
Abstract Natural fibers are promising for engineer-

ing applications due to their low cost. They are

abundantly available in tropical and subtropical

regions of the world, and they can be employed as

construction materials. Among natural fibers, bamboo

has been widely used for housing construction around

the world. Bamboo is an optimized composite that

exploits the concept of Functionally Graded Material

(FGM). Biological structures such as bamboo have

complicated microstructural shapes and material

distribution, and thus the use of numerical methods

such as the finite element method, and multiscale

methods such as homogenization, can help to further

understanding of the mechanical behavior of these

materials. The objective of this work is to explore

techniques such as the finite element method and

homogenization to investigate the structural behavior

of bamboo. The finite element formulation uses gra-

ded finite elements to capture the varying material

distribution through the bamboo wall. To observe

bamboo behavior under applied loads, simulations are

conducted under multiple considerations such as

a spatially varying Young’s modulus, an averaged

Young’s modulus, and orthotropic constitutive

properties obtained from homogenization theory. The

homogenization procedure uses effective, axisymmet-

ric properties estimated from the spatially varying

bamboo composite. Three-dimensional models of

bamboo cells were built and simulated under tension,

torsion, and bending load cases.

Introduction

Biological systems such as plant and tree stems, animal

bones and other biological hard tissues tend to be

optimized for the loading conditions they are subjected

to. Their geometry changes with loading conditions to

match stress- or strain-dependent requirements, and

their material properties are also optimally distributed.

For example, the interior structure of bone changes

depending on the principal stress directions and the

magnitude of shear stress they carry [1].

Biological structures are usually made of composite

materials which are multifunctional and have living

organisms which provides adaptability. This occurs due

to the fact that biological systems must be able to

perform a variety of functions well, and thus, they are

optimized for multifunctional purposes. As a conse-

quence, biological structures are complicated and non-

uniform, which makes their realistic modeling difficult

and involved.

Among biological structures, the natural fibers are

very interesting for engineering applications due to

their low cost and convenient availability. They grow

abundantly in tropical and subtropical regions of the

world, and they can be usefully employed as con-

E. C. N. Silva
Department of Mechatronics and Mechanical Systems
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struction materials [2–4]. Examples of natural fibers

are bamboo, coconut fibers, sisal, etc. Among the

natural fibers, bamboo finds widespread use in housing

construction around the world, and is considered as a

promising housing material in underdeveloped and

developed countries. Recently, some studies investi-

gating composites made of bamboo and concrete [5]

and bamboo and polymer [6, 7] have been conducted.

Bamboo is a tree-like plant (see Fig. 1(a)) that

belongs to the subfamily Bambusoideae of the grass

family Poaceae. Bamboo stalks are optimized com-

posite materials that naturally exploit the concept of

Functionally Graded Materials (FGMs) [1, 9–13]. Such

materials possess continuously graded properties and

are characterized by spatially varying microstructures

created by non-uniform distributions of the constitu-

ent phases. In these materials, the role of reinforce-

ment and matrix (base) material interchanges in a

continuous manner [14]. The smooth variation of

properties may offer advantages such as reduction of

stress concentration and increased bonding strength

[15, 16].

The bamboo culm is an approximately cylindrical

shell that is divided periodically by transversal dia-

phragms at nodes. Between 20% and 30% of the cross-

sectional area of the culm is made of longitudinal fibers

that are distributed non-uniformly through the wall

thickness, the concentration being most dense near the

exterior (see Fig. 1(b)). The orientation of these fibers

makes bamboo an orthotropic material with high

strength along, and low strength transversal to fibers [5,

17, 18].

Most work in the literature that characterizes

bamboo is experimental, dedicated to estimating

strength and stiffness properties [17–23]. Few works

treating the modeling of natural fibers have been

found in the literature [24, 25], and these deal pri-

marily with simplified analytical models. In these

studies, comprehensive experimental characterization

of certain species of bamboo were performed by

measuring strength, Young’s modulus of matrix and

fiber, and through analysis of microstructures and fi-

ber distribution [1, 9, 10, 25]. Bamboo exhibits a

piezoelectric effect, also existing in bone, that helps

the bamboo to control the modeling/remodeling of its

microstructure based on external mechanical stimuli.

This behavior makes it a self-optimizing system with

natural sensing mechanisms [1].

Fig. 1 (a) Bamboo stalks; (b)
Cross section of culm showing
radial distribution of fibers
through the thickness (photo
courtesy of [8])
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Nogata and Takahashi [1] have provided an ana-

lytical model for bamboo mechanical behavior based

on composite beam theory. Another analytical model

based on the solution of the Laplace equation has been

applied by Amada and Terauchi [24] to find the max-

imum shear stress in the triangular section of a hemp

palm tree when subjected to torsional loads. Hemp

palm and bamboo have a very similar structural

behavior, as both have a dense distribution of fibers

near the exterior of the stem.

Considering that biological structures, such as

bamboo, have complicated shapes and material distri-

bution inside their domain, the use of numerical

methods such as the finite element method (FEM) [26,

27] can be a useful tool for understanding the

mechanical behavior of these materials. Also, since

natural fibers in general make a composite material

with an identifiable microstructure, multiscale meth-

ods, such as homogenization [28], can be applied to

estimate how the microstructure influences the effec-

tive properties of these materials. The objective of this

work is to explore computational techniques including

the FEM and a multi-scale method based on homog-

enization, to investigate the structural behavior of

bamboo. First, the finite element formulation em-

ployed herein uses the so-called graded finite elements

(e.g., [29, 30]) which capture the influence of spatially

varying material properties by means of a generalized

isoparametric formulation (GIF). The traditional FEM

approach approximates material gradation using con-

stant properties in each element, leading to a less

accurate simulation of FGM behavior. Second, the

multi-scale method employed here is based on the

homogenization method, which enables the computa-

tion of effective properties of a composite material.

With these properties, it is possible to model the

composite structure as an equivalent homogeneous

medium, allowing the use of traditional FEM codes or

simple analytical models for numerical modeling. A

third set of simulations employs a homogeneous,

averaged value of Young’s modulus, allowing

comparisons and demonstrating the limitations of

simplified procedures.

The remainder of this study is organized as follows.

In Section 2, the theoretical formulation of graded

finite elements is briefly described. In Section 3, the

homogenization theory for axisymmetric FGM com-

posite materials is developed. In Section 4, some rep-

resentative results from tension, torsion and bending

analyses are presented to illustrate the difference

between the numerical approaches, and to observe the

mechanical behavior of bamboo. Finally, in Section 5,

concluding remarks complete the present work.

Modeling bamboo with graded finite elements

When modeling a functionally graded material using

the FEM, the continuous variation of material prop-

erties within the domain must be accounted for. In the

traditional finite element formulation [26], the prop-

erties are assumed to be constant inside each element.

To model an FGM using this traditional formulation, a

continuous material distribution is approximated by

piecewise-constant elements. This generates an artifi-

cially discontinuous stress field, however, which may

not adequately simulate the actual conditions. An

FEM formulation better-suited for FGMs employs

graded elements that incorporate actual material

properties at integration points [30]. For graded ele-

ments, the element stiffness matrix, ke, is given by (e.g.,

[26, 27])

ke ¼
Z

Xe

Beð ÞTEeðxÞBedXe; ð1Þ

in which We is the domain of element e, Be is the ele-

ment strain-displacement matrix, EeðxÞ is the matrix of

constitutive properties and T denotes the matrix

transpose. The spatial coordinate x ¼ ðx; yÞ is interpo-

lated using finite-element nodal shape functions, NI,

corresponding to element node I:

x ¼
Xm

I¼1

NIxI ; y ¼
Xm

I¼1

NIyI ; ð2Þ

where m is the number of element nodes. Thus, if the

material variation is known, Eq. (1) can be evaluated

numerically at each integration point using values of

E(x,y) and m(x,y) in EeðxÞ: Evaluation of material

properties at integration points in a finite element is

illustrated in Fig. 2. Gaussian integration of Eq. (1) in

parent coordinates n and g for a two-dimensional (2-D)

element is thus expressed as:

ke¼
Z 1

�1

Z 1

�1

Beð ÞTEe n;gð ÞBedetJdndg

ffi
Xng

i¼1

Xng

j¼1

wiwj Be ni;gj

� �� �T

Ee ni;gj

� �
Be ni;gj

� �

detJ ni;gj

� �
;

ð3Þ

where ng is the number of Gaussian integration points

in each parent coordinate, wi is the weight

corresponding to integration point i, and det J is the

determinant of the coordinate Jacobian. This proce-

dure using graded elements incorporates continuous

material distribution into the numerical simulation,
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and leads to smoothly varying and more accurate

stresses [30].

Homogenization theory for functionally graded

axisymmetric composites

The combination of two or more materials in a com-

posite ideally leads to substantial advantages in per-

formance over that offered by individual constituents.

By altering the volume fraction of the constituents, the

shape of inclusions, or even the topology of the peri-

odic microstructure, it is possible to obtain different

effective properties for the composite material. A

periodic composite material is a composite whose

microstructure exhibits a periodic repetition of a rep-

resentative substructure called a unit cell [31, 32]. A

recent micromechanics model considering the effects

of particle interaction and material gradients has been

presented by Yin et al. [33].

The homogenization method enables the estimation

of effective properties of a complex periodic composite

material with a known unit-cell topology. It is a general

method for computing effective properties and has no

limitations regarding volume fraction or shape of the

composite constituents. The primary assumptions are

that the unit cell is periodic and that the scale of the

composite part is much larger than the microstructure

dimensions [28, 34]. An important consideration that

arises when computing effective properties of com-

posite materials is the effect of the specimen scale with

respect to the scale of the unit cell. A direct approach

to obtain the effective properties of a composite

material is to subject a specimen to simple loads such

as tension, compression, torsion, and then estimate the

effective properties from measured or imposed dis-

placements [33]. This process can be performed either

experimentally or using numerical (e.g., FEM)

simulations [31]. However, if the specimen size is not

large enough in relation to the unit cell dimensions, the

estimated properties will be influenced by ‘‘size

effect.’’ That is, the boundary conditions of the speci-

men will interfere with the behavior of the unit cell,

and the measured or computed properties will be

subsequently affected. Homogenization theory, as

developed in this work, eliminates this problem by

decoupling the unit cell behavior from the specimen

behavior. Bamboo can be considered an axisymmetric

composite material. Thus, homogenization theory for

axisymmetric composite materials will be described.

Theoretical formulation

An axisymmetric composite and its corresponding 2-D

unit cell is illustrated in Fig. 3. Considering the stan-

dard homogenization procedure for elastic materials

[34], the unit cell is defined as Y ¼ ½0;Y1� � ½0;Y2� and

the elastic property function Eijkl is considered to be a

Y-periodic function:

EeðxÞ¼Eðx;yÞ¼

E11ðx;yÞE12ðx;yÞE13ðx;yÞ 0
E12ðx;yÞE22ðx;yÞE23ðx;yÞ 0
E13ðx;yÞE23ðx;yÞE33ðx;yÞ 0

0 0 0 E44ðx;yÞ

2
664

3
775;

ð4Þ

Eeðx; yÞ ¼ Eðx; yþYÞ; and y ¼ x=e; ð5Þ

where e >0 is the composite microstructure scale that

represents the scale in which the material properties

are changing. Coordinates x ¼ ðr; zÞ and y ¼ ðs;wÞ
are associated with the composite macro- and

micro-dimensions, respectively (see Fig. 3). The first

step in the homogenization procedure is to expand the

displacement u inside the unit cell as [28]

θz

r

oo

unit cell

z

r

s

w

oo

oo

oo

Fig. 3 An axisymmetric composite and its corresponding unit
cell

finite element

P(x,y)

y

z

x

Fig. 2 Determination of material properties P(x,y) at integra-
tion points of a graded finite element (generalized isoparametric
formulation, or GIF [30])
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ue ¼ ue
r ue

z

� �T¼ u0ðxÞ þ eu1ðx; yÞ; ð6Þ

where only the first-order variation terms ( u1ðx; yÞ) are

taken into account, and u1 is Y-periodic. Displace-

ments u0ðxÞ and u1ðx; yÞ correspond to the composite

specimen scale and the unit cell scales, respectively [28,

34]. Notice that u0ðxÞ depends only on the composite

specimen (macro) coordinates x, and u1ðx; yÞ depends

on the macro coordinates and the unit cell (micro)

coordinates y. When bamboo is subjected to axisym-

metric loading, it can be modeled as a fully axisym-

metric composite. In this study, we will use this

assumption, and therefore employ cylindrical coordi-

nates. The strain is then written as [26]

ee ¼ @xue ¼ @ue
r

@r
ue

r

r

@ue
z

@z

@ue
z

@r þ
@ue

r

@z

n oT

¼ @xu0 xð Þ þ e@xu1 x; yð Þ þ @yu1 x; yð Þ

¼ @u0
r

@r
u0

r

r

@u0
z

@z

@u0
z

@r þ
@u0

r

@z

n oT

þ e @u1
r

@r
u1

r

r

@u1
z

@z

@u1
z

@r þ
@u1

r

@z

n oT

þ @u1
r

@s 0
@u1

z

@w

@u1
z

@s þ
@u1

r

@w

n oT

;

ð7Þ

where the chain rule was applied for the @yu1 x; yð Þ
term. Equations (6) and (7), and properties described

by (5) must be substituted into the energy functional

for the elastic medium, and the variation of this func-

tional taken with respect to ue. Passing to the limit

e fi 0, one obtains [28]

lim
e!0

Z
X

U x;
x

e

� �
dX ¼ 1

Yj j

Z
X

Z
Y

U x;
x

e

� �
dYdX; ð8Þ

where U x; x
e

� �
represents an arbitrary function. After

taking the limit e fi 0, only the terms @xu0 xð Þ (and

du0ðxÞ) and @yu1 x; yð Þ (and du1ðx; yÞ) will be present in

the equations. The term @xu0 xð Þ (and du0ðxÞ) denotes

the overall strain in the composite specimen, and the

term @yu1 x; yð Þ (and du1ðx; yÞ) denotes the unit cell

strain. Notice that from Eq. (7), the strain @yu1 x; yð Þ
(and du1ðx; yÞ) does not have a hoop strain term, which

means that the unit cell behavior can be treated simply

as a plane-strain behavior. This is reasonable because

the unit cell behavior should be defined only by the

microscale. In addition, notice that Eq. (8) separates

the integration over the unit cell domain and the

composite specimen domain. This means that we do

not need to perform the integration in a coordinate

system that coincides with that used to define the

composite body (e.g., cylindrical). Since the unit cell

has a plane strain behavior, it is more convenient to

define y in a cartesian coordinate system, as illustrated

in Fig. 3.

By considering the terms involving du1ðx; yÞ and

du0ðxÞ, we obtain distinct microscopic and macroscopic

equations, respectively. Due to the linearity of the

problem, and assuming the separation of variables for

u1ðx; yÞ, we obtain [28]:

u1 ¼
u1

r

u1
z

( )
¼ v x; yð Þe u0ðxÞð Þ ¼

v11
r v11

z

v22
r v22

z

v33
r v33

z

v44
r v44

z

8>>><
>>>:

9>>>=
>>>;

T

@u0
r

@r

u0
r

r

@u0
z

@z

@u0
z

@r þ
@u0

r

@z

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

ð9Þ

and

@yu1 x; yð Þ ¼ @u1
r

@s 0
@u1

z

@w

@u1
z

@s þ
@u1

r

@w

n oT

¼ @yv x; yð Þ@x u0ðxÞð Þ

¼

@v11
r

@s 0
@v11

z

@w

@v11
z

@s þ
@v11

r

@w

@v22
r

@s 0
@v22

z

@w

@v22
z

@s þ
@v22

r

@w

@v33
r

@s 0
@v33

z

@w

@v33
z

@s þ
@v33

r

@w

@v44
r

@s 0
@v44

z

@w

@v44
z

@s þ
@v44

r

@w

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

T @u0
r

@r

u0
r

r

@u0
z

@z

@u0
z

@r þ
@u0

r

@z

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

ð10Þ

where v x; yð Þ is the characteristic displacement of the

unit cell, which is also Y-periodic, belonging to Hper

(Y,R3):

HperðY;R3Þ ¼ v ¼ ðviÞ vij 2 HperðYÞ; i ¼ 1; 2; 3
� �

HperðYÞ ¼ v 2 H1ðYÞ v takes equal valuesj
�

on opposite sides of Y:g; ð11Þ

which corresponds to the periodicity condition in the

unit cell, as illustrated in Fig. 4. Then, substituting Eq.

(10) into the unit-cell (microscopic) equations, we

obtain [34]

1

Yj j

Z
Y

Iþ @yv x; yð Þ
� �

: E x; yð Þ : @ydu1ðx; yÞ
� �

dY ¼ 0;

8du1 2 HperðY;R3Þ;
ð12Þ

or in index notation:
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1

Yj j

Z
Y

Eijkl x; yð Þ dimdjn þ
@vðmnÞ

i

@yj

 !
ekl vð ÞdY ¼ 0;

8v 2 HperðY;R3Þ:
ð13Þ

Substituting Eq. (10) into the specimen (macro-

scopic) equations, the definition of the effective prop-

erties can be obtained [34]:

EH ¼ 1

Yj j

Z
Y

E x; yð Þ : Iþ @yv x; yð Þ
� �� �

dY: ð14Þ

By using Eq. (12), Eq. (14) becomes

EH ¼ 1

jYj

Z
Y

½ðIþ @yvðx;yÞÞ : Eðx;yÞ : ðIþ @yvðx;yÞÞ�dY;

ð15Þ

or in index notation:

EH
rspq xð Þ ¼ 1

Yj j

Z
Y

Eijkl x; yð Þ dipdjq þ
@vðpqÞ

i

@yj

 !

dkrdls þ
@vðrsÞ

k

@yl

 !
dY;

ð16Þ

where Eijkl
H =Eklij

H =Ejikl
H . Notice that due to the plane-

strain behavior of the unit cell, (that is, the term

@yu1 x; yð Þ has a null hoop strain term), the homogenized

elasticity coefficients E12
H and E22

H will be an average of

the coefficients E12 and E22 inside the unit cell domain.

Thus, we are able to compute the effective properties of

an axisymmetric composite material such as a bamboo.

Numerical implementation

This section presents the numerical implementation of

the above homogenization procedure, and incorporates

the influence of spatially varying material properties.

The expressions in Eq. (13) are evaluated using FEM,

with a unit cell discretized by N finite elements. Thus

Y ¼ [N
n¼1X

e; ð17Þ

where We is the domain of each element. Four-noded

elements with two displacement degrees of freedom

per node and bilinear interpolation functions were

used in the mesh [26]. The characteristic functions

previously defined are interpolated within each ele-

ment using standard shape functions (NI):

vðmnÞ
i ffi

Xnodes

I¼1

NIv
ðmnÞ
iI ; ð18Þ

where nodes is the number of nodes per finite

element (for example, four in the 2-D case). Similar

relations hold for the virtual displacement v. Substi-

tuting Eq. (18) into Eq. (12), and assembling the

individual matrices for each element, we obtain the

following global matrix system for each load case mn

or m [34]:

Kuu½ � bvðmnÞ
n o

¼ FðmnÞ
n o

; ð19Þ

where bv are the corresponding nodal values of the

characteristic function v. The global stiffness is the

assembly (denoted by Ae) of each element’s individual

matrix, and the global force F is the assembly of the

individual force vectors for all elements, i.e.,

Kuu ¼ AN
e¼1Ke

uu; F ¼ AN
e¼1Fe: ð20Þ

The element matrices and vectors are given by the

expressions [34]:

Ke
uuðiIjJÞ¼

Z
Xe

Eipjq
@NI

@yp

@NI

@yq
dXe F

eðmnÞ
iI ¼

Z
Xe

Eijmn
@NI

@yj
dXe:

ð21Þ

Thus, for the 2-D problem, there are three load

cases to be solved independently, as illustrated in

Fig. 5. They come from Eq. (19), where the indices mn

can assume the values 11, 33, or 44. All load cases must

be solved by enforcing periodic displacement boundary

conditions in the unit cell (see Fig. 4). The unit cell

problem is solved in y cartesian coordinates assuming

plane-strain conditions. In addition, because the

domain of the unit cell comprises graded material, as

illustrated in Fig. 6, material property terms must

remain in the integrand during the Gauss quadrature.

Integration of order 2 in each direction (2 · 2 rule) is

Fig. 4 Illustration of periodicity conditions in the unit cell
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applied here to evaluate the integrals in Eqs. (15) and

(21) which yield the effective properties. The dis-

placements of some node in the unit cell mesh must be

prescribed in order to avoid the non-uniqueness of the

problem solution. Without this condition, the FEM

problem is ill-posed. When computing the effective

properties through Eq. (15) assuming axisymmetry, the

hoop strain term in @yv x; yð Þ is set to zero.

Example computations of effective bamboo

properties

To illustrate the homogenization technique, we con-

sider a fictitious axisymmetric, isotropic composite

composed of two basic materials, as illustrated in

Figs. 3 and 6. Accordingly, on the normalized variable

s: let the material variation for the unit cell in this

example be approximated by the periodic expression

E sð Þ ¼ E1 � E2ð Þ cos 2psþ E1 þ E2½ �=2; ð22Þ

where s is the normalized coordinate defined in Fig. 6,

and E1 and E2 are the axisymmetric stiffness tensors

for the two materials. The material stiffness tensors

have components expressed as:

Ei ¼
1� mið ÞEi

1þ mið Þ 1� 2mið Þ

1 mi

1�mi

mi

1�mi
0

mi

1�mi
1 mi

1�mi
0

mi

1�mi

mi

1�mi
1 0

0 0 0 1�2mi

2 1�mið Þ

2
664

3
775: ð23Þ

If, for example, E1=55 GPa, E2=2 GPa, and Pois-

son’s ratio m=0.35, then E1 and E2 are:

E1 ¼

88:27 47:53 47:53 0

47:53 88:27 47:53 0

47:53 47:53 88:27 0

0 0 0 9:81

2
6664

3
7775GPa;

E2 ¼

3:21 1:73 1:73 0

1:73 3:21 1:73 0

1:73 1:73 3:21 0

0 0 0 0:36

2
6664

3
7775GPa:

ð24Þ

In this case the effective orthotropic axisymmetric

elasticity tensor, computed through the homogeniza-

tion procedure described above using a 20 · 20 mesh

of Q4 elements for the unit cell, is:

EH ¼

15:95 6:83 6:83 0
6:83 38:37 12:32 0
6:83 12:32 34:25 0

0 0 0 4:56

2
664

3
775GPa: ð25Þ

The axisymmetric stress-strain relation is then

expressed as

rrr rhh rzz srzf gT¼ EH err ehh ezz crzf gT
;

ð26Þ

for a model where the z-axis is the axis of symmetry,

and the out-of-plane coordinate is the tangent direc-

tion, h, as shown in Fig. 3.

Finite-element analyses of bamboo

This section discusses the numerical modeling of

bamboo under simple load cases in order to illustrate

the differences between computed results obtained

using different material models. The selected load

cases include tension, torsion and bending. Several

material models are considered and discussed

comparatively.

Model geometry

In geometry, bamboo is essentially a hollow cylinder

with periodic stiffeners called diaphragms, located at

positions called nodes (see Fig. 7). A bamboo cell is

the section of culm between two diaphragms. The

diameter of the culm is tapered, being largest near the

ground. As illustrated in Fig. 8, the internal and

external diameter of the cell modeled in this study are

s

z

wr

Fig. 6 Axisymmetric FGM composite and its corresponding unit
cell with a continuous material gradation

x

y

normal x normal y shear

Fig. 5 Basic load cases applied to the unit cell
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Di = 56 mm and De = 80 mm, respectively. Cell wall

thickness is t = 12 mm, internodal distance is

L = 350 mm, and the angle of taper is neglected. Fig-

ure 8 illustrates the geometry of the modeled cell. The

nodes at locations A, B and C were selected for stress

evaluation in the numerical examples. A fillet was

created to transition the diaphragm into the cell wall.

This simulates actual bamboo structures and eliminates

stress concentrations that would be created by

the presence of sharp corners. The fillet radius in the

present models is 14 mm, which equals 1/4th of the

inner diameter of the cell. For the load cases of tension

and torsion, one bamboo cell was modeled. For

bending, two cells were modeled in order to include

one diaphragm in the interior of the domain away from

applied loads and support conditions.

Material properties and models

The elastic properties considered in this study employ

the Young’s moduli obtained by Nogata and Takahashi

through detailed experiments [1]. They tested several

small specimens cut from different locations through

the thickness of the wall of the culm. These tests

allowed them to determine the variation of Young’s

modulus that occurs through the wall thickness due to

the graded distribution of longitudinal bamboo fibers.

Nogata and Takahashi [1] used the rule of mixtures to

estimate a Young’s modulus for the fibers of

Ef=55 GPa, for the surrounding matrix of Em=2 GPa,

and for the bulk material of Eb=15 GPa. Here, we

employ a Poisson’s ratio of 0.35 [5]. The estimated

variation of Young’s modulus through the bamboo

thickness is given by the expression [1]

E rð Þ ¼ 3:75e 2:2r=tð Þ; ð27Þ

where r denotes position through the thickness of the

cell wall starting at the inner surface, and t is the

thickness of the cell wall. For the exponential material

variation expressed by Eq. (27), the axisymmetric

stiffness tensor is expressed as

E rð Þ ¼ 1� mð ÞE rð Þ
1þ mð Þ 1� 2mð Þ

1 m
1�m

m
1�m 0

m
1�m 1 m

1�m 0
m

1�m
m

1�m 1 0

0 0 0 1�2m
2 1�mð Þ

2
664

3
775: ð28Þ

The variation expressed by Eq. (27) corresponds to a

common bamboo species known as Moso bamboo, or

Phyllostachys pubescens Mazel (Gramineae), and was

found to vary somewhat between different locations of

the same bamboo stalk [1]. For the 12 mm cell wall

thickness of the model used in this study, Eq. (27) gives

a maximum modulus of 33.84 GPa at the outer edge of

the wall.

To study bamboo behavior using different material

models, three types of material models were consid-

ered for each of the load cases of tension, torsion and

bending [35]. The first model considers a homogeneous

isotropic structure with a bulk Young’s modulus

determined from the following expression:

Eb ¼
R r¼t

r¼0 3:75e 2:2r=tð Þdr

t
; ð29Þ

which yields Eb=13.68 GPa. This is close to the value

of Eb=15.00 GPa for the bulk material reported by

Nogata and Takahashi [1], which was presumably

obtained through the rule of mixtures. Using the rule

of mixtures, Eb = 15.00 GPa would reflect a volume

fraction of fibers in the cell wall of approximately 25%,

and a matrix volume fraction of approximately 75%.

The second material model considers the continuous

gradation of Young’s modulus through the thickness of

the cell wall as described by Eq. (27). Although bam-

14 mm

3 mm

12 mm

56 mm

L/2=175 mm

z

y

x

A

C

B

support

Fig. 8 Section view of one-half of cell showing dimensions
adopted for finite-element meshes

node diaphragm

cell

Fig. 7 Cross section of bamboo culm showing internal structure
(photo courtesy of [8])
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boo cell diaphragms contain fibers, these are neglected

in the current study. All material within the inner

diameter of Di = 56 mm is assigned a Young’s modulus

of E = 3.75 GPa, which corresponds to the modulus at

the interior edge of the cell wall, as prescribed by Eq.

(27).

Finally, the third material model studied here is a

homogeneous orthotropic material whose elastic stiff-

ness matrix is obtained using the homogenization

method described in Section 3 with the material vari-

ation described by Eq. 27. In this case the effective

axisymmetric elasticity tensor obtained through

homogenization (see Section 3) considering a

20 · 20 mesh for the unit cell is

EH ¼

Err Erh Erz 0

Erh Ehh Ezh 0

Erz Ezh Ezz 0

0 0 0 Erz

2
6664

3
7775 ¼

14:91 8:03 8:03 0

8:03 21:95 9:78 0

8:03 9:78 19:91 0

0 0 0 3:44

2
6664

3
7775GPa:

ð30Þ

These properties will be considered in a homoge-

neous orthotropic FEM model of the bamboo struc-

ture. Cylindrical coordinates represent the most

natural orientation in which to perform the analysis of

this axisymmetric structure [36].

The objective of comparing these material models

is to illustrate differences in displacements and stres-

ses computed by a variety of numerical representa-

tions of material gradients. It is also necessary to

investigate under what circumstances bamboo can be

modeled as a simplified homogeneous structure using

averaged or effective properties, and when it may be

beneficial or necessary to incorporate material varia-

tion in the model to capture actual gradients through

the cell wall.

Finite-element meshes and boundary conditions

Figure 9(a) illustrates the mesh discretization in the

finite-element model used to simulate tension and

torsion loading. The mesh consists of 30 sectors of

elements surrounding the axis of symmetry, for a total

of 7,380 20-noded, tri-quadratic brick elements. Qua-

dratic elements have been shown to capture the effects

of material gradients much more effectively than linear

elements [30, 37], and are used here to ensure accurate

modeling of the bamboo cell wall. Figure 9(b) shows a

detailed view of the mesh near the end/cell diaphragm

where support conditions are applied. An axisymmet-

ric model with the same mesh discretization shown in

Fig. 9(b) was used to analyze the bamboo modeled as a

homogenized orthotropic material. That mesh con-

sisted of 246 8-noded axisymmetric quadrilateral ele-

ments and 847 nodes. Integration of order 2 was

employed for all analyses (2 · 2 · 2 integration rule

for three-dimensional (3-D) 20-noded brick elements,

and 2 · 2 integration rule for 2-D 8-noded axisym-

metric elements). Because the homogenization proce-

dure described in Section 3 of this study applies to

axisymmetric models, only tension loading is consid-

ered for the homogenized orthotropic material case. A

3-D homogenization procedure analogous to the pro-

cedures in Section 3 may be employed to obtain or-

thotropic material properties for cases such as torsion

and bending where loading is not axisymmetric.

A few comments about loading without axial sym-

metry (such as the torsion and bending cases) are in

order. In this situation, the radial, circumferential and

axial displacement components are each functions of r,

h and z. Although the problem becomes 3-D, it can be

solved by combining the results of multiple 2-D

problems (e.g., by representing the loading by com-

ponents in the form of a trigonometric series) [26, 27].

The advantage of this approach is that full domain

discretization in the h-direction is not required. Com-

mercial software provides for this kind of analysis,

however we opted not to address the cases of non-

axisymmetric loading.

xz

y L=350 mm

x

y

z

(a)

(b)

Fig. 9 Bamboo cell mesh discretization: (a) FEM model built for
tension and torsion loading includes 7,380 20-noded brick finite
elements and 33,794 nodes; (b) View of mesh discretization at
end of cell
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For tension loading, displacements of all nodes at

one end of the cell model are constrained in the

x-direction, and pressure was applied to the faces of

some elements on the opposite end. Additional nodal

constraints were applied to prevent rigid-body motion.

Loaded element faces included the four outer-most

rings of elements, lying between D = 58.53 mm and the

exterior diameter, De = 80 mm. Applied tension is

limited to these elements in order to confine loading to

the cell walls, thus avoiding artificially loading the

diaphragm. A schematic illustrating tension loading of

the bamboo cell model is shown in Fig. 10(a).

For torsion loading, all nodes at one end of the

cell model are fixed in all directions. Torque is applied to

theoppositeendthroughfournodal loadsatDe = 80 mm

acting tangent to the surface. Figure 10(b) shows a

schematic of the bamboo cell model with torsion

boundary conditions. In order to ensure an even distri-

bution of torque from the applied nodal loads to the cell

wall, all elements with one face on the end surface of the

cell model were assigned a very high Young’s modulus.

Figure 11(a) shows a section view of the mesh

employed to simulate the bending load case, and

Fig. 11(b) shows a detailed view of the mesh in the

region of the interior node. A schematic of the

boundary conditions for bending is shown in Fig. 12.

For this problem, one end of the mesh was fixed, and

loads were applied to five nodes at the opposite end of

the model to ensure an even loading distribution.

Elements connected to the loaded nodes were also

assigned a high value of Young’s modulus to ensure

that the point loads would not lead to excessive local

distortions of the mesh.

Numerical results

This section provides sample numerical results from

the analyzed load cases. Table 1 lists the maximum

displacement that occurs at the loaded end of each

specimen. With reference to the coordinate system

shown in Figs. 10 and 12, displacement for tension is in

the +x-direction, for bending is in the )y-direction, and

for torsion is the angle of rotation. Values are nor-

malized by the maximum theoretical displacements/

rotation of a hollow cylinder having the same diameter,

length and wall thickness as the bamboo cell. The

hollow cylinder of reference is assumed to have

material properties E=13.68 GPa and m=0.35, and is

acted upon by the same axial force, bending load and

torque that displace the finite-element models. The

normalized expressions are

utensð Þn¼
utens

PL=ðAEÞ ; vbendð Þn¼
vbend

FL3

3EI 1þ 3fsEI
GAL2

� � ;

/torsð Þn¼
/tors

TL=ðGIpÞ
;

ð31Þ

Fig. 10 Schematic of boundary conditions and applied loads for
(a) tension loading; (b) torsion loading

y

z x

2L=700 mm

x

y

z

(a)

(b)

Fig. 11 Bamboo discretization for the bending load case: (a)
Cross section of two-cell FEM model. Full mesh includes 14,760
20-noded brick finite elements and 66,417 nodes; (b) Detail of
mesh at interior bamboo node region

y

z x

F

Fig. 12 Schematic of boundary conditions and applied load for
bending case
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where subscript n denotes normalized values, utens is

the axial displacement for tension, vbend is the vertical

displacement for bending, and /tors is the angle of

rotation for torsion loading. The denominator of each

expression in Eq. (31) is the theoretical expression for

displacement [38], where P is the total axial load, A is

the cross-sectional area of the hollow cylinder, L is

the cylinder length, and E is the homogeneous

Young’s modulus. The theoretical expression for the

tip displacement of a cantilever beam includes the

contributions of bending and shear. Force F is

the total applied load, G is the homogeneous shear

modulus (E/[2(1+m)] ), and fs is the shape factor for

shear. The value of fs = 2 employed here corresponds

to a thin hollow cylinder [38]. In the rotation expres-

sion for torque, Ip is the polar moment of inertia of the

hollow cylinder.

Table 1 shows that in all cases, the model that

incorporates material variation through the thickness

of the cell wall is stiffer than the model that employs a

homogeneous Young’s modulus obtained from aver-

aging the expression for material variation in Eq. (27).

If the Young’s modulus of 15 GPa estimated by Nog-

ata and Takahashi [1] for the bulk material had been

employed in the simulations, the deformation behavior

of the homogeneous model and the FGM model would

be even more similar. The axisymmetric model based

on homogenized orthotropic material is the stiffest of

the three cases. The close agreement between axial

deformations in the FGM and homogeneous isotropic

model indicates that the use of averaged (or bulk)

properties is consistent for estimating elongation. The

homogenized orthotropic material model leads to dis-

placements that differ from the other two models, thus

indicating that the presented homogenization proce-

dure, based on the assumptions of Section 3, affects the

axial stiffness of the cell wall. Further adjustments

would be required in the model to ensure that com-

puted axial deformation corresponds to the other

models. For torsion and bending loading, comparison

between the FGM and homogeneous material models

indicates that the homogeneous approximation leads to

a more flexible structure. This is expected because the

FGM model places the stiffest material farthest away

from the neutral axis. Figures 13–15 show fringe plots

of total-deformation magnitude in the models under

tension, torsion and bending loads, respectively.

Deformation values in these plots are normalized by

the maximum displacement found in any of the models

in each figure. Figures 13(a)–(b) illustrate the similar-

ity between the FGM and averaged homogeneous

material models under tension.

Table 2 lists computed stress values at three loca-

tions in the bamboo cell, indicated by points A, B and

C in Fig. 8. Values are normalized by the correspond-

ing theoretical stresses of a hollow cylinder having the

same diameter, length and wall thickness as the bam-

boo cell [38]. Again, the hollow cylinder is assumed to

have material properties E = 13.68 GPa and m = 0.35,

and is acted upon by the same axial force, bending load

and torque that displace the finite-element models.

Normalization of stresses follows

rxx tensð Þn¼
rxx tens

P=A
; sxz torsð Þn¼

sxz tors

Tr=Ip
;

rxx bendð Þn¼
rxx bend

My=I
;

ð32Þ

where rxx tens is the axial stress due to axial load P,

sxz bend is the shear stress due to torque T, and rxx bend

x

y
z

0.95

0.82

0.68

0.54

0.41

0.27

0.14

0

z

r

1.000

0.983

0.871

(c)

(b)

(a)

Fig. 13 Fringe plots of total-deformation magnitude for tension
loading of (a) homogeneous isotropic, (b) FGM, and (c)
homogeneous orthotropic models. Deformations are normalized
by the maximum displacement that occurs among the three
models

Table 1 Displacements at loaded end of models, normalized by
corresponding displacements in a homogeneous hollow cylinder
with properties E = 13.68 GPa and m = 0.35

Material properties Normalized maximum
displacement at loaded
end

(utens)n (/tors)n (vbend)n

Homogeneous E=13.68 GPa m=0.35 0.996 0.988 0.999
FGM E(r)=3.75e(2.2r/t) m =0.35 0.978 0.836 0.845
Orthotropic EH (homogenized)

(see Eq. (30))
0.868 – –
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is the bending stress due to the applied moment

M=F · 2L.

Table 2 illustrates the effect of material gradients on

stresses in the bamboo cell wall. Stresses near the

interior of the wall are much lower in the actual

material as represented by the FGM, than they are in

the homogeneous case. Stresses near the outside of the

cell wall are much higher in the FGM case than in the

homogeneous case. Thus, the FGM leads to a remark-

able stress redistribution in the bamboo and the stress

response of (inhomogeneous) FGMs differs substan-

tially from those of their homogeneous counterparts

(c.f. [30]). Figures 16–18 show fringe plots of the von

Mises stress in the models under tension, torsion and

bending loads, respectively. Stress values in these plots

are normalized by the maximum stress found in any of

the models in each figure. For each loading condition,

the highest stresses appear near support boundary

conditions or applied nodal loads. The plots demon-

strate that material gradients through the cell wall have

a strong influence on local cell-wall stresses. The model

that employs homogenized orthotropic material, shown

in Fig. 16(c), leads to nearly identical stresses in the

mid-section of the cell as the homogeneous isotropic

material model shown in Fig. 16(a).

Conclusions and extensions

Numerical simulations of bamboo structure using finite

element method and a multiscale method were

performed. By using the graded finite element concept

the continuous change of bamboo properties along the

thickness could be taken into account, and its influence

in the bamboo mechanical behavior was shown. By

using the homogenization method for graded material,

the effective properties of an axisymmetric bamboo

composite were computed. By means of these homog-

enized properties it is possible to model bamboo as a

homogeneous orthotropic medium. However, further

0.77

0.66

0.55

0.44

0.33

0.22

0.11

0

x

y

z

1.000

0.846

(b)

(a)

Fig. 14 Fringe plots of total-deformation magnitude for torsion
loading of (a) homogeneous isotropic and (b) FGM models.
Deformations are normalized by the maximum displacement
that occurs among the two models

0.83

0.71

0.59

0.47

0.36

0.24

0.12

0

x

y
z

0.856

(b)

(a)

1.000

Fig. 15 Total-deformation magnitude for models under bending.
(a) Homogeneous isotropic material; (b) FGM. Deformations
are normalized by the maximum displacement that occurs among
the two models

Table 2 Stresses at locations
indicated by A, B and C in
Fig. 8. Stresses are
normalized by the stresses at
location A in a homogeneous
hollow cylinder with
properties E = 13.68 GPa and
m = 0.35

Material properties Location
(see Fig. 8)

Normalized stress

rxx tensð Þn sxz torsð Þn rxx bendð Þn

homogeneous E=13.68 GPa m =0.35 A 1.17 0.888 2.50
B 1.00 1.00 1.00
C 1.00 0.702 0.703

FGM E(r)=3.75e(2.2r/t) m =0.35 A 2.45 2.00 4.47
B 2.31 2.08 2.08
C 0.255 0.160 0.160

Orthotropic EH (homogenized) (see Eq. (30)) A 1.14 – –
B 1.00 – –
C 1.00 — —

7002 J Mater Sci (2006) 41:6991–7004

123



research is needed to link theoretical descriptions pro-

vided by functions such as the hypothetical one in Eq.

(22), with actual bamboo properties. This link may be

established through integrated investigations involving

experiments and observed behavior of bamboo

structures.

Given the additional computational effort of the

homogenization procedure, it seems that a simple

averaged elastic modulus obtained from a rule of mix-

tures or an averaged modulus obtained from the FGM

variation will provide suitable numerical accuracy for

capturing the ‘‘global’’ deflection/response of a bamboo

structure. To estimate local features, however, such as

stresses near supports, pin connections or holes etc., it

is necessary to employ a numerical procedure that

accurately models material gradients through the cell

wall. In this study, the use of graded elements to model

the FGM structure of bamboo captures the much higher

stresses that exist near the exterior of the bamboo

wall due to the higher stiffness of that fiber-dense region

and also the stress redistribution through the bamboo

wall. These wall stresses will be magnified by holes or by

the bearing loads imposed at connections. This work

illustrates modern numerical analysis techniques that

lend special insight into the structural and mechanical

response of bamboo as a naturally graded fiber

composite.

Acknowledgements We gratefully acknowledge the U.S.
National Science Foundation through the project CMS #0303492
‘‘Inter-Americas Collaboration in Materials Research and Edu-
cation’’ (P.I., Professor W. Soboyejo, Princeton University).

References

1. Nogata F, Takahashi H (1995) Compos Eng 5:743
2. Janssen JJA (1995) Building with bamboo. Intermediate

Technology Publications, London
3. Jayanetti DL, Follett PR (1998) Bamboo in construction.

Trada, UK
4. Chung KF, Yu WK (2002) Eng Struct 24:429
5. Ghavami K (1995) Cement Concrete Compos 17:281
6. Okubo K, Fujii T, Yamamoto Y (2004) Compos Part A

35:377
7. Ge XC, Li XH, Meng YZ (2004) J Appl Polymer Sci 93:1804
8. Ghavami K (2004) Structure and Properties of Bamboo.

PowerPoint presentation

x

y
z

0.46

0.40

0.33

0.27

0.20

0.13

0.07

0
z

r (c)

(b)

(a)

0.422

0.422

0.975

Fig. 16 Fringe plots of von Mises stress distribution for tension
case. (a) Homogeneous isotropic, (b) FGM, and (c) homoge-
neous orthotropic material. Stresses are normalized by the
maximum stress value that occurs among the three models

0.015

0.013

0.011

0.008

0.006

0.004

0.002

0

x

y

z

0.005

0.011

(b)

(a)

Fig. 17 Von Mises stress distributions for torsion loading. (a)
Homogeneous isotropic; (b) FGM model. Stresses are normal-
ized by the maximum stress value that occurs among the two
models

0.016

0.014

0.012

0.009

0.007

0.005

0.002

0

x

y
z

0.023

(b)

(a)

0.011

Fig. 18 Von Mises stress distributions for bending. (a) Homo-
geneous isotropic; (b) FGM material. Stresses are normalized by
the maximum stress value that occurs among the two models

J Mater Sci (2006) 41:6991–7004 7003

123



9. Amada S, Munekata T, Nagase Y, Ichikawa Y, Kirigai A,
Yang ZF (1996) J Compos Mat 30:800

10. Amada S, Ichikawa Y, Munekata T, Shimizu H (1997)
Compos Part B 28:13

11. Ray AK, Das SK, Mondal S, Ramachandrarao P (2004)
J Mater Sci 39:1055

12. Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H
(1997) Compos Part B 28:13

13. Ghavami K, Rodrigues CS, Paciornik S (2003) Asian J Civil
Eng 4:1

14. Janssen JJA (1991) Mechanical properties of bamboo. Klu-
wer Academic Publishers

15. Suresh S, Mortensen A (1988) Fundamentals of functionally
graded materials. IOM Communications, London

16. Paulino GH, Jin Z-H, Dodds RH Jr (2003) In: Karihaloo B,
Knauss WG (eds) Comprehensive structural integrity, vol 2.
Elsevier, p 607

17. Lakkad SC, Patel JM (1980) Fibre Sci Tech 14:319
18. Lo TY, Cui HZ, Leung HC (2004) Mater Lett 58:2595
19. Li SH, Zeng QY, Xiao YL, Fu SY, Zhou BL (1995) Mat Sci

Eng C 3:125
20. Amada S, Lakes RS (1997) J Mater Sci 32:2693
21. Amada S, Untao S (2001) Compos Part B 32:451
22. Nugroho N, Ando N (2001) J Wood Sci 47:237
23. Lee AWC, Bai XS, Bangi AP (1997) Forest Prod J 47:74
24. Amada S, Terauchi Y (2001) In: Trumble K, Bowman K,

Reimanis I, Sampath S (eds) Proceedings of the 6th Inter-
national Symposium of Functionally Graded Materials, Estes
Park, Colorado, Sep. 2000. The American Ceramic Society, p
763

25. Bai XS, Lee AWC, Thompson LL, Rosowsky DV (1999)
Wood Fiber Sci 31:403

26. Bathe K-J (1996) Finite element procedures. Prentice-Hall,
Englewood Cliffs

27. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts
and applications of finite element analysis 4th edn. John
Wiley and Sons, USA

28. Sanchez-Palencia E (1980) Non-homogeneous media and
vibration. Theory lecture notes in physics 127. Springer,
Berlin

29. Santare MH, Lambros J (2000) ASME J Appl Mech 67:819
30. Kim J-H, Paulino GH (2002) ASME J Appl Mech 69:502
31. Yin HM, Sun LZ, Paulino GH (2004) Acta Mater 52:3535
32. Nemat-Nasser S, Hori M (1993) Micromechanics: overall

properties of heterogeneous materials. North-Holland,
Amsterdam

33. Kalamkarov AL, Kolpakov AG (1997) Analysis, design and
optimization of composite structures. John Wiley and Sons,
Chichester, England

34. Guedes JM, Kikuchi N (1990) Comp Meth Appl Mech Eng
83:143

35. Rooney F, Ferrari M (2001) Int J Solids Struct 38:413
36. Pindera MJ, Freed AD, Arnold SM (1993) Int J Solids Struct

30:1213
37. Walters MC, Paulino GH, Dodds RH Jr (2004) Int J Solids

Struct 41:1081
38. Gere JM, Timoshenko SP (1990) Mechanics of Materials 3rd

edn. PWS Publishing, Boston

7004 J Mater Sci (2006) 41:6991–7004

123


