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Abstract Traditionally, standard Lagrangian-type fi-
nite elements, such as linear quads and triangles, have
been the elements of choice in the field of topol-
ogy optimization. However, finite element meshes with
these conventional elements exhibit the well-known
“checkerboard” pathology in the iterative solution of
topology optimization problems. A feasible alternative
to eliminate such long-standing problem consists of us-
ing hexagonal (honeycomb) elements with Wachspress-
type shape functions. The features of the hexagonal
mesh include two-node connections (i.e. two elements
are either not connected or connected by two nodes),
and three edge-based symmetry lines per element. In
contrast, quads can display one-node connections,
which can lead to checkerboard; and only have two
edge-based symmetry lines. In addition, Wachspress
rational shape functions satisfy the partition of unity
condition and lead to conforming finite element ap-
proximations. We explore the Wachspress-type hexag-
onal elements and present their implementation using
three approaches for topology optimization: element-
based, continuous approximation of material distrib-
ution, and minimum length-scale through projection
functions. Examples are presented that demonstrate
the advantages of the proposed element in achieving
checkerboard-free solutions and avoiding spurious fine-
scale patterns from the design optimization process.
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1 Nomenclature

c(ρ, u) Compliance of the design
ci Normalizing shape function coefficient
p SIMP penalty exponent
q(x) Curve encompassing the points of intersection

of edges
r j Distance from the quadrature points to the

origin
rmin Radius of projection
w j Weight for the group of quadrature points
Cijkl Components of the elastic stiffness tensor
CH

ijkl Components of the homogenized stiffness
tensor

E0 Stiffness of solid phase
Ni Shape function corresponding to node i
Si Set of elements sharing node i
Vh Set of all Y-periodic functions
Vs Specified volume fraction
Y Periodic domain
α j Angle corresponding to the quadrature group
λi(x) Straight line going through nodes i and i + 1
ρe Density of element e
ρe

i Nodal density corresponding to node i of
element e

χkl
p Characteristic displacements

ρmin Density lower bound
� Extended design domain
�e Regular hexagonal domain
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�s Material subset of the extended design
domain

f Global load vector
f(kl) Material load corresponding to test strain kl
xi Coordinates of node i
u Global displacement vector
ε0(kl) Test strain
B Strain-displacement matrix
C0 Constitutive matrix of the solid phase
Ce Constitutive matrix for element e
K Global stiffness matrix
Ke Element stiffness matrix
K0

e Stiffness matrix for solid reference element

2 Introduction

Topology optimization methods seek to find the opti-
mal layout or topology of a fixed amount of material
that satisfies a required set of design demands. With
significant advancements in the recent years and appli-
cation to a wide range of practical problems, topology
optimization has emerged as a powerful and robust tool
for the design of structural, mechanical, and material
systems. Despite the maturity of the field, however,
there remains a class of numerical issues such as the
well-known checkerboard problem that continues to be
the focus of extensive research. This paper introduces
a new element for the implementation of topology
optimization and demonstrates its effectiveness in re-
moving the checkerboard pathology.

Traditionally, the topology design is formulated as
a material distribution problem, in which every point
of the candidate design domain represents either a ma-
terial or a void region. However, the optimal material
distribution problem as such is ill-posed, lacking solu-
tions in the continuum setting (Murat and Tartar 1985;
Kohn and Strang 1986; Sigmund and Petersson 1998).
The existence of solutions may be achieved through a
relaxation of the solid/void formulation. For example,
the homogenization method, introduced by Bendsøe
and Kikuchi (1988), extends the space of admissible
designs to include solutions with microstructural fea-
tures, whose homogenized properties are used to deter-
mine the mechanical behavior of the design. Likewise,
the Solid Isotropic Material with Penalization (SIMP)
model relaxes the original “0–1” problem by consid-
ering a continuous material “density” as the design
variable and a power-law relation for interpolating the
material properties of the intermediate densities
(Bendsøe 1989; Zhou and Rozvany 1991). This inter-

polation also serves as a penalization that steers the
optimization procedure toward a final design without
intermediate densities. For a discussion on the rela-
tionship between the two methods and the physical
interpretation of the SIMP model refer to Bendsøe
and Sigmund (1999). Unfortunately, the topology opti-
mization solutions with both methodologies suffer from
the checkerboard phenomenon, where the optimized
designs may contain patches of alternating material and
void elements.

The checkerboard solutions appear as a result of
inadequate or poor numerical modeling. Diaz and
Sigmund (1995) attributed the formation of checker-
board as a local instability to the error in the finite
element approximation. The checkerboard pattern has
an artificially high stiffness when modeled by lower
order finite elements so it is economical in the opti-
mization process. In a related investigation, Jog and
Haber (1996) addressed general numerical instabili-
ties in topology optimization by formulating the cor-
responding mixed variational problem and concluded
that insufficient interpolation of the displacement field
can lead to unstable modes. Again, it was confirmed
that the degree of approximation and choice of finite
elements plays a crucial role in the appearance of nu-
merical anomalies such as checkerboard. Therefore, it
is expected that more accurate modeling of the mechan-
ical behavior of the design would alleviate the checker-
board problem. In fact, higher-order discretizations
using quadratic displacement elements have been
shown to be more stable even though the final de-
signs may exhibit mild forms of checkerboard, de-
pending on the severity of the penalization (Diaz and
Sigmund 1995). Non-conforming elements can also give
checkerboard-free solutions since they correctly cap-
ture the vanishing stiffness of checkerboard (Jang et al.
2003, 2005). The drawback of using non-conforming
shape functions is that they do not preserve the continu-
ity of the field across elements; they allow negative field
approximation and may suffer from other numerical
issues (e.g. lack of convergence).

The abovementioned studies were primarily con-
cerned with the effects of finite element modeling on
the stability of topology optimization in the context
of element-based formulation, in which the design
variable is the uniform density assigned to each dis-
placement element. It turns out that this discontinu-
ous representation of the material field is conducive
to the appearance of checkerboard. Considering the
representation of the design field, a handful of methods
of checkerboard suppression introduce explicit restric-
tions on the local variation of the material density so
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that the undesirable material layouts like checkerboard
are avoided. Poulsen (2002a) used a descriptor func-
tion to identify corner contacts throughout the design
domain at each iteration step and added a constraint
to prohibit their formation. Expanding on this idea,
Pomezanski et al. (2005) explored other possible “cor-
ner contact” functions that could also eliminate the
grey checkerboards. To achieve geometric control over
the formation of checkerboard, Wavelet methods have
also been applied to topology optimization (Poulsen
2002b; Yoon and Kim 2005). Sigmund and Petersson
(1998) discussed the addition of slope constraints to
control the density gradient and concluded that this ap-
proach can establish a well-behaved topology optimiza-
tion procedure by arbitrarily weakening the numerical
instabilities.

Other methods have been proposed that constrain
the gradient of material field implicitly by using nodal
densities as the design variables. In one approach
(Matsui and Terada 2004; Rahmatalla and Swan 2004),
the continuity of the material field is enforced by us-
ing finite element shape functions to interpolate the
density throughout the design domain from nodal den-
sities. As a result of this choice of density field rep-
resentation, the discontinuous checkerboard patches
are naturally excluded from the design space. How-
ever, other forms of numerical instabilities such as
“islanding” and “layering” effects have been observed
with these formulations (Rahmatalla and Swan 2004).
Alternatively, Guest et al. (2004) used a projection
function with an embedded length scale to extract
element densities from nodal densities. This method
has the added effect of establishing a minimum mem-
ber size and generating mesh-independent solutions.
The problem of mesh-dependency, linked to the ill-
posedness of the continuum problem, arises when the
optimal designs have finer members as more refined
meshes are used. Since the checkerboard is a fine-
scaled feature, it may be removed if a proper length
scale is imposed on the optimization. Other meth-
ods that address the mesh-dependency problem in-
clude the perimeter control (Ambrosio and Buttazzo
1993; Haber et al. 1996), density and sensitivity filters
(Bruns 2005; Wang and Wang 2005), monotonicity-
based method (Poulsen 2003), regularized density con-
trol (Borrvall and Petersson 2001b), and more recently
the morphology-based techniques (Sigmund 2007). Al-
though these methods have the desirable effects of
generating mesh-independent solutions and in some
cases improved convergence, there remains interest in
obtaining checkerboard-free solutions without impos-
ing any further constraints. The topology designs based

on these approaches may be very sensitive to the choice
of parameters (e.g. filter characteristics) and can poten-
tially augment the physical model and the optimization
process.

It is evident from the above discussion that the
approximation of the two distinct fields of displace-
ment and density greatly influences the stability of
the topology optimization problem. In this work, we
address the checkerboard issue by introducing the
Wachspress hexagonal element which possesses de-
sirable characteristics in representing both fields: the
hexagonal mesh prohibits one-node connections and
subsequently checkerboard patterns, while the interpo-
lation functions of the Wachspress element eliminate
the appearance of spurious fine-scale patterns from
the design optimization. Thus, checkerboard-free solu-
tions are obtained without any further restrictions or
filtering.

Topology optimization with honeycomb meshes has
also been explored by Saxena and Saxena (2007) and
Langelaar (2007). For two-dimensional problems, the
discretization is constructed using lower order finite
elements in both cases: Saxena and Saxena (2007) split
each hexagon into two quads while Langelaar (2007)
uses the union of six triangles to achieve the desired
discretization. We note that the choice of dividing the
hexagonal elements in such an approach is not unique.
For instance, the hexagonal cells can be either split
vertically, or along the left or right diagonal and this
introduces ambiguity in the finite element discretization
(see Fig. 3 of Saxena and Saxena 2007). Moreover, this
approach is limited to constant element density formu-
lations since T3/T3 and Q4/Q4 elements suffer from
islanding/layering instabilities. Our proposed approach
of using Wachspress shape functions circumvents such
issues and can be readily extended for continuous den-
sity representations as it defines an actual finite element
(see Section 4). The use of Wachspress shape func-
tions was first presented in the Multiscale and Func-
tionally Graded Materials (M&FGM 2006) Conference
(Talischi et al. 2008).

The remainder of the paper is organized as follows:
in the next two sections, we discuss the geometric
properties of the new element (Section 3) and the con-
struction of Wachspress shape functions (Section 4). In
Section 5, we present the numerical integration scheme
for the new element. Next we outline the topology opti-
mization formulation for the compliance minimization
problem with different material field representations.
In Section 7, we address the stability of the hexagonal
Wachspress element by investigating its susceptibility
to fine-scale patterns. We show numerical results for
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the new implementation in Section 8 to confirm its
robustness. Finally, we conclude the paper with some
remarks in Section 9.

3 Hexagonal elements and the role of meshing

Before discussing the construction and properties of
the Wachspress hexagonal element, it is constructive to
make a few remarks regarding the role of meshing in
topology optimization. First we note that even though
it is possible to use a non-uniform mesh, it is customary
to model topology optimization problems with uniform
meshes. When employing non-uniform meshes, great
care must be taken to avoid favoring any part of the de-
sign domain because, a priori, one does not know where
the final solution will lie. For example, in adaptive
schemes where one attempts to obtain high resolution
solutions inexpensively, the criteria for adaptive refine-
ment or de-refinement of the mesh becomes a critical
issue in correctly capturing the optimal solution (Maute
and Ramm 1995; Costa and Alves 2003; Wang 2007).
Moreover, the greatest portion of the computational
cost in some topology optimization problems, such as
compliance minimization, is due to solving the equi-
librium equations and a uniform mesh eliminates the
need for repeated computation of various local stiffness
matrices (Borrvall and Petersson 2001a).

If we restrict ourselves to uniform meshes, there are
only three possible regular tessellations in two dimen-
sions, namely those generated by equilateral triangles,
squares, and hexagons (see, for example, Chavey 1989).
Since the first two have been widely utilized in topology
optimization, it is reasonable to explore the other pos-
sibility as a feasible alternative. In fact, we recognize
that the hexagonal tessellation is distinguished from the
other two in that it does not allow for corner contacts.
That is, two connected hexagonal tiles must share an
edge and have two common vertices (see Fig. 1). Con-
sequently, unlike triangular and quadrilateral grids, the

Fig. 1 Quadrilateral meshes can display one-node connections,
while in a hexagonal mesh two connected elements always share
two nodes through an edge connection

Fig. 2 The Q4 element has two edge-based symmetry lines, while
the hexagonal element has three edge-based symmetry lines

hexagonal tessellation, by the virtue of its geometry,
constrains the material layout and naturally excludes
the unwanted formation of checkerboard and one-node
hinges. Note that higher-order triangular and quadri-
lateral elements may suffer from one-node hinges even
though the more accurate approximation of the dis-
placement field may mitigate the checkerboard prob-
lem. Employing hexagonal meshes, on the other hand,
simply eliminates the possibility of checkerboard and
one-node hinge formations without the need for impos-
ing any further restrictions. Another appealing feature
of the hexagonal element is that it has more lines of
symmetry per element compared to the triangular and
square elements and, consequently, suffers from less
directional constraint and allows for a more flexible
arrangement of the final layout in the optimization
process (Fig. 2).

We must point out that in order to model a domain
with straight boundaries using a hexagonal mesh, it is
necessary to insert one layer of triangular and quadri-
lateral elements along the boundary (see Fig. 3). Lin-
ear triangular (T3) and bilinear quadrilateral elements
(Q4) are used in this study. The difference in element
size must be considered when enforcing the volume
constraint, and the related parameters must be adjusted
accordingly. Since only one layer of these elements is
needed to straighten the boundary, their effect on the
optimization procedure is expected to be negligible. In
fact our numerical experiments show that the optimal
solutions remain qualitatively unchanged when these
elements are placed around the boundary.

4 Wachspress shape functions

In this work, we adopt Wachspress rational interpo-
lation functions for the proposed hexagonal element.
Wachspress introduced general interpolants for convex
polygons, and his pioneering work provided a basis for
further development of polygonal finite element for-
mulations (Wachspress 1975). Wachspress interpolants
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Fig. 3 Domain discretization
with Wachspress hexagonal
mesh: a domain without
“boundary” elements b
domain with “boundary”
elements (standard quads and
triangles)

a b

were developed using concepts of projective geometry
and are the lowest order functions that satisfy the
conditions of boundedness, linear precision, and global
continuity (Warren 2003; Sukumar and Malsch 2005).
Although the Wachspress method can be extended to
obtain higher order shape functions, the element exam-
ined in this work is a first-order element.

For an n-sided polygon, the Wachspress shape func-
tions Ni for i = 1,...,n are given by the ratio of two
polynomials, with degree (n – 2) for the numerator, and
(n – 3) for the denominator (e.g. Dasgupta 2003):

Ni (x1, x2) = Pn−2 (x1, x2)

Pn−3 (x1, x2)
(1)

In the following paragraphs, we discuss a geometric
construction of these shape functions based on the alge-
braic equations of the edges of the polygonal domain.
Alternatively, it is possible to compute the coefficients
of the numerator and the denominator of Wachspress
functions symbolically (Dasgupta 2003) or numerically
(Dalton 1985).

Let �e denote the regular hexagonal domain (see
Fig. 4). The shape function Ni, corresponding to node i,
is given by:

Ni (x) = ci
λi+2 (x) λi+3 (x) λi+4 (x) λi+5 (x)

q (x)
(2)

where λi+1(x) = 0 represents the straight line going
through nodes “i” and “i + 1” while q(x) = 0 is the
equation of the circle encompassing the points of inter-
section of the extensions of the edges. It is understood
that λ7 = λ1, λ8 = λ2 and so on. In other words, the
numerator is the product of the equations of the edges
not intersecting the given node. The ci coefficient is a
normalizing factor, which is given by:

ci = q (xi)

λi+2 (xi) λi+3 (xi) λi+4 (xi) λi+5 (xi)
(3)

Here xi represents the nodal coordinates. A typical
conforming shape function is shown in Fig. 5.

Wachspress rational shape functions satisfy the nec-
essary conditions for conforming Galerkin approxi-
mations (Sukumar and Tabarraei 2004; Sukumar and
Malsch 2005). First, these shape functions are bounded,
non-negative and form a partition of unity:

6∑

i=1

Ni (x) = 1, 0 ≤ Ni (x) ≤ 1 (4)

Since the Wachspress shape functions are non-
negative, they can be used to interpolate the density
field (see discussion on CAMD in Section 6). This is
not possible with higher order (e.g. Q8 and Q9 quads)
or non-conforming elements. Furthermore, they exhibit
the Kronecker-delta property which simplifies applying
the necessary boundary conditions:

Ni
(
x j

) = δij =
{

0, i �= j
1, i = j

(5)

Also, these shape functions can reproduce a linear
function (exhibit linear precision), and thus satisfy the

Fig. 4 Hexagonal element domain illustrated for the construc-
tion of Wachspress shape functions
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Fig. 5 Typical Wachspress shape function (the value of the shape
function is raised on the edges for better visualization)

sufficient condition of convergence for second-order
partial differential equations:

6∑

i=1

Ni (x) xi = x (6)

Finally, the Wachspress shape functions provide C0

continuous field approximations over the domain, and
thus lead to a conforming representation. The element
performance in solving second-order boundary-value
elliptical problems has been studied by Gout (1985),
who compared this element with polynomial finite el-
ements of the same degree.

5 Numerical integration for hexagonal elements

For uniform meshes, the constant element density im-
plementation using the SIMP model requires the com-
putation of the stiffness matrix only once, while the
CAMD approach (see the following section for more
details) requires that the element stiffness matrices be
evaluated at each iteration step. Therefore the effi-
ciency of the integration method must be considered
in choosing the appropriate scheme. One possibility
is to partition the element into triangular regions and
apply the commonly used quadrature rules on each
triangle (Sukumar and Tabarraei 2004). An alternative
is to use the quadrature rules developed for polygonal
domains, specifically the fully symmetric quadrature
for regions with regular hexagonal symmetry given by
Lyness and Monegato (1977). We have adopted the

Fig. 6 Schematic illustration
of the quadrature rule for the
regular hexagonal element:
integration points are shown
with “x” marks

second approach since it is more practical and uses the
least number of quadrature points for a given degree of
accuracy.

The method is illustrated in Fig. 6. The quadrature
rule is invariant under 60˚ rotation due to the hexag-
onal symmetry of the integration region, and may be
expressed in the following form:

∫

�e

f d� ≈ w0 f (0, 0) +
N∑

j=1

6∑

i=1

w j f
(

rj, α j + π i
3

)
(7)

Here w j represents the weight corresponding to the
quadrature point at distance r j from the origin and
angle α j + π i

3 from the horizontal axis for each 1 ≤
i ≤ 6. The list of quadrature points for various values
of j can be found in the original reference (Lyness and
Monegato 1977), and for completeness, are provided
in Table 1 of the Appendix. In our implementation,
we used N = 1 (i.e. 7 quadrature points including
the origin) which corresponds to degree 5 polynomial
accuracy.

6 Topology optimization formulation

The performance of the proposed hexagonal element
is assessed through the implementation of benchmark
compliance minimization problems. In this class of
problems, the objective is to find the least compli-
ant (i.e. stiffest) layout of a fixed volume of mater-
ial within a pre-defined design domain, subjected to
given traction and displacement boundary conditions.
As mentioned before, the topology or layout of the
structure is commonly described by material “density”
design variables. By convention, density value of one
at any point in the design domain signifies a material
region while the voids are represented by zero density.
Subsequently, the designed structure �s is defined as
the material subset of the design domain �:

ρ (x) =
{

0, x /∈ �s

1, x ∈ �s
(8)



Honeycomb Wachspress finite elements for structural topology optimization 575

As mentioned before, the problem is relaxed to allow
for continuous variation of density in [ρmin, 1]. Placing
the positive lower bound ρmin helps prevent the sin-
gularities of the global stiffness matrix. In this work,
we use SIMP as the material model which gives the
following power-law relation to define the stiffness of
intermediate densities:

E (x) = ρ (x)p E0, p > 1
ρmin ≤ ρ (x) ≤ 1

(9)

where E0 denotes the stiffness of the solid phase. With
value of p greater than 1, the stiffness of the interme-
diate densities becomes small compared to their con-
tribution to total volume of the structure, making them
unfavorable in the optimization process. Therefore, this
penalization steers the optimization process to a 0–1
design.

Using this density parameter as the design vari-
able, the minimum compliance problem in the discrete
form is formulated as (see, for example, Bendsøe and
Sigmund 2003):

min
ρ,u

c (ρ, u) = fTu

s.t. K (ρ) u = f∫
�

ρdV = Vs

(10)

Here c(ρ, u) is the objective function (i.e. the com-
pliance of the structure) and f and u are the global
force and displacement vectors. Moreover, K repre-
sents the global stiffness matrix, which is dependent
on the density distribution. The parameter Vs is the
specified maximum volume of structural material.

In order to solve this optimization problem, we must
choose a proper discretization of the design field. We
consider the following three different approaches for
implementation of the Wachspress hexagonal element:

1. Element-based
2. Continuous Approximation of Material Distribu-

tion (CAMD)
3. Projection Method to achieve minimum length

scale

Although these approaches do not exhaust the pos-
sible discretizations of the density field, we have lim-
ited our investigation of the Wachspress element to
these cases in order to assess its performance against
the corresponding numerical problems, namely the
checkerboard and islanding/layering instabilities, and
mesh-dependency.

6.1 Element-based approach

In the element based approach, a uniform density
parameter ρe is assigned to each displacement finite

element. The element densities become the design vari-
ables, and their sensitivities are calculated using the
adjoint method:

∂c
∂ρe

= −uT
e

∂Ke

∂ρe
ue = −pρ p−1

e uT
e K0

eue (11)

As discussed previously, the element-based im-
plementation using linear triangular and bilinear
quadrilateral displacement elements suffer from the
checkerboard.

6.2 Continuous Approximation of Material
Distribution (CAMD)

Alternatively, we can define the design parameters to
be the nodal densities, from which the density through
the domain is interpolated. An appealing feature of
this density parameterization is that, irrespective of the
interpolation scheme, the local variation of density is
restricted. Since adjacent elements share nodal densi-
ties, the change from solid to void must occur across
at least one element, thus making the checkerboard
formation impossible. We consider two possible in-
terpolation schemes. Based on the concept of graded
elements (Kim and Paulino 2002; Silva et al. 2007), we
use shape functions to obtain the density within each
element and throughout the design domain:

ρ(x) =
n∑

e=1

6∑

i=1

Ne
i (x) ρe

i (12)

Here ρe
i denotes the nodal density of element e, which is

taken to be coincident with the corresponding displace-
ment node (Fig. 7). Incidentally, this condition is not
necessary and one may explore the cases where the dis-
placement and density meshes are not coincident. This
approach for topology optimization is referred to as the
Continuous Approximation of Material Distribution

a b
Fig. 7 A schematic illustration of the displacement and density
approximation: a H6/U element b H6/H6 element (CAMD).
Larger circle represents displacement nodes, while the smaller
circle represents the density design variable
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(CAMD; Matsui and Terada 2004). In an investigation
by Rahmatalla and Swan (2004) it was discovered that
even though the solutions with Q4/Q4 do not exhibit
the checkerboard patterns, they may suffer from other
numerical instabilities such as “islanding” and “layer-
ing.” This observation is also confirmed by Jog and
Haber’s (1996) study, in which they determined the
Q4/Q4 implementation to be unstable.

The sensitivities of the objective function with re-
spect to the nodal densities in the CAMD implemen-
tation can be computed as follows:

∂c
∂ρe

i
= −

∑

e∈Si

uT
e

∂Ke

∂ρi
e

ue (13)

Here Si is the set of all elements sharing node i. The
element stiffness matrix is given by:

Ke =
∫

�e

⎛

⎝
6∑

j=1

Ne
jρ

e
j

⎞

⎠
p

BTC0Bd� (14)

where B denotes the strain-displacement matrix and C0

is the constitutive matrix of the solid phase. Using this
relation, we can compute the sensitivity of the stiffness
matrix with respect to the nodal densities:

∂Ke

∂ρe
i

=
∫

�e

pNe
i

⎛

⎝
6∑

j=1

Ne
jρ

e
j

⎞

⎠
p−1

BTC0Bd� (15)

6.3 Projection method

The other scheme explored in this work is the use of
projection functions with a fixed length scale. Proposed
by Guest et al. (2004) for Q4 discretization, the method
also uses nodal densities as design variables, and assigns
to each element a uniform density based on a projec-
tion of nodal densities surrounding that element. By
choosing a fixed physical radius rmin independent of the
mesh, one can obtain mesh-independent designs with
prescribed minimum member size. The element density
is given by a weighted average of nodal densities that
are within radius rmin from the centroid of that element:

ρe =
∑

i∈Se
wiρi∑

i∈Se
wi

(16)

Here we have implemented linear weight functions
(Fig. 8), which are given by:

wi = rmin − ri

rmin
, ri ≤ rmin (17)

where ri is the distance of the node i from the centroid
of element e. However, other weight functions can also
be explored.

a

b

Fig. 8 Projection function: illustration of a the domain of
influence and b the linear weight function

We must point out that it is possible to couple the
projection scheme with the CAMD approach by apply-
ing the projection function on the nodal densities in-
stead of the element densities. The shape functions can
be used to interpolate the density within each element,
guaranteeing a prescribed level of smoothness of the
density field throughout the domain, while observing
the required length-scale. This is especially useful in
imposing minimum length scale for topology optimiza-
tion design of functionally graded structures, where it
is necessary to have C0 continuity of density field to
capture the gradation of material properties. Topology
optimization of graded structures can be accomplished
by means of the FGM-SIMP (Functionally Graded
Material–Solid Isotropic Material with Penalization)
formulation by Paulino and Silva (2005).

7 Discussion on stability of Wachspress elements

As discussed before, two elements in a hexagonal mesh
either share one edge or are not connected at all. There-
fore, the geometric nature of the hexagonal Wachspress
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Fig. 9 Small scale patterns of hexagonal elements and their corresponding unit cells
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element can eliminate the severe error in the density
representation that is observed with the Q4 elements
in the form of checkerboard. However, undesired small
scale patterns may still be possible with the hexagonal
mesh. In this section, we demonstrate that with the
proposed formulation, such patterns do not appear as
easily as the checkerboard of Q4 elements, establish-
ing the Wachspress element as a more stable element
for topology optimization. We accomplish this task by
studying the overall stiffness of candidate patterns of
hexagonal elements using numerical homogenization.
As discussed by Diaz and Sigmund (1995), the ap-
pearance of checkerboard in topology stiffness design
can be linked to the poor finite element modeling
that overestimates its stiffness. As a result of this arti-
ficially high stiffness, the checkerboard is stiffer than
other arrangements of material and is favored in the
optimization process. Following this reasoning, we in-
vestigate the susceptibility of topology optimization
formulation with Wachspress elements to similar anom-
alies by considering the behavior of the possible fine
scale patterns in the hexagonal mesh (see Fig. 9). In
this section, we discuss the numerical procedure for de-
termining the homogenized stiffness of these patterns
and compare the results with those obtained for the Q4
element.

The overall stiffness of the patterns may be rep-
resented by the homogenized stiffness of repetitive
unit cells. According to the theory of numerical ho-
mogenization (see, for example, Bendsøe and Sigmund
2003), the homogenized stiffness is calculated as:

CH
ijkl = 1

|Y|
∫

Y

(
Cijkl − Cijpq

∂χkl
p

∂yq

)
dY (18)

where Cijkl are elastic stiffness coefficients at a given
point in the unit cell; CH

ijkl are homogenized stiffness
coefficients; Y is the periodic domain, which is the area
of the unit cell shown in Fig. 9; and χkl

p are characteristic
displacements obtained by solving the following equa-
tion:
∫

Y

Cijpq
∂χkl

p

∂yq

∂vi

∂y j
dY =

∫

Y

Cijkl
∂vi

∂y j
dY, ∀v∈Vh (19)

Here Vh is the set of all Y-periodic functions.
Using finite element discretization, one obtains the

characteristic displacement by solving the following
equation:

Kχ(kl) = f(kl) (20)

where K is the standard stiffness matrix; and f(kl) is the
material load corresponding to test strain kl, calculated
from:

f(kl) =
∑

e

∫

�e

BT
e Ce (y) ε0(kl)dy (21)

In this expression, Be is the standard kinematic matrix;
Ce is the constitutive matrix, and ε0(kl) is the test strain.
The homogenized stiffness tensor is given by:

CH
ijkl = 1

|Y|
∑

e

(
χ0(ij) − χ(ij)) Ke

(
χ0(kl) − χ(kl)) (22)

It is worth noting that for the imposition of periodic
boundary conditions, we have used regular node num-
bering along with multipoint constraints (e.g., Cook
et al. 2002). This is different from the traditional treat-
ment of periodicity that involves the use of repeated
node numbers. Such an approach in the context of

Fig. 10 Comparison between
the stiffness of hexagonal
element patterns,
checkerboard pattern, and
homogeneous distribution of
material (SIMP with p = 3 is
used unless otherwise noted)
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Fig. 11 Schematic
representation of the design
domain, loading and
boundary conditions for
MBB (Messerschmitt-
Bölkow-Blohm) beam
problem. Notice that the
non-hexagonal elements
on the boundary are either
triangles or quads

Ω

homogenization with polygonal cells is discussed by
Diaz and Benard (2003).

We study four arbitrary small scale patterns of
hexagonal mesh, which may appear in topology op-
timization results. These patterns are those with po-
tentially high stiffness and are shown in Fig. 9. The
results of this investigation are illustrated in Fig. 10
where the stiffness of hexagonal patterns along with the
checkerboard of Q4 elements and homogenous mate-
rial distribution are plotted. Also included in the plot
is the stiffness of the homogenous material distribution
subjected to no penalization. In all other cases, the
penalization parameter is taken as 3.

For each pattern, the density of “black” elements is
increased from 0 to 1. The horizontal axis shows the
total volume fraction of the pattern. Note that each plot
ends at the point corresponding to the configuration
shown in Fig. 9 with black elements having density of
one. Therefore, the checkerboard plot terminates at
volume fraction 0.5 while the plot for pattern 1 ends at
volume fraction of 2/3 (this pattern has 4 black elements
and 2 white elements in its unit cell). Only the result
of CH

1111is calculated. Other stiffness coefficients can be
computed in a similar manner.

As shown in Fig. 10, the black–white checkerboard
pattern avoids penalization: the black–white checker-
board (volume fraction 0.5), modeled by Q4 elements,
has stiffness equal to the homogenous distribution with
no penalization (p = 1). This is in agreement with the
results presented by Diaz and Sigmund (1995). The
patterns of hexagonal elements, however, are not as
overly stiff as the checkerboard pattern because their
stiffness curves lie below the line of no penalization.
Moreover, the homogenized stiffness of the hexagonal
patterns is closer to the stiffness of penalized homoge-
neous distribution (obtained using SIMP with p = 3).
These results demonstrate that the formation of un-
desired small scale patterns in the results of topol-
ogy optimization is alleviated when using Wachspress
hexagonal elements. As we shall see in the next section,
the topology optimization results obtained with the
Wachspress elements confirm this conclusion.

8 Numerical results

The benchmark MBB-beam problem (see, for exam-
ple, Olhoff et al. 1991) is solved using the Wachspress
hexagonal element and results are compared with the

Fig. 12 MBB beam design
with element-based
formulation: a–c results with
Q4 elements and d–f results
with H6/U (hexagonal)
elements. Boundary elements
were added to achieve
domain closure. The mesh
discretization is 60 × 20,
90 × 30, 120 × 40 from top to
bottom, respectively, for both
implementations

a d

b e

c f
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Fig. 13 MBB beam design
with CAMD approach:
a–c results with Q4/Q4
elements and d–f results with
H6/H6 (hexagonal) elements.
Boundary elements were
added to achieve domain
closure. The mesh
discretization is 60 × 20,
90 × 30, 120 × 40 from top to
bottom, respectively for both
implementations

a d

b e

c f 

corresponding Q4 implementation. Due to the sym-
metry of the problem, only half of the MBB-beam is
considered (Fig. 11). The beam has an aspect ratio of
6:1, and three levels of mesh discretization are used.
The Poisson’s ratio of the material is taken to be 0.3,
while Vs is 50% of volume of the design domain. We
solved the minimum compliance problem using the
Method of Moving Asymptotes (MMA) developed by
Svanberg (1987). In addition, we used a continuation
method on the value of p to avoid converging to local
minima. The value of p was gradually increased (using
increments of 0.5) from 1 to 4 after sufficient conver-
gence for each value of p. The optimization results for
the element-based and projection schemes are plotted
using the element densities ρe. For the CAMD results,
the continuous density ρ(x) is shown in an average
sense: the average of ρe

i is obtained and plotted for each
hexagonal element.

a

b

c
Fig. 14 MBB beam design with projection approach (rmin = 0.15h
where h is the height of the beam): a–c results with hexagonal
elements. The mesh discretization is 60 × 20, 90 × 30, 120 × 40
from top to bottom, respectively

In Fig. 12, the results of the element-based formu-
lation for the Q4 element and the hexagonal element
for various levels of mesh refinement are shown. The
solutions with Q4 implementation contain patches of
checkerboard while no such fine scale patterns are ob-
served with the Wachspress implementation. Note that
no filtering technique or density gradient was imposed
and thus the checkerboard-free property of the hexag-
onal element is attributed essentially to its geometric
features and interpolation characteristics.

Figure 13 shows the results of CAMD approach for
the MBB-beam design for both Q4 and Wachspress
implementation. Note that in this case, the density and
displacement fields are interpolated using the same
shape functions for each element discretization. We can
observe that the Q4/Q4 results suffer from spurious
islanding and layering patterns, which is in agreement
with the findings of Rahmatalla and Swan (2004). The
designs using Wachspress elements, however, show no
signs of such instability. Therefore, the Wachspress
element performance in this case is attributed to its in-
terpolation characteristics. We note that our numerical
results for the MBB-beam agree closely with the exact
analytical solutions derived by Lewinski et al. (1994).

Finally, the results using projection scheme are pre-
sented in Fig. 14. The radius of the projection rmin

is taken to be 0.15 of the height of the beam and
independent of the mesh size. We can see that de-
spite the change in the level of mesh refinement, the
same design is obtained in all cases. The length scale
imposed on the optimization through rmin guarantees
mesh-independent solutions that satisfy the required
minimum member size.

9 Concluding remarks

In this work, the checkerboard pathology in topology
optimization is addressed and circumvented by means



Honeycomb Wachspress finite elements for structural topology optimization 581

of a new finite element. The proposed hexagonal ele-
ment with Wachspress-type shape functions is shown to
possess advantages over conventional finite elements.
Geometric properties of the hexagonal element, such
as two-node connections and symmetry in three edge-
based directions, are among its distinguishing features.
As discussed and demonstrated by examples, the use
of hexagonal elements eliminates the formation of
checkerboard and other numerical anomalies, and pro-
vides a robust and stable means for solving topology
optimization problems.

The present approach may be extended to three-
dimensional topology optimization by noting the fea-
tures employed to eliminate the checkerboard and
other instabilities. Such extension requires: (i) a mesh
that excludes point and edge contact, i.e., a mesh in
which two connected elements share a face; and (ii)
selection of an appropriate finite element interpolation
or enrichment scheme.

A few remarks regarding the use of honeycomb finite
elements are in order. Reliance on a particular finite
element formulation may naturally impose limitations
from practical perspective. Such objection can also be
made to the use of nonconforming or higher order
elements. Indeed there is a trade-off: conventional el-
ements like quads and triangles are widely used but
suffer from serious instabilities unless additional con-
straints are imposed. The implementation of these con-
straints is not always straightforward or desirable. On
the other hand, particular formulations, such as the one
presented in this paper, may be better suited for topol-
ogy optimization, even though they are less commonly
used. Moreover, there have been several recent papers
in the literature (see review paper by Sukumar and

Malsch 2005) that address polygonal finite elements. As
these elements become more popular and widespread,
solutions such as the one contributed by our work have
the potential to become more popular and practical.

The honeycomb element together with the topol-
ogy optimization formulation has promising exten-
sions, such as design of microelectromechanical systems
and piezoelectric actuators (Carbonari et al. 2007a, b;
Sigmund 2001). Future investigations include the use
of higher-order Wachspress elements (see, for exam-
ple, Gout 1985). In addition, the CAMD approach
may be investigated for meshes in which the displace-
ment and density locations are not coincident in the
element, which would allow for a more flexible den-
sity field discretization. Furthermore, nonlinear weight
functions can be studied in conjunction with the projec-
tion method (see Section 6.3). Such considerations have
the potential to lead to enhanced Wachspress elements
for high-fidelity topology optimization.
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Appendix

Quadrature rule for Wachspress hexagonal element
(from Lyness and Monegato 1977): Table 1

Table 1 Quadrature
parameters as defined
in Section 5

N j α j r j w j

1 0 0.000000000000000 0.000000000000000 0.255952380952381
1 0.000000000000000 0.748331477354788 0.124007936507936

0 0.000000000000000 0.000000000000000 0.174588684325077
2 1 0.000000000000000 0.657671808727194 0.115855303626943

2 0.523681372148045 0.943650632725263 0.021713248985544

0 0.000000000000000 0.000000000000000 0.110826547228661
1 0.000000000000000 0.792824967172091 0.037749166510143

3 2 0.523598775598299 0.537790663359878 0.082419705350590
3 0.523598775598299 0.883544457934942 0.028026703601157

0 0.000000000000000 0.000000000000000 0.087005549094808
1 0.000000000000000 0.487786213872069 0.071957468118574

4 2 0.000000000000000 0.820741657108524 0.027500185650866
3 0.523598775598299 0.771806696813652 0.045248932131663
4 0.523598775598299 0.957912268790000 0.007459892497607
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