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Abstract. A new interaction integral formulation is developed for evaluating the elastic T-stress for mixed-mode
crack problems with arbitrarily oriented straight or curved cracks in orthotropic nonhomogeneous materials. The
development includes both the Lekhnitskii and Stroh formalisms. The former is physical and relatively simple,
and the latter is mathematically elegant. The gradation of orthotropic material properties is integrated into the ele-
ment stiffness matrix using a “generalized isoparametric formulation” and (special) graded elements. The specific
types of material gradation considered include exponential and hyperbolic-tangent functions, but micromechanics
models can also be considered within the scope of the present formulation. This paper investigates several fracture
problems to validate the proposed method and also provides numerical solutions, which can be used as benchmark
results (e.g. investigation of fracture specimens). The accuracy of results is verified by comparison with analytical
solutions.
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1. Introduction

The non-singular stress (T-stress) of the Williams’s eigenfunction expansion (Williams, 1957)
influences crack growth under mixed-mode loading (Williams and Ewing, 1972; Ueda et al.,
1983; Smith et al., 2001). Williams and Ewing (1972), and Ueda et al. (1983) performed
experiments on polymethyl-methacrylate (PMMA) with a slanted internal crack, and found
that the elastic T-stress influences the crack initiation angle. Smith et al. (2001) revisited earlier
experimental results for brittle fracture of PMMA, and re-examined the role of the T-stress in
brittle materials. The T-stress also influences crack path stability for mode I loading with a
small imperfection (Cotterell and Rice, 1980).

The T-stress influences crack-tip constraint and toughness under plane strain conditions
(see, for example, O’Dowd et al., 1995). Larsson and Carlson (1973) investigated the T-stress,
and observed that it affects the size and shape of the plastic zone. Betegón and Hancock (1991)
investigated the two-parameter (J -T ) characterization of elastic-plastic crack-tip fields. Du
and Hancock (1991) investigated the effect of the T-stress on the small-scale yielding field in
elastic perfectly-plastic materials. Furthermore, O’Dowd and Shih (1991) developed the J -Q
theory (Q is a hydrostatic stress parameter) and found that the Q-family provides a framework
for quantifying the evolution of constraint from small-scale yielding to full yielding condi-
tions. They deduced a one-to-one correspondence between Q and T , which is valid in the
case where the applied load and geometry affect Q only through T . O’Dowd and Shih (1992)
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Figure 1. Cross-section microscope of FGMs: (a) lamellar NiCrAlY-PSZ FGM processed by plasma spray tech-
nique (Sampath et al., 1995); (b) columnar ZrO2 − Y2O3 thermal barrier coating with graded porosity processed
by electron beam physical vapor deposition (Kaysser and Ilschner, 1995).

also showed that the J -Q theory allows toughness to be measured and utilized in engineering
applications.

Several numerical methods have been used to evaluate the elastic T-stress. Leevers and
Radon (1982) used a variational formulation. Cardew et al. (1985) and Kfouri (1986) used
the path-independent J -integral in conjunction with the interaction integral for mode I crack
problems. Sladek et al. (1997) used the Betti-Rayleigh reciprocal theorem for mixed-mode
crack problems. Recently Chen et al. (2001) investigated the T-stress under mode I loading
by means of both the Betti-Rayleigh reciprocal theorem and Eshelby’s energy momentum
tensor (the path-independent J -integral) using the p-version finite element method (FEM),
and addressed the accuracy of numerical computations. All the papers mentioned above are
concerned with the T-stress for an isotropic homogeneous material.

The T-stress has been also investigated for both anisotropic and orthotropic homogeneous
solids. Gao and Chiu (1992) investigated slightly curved or kinked cracks under mode I load-
ing in orthotropic elastic solids by means of perturbation analysis, which is based on complex
variable representations of the Stroh formalism. They also investigated the effects of mode-
mixity, material orthotropy, and the T-stress on the behavior of a nearly symmetric crack. Yang
and Yuan (2000a) evaluated the elastic T-stress and higher-order coefficients in the crack-tip
fields in an anisotropic elastic solid by means of path-independent integrals (J -integral and
Betti-Rayleigh reciprocal theorem) and the Stroh formalism. Yang and Yuan (2000b) also
investigated a kinked crack in an anisotropic elastic solid, and evaluated the T-stress, stress
intensity factors and energy release rates at the main and kinked crack tips by using the integral
equation method and the Stroh formalism. However, all of the above papers are concerned with
homogeneous materials.

Functionally graded materials (FGMs) possess nonhomogeneous properties. These ma-
terials were introduced to benefit from ideal performance of its constituents, e.g. heat and
corrosion resistance of ceramics together with mechanical strength and toughness of metals
(Illshner, 1996). The books by Suresh and Mortensen (1998) and Miyamoto et al. (1999), and
the review chapter by Paulino et al. (2003) present comprehensive information about various
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aspects of FGMs. Such materials may exhibit isotropic or orthotropic material properties de-
pending on processing techniques. For instance, large-size bulk FGMs fabricated by the spark
plasma sintering (SPS) technique may be modeled as isotropic materials (Tokita, 1999). On
the other hand, graded materials processed by plasma spray techniques may have a lamellar
structure (Sampath et al., 1995) (see Figure 1a), while materials processed by electron beam
physical vapor deposition (PVD) may have a columnar structure (Kaysser and Ilschner, 1995)
(see Figure 1b). Thus, an isotropic FGM model can be used for materials fabricated by SPS,
and an orthotropic FGM model for materials fabricated by plasma spraying or PVD.

The T-stress has been investigated for isotropic FGMs. Becker et al. (2001) investigated
the T-stress and finite crack kinking, and found that the T-stress in FGMs depends on both the
far-field loading and the far-field phase angle (ψ∞ = tan−1(σ∞

xy /σ∞
yy )), and that the magnitude

of T-stress in the FGMs investigated was, on average, greater than that for homogeneous ma-
terials with identical geometry. They calculated the T-stress using the difference of the normal
stresses along θ = 0, i.e. (σxx − σyy), which is a method that can lead to significant numerical
errors due to the recovery of stresses very close to the crack tip. Recently, Kim and Paulino
(2003d) proposed a unified approach using the interaction integral method to evaluate T-stress
and SIFs, and also investigated the effect of T-stress on the crack initiation angle. In addition,
Paulino and Kim (2004) evaluated the T-stress in isotropic FGMs using a non-equilibrium
formulation of the interaction integral method, and provided some benchmark solutions for
the T-stress and the biaxiality ratio considering graded laboratory fracture specimens. Notice
that the papers by Kim and Paulino (2003d) and Paulino and Kim (2004) focus on isotropic
FGMs, while the present one focuses on orthotropic FGMs.

The contribution of this paper consists of evaluating the T-stress in orthotropic FGMs
by means of the interaction integral method in conjunction with the Lekhnitskii and Stroh
formalisms. Based on the assumption that the graded orthotropic material is locally homogen-
eous near the crack tip, with continuous, differentiable and bounded material properties, this
paper establishes the relationship between the asymptotically defined interaction integral (M-
integral) and the T-stress, converts the M-integral to an equivalent domain integral (EDI) using
auxiliary fields, and calculates the T-stress using a finite domain. This paper builds upon the
earlier work by Kim and Paulino (2003b), which focuses on the interaction integral method to
evaluate mixed-mode stress intensity factors (SIFs) in orthotropic FGMs.

In this paper, we employ two equivalent formalisms: Lekhnitskii and Stroh, to obtain the
auxiliary fields for the T-stress in orthotropic FGMs. The two formalisms treat plane problems
in an anisotropic elastic body. While the Lekhnitskii formalism assumes that stress fields
depend on plane coordinates, the Stroh formalism assumes that displacement fields depend
on plane coordinates. Barnett and Kirchner (1997) provided a direct and straightforward
proof of the equivalence between the Lekhnitskii and Stroh formalisms by reducing the six-
dimensional form of Stroh’s formalism to two homogeneous linear equations, which involve
reduced elastic compliances of the Lekhnitskii formalism.

This paper is organized as follows. Section 2 reviews anisotropic elasticity. Section 3
presents the crack-tip fields in anisotropic materials, and Section 4 provides auxiliary fields
chosen for the T-stress in the interaction integral method. Section 5 explains the theoretical
formulation, and establishes the relationship between the M-integral and the T-stress. Sec-
tion 6 presents numerical aspects of the M-integral, and various features of the finite element
implementation. Section 7 presents various numerical examples. Finally, Section 8 concludes
the work.
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2. Anisotropic elasticity

The generalized Hooke’s law relating stress to strain is given by (Lekhnitskii, 1968)

εi = aij σj , aij = aji (i, j = 1, 2, . . . , 6), (1)

where the compliance coefficients, aij , are contracted notations of the compliance tensor Sijkl

and the following notation is used

ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = 2ε23, ε5 = 2ε13, ε6 = 2ε12

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23, σ5 = σ13, σ6 = σ12.
(2)

For plane stress, the aij components of interest are

aij (i, j = 1, 2, 6) (3)

and for plane strain, aij are exchanged with bij as follows:

bij = aij − ai3aj3

a33
(i, j = 1, 2, 6). (4)

Two dimensional anisotropic elasticity problems can be formulated in terms of the analytic
functions, φk(zk), of the complex variable, zk = xk + iyk (k = 1, 2), i = √−1, where

xk = x + αky, yk = βky, (k = 1, 2). (5)

The parameters αk and βk are the real and imaginary parts of µk = αk + iβk, which can be
determined from the following characteristic equation (Lekhnitskii, 1968)

a11µ
4 − 2a16µ

3 + (2a12 + a66)µ
2 − 2a26µ + a22 = 0, (6)

where the roots µk are always complex or purely imaginary in conjugate pairs as µ1, µ1; µ2,
µ2.

3. Crack-tip fields: actual fields

Figure 2 shows Cartesian and polar coordinate systems originating at a crack tip in an ortho-
tropic FGM. The asymptotic stress and displacement fields are given by (see Sih et al. (1965)
for the homogeneous case)
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Figure 2. Cartesian (x1, x2) and polar (r, θ) coordinates originating from a crack tip in an orthotropic nonhomo-
geneous material under traction (t) and displacement boundary conditions.
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(7)

and
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respectively, where T denotes the elastic T-stress, a
tip
11 and a

tip
12 denote material parameters

evaluated at the crack tip, Re denotes the real part of the complex function, and µ
tip
1 and µ

tip
2

denote crack-tip material parameters evaluated by means of Equation (6), which are taken for
βk > 0 (k = 1, 2), and p
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k and q

tip
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(9)

respectively. Notice that in the above expressions, the material parameters are sampled at
the crack-tip location, which is the main difference from the expressions for homogeneous
materials (Sih et al., 1965).

4. Auxiliary fields

Auxiliary fields are secondary field solutions. Superposition of auxiliary and actual fields
leads to the relationship between the interaction integral and the target solution (T-stress). The
auxiliary fields involve stresses (σ aux), strains (εaux) and displacements (uaux). In this paper,
we adopt fields (stresses and displacements) originally developed for homogeneous materials
and use a formulation (Kim and Paulino, 2003a, 2003d) which accounts for the displacement
mismatch between the homogeneous and graded materials.

4.1. STRESS AND DISPLACEMENT FIELDS

To evaluate the T-stress, we use the auxiliary fields associated with a point force applied to the
crack tip of a semi-infinite crack in an infinite homogeneous orthotropic body in a direction
parallel to the crack surface, as illustrated in Figure 3. The material orthotropy directions are
aligned with the global coordinates. The auxiliary fields are derived by means of the equivalent
Lekhnitskii and Stroh formalisms, which are explained below (see also Kim (2003)).

4.1.1. Lekhnitskii Formalism
The Lekhnitskii formalism generalizes the Muskhelishvili approach (Muskhelishvili, 1933)
for two-dimensional deformation of an anisotropic elastic body, and begins with stresses by
assuming that they only depend on plane coordinates. Details are explained in the book by
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Figure 3. A point force applied at the crack tip in the direction parallel to the crack surface in a homogeneous
orthotropic body where material orthotropy directions are aligned with the global coordinates.

Ting (1996). In the Lekhnitskii formalism, we use the known auxiliary stress fields, and
determine derivatives of auxiliary displacements. The auxiliary stresses, with respect to the
polar coordinates (r, φ), are given as (Lekhnitskii, 1968):

σ aux
rr = A cos φ + B sin φ

rF (φ)
, σ aux

φφ = σ aux
rφ = 0, (10)

where

F (φ) = a
tip
11 cos4 φ + (2a

tip
12 + a

tip
66 ) sin2 φ cos2 φ + a

tip
22 sin4 φ (11)

and the material parameters aij ≡ a
tip
ij are evaluated at the crack tip location, which differ

from a homogeneous material (Lekhnitskii, 1968). The constants A and B are determined
from equilibrium conditions for a semi-infinite crack in an infinite homogeneous orthotropic
body as shown in Figure 3. The equilibrium equations with respect to the global Cartesian
coordinates, i.e. X1 and X2, are (Lekhnitskii, 1968)

A

∫ ψ2
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(12)

The auxiliary stresses with respect to the global coordinates are given by

σ aux
11 = A cos φ + B sin φ

rF (φ)
cos2 φ,

σ aux
22 = A cos φ + B sin φ

rF (φ)
sin2 φ,

σ aux
12 = A cos φ + B sin φ

rF (φ)
sin φ cos φ.

(13)
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Using the stress-strain and strain-displacement relationships, one obtains displacement deriv-
atives with respect to the global Cartesian coordinates as follows:
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The actual derivation of Equation (14) is given in Appendix A.

4.1.2. Stroh Formalism
The Stroh formalism considers two-dimensional deformation of an anisotropic elastic body,
and starts with displacements by assuming that they only depend on plane coordinates. Details
are explained in the book by Ting (1996). In the Stroh formalism, the auxiliary displacements
with respect to the local coordinates (x1, x2) are given by (Ting, 1996):
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in which p
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k and q
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k (k = 1, 2) are given by Equation (9), and λ
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k (k = 1, 2) is the

normalization factor given by the following expression

2(λ
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k p

tip
k ) = 1. (19)

The auxiliary stresses, with respect to the local Cartesian coordinates (x1, x2), are given
by (Ting, 1996) (k = 1, 2):
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Figure 4. Illustration of the ‘incompatibility formulation’ accounting for material nonhomogeneity. Notice that S

(x) �= St ip for x �= 0. The area A denotes a representative region around the crack tip.

σ aux
rr = 1

2πr
nT (θ)N3(θ)h, σ aux

θθ = σ aux
rθ = 0, (20)

where

n = [cos θ, sin θ]T , N3(θ) = 2Re [B P (θ) BT ]

P (θ) =
[

µ1(θ) 0

0 µ2(θ)

]
, µk(θ) = µ

tip
k cos θ − sin θ

µ
tip
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(21)

In Equations (16) to (21), material parameters are evaluated at the crack tip location, which
differs from a homogeneous material (Yang and Yuan, 2000a). Further details of the Stroh
formalism are given in Appendix B.

4.2. STRAIN FIELD

In this paper, we use an ‘incompatibility formulation’ that involves the auxiliary strain field
given by

εaux
ij = Sijkl(x) σ aux

kl , (22)

where Sijkl(x) is the compliance tensor of FGMs and Sijkl(x) �= Sijkl(tip) for x �= 0 as shown
in Figure 4. Notice that, in this case, the auxiliary stress fields in Equations (10) and (20) are in
equilibrium, i.e. σ aux

ij,j = 0 (no body forces), however, the auxiliary strain field in Equation (22)
is not compatible with the auxiliary displacement field, i.e. εaux

ij �= (uaux
i,j + uaux

j,i )/2. This
incompatibility must be considered in the interaction integral formulation. The formulation
was first proposed by Dolbow and Gosz (2002) to evaluate SIFs for nonhomogeneous isotropic
materials.

Alternative formulations, using the auxiliary fields for homogeneous orthotropic materials
(see previous subsections), can also be developed. For instance, one can use compatible dis-
placements and strains, and a constant constitutive tensor around the crack tip. This choice
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Figure 5. Conversion of the contour integral into an equivalent domain integral (EDI) where
� = �o + �+ − �s + �−, mj = nj on �o and mj = −nj on �s .

of auxiliary fields violates the stress-strain relationship in FGMs, while it satisfies compat-
ibility and equilibrium. Another alternative is to use compatible displacements and strains,
and the actual constitutive tensor of FGMs. This formulation violates equilibrium, while it
satisfies compatibility and the stress-strain relationship. This ‘non-equilibrium formulation’
was proposed by Paulino and Kim (2004) to evaluate the T-stress in isotropic FGMs.

5. The interaction integral: M-integral

The interaction integral is derived from the path-independent J -integral (Rice, 1968) for two
admissible states of a cracked elastic orthotropic FGM. Therefore, the interaction integral
(M-integral1 ) is a two-state integral. For the sake of numerical efficiency, the interaction
integral employs an equivalent domain integral (EDI) (Raju and Shivakumar, 1990) form.
The theoretical formulation, extraction of T-stress, and numerical aspects are provided below.

5.1. M-INTEGRAL: FORMULATION

The standard J -integral (Rice, 1968) is given by

J = lim
�s→0

∫
�s

(Wδ1j − σij ui,1) nj d�, (23)

where W is the strain energy density expressed by

W = 1

2
σij εij = 1

2
Cijklεklεij , (24)

1Here, the so-called M-integral should not be confused with the M-integral (conservation integral) of Knowles
and Sternberg (1972), Budiansky and Rice (1973), and Chang and Chien (2002). Also, see the book by Kanninen
and Popelar (1985) for a review of conservation integrals in fracture mechanics.
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Figure 6. Plateau weight function (q-function).

and nj is the outward normal vector to the contour �s , as shown in Figure 5. To convert the
contour integral into an EDI, the following contour integral is defined:

H =
∮

�

(Wδ1j − σij ui,1) mjq d�, (25)

where �=�o +�+−�s +�−, mj is a unit vector outward normal to the corresponding contour
(i.e. mj=nj on �o and mj=-nj on �s), and q is an admissible weight function varying from
q = 1 on �s to q = 0 on �o (see Figure 6). Taking the limit �s → 0 leads to

lim
�s→0

H = lim
�s→0

∮
�
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�s→0
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�o+�++�−−�s

(Wδ1j −σij ui,1) mjq d�

= lim
�s→0

[∫
�o+�++�−

(Wδ1j −σij ui,1) mjq d�+
∫
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]
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�o+�++�−

(Wδ1j −σij ui,1) mjq d�−
∫

�s

(Wδ1j −σij ui,1) njq d�

]
.

(26)

Because q = 0 on �o and the crack faces are assumed to be traction-free, one obtains

J = − lim
�s→0

H = − lim
�s→0

∮
�

(Wδ1j − σij ui,1) mjq d�. (27)

Applying the divergence theorem to Equation (27) and using the weight function q, one
obtains the EDI as

J =
∫

A

(σij ui,1 − Wδ1j ) q,j dA +
∫

A

(σij ui,1 − Wδ1j ),j q dA. (28)
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The J -integral of the superimposed fields (actual and auxiliary fields) is given as:

J s =
∫

A

{
(σij + σ aux

ij ) (ui,1 + uaux
i,1 ) − 1

2
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}
,j

q dA,

(29)

which is conveniently decomposed into

J s = J + J aux + M , (30)

where J aux is given by

J aux =
∫
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(σ aux
ij uaux
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σ aux
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2
σ aux

ik εaux
ik δ1j

}
,j

q dA, (31)

and the resulting general form of the interaction integral (M) is given by

M =
∫

A

{
σiju

aux
i,1 + σ aux

ij ui,1 − 1

2
(σikε

aux
ik + σ aux

ik εik)δ1j

}
q,jdA

+
∫

A

{
σiju

aux
i,1 + σ aux

ij ui,1 − 1

2
(σikε

aux
ik + σ aux

ik εik)δ1j

}
,j

q dA.

(32)

The specific interaction integral (M), based on the incompatibility formulation, is derived as
follows. Using the following identity

σij ε
aux
ij = σijCijkl(x)σ aux

kl = σ aux
kl εkl = σ aux

ij εij , (33)

one rewrites Equation (32) as

M =
∫

A

{
σiju

aux
i,1 + σ aux

ij ui,1 − σikε
aux
ik δ1j

}
q,jdA

+
∫

A

{
σiju

aux
i,1 + σ aux

ij ui,1 − σikε
aux
ik δ1j

}
,j

q dA

= M1 + M2.

(34)

Moreover, the last term of the second integral (M2) in Equation (34) is expressed as

(σikε
aux
ik δ1j ),j = (σij ε

aux
ij ),1 = (Cijklεklε

aux
ij ),1

= Cijkl,1εklε
aux
ij + Cijklεkl,1ε

aux
ij + Cijklεklε

aux
ij,1

= Cijkl,1εklε
aux
ij + σ aux

ij εij,1 + σij ε
aux
ij,1 .

(35)

Substitution of Equation (35) into M2 in Equation (34) leads to

M2 =
∫

A

(
σij,j u

aux
i,1 + σiju

aux
i,1j + σ aux

ij,j ui,1 + σ aux
ij ui,1j ) q dA

−
∫

A

(Cijkl,1εklε
aux
ij + σ aux

ij εij,1 + σij ε
aux
ij,1

)
q dA.

(36)

Using equilibrium (actual and auxiliary) and compatibility (actual), one simplifies M2 in
Equation (36) as
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M2 =
∫

A

{
σij (u

aux
i,1j − εaux

ij,1 ) − Cijkl,1εklε
aux
ij

}
q dA.

Therefore the resulting interaction integral (M) becomes

M =
∫

A

{
σiju

aux
i,1 + σ aux

ij ui,1 − σikε
aux
ik δ1j

}
q,jdA

+
∫

A

{
σij (u

aux
i,1j − εaux

ij,1 ) − Cijkl,1εklε
aux
ij

}
q dA,

(37)

where the underlined term is an incompatible term, which appears due to incompatibility of
the auxiliary strain fields. The incompatibility formulation for the extraction of mixed-mode
SIFs in isotropic FGMs was first developed by Dolbow and Gosz (2002).

5.2. M-INTEGRAL: THE EXISTENCE OF THE M-INTEGRAL FOR FGMS

The existence of the integral in Equation (37) as r goes to zero is proved below. The term
σij ε

aux
ij,1 in Equation (37) can be written as

σij ε
aux
ij,1 = σij {Sijkl,1(x) σ aux

kl + Sijkl(x) σ aux
kl,1 }

= σij (Sijkl)tip σ aux
kl,1 + σijSijkl,1(x) σ aux

kl + σij (Sijkl(x) − (Sijkl)tip) σ aux
kl,1

= σiju
aux
i,1j + σijSijkl,1(x) σ aux

kl + σij (Sijkl(x) − (Sijkl)tip) σ aux
kl,1 .

(38)

Thus

σij (u
aux
i,1j − εaux

ij,1 ) = −σijSijkl,1(x) σ aux
kl − σij (Sijkl(x) − (Sijkl)tip) σ aux

kl,1 , (39)

where the first term of the right hand expression vanishes as r goes to zero because of smooth-
ness assumption of the constitutive tensor, and we focus on the underlined term. The compli-
ance tensor involving material properties must be continuous and differentiable function, and
thus it can be written as (Eischen, 1987)

Sijkl(r, θ) = (Sijkl)t ip + rS
(1)
ijkl (θ) + r2

2
S

(2)
ijkl(θ) + O(r3) + . . ., (40)

where S
(n)
ijkl(θ) (n = 1, 2, . . .) are angular functions. For the auxiliary fields for T-stress

(uaux = O(ln r), σ aux = O(r−1)), the integral, as the limit r goes to zero, becomes

lim
A→0

∫
A

σij (u
aux
i,1j − εaux

ij,1 ) q dA = lim
r→0

∫
θ

∫
r

σij (u
aux
i,1j − εaux

ij,1 )qrdrdθ

= − lim
r→0

∫
θ

∫
r

σij (Sijkl(r, θ)−(Sijkl)t ip)σ aux
kl,1 qrdrdθ

= − lim
r→0

∫
θ

∫
r

O(r−1/2)O(r)O(r−2)qrdrdθ

= − limr→0 O(r1/2) = 0.

(41)

The integral involving material derivatives (Cijkl,1) in Equation (37) vanishes for the fol-
lowing reason. Derivatives of the elastic moduli are assumed to be bounded at the crack tip,
i.e. Cijkl,1 is O(rα) with α ≥ 0. Therefore, as the limit r goes to zero, the integral becomes
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lim
A→0

∫
A

Cijkl,1εklε
aux
ij qdA = lim

r→0

∫
θ

∫
r

Cijkl,1 εkl εaux
ij q rdrdθ

= lim
r→0

∫
θ

∫
r

O(rα)O(r−1/2)O(r−1) q r dr dθ

= lim
r→0

O(rα+1/2) = 0.

(42)

Thus the limit exists and the proposed integral is well-posed.

5.3. M-INTEGRAL: EXTRACTION OF THE T-STRESS

The procedure for extracting the T-stress in orthotropic FGMs is the same as that for isotropic
FGMs, which is explained in detail by Kim and Paulino (2003a) and Paulino and Kim (2004).
The T-stress can be extracted from the interaction integral taking the limit r → 0 of the
domain A shown in Figure 5. By doing so, the contributions of the higher-order (i.e. O(r1/2)

and higher) and singular (i.e. O(r−1/2)) terms vanish.
Equation (32) is rewritten as

Mlocal =
∫

A

[{
(σij u

aux
i,1 + σ aux

ij ui,1) − 1

2
(σikε

aux
ik + σ aux

ik εik)δ1j

}
q

]
,j

dA, (43)

where Mlocal denotes the M-integral with respect to local coordinates (x1, x2) (see Figure 5).
By applying the divergence theorem to Equation (43), one obtains

Mlocal = lim
�s→0

∮
�

{
(σij u

aux
i,1 + σ aux

ij ui,1) − 1

2
(σikε

aux
ik + σ aux

ik εik)δ1j

}
mjq d�. (44)

Because mj=-nj and q = 1 on �s , mj=nj and q = 0 on �o, and the crack faces are assumed
to be traction-free, then Equation (44) becomes

Mlocal = lim
�s→0

∫
�s

[
1

2
(σikε

aux
ik + σ aux

ik εik)δ1j − (σij u
aux
i,1 + σ aux

ij ui,1)

]
nj d�. (45)

Using the equality in Equation (33), one reduces Equation (45) to

Mlocal = lim
�s→0

∫
�s

[
σikε

aux
ik δ1j − (σiju

aux
i,1 + σ aux

ij ui,1)
]
nj d�. (46)

The actual stress fields are given by

σij = KI(2πr)−1/2f I
ij (θ, µ

tip
1 , µ

tip
2 ) + KII (2πr)−1/2f II

ij (θ, µ
tip
1 , µ

tip
2 ) + T δ1iδ1j + O(r1/2),

(47)

where the functions f I
ij (θ, µ

tip
1 , µ

tip
2 ) and f II

ij (θ, µ
tip
1 , µ

tip
2 ) (i, j = 1,2) are given in Equa-

tion (7). As the contour �s (see Figure 5) shrinks to the crack tip region, the higher-order terms
cancel out as mentioned above. Moreover, there is no contribution from the singular terms
O(r−1/2) because the integrations from θ = −π to +π of angular functions (coefficients) of
the three terms given in Equation (46) are cancelled out, and become zero regardless of the
resulting singularity O(r−1/2).

According to the above argument, the only term that contributes to M is the term involving
T . Thus we can consider only the stress parallel to the crack direction:
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σij = T δ1iδ1j . (48)

Substituting Equation (48) into Equation (46), one obtains

Mlocal = − lim
�s→0

∫
�s

σ aux
ij njui,1 d� = T a

tip
11 lim

�s→0

∫
�s

σ aux
ij nj d�. (49)

Because the force f is in equilibrium (see Figure 3)

f = − lim
�s→0

∫
�s

σ aux
ij nj d�, (50)

and thus the following simple and important relationship is obtained

T = Mlocal

f a
tip
11

, (51)

where a
tip
11 is a material parameter at the crack tip location based on the local coordinates for

plane stress, and is replaced by b
tip
11 for plane strain (cf. Equation (4)). For isotropic materials,

Equation (51) becomes

T = E∗
tip

f
Mlocal, (52)

where E∗
tip = Etip for plane stress and Etip/(1 − ν2

tip) for plane strain.

6. Finite Element Implementation: I-FRANC2D

The FEM numerical computation for displacements, strains, stresses, etc., is based on the
global coordinate system. Therefore the M-integral is first evaluated based on the global
coordinate system and then transformed to the local coordinate system. With the coordinate
transformation, the M-integral is given by (i, j = 1, 2)

(Mi)local = αij (θ)(Mj )global, αij (θ) =
[

cos θ sin θ

− sin θ cos θ

]
. (53)

The global quantities (Mm)global (m = 1, 2) are first computed:

(Mm)global =
∫

A

{
σiju

aux
i,m + σ aux

ij ui,m − σikε
aux
ik δmj

} ∂q

∂Xj

dA

+
∫

A

{
σij (u

aux
i,mj − εaux

ij,m) − Cijkl,mεij ε
aux
kl

}
q dA,

(54)

where the term underlined indicates the incompatibility term arising in the formulation. The
local quantity Mlocal is evaluated by using the transformation given by Equation (53), i.e.

Mlocal = (M1)local = (M1)global cos θ + (M2)global sin θ. (55)

The FEM code I-FRANC2D (Illinois -FRANC2D) has been used for implementing the
interaction integral formulation, and for obtaining all the numerical results for T-stress presen-
ted in this paper. The code I-FRANC2D is based on the FRANC2D (FRacture ANalysis Code
2D)(Wawrzynek, 1987; Wawrzynek and Ingraffea, 1991), which was originally developed at
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Figure 7. Generalized isoparametric formulation (GIF) (Kim and Paulino, 2002a, 2002b) using graded finite ele-
ments. The above figure illustrates a graded Q8 element and P(x) denotes a generic material property, e.g. Young’s
moduli, shear moduli, or Poisson’s ratios. The material properties at the Gauss points (PGP ) are interpolated from
nodal material properties (Pi ) by PGP = ∑

NiPi where N are element shape functions.

Cornell University. The extended capabilities of I-FRANC2D include graded elements to dis-
cretize nonhomogeneous isotropic (e.g. continuum functions such as exponential, linear, and
hyperbolic-tangent material functions; and micromechanics models such as self-consistent,
Mori-Tanaka, three phase, and differential methods) and orthotropic (e.g. continuum func-
tions) materials. It also includes fracture parameters such as the mixed-mode SIFs and the
T-stress.

The graded elements are based on the ‘generalized isoparametric formulation’ (GIF) (Kim
and Paulino, 2002a), which employs an isoparametric finite element and its shape functions
(see Figure 7) to discretize geometry, unknowns (displacements), and material properties. In
general, graded elements show better performance than conventional homogeneous elements
(element-wise constant material property) (Kim and Paulino, 2002b).

Using graded elements, the I-FRANC2D code can evaluate the mixed-mode SIFs and the
T-stress for both isotropic and orthotropic FGMs by means of the interaction integral method
(Kim and Paulino, 2003a, 2003b). The code can also provide mixed-mode SIFs in FGMs
using other numerical schemes such as the path-independent J ∗

k -integral, the modified crack
closure (MCC), and the displacement correlation technique (DCT) (Kim and Paulino, 2002a,
2002c, 2003c). Based on numerical investigations (Kim and Paulino, 2003a, 2003b; Paulino
and Kim, 2004), the interaction integral scheme is observed to be accurate in comparison with
the above-mentioned schemes for isotropic and orthotropic FGMs. Therefore, this paper uses
this scheme to evaluate the T-stress for cracked orthotropic FGMs.

7. Numerical examples

The performance of the interaction integral method for evaluating the T-stress in orthotropic
FGMs is examined by means of several numerical examples. In order to assess the features of
the method, the following examples are presented:
(1) Inclined center crack in a plate
(2) Four-point bending specimen
(3) Plate with a single curved crack
(4) Plate with two curved cracks
(5) Strip with an edge crack
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Figure 8. Example 1: plate containing an inclined crack with the angle ω: (a) geometry and BCs for far-field
traction; (b) geometry and BCs for fixed-grip loading; (c) complete finite element mesh; (d) mesh detail using 12
sectors (S12) and 4 rings (R4) around the crack tips (ω = 30◦ counter-clockwise).

(6) Compact tension (CT) specimen

In all the examples, isoparametric graded elements are employed (Kim and Paulino, 2002a).
The specific elements used consist of singular quarter-point six-node triangles (T6qp) for
crack-tip discretization, eight-node serendipity elements (Q8) for a circular region around
crack-tip elements, and regular six-node triangles (T6) in a transition zone to Q8 elements
(see, for example, Figure 8).

All the examples consist of T-stress results obtained by means of the interaction integral
method in conjunction with the FEM. The first example provides the T-stresses obtained
by both the Lehknitskii and Stroh formalisms. The rest of the examples are investigated to
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evaluate the T-stress by means of the Lehknitskii formalism. In order to validate T-stress
solutions, the first example includes analytical closed-form solutions for an orthotropic ho-
mogeneous material, and is investigated for an inclined center crack in a plate (a/W = 0.1),
which approximates an infinite domain. The same example is investigated for an FGM plate
under fixed-grip loading considering exponentially graded material properties. The second
example involves a four-point bending specimen with a delamination crack. The third and
fourth examples investigate the effect of curved crack(s) in a plate, which naturally involves
mode mixity. These two examples allow one to evaluate the effect of crack curvature and
multiple cracks on the T-stress. The fifth example investigates an edge crack in a strip con-
sidering hyperbolic-tangent material functions, and investigates the effect of translation of
the material properties. The last example investigates a compact tension (CT) specimen and
provides numerical solutions for the T-stress and the biaxiality ratio considering exponentially
graded materials.

7.1. INCLINED CENTER CRACK IN A PLATE

Figures 8a and 8b show an inclined center crack of length 2a located with a geometric angle ω

(counter-clockwise) in a plate under far-field constant traction and fixed-grip loading, respect-
ively. Figure 8c shows the complete mesh configuration, and Figure 8d shows the mesh detail
using crack-tip templates of 12 sectors (S12) and 4 rings (R4) of elements. The displacement
boundary condition is prescribed such that u2 = 0 along the lower edge, and u1 = 0 for the
node at the lower left hand side. The mesh discretization consists of 1641 Q8, 94 T6, and 24
T6qp elements, with a total of 1759 elements and 5336 nodes. The following data are used for
the FEM analysis:

plane stress, 2 × 2 Gauss quadrature,

a/W = 0.1, L/W = 1.0, ω = (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦).
(56)

7.1.1. Far-field traction - homogeneous orthotropic plate
This example is illustrated by Figure 8a, and its discretization is shown in Figures 8c and 8d.
For a crack inclined by ω = 0◦ (see Figure 8a), where the global Cartesian coordinates
coincide with the material orthotropy directions, there is an analytical solution available for
the T-stress (e.g. Gao and Chiu, 1992), which is given by

T = σ∞
11 − σ∞

22

√
a22/a11. (57)

The applied load corresponds to σ22(X1, 10) = σ . Young’s moduli, shear modulus, and
Poisson’s ratio are given by

E11 = 104, E22 = 103,G12 = 1216, ν12 = 0.3, (58)

respectively.
Table 1 shows the FEM results for the T-stress using the interaction integral in conjunc-

tion with either Lekhnitskii or Stroh formalism for various crack angles ω. It shows good
agreement between the two FEM results for T-stress for the angle ω = 0◦ obtained by the
interaction integral method, using the two formalisms, and the closed-form solution given
by Equation (57). The two formulations provide similar T-stress results. For a homogeneous
material, the T-stress for the right crack-tip is the same as that for the left crack-tip, and this
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Table 1. Example 1: T-stress for an inclined cen-
ter crack in a homogeneous orthotropic plate under
far-field constant traction – see Figure 8a (angle ω:
counter-clockwise).

ω T

Lekhnitskii Stroh Exact

0◦ −3.164 −3.156 −3.162

15◦ −1.643 −1.647 –

30◦ 0.031 0.030 –

45◦ 0.716 0.718 –

60◦ 0.936 0.935 –

75◦ 0.988 0.988 –

90◦ 0.996 0.997 1.000

feature is verified by the present FEM implementation. The T-stress increases as the angle ω

increases and it changes sign when ω ≈ 29.5◦. Notice that, as expected, the numerical T-stress
for the angle 90◦ is close to 1.0.

7.1.2. Fixed-grip loading – nonhomogeneous orthotropic plate
This example consists of an inclined center crack in an FGM plate subjected to fixed-grip
loading. The applied load corresponds to σ22(X1, 10) = ε̄E0

22e
βX1 (see Figure 8b). This

loading results in a uniform strain ε22(X1, X2) = ε̄ in a corresponding uncracked structure.
Young’s moduli and shear modulus are exponential functions of X1, while Poisson’s ratio is
constant. The material properties are given by

E11(X1) = E0
11e

βX1, E22(X1) = E0
22e

βX1,G12(X1) = G0
12e

βX1 , ν12(X1) = ν0
12 (59)

with

E0
11 = 104, E0

22 = 103,G0
12 = 1216, ν0

12 = 0.3. (60)

The following data are used for the FEM analysis: βa = (0.0, 0.5); ε̄ = 0.001. Notice that
βa is the dimensionless material nonhomogeneity parameter.

Table 2 shows the FEM results for the T-stress using the interaction integral in conjunction
with either Lekhnitskii or Stroh formalism for various material parameters βa. The two formu-
lations provide similar results for both homogeneous and FGM cases. For the homogeneous
material case (βa = 0.0), the T-stress increases as the angle ω increases and it changes sign
at ω ≈ 29.5◦. For the FGM case (βa = 0.5), the T-stress changes sign when ω ≈ 27.5◦
for the right crack tip and ω ≈ 28.5◦ for the left crack tip. Moreover, as βa increases, the
T-stress for the right crack-tip T (+a) increases within the range 0◦ ≤ ω ≤ 75◦ and remains
approximately the same for ω = 90◦ (cf. second and fourth columns, and third and fifth
columns of Table 2). Also, as βa increases, the T-stress for the left crack-tip T (−a) increases
for the range of 0◦ ≤ ω ≤ 30◦, and then decreases for the range of 30◦ < ω < 90◦ (cf. second
and sixth columns, and third and seventh columns of Table 2).

For the homogeneous material case (βa = 0.0), the fixed-grip loading (see Figure 8a)
is equivalent to the far-field constant traction (see Figure 8b) when considering an infinite
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Table 2. Example 1: T-stress for an inclined center crack in an orthotropic plate under fixed-grip loading
– see Figure 8b (angle ω: counter-clockwise).

ω βa = 0.0 βa = 0.5

T (±a) T (+a) T (−a)

Lekhnitskii Stroh Lekhnitskii Stroh Lekhnitskii Stroh

0◦ −3.129 −3.126 −2.829 −2.832 −2.718 −2.712

15◦ −1.630 −1.632 −1.386 −1.384 −1.405 −1.407

30◦ 0.031 0.030 0.172 0.168 0.075 0.074

45◦ 0.712 0.714 0.783 0.785 0.700 0.702

60◦ 0.933 0.932 0.973 0.970 0.911 0.910

75◦ 0.987 0.987 1.002 1.002 0.973 0.973

90◦ 0.996 0.997 0.996 0.997 0.996 0.997

domain (i.e. ε̄ = σ/E22 = 0.001) – cf. second and third columns of Table 1 with second and
third columns of Table 2, respectively. However, we observe small differences in T-stresses
as shown in Tables 1 and 2. The differences may be due to the effect of a finite plate size
(a/W = 0.1) approximating an infinite domain, and the loading boundary condition (applied
traction versus fixed grip) over a finite domain.

7.2. FOUR-POINT BENDING SPECIMEN

Gu and Asaro (1997) investigated the effect of material orthotropy on mixed-mode SIFs
in FGMs considering a four-point bending specimen with exponentially varying Young’s
moduli, shear modulus, and Poisson’s ratio. Kim and Paulino (2003b) evaluated the SIFs
by means of the interaction integral method, and the SIFs agree well with those by Gu and
Asaro (1997). Here we focus on the effect of material orthotropy on the T-stress. Figure 9a
shows the four-point bending specimen geometry and BCs, Figure 9b shows the complete
FEM mesh configuration, Figure 9c shows the mesh detail using 12 sectors (S12) and 4
rings (R4) around the crack tips, and Figure 9d shows an enlarged view of the right crack-
tip template. Point loads of magnitude P are applied at the nodes (X1, X2) = (±11, 1.0). The
displacement boundary conditions are prescribed such that (u1, u2) = (0, 0) for the node at
(X1, X2) = (−10,−1.0) and u2 = 0 for the node at (X1, X2) = (10,−1.0). Young’s moduli
and shear modulus are exponential functions of X2, while Poisson’s ratio is constant. The
material properties are given by

E11(X2) = E0
11e

βX2, E22(X2) = E0
22e

βX2,G12(X2) = G0
12e

βX2

ν12(X2) = ν0
12, λ = E22(X2)/E11(X2),

(61)

where λ denotes the orthotropy ratio. Moreover, the following numerical values of properties
are adopted:

For λ = 0.1, E0
11 = 1, E0

22 = 0.1, G0
12 = 0.5, ν0

12 = 0.3,

For λ = 1.0, E0
11 = 1, E0

22 = 1, G0
12 = 0.3846, ν0

12 = 0.3,

For λ = 10, E0
11 = 1, E0

22 = 10, G0
12 = 0.5, ν0

12 = 0.03.

(62)
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Figure 9. Example 2: Four-point bending specimen: (a) geometry and BCs; (b) complete finite element mesh;
(c) mesh detail using 12 sectors (S12) and 4 rings (R4) around crack tips; (d) enlarged view of the right crack tip.
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Figure 10. Example 2: T-stress for a four-point bending specimen. The parameter λ = E22/E11 is the orthotropy
ratio. Notice that the parameters λ and βh1 influence T-stress.

The mesh discretization consists of 625 Q8, 203 T6, and 24 T6qp elements, with a total of
852 elements and 2319 nodes. The following data are used for the FEM analysis:

plane stress, 2 × 2 Gauss quadrature,
a = 3.0, h1/h2 = 1.0, P = 1.0.

(63)

Figure 10 shows the FEM results for the T-stress obtained by the interaction integral
method in conjunction with the Lekhnitskii formalism. Notice that T-stresses are all positive
for the range of the material orthotropy λ = E22/E11 and material nonhomogeneity para-
meter βh1 investigated. The T-stress for the right crack tip is the same that for the left crack
tip due to the symmetry, and this feature is captured by the present FEM implementation.
There is a significant influence of the material orthotropy λ and material nonhomogeneity
βh1 on the T-stress. As either βh1 or λ increases, the T-stress increases. With increasing
material nonhomogeneity βh1, the effect of material orthotropy λ on T-stress becomes more
pronounced.

7.3. PLATE WITH A SINGLE CURVED CRACK

Figures 11a and 11b show a single curved crack located in a plate under remote uniform ten-
sion loading for two different boundary conditions. These boundary conditions are prescribed
such that, for the first set of BCs (Figure 11a), u1 = u2 = 0 for the node in the middle of the
left edge, and u2 = 0 for the node in the middle of the right edge; while for the second set of
BCs (Figure 11b), u1 = 0 for the node in the middle of the top edge, and u1 = u2 = 0 for the
node in the middle of the bottom edge. Figure 11c shows the complete finite element mesh
configuration, and Figure 11d shows a mesh detail using 12 sectors (S12) and 5 rings (R5)
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Figure 11. Example 3: plate with a single curved crack: (a) geometry and BCs (first set of BCs); (b) geometry and
BCs (second set of BCs); (c) complete finite element mesh; (d) mesh detail with 12 sectors (S12) and 5 rings (R5)
around the crack tip (S12,R5) - the thick line indicates the crack faces.

around the crack tips. The applied load corresponds to σ22(X1,±L) = σ = 1.0 for the BC in
Figure 11a and σ11(±W,X2) = σ = 1.0 for the BC in Figure 11b. The mesh discretization
consists of 1691 Q8, 184 T6, and 24 T6qp elements, with a total of 1875 elements and 5608
nodes. The following data are used in the FEM analyses:
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Table 3. Example 3: T-stress for a single curved crack.
Case 1: first set of BCs – see Figure 11a.

Case Material βR T-stress

Iso 0.0 −0.3684

1 0.0 −0.2748

0.1 −0.2724

Ortho 0.2 −0.2520

0.3 −0.2099

0.4 −0.1513

0.5 −0.0981

Table 4. Example 3: T-stress for a single curved
crack. Case 2: second set of BCs – see Figure 11b.

Case Material βR T-stress

Iso 0.0 0.6076

2 0.0 0.4057

0.1 0.3230

Ortho 0.2 0.2389

0.3 0.1516

0.4 0.0655

0.5 −0.0185

plane stress, 2 × 2 Gauss quadrature,

R = 1.0, L/W = 1.0,

Isotropic case (Homogeneous) :
E = 1.0, ν = 0.3

Orthotropic case :
E11(X1) = E0

11e
βX1, E22(X1) = E0

22e
βX1,G12(X1) = G0

12e
βX1, ν12(X1) = ν0

12,

E0
11 = 1.0, E0

22 = 0.5, G0
12 = 0.25, ν0

12 = 0.3,

dimensionless nonhomogeneity parameter: βR = (0.0 to 0.5).

Tables 3 and 4 show FEM results for the T-stress obtained by means of the interaction
integral in conjunction with the Lekhnitskii formalism for a single curved crack considering
the two sets of boundary conditions illustrated by Figures 11a and 11b and gradation along the
X1 direction. There is a significant influence of material orthotropy and material nonhomogen-
eity (parameter βR) on the T-stress. Because of symmetry, the T-stress on the top and bottom
crack tips are identical. The T-stress for orthotropic homogeneous material differs significantly
from that for isotropic homogeneous material. For orthotropic materials, the nonhomogeneity
parameter βR increases the T-stress for the first set of BCs (Case 1: Figure 11a, Table 3) and
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Figure 12. Example 4: plate with two interacting curved cracks: (a) geometry and BCs (first set of BCs); (b) geo-
metry and BCs (second set of BCs); (c) complete finite element mesh; (d) mesh detail with 12 sectors (S12) and 5
rings (R5) around the crack tip (S12,R5) – the thick lines indicate the crack faces.

decreases the T-stress for the second set of BCs (Case 2: Figure 11b, Table 4). Moreover,
for Case 1, the T-stress remains negative for the range of βR investigated (0 ≤ βR ≤ 0.5),
however, for Case 2, it changes sign at βR ≈ 0.47. The change in sign of the T-stress indicates
that the nonhomogeneity parameter βR may also influence crack path stability.

7.4. PLATE WITH TWO CURVED CRACKS

Figures 12a and 12b show two curved cracks located in a plate under remote uniform tension
loading for two different boundary conditions. These boundary conditions are prescribed such
that, for the first set of BCs (Figure 12a), u1 = u2 = 0 for the node in the middle of the left
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Table 5. Example 4: T-stress for two interacting semi-circular
cracks. Case 1: first set of BCs – Figure 12a.

Case Material βR T (right) T (left)

Iso 0.0 −0.3283 −0.3283

1 0.0 −0.2286 −0.2286

0.1 −0.1854 −0.1828

Ortho 0.2 −0.0762 −0.0597

0.3 0.0569 0.0985

0.4 0.1757 0.2454

0.5 0.2581 0.3555

edge, and u2 = 0 for the node in the middle of the right edge; while for the second set of BCs
(Figure 12b), u1 = 0 for the node in the middle of the top edge and u1 = u2 = 0 for the
node in the middle of the bottom edge. Figure 12c shows the complete finite element mesh
configuration, and Figure 12d shows a mesh detail using 12 sectors (S12) and 5 rings (R5)
around the crack tips. The applied load corresponds to σ22(X1,±L) = σ = 1.0 for the BC in
Figure 12a, and σ11(±W,X2) = σ = 1.0 for the BC in Figure 12b. The mesh discretization
consists of 1766 Q8, 260 T6, and 48 T6qp elements, with a total of 2074 elements and 6119
nodes. The following data are used in the FEM analyses:

plane stress, 2 × 2 Gauss quadrature,

R = 1.0, L/W = 1.0,

Isotropic case (Homogeneous) :
E = 1.0, ν = 0.3

Orthotropic case :
E11(X1) = E0

11e
βX1, E22(X1) = E0

22e
βX1, G12(X1) = G0

12e
βX1, ν12(X1) = ν0

12

E0
11 = 1.0, E0

22 = 0.5, G0
12 = 0.25, ν0

12 = 0.3,

dimensionless nonhomogeneity parameter: βR = (0.0 to 0.5).

Tables 5 and 6 show FEM results for the T-stress obtained by means of the interaction
integral in conjunction with the Lekhnitskii formalism for two curved cracks considering the
two sets of boundary conditions illustrated by Figures 12a and 12b and gradation along the
X1 direction. There is a significant influence of the material orthotropy and nonhomogeneity
parameter βR on the T-stress. Because of symmetry, the T-stresses for all four crack tips
are identical for a homogeneous material (βR=0.0) for both cases. For the FGM case, the
T-stresses are the same for the top and bottom crack tips. The T-stress for the orthotropic
homogeneous material differs significantly from that for the isotropic homogeneous material
(cf. first and second rows in Tables 5 and 6). For orthotropic materials, the nonhomogeneity
parameter βR increases the T-stress at the right and left crack tips for the Case 1 (see Table 5).
However, as βR increases the T-stress decreases at the right crack tip, but increases at the
left crack tip for the Case 2 (see Table 6). Moreover, for Case 1, the T-stress changes sign
at βR ≈ 0.25, however, for Case 2, the T-stress is positive for the range of βR investigated.
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Table 6. Example 4: T-stress for two semi-circular cracks. Case 2: second
set of BCs – Figure 12b.

Case Material βR T (right) T (left)

Iso 0.0 0.8353 0.8353

2 0.0 0.6734 0.6734

0.1 0.6126 0.7269

Ortho 0.2 0.5478 0.7747

0.3 0.4845 0.8218

0.4 0.4269 0.8740

0.5 0.3775 0.9341

Finally, by comparing the previous example (single curved crack) with the present one (two
curved cracks), one notices that the crack interaction effect increases the T-stress.

7.5. STRIP WITH AN EDGE CRACK

Figure 13a shows an edge crack of length a in an FGM plate, and Figure 13b shows a detail
of the mesh discretization using a crack-tip template of 12 sectors (S12) and 4 rings (R4)
of elements. Figures 13c, 13d, and 13e illustrate the three considered types of hyperbolic-
tangent material gradation with respect to the crack tip: reference configuration, translation to
the left, and translation to the right, respectively. The fixed-grip displacement loading results
in a uniform strain ε22(X1, X2) = ε̄ in a corresponding uncracked structure. The displacement
boundary condition is prescribed such that u2 = 0 along the lower edge and u1 = 0 for the
node at the lower left hand side.

Young’s moduli and shear modulus are hyperbolic-tangent functions with respect to the
global (X1, X2) Cartesian coordinates as follows:

E11(X1) = E−
11 + E+

11

2
+ E−

11 − E+
11

2
tanh(α(X1 + d)),

E22(X1) = E−
22 + E+

22

2
+ E−

22 − E+
22

2
tanh(β(X1 + d)),

G12(X1) = G−
12 + G+

12

2
+ G−

12 − G+
12

2
tanh(γ (X1 + d)),

(64)

where d is a constant for translation. In this example, the Poisson’s ratio ν12 is taken as
constant. The mesh discretization consists of 784 Q8, 290 T6, and 12 T6qp elements, with
a total of 1086 elements and 3107 nodes. The following data are used for the FEM analysis:

plane stress, 2 × 2 Gauss quadrature,

a/W = 0.5, L/W = 2.0, ε̄ = 0.25,

d = (−0.5 to 0.5), ν12 = 0.3,

Case 1: Proportional material variation (see Figure 14)

αa = βa = γ a = 15.0,

(E−
11, E

+
11) = (1.00, 3.00), (E−

22, E
+
22) = (1.25, 2.75), (G−

12,G
+
12) = (1.50, 2.50),
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Figure 13. Example 5: Strip with an edge crack in hyperbolic-tangent materials: (a) geometry and BCs; (b) detail
of finite element mesh with 12 sectors (S12) and 4 rings (R4) around the crack tip; (c) reference configuration
(d = 0.0); (d) translation of material gradation to the left (d = +0.5); (e) translation of material gradation to the
right (d = −0.5).

Case 2: Proportional material variation (see Figure 15)

αa = βa = γ a = 15.0,

(E−
11, E

+
11) = (1.00, 5.00), (E−

22, E
+
22) = (1.25, 2.75), (G−

12,G
+
12) = (1.50, 2.50),

Case 3: Non-proportional material variation (see Figure 16)

αa = 4.0, βa = 2.0, γ a = 1.0,

(E−
11, E

+
11) = (E−

22, E
+
22) = (G−

12,G
+
12) = (1.00, 3.00).

Table 7 shows the FEM results for the T-stress using the interaction integral in conjunction
with the Lekhnitskii formalism for various translation factors of hyperbolic-tangent material
variation considering three particular cases of material variations. The negative T-stresses are
observed for all the three cases. For proportional material variations (Case 1 and Case 2), the
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Figure 14. Example 5: Proportional variation of material properties (Case 1).

Figure 15. Example 5: Proportional variation of material properties (Case 2).
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Figure 16. Example 5: Nonproportional variation of material properties (Case 3).

Table 7. Example 5: FEM results for the T-stress for an
edge crack with translation of hyperbolic-tangent mater-
ial variation. Case 1: proportional material variation (Fig-
ure 14); Case 2: proportional material variation (Figure 15);
Case 3: Nonproportional material variation (Figure 16).

d T

Case 1 Case 2 Case 3

−0.5 −0.3886 −0.4982 −0.4373

−0.4 −0.4046 −0.5210 −0.4533

−0.3 −0.4310 −0.5715 −0.4754

−0.2 −0.4999 −0.6928 −0.4929

−0.1 −0.7011 −0.9900 −0.4991

0 −0.9667 −1.3870 −0.4714

0.1 −0.3643 −0.4615 −0.4099

0.2 −0.2051 −0.2248 −0.3369

0.3 −0.1706 −0.1773 −0.2749

0.4 −0.1573 −0.1600 −0.2304

0.5 −0.1516 −0.1527 −0.2001
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Figure 17. Example 6: compact tension (CT) specimen: (a) geometry and BCs; (b) complete finite element mesh.

T-stress decreases with the translation factor d for the range between −0.5 and 0.0, however, it
increases as d increases further. For nonproportional material variations (Case 3), the T-stress
decreases with the translation factor d for the range between −0.5 and −0.1, however, it
increases as d increases further. Moreover, the crack tip location shows a significant influence
on T-stress for all the three cases of hyperbolic-tangent material variation.

7.6. COMPACT TENSION (CT) SPECIMEN

Figure 17a shows the geometry of a CT specimen, and Figure 17b shows the complete finite
mesh configuration with 12 sectors (S12) and 4 rings (R4) around the crack tip. The applied
load corresponds to P(0,±0.275) = 1. The displacement boundary condition is prescribed as
(u1, u2)(W, 0) = (0, 0) and u2(a, 0) = 0. Young’s moduli and shear modulus are exponential
functions of X1, while the Poisson’s ratio is constant. The material properties are given by

For − 0.225W ≤ X1 < 0, E11 = E0
11, E22 = E0

22,G12 = G0
12, ν12 = ν0

12,

For 0 ≤ X1 ≤ W, E11 = E0
11e

βX1, E22 = E0
22e

βX1,G12 = G0
12e

βX1 , ν12 = ν0
12,

(66)

with

E0
11 = 1, E0

22 = 2,G0
12 = 0.5, ν0

12 = 0.15. (67)

The following data are used for the FEM analysis:

a/W = 0.1 to 0.8, W = 1

ER = E11(W)/E11(0) = E22(W)/E22(0) = G12(W)/G12(0)

= exp (βW) = (0.1, 0.2, 1.0, 5, 10)

plane stress and 2 × 2 Gauss quadrature.

(68)

Figure 18 shows biaxiality ratio B = T
√

πa/KI versus a/W ratio. The mode I SIF KI

is also evaluated by means of the interaction integral method (Kim and Paulino, 2003b). For
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Figure 18. Example 6: Biaxiality ratio (B = T
√

πa/KI ) for a compact tension (CT) specimen. Here
ER = E11(W)/E11(0) = E22(W)/E22(0) = G12(W)/G12(0) = exp (βW).

both isotropic and orthotropic cases, as the ratio ER = exp(βW) increases, the biaxiality
ratio increases and the transition points for sign-change of the biaxiality ratio shift to the left.
Both material orthotropy and nonhomogeneity show a significant influence on the T-stress and
biaxiality ratio.

8. Concluding remarks and extensions

This paper presents a robust scheme for evaluating the T-stress by means of the interaction
integral (M-integral) method considering arbitrarily oriented straight or curved cracks in two-
dimensional (2D) elastic orthotropic nonhomogeneous materials. The scope of the present
formulation is broad enough to cover orthotropic nonhomogeneous, orthotropic homogen-
eous, isotropic nonhomogeneous and isotropic homogeneous materials. This paper makes
use of auxiliary fields, which are derived based on two formulations: Lekhnitskii and Stroh.
As shown by Barnett and Kirchner (1997), these two formulations are equivalent, and this
equivalence has also been verified in the present work both theoretically and numerically.
From numerical investigations, we observe that the T-stress computed by the present method
is reasonably accurate in comparison with available reference solutions, and that material
orthotropy and material nonhomogeneity influences the magnitude and the sign of the T-stress.

Because SIFs and T-stress can be calculated by means of a unified approach using the
interaction integral method, a potential extension of this work includes using these quantities
as the basis to evaluate crack initiation angle, and develop fracture criteria in orthotropic func-
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tionally graded materials (see, for example, Boone et al. (1987) for orthotropic homogeneous
materials using SIF-based techniques).
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Appendix A. derivatives of auxiliary displacements in the Lekhnitskii formalism

The stress-strain relationship, with respect to polar coordinates (r, φ), leads to

εaux
rr = ∂ur

∂r
= a′

11(φ)
A cos φ + B sin φ

rF (φ)
, (69)

εaux
φφ = ur

r
+ ∂uφ

r∂φ
= a′

12(φ)
A cos φ + B sin φ

rF (φ)
, (70)

εaux
rφ = 1

2

(
∂ur

r∂φ
+ ∂uφ

∂r
− uφ

r

)
= 0, (71)

where, for the case of material orthotropy directions aligned with the global coordinates,

a′
11(φ) = F (φ) = a

tip
11 cos4 φ + (2a

tip
12 + a

tip
66 ) sin2 φ cos2 φ + a

tip
22 sin4 φ,

a′
12(φ) = a

tip
12 + (a

tip
11 + a

tip
22 − 2a

tip
12 − a

tip
66 ) sin2 φ cos2 φ.

(72)

Integration of Equation (69) with respect to r leads to

ur = (A cos φ + B sin φ) ln r + g(φ), (73)

where g(φ) is the unknown function of φ. Substitution of Equation (73) into Equation (70)
yields

uφ =
∫

φ

a′
12(φ)

A cos φ+B sin φ

F (φ)
dφ−ln r

∫
φ

(A cos φ+B sin φ) dφ−
∫

φ

g(φ) dφ+h(r), (74)

where the first indefinite integral is not integrable analytically and h(r) is the unknown func-
tion of r. By substituting Equations (73) and (74) into Equation (71), one obtains the following
condition
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r
∂h(r)

∂r
− h(r) = 0, (75)

which yields h(r) = Cr with a constant C. Differentiations of ur of Equation (73) and uφ of
Equation (74) with respect to r are

∂ur

∂r
= 1

r
(A cos φ + B sin φ)

∂uφ

∂r
= −1

r
(A sin φ − B cos φ) + C,

(76)

where C = 0 because ∂u1/∂r , ∂ur/∂r, and ∂uφ/∂r must have a separable form of (1/r) ×
p(φ). Then

∂u1

∂r
= ∂ur

∂r
cos φ − ∂uφ

∂r
sin φ = A

r
. (77)

Using the chain rule of differentiation and Equation (77), one writes

u1,1 = ∂u1

∂r

∂r

∂X1
+ ∂u1

∂φ

∂φ

∂X1
= (a

tip
11 cos2 φ + a

tip
12 sin2 φ)

A cos φ + B sin φ

rF (φ)
, (78)

with

∂r

∂X1
= cos φ,

∂r

∂X2
= sin φ,

∂φ

∂X1
= − sin φ

r
,

∂φ

∂X2
= cos φ

r
.

(79)

By means of the same procedure above, one obtains u2,2 as

u2,2 = ∂u2

∂r

∂r

∂X2
+ ∂u2

∂φ

∂φ

∂X2
= (a

tip
12 cos2 φ + a

tip
22 sin2 φ)

A cos φ + B sin φ

rF (φ)
. (80)

Solution of Equation (78) for the unknown ∂u1/∂φ leads to

∂u1

∂φ
= − 1

F (φ)
(AH1(φ) + BH2(φ)), (81)

where H1(φ) and H2(φ) are given by Equation (15). Using ∂u1/∂r (Equation (77)) and
∂u1/∂φ (Equation (81)), one obtains u1,2 and u2,1 as follows:

u1,2 = ∂u1

∂r

∂r

∂X2
+ ∂u1

∂φ

∂φ

∂X2

u2,1 = 2a
tip
66 σ aux

12 − u1,2.

(82)

The expressions for derivatives of displacements ui,j (i, j = 1, 2) are given in Equation (14).

Appendix B. Stroh Formalism

Let’s consider an orthotropic linear elastic body in two dimensional fields. According to the
Stroh formalism, the displacement vector u and the stress function vector � are given by
(Ting, 1996)
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u = Re [A f (z) d], � = Re [B f (z) d], (83)

where

σi1 = −�i,2, σi2 = �i,1

A = [a1, a2], B = [b1, b2],
f (z) = diag[f (z1), f (z2)], zk = x1 + µkx2, Im[µk] > 0 (k = 1, 2),

(84)

in which f (z) is a diagonal matrix of an arbitrary complex function; d is an unknown complex
constant vector; µk, ak and bk are the Stroh eigenvalues and eigenvectors, respectively, which
are functions of material parameters. These are obtained by the following eigenvalue problem
(Ting, 1996):

Np = µp, (85)

where

N =
[

N1 N2

N3 NT
1

]
,p =

[
a

b

]
,

N1 = −T −1RT , N2 = T −1, N3 = RT −1RT − Q,

(86)

in which Q, R and T are 2×2 matrices given by:

Qij = Ci1j1, Rij = Ci1j2, Tij = Ci2j2 with σpq = Cpqstεst . (87)

Since the 4×4 matrix N is not symmetric and the strain energy is positive definite, there exist
two pairs of complex conjugates for µ as follows:

µk = µk, ak+2 = ak, bk+2 = bk, (k = 1, 2). (88)

Because N is not symmetric, the p in Equation (85) is a right eigenvector. The right eigen-
vector q satisfies the following eigen-relation (Ting, 1996):

NT q = µq (89)

and is given by

q =
[

b

a

]
. (90)

For different eigenvalues (µk �= µl) the left and right eigenvectors are orthogonal to each
other, i.e.

qkpl = 0. (91)

Assuming that µk are distinct, we normalize pk such that

qkpl = δkl or bT
k al + aT

k bl = δkl, (92)

where δkl is the Kronecker delta. Combining Equations (91) with (92) leads to[
BT AT

B
T

A
T

][
A A

B B

]
=
[

I 0

0 I

]
, (93)
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where I is the 2 × 2 identity matrix. The 4 × 4 matrices on the left of Equation (93) are the
inverses to each other. Thus[

A A

B B

][
BT AT

B
T

A
T

]
=
[

I 0

0 I

]
, (94)

or

ABT + A B
T = I = BAT + B A

T

AAT + A A
T = 0 = BBT + B B

T
.

(95)

Equation (95) shows that the real part of ABT is I /2, and AAT and BBT are purely imaginary.
Thus the three real matrices are defined as follows (Ting, 1996):

S = i(2ABT − I ), H = 2iAAT , L = −2iBBT . (96)
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Appendix C. Nomenclature

a half crack length

aij contracted notation of the compliance tensor for plane stress; i = 1,2,6; j = 1,2,6

a
tip
ij aij evaluated at the crack tip location; i, j = 1,2,6

A a 2 × 2 complex matrix

bij contracted notation of the compliance tensor for plane strain; i = 1,2,6; j = 1, 2, 6

b
tip
ij bij evaluated at the crack tip location; i, j = 1, 2, 6

B a 2 × 2 complex matrix

Cijkl constitutive tensor for anisotropic materials; i, j, k, l = 1, 2, 3

d translation factor in hyperbolic-tangent function

e natural logarithm base, e = 2.71828182 . . .

E11, E22 Young’s moduli with respect to the principal axes of orthotropy

E0
11, E0

22 Young’s moduli E11, E22 evaluated at the origin

f a point force

f an arbitrary complex function

G12 shear modulus in orthotropic materials

G0
12 shear modulus G12 evaluated at the origin

h1, h2 dimensions of the beam specimen

H length of material gradation

I the 2 × 2 identity matrix

H a 2 × 2 real matrix

H contour integral

Im imaginary part of the complex function

J path-independent J -integral for the actual field

Jaux J -integral for the auxiliary field

J s J -integral for the superimposed fields (actual plus auxiliary)

KI mode I stress intensity factor

KII mode II stress intensity factor

L length of a plate

L a 2 × 2 real matrix

M interaction integral (M-integral)

N a 4 × 4 complex matrix

N3 a 2 × 2 complex matrix

mi , ni unit normal vectors on the contour of the domain integral
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Nomenclature (Continued)

pk coefficients of the asymptotic displacements for orthotropic materials; k = 1, 2

qk coefficients of the asymptotic displacements for orthotropic materials; k = 1, 2

q weight function in the domain integral

Q a 2 × 2 real matrix

r radial direction in polar coordinates

R a 2 × 2 real matrix

Re real part of the complex function

S a 2 × 2 real matrix

T a 2 × 2 real matrix

T T-stress

ui displacements for the actual field; i = 1, 2

uaux
i

displacements for the auxiliary field; i = 1, 2

u 2 × 2 displacement vector

uaux 2 × 2 auxiliary displacement vector

W width of a plate

W strain energy density

Waux strain energy density for the auxiliary field

xi local Cartesian coordinates; i = 1, 2

Xi global Cartesian coordinates; i = 1, 2

zk complex variable, zk = xk + iyk ; k = 1, 2

α material nonhomogeneity parameter for gradation of E11

αk the real part of µk ; k = 1, 2

β material nonhomogeneity parameter for gradation of E22

βk the imaginary part of µk ; k = 1, 2

γ material nonhomogeneity parameter for gradation of G12

� contour for J and M integrals

�0 outer contour

�s inner contour

�+ contour along the upper crack face

�− contour along the lower crack face

δij Kronecker delta; i, j = 1, 2

εk contracted notation of εij ; k = 1, . . . , 6

εij strains for the actual fields; i = 1, 2, 3; j = 1, 2, 3

µk roots of the characteristic equation; k = 1, 2

µ
tip
k

µk evaluated at the crack tip location; k = 1, 2

µk complex conjugate of µk ; k = 1, 2

νij Poisson’s ratio representing the response in direction j due to loading in direction i

σk contracted notation of σij ; k = 1, . . . , 6

σij stresses for the actual fields; i=1,2,3; j = 1, 2, 3

σaux
ij stresses for the auxiliary fields; i = 1, 2, 3; j = 1, 2, 3

φ angular direction in polar coordinates with respect to the global Cartesian coordinates

� stress function vector

ω angular direction in polar coordinates with respect to the local Cartesian coordinates


