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Abstract

Dynamic stress intensity factors (DSIFs) are important fracture parameters in understanding and predicting
dynamic fracture behavior of a cracked body. To evaluate DSIFs for both homogeneous and non-homogeneous mate-
rials, the interaction integral (conservation integral) originally proposed to evaluate SIFs for a static homogeneous
medium is extended to incorporate dynamic effects and material non-homogeneity, and is implemented in conjunction
with the finite element method (FEM). The technique is implemented and verified using benchmark problems. Then,
various homogeneous and non-homogeneous cracked bodies under dynamic loading are employed to investigate
dynamic fracture behavior such as the variation of DSIFs for different material property profiles, the relation between
initiation time and the domain size (for integral evaluation), and the contribution of each distinct term in the interaction
integral.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Static and dynamic fracture behavior of homogeneous and non-homogeneous cracked bodies can be
understood and predicted, to a certain extent, once stress intensity factors (SIFs) are known. Thus, an
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accurate evaluation of SIFs is crucial in fracture mechanics for both static and dynamic cases as they can be
used to investigate crack initiation and propagation. Several methods have been developed and applied by
many researchers to evaluate DSIFs for various problems, as discussed below.

For homogeneous materials, Chen (1975) examined a centrally cracked rectangular finite strip subjected
to step loading using a Lagrangian finite difference method (FDM). DSIFs were obtained from the relation
between DSIFs and stress fields in the vicinity of a crack tip. This problem has been considered as a bench-
mark problem and explored by many researchers. Aoki et al. (1978) utilized the relationship between dis-
placements and DSIFs to obtain mode I or mode III DSIFs. Kishimoto et al. (1980) proposed a modified
path-independent J-integral, which involves the inertial effects to determine DSIFs in conjunction with the
finite element method (FEM), and employed a decomposition procedure for mixed-mode problems. Bricks-
tad (1983) used an explicit time scheme in a special FEM program to evaluate DSIFs. By means of the rela-
tionship between SIFs and crack opening displacement, DSIFs were determined without singular elements.
Murti and Valliappan (1986) examined various problems, such as Chen�s problem (1975), using quarter-
point elements (QPEs) and the FEM. DSIFs were evaluated from the relation between the first two
coefficients of Williams (1957) solution and the finite element displacement in the vicinity of the crack.
The effect of QPE size was assessed qualitatively in their works. Lee and Freund (1990) solved mixed mode
problems of a semi-infinite plate containing an edge crack under an impact loading and determined DSIFs
through linear superposition of several stress wave propagation solutions. Lin and Ballmann (1993) revis-
ited Chen�s problem (1975) using the Lagrangian FDM. They adopted the same technique by Chen (1975)
to evaluate DSIFs. Their numerical results are almost identical with those obtained by Chen except for a
few time periods when wave fluctuations occurs. They contended that Chen (1975) used too few cells to
capture actual peaks of DSIFs. Dominguez and Gallego (1992) computed DSIFs using time domain
boundary element method with singular quarter-point boundary elements. Fedelinski et al. (1994) adopted
the bJ -integral to obtain DSIFs by means of the dual boundary element method. In the bJ -integral approach,
the mode decomposition procedure is employed for mixed mode problems. Belytschko (1995) determined
static and dynamic SIFs using the Element Free Galerkin (EFG) method, which is a meshless method based
on moving least square interpolants. The DSIFs were calculated by conservation integrals, which directly
evaluate the individual SIFs for the mixed mode problem in terms of known auxiliary solutions. Sladek
et al. (1997, 1999) used the bJ -integral to determine DSIFs in conjunction with the boundary element meth-
od (BEM). They proposed the interaction integral for the computation of T-stress (non-singular stress), and
the bJ -integral for the evaluation of DSIFs. Krysl and Belytschko (1999) investigated three-dimensional
(3D) stationary and dynamically propagating crack problems. DSIFs were obtained from the interaction
integral in conjunction with the EFG method. Zhang (2002) explored transient dynamic problems using
hypersingular time-domain traction BEM. DSIFs were obtained from relating the crack tip opening
displacements and SIFs. Tabiei and Wu (2003) investigated fracture behavior including DSIFs and energy
release rate for a cracked body subjected to dynamic loadings using DYNA3D (Whirley and Engelmann,
1993), which is a non-linear explicit finite element code. An element deletion-and-replacement remeshing
scheme was employed using the FEM to simulate crack propagation. Enderlein et al. (2003) investigated
fracture behavior for two-dimensional (2D) and 3D cracked bodies under impact loading using FEM. They
adopted the J-integral, the modified crack closure integral and the displacement correlation technique to
evaluate pure mode I DSIFs. Fedelinski (2004) applied the dual BEM in conjunction with the time domain,
the integral transform and the dual reciprocity methods for dynamic analysis of cracked media where
DSIFs were computed using the relationship between path independent integral and crack opening
displacements.

For non-homogeneous materials, Rousseau and Tippur (2001) obtained DSIFs for FGMs both numer-
ically and experimentally. The DSIFs prior to crack initiation were determined utilizing asymptotic fields of
Williams� solution (1957), which is equivalent to the stationary fields. After initiation, the crack tip fields for
steadily growing cracks in FGMs, obtained by Parameswaran and Shukla (1999), were used to obtain
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DSIFs. Material gradients were employed in the commercial software ABAQUS (2004) by applying tem-
perature, which is a function of material properties, and by letting the coefficient of thermal expansion be
zero. As the distance is close to the crack tip, the DSIFs were underestimated because no singular elements
were used. Therefore, regression technique was employed to obtain DSIFs at the crack tip based on the
displacement correlation technique (DCT). Wu et al. (2002) extended the J-integral to incorporate material
gradients and dynamic effects. They evaluated J for a single edge cracked FGM panel under step loading in
conjunction with the EFG method. Santare et al. (2003) investigated elastic wave propagation for un-
cracked non-homogeneous media.

Although a few researchers (Rousseau and Tippur, 2001; Wu et al., 2002) evaluated fracture quantities
such as SIFs or J for non-homogeneous cracked bodies under dynamic loading, only mode I SIF, i.e., KI, is
evaluated in conjunction with either the J-integral or the DCT. Furthermore, several important fracture
behavior of non-homogeneous cracked bodies have not been investigated thoroughly. So, the scope of this
study follows:

• The interaction integral (M-integral), which is known to be superior to the DCT and J-integral, is
extended to incorporate material non-homogeneity and dynamic effects for evaluation of DSIFs.

• Various mixed-mode problems under dynamic loadings are adopted to compute dynamic KI and KII.
• Several important fracture behavior of non-homogeneous cracked bodies under dynamic loadings

such as the variation of mixed-mode DSIFs for different material property profiles are explored in
detail.

This paper is organized as follows. Section 2 addresses numerical schemes for incorporating material
non-homogeneity and dynamic finite element formulation. Section 3 describes dynamic auxiliary fields
for non-homogeneous materials. Section 4 presents various theoretical and numerical aspects of the inter-
action integral and M-integral. Section 5 provides the verification of the research code developed to eval-
uate SIFs and DSIFs for both homogenous and non-homogeneous materials employing benchmark
problems. Section 6 shows and discusses dynamic fracture behavior such as variation of DISFs for various
homogeneous and non-homogeneous cracked bodies under dynamic loading. Finally, conclusions are
presented.
2. Numerical scheme

In this section, the concept of isoparametric finite element formulation for incorporating non-homoge-
neous material properties at the element level is addressed and the average acceleration method is presented
briefly.

2.1. Generalized Isoparametric Formulation (GIF)

To incorporate material non-homogeneity, we can use either graded elements or homogeneous elements.
Graded elements incorporate the material property gradient at the size scale of the element, while the
homogeneous element produces a stepwise constant approximation to a continuous material property field.
In general, graded elements approximate the actual material gradations better than homogeneous elements.
The difference of numerical results using two different schemes can be more distinct for relatively coarse
meshes where the material gradation is steep. Kim and Paulino (2002a) investigated the performance of
both elements for non-homogeneous materials where material gradations are either parallel or perpendic-
ular to the applied external loading such as bending, tension and fixed grip loading. Buttlar et al. (2005)
applied both schemes in pavement systems where material gradations occur due to temperature gradients
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and aging related stiffness gradients using the UMAT capability of the finite element software ABAQUS
(2004). The authors of both works concluded that graded elements lead to more accurate unaveraged stress
along the interface where material properties are not continuous.

The Generalized Isoparametric Formulation (GIF) of Kim and Paulino (2002a) consists of interpolating
geometry, displacements and material properties from nodal points. Thus, material properties such as elas-
tic modulus (E), Poisson�s ratio (m), and mass density (q) at Gauss points can be interpolated using shape
functions from nodal points as follows:
E ¼
X

i

N iðn; gÞEi; m ¼
X

i

N iðn; gÞmi; q ¼
X

i

N iðn; gÞqi; ð1Þ
where Ni are the shape functions, which are functions of the intrinsic coordinates n and g. This formulation
is implemented in the present code.

2.2. Average acceleration method

Newmark (1959) proposed a family of direct integration schemes, which has been widely used in dy-
namic analysis. An acceleration form of the Newmark method with the zero viscous damping matrix,
i.e.,C = 0, is given as (Hughes, 1987)
ðM þ bDt2KÞ€dn ¼ rext
n � K dn�1 þ Dt _dn�1 þ

Dt2

2
ð1� 2bÞ€dn�1

� �
; ð2Þ
in which Dt denotes the time step, rext is the vector of applied forces, (n � 1) and (n) indicate the previous
step and the current step, respectively, d, _d and €d represent the displacement, velocity and acceleration vec-
tors, respectively, and M and K stand for the mass matrix, and the stiffness matrix, respectively. Once €dn is
determined through Eq. (2), dn and _dn can be evaluated as follows:
dn ¼ dn�1 þ Dt _dn�1 þ
Dt2

2
ð1� 2bÞ€dn�1 þ bDt2€dn; ð3Þ

_dn ¼ _dn�1 þ ð1� cÞDt€dn�1 þ cDt€dn; ð4Þ

respectively. In this formulation, when c = 1/2 and b = 1/4, the method is called an average acceleration
method, which is implicit and unconditionally stable with second order accuracy.
3. On dynamic auxiliary fields for non-homogeneous materials

The interaction integral utilizes two admissible fields: auxiliary and actual fields. Auxiliary fields are
based on known fields such as Williams� solution (1957), while actual fields utilize quantities such as dis-
placements, strains and stresses obtained by means of numerical methods, e.g., FEM. In this section, the
choice of the auxiliary fields is discussed thoroughly. Then, a non-equilibrium formulation, consisting of
terms owing to material non-homogeneity, is presented in conjunction with the auxiliary fields.

3.1. Choice of auxiliary fields

An appropriate choice of auxiliary fields leads to the computation of SIFs by means of the interaction
integral or M-integral. The auxiliary fields should be suitably defined and contain the quantities to be deter-
mined, i.e., KI and KII. Yau et al. (1980) adopted Williams� solution (1957) as the auxiliary fields to evaluate
SIFs for a homogeneous cracked body. Dolbow and Gosz (2000), Rao and Rahman (2003), and Kim and
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Paulino (2003a) employed this same auxiliary fields for a non-homogeneous cracked body under quasi-
static conditions. Sladek et al. (1999) defined the elastostatic field, i.e., raux

ij;j ¼ 0, as dynamic auxiliary field
for the computation of T-stress of a homogeneous medium. In the present work, the asymptotic fields of
Williams� solution (1957) are employed as the auxiliary fields for dynamic non-homogeneous materials, be-
cause the dynamic asymptotic fields of non-homogeneous materials show similar behavior to those of qua-
si-static homogeneous materials around the crack tip locations (Eischen, 1987; Freund, 1998; Freund and
Clifton, 1974; Nilsson, 1974; Parameswaran and Shukla, 1999).

The asymptotic auxiliary stress fields, defined according to the illustration in Fig. 1, are given by (Eftis
et al., 1977)
raux
ij ¼ Kaux

I f I
ijðr; hÞ þ Kaux

II f II
ij ðr; hÞ ði; j ¼ 1; 2Þ ð5Þ
and the corresponding auxiliary displacement fields are
uaux
i ¼ Kaux

I

ltip

gI
i ðr; hÞ þ

Kaux
II

ltip

gII
i ðr; hÞ ði ¼ 1; 2Þ; ð6Þ
where ltip is the shear modulus at the crack tip, and Kaux
I and Kaux

II are the auxiliary mode I and mode II
SIFs, respectively. The standard functions fij(r,h) and gi(r,h) are provided in several texts, e.g., Anderson�s
book (1995).

As mentioned earlier, the asymptotic fields of Williams� solution (1957) are selected as the auxiliary fields
to evaluate DSIFs in conjunction with the M-integral in this work. When a finite domain is chosen to
evaluate the M-integral, however, these auxiliary fields cannot hold except for the crack tip location due
to non-homogeneous material properties. This aspect is noticeable when auxiliary fields are evaluated at
finite distances from the crack tip. As a consequence, extra terms appear in the formulation to compensate
for the difference in response due to material non-homogeneity.

3.2. Formulations

Due to the difference between material properties at the crack tip and away from the tip, three different
formulations, which are non-equilibrium, incompatibility and constant constitutive tensor, were derived.
The additional terms and the corresponding formulations for non-homogeneous materials have been dis-
cussed by various researchers. Dolbow and Gosz (2000) proposed the incompatibility formulation and
used this formulation to obtain SIFs for an arbitrarily oriented crack in FGMs using the extended
crack θ
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Fig. 1. Williams� (1957) solution for SIF evaluation. Here x and y indicate the local coordinate system.
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FEM. They also discussed non-equilibrium and constitutive tensor formulations. Rao and Rahman (2003)
employed the constant constitutive tensor and the incompatibility formulations to evaluate SIFs for FGMs
by means of the Element Free Galerkin (EFG) method. Kim and Paulino (2003a) proposed the non-equi-
librium formulation to determine SIFs for various cracked FGMs in conjunction with FEM. Theoretically,
this non-equilibrium formulation is equivalent to the incompatibility formulation and the constant consti-
tutive tensor formulation. From a numerical point of view, however, the accuracy of the constant consti-
tutive tensor formulation might not be as good as the other two formulations because it incorporates
derivatives of the actual stress and strain fields, which are evaluated numerically (Song, 2003). In this work,
the non-equilibrium term and the corresponding non-equilibrium formulation are used in conjunction with
FEM to determine DSIFs for arbitrarily oriented cracks in non-homogeneous materials under dynamic
loading.
3.3. Non-equilibrium formulation

The field quantities from Williams� solution such as displacements, strains and stresses should be eval-
uated properly in order to be valid as the auxiliary fields. But all quantities cannot be used at the same time
because they are valid at the crack tip location and not valid at other points due to non-homogeneity.
Therefore, only two quantities can be selected from Williams� solution and the other quantity is obtained
by considering material non-homogeneity.

In this formulation, the auxiliary displacements and strains are obtained directly from Williams� solution
and the auxiliary stresses are evaluated from the non-homogeneous constitutive model. The auxiliary dis-
placement is given by Eq. (6). Then auxiliary strain fields are obtained using the relation between strain and
displacement
eaux
ij ¼

1

2
ðuaux

i;j þ uaux
j;i Þ. ð7Þ
Finally, the auxiliary stress is obtained from
raux
ij ¼ CijklðxÞeaux

kl ; ð8Þ
where Cijkl(x) is a constitutive tensor which varies spatially.
Since displacement and strains are obtained from the Williams� solutions directly, the compatibility con-

dition is satisfied. However, the auxiliary stress field does not satisfy the equilibrium equation, i.e., raux
ij;j 6¼ 0,

because the constitutive tensor consists of material properties, which are functions of location. This condi-
tion will lead to a non-equilibrium term in the formulation.
4. Theoretical and numerical aspects of the interaction integral

In this section, the interaction integral is formulated by superimposing the actual and auxiliary fields on
the path independent J-integral (Rice, 1968). Based on the interaction integral, the derivation of non-
equilibrium based M-integral is performed. Various numerical aspects of the M-integral are presented.
Computation of SIFs is explained in conjunction with the M-integral.

4.1. Interaction integral formulation

Assuming that the crack faces are traction-free and using the weight function q varying from unity at the
crack tip to zero on C0 according to Fig. 2, the generalized J-integral becomes
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J ¼ lim
Cs!0

Z
Cs

ðW d1j � rijui;1Þnj dC ¼ � lim
Cs!0

I
C

ðW d1j � rijui;1ÞmjqdC; ð9Þ
where W is the strain energy density, C = C0 + C+ � Cs + C�, and mj is a unit normal vector to the contour
(C), as illustrated in Fig. 3.

Application of the divergence theorem to Eq. (9) leads to the equivalent domain integral (EDI) (Raju
and Shivakumar, 1990) as follows:
J ¼
Z

A
ðrijui;1 � W d1jÞq;j dAþ

Z
A
ðrijui;1 � W d1jÞ;jqdA. ð10Þ
Γ0

mj , j

x
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y

mj
n

n
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Transformation from line integral to equivalent domain integral (EDI) (Raju and Shivakumar, 1990). Notice that the normal
mj = nj for C0, C+ and C�, and mj = �nj on Cs.
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Considering the following relationships, which can be applied for general cases including material gradient
and dynamic effects,
W ;1 ¼
1

2
rij;1eij þ

1

2
rijeij;1 ð11Þ
and
ðrijui;1Þ;j ¼ rij;jui;1 þ rijui;1j; ð12Þ
one obtains the following expression:
J ¼
Z

A
ðrijui;1 � W d1jÞq;j dAþ

Z
A

rij;jui;1 þ rijui;1j �
1

2
rij;1eij �

1

2
rijeij;1

� �
qdA; ð13Þ
which is modified as
J ¼
Z

A
ðrijui;1 � W d1jÞq;j dAþ

Z
A

q€uiui;1 �
1

2
Cijkl;1eijekl

� �
qdA; ð14Þ
using the following equalities:
rij;j ¼ q€ui;

rij;1eij ¼ ðCijkleklÞ;1eij ¼ Cijkl;1ekleij þ rijeij;1

� �
;

rijui;1j ¼ rijeij;1;

ð15Þ
where Cijkl denotes the elasticity tensor. Notice that Eq. (14) is the extended J-integral under the stationary

condition. Eq. (14) is reduced to the J-integral for the static non-homogeneous material case as derived by
Kim and Paulino (2002b). Besides, for homogeneous materials, Eq. (14) is identical to the one derived by
Moran and Shih (1987) under the stationary condition, i.e., V = 0.

Superimposing the actual and auxiliar fields on Eq. (13), one obtains
J ¼
Z

A
ðraux

ij þ rijÞðuaux
i;1 þ ui;1Þ �

1

2
ðraux

ik þ rikÞðeaux
ik þ eikÞd1j

� �
q;j dA

þ
Z

A
ðraux

ij;j þ rij;jÞðuaux
i;1 þ ui;1Þ þ ðraux

ij þ rijÞðuaux
i;1j þ ui;1jÞ

n o
qdA

� 1

2

Z
A
ðraux

ij;1 þ rij;1Þðeaux
ij þ eijÞ þ ðraux

ij þ rijÞðeaux
ij;1 þ eij;1Þ

n o
qdA; ð16Þ
which is decomposed into
J s ¼ J þ J aux þM ; ð17Þ
where J and Jaux are given by
J ¼
Z

A
rijui;1 �

1

2
rikeikd1j

� �
q;j dAZ

A
rij;jui;1 þ rijui;1j �

1

2
rij;1eij �

1

2
rijeij;1

� �
q dA; ð18Þ
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J aux ¼
Z

A
raux

ij uaux
i;1 �

1

2
raux

ik eaux
ik d1j

� �
q;j dAZ

A
raux

ij;j uaux
i;1 þ raux

ij uaux
i;1j �

1

2
raux

ij;1 e
aux
ij �

1

2
raux

ij eaux
ij;1

� �
qdA; ð19Þ
respectively. The resulting M-integral is given by
M ¼
Z

A
ðraux

ij ui;1 þ rijuaux
i;1 Þ �

1

2
ðraux

ik eik þ rike
aux
ik Þd1j

� �
q;j dA

þ
Z

A
ðraux

ij;j ui;1 þ rij;juaux
i;1 Þ þ ðraux

ij ui;1j þ rijuaux
i;1j Þ

n o
qdA

� 1

2

Z
A
ðraux

ij;1 eij þ rij;1e
aux
ij Þ þ ðraux

ij eij;1 þ rije
aux
ij;1 Þ

n o
qdA. ð20Þ
4.2. Non-equilibrium formulation

This formulation creates the non-equilibrium terms explained in Section 3.3. Since the actual fields em-
ploy the quantities obtained from numerical simulation, the equilibrium and compatibility condition are
satisfied, i.e.,
rij;j ¼ q€ui; ð21Þ

eij ¼
1

2
ðui;j þ uj;iÞ; rijui;1j ¼ rijeij;1. ð22Þ
For the auxiliary fields, the equilibrium condition is not satisfied, i.e.,
raux
ij;j 6¼ 0; ð23Þ
while the relation between strain and displacement are compatible
eaux
ij ¼

1

2
ðuaux

i;j þ uaux
j;i Þ; rijuaux

i;1j ¼ rije
aux
ij;1 . ð24Þ
Notice that the auxiliary fields are chosen as asymptotic fields for static homogeneous materials as ex-
plained in Section 3.1. For the superimposed actual and auxiliary fields, the following equalities are
obtained:
rije
aux
ij ¼ CijklðxÞekle

aux
ij ¼ raux

kl ekl ¼ raux
ij eij; ð25Þ

Cijkl;1ðxÞeaux
kl eij ¼ Cijkl;1ðxÞeaux

ij ekl; ð26Þ

CijklðxÞekl;1e
aux
ij ¼ raux

ij eij;1; ð27Þ

CijklðxÞeaux
kl;1eij ¼ rije

aux
ij;1 . ð28Þ
Substitution of Eqs. (21) and (25) into Eq. (20) leads to
M ¼
Z

A
ðraux

ij ui;1 þ rijuaux
i;1 Þ � raux

ik eikd1j

n o
q;j dA

þ
Z

A
raux

ij;j ui;1 þ q€uiuaux
i;1 þ ðraux

ij ui;1j þ rijuaux
i;1j Þ

n o
qdA

� 1

2

Z
A
ðraux

ij;1 eij þ rij;1e
aux
ij Þ þ ðraux

ij eij;1 þ rije
aux
ij;1 Þ

n o
qdA. ð29Þ
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Since raux
ij = CijklðxÞeaux

kl , then raux
ij;1 eij can be expressed by
raux
ij;1 eij ¼ ðCijklðxÞeaux

kl Þ;1eij ¼ ðCijkl;1ðxÞeaux
kl þ CijklðxÞeaux

kl;1Þeij ð30Þ
and the expression rij;1eaux
ij is given by
rij;1e
aux
ij ¼ ðCijklðxÞeklÞ;1eaux

ij ¼ ðCijkl;1ðxÞekl þ CijklðxÞekl;1Þeaux
ij . ð31Þ
Substituting Eqs. (30) and (31) into (29) and using the equality of Eqs. (26)–(28), one obtains
M ¼
Z

A
ðraux

ij ui;1 þ rijuaux
i;1 Þ � raux

ik eikd1j

n o
q;j dAþ

Z
A

raux
ij;j ui;1 þ q€uiuaux

i;1 � Cijkl;1e
aux
kl eij

n o
qdA; ð32Þ
where raux
ij;j ui;1 appears due to the non-equilibrium condition of the auxiliary fields. Notice that raux

ij;j ui;1 and
Cijkl;1eaux

kl eij account for material non-homogeneity, while q€uiuaux
i;1 represents dynamic effects. If dynamic ef-

fects are ignored, this equation reduces to the interaction integral for the static non-homogeneous material
case derived by Kim and Paulino (2005).
4.3. Numerical implementation

The actual fields such as displacements, strains and stresses are evaluated globally by means of the FEM,
while the auxiliary fields and SIFs are local quantities. Thus, transformation is unavoidable to obtain SIFs.
In this work, the M-integral given by Eq. (32) is first computed globally to utilize the actual fields without
any transformation and then transformed into the local system to obtain the SIFs.

The global M-integral quantities are evaluated as (m = 1,2)
ðMmÞg ¼
Z

A
ðraux

ij ui;m þ rijuaux
i;m Þ � raux

ik eikdmj

n o oq
oX j

dA

þ
Z

A
raux

ij;j ui;m þ q€uiuaux
i;m � Cijkl;meaux

kl eij

n o
qdA; ð33Þ
where superscript ‘‘g’’ means global coordinate and X denotes the global coordinate system. Detailed expla-
nation on the transformation of auxiliary fields from local to global coordinates is presented in Appendix A
(see Fig. 4).
2

r

α

θ

X

X

x

Crack

1

1

2

x

Fig. 4. Local (x1,x2) and global (X1,X2) coordinate systems.
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The local M-integral quantities are evaluated as
M local ¼ ðM1Þg cos hþ ðM2Þg sin h; ð34Þ
which is used to compute SIFs (see Section 4.4).

4.4. Extraction of SIFs

The actual and auxiliary relationship between J and mixed mode SIFs are, respectively
J local ¼
K2

I þ K2
II

E�tip
; ð35Þ

J aux
local ¼

ðKaux
I Þ

2 þ ðKaux
II Þ

2

E�tip
; ð36Þ
where
E�tip ¼
Etip plane stress;

Etip=ð1� t2
tipÞ plane strain.

(
ð37Þ
For the superimposed fields of actual and auxiliary fields, the relationship between J and SIFs of actual and
auxiliary field is obtained as
J s
local ¼

ðKI þ Kaux
I Þ

2 þ ðKII þ Kaux
II Þ

2

E�tip
¼ J local þ J aux

local þM ; ð38Þ
where
M local ¼
2

E�tip
ðKIKaux

I þ KIIKaux
II Þ. ð39Þ
By means of a judicious choice of auxiliary mode I and mode II SIFs, the SIFs of actual fields are decou-
pled and determined as
KI ¼
E�tip
2

M local ðKaux
I ¼ 1; Kaux

II ¼ 0Þ; ð40Þ

KII ¼
E�tip
2

M local ðKaux
I ¼ 0; Kaux

II ¼ 1Þ. ð41Þ
The relationship between SIFs and M-integral, i.e., Eqs. (40) and (41), is identical with those for homoge-
neous materials (Yau et al., 1980), except that the material properties are sampled at the crack tip location
for non-homogeneous materials.
5. Verification

In this section, three cracked bodies of either homogeneous or non-homogeneous materials are analyzed to
verify the M-integral implementation. The first problem is an unbounded non-homogeneous elastic medium
containing an arbitrarily oriented crack. Analytical mixed-mode SIFs (Konda and Erdogan, 1994) are com-
pared with present numerical results to verify the M-integral implementation for the static non-homogeneous
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case. The second problem is a homogeneous edge-cracked semi-infinite plate under dynamic loading. Analy-
tical mixed-mode DSIFs (Lee and Freund, 1990) are used as reference solution to verify the M-integral imple-
mentation for dynamic loading of homogeneous cracked specimen. The last problem is a non-homogeneous
edge-cracked semi-infinite plate under dynamic loading. In order to verify the M-integral implementation for
the dynamic non-homogeneous case, an ABAQUS user-subroutine (UMAT) (ABAQUS, 2004; Buttlar et al.,
2005) and the DCT are employed to account for material non-homogeneity and to compute SIFs, respectively.

5.1. Non-homogeneous unbounded plate with an arbitrarily oriented crack

Konda and Erdogan (1994) obtained mixed-mode SIFs for an unbounded non-homogeneous elastic
medium containing an arbitrarily oriented crack by solving integral equations. A finite plate, which is large
relative to a crack length 2a = 8, is chosen with width 2W = 80 and height 2H = 80, as illustrated in
Fig. 5(a). Fig. 5(b)–(d) shows the whole mesh configuration, crack tip region and three different contours,
respectively.

Young�s modulus varies exponentially along the x-direction with a function, EðxÞ ¼ Eebx, and a constant
Poisson�s ratio of 0.3 is used. Due to the material gradient for the fixed-grip loading, the applied load is
equal to r22ðx; 40Þ ¼ �eEebX where �e and E are equal to 1. Displacement boundary conditions, u2 = 0 for
Fig. 5. Non-homogeneous unbounded plate: (a) geometry, boundary conditions and material properties; (b) mesh configuration for
the whole geometry; (c) mesh details for the crack tip (12 sectors and 4 rings); (d) 3 different contours.



Table 1
Normalized SIFs at the right crack tip for 3 different contours (ba = 0.5 and h/p = 0.32)

Contour 1 Contour 2 Contour 3

KI 0.9270 0.9225 0.9224
KII �0.5446 �0.5492 �0.5502

Table 2
Comparison of normalized SIFs at both crack tips between the present solution, and the current analytical solution and numerical
results (ba = 0.5 and h/p = 0.32)

References Left crack tip Right crack tip

KI KII KI KII

Konda and Erdogan (1994) 0.925 �0.548 0.460 �0.365
Present 0.9225 �0.5492 0.4560 �0.3623
Kim and Paulino (2003b) 0.9224 �0.5510 0.4559 �0.3621
Dolbow and Gosz (2000) 0.930 �0.560 0.467 �0.364
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the bottom edge and u1 = 0 for the left bottom node, are prescribed. Plane stress elements are used for the
bulk elements which consist of 446 Q8 and 274 T6 elements. Ratios ba = 0.5 and h/p = 0.32 are chosen.

Table 1 shows normalized KI and KII for three different contours, demonstrating domain independence
of the M-integral. The mixed mode SIFs are normalized with respect to K0 ¼ �eE

ffiffiffiffiffiffi
pa
p

. Table 2 compares the
present normalized SIFs with the analytical solutions obtained by Konda and Erdogan (1994), and numer-
ical results obtained by Dolbow and Gosz (2000) using X-FEM and by Kim and Paulino (2003b) using the
I-FRANC2D finite element code. Dolbow and Gosz (2000) and Kim and Paulino (2003b) used the M-
integral to obtain SIFs. Good agreement exists between the present numerical results and the analytical
solutions, which have a maximum difference of 0.8%.

5.2. Homogeneous edge cracked semi-infinite plate

Lee and Freund (1990) evaluated mixed-mode DSIFs for an edge-cracked semi-infinite plate under im-
pact loading using linear superposition of obtainable stress wave solutions. During the period from initial
loading until the first scattered waves at the crack tip are reflected, the mixed-mode SIF history was deter-
mined. Belytschko (1995) studied this problem numerically and evaluated DSIFs using the EFG method.

A finite plate with width W = 0.2 m, height H = 0.3 m and crack length a = 0.05 m is chosen, as illus-
trated in Fig. 6. The velocity, v = 6.5 m/s, is imposed on the upper half of the left boundary and no other
boundary conditions are prescribed (see Fig. 6(a)). The material properties of steel are chosen as
E = 200 GPa, q = 7850 kg/m3 and m = 0.25. The corresponding wave speeds are
Cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1� mÞ

qð1þ mÞð1� 2mÞ

s
¼ 5529:3 m=s; ð42Þ

Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
2qð1þ mÞ

s
¼ 3192 m=s; ð43Þ

CR � 0:928cs � 2962 m=s; ð44Þ
where Cd, Cs and CR are the longitudinal wave, shear wave, and Rayleigh wave speeds (Fung, 1965), respec-
tively. Plane strain condition is used with a full integration scheme, and the average acceleration method is
used with a time step of Dt = 0.4 ls. Consistent mass matrix is used for the mass matrix formulation.



Fig. 6. Edge cracked semi-infinite plate: (a) geometry and boundary conditions; (b) mesh configuration for the whole geometry; (c)
close up of crack tip (12 sectors and 4 rings) and 3 different contours.
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The present numerical results using the M-integral and DCT are compared with the analytical solutions
(Lee and Freund, 1990) in terms of normalized mixed-mode DSIFs and normalized time in Fig. 7. To
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ensure domain independence of the M-integral, numerical results for three different contours are plotted
together in Fig. 7. The abscissa is time normalized with respect to the crack length and dilatational wave
speed, and the ordinate is DSIFs normalized as
Ev
ffiffiffiffiffiffiffiffi
a=p

p
2Cdð1� m2Þ . ð45Þ
The history of DSIFs is plotted from the initial loading until the first wave scattered at the crack tip
bounces back from the boundary. As illustrated, the present numerical results using the M-integral and
the analytical solutions agree well. Besides, the DCT yields KI(t) values identical to analytical solutions.
However, there is some discrepancy between the KII(t) values for the DCT and the analytical solutions.
Similar observation was noted by Kim and Paulino (2002b) for static problems involving cracks in FGMs.
For both KI(t) and KII(t), the magnitude of DSIFs increases gradually, due to the instantaneous velocity.
The compressive waves and relatively large shear waves generated from the applied velocity induce the neg-
ative KI(t) and positive KII(t) as shown in Fig. 7. Notice that since the numerical results for three different
contours overlap each other, domain independence is demonstrated numerically.
5.3. Non-homogeneous edge cracked semi-infinite plate

In the previous example, the M-integral implementation for dynamic homogeneous case was verified by
comparing the present numerical results with the analytical solutions by Lee and Freund (1990). In this sec-
tion, the UMAT (ABAQUS, 2004) is used to incorporate material gradations of Young�s modulus under
dynamic loading, and the DCT (Shih et al., 1976) is employed to compute SIFs. The UMAT and DCT are
adopted to verify the M-integral implementation for the dynamic non-homogeneous case. The UMAT was
developed to analyze pavement systems which are graded due to temperature gradients and aging related
stiffness gradients (Buttlar et al., 2005). In the UMAT, graded elements are implemented by means of direct
sampling of properties at the Gauss points of the element (Kim and Paulino, 2002a; Santare and Lambros,
2000).

The same geometry and boundary conditions shown in Fig. 6(a) are used. The mass density and Pois-
son�s ratio are q = 7850 kg/m3 and m = 0.25, respectively. The elastic modulus varies exponentially along
the x-direction as follows:
EðxÞ ¼ Eð0Þebx; b ¼ 1

W
log

EðW Þ
Eð0Þ

� �
; ð46Þ
where W = 0.2 m, E(0) = 100 GPa, E(W) = 300 GPa and b is the material non-homogeneity parameter.
The material properties at the crack tip are E = 131.6 GPa, q = 7850 kg/m3 and m = 0.25. Plane strain
elements are used with 3 · 3 Gauss quadrature. The average acceleration method is adopted with a time
step of Dt = 0.4 ls and consistent mass matrix is employed.

Fig. 8 illustrates the variation of DSIFs with time and compares the DSIFs using both the M-integral
and the DCT from the present results with those using the DCT from ABAQUS. The abscissa and ordinate
indicate time and DSIFs, respectively. DSIFs of KI(t) and KII(t) using the DCT for both the present and
ABAQUS results are within plotting accuracy. The two different numerical schemes, i.e., the M-integral
and the DCT, yield almost identical KI(t) values and slightly different KII(t) values, similarly to the homo-
geneous case (see Fig. 7). This demonstrates that field quantities, i.e., displacements, strains and stresses,
and the computed DSIFs using the M-integral for cracked non-homogeneous media under dynamic load-
ing are computed correctly using the research code developed.
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6. Numerical examples

With the code verified, various problems are examined to evaluate DSIFs for homogeneous and non-
homogeneous materials and to explore fracture behavior for different material profiles. In this chapter,
the following problems are considered:

• Homogeneous center cracked tension (CCT) specimen, which is a pure mode I problem.
• Non-homogeneous CCT specimen with mixed-mode crack behavior.
• Homogeneous and non-homogeneous rectangular plate with an inclined crack.
• Homogeneous and non-homogeneous rectangular plate with cracks emanating from a circular hole.

In the examples, domain independence is assessed and the present numerical results are compared with
reference solutions. The dynamic fracture behavior is investigated for different material gradations consid-
ering the influence of the time step on DSIFs, the relation between initiation time and the domain size, and
the contribution of each distinct term consisting in the M-integral. The standard average acceleration meth-
od and consistent mass matrix are used in all the examples (Newmark, 1959; Hughes, 1987).

6.1. Homogeneous CCT specimen

This problem was first examined by Chen (1975) and since then, it has been considered as a benchmark
problem. Chen (1975) determined mode I SIFs for a CCT specimen under step loading using a time depen-
dent Lagrangian finite difference method (FDM). In his work, DSIFs were determined using the relation
between stresses and SIFs around the crack tip.

Chen�s (1975) problem has been studied by many researchers. Brickstad (1983) utilized the relation between
SIFs and crack opening displacement (COD) to obtain DSIFs. Murti and Valliappan (1986) employed the
finite element method to determine DSIFs using the DCT. Lin and Ballmann (1993) revisited Chen�s problem
using the FDM. They employed a greater number of finite difference cells and obtained slightly different
numerical results. Dominguez and Gallego (1992) computed DSIFs using the BEM with quarter-point ele-
ments (QPEs). Sladek et al. (1997, 1999) used the bJ integral to determine DSIFs in the BEM context.

6.1.1. Problem description

Consider a rectangular finite plate of width 2W = 20 mm and height 2H = 40 mm, with a center crack of
length 2a = 4.8 mm. Geometry, boundary conditions, finite element discretization, and three different
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M-integral domain contours are illustrated in Fig. 9. The total mesh (see Fig. 9(b)) consists of 816 Q8 and
142 T6 2D plane strain elements. Notice that 8 T6 elements and 24 Q8 elements, which consist of four rings
and eight sectors, are employed as the crack tip template and lead to sufficient mesh refinement around the
crack tips. The external force, p(t), is applied instantaneously to both top and bottom edges with a step
function, as shown in Fig. 10. No other boundary conditions are prescribed. Young�s modulus, mass den-
Fig. 9. Benchmark CCT specimen: (a) geometry and boundary conditions; (b) mesh configuration for whole geometry; (c) mesh detail
for the crack tip regions (8 sectors and 4 rings); (d) domain contours.

p(t)
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Fig. 10. Applied load versus time (step function).
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sity and Poisson�s ratio are 199.992 GPa, 5000 kg/m3 and 0.3, respectively, and the corresponding wave
speeds are
Fig. 11
contou
Cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1� mÞ

qð1þ mÞð1� 2mÞ

s
¼ 7:34 mm=ls; ð47Þ

Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
2qð1þ mÞ

s
¼ 3:92 mm=ls; ð48Þ

CR � 0:928cs � 3:63 mm=ls; ð49Þ
where Cd, Cs and CR are the longitudinal wave, shear wave, and Rayleigh wave speeds (Fung, 1965), respec-
tively. A time step Dt = 0.05 ls and full integration scheme are employed.

6.1.2. Comparison between J and M-integrals

Rice proposed the J-integral which is equivalent to the energy release rate under static linear elastic con-
ditions (Rice, 1968). Since then, this method has been widely used and has been the basis of new methods
proposed by many researchers. For instance, the J-integral can be decomposed to evaluate mixed mode
SIFs (Kishimoto et al., 1980; Fedelinski et al., 1994; Bui, 1983). Under dynamic loading conditions, it is
necessary to include dynamic terms in order to obtain domain independent DSIFs (Wu et al., 2002; Moran
and Shih, 1987). Owing to significance of the J-integral in fracture mechanics, we implemented Eq. (14) in
the code employing the equivalent domain integral formulation (EDI) (Raju and Shivakumar, 1990) and
used the J-integral to verify the implementation of the M-integral for mode I problem.

A comparison of numerical results between using the J-integral and M-integral in terms of DSIFs is per-
formed. Fig. 11 compares DSIFs obtained using the J and the M-integrals. The time is normalized with
respect to the dilatational wave speed (cd), and the DSIFs are normalized with respect to
Ks ¼ r0ð
ffiffiffiffiffiffi
pa
p
Þ; ð50Þ
where the r0 is the magnitude of the applied stress and a is half of the total crack length. Up to the nor-
malized time T1 of 4.3 in Fig. 11, the two numerical results match within 0.02%, which is expected because
the M-integral is based on the J-integral. However, after the time T1 both schemes yield nearly equal
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magnitude but they are opposite in sign as illustrated in Fig. 11. Because J represents an energy which is
always positive, the calculation of SIFs from J values, which follows:
K ¼
ffiffiffiffiffiffiffi
JE�
p

; ð51Þ

always yields a positive value of KI(t). This fact indicates that the J-integral may have limitations for dy-
namic problems because transient DSIFs often oscillate between positive and negative values. Here the neg-
ative mode I SIF simply indicates crack closure.

Furthermore, the present numerical results for the three different contours are compared each other in
Fig. 11 to illustrate domain independence. To evaluate domain independence numerically, three different
contours are selected, as illustrated in Fig. 9(d). The similarity of numerical results for the three different
contours demonstrate numerical domain independence.

6.1.3. Comparison of present results with a numerical reference solution

Lin and Ballmann (1993) revisited Chen�s problem using the FDM and obtained DSIFs utilizing the
relation between SIFs and stress. Fig. 12 compares the present numerical results with those of Lin and
Ballmann (1993). A software named as DigXY was used to extract numerical values from graphical data
in reference (Lin and Ballmann, 1993).

Overall, there is good agreement between the present numerical results and the reference solution. The
reference solution shows a theoretical normalized initiation time of 1 as illustrated in Fig. 12 because the
step function is adopted for external loading. The present numerical results indicate an initiation time smal-
ler than the theoretical value. However, the numerical initiation time approaches the theoretical value as the
time step is decreased, which will be presented below (see Section 6.1.4). For the first peak, both results
show a similar magnitude and corresponding time.

6.1.4. Comparison of theoretical initiation time and first peak

In this section, two important time locations, the initiation time and the first peak, during transient re-
sponses, are discussed by comparing the present numerical values with theoretical ones. The theoretical ini-
tiation time corresponds to the time necessary for a dilatational wave induced by external forces to reach a
crack tip location, and in this case it equals H/cd. Ideally, the numerical initiation time should coincide with
the theoretical initiation time. In reality, numerical initiation values precede the theoretical values. For this
problem, the normalized initiation time of the numerical results is 0.9 when time step 0.05 ls is adopted,
and the normalized theoretical initiation time is 1. Through numerical simulations, we observe that as
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the time step decreases, the numerical initiation time approaches the theoretical value of 1 in Fig. 13. The
normalized KI(t) for different time steps (0.05 ls, 0.1 ls, 0.3 ls and 0.5 ls) is plotted versus the normalized
time in Fig. 13.

The first peak, indicated in Fig. 12, occurs in this problem when dilatational waves reach the crack tip,
and generated Rayleigh waves travel to the opposite crack tip. At that instant, the Rayleigh waves cause
compression at the crack tip and thus reduce the KI(t) values. The normalized theoretical time for this event
is 1.485 and the present numerical value is 1.523 for a time step of Dt = 0.05 ls. There is reasonably good
agreement between these numbers with a relative error less than 3%.

6.1.5. Sensitivity of numerical results with respect to time step size

For step loading, transient DSIFs are highly influenced by time step increment because the waves in-
duced by this loading have a significant influence on crack tip fields, whereas for ramp loading, the crack
tip fields are influenced primarily by the remote load. In the ramp loading, the load is always increasing
with time and, as a consequence, the magnitude of SIFs increases monotonically with time and shows little
variation due to propagating waves. Therefore, SIFs are not very sensitive to the time step increment for
ramp loading.

Four different time steps, 0.05 ls, 0.1 ls, 0.3 ls and 0.5 ls, are chosen to investigate the influence of time
step on the DSIFs for step loading. As illustrated in Fig. 14, numerical results are highly influenced by the
time step. The abscissa and ordinate represent normalized time and normalized KI(t), respectively. As
the time step decreases, the numerical results appear to converge. For the larger time steps, the difference
between numerical results is especially pronounced near the peaks. This result indicates that for large time
steps, the transient response cannot be captured accurately.

6.1.6. Discussion of M-integral terms

The M-integral based on the non-equilibrium formulation is given by Eq. (32), i.e.,
M ¼
Z

A
ðraux

ij ui;1 þ rijuaux
i;1 Þ � raux

ik eikd1j

n o
q;j dAþ

Z
A
�Cijkl;1e

aux
kl eij þ raux

ij;j ui;1 þ q€uiuaux
i;1

n o
qdA. ð52Þ
The above expression consists of various terms which accounts for dynamic effects and material non-homo-
geneity. Now, we will investigate and discuss the contribution of each term of the M-integral and its domain
independence. Let us define
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Term 1 ¼
Z

A
raux

ij ui;1q;j dA; ð53Þ

Term 2 ¼
Z

A
rijuaux

i;1 q;j dA; ð54Þ

Term 3 ¼ �
Z

A
raux

ik eikd1jq;j dA; ð55Þ

Term 4 ¼ �
Z

A
Cijkl;1e

aux
kl eijq dA; ð56Þ

Term 5 ¼
Z

A
raux

ij;j ui;1qdA; ð57Þ

Term 6 ¼
Z

A
q€uiuaux

i;1 q dA. ð58Þ
Terms 1, 2, and 3 are the same as those for homogeneous materials under quasi-static conditions. Terms 4
and 5 arise due to material non-homogeneity, and Term 6 is due to dynamic effects.

For this simulation, the contours shown in Fig. 9(d) are used. Contour 1 includes 8 T6 and 24 Q8
elements, contour 2 contains 54 T6 and 24 Q8 elements, and contour 3 has 54 T6 and 72 Q8 elements.
Fig. 15(a)–(c) shows the contribution of each term to the normalized KI using contours 1, 2, and 3, respec-
tively. The abscissa and ordinate represent normalized time and normalized KI(t), respectively. Terms 4 and
5 are not included in Fig. 15 because they are zero for homogeneous materials. For all contours, the con-
tributions of Terms 1 and 2 are higher than those of the other terms. Terms 1, 2, and 3 follow the trend of
the total K, whereas Term 6 oscillates. Two important phenomena are observed from this simulation. The
first is the oscillatory nature of the contribution of Term 6 for different contours. The second is the
relationship between initiation time and domain size.

For contour 1, illustrated in Fig. 15(a), the magnitude of Term 6 is small compared to that of other
terms. But as the domain size increases (from contour 1 to contour 3), the magnitude of Term 6 increases
overall as illustrated in Fig. 16. It turns out that even if Term 6, which accounts for dynamic effects, is rel-
atively small compared to other terms, the influence of this term in obtaining DSIFs becomes significant as
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the domain size increases. Therefore, this term must be taken into account to satisfy domain independence
and to obtain correct DSIFs for dynamic problems.
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Dilatational waves reach the boundary of larger domains earlier than the boundary of small domains.
We now investigate initiation times of individual terms for different domain sizes. Fig. 15 shows the con-
tribution of each term for the three contours. Because contour 1 is very small, the difference between the
initiation time for each term and for the total DSIF is small (see Fig. 15(a)). However, for the larger con-
tours 2 and 3 (see Fig. 15(b) and (c), respectively), it is clearly observed that Terms 1 and 6 initiate earlier
than the total DSIF. Moreover, Terms 1 and 6 initiate earlier, as domain size increases, as shown in Figs. 17
and 16, respectively. However, the change of initiation time for the different domain sizes is not pronounced
for Terms 2 and 3 (see Fig. 15). Notice that even if a few terms initiate earlier as the domain size increases,
the initiation time of the total DSIF is independent of domain size, demonstrating domain independence
(see Fig. 11).

6.2. Non-homogeneous CCT specimen

Dynamic fracture behavior of a homogeneous CCT specimen is examined thoroughly in Section 6.1. In
this section, various material profiles are adopted to investigate fracture behavior in a non-homogeneous
specimen. First, domain independence of DSIFs for non-homogeneous material is verified. Then, behavior
of DSIFs at the right and left crack tips is explored.

Young�s modulus and mass density vary exponentially, such that E/q � constant, as given by
E ¼ EH expðb1xþ b2yÞ; ð59Þ
q ¼ qH expðb1xþ b2yÞ; ð60Þ
where EH and qH are Young�s modulus and mass density for homogeneous materials and b1 and b2 are non-
homogeneity parameters along the x- and y-directions, respectively. When b1 and b2 are equal to zero, Eqs.
(59) and (60) reflect homogeneous materials. A constant Poisson ratio of 0.3 is used. Plane strain elements
with 3 · 3 Gauss quadrature and consistent mass matrices are adopted for the bulk elements. A time step is
Dt = 0.1 ls. The geometry and the boundary conditions are identical to those of homogeneous specimen
analyzed in Section 6.1.1. Notice again that no other boundary conditions are prescribed except for the
external loading.

6.2.1. Domain independence for non-homogeneous materials

In this section, domain independence of the M-integral for non-homogeneous materials is demonstrated
numerically. In order to employ severe material gradations, relatively high b values are chosen: b1 = 0.1 and
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b2 = 0.1. Material properties vary simultaneously along both the x- and y-directions according to coordi-
nate system shown in Fig. 9(a).

Fig. 18 shows DSIFs at the right crack tip for the same contours used in the homogeneous specimen (see
Fig. 9(d)). The abscissa and ordinate are normalized by the homogeneous material constants, given by the
dilatational wave speed of 7.34 mm/ls in Eq. (47) and the SIF in Eq. (50), respectively. Even with high
material gradation, the normalized KII(t) is relatively small for this loading and geometry. The numerical
results for the three different contours shown in Fig. 18 are identical, demonstrating domain independence
for non-homogeneous materials.

6.2.2. Exponentially graded materials in the y-direction

In this section, we consider material properties that vary along the y-direction. The material gradation
parameter b1 is set to 0.0, and b2 is chosen as 0.0, 0.05 and 0.1. Since material properties vary along the y-
direction, the material properties are the same at both crack tips. The ratios of material properties between
the bottom and top edges are 1.0, 7.4 and 54.6, which correspond to b1 = 0.0, 0.05, and 0.1, respectively.

Fig. 19 shows mixed mode DSIFs at the right crack tip. The contour 3 shown in Fig. 9(d) is used to eval-
uate the M-integral. The abscissa indicates time normalized with respect to the homogeneous dilatational
wave speed of 7.34 mm/ls in Eq. (47) and the ordinate indicates the DSIFs normalized as the homogeneous
analytical SIF in Eq. (50). Since material gradations vary along the y-direction, KI(t) is identical at both
crack tips, while the magnitude of KII(t) at the left crack tip is equal in magnitude and opposite in sign
to the value at the right crack tip. The initiation time at both crack tips remains the same for all cases
of material gradations because the same exponential function describes Young�s modulus and mass density.
Values of KII(t), induced by material gradients, are more significant with increasing b, whereas the maxi-
mum magnitude of KI(t) is relatively insensitive to b. Nevertheless, the magnitude of KII(t) is relatively small
compared to that of KI(t).

6.3. Rectangular plate with an inclined crack

Chen and Wilkins (1976) studied the problem of a rectangular plate with an inclined crack using the
FDM and obtained results which have been questioned by several researchers. Murti and Valliappan
(1986) investigated this problem using QPEs with the FEM. Dominguez and Gallego (1992), Fedelinski
et al. (1994), and Sladek et al. (1999) investigated this problem using the BEM. Krysl and Belytschko
(1999) and Tabiei and Wu (2003) explored the problem with the 3D EFG and the 3D FEM, respectively.
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Consider an inclined crack of length 2a = 14.14 mm in a rectangular plate of width 2W = 30 mm and
height 2H = 60 mm, as shown in Fig. 20(a). Fig. 20(b) and (c) illustrate the mesh for the whole geometry,
and the four contours employed at each crack tip. The entire mesh consists of 206 Q8 and 198 T6 elements.
Contour 1 includes only 8 T6 elements, contour 2 encloses 8 T6 and 24 Q8 elements, contour 3 contains 31
T6 and 24 Q8 elements, and contour 4 has 77 T6 and 26 Q8 elements. To obtain a reasonable mesh reso-
lution near the crack tips, 4 rings and 8 sectors of elements are used. The external force, p(t), is applied
instantaneously to both the top and bottom edges with a step function (see Fig. 10). No other boundary
conditions are prescribed.

For the non-homogeneous case, Young�s modulus and mass density vary exponentially along the x- and
y-directions, such that E/q � constant, according to
E ¼ EH expðb1xþ b2yÞ; ð61Þ
q ¼ qH expðb1xþ b2yÞ; ð62Þ
where EH and qH are Young�s modulus and mass density for homogeneous material, and b1 and b2 are the
material non-homogeneity parameters that describe material gradation. When b1 and b2 equal zero,
homogeneous material properties are recovered. A constant Poisson�s ratio of 0.3 is employed. Plane strain
elements with 3 · 3 Gauss quadrature are used. A time step is Dt = 0.1 ls.



Fig. 20. Rectangular plate with an inclined crack: (a) geometry and boundary conditions; (b) mesh configuration for whole geometry;
(c) domain contours.
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In this section, we compare the present numerical results with current available reference solutions for
homogeneous materials. Then, material gradations which vary along the x-direction are adopted to
investigate dynamic fracture behavior in terms of DSIFs for non-homogeneous materials. The influence
of domain sizes and the contribution of each term in the M-integral are explored.
6.3.1. Homogeneous rectangular plate

Here, the present numerical results are compared with available reference solutions for the homogeneous
material case. With parameters b1 and b2 set to zero, the following homogeneous material properties are
employed:
E ¼ 199:992 GPa; q ¼ 5000 kg=m3; m ¼ 0:3. ð63Þ
The corresponding wave speeds are given by Eqs. (47)–(49).
Fig. 21 shows a comparison between the present numerical results and the reference solutions by

Fedelinski et al. (1994) who used a time-domain BEM, Dominguez and Gallego (1992) who used the dual
BEM with the bJ integral, and Murti and Valliappan (1986) who used FEM with QPEs. The abscissa indi-
cates time. The ordinate indicates the DSIF normalized with respect to Ks given by Eq. (50).
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The reference results plotted here are obtained from graphical data using special-purpose software. Up
to 10 ls, the difference between the results is not significant. After that time, the discrepancy among the
results becomes greater when the influence of reflected waves becomes significant. This implies that the var-
ious numerical schemes differently predict the transient fracture response which is highly influenced by
propagating waves reflected from the boundary and crack surfaces. Up to 10 ls, the present results match
well with the solution by Dominguez and Gallego (1992), and afterwards, the present results are within the
range of the other solutions. Moreover, the present results show more oscillations (small amplitude) than
the other solutions.

6.3.2. Exponentially graded materials in the x-direction

Material properties varying along the x-direction are employed to investigate DSIFs for non-homoge-
neous materials. The material gradation parameter b1 is chosen as 0.0, 0.05, 0.1 and 0.15, and b2 is set
to zero. The ratio of material properties at the left and right boundaries ranges from 1.0 to 90.0. Although
this high material ratio, i.e., 90, is not realistic, such high material gradation is adopted in order to clearly
observe the influence of different material profiles on the variation of DSIFs.

Fig. 22 illustrates the variation of mixed mode DSIFs at the left and right crack tip locations. The ordinate
indicates normalized DSIFs and the abscissa indicates time up to 20 ls. Both crack tips have the same initi-
ation time for the different material gradations because Young�s modulus and mass density follow the same
exponential function. As the parameter b1 increases, the magnitude of KI(t) at the right crack tip increases. At
the left crack tip, up to around 15 ls, the magnitude of KI(t) is larger for smaller values of b1 and after that
time, the magnitude of KI(t) becomes smaller for smaller values of b1. For KII(t), as b1 increases, the absolute
magnitude of KII(t) at both crack tips first decreases and then increases. Moreover, the absolute value of max-
imum KI(t) at the right crack tip is higher than that at the left crack tip as b1 increases. This behavior is
reasonable because the material property values at the right crack tip are higher than those at the left crack
tip.

6.3.3. Discussion of M-integral terms for non-homogeneous materials

In Section 6.1.6, the contribution of each term was explored thoroughly for homogeneous materials. To
account for material non-homogeneity in the current specimen, the M-integral includes Terms 4 and 5. In
this section, we examine the influence of each term of the M-integral. Also, we discuss the influence of
domain size on the magnitude of Terms 4, 5 and 6, which account for material non-homogeneity and
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dynamic effects. The four different contours illustrated in Fig. 20(c) are used. The value of b1 is chosen as
0.1 and b2 is chosen as zero, i.e., (b1,b2) = (0.1,0.0). The element type, numerical schemes and time step are
the same as in the homogeneous case for this specimen.

Fig. 23 shows the contribution of individual terms to normalized DSIFs, KI(t)/Ks and KII(t)/Ks where Ks

is given by Eq. (50), versus time at both the right and left crack-tip locations for the four different contours.
The different terms are given by Eqs. (53)–(58). For contour 1, Terms 4 and 5, representing non-homoge-
neous material effects, and Term 6, accounting for dynamic effects, are small. This shows numerically that
the influence of inertia and material non-homogeneity on DSIFs is almost negligible very near the crack tip.
Overall, the trend and contribution of Terms 1 and 2 are similar for all contours. During the time period up
to 20 ls, Terms 1, 2, 3 and 5 are positive, Term 4 is negative, and Term 6 oscillates. Notice that even though
the contribution of each term varies for different contours, the total K is the same for each contour, dem-
onstrating domain independence. We now discuss two important observations: (1) The effects of domain
size on non-homogeneous and dynamic terms; (2) the relationship between initiation time and domain size.

Fig. 24(a)–(c), respectively, illustrate the contribution of Terms 4, 5 and 6 for different domain sizes. As
we increase the domain size from contour 1 to contour 4, the contribution of Terms 4 and 5, which account
for material non-homogeneity, increases and Term 6, which represents dynamic effects, increases in mag-
nitude as well. Therefore, if we neglect these terms in evaluating the M-integral for non-homogeneous
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cracked specimen under dynamic loadings, domain independence is violated and accuracy worsens as the
domain size increases.

Fig. 25(a) and (b) shows the initiation time of each term for contours 1 and 4, respectively. For both
figures, the abscissa indicates time from 1.5 ls to 3.5 ls and the ordinate indicates normalized KI(t). For
contour 1, each term and the total DSIF initiate at the same time denoted by T in Fig. 25(a). For contour
4, however, the initiation time of Terms 1, 2, 3 and 6, T1 in Fig. 25(b), is less than that of total DSIF, i.e., T.
It is reasonable because waves reach the boundary of larger domains earlier than the boundary of small
domains. On the contrary, initiation time T of Terms 4 and 5 and total DSIF are almost identical. Notice
that even though a few terms initiate early, the initiation time of the total DSIF for different contours is the
same satisfying domain independence.

6.4. Rectangular plate with cracks emanating from a circular hole

Fedelinski et al. (1994) used the dual BEM and bJ integral to determine DSIFs in a rectangular plate with
cracks emanating from a circular hole. A decomposition procedure was employed for mode mixity. Various
angles which range from 0� to 60� were adopted to investigate fracture behavior in terms of the variation of
DSIFs. In this study, crack angles of 30� are chosen to investigate the influence of material gradation on
DSIFs for non-homogeneous materials.
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Fig. 26(a) illustrates a rectangular finite plate with a width 2W = 30 mm and a height 2H = 60 mm con-
taining a hole of radius r = 3.75 mm. Two cracks extend from the hole, and the length between the two
crack tips is 15 mm. The cracks are inclined at 30� clockwise from horizontal. Fig. 26(b)–(d) shows the mesh
configurations for the whole geometry, and mesh detail for near the hole and the crack tips. A crack tip
template of 12 sectors and 4 rings of elements provide sufficient mesh refinement around the crack tip re-
gions, which is crucial to obtain reliable numerical results. Step loading, which is illustrated in Fig. 10, is
applied to both the top and bottom edges. In this mesh, 1350 Q8 and 204 T6 plane strain elements are used
with 3 · 3 Gauss quadrature. A time step is Dt = 0.1 ls.

6.4.1. Homogeneous plate

A comparison between the present numerical results and a reference solution is carried out. For the
homogeneous plate, the material properties described in Section 6.3.1 are used. The corresponding wave
speeds are given by Eqs. (47)–(49).

Fig. 27 shows the comparison between present numerical results at the right crack tip and the solutions
by Fedelinski et al. (1994). The reference results plotted here are obtained from graphical data using
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special-purpose software. The abscissa indicates time up to 20 ls. The DSIFs are normalized by Ks given in
Eq. (50). The values of KII(t) in Fedelinski et al. (1994) are positive, while the present numerical values of
KII(t) are negative up to around 18 ls in Fig. 27. This might be due to different sign convention in shear.
The same magnitude but opposite sign of the KII(t) in the reference solution is compared with the present
numerical values of KII(t). Greater but acceptable difference is found for KI(t) values than for KII(t) values.
Table 3
Material properties and dilatational wave speed along the left and right edges

Young�s modulus (MPa) Mass density (kg/m3) Longitudinal wave speed (mm/ls)

Left edge 3811 948 2.33
Right edge 11,130 1812 2.88
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Fig. 28. Normalized mixed-mode DSIFs at both the left and right crack tips for non-homogeneous materials.
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The difference may be due to different numerical schemes, different domain discretization, and different con-
servation integrals; bJ integral and M-integral. Overall, the present numerical results agree well with this
reference solution.

6.4.2. Non-homogeneous plate
In this example, real non-homogeneous material properties prepared by Rousseau and Tippur (2001) are

adopted here to investigate fracture behavior. They prepared three point bending specimens made of epoxy
and solid soda-lime glass spheres. The material properties of the current specimen possess the values pro-
vided in Rousseau and Tippur (2001) and assume linear variation of material properties in the x-direction,
which is described by
EðxÞ ¼ ð244xþ 7471Þ ðMPaÞ; ð64Þ
qðxÞ ¼ ð28:8xþ 1380Þ ðkg=m3Þ. ð65Þ
A constant Poisson�s ratio of 0.3 is used. Table 3 shows material properties and the corresponding dilata-
tional wave speed along the left edge and the right edge. Notice that the longitudinal wave speed is different
at each location due to the different variation between Young�s modulus and mass density.

Normalized mixed-mode DSIFs at both the right and left crack tip locations are plotted versus time in
Fig. 28. The ordinate indicates DSIFs normalized by Ks (see Eq. (50)) and the abscissa is time up to 40 ls.
Since initiation time of DSIFs depends on the dilatational wave speed, first the DSIFs at the right crack tip
initiate, and then, the DSIFs at the left crack tip initiate as shown in Fig. 28. At any given time of the tran-
sient response, the magnitude of KI(t) at the right crack tip is higher than that at the left crack tip for the
non-homogeneous case. This is due to the fact that the values of material properties at the right crack tip
are higher than those at the left crack tip.
7. Conclusion

Dynamic fracture behavior for both homogeneous and non-homogeneous materials is examined thor-
oughly in this study. The M-integral is superior to the DCT in terms of accuracy, and unlike the standard
J-integral, it yields mixed-mode SIFs directly. Thus, the M-integral is extended to incorporate the material
non-homogeneity and dynamic effects. Notice that Williams� solution (1957) is employed as dynamic auxil-
iary fields because the asymptotic singular stress fields in non-homogeneous materials under dynamic condi-
tion are shown to have similar behaviors with those in homogeneous materials under quasi-static condition
(Eischen, 1987; Freund, 1998; Freund and Clifton, 1974; Nilsson, 1974; Parameswaran and Shukla, 1999).
The non-equilibrium formulation of the M-integral is employed here to evaluate SIFs for both static and dy-
namic cases. The research code, which has been developed using the implicit time scheme and the M-integral
with graded elements by means of the GIF (Kim and Paulino, 2002a), is verified using benchmark problems.
Using the verified code, fracture problems are presented and discussed. In non-homogeneous media, varia-
tion of DSIFs is hard to be generalized because it is highly dependent upon geometry, material gradation and
boundary conditions. However, as seen in the previous examples, e.g., Fig. 22, the magnitude of DSIFs at the
crack tip located in the stiffer part increases overall, as material gradation increases, i.e., b increases.

The major contributions of this study can be summarized as follows:

• The M-integral based on the non-equilibrium formulation is derived to account for material non-homo-
geneity and dynamic effects.

• The mode I and mixed mode DSIFs for both homogeneous and non-homogeneous materials are eval-
uated using the M-integral.
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• The domain independence of the M-integral is assessed numerically for both homogeneous and non-
homogeneous materials under dynamic loading.

• Fracture behavior is investigated thoroughly for homogeneous and non-homogeneous materials under
dynamic loading, including the influence of material gradation on variations of DSIFs, the relation
between initiation time and the domain size, and the contribution of each distinct term in the M-integral.
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Appendix A. Numerical implementation details

The displacement field of Williams� (1957) solution can be rewritten as
u‘ðr; hÞaux
i ¼ Kaux

I

ltip

gI
i ðr; hÞ þ

Kaux
II

ltip

gII
i ðr; hÞ ði ¼ 1; 2Þ; ð66Þ
where superscript ‘ means local coordinate. The derivatives of auxiliary displacements with respect to the
global coordinate systems are calculated as follows (k = 1,2):
ugðr; hÞaux
i;k ¼

ougðr; hÞaux
i

oX k
¼ ougðr; hÞaux

i

or
or

oX k
þ ougðr; hÞaux

i

oh
oh
oX k

; ð67Þ
where
ugðr; hÞaux
1

ugðr; hÞaux
2

� �
¼

cos a � sin a

sin a cos a

	 

u‘ðr; hÞaux

1

u‘ðr; hÞaux
2

( )
ð68Þ
and
or
oX k
¼ or

ox1

ox1

oX k
þ or

ox2

ox2

oX k
;

oh
oX k
¼ oh

ox1

ox1

oX k
þ oh

ox2

ox2

oX k
; ð69Þ
with
or=ox1 ¼ cos h; or=ox2 ¼ sin h;

oh=ox1 ¼ � sin h=r; oh=ox2 ¼ cos h=r;

ox1=oX 1 ¼ cos a; ox1=oX 2 ¼ sin a;

ox2=oX 1 ¼ � sin a; ox2=oX 2 ¼ cos a.

ð70Þ
As illustrated in Fig. 4, a is the angle between global and local coordinates, r is the radial distance, and h is
the angle between local and the point where field quantities are obtained. Notice that (x1,x2) and (X1,X2)
indicate local and global coordinates, respectively.

Due to the non-equilibrium formulation, the auxiliary strain field is obtained using the compatibility
condition as
egðr; hÞaux
ij ¼

1

2
ðugðr; hÞaux

i;j þ ugðr; hÞaux
j;i Þ; ð71Þ
where ug(r,h)i,j is obtained using Eq. (66).
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The auxiliary stress is evaluated using the constitutive relationship
rgðr; hÞaux
ij ¼ CijklðxÞegðr; hÞaux

kl . ð72Þ
The material properties used in the constitutive tensor are computed using the isoparametric formulation
(Kim and Paulino, 2002a).

The derivative of the auxiliary stress is given by
ðrgðr; hÞaux
ij Þ;j ¼ ðCijklðxÞegðr; hÞaux

kl Þ;j ¼ Cijkl;je
gðr; hÞaux

kl þ Cijkle
gðr; hÞaux

kl;j ; ð73Þ
where the derivative of auxiliary fields with respect to global coordinates, egðr; hÞaux
kl;j , is evaluated as

follows:
egðr; hÞaux
ij;k ¼

oegðr; hÞaux
ij

oX k
¼

oegðr; hÞaux
ij

or
or

oX k
þ

oegðr; hÞaux
ij

oh
oh
oX k

. ð74Þ
In computing Eq. (74), the Eqs. (69) and (70) are used.
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