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Under the theory of classical linear fracture mechanics, a finite crack sitting in an isotropic and homoge-
neous medium is considered. We find that the well-known crack tip singularity, the inverse square-root
singularity 1//r, may disappear under certain type of loading traction functions. More specifically,
depending on the crack-surface loading function, the behavior of the crack tip field may be shown to
be as smooth as possible. The singular integral equation method is used to study the dependence of
the crack tip singularity on the mode III loading traction functions. Exact crack opening displacements,
stress fields, and their corresponding loading traction functions are provided. Although the method used
is somewhat mathematically elementary, the outcome seems to be new and useful.

Published by Elsevier Ltd.

1. Introduction

The stress/strain singular behavior at the crack tip have at-
tracted the attention of researchers for a long time (Hui and Ruina,
1995), and we also revisit the topic. One of the simplest crack prob-
lems in classical linear elastic fracture mechanics (LEFM) is a finite
crack located in an isotropic and homogeneous material. Under
mode III (anti-plane) loading (Erdogan, 1978, 1985; Sneddon,
1966), the problem can be formulated as a boundary value prob-
lem with Laplace’s equation being the governing partial differential
equation (PDE):

Viw(x,y) =0, —o<Xx<o0, y>0,
w(x,0) =0, x¢[c,d, (1)
O-J'Z(X70+) = 7p(x)7 X € (C7 d)7

where w(x,y) is the z-component of the displacement vector and
0,,(x,0) is the crack surface traction given by the function p(x)
along the crack surfaces (c,d)—see Fig. 1. (It is worth noting that
the superposition principle by Bueckner (1958) and Erdogan
(1978) has been applied in Fig. 1.)

The above boundary value problem in its strong (differential)
form can be reduced to a weak (integral) form by a process of inte-
gral transform (Erdogan, 1995; Sneddon, 1972; Sneddon and
Lowengrub, 1969):

ow(x,0)

o g 0

tox c<x<d with ¢(x) =

(2)
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where p is the material shear modulus (constant). The integral in
equation (2) is singular at t = x, and fcd denotes the Cauchy princi-
pal value (Muskhelishvili, 1953, 1963). The strain function ¢(x) in
integral equation (2) has a closed form solution (S6lingen, 1939),

_ Yo 1
P = 0@ *nw X Od %)
/ p \/ l'fC dl’

where 7, is some constant determined by the boundary condi-
tion.!Under the condition

/C‘dqb(x)dx: 0

the constant ), in Eq. (3) turns to be zero (see Appendix A); thus,
integral equation (2) has a unique solution (Muskhelishvili, 1953,
1963; Solingen, 1939):

c<x<d, (3)

c<x<d.
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UL/ (X —cd X)

' If one considers displacement w(x,0) to be the unknown function, then the
Cauchy singular integral equation (2) becomes a hypersingular integral equation

d +
B [Tw(t,0 2) d

=pkx), c<x<d, (4)

where .,Qg denotes the Hadamard finite part integral (Hadamard, 1952; Kaya and
Erdogan, 1987; Martin, 1991). A closed form solution to (4) can be found in reference
Martin (1992). A boundary element method applicable to mode III cracks in nonho-
mogeneous materials can be found in Paulino and Sutradhar (2006).
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Fig. 1. Illustration of the mode III crack problem.

Clearly, one may see that 1/,/(x — c)(d — x) provides the singu-
larity, 1/+/7, of ¢(x) around the crack tips as r — 0, where r denotes
the distance to the two crack tip, i.e. r = |c — x| or r = |d — X|. How-
ever, the solution in (5) also clearly states that the strain function
¢(x) depends on the loading function p(x). Can some loading func-
tion p(x) be chosen so that the inverse square-root singularity no
longer exists? As the fracture process takes place at the crack tip,
the influence of the loading function p(x) on the crack tip singular-
ity is relevant to engineering applications in fracture mechanics.
The influence of the loading function on the stress and displace-
ment fields near the crack tip can be significant—we have found
that for some special loading functions, the crack tip singularity
may disappear. Furthermore, one can choose the loading functions
so that the stress and displacement fields near the crack tip may be
as smooth as possible. This paper presents a detailed derivation of
how the loading functions influence the behavior around the crack
tip so that the crack tip singularity disappears. The derivation gives
the exact solutions to the crack opening displacements and the
stress fields under the selected loading traction functions.

2. Green’s function

The influence of the loading functions p(x) on the strain func-
tion ¢(x) will be easier explained from the point view of Green’s
function. Without loss of generality, we first take a step of normal-
ization. Let

2 c+d 2 c+d

then the integral equation (2) may be written as

1 1
l/ 2) ds=-P(r), —-1<r<1 with / &(r)ydr=0, (7)

) S—r1 1

where P(r) and &(r) are normalized versions of p(x) and ¢(x),
respectively. According to Eq. (5), the solution to the Cauchy singu-
lar integral equation (7) above is
1 ][1 P(s)V1 —s?
nvl-1r2/1 ST

The solution &(r) can be expressed as

®(r) ds, -1<r<1. (8)

&(r) = %][jlc(s, NPs)ds, -1<r<1, 9)

where the Green'’s function (Sneddon, 1972; Widder, 1971)
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Fig. 2. Strain function &(r) = —-r/v1 —r2 and displacement function W(r) =
V1 —r2 under uniform loading P(r) =1, -1<r<1.

From this point of view, it is clear that the solution &(r) depends on
the loading function P(r).

3. Uniform loading

Under uniform loading,
P(r)=1, (10)
the solution &(r) is
1 /1 _s2 _
o(r) = 1 1-5 ds — r
wl-r2Ja ST 1-r2

where we have used

, —l<r<i, (11)

1 /M V1-¢2
Ef,l (12)

ds = —r.
S—r

The case of uniform loading is the most common applied loading in
fracture mechanics, e.g. using the complex stress function by Sned-
don and Elliott (1946) and Westergaard (1939). As a mathematical
fact, the solution @(r) in Eq. (11) clearly shows the 1/+/r crack tip
singularity. This situation was also investigated by Gray and Paulino
(1998). In Fig. 2 the strain function &(r) and the displacement func-
tion W(r) = v1 —r2 are plotted under uniform loading function.
Note that the tangent lines of the displacement function at r =1
and r = —1 have infinite slope.

4. Linear loading
4.1. Singularity suppression at the right crack tip

By choosing different loading function P(r), one can write out
the exact solution for &(r) such that there is no longer 1//7 singu-
larity existing in the expression at one end of the crack tips, say, at
r = 1. For instance, by choosing

P(ry=1-12r, (13)
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then
(1) - 1 7[1 (1—2$)mds_2r2—r—1

T anvli—r2 ) s—r Vi

—1<r<1, (14)

where we have used Eq. (12) and

1 ¢/1_-¢2
l/ Sl;gds:—r%rl (see Appendix B.1). (15)
T)_4 S—T 2

Clearly, one can see that Eq. (14) becomes

¢(r)7(2r+1)(r—1)7_(2r+1) 1-r
Ve Vitr

and there is no more 1/y/7 singularity at r = 1. Fig. 3 shows the
strain function &(r) and displacement profile

W(r) = V1+r(1-n’?,

under the linear loading function P(r) = 1 — 2r.

It seems that the disappearance of singularity at the right crack
tip is due to the effect of the loading function (compression)
around the neighborhood of the right end crack tip. However, if
the loading function is changed to be

3r
-5
then the right crack tip still experiences 1//T singularity, even it is
under the compression from the loading function (see Fig. 4). Thus
one cannot conclude that the disappearance of singularity at the
right crack tip is purely due to the compression of the loading func-
tion. For instance, if the compression at the right crack tip is in-
creased to

P(ry=1 (16)

(17)

° Loading function
+ Strain function

Displacement profile

Fig. 3. Strain function @(r) = —(2r+1)v1 —r/v1+r and displacement function
W(r) = vT+r (1-1r)*? under linear loading P(r)=1-2r, -1<r<1.

Qo
Qs
o
0000
o
A2
o

e T T
!
0.5 %0040

i s SN HHH

+ 4+ ++

|
+

o Loading function
+ Strain function
Displacement profile

Fig. 4. Strain function ¢(r) = (6r> — 4r — 3)/(4\/1 - rz) and displacement function
W(r) = (4 —3r)v'1 —r?/2 under linear loading P(r) =1-3r/2, -1<r<1.
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Fig. 5. Strain function &(r) = (10r?> — 4r — 5)/(4\/1 - rz) and displacement func-
tion W(r) = (4 — 5r)v/1 — r2 /4 under linear loading P(r) =1-5r/2, -1<r<1.

then there still exists 1/,/r singularity at r = 1 (see Fig. 5). The dif-
ference is that in Fig. 5 one can observe that the displacement pro-
file penetrates under the crack surface at the right crack tip, which
is simply a mathematical outcome reflecting the higher compres-
sive load.
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4.2. Singularity suppression at the left crack tip

By the same token one can choose
P(r)=1+2r, (18)
such that the crack tip singularity at r = —1 disappear. That is,

() — 1 ][1 (+25)Vi-s> 0 212 —r+1
vi-r2) 4 s—r vi=r?
:w, —1<r<1.
v1i-r

The strain function @(r) and displacement profile
W(r) =vI—r(1+r)??

are plotted in Fig. 6 under linear loading P(r) = 1 + 2r.

Notice the disappearance of the singularity at the left crack tip
and compare with Fig. 3, which shows no singularity at the right
crack tip.

Remark 1. The detailed derivation of how to find the loading
function P(r) such that the crack tip singularity no longer exists is
given in Appendix B.2. An example for finding a higher order of P(r)
such that the 1//r singularity disappears at both crack tips is
demonstrated there. The basic procedures include that @(r) [and/
or @'(r),®"(r),...] are to be evaluated as zero at r = —1 and/or
r=1.

Remark 2. There are actually infinitely many solutions of the load-
ing function P(r) in each case. For instance, any scalar multiple of
P(r)=1-2r in Eq. (14) will also be a solution such that the
1/4/1 singularity disappears at right crack tip. In order to have a
unique solution and be able to compare the magnitude of the dis-
placement profile in each case, the loading function P(r) is normal-
ized such that
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Fig. 6. Strain function &(r) = (1 -2r)v1+r/v1—r and displacement function
W(r)=vT—r (1+1)*? under linear loading P(r) =1+2r, -1<r<1.

/1 P(r)dr — 2. (19)
1

So far in each case (see Egs. (10),(13),(16),(17),and (18)) Eq. (19) is
satisfied.

5. Quadratic loading
One can also choose the loading function P(r) to be a quadratic

polynomial such that the inverse square-root singularity disap-
pears at both ends. For instance, by choosing

P(r) =3 —-6r2 (so that /j P(r)dr = 2),

then
1 (3 _ G2 a2 3 _
o(r) = 1 ][(3 6s%)v'1 st:6(r r)7 der<t,
wl-r2J4 S—r V1-12
(20)
where we have used Eq. (12) and
1 1 s2V1 =52 s T )
%][]?ds_—r t3 (see Appendix B.1). (21)

Obviously, Eq. (20) becomes

o) =D 6rvir,

and there is no more 1/+/r singularity at both crack tips. Fig. 7 illus-
trates the strain @(r) and displacement profile

Wr) =21-n1+rv1-r?

under the quadratic loading function P(r) = 3 — 6r2. Note that the
tangent lines of the displacement profile at r =1 and r = —1 have
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Fig. 7. Strain function &(r) = —6rv1—r? and displacement function W(r) =
2(1 = r)(1+r)v1 —r2 under quadratic loading P(r) =3 -6r2, —-1<r<1.
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° Loading function
+ Strain function

Displacement profile

Fig. 8. Strain function &(r) = r(21? —3%)/v/1 — r? and displacement profile W(r) =
(13 -10r?)v1 —r2/8 under quadratic loading function P(r)= (9 —15r?)/4,
-1<r<1.

slope zero. This displacement profile resembles a cusping crack as
obtained in strain gradient theory (Fannjiang et al., 2002; Paulino
et al., 2003) or cohesive zone models (Zhang and Paulino, 2005).

To reiterate that the disappearance of singularity is not purely
due to any arbitrary loading function which is compressive around
the neighborhood of both crack tips, Fig. 8 is provided. It employs
the quadratic loading (recall fjl P(r)dr =2)

9 15

which leads to the strain function

15, 33

o0 =737 3)

and displacement profile

W(r) =<5 (13 —10r)vV1 — 12,

oo —

One can clearly observe that the 1/./r singularity appears at r =1
and r = —1 even though the loading function renders compression
at both crack tips.

6. Higher degree loading functions

It is certainly possible that one can choose the loading function
P(r) to be a polynomial of higher degree such that not only the in-
verse square-root singularity disappears at both ends, but also the
derivative of the strain function &(r) does NOT possess any singu-
larity at the crack tips. The detail of how to find those polynomials
is given in Appendix B.2 .

As an additional example, a loading function of 4th degree is
examined next. By choosing

o Loading function

+ Strain function
Displacement profile
Fig. 9. Strain function &(r) = —40r(1 —r?)v1 -r2/3 and displacement profile

W(r) = 8(1 — 2r* + r*)v/1 — r?/3 under the 4th degree polynomial loading function
P(r)=5(3-12r2 +8r%)/3, —-1<r<1.

1
P(r) = 2(3 —12r% + 8r%) <recall / P(r)dr = 2>, then, (22)
-1
5 1 (3-12r% + 8r4)V1 — 82
o(r) = d
® n\/l—rszl 3(s—1) ’
—40r(1 — 21 +1%)
= “1<r<1, (23)

where we have used formulas (12), (21), and

1 1 s*V1-52 s T .
E]C - ds=-r"+ 5+g (see Appendix B.1). (24)
Obviously, Eq. (23) becomes
—40r(r+1)*(r—-1> 40 )
&(r) = ———r1-r)W1-r2
N=""5A-n 3=

and one can see that not only the 1/,/r singularity disappear at
r=1and r = —1, but the strain function also has zero slope tangent
line at both crack tips. Fig. 9 shows the strain function @(r) and dis-
placement profile

8

W(r)=5(1-2r"+ V1 -2,

under the loading function P(r) = 3(3 — 12r% + 8r%).

7. Concluding remarks

Under the setting of LEFM, the stress singularity near the crack
tip shows a 1/4/r behavior, as confirmed by Eq. (3). However, Eq.
(3) clearly affirms that the solution to the strain function ¢(x) de-
pends on the traction loading function p(x), and it seems that little
attention has been drawn on how the loading function influences
the stress singularity near the crack tip. This paper presents a de-
tailed derivation of the exact solution to different traction loading
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functions. By judicious choice of particular loading functions one
can obtain smooth stress and displacement fields.

As expected, our work reassures the standard 1//r crack tip
singularity. However, our point is that, among an infinite family
of loading functions, there is one and only one function for a poly-
nomial with given degree [normalized in terms of Eq. (19)] that
will make the crack tip singularity disappear—we show how to find
such functions exactly.

This work deals with a theoretical investigation involving mode
Il cracks. A practical extension of this work is the investigation of
mode I cracks. Similarly to the mode III case, the crack displace-
ments may be negative in some instances, which indicate interpen-
etration of the crack faces. Thus the study may be conducted in
conjunction with contact mechanics to suppress interpenetration
of crack surfaces (Anderson, 2005).
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Appendix A. Unique Solution to Integral Equation (2)

Recall that all formulas have been normalized through a change
of variables by Eq. (6). Let W(r) represent the normalized displace-
ment, then the condition

implies that

1 1 _ Q2
/ o, 1 ][ POVIZS sl ar =0, |ri<1.
V1= muv1-r2) 1 s

(25)

After a switch of the double integral and the following formula

1
7/ S ) Ir| <1, (26)
Joa(s—r)vV1-—s?

one can readily see that constant y, must be zero. Thus the unique
solution is that

S)V1 —s?

B 1 7[1 P( ds
Cauw/1-r2) s-r .

o(r)

Appendix B. Some Cauchy integral formulas

B.1. Polynomials: s"

Let
1 /1 s"/1=¢2
In(r) = 5/4 S_r ds, (27)
then (Kaya and Erdogan, 1987)
2 1 3, T
Iy(r)=—-r, Li(r)=-r +§, L(r)=-r +§, (28)
2 3
_ a1 sy r
13(r)_ r+2+8 14(7') +2+87
4 2
_ e, 1
Is(r) = —r1 +2+8+16 (29)

The general formula for evaluating I,,(r) is

n+1

1
I _ 2 k.

c {r("Tk)/r(n'T<+3)7 if n—k isodd,
=

. . (30)
0, if n—k iseven,

where

F(ac):/oocy“*le*ydy:(oc—l)! and F(—%) :—ZFG) =-2VT.

B.2. Tchebyshev polynomials

The main formula that has been used in the derivation of find-
ing the loading function is

l/l Un(s)V1 — 52

xl - ds=-Tp1(r), n >0 and

<1, (31)

where the T,(r) and U,(r) are the Tchebyshev polynomials of the
first and second type, respectively. For example, to find the loading
function P(r) in Eq. (22), one can write P(r) as a linear combination
of the Tchebyshev polynomials of the second type

4
P(r) = cUg(r),
k=0

then by Eq. (8)

B 1 f‘ P(s)V1 —s2
vl o) S—=r
VI =250 ckUi(s)

S—r

&(r) ds

ds

1 1
T vl -2 .7[4
4

1
G Tra(r), -1<r<l1,
\/1—37’; k T (1),

where we have applied formula (31). As @(r) is required to cancel
out the singularity as r — 1~ and r — —1%, it must have factors
(1-=r) and (1 +7). For the example that has been demonstrated
in Eq. (22), ®(r) has factors (1 —r)* and (1 +r)?, that is,

®(1)=0, &(-1)=0, @'(1)=0, and &' (-1)=0.

It leads to solve the following system of linear equation of ¢;’s:
c1+¢c3=0, cp+¢cy+cq4=0,
Co +9¢y +25¢4 = 0.

ci1+4c3 =0, and

There are infinite many solutions (five unknowns with four restric-
tions), and one solution is that

=2, =0 ¢=-3, ¢c3=0 and c4=1.

A simple calculation leads to
P(r) is a multiple of 2Uy(r) — 3U,(r) 4+ Uy(r) = 6 — 2412 + 1614
and
&(r) has a factor of 2T;(r) — 3Ts(r) + Ts(r)
=161 — 321 + 161> = 16r(1 — 1?)°.

After normalization fjl P(r)dr = 2, we find that

P(r) = g(a —12r2 +8r*) and
o(r) = 1 f] P(s)V1 — 2 ds — ~or(1 - 2r2 414
N n 3V1-r2 ’

-1<r<1.



Y.-S. Chan et al. / Mechanics Research Communications 37 (2010) 191-197 197

References

Anderson, T.L., 2005. Fracture Mechanics: Fundamentals and Applications. Taylor &
Francis, Group, Boca Raton.

Bueckner, H.F., 1958. The propagation of cracks and the energy of elastic
deformation. Trans. Am. Soc. Mech. Eng. 80, 1225-1230.

Erdogan, F., 1978. Mixed boundary value problems in mechanics. In: Nemat-Nasser,
S. (Ed.), Mechanics Today, vol. 4. Pergamon Press Inc., New York, USA, pp. 1-86.

Erdogan, F., 1985. The crack problem for bonded nonhomogeneous materials under
antiplane shear loading. J. Appl. Mech. Trans. ASME 52 (4), 823-828.

Erdogan, F., 1995. Fracture mechanics of functionally graded materials. Compos.
Eng. 5 (7), 753-770.

Fannjiang, A.C., Chan, Y.-S., Paulino, G.H., 2002. Strain-gradient elasticity for mode
11l cracks: a hypersingular integrodifferential equation approach. SIAM J. Appl.
Math. 62 (3), 1066-1091.

Gray, LJ., Paulino, G.H., 1998. Crack tip interpolation, revisited. SIAM ]. Appl. Math.
58 (2), 428-455.

Hadamard, J., 1952. Lectures on Cauchy’'s Problem in Linear Partial Differential
Equations. Dover, New York, NY, USA.

Hui, C.Y., Ruina, A., 1995. Why K? High order singularities and small scale yielding.
Int. J. Fract. 72 (6), 97-120.

Kaya, A.C., Erdogan, F., 1987. On the solution of integral equations with strongly
singular kernels. Quart. Appl. Math. 45 (1), 105-122.

Martin, P.A., 1991. End-point behaviour of solutions to hypersingular integral
equations. Proc. R. Soc. Lond. A 432, 301-320. 1885.

Martin, P.A.,, 1992. Exact solution of a simple hypersingular integral equation. J.
Integral Eqs. Appl. 4, 197-204.

Muskhelishvili, N.I, 1953. Singular Integral Equations. Noordhoff International
Publishing, Groningen, The Netherlands.

Muskhelishvili, N.I, 1963. Some Basic Problems of the Mathematical Theory of
Elasticity. Noordhoff Ltd., Groningen, The Netherlands.

Paulino, G.H., Sutradhar, A., 2006. The simple boundary element method for
multiple cracks in functionally graded media governed by potential theory: a
three-dimensional Galerkin approach. Int. J. Numer. Methods Eng. 65, 2007-
2034,

Paulino, G.H., Chan, Y.-S., Fannjiang, A.C., 2003. Gradient elasticity theory for mode
III fracture in functionally graded materials - Part I: crack perpendicular to the
material gradation. J. Appl. Mech. Trans. ASME 70 (4), 531-542.

Sneddon, L.N., 1966. Mixed Boundary Value Problems in Potential Theory. North-
Holland Pub.Co., Wiley, Amsterdam, New York.

Sneddon, L.N., 1972. The Use of Integral Transforms. McGraw-Hill, New York.

Sneddon, LN., Elliott, H.A., 1946. The opening of a Griffith crack under internal
pressure. Quart. Appl. Math. 4, 262-267.

Sneddon, LN., Lowengrub, M., 1969. Crack Problems in the Classical Theory of
Elasticity. Series Title: The SIAM series in applied mathematics. Wiley, New
York.

Sélingen, H., 1939. Die Losungen der Integralgleichungen g(x) :2‘7[ fﬂf(xjf und
deren Anwendung in der Tragfliigeltheorie. Math. Z. 45, 245-255.

Westergaard, H.M., 1939. Bearing pressures, cracks. J. Appl. Mech. Trans. ASME 6,
49-53.

Widder, D.V., 1971. An Introduction to Transform Theory. Academic Press, New
York, London.

Zhang, Z., Paulino, G.H., 2005. Cohesive zone modeling of dynamic failure in
homogeneous and functionally graded materials. Int. J. Plast. 21, 1195-1254.




	Dependence of crack tip singularity on loading functions
	Introduction
	Green’s function
	Uniform loading
	Linear loading
	Singularity suppression at the right crack tip
	Singularity suppression at the left crack tip

	Quadratic loading
	Higher degree loading functions
	Concluding remarks
	Acknowledgments
	Unique Solution to Integral Equation (2)
	Some Cauchy integral formulas
	Polynomials:  {s}^{n}
	Tchebyshev polynomials

	References


