresponding contour (i.e.

mj ¼ nj on Co and mj ¼ �nj on Cs), and q is a weight function defined as a smoothly varying function from

q ¼ 1 on Cs to q ¼ 0 on Co (see Fig. 5). Taking the limit Cs ! 0, one obtains

lim
Cs!0

H ¼ lim
Cs!0

Z
CoþCþþC��Cs

ðWd1j � rijui;1ÞmjqdC

¼ lim
Cs!0

Z
CoþCþþC�

ðWd1j

�
� rijui;1ÞmjqdC þ

Z
�Cs

ðWd1j � rijui;1ÞmjqdC

�

¼ lim
Cs!0

Z
CoþCþþC�

ðWd1j

�
� rijui;1ÞmjqdC �

Z
Cs

ðWd1j � rijui;1ÞnjqdC

�
: ð18Þ
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Because q ¼ 0 on Co and the crack faces are assumed to be traction-free, Eq. (18) becomes

J ¼ � lim
Cs!0

H ¼ � lim
Cs!0

I
C
ðWd1j � rijui;1ÞmjqdC: ð19Þ

Applying the divergence theorem to Eq. (19), one obtains the following EDI

J ¼
Z

A
ðrijui;1 �Wd1jÞq;j dA þ

Z
A
ðrijui;1 �Wd1jÞ;jqdA: ð20Þ

Using the derivative of strain energy density given by

W;1 ¼
oW

ox1
¼ rijeij;1 þ

1

2
Cijkl;1ekleij; ð21Þ

Fig. 4. Conversion of the contour integral into an equivalent domain integral (EDI) where C ¼ Co þ Cþ � Cs þ C�, mj ¼ nj on Co and

mj ¼ �nj on Cs.

(

2x

1
x

1.0

q x1 , 2x(

Fig. 5. Plateau weight function (q-function).
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one obtains

J ¼
Z

A
ðrijui;1 �Wd1jÞq;j dA þ

Z
A

rijðui;1j � eij;1Þ
�

� 1

2
Cijkl;1ekleij

�
qdA: ð22Þ

The underlined terms in Eq. (22) must vanish for the actual fields, but we retain them to extract the in-

compatible term for the auxiliary fields. For two admissible fields, which are taken as the actual (u; e; r) and
auxiliary (uaux; eaux; raux) fields, the superimposed J -integral, J s, is given by

J s ¼ J þ J aux þ M ; ð23Þ
where J is given by Eq. (22), J aux is given by

J aux ¼
Z

A
ðraux

ij uauxi;1 �Wauxd1jÞq;j dA þ
Z

A
raux

ij ðuauxi;1j

�
� eauxij;1 Þ �

1

2
Cijkl;1e

aux
kl eauxij

�
qdA; ð24Þ

and M is the interaction integral (i.e. with the integrand given by terms involving products of the actual and

auxiliary fields) given by 2

M ¼
Z

A
ðrijuauxi;1

�
þ raux

ij ui;1Þ �
1

2
ðrike

aux
ik þ raux

ik eikÞd1j

�
q;j dA

þ
Z

A
rijðuauxi;1j

�
� eauxij;1 Þ þ raux

ij ðui;1j � eij;1Þ �
1

2
Cijkl;1ðeijeauxkl þ eauxij eklÞ

�
qdA: ð25Þ

After algebraic manipulations involving the following equalities

raux
ij ui;1j ¼ raux

ij eij;1; rije
aux
ij ¼ raux

ij eij; Cijkl;1e
aux
ij ekl ¼ Cijkl;1eije

aux
kl ; ð26Þ

one obtains

M ¼ ðM1Þlocal

¼
Z

A
ðrijuauxi;1

�
þ raux

ij ui;1Þ �
1

2
ðrike

aux
ik þ raux

ik eikÞd1j

�
q;j dA þ

Z
A
frijðuauxi;1j � eauxij;1 Þ � Cijkl;1eije

aux
kl gqdA:

ð27Þ

Notice that the incompatible term, underlined in Eq. (27), arises naturally in the M-integral formulation for

FGMs, but vanishes for homogeneous materials.

3.2. M-integral: numerical aspects

Due to the nature of the FEM, the M-integral is evaluated first in the global coordinates (Mglobal) and
then transformed to the local coordinates (Mlocal). The global interaction integral ðMmÞglobal is obtained as

(m ¼ 1; 2)

ðMmÞglobal ¼
Z

A
ðrijuauxi;m

�
þ raux

ij ui;mÞ �
1

2
ðrike

aux
ik þ raux

ik eikÞdmj

�
oq
oXj

dA

þ
Z

A
rijðuauxi;mj � eauxij;mÞ � Cijkl;meije

aux
kl

n o
qdA; ð28Þ

2 Notice that the M-integral here is different from the conservation integral (also denoted by M) of Knowles and Sternberg (1972),

Budiansky and Rice (1973), Chang and Chien (2002), and Kanninen and Popelar (1985). In these references M ¼R
CðWdij � rkjuk;iÞnjxi ds (for two dimensional problems).
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where ðX1;X2Þ are global coordinates as illustrated by Fig. 4. The local M-integral (Mlocal) is calculated by

transformation as

Mlocal ¼ ðM1Þglobal cos h þ ðM2Þglobal sin h: ð29Þ

In Eq. (28), special consideration should be taken for the derivatives of the constitutive tensor Cijkl;m and

the derivatives of the auxiliary strain field eauxij;m, which is given by

eauxij;m ¼ Sijkl;mraux
kl þ Sijklr

aux
kl;m: ð30Þ

A simple and accurate approach to evaluate Cijkl;m (see Eq. (28)) and Sijkl;m (see Eq. (30)) is to use shape

function derivatives. The derivatives of the material quantity P 
 P ðXÞ (e.g. Cijkl and Sijkl) are obtained as

(cf. Fig. 6):

oP
oXm

¼
Xn

i¼1

oNi

oXm
Pi; ðm ¼ 1; 2Þ; ð31Þ

where n is the number of element nodes and Ni ¼ Niðn; gÞ are the shape functions which can be found in

many references, e.g. Cook et al. (2002). The derivatives oNi=oXm are obtained as

oNi=oX1

oNi=oX2

� �
¼ J�1 oNi=on

oNi=og

� �
; ð32Þ

where J�1 is the inverse of the standard Jacobian matrix given by

J ¼ oX1=on oX2=on
oX1=og oX2=og

� �
: ð33Þ

Furthermore, the details on how to determine the auxiliary strain fields with respect to the global coor-
dinates are explained in Appendix A.

3.3. M-integral: extraction of stress intensity factors

For mixed-mode crack problems, the energy release rates GI and GII are related to mixed-mode SIFs as

follows:

X

GP4
GP3

GP2

GP1

22

11E

E

P

(

(

)

)

( )

X

X

Fig. 6. Generalized isoparametric formulation (GIF) (Kim and Paulino, 2002a,b) using graded finite elements. The above figure

illustrates a graded Q8 element and P ðXÞ denotes a generic material property, e.g. stiffness tensor components (Cijkl) or compliance

tensor components (Sijkl). The material properties at the Gauss points (PGP) are interpolated from nodal material properties (Pi)

by PGP ¼
P

NiPi where N are element shape functions.
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GI ¼ �KI

2
atip22 Im

KIðltip
1 þ ltip

2 Þ þ KII

ltip
1 ltip

2

" #
;

GII ¼
KII

2
atip11 Im½KIIðltip

1 þ ltip
2 Þ þ KIðltip

1 ltip
2 Þ�;

ð34Þ

where Im denotes the imaginary part of the complex function. Thus

Jlocal ¼ G ¼ GI þ GII ¼ c11K2
I þ c12KIKII þ c22K2

II; ð35Þ

where

c11 ¼ � atip22
2

Im
ltip
1 þ ltip

2

ltip
1 ltip

2

 !
;

c12 ¼ � atip22
2

Im
1

ltip
1 ltip

2

 !
þ atip11

2
Im ltip

1 ltip
2

! "
;

c22 ¼
atip
11

2
Imðltip

1 þ ltip
2 Þ:

ð36Þ

For two admissible fields, which are the actual (u; e; r) and auxiliary (uaux; eaux; raux) fields, one obtains

(Wang et al., 1980)

J s
local ¼ c11ðKI þ Kaux

I Þ2 þ c12ðKI þ Kaux
I ÞðKII þ Kaux

II Þ þ c22ðKII þ Kaux
II Þ2 ¼ Jlocal þ J aux

local þ Mlocal; ð37Þ

where Jlocal is given by Eq. (35), J aux
local is given by

J aux
local ¼ c11ðKaux

I Þ2 þ c12Kaux
I Kaux

II þ c22ðKaux
II Þ2 ð38Þ

and Mlocal is given by

Mlocal ¼ 2c11KIKaux
I þ c12ðKIKaux

II þ Kaux
I KIIÞ þ 2c22KIIKaux

II : ð39Þ

The mode I and mode II SIFs are evaluated by solving the following linear algebraic equations:

M ð1Þ
local ¼ 2c11KI þ c12KII ðKaux

I ¼ 1:0;Kaux
II ¼ 0:0Þ; ð40Þ

M ð2Þ
local ¼ c12KI þ 2c22KII ðKaux

I ¼ 0:0;Kaux
II ¼ 1:0Þ: ð41Þ

The relationships of Eqs. (40) and (41) are the same as those for homogeneous orthotropic materials (Wang
et al., 1980) except that, for FGMs, the material properties are evaluated at the crack-tip location. Notice

that there is no need for Newton�s iteration, which is needed with other approaches such as the path-

independent Jk-integral (Kim and Paulino, 2003a) and the MCC (Kim and Paulino, 2002c). Here the SIFs

for mode I and mode II are decoupled (cf. Eqs. (40) and (41)).

4. FEM implementation

The FEM code I-FRANC2D (Illinois-FRANC2D) has been used for implementation of the present

interaction integral formulation, and for obtaining all the numerical results presented in this paper.

I-FRANC2D is based on the FRANC2D (FRacture ANalysis Code 2D) (Wawrzynek, 1987; Wawrzynek

and Ingraffea, 1991), which was originally developed at Cornell University. The extended capabilities of

I-FRANC2D include graded elements (see Fig. 6) to discretize nonhomogeneous materials, and fracture
parameters such as mixed-mode SIFs and T -stress. The I-FRANC2D material library contains continuum
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functions (e.g. exponential, linear, hyperbolic-tangent, and radial functions) and micromechanics models

(e.g. self-consistent, Mori-Tanaka, and three-phase model).

The graded elements are based on the ‘‘generalized isoparametric formulation’’ or GIF (Kim and

Paulino, 2002a,b) and, in general, they show superior performance to conventional homogeneous elements
(element-wise constant material property) (Kim and Paulino, 2002b). Using graded elements, the

I-FRANC2D FEM code can evaluate SIFs for both isotropic and orthotropic FGMs by using the inter-

action integral. The code also has other numerical schemes especially tailored for FGMs (Kim and Paulino,

2002a) such as the path-independent J �
k -integral, the MCC, and the displacement correlation technique

(DCT) for both isotropic and orthotropic FGMs (Kim and Paulino, 2002a,c, 2003a). Based on numerical

investigations, Kim and Paulino (2003b,c) observed that the interaction integral scheme provides good

accuracy in comparison with the above-mentioned schemes for isotropic FGMs. This paper shows that this

is also the case for orthotropic FGMs.

5. Examples

The performance of the interaction integral for evaluating SIFs in orthotropic FGMs is examined by

means of numerical examples. In order to assess the various features of the method, the following examples

are presented:

(1) Plate with a crack parallel to the material gradation.

(2) Plate with a crack perpendicular to the material gradation.

(3) Four-point bending specimen.

(4) Disk with an inclined center crack.

(5) Plate with a curved crack.

(6) Strip with an edge crack.

Isoparametric graded elements are used to discretize the geometry of all the above examples. Singular

quarter-point six-node triangles (T6qp) are used for crack-tip elements, eight-node serendipity elements

(Q8) are used for a circular region around crack-tip elements and over most of the mesh, and regular six-

node triangles (T6) are used in the transition zone between regions of Q8 elements.

All the examples report SIFs or energy release rates obtained by means of the interaction integral in

conjunction with the FEM. The first and second examples are presented as a means to validate the im-

plementation against the semi-analytical solutions by Ozturk and Erdogan (1997, 1999). The third example

is also presented as a validation of the implementation against the solutions reported by Gu and Asaro
(1997). The fourth example investigates an inclined center crack in a circular disk with material gradation

both in radial and Cartesian directions. The fifth example investigates a semi-circular crack. Finally, the last

example investigates an edge crack in hyperbolic tangent materials considering various translations of

material properties.

The first two examples employ the following averaged material parameters: the effective Young�s
modulus E, the effective Poisson�s ratio m, the stiffness ratio d4 and the shear parameter j0. They replace the

independent engineering constants Eii, Gij and mij ððmij=EiiÞ ¼ ðmji=EjjÞÞ (i; j ¼ 1; 2), i.e. (Krenk, 1979)

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22

p
; m ¼ ffiffiffiffiffiffiffiffiffiffiffi

m12m21
p

; d4 ¼ E11

E22

¼ m12
m21

; j0 ¼
E

2G12

� m; ð42Þ

for plane stress. The bounds on Poisson�s ratios m12 and m21 for plane orthotropy are given by (Christensen,
1979):
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jm12j < ðE11=E22Þ1=2; jm21j < ðE22=E11Þ1=2; ð43Þ

respectively. Therefore the bound on the effective Poisson�s ratio 3 is m < 1:0. The first two examples also

consider proportional material nonhomogeneity, i.e.

b ¼ 1

2H
log

E11ðHÞ
E11ð�HÞ

� �
¼ 1

2H
log

E22ðHÞ
E22ð�HÞ

� �
¼ 1

2H
log

G12ðHÞ
G12ð�HÞ

� �
; ð44Þ

where H is the length of material gradation considered, e.g. H ¼ W for the first example and H ¼ L for the

second example. The nonhomogeneity parameter b has units ½length��1
.

5.1. Plate with a crack parallel to material gradation

Fig. 7(a)–(d) show a center crack of length 2a located in a finite two-dimensional plate under fixed grip
loading or constant traction, the complete finite element mesh, a mesh detail with 16 sectors (S16) and four

rings (R4) around crack tips, and a zoom of the right crack tip region, respectively. For fixed-grip loading,

the applied load results in uniform strain e22ðX1;X2Þ ¼ e0 for a corresponding uncracked plate; and for

constant traction, the applied load r22ðX1;�LÞ ¼ �1:0 along the top and bottom edges. The displacement

boundary conditions are prescribed such that u1 ¼ u2 ¼ 0 for the center node on the left edge, and u2 ¼ 0

for the center node on the right edge.

The variations of E11, E22, and G12 are assumed to be an exponential function of X1 and proportional to

one another, while the Poisson�s ratio m12 is constant. The mesh has 1666 Q8, 303 T6, and 32 T6qp crack-tip
singular elements with a total of 2001 elements and 5851 nodes (see Fig. 7(b)). The following data were used

for the FEM analysis:

a=W ¼ 0:1; L=W ¼ 1:0; e0 ¼ 1:0; ba ¼ 0:5;

E11ðX1Þ ¼ E0
11e

bX1 ; E22ðX1Þ ¼ E0
22e

bX1 ; G12ðX1Þ ¼ G0
12e

bX1 ;

j0 ¼ 0:5; m ¼ ð0:1; 0:2; 0:3; 0:4; 0:5; 0:7; 0:9Þ;
plane stress; 2� 2 Gauss quadrature:

ð45Þ

Table 1 shows the effect of material nonhomogeneity on normalized mode I SIF for the nonhomo-

geneous orthotropic plate of Fig. 7 under fixed grip loading considering m ¼ 0:3 and j0 ¼ 0:5. The FEM

results obtained by the interaction integral agree very well with those obtained by the MCC (Kim and
Paulino, 2002c). As the dimensionless nonhomogeneity parameter ba increases, the mode I SIF at the right

crack tip increases, but the mode I SIF at the left crack tip decreases. This is expected due to the nature of

the exponential material gradation with the origin of the Cartesian coordinate system at the center of the

plate. Table 2 shows the effect of the Poisson�s ratio m on mode I SIF for the nonhomogeneous orthotropic

plate of Fig. 7 under fixed grip loading considering ba ¼ 0:5 and j0 ¼ 0:5. The FEM results obtained by

means of the M-integral agree with the SIFs obtained by Ozturk and Erdogan (1997) to within 1%. The

effective Poisson�s ratio m ¼ ffiffiffiffiffiffiffiffiffiffiffi
m12m21

p
has a negligible effect on the SIFs for a mode I crack problem. With

respect to the M-integral, notice that the results of Table 1 considering ba ¼ 0:5 coincide with those of
Table 2 for m ¼ 0:3. These results are presented in bold at these Tables. In order to assess the accuracy of the

present interaction integral method (M-integral), Table 3 shows normalized SIFs computed by other

methods, such as J �
k -integral, the MCC, and the DCT. By comparing Tables 2 and 3, and adopting Ozturk

and Erdogan�s (1997) semi-analytical solution as reference, the interaction integral provides the best

accuracy with respect to the aforementioned schemes.

3 Notice that the effective Poisson�s ratio m (see Eq. (42)) can be bigger than 0.5 for orthotropic materials.
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Fig. 7. Example 1: plate with a center crack parallel to the material gradation: (a) geometry and BCs considering either fixed-grip

loading (D) or far-field traction (r) on the (far-field) horizontal edges; (b) complete finite element mesh; (c) mesh detail using 16 sectors

(S16) and 4 rings (R4) around crack tips; (d) zoom of the right crack tip.

Table 1

Example 1: the effect of material nonhomogeneity on normalized mode I SIF in a nonhomogeneous orthotropic plate under fixed grip

loading (m ¼ 0:3, j0 ¼ 0:5, K0 ¼ e0E
0 ffiffiffiffiffiffi

pa
p

; E
0 ¼ E0=d2; E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
11E

0
22

p
) (see Fig. 7)

ba M-integral (present) MCC

KIðþaÞ=K0 KIð�aÞ=K0 KIðþaÞ=K0 KIð�aÞ=K0

0.00 0.9969 0.9969 0.9986 0.9986

0.10 1.0750 0.9247 1.0791 0.9251

0.25 1.2043 0.8245 1.2101 0.8233

0.50 1.4371 0.6706 1.4484 0.6680

0.75 1.7055 0.5404 1.7255 0.5358

1.00 2.0318 0.4335 2.0639 0.4285
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The crack opening displacements (CODs) are evaluated for both homogeneous and nonhomogeneous
medium considering either fixed-grip loading or far-field constant traction, as shown in Fig. 7(a). Fig. 8

Table 2

Example 1: normalized mode I SIF in a nonhomogeneous orthotropic plate under fixed grip loading for various effective Poisson�s
ratios m ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

m12m21
p

(ba ¼ 0:5, j0 ¼ 0:5, K0 ¼ e0E
0 ffiffiffiffiffiffi

pa
p

; E
0 ¼ E0=d2; E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
11E

0
22

p
) (see Fig. 7)

m M-integral (present) Ozturk and Erdogan (1997)

KIðþaÞ=K0 KIð�aÞ=K0 KIðþaÞ=K0 KIð�aÞ=K0

0.1 1.4300 0.6668 1.4183 0.6647

0.2 1.4334 0.6685 1.4233 0.6676

0.3 1.4371 0.6706 1.4280 0.6704

0.4 1.4405 0.6731 1.4325 0.6730

0.5 1.4438 0.6751 1.4368 0.6755

0.7 1.4505 0.6785 1.4449 0.6802

0.9 1.4563 0.6827 1.4524 0.6846

Table 3

Example 1: comparison of normalized mode I SIF in a nonhomogeneous orthotropic plate under fixed grip loading for various effective

Poisson�s ratios (ba ¼ 0:5, j0 ¼ 0:5, K0 ¼ e0E
0 ffiffiffiffiffiffi

pa
p

; E
0 ¼ E0=d2; E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
11E

0
22

p
) (see Fig. 7). The J �

k -integral results were reported by

Kim and Paulino (2003a) (cf. Tables 2 and 3)

m J �
k -integral MCC DCT

KIðþaÞ=K0 KIð�aÞ=K0 KIðþaÞ=K0 KIð�aÞ=K0 KIðþaÞ=K0 KIð�aÞ=K0

0.1 1.4451 0.6776 1.4405 0.6630 1.4363 0.6764

0.2 1.4488 0.6802 1.4442 0.6655 1.4405 0.6789

0.3 1.4522 0.6822 1.4480 0.6676 1.4446 0.6814

0.4 1.4559 0.6843 1.4517 0.6697 1.4484 0.6839

0.5 1.4593 0.6864 1.4551 0.6718 1.4517 0.6864

0.7 1.4655 0.6902 1.4618 0.6760 1.4576 0.6902

0.9 1.4718 0.6939 1.4684 0.6802 1.4588 0.6923

1 0.5 0 0.5 1
0

5

10

15

20

25

X
1
/a

u 2(X
1,+

0)
 ×

 1
04

E=E0e(X
1
/2a)

E=E0e–0.5

E=E0e0.5

E=E0

Fig. 8. Example 1: COD in orthotropic FGMs under far-field constant traction considering j0 ¼ 0:5, m ¼ 0:3, and ba ¼ 0:5. The COD

for the crack in the FGM is indicated by a thicker line.
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shows the COD in a nonhomogeneous medium (ba ¼ 0:5) under far-field constant traction with

E ¼ EðX1Þ ¼ E0eX1=2a (E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
11E

0
22

p
) and also in homogeneous materials with Eð�aÞ ¼ E0e�0:5, Eð0Þ ¼ E0,

and EðaÞ ¼ E0e0:5. The COD for the right crack tip (X1 ¼ a) in the nonhomogeneous medium is greater than

that in the corresponding homogeneous medium with EðaÞ ¼ E0e0:5. Thus the mode I SIF KI in the non-
homogeneous medium is greater than that in the homogeneous medium. Similarly, the mode I SIF (KI) at

the left crack tip (X1 ¼ �a) in the nonhomogeneous medium is lower than that in the corresponding

homogeneous medium with Eð�aÞ ¼ E0e�0:5. The COD for E ¼ E0 serves as a reference curve between

those curves for E ¼ E0e0:5 and E ¼ E0e�0:5.

Fig. 9 shows the COD in a nonhomogeneous medium under fixed-grip loading with E ¼ EðX1Þ ¼ E0eX1=2a

and also in homogeneous materials with Eð�aÞ ¼ E0e�0:5, Eð0Þ ¼ E0, and EðaÞ ¼ E0e0:5. Notice that, for the

fixed-grip loading, the COD does not depend on material properties in the homogeneous medium. In

Eq. (8), the mode SIF KI for a homogeneous medium under pure mode I loading is given by (h ¼ 180�):

KI ¼ u2

ffiffiffiffiffi
p
2r

r
Re

i

l1 � l2

ðl1q2

��#
� l2q1Þ

��
; ð46Þ

where qk ¼ a12lk þ a22=lk � a26 ðk ¼ 1; 2Þ. The material properties for the three homogeneous materials

considered are proportional to one another. In this case, the roots lk (k ¼ 1; 2) of the characteristic

equation (6) are identical. Moreover, for the case where the Cartesian coordinate system coincide with the

principal directions of material orthotropy,

a11 ¼
1

E11

; a12 ¼
�m12
E11

; a16 ¼ 0:

Thus, with the same crack surface displacement u2 and Poisson�s ratio m12, the mode I SIF KI is proportional

to E11, as illustrated by Table 4. By comparison of the solution of a nonhomogeneous medium with that of

a homogeneous medium having the material properties at the right crack tip (X1 ¼ a), the COD in the

nonhomogeneous medium is smaller than that in the corresponding homogeneous medium with EðaÞ ¼
E0e0:5, and thus the SIF (KI) in the nonhomogeneous medium is lower than that for the corresponding

–1 –0.5 0 0.5 1
0

0.5

1

1.5

X
1
/a

u 2(X
1,+

0)

E=E0=E0e–0.5=E0e0.5
E=E0e(X

1
/2a) 

D

Fig. 9. Example 1: COD u2 in orthotropic FGMs under fixed-grip loading considering j0 ¼ 0:5, m ¼ 0:3, and ba ¼ 0:5. The COD for

the crack in the FGM is indicated by a thicker line.
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homogeneous medium. Similarly, the mode I SIF (KI) at the left crack tip (X1 ¼ �a) in the nonhomo-

geneous medium is greater than that in the corresponding homogeneous medium with Eð�aÞ ¼
E0e�0:5.

5.2. Plate with a crack perpendicular to material gradation

Fig. 10(a) and (b) show a crack of length 2a located in a finite two-dimensional plate under remote

uniform tension loading for two different boundary conditions. These boundary conditions are prescribed

such that, for Fig. 10(a), u1 ¼ 0 along the left and right edges, and u2 ¼ 0 for the node in the middle of left

edge; while for Fig. 10(b), u1 ¼ 0 for the left corner node of the bottom edge and u2 ¼ 0 along the bottom

edge. The finite element mesh configurations are the same as in the previous example (see Fig. 7(b) and (c)).

The applied load corresponds to r22ðX1;�LÞ ¼ �r ¼ �1:0 for the BC in Fig. 10(a) and r22ðX1; LÞ ¼ r ¼ 1:0
for the BC in Fig. 10(b).

The variations of E11, E22, and G12 are exponential functions of X2 and are proportional to one another,

while the Poisson�s ratio m12 is constant. The following data were used for the FEM analysis:

Table 4

Example 1: homogeneous orthotropic material with properties sampled at the crack tips (X1 ¼ �1:0) and at the mid-point of the crack

(X1 ¼ 0) in the corresponding FGM (see Eq. (45)). For all the cases, j0 ¼ 0:5, K0 ¼ e0E
0 ffiffiffiffiffiffi

pa
p

; E
0 ¼ E0=d2; E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
11E

0
22

p
. Also, notice

that E ¼ E0ebX1 . The superscript in K1
I indicates case 1

Parameter Case

1 2 3

E11 E0
11e

�b E0
11 E0

11e
b

KI=K0 K1
I =K0 K1

I e
b=K0 K1

I e
2b=K0

KI=K0 (numerical) 0.6046 0.9969 1.6436

Fig. 10. Example 2: plate with a center crack perpendicular to the material gradation: (a) first set of BCs; (b) second set of BCs.
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a=W ¼ 0:1; L=W ¼ 1:0;

E11ðX2Þ ¼ E0
11e

bX2 ; E22ðX2Þ ¼ E0
22e

bX2 ; G12ðX2Þ ¼ G0
12e

bX2 ;

dimensionless nonhomogeneity parameter : ba ¼ ð0:0–0:5Þ;
d4 ¼ E11=E22 ¼ ð0:25; 0:5; 1:0; 3:0; 10:0Þ;
j0 ¼ ð�0:25; 0:0; 0:5; 1:0; 2:0; 5:0Þ; m ¼ 0:30;

plane stress; 2� 2 Gauss quadrature:

Fig. 11(a) and (b) show seven contours used for evaluating the J -integral considering d4 ¼ 10, j0 ¼ 5:0,
m ¼ 0:3, and ba ¼ 0:5. Figs. 12 and 13 show the effect of the incompatible term (see Eq. (27)) on the

convergence of the J -integral obtained from Eq. (35) considering the two sets of BCs, respectively. Notice

Fig. 11. Example 2: contours used to evaluate the J -integral: (a) contours 1, 2, 3, and 4; (b) contours 5, 6, and 7.

1 2 3 4 5 6 7
3.5

3.52

3.54

3.56

3.58

3.6

Number of Contours

J 
× 

10
3

considering incompatible term 
neglecting incompatible term 

converged 
solution 

Fig. 12. Example 2: effect of the ‘‘incompatible term’’ on the path-independence of the J -integral considering the first set of BCs. The

region associated with each contour is illustrated by Fig. 11.
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that J is obtained after evaluation of SIFs (see Eq. (35)). As the contours become larger, the solution

converges when the incompatible term is considered, however, it diverges if such term is neglected. Fig. 14

shows strain energy release rates G=G0 in a nonhomogeneous orthotropic plate under uniform tension for

two different boundary conditions for a fixed stiffness ratio d4 ¼ 10 and constant Poisson�s ratio m ¼ 0:3
with varying material nonhomogeneity ba and j0. This figure clearly indicates that the boundary conditions

have a significant influence in strain energy release rates (and SIFs). For the first set of BCs (see Fig. 10(a)),
the FEM results agree with the strain energy release rates (G=G0) obtained by Ozturk and Erdogan (1999).

The strain energy release rates G=G0 monotonically increase with j0 and ba. However, for the second set of

1 2 3 4 5 6 7
2.85

2.87

2.89

2.91

2.93

2.95

Number of Contours

J 
× 

10
 3

considering incompatible term 
neglecting incompatible term 

converged 
solution 

Fig. 13. Example 2: effect of the ‘‘incompatible term’’ on the path-independence of the J -integral considering the second set of BCs. The

region associated with each contour is illustrated by Fig. 11.
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Fig. 14. Example 2: normalized strain energy release rate versus the nonhomogeneity parameter ba and the shear parameter j0

considering uniformly applied tension (r22ðX1;�LÞ ¼ �r for the first set of BCs, and r22ðX1;LÞ ¼ r for the second set of BCs) and

d4 ¼ 10:0; m ¼ 0:3;G0 ¼ pr2a=E0. The dashed lines indicate the results reported by Ozturk and Erdogan (1999), and the dash-dotted

lines indicate the results obtained by means of the MCC method. The solid lines indicate the results by means of the present M-integral

considering the two BCs, and the two bullets at ba ¼ 0:5 indicate the converged solutions for J considering j0 ¼ 5:0 as shown in Figs.

12 and 13, respectively.
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BCs (see Fig. 10(b)), the present results agree with the strain energy release rates (G=G0) obtained by the

MCC, and the FEM results are significantly different from those for the previous BCs. Notice that the two

bullets along the line ba ¼ 0:5 indicate energy release rates which are the converged solutions for J as
shown in Figs. 12 and 13. The FEM results for various d4 and j0 obtained by the interaction integral

compare well to those obtained by the path-independent J �
k -integral (Kim and Paulino, 2003a), which are

not presented in this paper. Further numerical results investigating the effect of boundary conditions,

Poisson�s ratio, and plate size on the strain energy release rates considering the two BCs of Fig. 10 can be

found in the papers by Kim and Paulino (2002c, 2003a).

Fig. 15. Example 3: four-point bending specimen: (a) geometry and BCs; (b) complete finite element mesh; (c) mesh detail using 12

sectors (S12) and four rings (R4) around crack tips; (d) zoom of the right crack tip.
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5.3. Four-point bending specimen

Gu and Asaro (1997) investigated the effect of material orthotropy on mixed-mode SIFs in FGMs

considering a four-point bending specimen with exponentially varying Young�s moduli, shear modulus, and
Poisson�s ratio. Fig. 15(a) shows the four-point bending specimen geometry and BCs, Fig. 15(b) shows the

complete FEM mesh configuration, Fig. 15(c) shows a mesh detail around the crack, and Fig. 15(d) shows a

zoom of the right crack tip. The point loads of magnitude P are applied at the nodes ðX1;X2Þ ¼ ð�11; 1:0Þ.
The displacement boundary conditions are prescribed such that ðu1; u2Þ ¼ ð0; 0Þ for the node at

ðX1;X2Þ ¼ ð�10;�1:0Þ and u2 ¼ 0 for the node at ðX1;X2Þ ¼ ð10;�1:0Þ. Young�s moduli, shear modulus,

and Poisson�s ratios are exponential functions of X2 given by

E11ðX2Þ ¼ E0
11e

bX2 ; E22ðX2Þ ¼ E0
22e

bX2 ;

m12ðX2Þ ¼ m012ð1þ �X2ÞebX2 ; m21ðX2Þ ¼ m021ð1þ �X2ÞebX2 ;

G12ðX2Þ ¼ E22ðX2Þ=½2ð
ffiffiffi
k

p
þ m21ðX2ÞÞ�; k ¼ E22ðX2Þ=E11ðX2Þ;

ð47Þ

respectively. Notice that k ¼ 1=d4 (see Eq. (42)). The mesh discretization consists of 625 Q8, 203 T6, and 24

T6qp elements, with a total of 852 elements and 2319 nodes. The following data were used for the FEM

analysis:

plane stress; 2� 2 Gauss quadrature;

a ¼ 3:0; h1=h2 ¼ 1:0; � ¼ �0:9; P ¼ 1:0:
ð48Þ

Figs. 16 and 17 show comparison of the SIF jKjh3=2
1 =Pl with jKj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II

p
, and the phase angle

w ¼ tan�1ðKII=KIÞ, respectively, obtained by the interaction integral method with those reported by Gu and

Asaro (1997). There is quite good agreement between the two solutions, although Gu and Asaro (1997) did

not provide geometry information. Notice that as bh1 increases, both the SIF and the phase angle w in-

crease, and the material orthotropy (measured by k ¼ E22=E11) shows significant influence on the results.

Moreover, for a fixed bh1, as k increases the SIF increases, however, the phase angle decreases.
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Fig. 16. Example 3: the normalized norm of mixed-mode SIFs jKjh3=21 =Pl for a four-point bending specimen. The parameter

k ¼ E22=E11.
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Fig. 17. Example 3: the phase angle w ¼ tan�1ðKI=KIIÞ for a four-point bending specimen. The parameter k ¼ E22=E11.

Fig. 18. Example 4: a circular disk; (a) geometry and BCs for an inclined center crack; (b) the complete mesh configuration; (c) mesh

detail displaying 12 sectors (S12) and four rings (R4) around the crack tips; (d) zoom of the right crack tip.
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5.4. Disk with an inclined center crack

Fig. 18(a) shows a circular disk with a center crack inclined by h ¼ 30�, Fig. 18(b) shows the complete

mesh configuration, Fig. 18(c) shows the mesh detail around the crack, and Fig. 18(d) shows a zoom of the
right crack tip. A point load is applied to the top and bottom nodes, i.e. P ð0;�10Þ ¼ �100. The dis-

placement boundary conditions are prescribed such that ðu1; u2Þ ¼ ð0; 0Þ for the node at ðX1;X2Þ ¼ ð�10; 0Þ
and u2 ¼ 0 for the node at ðX1;X2Þ ¼ ð10; 0Þ. Three different exponential material gradations with respect to

the radial (r) and Cartesian directions (X1) and (X2) are considered as given below:

E11ðrÞ ¼ E0
11e

ar; E22ðrÞ ¼ E0
22e

br; G12ðrÞ ¼ G0
12e

cr; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2
1 þ X 2

2

q
;

E11ðX1Þ ¼ E0
11e

ajX1j; E22ðX1Þ ¼ E0
22e

bjX1j; G12ðX1Þ ¼ G0
12e

cjX1j;

E11ðX2Þ ¼ E0
11e

ajX2j; E22ðX2Þ ¼ E0
22e

bjX2j; G12ðX2Þ ¼ G0
12e

cjX2j:

ð49Þ

The mesh discretization consists of 747 Q8, 228 T6, and 24 T6qp elements, with a total of 999 elements and

2712 nodes. The following data were used for the FEM analysis:

plane stress; 2� 2 Gauss quadrature;

a=R ¼ 0:1;

Isotropic case:

E ¼ 1:0; m ¼ 0:3;

Orthotropic case:

E0
11 ¼ 0:1; E0

22 ¼ 1:0; G0
12 ¼ 0:5; m12 ¼ 0:03;

E0
11 ¼ 1:0; E0

22 ¼ 1:0; G0
12 ¼ 0:5; m12 ¼ 0:03:

Table 5 shows the FEM results for SIFs for the isotropic and orthotropic cases considering various

material nonhomogeneity parameters ba for an inclined center crack in a circular disk with radial gradation

and proportional material variation (aa ¼ ba ¼ ca). It also compares the present results with those ob-

tained using the MCC (Kim and Paulino, 2002c) and shows good agreement between the two methods.

Notice that, as the nonhomogeneity parameter ba increases, the SIFs decrease for both isotropic and or-

thotropic cases. Fig. 19 shows the crack opening profile representing high mode-mixity for the orthotropic
FGM case considering the radial gradation and proportional material variation (aa ¼ ba ¼ ca ¼ 0:5). To
illustrate the effect of radial gradation on a single property (nonproportional material variation), Table 6

shows the FEM results for SIFs considering three different variations: E11 (Cases 1 and 4: aa ¼ 0:1,
ba ¼ ca ¼ 0:0), E22 (Cases 2 and 5: ba ¼ 0:1, aa ¼ ca ¼ 0:0), and G12 (Cases 3 and 6: ca ¼ 0:1,

Table 5

Example 4: FEM results for SIFs for an inclined center crack in a circular disk considering radial gradation and aa ¼ ba ¼ ca:
E0
11 ¼ 0:1; E0

22 ¼ 1:0; G0
12 ¼ 0:5; m12 ¼ 0:03 for orthotropic case, and E ¼ 1:0; m ¼ 0:3 for isotropic case (see Fig. 18)

ba Isotropic Orthotropic

M-integral MCC M-integral MCC

KI KII KI KII KI KII KI KII

)0.50 22.91 15.19 22.54 14.76 29.72 18.89 29.22 18.56

)0.25 17.53 13.21 17.37 12.92 23.37 15.38 23.16 15.21

0.00 11.47 9.730 11.45 9.596 16.75 11.38 16.73 11.33

0.25 5.862 5.651 5.898 5.602 10.51 7.302 10.57 7.318

0.50 2.205 2.417 2.236 2.412 5.380 3.813 5.459 3.847
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aa ¼ ba ¼ 0:0). There is very good agreement between the M-integral and the MCC. Fig. 20 shows the

effect of gradation direction (radial versus Cartesian) on SIFs for the orthotropic FGM case considering

proportional material gradation (aa ¼ ba ¼ ca). As the ba increases, mixed-mode SIFs decrease in a

Fig. 19. Example 4: crack opening profile considering radial gradation, E0
11 ¼ 0:1; E0

22 ¼ 1:0; G0
12 ¼ 0:5; m12 ¼ 0:03, and

aa ¼ ba ¼ ca ¼ 0:5.
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Fig. 20. Example 4: effect of gradation direction on SIFs for an orthotropic and exponentially graded disk. The following cases are

considered: E11 ¼ E0
11e

ar, E11 ¼ E0
11e

ajX1 j, and E11 ¼ E0
11e

ajX2 j. Analogous expressions are also adopted for E22 and G12.

Table 6

Example 4: FEM results for SIFs for an inclined center crack in a circular disk considering radial gradation and E0
11 ¼ 0:1 or 1:0;

E0
22 ¼ 1:0; G0

12 ¼ 0:5; m12 ¼ 0:03 (see Fig. 18)

Case E0
11 Nonhomogeneity parameters M-integral MCC

KI KII KI KII

1 0.1 aa ¼ 0:1, ba ¼ ca ¼ 0:0 15.46 10.46 15.45 10.42

2 0.1 ba ¼ 0:1, aa ¼ ca ¼ 0:0 17.09 11.54 17.08 11.50

3 0.1 ca ¼ 0:1, aa ¼ ba ¼ 0:0 16.75 11.38 16.73 11.33

4 1.0 aa ¼ 0:1, ba ¼ ca ¼ 0:0 10.68 8.907 10.67 8.775

5 1.0 ba ¼ 0:1, aa ¼ ca ¼ 0:0 11.85 9.904 11.86 9.766

6 1.0 ca ¼ 0:1, aa ¼ ba ¼ 0:0 9.641 9.079 9.633 8.943
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monotonic fashion. The SIFs evaluated for the radial gradation are similar to those evaluated for the

Cartesian gradation of X1, but differs from those for the Cartesian gradation of X2.

5.5. Plate with a curved crack

Muskhelishvili (1953) used conformal mapping and provided the exact solutions for SIFs of a curved

crack in a homogeneous medium under far-field traction, according to the scheme shown in Fig. 21. The

exact solutions for SIFs are given by

KI ¼
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h

p

2
F ðhÞ cos h

2

�
þ sin 2x sin3 h

2
þ cos 2x

$
� 3h

2

%�
;

KII ¼
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h

p

2
F ðhÞ sin h

2

�
� sin 2x sin2 h

2
cos

h
2
� sin 2x

$
� 3h

2

%�
;

ð50Þ

where

F ðhÞ ¼ 1� cos 2x sin2ðh=2Þ cos2ðh=2Þ
1þ sin2ðh=2Þ

;

in which x indicates the angle of the direction of applied traction r with respect to the horizontal line, and

KI and KII are the SIFs at the top crack tip (tip A). The mode I SIF at the bottom crack tip (tip B) is the
same as KI in Eq. (50), however, the mode II SIF changes sign. Our numerical solution (M-integral) will be

tested against these theoretical (reference) solutions.

Fig. 22(a) and (b) show a circular-shaped crack located in a finite two-dimensional plate under remote

uniform tension loading for two different boundary conditions. These boundary conditions are prescribed

such that, for the first set of BCs (Fig. 22(a)), u1 ¼ u2 ¼ 0 for the node in the middle of the left edge, and

u2 ¼ 0 for the node in the middle of the right edge; while for the second set of BCs (Fig. 22(b)), u1 ¼ u2 ¼ 0
for the node in the middle of the bottom edge, and u1 ¼ 0 for the node in the middle of the top edge. Fig.

22(c) shows the complete finite element mesh configuration, and Fig. 22(d) shows a mesh detail using 12

sectors (S12) and five rings (R5) around the crack tips. The applied load corresponds to

r22ðX1;�LÞ ¼ �r ¼ �1:0 for the BC in Fig. 22(a) and r11ð�W ;X2Þ ¼ �r ¼ �1:0 for the BC in Fig. 22(b).

The mesh discretization consists of 1691 Q8, 184 T6, and 24 T6qp elements, with a total of 1875 elements

and 5608 nodes. The following data were used in the FEM analyses:

Fig. 21. Example 5: a curved crack (circular) under far-field traction.
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plane stress; 2� 2 Gauss quadrature;

R ¼ 1:0; L=W ¼ 1:0;

Isotropic case (homogeneous):

E ¼ 1:0; m ¼ 0:3;

Orthotropic case:

E11ðX1Þ ¼ E0
11e

bX1 ; E22ðX1Þ ¼ E0
22e

bX1 ; G12ðX1Þ ¼ G0
12e

bX1 ;

E11ðX2Þ ¼ E0
11e

bX2 ;E22ðX2Þ ¼ E0
22e

bX2 ; G12ðX2Þ ¼ G0
12e

bX2 ;

E0
11 ¼ 1:0; E0

22 ¼ 0:5; G0
12 ¼ 0:25; m12 ¼ 0:3;

dimensionless nonhomogeneity parameter : bR ¼ ð0:0; 0:1Þ:

Fig. 22. Example 5: plate with a circular-shaped crack: (a) geometry and BCs (first set of BCs); (b) geometry and BCs (second set of

BCs); (c) complete finite element mesh; (d) mesh detail with 12 sectors (S12) and 5 rings (R5) around the crack tip – the thick line

indicates the crack faces.
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Table 7 shows FEM results for SIFs for both the top and bottom crack tips obtained by means of the

interaction integral for a semi-circular crack considering the two sets of boundary conditions and the two

choices of gradation directions, i.e. X1 and X2. It also compares the present results with the available refe-

rence solutions of Muskhelishvili (1953) for the homogeneous isotropic case. In this latter case, the nu-

merical solutions are obtained as a particular case of the general formulation for nonhomogeneous

orthotropic materials. The calculated SIFs agree well with the reference solutions (Muskhelishvili, 1953).

For material gradation along the direction X1, the mode II SIF at the bottom crack tip changes sign because

of symmetry, however, for material gradation along the X2 direction, both mode I and mode II SIFs change
in magnitude and sign.

Fig. 23(a) and (b) show curved crack surface displacement profile considering the isotropic homogeneous

case and the orthotropic FGM case with gradation along the X1 direction, respectively, for the first set of

BCs (see Fig. 22(a)). Notice that the curved crack geometry naturally creates mode-mixity which is ob-

served around crack-tip elements. Moreover, the symmetry of crack opening profiles exists with respect to

Table 7

Example 5: FEM results for SIFs for a semi-circular crack. Case 1: first set of BCs––Fig. 22(a); Case 2: second set of BCs––Fig. 22(b).

The exact solution for homogeneous isotropic materials was reported by Muskhelishvili (1953)

Crack tip Case Mate-

rial

bR Gradation

direction

M-integral MCC Exact

KI KII KI KII KI KII

Top 1 Iso 0.0 – 0.6872 )0.4314 0.6765 )0.4303 0.6785 )0.4330
Ortho 0.0 – 0.6868 )0.4362 0.6853 )0.4321 – –

0.1 X1 0.8240 )0.3718 0.8218 )0.3678 – –

X2 0.6602 )0.4498 0.6596 )0.4451 – –

2 Iso 0.0 ) 0.4690 1.0890 0.4692 1.0890 0.4643 1.0928

Ortho 0.0 – 0.5059 1.0470 0.5053 1.0412 – –

0.1 X1 0.5131 1.0489 0.5125 1.0425 – –

X2 0.6160 1.0771 0.6159 1.0734 – –

Bottom 1 Ortho 0.1 X2 0.6739 0.4351 0.6700 0.4306 – –

2 Ortho 0.1 X2 0.5341 )1.0692 0.5338 )1.0628 – –

(a) (b)

Fig. 23. Example 5: curved crack surface displacement profile (deformed shape) considering the first set of BCs: (a) isotropic

homogeneous case; (b) orthotropic FGM with gradation along the X1 direction.
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the Cartesian direction X1 for this case, i.e. the homogeneous case and FGM case with gradation of X1. The

crack faces interpenetrate for the isotropic homogeneous case, while this behavior does not occur for the

orthotropic FGM case. Fig. 24(a) and (b) show curved crack surface displacement profile considering

the orthotropic FGM case with gradation of X2 for the first and second set of BCs, respectively. We observe

that the interpenetration of the crack faces is also observed for the orthotropic FGM case with gradation of

X2 using the first set of BCs. As expected, the symmetry of crack opening profiles is naturally lost for the

FGM with gradation along X2 direction (refer to SIFs in Table 7).

5.6. Strip with an edge crack

Fig. 25(a) shows an edge crack of length ‘‘a’’ in a graded plate, and Fig. 25(b) shows the complete mesh

discretization using 12 sectors (S12) and 4 rings (R4) of elements around the crack tip. Fig. 25(c)–(e)

illustrate the three considered types of hyperbolic-tangent material gradation with respect to the crack tip:

reference configuration, translation to the left, and translation to the right, respectively. The fixed-grip

displacement loading results in a uniform strain e22ðX1;X2Þ ¼ e0 in a corresponding uncracked structure.
The displacement boundary condition is prescribed such that u2 ¼ 0 along the lower edge and u1 ¼ 0 for the

node at the left hand side.

Young�s moduli and shear modulus are hyperbolic-tangent functions with respect to the global (X1;X2)

Cartesian coordinates as follows:

E11ðX1Þ ¼
E�
11 þ Eþ

11

2
þ E�

11 � Eþ
11

2
tanh½aðX1 þ dÞ�;

E22ðX1Þ ¼
E�
22 þ Eþ

22

2
þ E�

22 � Eþ
22

2
tanh½bðX1 þ dÞ�;

G12ðX1Þ ¼
G�

12 þ Gþ
12

2
þ G�

12 � Gþ
12

2
tanh½cðX1 þ dÞ�;

ð51Þ

where d is a constant for translation. In this example, the Poisson�s ratio m12 is taken as constant. The mesh

discretization consists of 208 Q8, 37 T6, and 12 T6qp elements, with a total of 257 elements and 1001 nodes.
The following data were used for the FEM analysis:

(a) (b)

Fig. 24. Example 5: curved crack surface displacement profile (deformed shape) considering gradation along the X2 direction in

orthotropic FGMs: (a) first set of BCs; (b) second set of BCs.
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plane stress; 2� 2 Gauss quadrature;

a=W ¼ 0:5; L=W ¼ 2:0; e0 ¼ 0:25;

d ¼ ð�0:5 to 0:5Þ; m12 ¼ 0:3;

Case 1: Proportional material variation (see Fig. 26)

aa ¼ ba ¼ ca ¼ 15:0;

ðE�
11;E

þ
11Þ ¼ ð1:00; 3:00Þ; ðE�

22;E
þ
22Þ ¼ ð1:25; 2:75Þ; ðG�

12;G
þ
12Þ ¼ ð1:50; 2:50Þ;

Fig. 25. Example 6: strip with an edge crack in hyperbolic-tangent materials: (a) geometry and BCs; (b) complete finite element mesh

with 12 sectors (S12) and four rings (R4) around the crack tip; (c) reference configuration (d ¼ 0:0); (d) translation of material

gradation to the left (d ¼ þ0:5); (e) translation of material gradation to the right (d ¼ �0:5).
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Case 2: Proportional material variation (see Fig. 27)

aa ¼ ba ¼ ca ¼ 15:0;

ðE�
11;E

þ
11Þ ¼ ð1:00; 5:00Þ; ðE�

22;E
þ
22Þ ¼ ð1:25; 2:75Þ; ðG�

12;G
þ
12Þ ¼ ð1:50; 2:50Þ;

Case 3: Nonproportional material variation (see Fig. 28)

aa ¼ 4:0; ba ¼ 2:0; ca ¼ 1:0;

ðE�
11; Eþ

11Þ ¼ ðE�
22; Eþ

22Þ ¼ ðG�
12; Gþ

12Þ ¼ ð1:00; 3:00Þ:
ð52Þ

Table 8 shows the present FEM results for mode I SIF (KI) for various translation factors of hyperbolic-
tangent material variation considering three particular cases of material variations. For proportional
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Fig. 26. Example 6: proportional variation of material properties (Case 1).
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Fig. 27. Example 6: proportional variation of material properties (Case 2).
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material variations (Cases 1 and 2), the mode I SIF increases with the translation factor d for the range

between )0.5 and )0.1, however, it decreases as d increases further. For nonproportional material varia-

tions (Case 3), such behavior is not observed, and the mode I SIF decreases as the translation factor d
increases. Moreover, the crack tip location shows significant influence on SIFs for all the three cases of

hyperbolic-tangent material variation. For all the three cases investigated, the M-integral results compare

reasonably well with those provided by the MCC method.

6. Conclusions and extensions

This paper presents an accurate scheme for evaluating mixed-mode SIFs by means of the interaction

integral (M-integral) method considering arbitrarily oriented straight and curved cracks in two-dimensional
(2D) elastic orthotropic FGMs. The interaction integral proves to be an accurate and robust scheme in the
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Fig. 28. Example 6: nonproportional variation of material properties (Case 3).

Table 8

Example 6: FEM results for mode I SIF (KI) for an edge crack with translation of hyperbolic-tangent material variation. Case 1:

proportional material variation (Fig. 26); Case 2: proportional material variation (Fig. 27); Case 3: Nonproportional material variation

(Fig. 28)

d M-integral MCC

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

)0.5 1.158 1.214 1.190 1.153 1.187 1.180

)0.4 1.163 1.215 1.165 1.155 1.190 1.150

)0.3 1.173 1.241 1.129 1.160 1.195 1.109

)0.2 1.189 1.252 1.081 1.173 1.208 1.055

)0.1 1.217 1.287 1.016 1.181 1.216 0.988

0 1.049 1.099 0.935 0.974 0.994 0.910

0.1 0.697 0.714 0.846 0.683 0.686 0.828

0.2 0.614 0.619 0.759 0.612 0.614 0.751

0.3 0.585 0.587 0.684 0.584 0.586 0.682

0.4 0.567 0.568 0.623 0.566 0.567 0.623

0.5 0.554 0.555 0.574 0.554 0.554 0.575
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numerical examples where various types of material gradation, such as exponential, radial, and hyperbolic-

tangent, are considered. We observe that material orthotropy, material gradation and the direction of

material gradation (radial, Cartesian X1, and Cartesian X2) may have a significant influence on SIFs. We

also observe that the crack tip location shows a significant influence on SIFs in hyperbolic-tangent ma-
terials. Moreover, the Poisson�s ratio shows a negligible effect on SIF in a pure mode I problem, however, it

may have a significant influence on SIFs in mixed-mode crack problems.

This work has contributed a method for evaluating SIFs in orthotropic FGMs by means of the inter-

action integral. Potential extensions of the present work involve prediction of crack initiation angles and

crack propagation in brittle orthotropic FGMs. This is currently being pursued by the authors.
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Appendix A. Derivatives of auxiliary strain fields

The auxiliary stress and displacement fields, Eqs. (7) and (8), are represented by complex variables. For

the complex variablesffiffi
z

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ lk sin h

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos h þ ak sin hÞ þ iðbk sin hÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
x þ iy

p
; ðA:1Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
, the two solutions are possible:ffiffi

z
p

¼ a þ ib and
ffiffi
z

p
¼ �ða þ ibÞ: ðA:2Þ

The correct solutions for
ffiffi
z

p
are obtained such that the signs of displacements are satisfied. Thus for

Kaux
I > 0 and Kaux

II ¼ 0,

uaux2 > 0 ð0 < h < þpÞ; uaux2 < 0 ð�p < h < 0Þ; ðA:3Þ

and for Kaux
I ¼ 0 and Kaux

II > 0,

uaux1 > 0 ð0 < h < þpÞ; uaux1 < 0 ð�p < h < 0Þ: ðA:4Þ
This approach extracts the expressions for the stresses and displacements involving real variables, which are

originally expressed with the complex variables. The auxiliary stress fields are transformed to the global

coordinates given by

rg
11ðr; hÞ ¼ cos2 xr‘

11ðr; hÞ þ sin2 xr‘
22ðr; hÞ � sinð2xÞr‘

12ðr; hÞ;
rg
22ðr; hÞ ¼ sin2 xr‘

11ðr; hÞ þ cos2 xr‘
22ðr; hÞ þ sinð2xÞr‘

12ðr; hÞ;
rg
12ðr; hÞ ¼ ðcos2 x � sin2 xÞr‘

12ðr; hÞ þ sinx cosxðr‘
22ðr; hÞ � r‘

11ðr; hÞÞ;
ðA:5Þ

where ð�Þg and ð�Þ‘ denote the global and local coordinates, respectively, and x denotes the angle of the local

coordinates with respect to the global coordinates, as shown in Fig. 2. The auxiliary strain fields, with

respect to the global coordinates, are given by

egijðr; hÞ ¼ SijpqðXÞrg
pqðr; hÞ: ðA:6Þ

J.-H. Kim, G.H. Paulino / International Journal of Solids and Structures 40 (2003) 3967–4001 3999



Thus the derivatives of the auxiliary strain fields can be evaluated as follows (k ¼ 1; 2):

egij;k ¼
oegij
oXk

¼
oegij
or

or
oXk

þ
oegij
oh

oh
oXk

; ðA:7Þ

where

or
oXk

¼ or
ox1

ox1
oXk

þ or
ox2

ox2
oXk

ðA:8Þ

and

oh
oXk

¼ oh
ox1

ox1
oXk

þ oh
ox2

ox2
oXk

; ðA:9Þ

with

or
ox1

¼ cos h;
or
ox2

¼ sin h;
oh
ox1

¼ � sin h
r

;
oh
ox2

¼ cos h
r

: ðA:10Þ
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