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SUMMARY

The finite-element (FE) method is used for modeling geotechnical and pavement structures exhibiting
significant non-homogeneity. Property gradients generated due to non-homogeneous distributions of mois-
ture is one such example for geotechnical materials. Aging and temperature-induced property gradi-
ents are common sources of non-homogeneity for asphalt pavements. Investigation of time-dependent
behavior combined with functionally graded property gradation can be accomplished by means of the
non-homogeneous viscoelastic analysis procedure. This paper describes the development of a generalized
isoparametric FE formulation to capture property gradients within elements, and a recursive formulation
for solution of hereditary integral equations. The formulation is verified by comparison with analytical
and numerical solutions. Two application examples are presented: the first describes stationary crack-tip
fields for viscoelastic functionally graded materials, and the second example demonstrates the application
of the proposed procedures for efficient and accurate simulations of interfaces between layers of flexible
pavement. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As of October 2008, there are over 2.6-million miles of paved roads across the United States, out
of which 75.6% have an asphalt concrete surface [1]. Asphalt concrete pavements are inherently
graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling leading
to gradients in temperature with depth are the major cause of non-homogeneity. Current pavement
analysis and simulation procedures predominantly use a layered approach to account for these
non-homogeneities; a common example of such approach is the recently developed American
Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical
Design Guide (MEPDG) [2].
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Figure 1. Cross-section of asphalt pavements showing interfacial
zone between different construction courses.

It is a common practice to design and construct asphalt concrete pavement layers in a number of
different courses ranging from 18mm (34 in) to 75mm (3 in) in thickness. The interfaces between
these layers form a continuously graded zone of finite thickness. For pavements designed and
constructed with layers of significantly different properties, it is critical to give attention to the
graded nature of the interface. Typical examples of pavement systems with significantly different
materials include overlay–interlayer systems, surface treatments with open-graded mixtures laid
on top of dense-graded mixtures, and special treatments that yield varying asphalt binder content
through the thickness of course such as chip seals or bonded overlays. The interfaces of different
construction lifts are shown in Figure 1 for two asphalt pavements. The boxes (dotted lines) indicate
the region of the interface where rapid transitioning between the two distinct layers occurs. Unless
this transition zone is properly accounted for in analysis, significant numerical artifacts may occur,
such as unrealistically high shear stress at the interface.

Functionally graded materials (FGMs) are characterized by spatially varied microstructures
created by non-uniform distributions of the reinforcement phase with different properties, sizes,
and shapes, as well as by interchanging the role of reinforcement and matrix materials in a contin-
uous manner [3]. They are usually engineered to produce property gradients aimed at optimizing
structural response under different types of loading conditions (thermal, mechanical, electrical,
optical, etc.) [4]. These property gradients are produced in several ways, for example by gradual
variation of the content of one phase relative to other, or by using a sufficiently large number of
constituent phases with different properties [5].

Flexible pavements are one of several civil engineering systems exhibiting viscoelastic func-
tionally graded material (VFGM) behavior. Many geotechnical materials exhibit viscoelastic char-
acteristics, for example, behavior of sands as recently demonstrated by Bang et al. [6]. Factors
such as moisture distribution [7, 8], temperature non-homogeneity [9], pore distribution [10], etc.
commonly yield functionally graded viscoelastic boundary value problems in geotechnical engi-
neering. Other examples of such systems include graded fiber- reinforced cement and concrete
structures [11]. Application areas for the graded viscoelastic analysis include accurate simulation
of the interfaces between viscoelastic materials such as the layer interface between different asphalt
concrete lifts.

The homogeneous finite-element modeling (FEM) technique discretizes the problem domain into
smaller elements, each with a unique constitutive property. The capability to effectively discretize
the problem domain makes it an attractive simulation technique. However, the assignment of a
single material property description to an element in the FEM approach makes it an unattractive
choice for simulation of problems with material non-homogeneities. Specialized elements, such
as ‘graded elements’, allow for non-homogenous material property definitions within an element.
This paper describes the development and verification of the graded viscoelastic finite-element
(FE) analysis method and some of its applications.

This paper is organized into six subsequent sections. The background and related research work
is described followed by the introduction of the basic viscoelastic FE framework. A recursive
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time-integration scheme is introduced next, which is followed by a series of verifications through
comparisons with analytical and numerical solutions. The later portion of this paper describes two
application examples: the first one describing crack-tip stress fields for VFGM and the second one
presents responses of flexible pavement systems with graded interfaces. Finally, conclusions and
future extensions of the present work are presented.

2. BACKGROUND AND RELATED WORK

Analytical solutions have been developed for a variety of functionally graded viscoelastic problems
such as fracture [12, 13] and plate bending [14]. For analysis of complex boundary value problems,
such as flexible pavements or geotechnical structures, numerical analysis procedures are preferred
due to lack of analytical solutions. For example, the latest pavement design guide developed by
AASHTO [15] relies on FE analysis for the evaluation of stress and strain responses under tire
loading.

Specialized ‘graded elements’ have been previously proposed for simulation of FGMs, among
others by Santare and Lambros [16], and Kim and Paulino [17]. Two common approaches have
been proposed: (1) direct Gaussian integration and (2) the generalized isoparametric formulation
(GIF). The GIF relies on natural extension of the conventional iso-parametric mapping to capture
material non-homogeneity within the element. The GIF has been explored for variety of elastic
FGM problems such as dynamic behavior of beams [18]. Recently, Silva et al. [19] showed the
benefits and suitability of using GIF for multiphysics applications.

Extensive research has been conducted in the area of numerical analysis of viscoelastic problems.
The literature can be divided into two categories: (1) transformation-based or correspondence
principle-based methods and (2) time-integration methods. Examples of these approaches include
works by Hilton and Yi [20], which describe a transformation-based approach for anisotropic
viscoelastic composites, and a recursive time-integration scheme for orthotropic and non-linear
viscoelastic problems as described byMuliana and Khan [21]. A variety of time-integration schemes
have been explored for viscoelastic FEs such as incremental schemes [22, 23] and recursive schemes
[21, 24, 25]. Incremental schemes are based on the determination of response increment in each
time-step, whereas recursive schemes rely on keeping track of the material history effect and
updating it at each time-step.

A limited amount of work has been conducted on numerical simulation of viscoelastic FGMs
including meshless and boundary integrals methods [26, 27] and correspondence principle-based
FEs [28]. These previous approaches rely on the use of integral transformations and therefore
they are imposed with the limitations of the correspondence principle as described by Mukherjee
and Paulino [29] and Rajagopal and Wineman [30]. The time-integration approaches are not
imposed with limitations on material model description or boundary conditions as required by the
correspondence principle; hence in this study, the time-integration approach is explored. Details of
the recursive time-integration scheme in conjunction with viscoelastic GIF for FEs are described
later in this paper.

3. BASIC VISCOELASTIC FE FORMULATION

The basic stress–strain relationships for viscoelastic materials have been presented by, among
others, Hilton [31] and Christensen [32]. The constitutive relationship for a quasi-static, linear
viscoelastic isotropic materials is given as

�ij(xi , t)= 2
∫ t ′=t

t ′=−∞
G(xi ,�(t)−�(t ′))

(
εij(xi , t

′)− 1

3
�ijεkk

)
dt ′

+
∫ t ′=t

t ′=−∞
K (xi ,�(t)−�(t ′))�ijεkk dt ′ (1)
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where �ij are stresses and εij are strains at any location xi . The parameters G and K are the
shear and bulk relaxation moduli, respectively, �ij is the Kronecker delta, and t ′ is the integration
variable. Subscripts (i, j,k, l=1,2,3) follow Einstein’s summation convention. The reduced time
� is related to real time t and temperature T through the time–temperature superposition principle:

�(t)=
∫ t

0
a(T (t ′))dt ′ (2)

For a non-homogeneous viscoelastic body in a quasi-static condition, assuming a boundary value
problem with displacement ui on volume �u , traction Pi on surface ��, and body force Fi ,
the equilibrium and strain–displacement relationships (for small deformations) are as shown in
Equation (3),

�i j, j +Fi =0, εij= 1
2 (ui, j +u j,i) (3)

respectively, where ui is displacement and (·), j =�(·)/�x j .
The derivation of FE formulations using variational principles is described by many authors,

including the textbooks by Cook et al. [33] and Reddy [34]. The variational principle for quasi-
static linear viscoelastic materials under isothermal conditions can be found in Gurtin [35]. Taylor
et al. [23] extended it for thermo-viscoelastic boundary value problems,

� =
∫

�u

∫ t ′=t

t ′=−∞

∫ t ′′=t−t ′

t ′′=−∞
1

2
Cijkl[xi ,�ijkl(t− t ′′)−�′

ijkl(t
′)]

�εij(xi , t ′)
�t ′

�εkl (xi , t ′′)
�t ′′

dt ′ dt ′′d�u

−
∫
�u

∫ t ′=t

t ′=−∞

∫ t ′′=t−t ′

t ′′=−∞
Cijkl[xi ,�ijkl(t− t ′′)−�′

ijkl(t
′)]

�ε∗
ij(xi , t

′)
�t ′

�ε∗
kl(xi , t

′′)
�t ′′

dt ′ dt ′′d�u

−
∫
��

∫ t ′′=t

t ′′=−∞
Pi (xi , t− t ′′)

�ui (xi , t ′′)
�t ′′

dt ′′d�� (4)

where � is the potential for the body, �u is the volume, �� is the surface on which tractions Pi
are prescribed, ui are the displacements, Cijkl are space- and time-dependent material constitutive
properties, εij are the mechanical strains and ε∗

ij are the thermal strains, and �ijkl is the reduced
time related to real time, t , and temperature, T , through time-temperature superposition principle
of Equation (2). The first variation provides the basis for the FE formulation

�� =
∫

�u

∫ t ′=t

t ′=−∞

∫ t ′′=t−t ′

t ′′=−∞

⎧⎪⎨
⎪⎩
Cijkl[xi ,�ijkl(t− t ′′)−�′

ijkl(t
′)]

�
�t ′

(εij(xi , t
′)−ε∗

ij(xi , t
′))

��εkl(xi , t ′′)
�t ′′

⎫⎪⎬
⎪⎭ dt ′ dt ′′d�u

−
∫
��

∫ t ′′=t

t ′′=−∞
Pi (xi , t− t ′′)

��ui (xi , t ′′)
�t ′′

dt ′′d�� =0 (5)

The element displacement vector, ueli , is related to nodal displacement degrees of freedom (dof) q
through the shape functions, Nij,

ueli (xi , t)=Nij(xi )q j (t) (6)

Differentiation of Equation (6) yields the relationship among strain, εi , nodal displacements, qi ,
and derivatives of shape functions, Bij,

εi (xi , t)= Bij(xi )q j (t) (7)

Equations (5)–(7) provide the equilibrium equation for each FE,
∫ t

0
kij(xi ,�(t)−�(t ′))

�q j (t ′)
�t ′

dt ′= fi (xi , t)+ f thi (xi , t) (8)
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where kij is the element stiffness matrix, fi is the mechanical force vector, and f thi is the thermal
force vector, which are described as follows:

kij(xi , t)=
∫

�u

BT
ik (xi )Cklmn(xk,�(t))Bnj (xn)d�u (9)

fi (xi , t)=
∫

��

Nij(xi )Pj (x j , t)d�� (10)

f thi (xi , t)=
∫

�u

∫ t

−∞
Bik(xi )Cklmn(xk,�(t)−�(t ′))

�ε∗
n(xn, t

′)
�t ′

dt ′d�u (11)

ε∗
n(xn, t)= �(xn)�T (xn, t) (12)

where � is the coefficient of thermal expansion and �T is the temperature change with respect to
initial conditions.

On assembly of the individual FE contributions for the given problem domain, the global
equilibrium equation can be obtained as

∫ t

0
Kij(xi ,�(t)−�(t ′))

�u j (t ′)
�t ′

dt ′= Fi (xi , t)+F th
i (xi , t) (13)

where Kij is the global stiffness matrix, ui is the global displacement vector and Fi and F th
i are

the global mechanical and thermal force vectors, respectively. The solution to the problem requires
solving the convolution shown above to determine nodal displacements.

In previous analysis using the FE method, a single set of properties were assigned to each
element [36–38]. In the case of graded elements with GIF, the constitutive material properties are
selected at each node point and interpolated back to the Gauss-quadrature points (Gaussian inte-
gration points) using isoparametric shape functions. Using GIF, the non-homogeneous viscoelastic
material properties such as shear relaxation modulus G(t) and bulk relaxation modulus K (t) are
interpolated as

G(t)=
m∑
i=1

Ni [G(t)]i , K (t)=
m∑
i=1

Ni [K (t)]i (14)

where Ni are the iso-parametric shape functions corresponding to node i , and m is the number of
nodal points in the element.

4. RECURSIVE TIME-INTEGRATION FORMULATION

The recursive integration scheme based on the formulation by Yi and Hilton [25] is presented
in this section for viscoelastic FGM elements. Comparisons between the direct integration and
recursive approaches for homogeneous and FGM viscoelastic problems are made and the results
are described later in this section. The subsequent sections describe more rigorous verification and
validation examples.

For a viscoelastic FGM represented by a generalized Maxwell model with h units, the kernel
Kij expands as

Kij(xi ,�)=
m∑

h=1
(Ke

ij(xi ))h Exp

(
− �(t)

(�ij(xi ))h

)
(15)

A simplified representation of the generalized Maxwell model utilized in the above equation is
shown in Figure 2. The relaxation times for hth Maxwell unit is (�ij)h , which is given in terms of
the ratio of viscous parameters (�ij)h and elastic parameters (Ke

ij)h .
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Figure 2. Generalized Maxwell model.

The nodal displacements, u j , and its time derivatives, u̇ j and ü j , can be approximated as

u j (tn) = u j (tn−1)+ �u j (t)

�t
�t+ �2u j (t)

�t2

(
�t

2

)2

, tn−1�t�tn

�u j (t)

�t
= u̇ j (tn)= u j (tn)−u j (tn−1)

�t

�2u j (t)

�t2
= ü j (tn)= u̇ j (tn)− u̇ j (tn−1)

�t

(16)

where tn is the time at increment n and �t is the time-step size.
Using assumptions shown in Equation (16), the kernel form in Equation (15), and by performing

integration by parts, the viscoelastic FGM FE problem described in Equation (13) can be
expressed as

[
m∑

h=1
(Ke

i j (xi ))h ·[(v1i j (xi , tn))h�t−(v2i j (xi , tn))h ]
2

�t2

]
u j (tn)

= Fi (tn)+
m∑

h=1

[[
(Ke

i j (xi ))h ·Exp
[
− �(tn)

(�i j (xi ))h

]]{
(v1i j (xi , tn−1))h

[
u j (tn−1)

2

�t
+ u̇ j (tn−1)

]

− 2

�t2
(v2i j (xi , tn−1))h[u j (tn−1)+u̇ j (tn−1)�t]−ui (t0)+(v1i j (xi , t0))u̇ j (t0)

}
+(Ri (tn))h] (17)

where the viscous terms in the current time-step v1ij and v2ij, and the recursive term Ri are given as

(v1ij(xi , tn))h =
∫ tn

0
Exp[−�(t ′)/(�ij(xi ))h]dt ′

(v2ij(xi , tn))h =
∫ tn

tn−1

(v1ij(xi , t
′))h dt ′

(Ri (tn))h = Ke
ij ·Exp[−�(t ′)/(�ij(xi ))h]·(v2ij(xi , tn))h ü j (tn−1)

+Exp[−�(t ′)/(�ij(xi ))h](R j (tn−1))h (18)

Notice that in the above expression, the solution at any time, tn , is dependent on the second
derivative of displacements, ü j (tn−1), and the recursive term, R j (tn−1), from the previous time-
step. This property of the recursive schemes makes it computationally efficient when compared
with the direct integration approaches that require access and use of solutions from all the previous
time-steps.

FE implementation has been performed for solving two-dimensional (2D) planar and axisym-
metric problems. Implementation is done to conduct simulations using software Matlab. At present
linear interpolation (shape) functions are implemented. A viscoelastic boundary value problem
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Table I. Computation times for different solution schemes (creep problem).

Solution time (ms)

Recursive formulation
Direct (relative reduction in solution time compared Correspondence principle-

Step size (s) integration direct integration is shown in parenthesis) based analysis [28]

0.01 1.6E+06 8.6E+05 (46.5%) 1.1E+06
0.02 8.6E+05 4.5E+05 (47.7%)
0.05 3.9E+05 2.1E+05 (46.2%)
0.1 2.0E+05 9.7E+04 (51.5%)
0.2 8.2E+04 4.7E+04 (42.7%)
0.5 4.3E+04 1.6E+04 (62.8%)
1 1.8E+04 —

Table II. Error analysis for different solution schemes (creep problem).

Cumulative absolute error

Recursive formulation
(ratio of the cumulative absolute error

Direct between recursive formulation and direct Correspondence principle-
Step size (s) integration integration are shown in parenthesis) based analysis [28]

0.01 0.005 0.0143 (2.86) 0.162
0.02 0.011 0.0319 (2.90)
0.05 0.027 0.0675 (2.50)
0.1 0.059 0.1558 (2.64)
0.2 0.108 0.3746 (3.47)
0.5 0.269 0.9039 (3.36)
1 1.026 —

simulating 100 s creep extension of a bar is simulated using recursive and direct integration
methods. The computational times and solution accuracy are determined for different time-step
sizes.

The same boundary value problem was solved using the correspondence principle-based formu-
lation described by Dave et al. [28]. The computational times and error analysis for different
time-step sizes are tabulated in Tables I and II. Notice that cumulative errors over the analysis
period are tabulated. The analysis results are as expected, with larger computational times and lower
errors for smaller time-steps. The general observation from this example shows greater computa-
tional cost for direct integration compared with recursive formulation; this is due to continuous
access and computations utilizing all the previous solutions at each increment. The solution accu-
racy for both time-integration approaches depend on the time-step sizes. Recursive formulation
requires smaller time-steps compared with direct integration for the same level of accuracy. The
problem shown here is quite simple as far as problem geometry, size, and boundary conditions
are concerned. The computational efficiency benefits of the recursive scheme are expected to be
better for larger problems with complicated boundary conditions. In order to demonstrate this and
to present a more convincing case for use of recursive scheme over direct integration, an example
of a viscoelastic body with cyclic loading is presented next.

4.1. Viscoelastic body with cyclic loading

A viscoelastic body is simulated with sinusoidal loading conditions. The load is applied at a
frequency of 0.5Hz. The problem geometry, boundary conditions, and FE mesh are shown in
Figure 3. The viscoelastic material properties are shown in Figure 4. The properties are simulated
with generalized Maxwell model consisting of five Maxwell units. The exact (analytical) solution
to this problem can be evaluated and is available in standard references in viscoelasticity, such as
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Figure 3. Problem description for example with sinusoidal loading (problem
geometry, boundary conditions, and finite element mesh).
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Figure 4. Relaxation modulus for example with sinusoidal loading.

Christensen [32]. The response of viscoelastic bodies imposed with cyclic pressure loading can
be expressed in terms of two important parameters, the phase lag between imposed stress and
the corresponding strain, and the total strain accumulation at any given time of loading. For the
example presented here, the imposed stress and the corresponding strain response are shown in
Figure 5.

The problem was solved using direct integration and recursive integration scheme with various
time increment sizes ranging from 0.001 to 0.2 s. The results from each set of simulations were
compared against the analytical solution. The strain phase lag and total strain at 100 s were used
for making comparisons. The computation times were also evaluated for each run. The absolute
deviations from the analytical solution as well as computation times are presented in Table III.
Close inspection of the absolute error and computation times from both methods indicate that for
similar level of accuracy, the recursive scheme is notably efficient. For example, the errors are
similar for direct integration with 0.02 s time-step size and recursive scheme with 0.01 s step size.
With these time-step sizes for each method, the recursive scheme is approximately 79% faster.
Once again notice that this problem only consists of single cyclic loading with relatively small
problem (242 dof); as problems become larger, such as flexible pavements, the benefits of using
the recursive method will continue to improve.
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Figure 5. Imposed sinusoidal stress (excitation) and the corresponding strain (response)
for viscoelastic body: (a) excitation and response from 1 to 5 s (phase lag of strain
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Table III. Error and computation time analysis for different solution schemes (cyclic loading problem).

Direct integration Recursive formulation

Absolute error Absolute error

Time increment Phase lag Strain@100 s Solution Phase lag Strain@100 s Solution
size (s) (deg.) (10−6mm/mm) time (s) (deg.) (10−6mm/mm) time (s)

0.001 1.73E−04 2.86E−02 4.20E+04 3.13E−04 3.66E−02 9.24E+03
0.002 2.37E−04 5.94E−02 1.90E+04 7.31E−04 6.14E−02 4.72E+03
0.005 7.59E−04 1.37E−01 5.87E+03 1.29E−03 1.69E−01 2.37E+03
0.01 1.78E−03 3.13E+00 2.35E+03 3.73E−03 7.93E+00 9.90E+02
0.02 3.83E−03 7.63E+00 1.26E+03 5.92E−03 2.76E+01 4.31E+02
0.05 8.65E−03 1.82E+01 7.06E+02 1.13E−02 6.65E+01 2.95E+02
0.1 2.03E−02 4.59E+01 3.78E+02 2.93E−02 3.97E+02 1.67E+02
0.2 6.59E−02 2.01E+02 2.16E+02 8.20E−02 1.47E+03 1.07E+02

5. VERIFICATION

A series of verification examples are simulated to ensure the accuracy of the aforementioned imple-
mentation. Preliminary comparisons are made between direct integration and recursive integration
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schemes. The verifications are made at different levels of sophistication; the initial verification
ensures the accuracy of formulation for homogeneous viscoelastic problems. Later examples
demonstrate verification for functionally graded viscoelastic boundary value problems. The first
set compares VFGM predictions using the present approach with analytical solutions, whereas the
second compares the present approach with other numerical simulations.

5.1. Three-point bending of viscoelastic beam

A viscoelastic beam in three-point bending is simulated using the recursive FE formulation. The
geometry and boundary conditions are shown in Figure 6; the mid-span loading condition is
given as

P(t)= P0h(t), h(t)=Heaviside function (19)

The relaxation modulus for the beam is presented in Figure 6; five Maxwell elements were utilized
to represent the relaxation modulus. FE simulations are performed using time-step sizes of 0.1, 1,
2, 5, 10, and 20 s. The normalized mid-span deflections are presented for FE simulations along
with analytical solutions in Figure 7. The inset in Figure 7 shows the evolution of error for different
time-step sizes. As anticipated, the numerical result converges to the analytical solution as the
time-step reduces. The results show that the recursive formulation-based implementation predicts
accurate results for the homogeneous viscoelastic boundary value problem when the time-step size
is reduced sufficiently.

5.2. Relaxation of VFGM bar

This example demonstrates the capability of the recursive FE method to accurately predict the
response of a VFGM under step strain loading. The verification example from Mukherjee and
Paulino [29] is utilized. The simulations are performed for time-step sizes of 0.1, 0.2, 0.5 and 1 s.
The example represents a functionally graded viscoelastic bar undergoing stress relaxation under
fixed grip loading. Figure 8 compares numerical results with the exact analytical solution, showing
very good agreement.

5.3. Creep response of a VFGM bar

This example further verifies the prediction capability of the recursive FE method for VFGM
problems. The example involves an exponentially graded viscoelastic bar undergoing creep loading.
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Figure 8. Comparison of exact and numerical solution for the
exponentially graded viscoelastic bar in fixed grip loading.

The closed-form solution from Mukherjee and Paulino [29] is compared with the FE predictions.
The simulations are performed using a time-step of 0.1 s. Figure 9 compares the numerical results
with the analytical solution at different loading times. The results show very good agreement with
the analytical solution, further demonstrating the veracity of the viscoelastic-graded FE formulation
presented herein and of its successful implementation.

5.4. Viscoelastic beam with temperature gradient

In order to further verify the accuracy of the VFGM FE analysis using the present approach,
comparisons are made against the commercial FE software ABAQUS�. The analysis is performed
for a viscoelastic beam with a temperature gradient. Temperature-induced property gradients along
the thickness (y-direction) creates material non-homogeneity. The FGM analysis is compared
with layered gradations with varying degree of layer refinements modeled in ABAQUS�. It is
important to ensure that the present formulation is capable of capturing temperature-induced
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-20-15-10-50
0

2

4

6

8

10

Temperature (deg. C)

H
ei

g
h

t 
(m

m
)

-20-15-10-50
0

2

4

6

8

10

Temperature (deg. C)

H
ei

g
h

t 
(m

m
)

-20-15-10-50
0

2

4

6

8

10

Temperature (deg. C)

H
ei

g
h

t 
(m

m
)

-20-15-10-50
0

2

4

6

8

10

Temperature (deg. C)

H
ei

g
h

t 
(m

m
)

Figure 10. Temperature input for different simulation cases solid line: VFGM approach (present
formulation) and dashed line: layered approach (ABAQUS�).

property gradients, as the flexible pavements always exhibit this type of behavior. The loading and
geometric conditions for the beam are same as those shown in Figure 6.

The present approach (VFGM) is capable of accurate representation of the temperature distribu-
tion, e.g. smoothly graded viscoelastic properties in space and time. In the case of commercial soft-
ware, the lack of graded elements requires a layered gradation approach. Thus, non-homogeneous
properties can be approximated by means of mesh refinement and the assignment of varying prop-
erties from layer to layer. For the current problem, the gradation was approximated in ABAQUS
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Table IV. Mesh attributes of different analysis options.

Number of Number of Total degrees of
Simulation case elements nodes freedom

VFGM/6-Layer 720 1573 3146
9-Layer 1620 3439 6878
12-Layer 2880 6025 12050

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

N
o

rm
al

iz
ed

 M
id

-S
p

an
 D

ef
le

ct
io

n

3 Layers

6 Layers

9 Layers

12 Layers
(converges with Analytical Solution)

Dashed Line: ABAQUS
Solid Line: Present approach (VFGM) 

Figure 12. Normalized mid-span deflections for thermally induced graded beam.

using 3, 6, 9, and 18 layers. The temperature distribution for the different simulation cases is
presented in Figure 10. The viscoelastic properties for the material are shown in Figure 11. The
relaxation modulus mastercurve is plotted at a reference temperature of −20◦C. The inset shows
the time–temperature shift factors with the assumption that the material behaves in a thermo-
rheologically simple manner. The shift factors link the thermal distribution to the material property
distributions as described in Equation (2).

The mesh structures and the mesh statistics for different simulation cases are shown in
Figure 11. Note the significant difference between the number of DOF for different simulation
cases (c.f. Table IV). The simulation results are plotted in Figure 12. The results for the problem
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Figure 13. Deviation of layered results with VFGM results.

are presented in the form of normalized mid-span deflections as function of time. The results
demonstrate the accuracy of the present formulation in capturing temperature-induced viscoelastic
property gradients. With the increasing mesh refinement, the layered approach begins to converge
with the FGM results. Figure 13 shows the deviation of the layered approach from the VFGM
approach. This plot illustrates the greater efficiency of the present approach as compared to the
traditional layered approach.

6. VFGM BOUNDARY LAYER ANALYSIS

A large variety of flexible pavement distresses are caused due to initiation and propagation of
cracks in pavements, including thermal cracking, fatigue cracking, top–down cracking and reflec-
tive cracking. As a result of aging and non-uniform temperature distribution, pavements exhibit
functionally graded viscoelastic behavior. In order to predict cracking in flexible pavements, it is
important to accurately determine the crack-tip stress fields. This section describes crack-tip stress
fields in radially graded viscoelastic material, determined using a boundary layer model.

Williams [39] presented the stationary crack-tip stress and displacement fields, and Eischen [40]
extended them for elastic non-homogeneous bodies with continuous, differentiable, and bounded
material properties. The stress fields and corresponding displacements as derived by Eischen are
as follows:

�ij = KI√
2�r

f Iij(	)+
KII√
2�r

f IIij (	)+T�i1� j1+O(r1/2)

ui = KI

Gtip

√
r

2�
gIi (	)+

KII

Gtip

√
r

2�
gIIi (	)+O(r )

(20)

where KI and KII are mode I and mode II stress intensity factors (SIFs), respectively, fij(	) and
gi (	) are angular functions for stresses and displacements, respectively, and T is the T -stress.

Marur and Tippur [41] utilized FEM for investigation of crack-tip stress fields in FGMs. Kim
[42] investigated crack-tip stresses in exponentially graded materials through use of a boundary
layer model and evaluated auxiliary fields for FGMs. Paulino and Zin [12, 13] have proposed
analytical solutions for crack-tip stresses in VFGMs using the correspondence principle. Owing
to limitations of the correspondence principle, the previous solutions are limited to materials with
spatial dependence on only time-independent quantities. Recently, Pan et al. [43] have studied
multiple cracks in VFGMs; however, they have utilized conventional homogeneous FEs available
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Figure 14. Problem description and FE model.

in commercial software for the prediction of crack-tip stresses using layered gradations. In the
current study, the material non-homogeneity is captured with greater accuracy and efficiency than
the layered approaches through the use of the GIF. The use of time-integration schemes allows
for a material model that has spatial dependence on both elastic and viscous properties, making it
more general than the previous studies.

6.1. Problem description and FE mesh

Figure 14 shows the problem description along with the angular convention. Among others, Eftis
et al. [44] have presented the loading conditions on the outer boundary corresponding to the
asymptotic stresses at the crack tip. In the current example, Mode I displacement loading conditions
were assumed. These are given by

ui = KI

Gtip

√
r

2�
gIi (	) where gI1(	)=cos

	

2

[
1

2
(
−1)+sin2

	

2

]
and

gI2(	) = sin
	

2

[
1

2
(
+1)−cos2

	

2

] (21)

The FE model was developed with 3232 elements and 6599 nodes using six node plane stress
triangular elements (T6). Figure 14 shows the FE mesh; the average element side length of 0.2×R
was utilized along the periphery which was reduced to 10−4×R at the center.

6.2. Material gradation

Elastic and viscoelastic simulations were performed for a VFGM with radial gradations. A gener-
alized Maxwell model is utilized for the representation of a time- and space-dependent material.
The functional form of the material properties and the gradation for various components of the
generalized Maxwell model are shown in Equation (22). Notice that the stiffness of the material
at any given time is greatest along the periphery and lowest at the center of the body. The mate-
rial gradation is illustrated in Figure 15, which shows the variation of relaxation modulus with
time and radial distance, r . In addition to the VFGM material, two cases representing the most
compliant and stiff material properties are simulated; these are recovered from Equation (22) for
r =0 (compliant) and r= R (stiff).

E(r, t)=
2∑

i=1
Ei (r )Exp

(
− t

�i (r )

)

Ei (r )= E0Exp
(
a
r

R

)
, �1(r )=b

(
1+ r

R

)c
, �2(r )=d

(
1−Exp

(
e
r

R

)) (22)

a, b, c, d, and e are all scalar material constants.

6.3. Results

The elastic stress fields for the homogeneous cases are first visited to ensure the accuracy of the
FE solutions. The results at instantaneous loading (time, t=0) for the ‘stiff’ material are shown
in Figure 16. The plot shows the variation of stresses as a function of the angle, 	. The results
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Figure 15. Relaxation modulus variation with radial distance and time.
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Figure 16. Elastic stresses for homogeneous ‘stiff’ properties at different radial distances.

are shown for four radial distances and, as anticipated, the predicted stresses match closely with
the reference solution. This set of results provides confidence that the displacement boundary
conditions are accurately imposed and the elastic FE analysis yields correct results.

The elastic normal and shear stress fields for both homogeneous material distributions and
FGM distribution are presented in Figure 17. Stresses for FGM are shown for one radial distance
(r/R=0.012). The elastic stresses match the results reported by previous researchers, for instance,
Kim [42]. The FGM stress fields are consistently in between the ‘stiff’ and ‘compliant’ materials, as
expected. Notice that as the deflection angle approaches the crack (	=�), the stress-free conditions
are recovered. In order to demonstrate the effect of radial gradation on elastic stresses, normal
stresses are plotted at different radial distances for the FGM along with homogeneous materials
(c.f. Figure 18).

The normal stresses (y-direction) for simulations conducted with homogeneous and VFGM
assumptions are shown in Figure 19. The results clearly exhibit viscoelastic stress relaxation with
increasing time. In order to further explore the stress relaxation tendencies, the peak normal stresses
for each material type are plotted against time, as shown in Figure 20. It should be noted that the
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Figure 17. Elastic stresses for all material distributions (homogeneous and FGM).
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Figure 18. Elastic stresses (y-direction) for FGM (at four radial distances) and homogeneous materials.

relaxation of stresses is not distributed evenly with time. This trend illustrates the graded nature of
the time-dependent material properties. If the spatial gradation of constitutive model parameters
was limited to elastic components, the plots would have shown constant deviation between different
radial distances. For this example, the time effect of property gradation is most pronounced between
the radial distances of r/R=0.0122 and r/R=0036. The shear stresses for all material types are
shown in Figure 21. The greatest shear stresses are observed at shortest loading times and for the
stiffest material properties. Stress relaxation is evident in all cases as with the normal stresses.
Figure 22 shows the peak shear stresses for both homogeneous material distributions and at four
radial distances for VFGM. The relaxation behavior of stresses again demonstrates the effect of
combined spatial and temporal variations in properties.

6.4. Summary of boundary layer analysis

A radially graded viscoelastic FGM in mode-I loading conditions was simulated to study the crack-
tip responses. The elastic stress fields match the results presented by previous researchers, further
verifying the accuracy and efficiency of the GIF elements developed in this study. The viscoelastic
crack-tip stresses are shown for loading times up to 100 s. The effect of non-homogeneous, time-
dependent constitutive properties are evident in the observed responses.
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Figure 19. Viscoelastic normal stresses (y-direction) for all material distributions
(homogeneous and VFGM): (i) homogeneous material—(a) compliant material and

(b) stiff material, and (ii) VFGM—(a) r/R=0.0122 and (b) r/R=0.288.
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Figure 20. Peak normal stresses (y-direction) for all material distributions (homogeneous and VFGM).
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Figure 21. Viscoelastic shear stresses for all material distributions (homogeneous
and VFGM): (i) homogeneous material—(a) compliant material and (b) stiff

material, and (ii) VFGM—(a) r/R=0.0122 and (b) r/R=0.288.
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Figure 22. Peak shear stresses for all material distributions (homogeneous and VFGM).
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7. ASPHALT PAVEMENT WITH GRADED INTERFACE

7.1. Introduction and motivation

The current state of practice in modeling of asphalt concrete pavements is to assign infinitesimally
small thickness to the interface between different asphalt courses or lifts [45–48]. In the current
example, this type of approach is labeled as ‘Stepped Interface’ due to the sudden jump in material
properties at the boundary. The viscoelastic FGM FE analysis procedure developed in this paper
is a useful tool for the simulation of viscoelastic interfaces. This example compares the responses
obtained for graded versus stepped interfaces in the context of asphalt pavement analysis.

7.2. Pavement section

A pavement section from Louisiana State Highway, LA34 located near the town of Monroe in
northern Louisiana is selected as the basis for constructing the simulation model. The pavement
section was constructed in the form of an overlay-interlayer system. This pavement is a part of
the National Science Foundation (NSF) sponsored reflective cracking study by Paulino et al. [49].
Figure 23 shows the selected pavement section, which undergoes heavy truck traffic due to its
close proximity to a paper mill.

7.3. FE model and boundary conditions

The FE model for the pavement analysis is developed on the basis of the pavement information
obtained from site visits as well as the cross-section details obtained from construction plans
and cored samples. Figure 24 shows the cross-section of the pavement as utilized for the FE

Figure 23. Pavement section (LA34 near Monroe, LA).

Figure 24. Pavement cross-section and FE model schematics.
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model construction. The FE simulations are performed using an assumption of 2D axisymmetric
conditions.

As described previously, the focus of this example is to compare two simulation approaches
for interfaces between asphalt concrete construction lifts; Figure 24 illustrates the two simulation
approaches regarding the representation of interface between asphalt concrete lifts, namely, step
interface and graded interface.

Two key properties are needed for accurate simulation of graded interfaces, (1) height or width
of interface, and (2) distribution of material properties within the interface. In this example, the
following assumptions are made:

• The width of interface is 9.5mm; this assumption is made on the basis of the nominal
maximum aggregate sizes (NMAS) of the asphalt mixtures. The surface course is a 19mm
NMAS mixture and the reflective crack relief interlayer (RCRI) mixture is 4.75mm NMAS.

• The material properties are assumed to be transitioning in a linear fashion from one mixture
to another over the thickness of the interface. A better approach for obtaining viscoelastic
property gradation at the interfaces would be to incorporate micromechanical approaches such
as those proposed by Yin et al. [50]. This has been identified as one of the future extensions
of this work.

7.4. AC material properties

Wagoner et al. [51] have tested and analyzed field core samples from the LA34 highway. The
relaxation moduli for overlay and interlayer mixtures are shown in Figure 25. The variation of
material properties at the interface for ‘step interface’ and ‘graded interface’ are shown in Figures 26
and 27, respectively. The granular base and soil subgrade are modeled as elastic materials with
Young’s modulus of 276 and 158MPa, and Poisson’s ratio of 0.2 and 0.45, respectively. Note the
mismatch of properties at the midpoint of the interface for the stepped approach.

7.5. Results

The response parameter that is utilized for comparing the two simulation approaches is the stress
in the horizontal direction directly under the tire load. Figure 28 shows the variation of stresses
as a function of vertical position in the asphalt layer. The results are presented for 10, 100, and
100 s loading times. Note that the stresses exhibit an unrealistic ‘jump’ at the interface. This
jump in stresses is illustrated in Figure 29; the plot shows variation of as much as 49% between
the predicted tensile stresses at the bottom of the overlay. The tensile stresses at the bottom of
the overlay are important for simulations of reflective cracking. In particular, the tensile stresses
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Figure 26. Relaxation modulus variation for step interface.
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Figure 27. Relaxation modulus variation for graded interface.
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Figure 30. Peak tensile stresses in the overlay.

are compared with the tensile strength of the material, which serves as the threshold parameter
for the onset of damage. While for this particular example, the step interface approach yields
additional factor of safety in the design, for other pavement distresses, such as top–down cracking
and low-temperature cracking, the step interface would not yield a conservative response.

The variations of peak tensile stresses within the interface as a function of loading time are
shown in Figure 30. The plot shows peak stresses for the graded interface and three sets of
plots for step interfaces: (1) peak stress for the surface course, (2) peak stress for RCRI, and
(3) average of surface course and RCRI stresses. The motivation for plotting average stresses
for the step interface is to demonstrate that simple averaging of responses (stresses or strains) at
the interface significantly over predicts the response compared with the graded interface. For the
current example, the averaging approach yields as much as 30% over prediction as compared with
the graded interface approach.

7.6. Summary and findings

An example is presented for an overlay–interlayer pavement system based on an actual pavement
section on Louisiana state highway 34. The interface between the overlay and interlayer is modeled
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using two approaches, a more conventional step interface and a more physically graded interface.
The graded interface is assumed to have a thickness of 9.5mm and the viscoelastic properties are
assumed to be varying linearly within the interface. Based upon this limited study, the following
key points are observed:

• The physical interfaces between different asphalt lifts require special modeling considerations.
• The assumption of an interface with infinitesimal thickness (step interface) yields unrealistic
stress responses for material layers, which are known to have interpenetration in practice.

• The limited study shown here demonstrated significant variation between peak tensile stresses
obtained from step and graded interfaces.

• The average stresses computed for step interfaces were also found to be significantly greater
than those obtained from graded interface modeling.

8. CONCLUSIONS AND EXTENSIONS

In order to achieve accurate response predictions, it is important to consider non-homogeneities in
flexible pavements and geotechnical structures. Viscoelastic functionally graded FEs using GIFs
are proposed together with a recursive time-integration formulation. The procedures developed
herein are suitable and preferred for functionally graded viscoelastic problems, such as flexible
pavements with aging and temperature-dependent property gradients. A series of verifications are
performed to demonstrate the veracity of the formulation and its implementation.

Two application examples are discussed demonstrating the applicability of the current approach
for investigation of cracking in VFGMs and for response prediction of asphalt concrete pavements
with graded interfaces. These examples further illustrate the suitability of the present approach for
the analysis of flexible pavements.

Further extensions of the current work include exploration of the length scales and property
distributions of the interfaces between asphalt concrete layers. Other extensions include application
of the current work to other graded viscoelastic systems such as geotechnical structures, polymeric
composites, and fiber-reinforced cement concrete.
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