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SUMMARY

Adaptive mesh refinement and coarsening schemes are proposed for efficient computational simulation of
dynamic cohesive fracture. The adaptive mesh refinement consists of a sequence of edge-split operators,
whereas the adaptive mesh coarsening is based on a sequence of vertex-removal (or edge-collapse) opera-
tors. Nodal perturbation and edge-swap operators are also employed around the crack tip region to improve
crack geometry representation, and cohesive surface elements are adaptively inserted whenever and wherever
they are needed by means of an extrinsic cohesive zone model approach. Such adaptive mesh modification
events are maintained in conjunction with a topological data structure (TopS). The so-called PPR potential-
based cohesive model (J. Mech. Phys. Solids 2009; 57:891–908) is utilized for the constitutive relationship
of the cohesive zone model. The examples investigated include mode I fracture, mixed-mode fracture and
crack branching problems. The computational results using mesh adaptivity (refinement and coarsening)
are consistent with the results using uniform mesh refinement. The present approach significantly reduces
computational cost while exhibiting a multiscale effect that captures both global macro-crack and local
micro-cracks. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive mesh refinement (AMR) schemes have been utilized to control and minimize error in
the finite element analysis [1–4]. Researchers further applied mesh adaptation schemes to several
engineering problems while reducing computational cost. For linear elastic problems, mesh around
a crack tip region can be regenerated by a recursive spatial decomposition algorithm [5–7] when the
crack propagates. For elasto-dynamic problems, Wiberg et al. [8] discussed error estimation and
adaptivity (h-adaptivity, p-adaptivity) of spatial and time discretization. Belytschko and Tabbara [9]
adaptively refined finite element meshes (h-adaptivity) by subdividing a rectangular element into
four, and introducing the L2 projection of strains for error estimation in solving elasto-dynamic
problems. Molinari and Ortiz [10] performed AMR and coarsening for dynamic-plastic prob-
lems. The mesh refinement scheme made use of Rivara’s longest-edge propagation path bisection

*Correspondence to: Glaucio H. Paulino, Department of Civil and Environmental Engineering, University of Illinois at
Urbana-Champaign, 205 North Mathews Ave., Urbana, IL 61801, U.S.A.

†E-mail: paulino@uiuc.edu

Copyright © 2012 John Wiley & Sons, Ltd.



2 K. PARK ET AL.

algorithm [11], whereas the coarsening scheme was based on the elimination of elements by edge-
collapse. Cavin et al. [12, 13] presented automatic grid refinement for linear quasi-static problems,
and developed space–time automatic refinement for one-dimensional linear dynamic problems.

From a broader perspective, AMR techniques can be a good candidate for multiscale numerical
methods. For example, Bryan [14] utilized the technique in cosmology in order to represent the evo-
lution of a cluster of galaxies in high-resolution. Trangenstein [15] investigated multi-component
flow in porous media. Other multiscale numerical methods have been developed in conjunction
with various techniques, for instance, variational multiscale method [16], multi-scale enrichment
method [17], and multi-scale finite element method [18]. Notice that Hou and Wu [18] emphasized
the importance of boundary conditions between coarse and fine scales for accuracy of numerical
methods. However, AMR techniques do not suffer from accuracy of boundary conditions because
the finite element mesh can be fully compatible between coarse and fine meshes. Nevertheless,
the major challenge in adaptive finite element analysis is to transfer field variables between two
discretizations, and to maintain a data structure to retrieve adjacency relationships efficiently.

Non-linear crack tip behavior may be represented by several computational methods such as
intrinsic cohesive zone models [19, 20], extrinsic cohesive zone models [21, 22], space–time finite
element method [23], finite elements with embedded discontinuities [24, 25], and enrichment
functions (i.e. generalized=extended finite element methods, GFEM=XFEM) [26–28]. For instance,
when a cohesive surface network is inserted a priori within a potential crack path domain [19],
the so-called intrinsic cohesive zone model results. The traction-separation relationships of the
intrinsic cohesive zone model include an initial elastic range, which can provide significant artificial
compliance, especially when cohesive surface elements are inserted in a large domain [29].

Alternatively, discontinuous fracture surfaces are described by utilizing discontinuous enrichment
functions (e.g. branch functions, Heaviside function) in GFEM=XFEM [26, 27, 30, 31]. However,
non-polynomial enrichment functions lead to additional computational costs involving, for example,
numerical integration [32]. For transient problems in XFEM, time stepping schemes require special
care because discontinuous enrichment functions are time dependent due to the position of moving
discontinuities [33]. For instance, Remmers et al. [34] indicated that ‘an element can be crossed by
a discontinuity in such a way that one of the two resulting parts of the element becomes so small
that the critical time increment for a stable solution procedure will become almost infinitesimal’.
In this general context, according to Bishop [35], ‘once crack branching and crack coalescence
phenomena appear, the prospect of modeling a multitude of arbitrary three-dimensional intersecting
cracks quickly becomes untenable’.

Among various computational methods, the extrinsic cohesive zone model is the choice of the
current work. In the extrinsic cohesive zone models, cohesive surface elements are adaptively
inserted on the basis of external crack initiation criteria whenever and wherever they are necessary.
Thus, this approach does not lead to artificial compliance that exists in the intrinsic cohesive zone
models. Previous extrinsic cohesive zone modeling approaches involved domain discretization using
either a uniformly fine mesh or a fine mesh in a potential crack propagation region.

This paper deals with dynamic cohesive fracture problems. A fine mesh is utilized to capture
micro-cracks and non-linear crack tip behavior, whereas a coarse mesh is employed in a far field
from the crack tip region in conjunction with adaptive mesh refinement and coarsening (AMR&C)
schemes. The mesh adaptation (refinement and coarsening) is performed systematically by keeping
the topology of the evolving 4k mesh with edge-split and vertex-removal operators. The mesh
adaptation is incorporated with TopS [36, 37], which provides compact and efficient topological
representation. The non-linear cohesive zone is represented by cohesive surface elements, and the
Park–Paulino–Roesler (PPR) potential-based model [38] is utilized for the constitutive relationship
of mixed-mode cohesive fracture. In addition, nodal perturbation and edge-swap operators are
employed to reduce mesh bias and to improve crack patterns in 4k meshes [39]. The computational
framework is verified and validated by solving problems involving a predefined crack path,
mixed-mode crack propagation, and crack branching instability.

This paper is organized as follows. Section 2 presents AMR schemes, interpolation of new nodes
and energy balance, whereas Section 3 explains adaptive mesh coarsening (AMC) schemes and
coarsening criterion. Finite element formulations, time integration, and the constitutive relationship
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of the PPR potential-based model are described in Section 4. Computational results of mode I
fracture, mixed-mode fracture and crack branching problems are provided in Section 5. Finally,
Section 6 summarizes the key findings of the paper.

2. ADAPTIVE MESH REFINEMENT (AMR)

The AMR strategy requires an efficient and robust data structure in order to retrieve adjacency
relationships. In this study, the topological data structure named TopS [36,37] is used for represent-
ing 4k meshes. Notice that TopS provides a linear time scale for obtaining adjacent information
and inserting cohesive elements [40]. This data structure provides efficient element-to-element
adjacency and representation of vertices and edges, which are convenient for the implementation
of refinement and coarsening operations. A sample initial 4k mesh and the convention used for the
local incidences of elements are shown in Figure 1. The basic mesh is composed of a uniform set of
right isosceles triangles and internal vertices with degree 4 or 8. Element incidence is defined such
that the third local vertex (v3) of each triangle is associated with the right angle and corresponds to
a global vertex of degree 4. The first local edge (e1) is opposite the third vertex (v3).

In the following subsection, mesh refinement schemes of 4k meshes are explained in conjunction
with edge-split operators. Next, AMR criterion, interpolation schemes of new nodal quantities, and
energy balance are presented.

2.1. Mesh refinement schemes

Mesh refinement is implemented by using an edge-split operator. The operator subdivides an edge
into two new other edges. In order to maintain the 4k structure, internal edge splits are defined on
specific clusters of two triangles (as in the literature [41]) and boundary edges. Figure 2 illustrates
the two possible cases of the edge split. An interior edge split replaces the two adjacent triangles
with four triangles (Figure 2(a)), whereas a boundary edge split replaces a triangle with two triangles
(Figure 2(b)).

In a 4k mesh, the edge split can only be applied to the first local edge (e1), described in
Figure 1(b), of the adjacent triangles. When the edge-split operator is requested for the other edges
(e2 or e3), a recursive procedure is introduced in order to transform the local sub-mesh into one
of the patterns in Figure 2. The procedure works by splitting edges of neighboring triangles until an
allowable pattern is achieved, i.e. recursive edge-split procedure, as illustrated in Figure 3. When
the dashed edge in Figure 3(a) is to be split, the edge does not fit in any of the patterns in Figure 2.
Then, other edges are split (Figure 3(b)) in order to create an allowable pattern for the edge’s split

(a) (b)

Figure 1. (a) Sample initial 4k mesh where thin lines indicate interior edges and thick lines indicate
boundary edges and (b) local nodal incidences (topological entities) of triangles of a region of the 4k mesh.
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(a)

(b)

Figure 2. Local mesh patterns for which edge splits are allowed: (a) mesh around an interior edge and
(b) boundary edge.

(a) (b) (c)

Figure 3. Recursive edge split procedure: (a) request for an edge-split along the edge with a dashed line;
(b) split edges to create an allowable pattern; and (c) split edge along the dashed edge.

(a) (b)

Figure 4. Edge split along a cohesive surface element.

(Figure 3(c)). Therefore, one can select any edge in a 4k mesh for the edge-split operator. A similar
strategy could be employed for completely unstructured triangular meshes, using, for instance, the
longest-edge bisection procedure [42]. One advantage of using the 4k mesh, combined with the
edge-swap operator, consists in offering eight different directions for crack propagation at every
vertex, thus improving crack path prediction. Mesh orientation dependency, introduced by the
regular geometry of 4k structured meshes, is avoided by the use of nodal perturbation [39].

In addition, edge splits are allowed when a cohesive element exists in between the two triangles
of the patterns of Figure 2(a). When one of the edges of the cohesive elements is split, the other edge
is also split by the edge-split operator in order to keep mesh topology consistent. As a consequence,
the cohesive element is divided into two new elements (Figure 4). However, the edge-split operator
on cohesive elements is not employed in computational simulation because the finite element mesh
is refined before the insertion of cohesive elements.

During the edge-split operations, edge depths are computed. The initial depth of all the
edges of an unmodified mesh is zero. The value assigned to the newly created edges is equal
to the maximum depth of all the edges of the triangles adjacent to the split edge, plus one
(MaxDepth(edges) + 1). For example, when the horizontal dashed edge on the left is split,
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Figure 5. Example of the edge-split operation and computed edge depth.

(a)

(b)

(c)

Figure 6. Sequence of edge-split operations along the dashed edges.

the two vertical edges are created, as shown in Figure 5. The depth value assigned to the vertical
edges is 3�, which is equal to the maximum depth of the edges ( 2�) of the adjacent triangles plus
one. The depth of the two new horizontal edges ( 1�) is the same as the original edge. In addition,
Figure 6 shows a sequence of edge splits executed on a sample mesh. At each step, the dashed edges
are split, and depth values are assigned to the newly created ones, shown in Figures 6(a)–(c). The
depth values are illustrated by the numbered labels on them. Notice that labels of edges with
zero-depth value (initial value) are omitted. The depth value is associated with a relative local
ordering for edge splits, which is utilized for AMC schemes, as discussed in the next section.

2.2. Refinement criterion and interpolation of new nodes

In the computational simulation of cohesive fracture problems, AMR is performed by employing
an a priori assumption that a relatively fine mesh is utilized around the crack tip region in order to
capture high stress and=or strain gradients. In order to have a uniformly refined mesh around the
crack tip region, the edge-split operator is used non-recursively. The mesh refinement procedure is
to split all the allowable edges located within a circular region around the crack tip. This is done
in several steps until a maximum level of refinement is reached. Figure 7 illustrates the refinement
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(a) (b) (c)

Figure 7. Three refinement steps executed inside a circular region: (a) level 1; (b) level 2; and (c) level 3.

(a) (b) (c)

Figure 8. Example of the edge-split operations.

procedure on a sample mesh for three levels of refinement. However, the edge-split operator along
a cohesive element is not used in the computational simulation, as mentioned previously.

The AMR strategy with the edge-split operations leads to new nodes whose quantities should
be interpolated from adjacent nodes in the non-linear finite element analysis. For example, in the
4k mesh with quadratic triangular elements of six nodes each (Figure 8(a)), two dashed edges are
split: one edge is on the boundary and the other is in the interior. The boundary edge-split operation
generates three dark-gray nodes, whereas the interior edge-split operation leads to four dark-gray
nodes, as shown in Figure 8(b). One can further split the dashed interior edge in Figure 8(b), and this
operation provides four additional light-gray nodes, as shown in Figure 8(c). Notice that these new
nodes can be locally relocated (or perturbed) at the time of the insertion of new nodes (if one utilizes
the nodal perturbation). In addition, nodal quantities (e.g. displacement, velocity, and acceleration)
of new nodes should be interpolated from neighboring nodes for the explicit time integration in
elasto-dynamic problems.

For the interpolation of new nodes, the choices of sampling nodes and interpolation functions are
essential. First, sampling nodes are selected in a recursive procedure. For example, the three new
dark-gray nodes, which resulted from the boundary edge-split operation, are interpolated from six
nodes, which correspond to the members of a triangular element that shares the boundary edge
(Figure 9(a)). Next, the four new dark-gray nodes, which resulted from the interior edge-split
operation, are interpolated from nine nodes, which are the members of the adjacent elements that
share the interior edge (Figure 9(a)). Similarly, the four light-gray nodes are interpolated from nine
nodes, which are the members of the adjacent elements that share the interior edge, as shown in
Figure 9(b). Because the light-gray nodes are interpolated from five black nodes and four dark-gray
nodes, the dark-gray nodes are interpolated before the light-gray nodes are interpolated. In other
words, new nodes which are inserted first should be interpolated first. Therefore, the sequence of
the interpolations is the same as the sequence of the edge-split operations.

For interpolation functions, the quadratic Lagrange basis functions (i.e. shape functions) are
utilized. The nine node quadratic interpolation functions (i.e. Q9 shape functions) are used for the
interior edge split, whereas the six node quadratic interpolation functions (i.e. T6 shape functions)
are utilized for the boundary edge split. Note that the six node quadratic interpolation functions

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:1–35
DOI: 10.1002/nme



ADAPTIVE COHESIVE ZONE MODELING OF DYNAMIC FRACTURE 7

(a) (b)

Figure 9. Interpolation scheme for new nodes.

(a) (b)

Figure 10. (a) Physical coordinate system and (b) mapped coordinate system.

could be alternatively used for the interior edge split. However, the nine node interpolation gener-
ally leads to better approximation of local node quantities than the six node interpolation because
it uses more local information for the interpolation, as discussed in Section 2.3. The approximated
nodal quantities of a new node (e.g. displacement, eui ) are obtained by

eui D nX
jD1

Nj .�i , �i /uj (1)

where n is the number of interpolation functions, Nj are the Lagrange basis functions, and �i and
�i are nodal locations in the mapped coordinate system (e.g. Figure 10(b)). Alternatively, the new
nodal quantities could be evaluated by using a superconvergence patch recovery technique [43, 44].

The nodal locations of new nodes are mapped from the physical coordinate .x � y/ system to
the mapped coordinate .� � �/ system. For example, the transformation of a quadrilateral from the
mapped coordinate system (Figure 10(b)) to the physical coordinate system (Figure 10(a)) is given
as T W .� , �/ �! .x,y/, where x D

Pn
iD1Ni .� , �/xi and y D

Pn
iD1Ni .� , �/yi . Then, the inverse

mapping .T �1 W .x,y/ �! .� , �// is performed by utilizing Newton’s algorithm to evaluate the
nodal locations of new nodes in the mapped coordinate system. Notice that the size of non-linear
system for the inverse mapping in two-dimensions is two, and thus the computational cost of this
inverse mapping is not significant.

2.3. Energy balance

Energy balance is one of the essential aspects in AMR. The proposed AMR scheme leads to the
strain energy conservation when the finite element shape functions are utilized for the interpolation
of new nodal quantities. In order to demonstrate the strain energy conservation, let us consider a
rectangular domain. The domain is discretized into two different ways: one with two T6 elements
(Figure 11(a)), and the other with four T6 elements (Figure 11(b)). Notice that two triangular ele-
ments in Figure 11(a) are split into four triangular elements in Figure 11(b), which corresponds to
the interior edge split. Thus, Figure 11(a) can be considered as a discretization before the mesh
refinement, whereas Figure 11(b) can be considered as a discretization after the mesh refinement.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:1–35
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(a) (b)

Figure 11. Rectangular domain discretized into (a) two linear strain triangular (T6) elements and (b) four
linear strain triangular (T6) elements.

If the energy in Figure 11(a) is the same as the energy in Figure 11(b), the energy is conserved
during the mesh refinement.

First, a quadratic displacement field is assumed as ux.x, y/ D x2 C 2xy and uy.x,y/ D
y2 C 2xy within the rectangular domain. For the plane stress condition, the exact strain energy
is 7E.5� 3�/=6.1� �2/ where E is the elastic modulus and � is the Poisson ratio. The exact strain
energy is obtained from the finite element analysis with two T6 elements and four T6 elements,
as expected. This is because the finite element formulation captures the exact strain energy for
the linear strain field (or quadratic displacement field) when a linear strain triangular element (T6)
is utilized.

Next, let us consider a cubic displacement field, which is given as ux.x,y/D x3 and uy.x,y/D
y3. For the plane stress condition, the exact strain energy is given as E.9C 5�/=45.1� �2/ within
the rectangular domain. If E and � are 1 and 0, the exact strain energy is 1

5
. In the finite element

calculation, the strain energy of two T6 elements (Figure 11(a)) is 0.194444. In the calculation of the
strain energy of the four T6 elements (Figure 11(b)), the nodal displacements are obtained from the
interpolation using the Q9 shape functions because the exact displacement field is usually unknown
during finite element simulation. Thus, the displacement field used in Figure 11(b) corresponds to
the span of interpolation functions. The obtained strain energy is 0.194444, which is the same as the
strain energy of the two T6 elements (i.e. strain energy conservation). The same results are obtained
when the T6 shape functions are used for the interpolation.

Finally, let us consider a cubic displacement field within the rectangular domain where
ux.x,y/ D x2y and uy.x,y/ D xy2. Note that this displacement field includes terms that cor-
respond to the span of the Q9 shape functions (i.e. x2y and xy2), while the previous displacement
field did not include any term related to the Q9 shape functions. For the plane stress condition, the
exact strain energy isE.27C13�/=45.1��2/. The exact strain energy is 0.6 whenE D 1 and � D 0.
In the finite element calculation, the strain energy with two T6 elements (Figure 11(a)) is 0.614583.
The strain energy with four T6 elements (Figure 11(b)) is 0.607422 when the Q9 shape functions
are used for the interpolation of the displacement field. When the T6 shape functions are used for
the interpolation of the displacement field, the strain energy of the four T6 elements (Figure 11(b))
is 0.614583, which corresponds to the strain energy of the two T6 elements (Figure 11(a)). Thus,
one obtains better approximation with the Q9 shape functions than the T6 shape functions in this
case because more nodal quantities are used for the new node interpolation, which can lead to better
approximation for the displacement field.

Moreover, the AMR scheme leads to the kinetic energy conservation when the nodal velocities
are interpolated using the same shape functions and the consistent mass matrix is utilized. For the
numerical integration of the consistent mass matrix (e.g. polynomial order of 4 for T6 elements), the
quadrature rule proposed by Dunavant [45] is utilized. Similar to the strain energy, for example, let
us assume a cubic velocity field, Pux.x,y/D x3 and Puy.x,y/D 0, within the rectangular domain. If
the density is one, the exact kinetic energy is 0.071429. The kinetic energy is estimated for the two
different discretizations, shown in Figures 11(a) and (b). Note that the finite element formulation is
able to represent the exact kinetic energy for the quadratic velocity field. The kinetic energy with two
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T6 elements (Figure 11(a)) is 0.079167. The same kinetic energy is obtained from the discretization
shown in Figure 11(b) when the Q9 (or T6) shape functions are used for the new nodal velocity
interpolation. Next, let us assume a cubic velocity field, Pux.x,y/ D x2y and Puy.x,y/ D 0, within
the rectangular domain, which includes a term that related to the span of the Q9 shape functions
(i.e. x2y). The exact kinetic energy is 1

30
when the density is one. For the finite element calculation,

the kinetic energy with two T6 elements (Figure 11(a)) is 0.031944. The kinetic energy with four
T6 elements (Figure 11(b)) is 0.033203 when the Q9 shape functions are used for the interpolation,
and is 0.031944 when the T6 shape functions are used. The use of the Q9 shape functions provides
better approximation for the velocity fields than the use of the T6 shape functions in this example
because the span of the Q9 shape functions provides larger space than the span of the T6 shape
functions. Note that the results are consistent with the results for the strain energy examples.

In summary, the strain energy is conserved during the edge-split of linear strain triangular
elements when the nodal displacements are interpolated with the same shape functions (i.e. T6
shape functions). Moreover, the kinetic energy is conserved during the edge-split when the nodal
velocities are interpolated with the same shape functions and the consistent mass matrix is utilized.
In the current approach, the T6 shape functions are utilized for the interpolation of new nodal quan-
tities associated with the boundary edge split, whereas the Q9 shape functions are utilized for the
interpolation of new nodal quantities related to the interior edge split so that one generally obtains
better approximation.

In addition, the equilibrium on the refined mesh can be satisfied in a weak sense. For a given
displacement vector, the corresponding internal force vector satisfies the equilibrium in a weak
sense along the horizontal and vertical directions for two-dimensional problems. However, nodal
equilibrium is not individually satisfied. Note that the summation of the internal force along each
direction is equal to zero before and after mesh refinement. The remaining force associated with the
equilibrium is the force related to Newton’s second law because the finite element meshes are refined
before the insertion of cohesive elements. For a given acceleration field, the sum of the equivalent
nodal forces associated with Newton’s second law before the edge split is the same as the sum of
the forces of the split elements (i.e. after the edge split) in each direction when the consistent mass
matrix is used.

3. ADAPTIVE MESH COARSENING (AMC)

The coarsening procedure reverses a sequence of edge-splits by utilizing a vertex-removal (or edge-
collapse) operator. This operator works by removing a vertex and merging adjacent elements in order
to restore a previous level of refinement. In this section, mesh coarsening schemes and coarsening
criterion are presented.

3.1. Mesh coarsening schemes

Mesh coarsening consists of a sequence of vertex-removal operators. Mesh structure is maintained
by constraining internal vertex removals to vertices which have four adjacent elements [41, 46],
and boundary vertex removals to vertices which have two adjacent elements. This corresponds
to the four-face and two-face triangle clusters presented, respectively, in Figures 12(a) and (b).
Because the local sub-mesh in Figure 12(a) can be originated from two distinct cases (Figure 2),
the refinement procedure must record historical data so that ambiguities can be consistently
handled. The pattern in Figure 12(b) occurs on mesh boundaries, and does not require handling of
ambiguous cases.

In order to reverse a sequence of mesh refinements in a consistent way, the vertex-removal opera-
tor needs to determine from which pattern the current local sub-mesh originated. To accomplish this,
we record the history of edge-split operations executed. However, instead of keeping a direct acyclic
graph of edge splits explicitly, a single integer value is assigned to each edge in order to identify its
corresponding depth in the graph. Edge depth values are stored during the edge-split operations, as
discussed in the previous section. This is sufficient for the purpose of the adaptive procedures used
in this work and leads to memory reduction.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:1–35
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(a)

(b)

Figure 12. Vertex-removal operator for mesh coarsening: (a) interior vertex-removal and (b) boundary
vertex-removal.

(a)

(b)

(c)

Figure 13. Sequence of vertex-removal operations in shaded 4k patches.

The execution of the vertex-removal operator is illustrated in Figure 13. For each removed vertex,
the incident edges with the greatest depth are deleted, and the corresponding adjacent elements are
merged. For example, the vertex-removal operator is applied in a shaded 4k patch. The maximum
edge depths in the 4k patches in Figures 13(a) and (b) are 3� and 2�, respectively. Then, the two
edges with higher edge depth are deleted, and the other two edges are merged.

In order to preserve attributes and geometry of crack paths and mesh boundary, we impose
some additional constraints to the coarsening procedure. The vertex-removal operator is applied
to neither vertices of cohesive elements nor the mesh boundary. Edge swaps can occur as cracks
propagate [39], and undoing edge swaps is not necessary because vertices of cohesive elements are
not removed.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:1–35
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3.2. Coarsening criterion and local update

The AMC strategy is based on a posteriori coarsening criterion, i.e. the root mean square of strain
error, which is convenient to use because it is non-dimensional. The strain error for volume of the
i th element .�i / is expressed as

ei D

"R
�i
.�exact � �/

T.�exact � �/ d�

j�i j

#1=2
(2)

where �exact is the exact strain, and � is the strain obtained from the finite element solution. In
this study, because an original 4k patch (Figure 14(a)) generally provides better approximation in
displacement field than a coarsened 4k patch (Figure 14(b)), the strain of the original 4k patch (�f)
is used for �exact while the strain of the coarsened 4k patch (�c) is utilized for �. Then, the strain
error indicator for the 4k patch is given as:

e4k D

"
4X
iD1

R
�i
.�f � �c/

T.�f � �c/ d�

j�i j

#1=2
(3)

Note that the integration is numerically performed in the four elements .�i / of the original 4k
patch. When the approximated error is smaller than a specified value (e.g. 2%), an original 4k
patch is coarsened. In addition, mesh coarsening is not performed around a crack tip region in
order to avoid consecutive mesh coarsening and refinement. Notice that Belytschko and Tabbara [9]
introduced a strain-projection criterion by replacing �exact with the strain obtained from the L2
projection of the finite element strain. In addition, the root mean square of strain error, the L2
norm of strain, and the energy norm in terms of strain have a similar structure, and thus these can
be similarly approximated [47].

The AMC strategy leads to the removal of shape functions while the AMR results in the addition
of shape functions. The reduction of a solution space (i.e. mesh coarsening) does not guarantee
conservation of strain energy between the original 4k patch (Figure 14(a)) and the coarsened
4k patch (Figure 14(b)). In order to minimize the difference of the strain energies, the nodal
displacement of a center node .u9/ is locally modified by matching the strain energy of the two
different discretizations. Notice that this modification does not influence the adjacent elements of
the 4k patch. The updated displacement .eu9/ is utilized to evaluate the velocity and acceleration in
a coarsened 4k patch, which is explained in the time integration section.

The nodal displacement of the center node can be updated by two approaches. First, one can
optimize the displacement by minimizing the difference between the original displacement .u9/
and the updated displacement .eu9/,

min ku9 �eu9k2 (4)

under the condition such that

g.eu9/DEint � eE int.eu9/D 0 (5)

(a) (b)

Figure 14. (a) Original 4k patch and (b) coarsened 4k patch.
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where Eint is the strain energy in the original 4k patch, and eE int is the strain energy in the coarsened
4k patch. The strain energy in the coarsened 4k patch .eE int/ is a function of the updated displace-
ment .eu9/. The constraint function can be expressed in closed form, and the optimization problem
is solved by introducing a Lagrange multiplier. This optimization problem can be solved efficiently
because the number of unknowns is two and because the objective function and the constraint
function are quadratic, which leads to a constant Hessian matrix of the objective function.

The second approach consists of updating the nodal displacement .u9/ by equating the strain
energy in the original 4k patch to the strain energy in the coarsened 4k patch along the horizontal
and vertical directions for two-dimensional problems. The strain energy of the original 4k patch is
decomposed into the strain energy associated with the horizontal direction .Eint.x// and the energy
related to the vertical direction .Eint.y//, i.e. Eint D Eint.x/ C Eint.y/. Similarly, the strain energy
of the coarsened 4k patch is also divided into the two components, i.e. eE int.eu9/ D eE int.x/.eu9/CeE int.y/.eu9/. Each directional strain energy is set to be the same, which provides two equations for
two unknowns. Then, these non-linear equations are solved by using Newton’s algorithm.

4. COMPUTATIONAL IMPLEMENTATION

The governing equations of dynamic fracture problems are solved by Galerkin finite element
methods. A strong form is converted to a weak form, and the explicit method is utilized for the
time integration. The finite element formulation, time integration, and the constitutive relation of
cohesive fracture are explained in this section.

4.1. Finite element formulation

The weak form of the finite element formulation is obtained by the principle of virtual work. The
summation of the virtual strain energy and the virtual kinetic energy is equal to the sum of the virtual
work done by external traction .Text/ and by cohesive traction .Tcoh/,Z

�0

.ıE W SC ıu � �0 Ru/ d�0 D
Z
�0

ıu �Text d�0C
Z
�coh

ı� �Tcoh d�0 (6)

where�0 and �0 are domain and boundary in the reference configuration, respectively. In addition,
�coh denotes boundary associated with cohesive fracture surface at a given time in the reference
configuration. The second Piola–Kirchhoff stress .S/ and the Green deformation strain .E/ are
utilized. The superposed dots in Ru denote second time derivatives, u is the displacement vector, �
is the displacement jump (or separation) across fracture surfaces, and �0 is the material density. The
weak form is discretized on the basis of the initial configuration, i.e. the total Lagrangian formulation
is used.

4.2. Time integration

The equation of motion without a damping term is expressed as

M RunCKun D Rext
n (7)

where M and K are the mass matrix and the stiffness matrix, respectively. In addition, Run, un,
and Rext

n are the nodal acceleration, nodal displacement, and external nodal force at time step n,
respectively. For cohesive fracture problems, K consists of a continuum part (i.e. bulk element
contribution) and a cohesive fracture part (i.e. cohesive surface element contribution). The stiffness
matrix is decomposed as KDKbCKc where Kb is the stiffness matrix of bulk elements and Kc is
the stiffness matrix of cohesive surface elements.

This equation of motion is solved by the Newmark algorithm [48]. The Newmark algorithm
evaluates the displacement .unC1/ and velocity . PunC1/ at time nC1 on the basis of the displacement
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.un/, velocity . Pun/, and acceleration . Run/ at time n with the acceleration . RunC1/ at time (nC 1),
which are expressed as

unC1 D unC	t PunC .
1

2
� ˇ/	t2 RunC ˇ	t2 RunC1

PunC1 D PunC .1� 
/	t RunC 
	t RunC1
(8)

where parameters ˇ and 
 are associated with the stability and accuracy of the algorithm. The
acceleration at time .nC 1/ is obtained from the equation of motion

.MC ˇ	t2K/ RunC1 D Rext
nC1 �K.unC	t PunC .

1

2
� ˇ/	t2 Run/. (9)

The proposed AMR&C strategy leads to the change of discretization, and thus the energy
conservation is essential for the stability and accuracy of the algorithm. The kinetic energy .Ekin/

and the strain energy .Eint/ evolution between tn and tnC1 is expressed as

1

2
PuT
nC1MnC1 PunC1 �

1

2
PNuT
n
NMn
PNunC

1

2
uT
nC1Kb

nC1unC1 �
1

2
NuT
n
NKb
n Nun

D
1

2
Œ PuTM PuC uTKbu�nC1n C

1

2
PuT
nMn Pun �

1

2
PNuT
n
NMn
PNun„ ƒ‚ …

�Ekin

C
1

2
uT
nKb

nun �
1

2
NuT
n
NKb
n Nun„ ƒ‚ …

�Eint

(10)

where the superposed bar denotes the discretization before the mesh modification. For example, NKb
n

and Nun are the stiffness matrix and displacement vector before the mesh modification at time tn,
whereas Kb

n and un are the stiffness matrix and displacement vector after the mesh modification at
time tn.

The first term on the right-hand side of Equation (10) is the kinetic energy and the strain energy
evolution between tn and tnC1 based on the fixed discretization. In the Newmark algorithm, the
energy evolution between tn and tnC1 for a fixed discretization is expressed [49] as

1

2
Œ PuTM PuC uTKbu�nC1n D

1

2
. PunC1C Pun/TM. PunC1 � Pun/C

1

2
.unC1C un/TKb.unC1 � un/, (11)

where Kb
n and Kb

nC1 are assumed to be the same (i.e. linear elastic bulk material). The substitution
of Equation (8) into the energy evolution expression (11) leads to

1

2
Œ PuTM PuC uTKbu�nC1n D

1

2
. PunC1C Pun/TM

²
	t

2
. RunC1C Run/C

�

 �

1

2

�
	t. RunC1 � Run/

³
C
1

2
.unC1C un/TKb

²
	t

2
. PunC1C Pun/C

�̌
�
1

2



�
	t2. RunC1 � Run/

³
.

(12)
Finally, one obtains the following energy variation expression:

1

2
Œ PuTM PuC uTKbu�nC1n D

1

2
.unC1 � un/T.Rext

nC1CRext
n /„ ƒ‚ …

Eext

�
1

2
.unC1 � un/T.Kc

nC1unC1CKc
nun/„ ƒ‚ …

Efra

C
	t

2

�

 �

1

2

�
. PunC1C Pun/TM. RunC1 � Run/

�
	t2

2

�
ˇ �

1

2



�
. RunC1 � Run/TM. RunC1C Run/ (13)

by substituting Equations (7) and (8) into Equation (12). The first term on the right-hand side of
Equation (13) is the external work .Eext/ between the time steps, and the second term is associated
with the fracture energy .Efra/. The remaining two terms are zero for the case of 
 D 1

2
and ˇ D 1

4
,

which lead to the energy conservation in the time increment from n to .n C 1/. For the central
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difference method (i.e. 
 D 1
2

and ˇ D 0), the last term contributes to the total energy. Because
of the 	t2 in this term, one can reduce this contribution by selecting a smaller time step, which is
discussed in Section 5.

The second term .	Ekin/ on the right-hand side of Equation (10) is the difference of the kinetic
energy between two discretizations, whereas the last term .	Eint/ corresponds to the difference of
the strain energy between two discretizations. Therefore, if the strain energy and the kinetic energy
are conserved during mesh modification, both 	Ekin and 	Eint are equal to zero, and the energy
evolution with mesh modification becomes the same as the evolution without mesh modification.

In this paper, the time integration scheme is implemented by using the central difference method
(i.e. explicit method). The outline of the procedure is provided in Algorithm 1. First, the displace-
ment .u/, velocity . Pu/, and acceleration . Ru/ vectors are initialized, and the current displacement
vector is obtained from the previous time step information. Then, AMC is performed on the basis
of the coarsening criterion outside the crack tip regions, and local displacements are updated for
coarsened 4k patches to minimize 	Eint in Equation (10). Alternatively, AMC may be performed
at the end of time step (i.e. after AMR), and one updates both local displacements and velocities
while minimizing 	Eint and 	Ekin, respectively. However, the former approach may be prefer-
able because both acceleration and velocities can be directly calculated on the basis of a coarsened
discretization in the former approach.

After AMC, one checks the insertion of cohesive elements based on an external criterion such
as the maximum hoop stress [50], the minimum strain energy density [51], or the loss of material
stability [28]. In the current study, cohesive elements are adaptively inserted between volumetric
elements when the averaged normal traction is greater than the cohesive strength .�max/. After the
insertion of cohesive elements, the external nodal force vector .Rext

nC1/ and the internal nodal force
vector .Rint

nC1/ are evaluated. The cohesive force vector .Rcoh
nC1/ is obtained on the basis of the PPR

potential-based constitutive model, which is explained in Section 4.4. The consistent mass matrix
is diagonalized using a special lumping technique, which provides positive lumped masses [52].
In addition, whenever mesh modification events occur, the consistent mass matrix is obtained in a
new configuration and the nodal masses are updated, which leads to mass conservation. The nodal
acceleration, velocity, and boundary conditions are updated for the current time step. Finally, the
mesh around cohesive surface elements, which are inserted in the current time step, is refined in
conjunction with the edge split operators and the nodal perturbation. The new nodes resulting from
the edge split operators are relocated on the basis of the nodal perturbation factor (e.g. 0.2) [39].
After the relocation of the new nodes, new nodal quantities are interpolated in recursive order. In
addition, the time increment is approximately one order lower than the critical time step, which
is also employed by previous non-linear dynamic fracture investigations with the cohesive surface
element approach [22, 39].

4.3. Remarks on explicit time integration with GFEM=XFEM

If one employs discontinuous shape functions to represent arbitrary discontinuity within an element,
the time increment should be significantly reduced [34]. This is because a discontinuity splits an
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(a) (b) (c)

Figure 15. Illustration of discontinuities (GFEM=XFEM) within an element (part(a) has been extracted from
Remmers et al. [34]).

element, and each split part can be considered as an individual element. Figure 15 illustrates three
cases of discontinuities. For the first case (Figure 15(a)), as the discontinuity approaches the node
(h is infinitesimal, but h is not equal to zero), the critical time increment for a stable solution proce-
dure will become almost infinitesimal because h governs the element size [34]. Next, if h is equal to
zero, which corresponds to Figure 15(b), a rectangular elements is split into two triangular elements,
and the element size remains the same. Therefore, one does not need to reduce time increment due
to the discontinuity within an element. The third case (Figure 15(c)) also does not require reduction
of the time increment because the element size remains the same. Similarly, if one uses cohesive
surface elements, discontinuity does not occur within an element, then one does not need to reduce
the time increment. In order to avoid an infinitesimal time step associated with an arbitrary discon-
tinuity within the element, Remmers et al. [34] did not allow the discontinuity to occur too close
to the node so that the split element size is larger than a specified value. They set the minimum split
element size as 10% of an original element, and thus the time step with discontinuous shape func-
tions was approximately two orders lower than the critical time step in their computation. Notice that
the time increment with the cohesive surface element approach is one order lower than the critical
time step.

Alternatively, for linear elastic fracture problems, Menouillard et al. [53] introduced a mass
lumping strategy, which leads to a block diagonal matrix, to avoid infinitesimal time increments
due to a Heaviside enrichment. Elguedj et al. [54] developed another mass lumping strategy for
enrichment functions associated with the Westergaard solution and, based on empirical calculations,
demonstrated that the critical time step of GFEM=XFEM may be half of the critical time step of the
standard FEM.

4.4. Constitutive relation of cohesive fracture

For the constitutive relationships of cohesive elements, the unified potential-based model [38], called
the PPR model, is utilized. The PPR model is able to represent different fracture energies (
n, 
t )
and cohesive strengths (�max, �max) in each fracture mode. The potential for the extrinsic cohesive
zone model is expressed as

‰.	n,	t /Dmin.
n,
t /C

�
�n

�
1�

	n

ın

�˛
C h
n � 
t i

�"
�t

�
1�
j	t j

ıt

�ˇ
C h
t � 
ni

#
(14)

where	n,	t are normal and tangential separations, respectively, and ın, ıt are characteristic length
scales. The energy constants are expressed as

�n D .�
n/
h�n��t i=�n��t , �t D .�
t /

h�t��ni=�t��n .
n ¤ 
t / (15)

for the different fracture energies in each mode. If the fracture energies are the same, one obtains
the energy constants,

�n D�
n, �t D 1 .
n D 
t / (16)

The shape parameters .˛,ˇ/ are defined with respect to the shape of a softening curve. The PPR
model can provide a convex softening .˛,ˇ � 2/, a concave softening .˛,ˇ � 2/, or a linear
softening .˛,ˇ � 2/.
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The gradient of the potential leads to the normal and tangential tractions along the fracture
surfaces,

Tn.	n,	t /D�˛
�n

ın

�
1�

	n

ın

�˛�1 "
�t

�
1�
j	t j

ıt

�ˇ
C h
t � 
ni

#

Tt .	n,	t /D�ˇ
�t

ıt

�
1�
j	t j

ıt

�ˇ�1 �
�n

�
1�

	n

ın

�˛
C h
n � 
t i

�
	t

j	t j

(17)

The above normal and tangential cohesive interactions are defined in a cohesive interaction (or
softening) region. When separation is outside a softening region, the cohesive traction is set to
be zero. The normal softening region is a rectangular domain associating with the normal final
crack opening width .ın/ and the conjugate tangential final crack opening width . Nıt /. Similarly, the
tangential softening region is a rectangular domain associating with the conjugate normal final crack
opening width . Nın/ and the tangential final crack opening width .ıt /. The final crack opening widths
(ın, ıt ) are expressed as

ın D ˛
n=�max, ıt D ˇ
t=�max (18)

which satisfy the boundary conditions of Tn.ın,	t / D 0 and Tt .	n, ıt / D 0, respectively. The
conjugate final crack opening widths ( Nın, Nıt ) are given by

Nın D ın � ın

�
h
n � 
t i


n

�1=˛
, Nıt D ıt � ıt

�
h
t � 
ni


t

�1=ˇ
(19)

which satisfy the conditions of Tt . Nın,	t /D 0 and Tn.	n, Nıt /D 0, respectively.
The PPR potential and its gradients are plotted in Figure 16. The mode I fracture energy and

cohesive strength are selected as 352 N=m and 324 MPa, respectively. The mode II fracture energy
and cohesive strength are assumed to be the same as the mode I fracture parameters in this figure.
The shape parameters (˛, ˇ) are selected as 2, which describe softening in each fracture mode.
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Figure 16. The PPR potential and its gradients.
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The coupled unloading=reloading relationship [55] is employed, which is based on the coupled
loading history index, i.e. �.	n,	t /D

p
	n

2C	t
2, and the maximum loading history index, i.e.

�max D

q
	nmax

2C	tmax
2, where 	nmax and 	tmax are the maximum normal and tangential separa-

tions in a loading (or separation) history, respectively. When the loading history index is smaller than
the maximum loading history index, the current separation state represents unloading=reloading
condition. The cohesive tractions of the coupled unloading=reloading relationship are given as

T �n .	n,	t /D Tn.	
�
n ,	�t /

�
�

�max

�˛�
, T �t .	n,	t /D Tt .	

�
n ,	�t /

�
�

�max

�ˇ�
(20)

where

	�n D	n
�max

�
, 	�t D	t

�max

�
(21)

The unloading=reloading shape parameters (˛� , ˇ� ) change the shape of the traction-separation
relation. In this study, the parameters are assumed to be one, which provide linear relation from the
origin to unloading=reloading boundaries.

5. NUMERICAL EXAMPLES

The AMR&C schemes are employed for computational simulation of dynamic crack propagation. In
this section, a mode I predefined crack path problem is first studied to demonstrate the convergence
of the cohesive zone model, and the consistency of the AMR&C schemes. Then, mixed-mode crack
propagation and crack branching problems are investigated to validate the computational framework
and illustrate the robustness of the AMR&C schemes.

5.1. Predefined crack path: Mode I fracture

The geometry of a single end notched specimen is described in Figure 17, and the initial strain
."0/ of 0.036 is applied to the specimen. A potential crack path is predefined along the horizontal
direction, which provides mode I fracture. The elastic modulus is 3.24 GPa, the Poisson ratio is 0.35,
and the density is 1190 kg=m3. For the cohesive fracture parameters, the mode I fracture energy
.GI /, the cohesive strength .�max/, and the shape parameter .˛/ are 352 N=m, 324 MPa, and 2,
respectively. In the absence of further experimental data, the mode II fracture parameters are
assumed to be the same as the mode I fracture parameters.

The extrinsic cohesive zone model is employed with a predefined crack path, and finite element
meshes are generated by a 4k structured mesh, shown in Figure 18(a). Notice that Zhang and
Paulino [20] investigated the predefined crack path problem with the intrinsic cohesive zone model

Figure 17. Schematics of geometry and boundary condition.
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(a)

(b)

Figure 18. Mode I fracture problem: (a) extrinsic cohesive zone model with predefined path and (b) intrinsic
cohesive zone model with predefined cohesive surface elements.

(Figure 18(b)). Because of the discontinuous nature of the extrinsic cohesive zone model, conver-
gence analysis is first performed for uniformly refined meshes. Then, the computational results using
AMR&C are compared with the results using a uniformly refined mesh.

5.1.1. Convergence analysis. Convergence of computational results with respect to the time incre-
ments and element sizes is investigated. For convergence analysis of time increments .	t/, two
finite element meshes are generated within the domain. One mesh has a 100� 10 element grid with
an element size of 20�m, and the other has a 200� 20 element grid with an element size of 10�m.
Four time increments (	t D 1 � 10�3, 0.4 � 10�3, 0.2 � 10�3 and 0.1 � 10�3 �s) are tested for
each mesh. The normalized crack tip location versus time is plotted for the element size of 20�m
(Figure 19(a)) and the element size of 10�m (Figure 19(b)). The decrease in the time increment
results in the decrease in the slope of the crack tip location versus time curve, i.e. velocity. The com-
putational result with 	t D 0.2� 10�3 �s is almost the same as the result with 	t D 0.1� 10�3 �s
for both finite element meshes. This fact demonstrates that the smaller time step leads to converged
results in this problem. Additionally, the element size of 20�m provides more sensitive results than
the element size of 10�m with respect to the change in the time increments.

In addition, the contribution of the last term in the energy variation expression (13), i.e.
	t2=2.ˇ� 1

2

/. RunC1� Run/TM. RunC1C Run/, is estimated with respect to different time increments.

Five time increments (	t D 1 � 10�3, 0.8 � 10�3, 0.4 � 10�3, 0.2 � 10�3 and 0.1 � 10�3 �s) are
tested with the 200 � 20 4k mesh grid. Figure 20 illustrates that the contribution is not significant
when one selects small time step in the time integration.

For convergence analysis of element sizes, five 4k structured meshes are generated with the mesh
grid of 80� 8, 100� 10, 140� 14, 200� 20 and 400� 40 whose element sizes .hel/ are 25, 20, 14,
10, and 5�m, respectively. Time increment .	t/ is 0.2�10�3 �s for all five meshes, which is small
enough to obtain converged results. The crack tip location versus time is plotted in Figure 21 for
each element size. The decrease in element sizes leads to the increase in the slope, i.e. velocity.
When element size is smaller than 14�m, the change of crack tip velocity is less significant.
Notice that this study focuses on the convergence of crack path and crack velocity with respect
to mesh refinement.

5.1.2. Adaptive mesh refinement. In order to demonstrate the accuracy of AMR in the extrinsic
cohesive zone model, the computational results using AMR are compared with the results using a
uniformly refined mesh. A finite element mesh with uniform element size of 5�m is generated
by the 400 � 40 mesh grid, which provides 64 000 elements and 128 881 nodes. The zoom of
the uniform mesh around the crack tip is shown in Figure 22(a). Finite element mesh for AMR
simulation is initially generated by the 100� 10 mesh grid with the refined elements around a crack
tip region. The coarse mesh grid has an element size of 20�m, while element size at the crack tip
region is 5�m, which corresponds to the element size of a uniform mesh. The zoom of the mesh
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Figure 19. Convergence of crack tip location with respect to the time increment: (a) element size of 20�m
and (b) element size of 10�m.
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Figure 20. Contribution of the term 	t2=8. RunC1 � Run/TM. RunC1C Run/ with respect to time increments.

around the crack tip is illustrated in Figure 22(b). The number of elements is 4448, and the number
of nodes is 9147 at the initial discretization. Since the AMR approach significantly reduces the
number of nodes and the number of elements, the computational cost with the AMR technique is
considerably cheaper than standard computational simulations with a uniformly refined mesh.
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Figure 21. Convergence of crack tip location with respect to the characteristic element size.

(a)

(b)

Figure 22. (a) Finite element mesh with uniform element size of 5�m and (b) finite element mesh with
local refinement around crack tip displaying characteristic element size of 5�m.

While the crack propagates, the crack tip position is updated, and finite element mesh around a
crack tip is adaptively refined, as shown in Figure 23(b). Deformed shapes for both finite element
meshes at the time (t ) 0.2�s are illustrated in Figure 23. The crack tip position and shape obtained
from the AMR technique are almost identical to those resulted from a uniformly refined mesh.
Figures 24(a) and (b) illustrate the strain energy at 0.2�s for the uniform 400 � 40 mesh grid and
the 100 � 10 mesh grid with AMR, respectively. Both meshes demonstrate the high strain energy
around the crack tip, and globally similar strain energy variation. However, the 400� 40 mesh grid
provides a more detailed description of the strain energy, like the expanding wave from the crack tip,
than the 100� 10 mesh grid with AMR, as expected. Notice that the most essential part in dynamic
crack propagation is to capture non-linear crack tip behavior.

The energy balance is a necessary condition to ensure the numerical stability [56]. The total
energy .Etot/ consists of the external work .Eext/, strain energy .Eint/, kinetic energy .Ekin/, and
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(b)

(a)

Figure 23. Deformed configuration with finite element mesh at t D 0.2�s (a) uniform 400� 40 mesh grid,
and (b) 100� 10 mesh grid with adaptive local mesh refinement.

(a)

(b)

Figure 24. Strain energy at time t D 0.2�s: (a) 400� 40 mesh grid and (b) 100� 10 mesh grid with AMR.

work done by fracture .Efra/. In this simulation, the total energy is a constant, which corresponds
to the initial strain energy, i.e. no external work .Eext D 0/. After a crack initiates and propagates,
the strain energy decreases while the kinetic energy and the fracture energy increase. Figure 25
illustrates the energy conservation with respect to time for both the uniform mesh refinement and
AMR. The energy evolutions of strain energy, kinetic energy and fracture energy for the uniform
mesh refinement are almost the same as the evolutions for AMR; they are nearly on top of each
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Figure 25. Energy evolution with respect to time for the uniform mesh refinement and AMR.
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Figure 26. Total energy variation with respect to time for different coarsening error levels of e4k .

other. Therefore, the AMR technique in the extrinsic cohesive zone model provides equivalently
accurate computational results compared with the results with the uniformly refined mesh in
this example.

5.1.3. Adaptive mesh coarsening. The AMC scheme reduces a solution space, and thus leads to
numerical error in finite element analysis. The error due to the adaptive coarsening is investigated
on the basis of the energy evolution. While a crack propagates, the crack tip region is adaptively
refined, and the outside of the crack tip region is coarsened on the basis of the coarsening criterion,
as discussed previously. Finite element size for the coarse mesh grid is 20�m, while element size for
the fine mesh grid is 5�m. Two sets of finite element analysis are preformed with the initial strain of
0.036 and 0.028. Four error levels (0.01, 0.02, 0.05, and 0.1) are tested for the coarsening criterion.
Figure 26 illustrates the total energy evolution with respect to time for different coarsening error
levels of e4k . The lower value of the coarsening criterion, which corresponds to tighter criterion
for the coarsening, results in less deviation from the constant total energy. Table I demonstrates the
numbers of elements and nodes, and the relative error of the total energy .	Etot=Etot/ at the final
discretization with respect to different coarsening error levels. A loose mesh coarsening criterion
yields fewer nodes and elements (i.e. coarser mesh), which results in a higher relative error at the
final discretization.
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Table I. Numbers of nodes and elements, and relative error of the total energy with respect to the
coarsening error levels .e4k/.

"0 D 0.036 "0 D 0.028

# of nodes # of elem 	Etot=Etot # of nodes # of elem 	Etot=Etot

e4k<0.01 37 530 18 274 0.0282 33 974 16 496 0.0188
e4k<0.02 28 250 13 634 0.0423 19 098 9058 0.0424
e4k<0.05 19 622 9320 0.0845 17 546 8282 0.0518
e4k<0.1 18 904 8556 0.1056 17 542 8280 0.0565

0 0.5 1 1.5 2
0

0.4

0.8

1.2

1.6

Figure 27. Energy evolution with respect to time considering uniform mesh refinement and AMR&C.

In addition, the energy evolution with AMR&C is compared with the energy evolution with the
uniform mesh refinement. The initial strain is 0.036, and 4k patches are coarsened when the root
mean square of strain error .e4k/ is less than 0.02. Figure 27 illustrates the good agreement of the
energy evolution between AMR&C and the uniform mesh refinement. Although the total energy
slightly decreases for the case of AMR&C, the fracture energy .Efra/ evolutions are almost identical
to each other.

5.2. Mixed-mode crack propagation

A doubly notched specimen under impact loading is investigated here. The geometry of the speci-
men is shown in Figure 28(a), and the impact loading is applied by a projectile. Kalthoff and Winkler
[57] tested the specimen to investigate failure mode transition with respect to the loading rates. They
observed that relatively lower loading rates resulted in brittle failure with a crack propagation angle
of about 70°, whereas higher loading rates generated a shear band ahead of the initial notch with a
negative angle of about �10°. This study mainly focuses on brittle fracture behavior.

In the computational simulation, the symmetry condition is utilized, and thus fixed displacement
along the vertical direction is imposed at the bottom of the specimen, shown in Figure 28(b). The
projectile is assumed to have the same elastic impedance as the doubly notched specimen, and thus
one-half of the projectile speed is applied as the impact velocity [58]. The impact velocity .v0/ of
16.54 m=s is applied at the lower left region. Maraging steel 18Ni(300) is used as a representative
material property of the doubly notched specimen [20, 28]. The elastic modulus is 190 GPa, the
Poisson ratio is 0.3, and the density is 8000 kg=m3, which lead to the Rayleigh wave speed of
2800 m=s. For mode I fracture parameters, fracture energy and cohesive strength are 22.2 kJ=m2
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(a) (b)

Figure 28. (a) Geometry and boundary condition of a doubly notched specimen and (b) its symmetry domain
for finite element analysis.

and 1.733 GPa, respectively. The shape parameter is selected as two, which leads to an almost linear
softening behavior. The mode II fracture parameters are assumed to be the same as the mode I
fracture parameters. In addition, the nodal perturbation and the edge-swap operators are adaptively
utilized in order to improve the crack path in this mixed-mode crack propagation problem [39].

In the analysis of AMR&C, the finite element mesh is initially discretized as shown in
Figure 29(a). The mesh has 20 � 20 coarse mesh grid with an element size of 5 mm, and is refined
around a crack tip with an element size of 1.25 mm. The numbers of elements and nodes are 4191
and 5351, respectively, at the initial discretization. A cohesive surface element is first inserted
at time 25.4�s, and the complete separation of the cohesive element occurs at time 26.5�s. The
finite element mesh discretization at time 55 and 77.5�s is illustrated in Figures 29(b) and (c),
respectively. The crack tip region is adaptively refined, and the far field from the crack tip is
coarsened. During this dynamic crack propagation, nodal perturbation .NP D 0.2/ is adaptively
employed around the crack tip region, and 28 edge-swap operations are performed when and
where they are needed. More 4k patches on the left-hand side of the main crack are coarsened
than on the right-hand side, because the right-hand side of the crack provides a more complicated
displacement field. The strain energy density at time 77.5�s is shown in Figure 29(d), and it clearly
illustrates that the right-hand side has higher strain energy than the left-hand side. The initiation
angle is approximately 62°, which is obtained by linear regression. In addition, the computational
results with the symmetric boundary condition are consistent with the results without employing
the symmetric boundary condition [55], because the interaction between two crack tip regions is
not significant. Moreover, these computational results agree well with the previous computational
results [20, 28, 59]. Belytschko et al. [28] simulated the brittle fracture behavior based on loss of
hyperbolicity criterion in conjunction with discontinuous enrichment functions (i.e. X-FEM). Zhang
and Paulino [20] utilized an intrinsic cohesive zone model for dynamic crack propagation, and
further investigated the effect of material gradation. Song and Belytschko [59] introduced a cracking
node method for this problem.

The finite element analysis of AMR&C is compared with the analysis of the uniform mesh
refinement and of AMR. Finite element meshes for the uniform mesh refinement and AMR at time
t D 77.5�s are shown in Figures 30(a) and (b), respectively. The uniform 4k mesh has 80 � 80
mesh grid, and element size is 1.25 mm. The numbers of elements and nodes are initially 51 601
and 25 600, respectively, which are almost 10 times higher than the numbers for AMR&C. The
analysis of AMR has the same initial discretization as the analysis of AMR&C. The computational
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(b)(a)

(d)(c)

Figure 29. Finite element discretization for AMR&C: (a) at the initial time step; (b) at time t D 55�s;
(c) at time t D 77.5�s; and (d) strain energy density at time t D 77.5�s.

(b)(a)

Figure 30. Finite element discretization at time t D 77.5�s considering (a) uniform mesh refinement and
(b) AMR.

time is listed in Table II. Computation using AMR&C is approximately 10 times faster than
computation using the uniform mesh, whereas computation using AMR is almost seven times
faster than computation using the uniform mesh. The crack path for each analysis is described in
Figure 31(a), and the overall crack paths correspond well with each other. The crack velocity is
estimated by the linear fitting of three adjacent crack tip points with respect to time. The crack
velocities for the uniform mesh refinement, AMR, and AMR&C illustrate similar trends, as shown in
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Table II. Computational cost comparison for the mixed-mode crack propagation.

Uniform mesh AMR AMR&C
Computational time (min) 256 36 25
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Figure 31. (a) Crack path and (b) crack velocity for the uniform mesh refinement, AMR, and AMR&C.

Figure 31(b). The crack velocity steeply increases at the crack initiation, and gradually decreases
around time t D 50�s. The average crack velocity is about 2000 m=s, which is 71% of the Rayleigh
wave speed.

Two different element sizes are compared in the analysis of AMR&C. One finite element mesh
has 20�20 coarse mesh grid with an element size of 5 mm, and is locally refined around the crack
tip with an element size of 1.25 mm. The other has 40 � 40 coarse mesh grid with an element size
of 2.5 mm, and is locally refined around the crack tip with an element size of 0.625 mm. Figure 32
demonstrates the agreement of the crack path and the velocity for the two sizes of the coarse mesh
grid. In the evaluation of the crack velocity, three adjacent points are used for the 20 � 20 coarse
mesh grid whereas six adjacent points are used for the 40� 40 coarse mesh grid.

The energy evolutions are estimated for AMR and AMR&C during computational simulation,
as shown in Figures 33(a) and (b), respectively. The external energy .Eext/ is resulted from the
impact velocity, and is converted into the strain energy .Eint/, the kinetic energy .Ekin/, and the
fracture energy .Efra/. The strain energy initially increases because of the impact, and slightly
decreases while a crack propagates. Both kinetic and fracture energies increase with respect to time.
The summation of Eint, Ekin, and Efra is almost the same as the external energy for the case of
AMR (Figure 33(a)), i.e. energy conservation. On the other hand, AMR&C leads to a little energy
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Figure 32. (a) Crack path and (b) crack velocity for different discretizations of the coarse mesh grid.

dissipation, as expected (Figure 33(b)). Notice that such an energy dissipation is also observed in
the previous mode I problem (Figure 27).

5.3. Crack branching instability

The specimen geometry for the crack branching problem is illustrated by Figure 34. Notice that
uniform traction (15MPa) is applied at the top and bottom edges of the specimen. For elastic
properties, the elastic modulus and the Poisson’s ratio are 32 GPa and 0.2, respectively, and the
density is 2450 kg=m3, which provide the Rayleigh wave speed of 2125 m=s. For mode I fracture
parameters, the fracture energy .
n/ is 3 N=m, the cohesive strength .�max/ is 12 MPa, and the shape
parameter .˛/ is selected as two. The mode II parameters are assumed to be the same as the mode I
parameters. Notice that Belytschko et al. [28] studied this problem in conjunction with a discontin-
uous shape function (X-FEM), whereas Song and Belytschko [59] simulated this problem by using
the cracking node method.

The branching problem is computed by utilizing three different approaches: uniform mesh
refinement, AMR, and AMR&C. For the uniform mesh refinement, the domain is discretized with a
160�64mesh grid which leads to an element size of 0.625 mm. The number of nodes is 82 529, and
the number of elements is 40 960 at the initial discretization. For AMR, the domain is discretized
with a coarse mesh grid of 40 � 16 with an element size of 2.5 mm. The crack tip region is refined
with an element size of 0.625 mm, which is the same size as the uniformly refined mesh. For AMC,
4k patches are coarsened when the root mean square of strain error is less than 0.02 for the outside
of crack tip regions.
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Figure 33. Energy evolution with respect to time for (a) AMR and (b) AMR&C.

Figure 34. Initial geometry for a branching crack problem.

For the three different approaches, the crack patterns at the time 60�s are illustrated in Figure 35.
The overall crack patterns are similar to each other. The crack initiation time is 11�s for all cases.
After a crack propagates about 15 	 18mm at the corresponding time of 27 	 30�s, major
branching occurs. In addition, the numbers of nodes in Figures 35(a)–(c) are 83 191, 24 559, and
16 867, and the numbers of volumetric elements are 40 960, 11 845, and 7988, respectively. The
computational time for each simulation is provided in Table III. Computation using AMR&C is
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(c)
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Figure 35. Comparison of crack patterns and finite element meshes for: (a) uniformly refined mesh;
(b) AMR; and (c) AMR&C.

Table III. Computational cost comparison for the crack branching problem.

Uniform mesh AMR AMR&C
Computational time (min) 397 62 55
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Figure 36. Crack velocity for uniform mesh refinement, AMR, and AMR&C.

approximately seven times faster then computation using the uniform mesh. Therefore, the AMR&C
technique is able to significantly reduce the number of degrees of freedom and the computational
cost, while providing an almost equivalent computational result to that of the uniformly refined
mesh technique.

In addition, Figure 36 plots the crack velocity for the three approaches, and all three results
agree with each other. The crack velocity initially increases up to 1500 m=s (60% of the Rayleigh
wave speed) until 15�s. Then, the velocity decreases from 1500 m=s to 500 m=s, and increases to
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Figure 37. Vertical stress distribution with respect to time: (a) 10�s; (b) 13�s; (c) 16�s; (d) 19�s;
(e) 22�s; (f) 25�s; (g) 28�s; and (h) 31�s.

1600 m=s (65% of the Rayleigh wave speed) until 27�s, which corresponds to the time of the major
branching initiation. Such a velocity change is correlated with vertical stress wave propagation.
Vertical stress with respect to time is illustrated in Figure 37 for the computation with AMR&C.
Because of the applied traction .�0/, the tension wave propagates along the vertical direction,
and stress is concentrated at the crack tip before the crack initiation (Figure 37(a)). While a crack
propagates, vertical stress is released from the top and bottom edges of the specimen (Figure 37(b)).
Then, vertical stress ahead of the crack tip region decreases, as shown in Figures 37(c) and (d),
which correspond to the time when the crack velocity decreases. Vertical stress ahead of the crack
tip region increases (Figures 37(e)–(g)) with respect to the increase in the crack velocity, and the
major branching occurs, as shown in Figure 37(h).

Figure 38 illustrates crack patterns at different times (20, 40, and 60�s), with corresponding finite
element mesh. While a crack propagates, the crack tip region is adaptively refined (Figure 38(a)).
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Figure 38. Crack branching at different time steps: (a) 20�s; (b) 40�s; and (c) 60�s.

When branching occurs, two crack tip regions are refined and the outside of the two crack tip regions
are coarsened on the basis of the coarsening criterion. The zoom of the finite element mesh at time
60�s is given in the inset in Figure 38(c). One can observe that local nodes are perturbed with the
perturbation factor of 0.2, and that the edge-swap operators are utilized when they are needed.

6. CONCLUDING REMARKS

The AMR&C schemes are systematically developed for solving dynamic cohesive fracture prob-
lems. The AMR strategy is based on a sequence of edge-split operators while AMC consists of a
sequence of vertex-removal (or edge-collapse) operators in a 4k mesh. Edge depths are recorded
during edge-split operators so that one efficiently removes vertices during mesh coarsening. A
sequence of edge splits leads to new nodes, and nodal quantities of the new nodes are interpolated
using Lagrange basis shape functions. When the same shape functions (i.e. six Lagrange basis shape
functions) are used for the edge split of linear strain triangular elements (i.e. T6 elements), the strain
energy is conserved, and the kinetic energy is also conserved provided the consistent mass matrix is
utilized. Note that six Lagrange basis shape functions are utilized for boundary edge splits, whereas
nine Lagrange basis shape functions are used for interior edge splits so that one generally obtains
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better approximation for the interpolation of nodal quantities. The mesh coarsening is performed on
the basis of a posteriori coarsening criterion, i.e. the root mean square of strain error. Local nodal
displacements are updated to minimize the difference in the strain energy between refined mesh and
coarsened mesh, and the updated nodal displacements are utilized to evaluate nodal acceleration and
velocity in the coarsened discretization.

Three numerical examples are investigated: a mode I predefined crack path, mixed-mode crack
propagation, and crack branching instability. The computational results of AMR&C are consistent
with the results of the uniform mesh refinement regarding overall crack patterns, crack velocities,
and energy evolutions. The total energy is conserved for AMR, while it slightly decreases for AMC
because the mesh coarsening reduces a solution space. However, when the coarsening is performed
outside a crack tip region in conjunction with the coarsening criterion, the coarsening does not sig-
nificantly influence the crack tip behavior. In comparison with standard uniform mesh approaches,
the AMR&C strategy significantly reduces computational cost. A multiscale effect is exhibited in the
mixed-mode fracture simulation when microbranches form along the main crack. The formation of
microbranches leads to a lower main crack velocity, which is closer to experimental observations.
This computational framework can be utilized for multiscale computation by introducing several
levels of refinement.

APPENDIX A

Support for mesh adaptivity is provided by the TopS data structure API, which consists of a set of
functions to create, modify, and destroy meshes. In TopS, meshes are represented by a model object,
named TopModel. The C language interface of the main functions used for 4k meshes adaptation
in this work is summarized below:

The functions topCreateRefinement4K and topDestroyRefinement4K, respectively, create and
destroy an object that is responsible for managing the execution of 4k adaptive mesh procedures.
This object records the history of previous edge splits so that the coarsening procedure is
able to undo them. The function topRefinement4K_RefineInRegion splits the edges within
a circular region of the mesh up to a maximum refinement level. Likewise, the function
topRefinement4K_CoarsenOutRegion coarsens the mesh outside a circular region.

Whenever mesh modifications occur, the client application needs to transfer or update attributes
attached to mesh entities, such as elements and nodes. Many functions of the TopS API directly
modify the mesh, and thus the attributes to be updated are known by the application. However, others
may need to perform a complex or variable number of indirect modifications. Hence, it may become
difficult for the application to discover which attributes have changed so that they can be correctly
updated. This is the case of the refinement and coarsening procedures described in this paper.

In order to notify the client application of indirect mesh modification events, we use a callback
mechanism, which consists of user-defined functions that can be registered to the FEM model using
the TopS API. Therefore, whenever an event for which a callback function is registered happens,
the TopS API notifies the application by calling that function.

The prototypes of the callbacks used in this work to update element and nodal attributes are
presented below. Every callback receives as parameters a pointer to the model object (m) an optional
user data (data):
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The TopSplitElemCb is called whenever an element is divided during an edge split operation.
It receives as parameters the old element (old_el) and the two resulting new elements (new_el).
The TopMergeElemCb is called whenever two elements have been merged in a vertex removal
operation. Its parameters are the two old elements (old_el) and the resulting element (new_el).
The TopInsertNodeCb and TopRemoveNodeCb are called when a node is, respectively, created or
removed during an edge split or vertex removal operation. The TopDuplicateNodeCb is called
when a node is duplicated as a result of the insertion of a new cohesive element into the model.
This function is called instead of TopInsertNodeCb, so that the application is able to transfer
nodal attributes. The parameters of the function are the previous node (old_node) and the newly
created one (new_node). The TopSwapElemCb is called whenever an edge swap occurs. In this case,
two elements are replaced by two new ones. The function receives as parameters the old elements
(old_el) and the new ones (new_el).

The functions for registering the above callbacks to the model are presented below. For each
callback function, an optional pointer to user data may be provided by the application. This pointer
will be passed to the callback function when it is called.
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