
Struct Multidisc Optim (2012) 45:309–328
DOI 10.1007/s00158-011-0706-z

EDUCATIONAL ARTICLE

PolyMesher: a general-purpose mesh generator for polygonal
elements written in Matlab

Cameron Talischi · Glaucio H. Paulino ·
Anderson Pereira · Ivan F. M. Menezes

Received: 9 November 2010 / Revised: 22 February 2011 / Accepted: 26 February 2011 / Published online: 8 January 2012
© Springer-Verlag 2011

Abstract We present a simple and robust Matlab code for
polygonal mesh generation that relies on an implicit descrip-
tion of the domain geometry. The mesh generator can pro-
vide, among other things, the input needed for finite element
and optimization codes that use linear convex polygons. In
topology optimization, polygonal discretizations have been
shown not to be susceptible to numerical instabilities such as
checkerboard patterns in contrast to lower order triangular
and quadrilaterial meshes. Also, the use of polygonal ele-
ments makes possible meshing of complicated geometries
with a self-contained Matlab code. The main ingredients of
the present mesh generator are the implicit description of
the domain and the centroidal Voronoi diagrams used for
its discretization. The signed distance function provides all
the essential information about the domain geometry and
offers great flexibility to construct a large class of domains
via algebraic expressions. Examples are provided to illus-
trate the capabilities of the code, which is compact and has
fewer than 135 lines.

Keywords Topology optimization · Polygonal elements ·
Centroidal Voronoi tessellations · Implicit geometries

Electronic supplementary material The online version of this article
(doi:10.1007/s00158-011-0706-z) contains supplementary material,
which is available to authorized users.

C. Talischi · G. H. Paulino (B)
Department of Civil and Environmental Engineering,
University of Illinois at Urbana-Champaign, 205 North Mathews
Avenue, Newmark Laboratory, MC-250, Urbana, IL 61801, USA
e-mail: paulino@uiuc.edu

A. Pereira · I. F. M. Menezes
Tecgraf, Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro,
RJ, Brazil

1 Introduction

Sharing and publication of educational software has become
a tradition in the topology optimization community. For
instance, in addition to the popular “99 line” code (Sigmund
2001) and its successor (Andreassen et al. 2011), Allaire and
Pantz (2006) presented a structural optimization code based
on FreeFem++. Liu et al. (2005) introduced a coupled level
set method using the FEMLAB package and Challis (2010)
presented a discrete level-set Matlab code very much in the
spirit of the “99 line” code. More recently, Suresh (2010)
developed a 199 line code for Pareto-optimal tracing with
the aid of topological derivatives. In a series of papers,
we aim to extend and complement the previous works by
presenting a Matlab implementation of topology optimiza-
tion that, among other things, features a general framework
for finite element discretization and analysis. We also hope
that the engineering community will make use of and even
contribute to this computational framework.

Many engineering applications of topology optimization
cannot be defined on a rectangular domain or solved on a
structured square mesh. The description and discretization
of the design domain geometry, specification of the bound-
ary conditions for the governing state equation, and accurate
computation of the design response may require the use of
unstructured meshes. One main goal here is to provide the
users a self-contained analysis tool in Matlab and show how
the topology optimization code should be structured so as to
separate the analysis routine from the particular formulation
used. The latter is the subject of a companion paper (Talischi
et al. 2011). We have elected to focus on polygonal dis-
cretizations in this educational effort for the following rea-
sons: (1) The concept of Voronoi diagrams offers a simple
way to discretize two-dimensional geometries with convex
polygons. We will discuss a simple and robust Voronoi mesh

http://dx.doi.org/10.1007/s00158-011-0706-z

310 C. Talischi et al.

generation scheme that relies on an implicit description of
the domain geometry; (2) Polygonal finite elements outper-
form linear triangles and quads in topology optimization
as they are not susceptible to numerical instabilities such
as checkerboard patterns (Langelaar 2007; Saxena 2008;
Talischi et al. 2009, 2010); (3) The isoparametric formu-
lation for polygonal finite elements can be viewed as exten-
sion of the common linear triangles and bilinear quads to
all convex n-gons (Sukumar and Tabarraei 2004; Sukumar
and Malsch 2006; Talischi et al. 2010). As a special case,
these codes can generate and analyze structured triangular
and quadrilateral meshes.

The main ingredients of our mesh generator are the
implicit representation of the domain and the use of Cen-
troidal Voronoi diagrams for its discretization. The signed
distance function contains all the essential information
about the meshing domain needed in our mesh algorithm.
Inspired by the work of Persson and Strang (2004), we note
that this implicit description provides great flexibility to
construct a relatively large class of domains with algebraic
expressions. A discretization of the domain is constructed
from a Centroidal Voronoi Tessellation (CVT) that incorpo-
rates an approximation to its boundary. The approximation
is obtained by including the set of reflections of the seeds
(Bolander and Saito 1998; Yip et al. 2005). The Lloyd’s
method is used to establish a uniform (optimal) distribution
of seeds and thus a high quality mesh (Talischi et al. 2010).
We remark that CVTs have been previously used for gen-
eration and analysis of triangular discretizations (see, for
example, Du and Gunzburger 2002; Du et al. 2003; Ju et al.
2006) and, in some cases, superconvergence of numerical
solutions has been observed (Huang et al. 2008).

The remainder of this paper is organized as follows: in
the next two sections, we review the main concepts and
recall the properties of signed distance functions, Voronoi
diagrams and CVTs before discussing the details of the
proposed meshing algorithm in Section 4. We explain the
Matlab implementation of this algorithm in Section 5 and
present numerical examples in Section 6. Potential exten-
sions and generalizations of the code are addressed in
Section 7. An added educational aspect of the present work
consists of demonstrating how intuitive and geometrical con-
cepts can be expressed in the language of mathematics and
ultimately linked with feasible computational algorithms.

2 Distance function and implicit representation

Let � be a subset of R
2. The signed distance function

associated with � is the mapping d� : R
2 → R defined by:

d�(x) = s�(x) min
y∈∂�

‖x − y‖ (1)

where ∂� denotes the boundary of �, ‖·‖ is the stan-
dard Euclidean norm in R

2 (so ‖x − y‖ here is the distance
between x and point y on the boundary of the domain), and
the sign function is given by:

s�(x) :=
{

−1, x ∈ �

+1, x ∈ R
2\� (2)

Thus, if x lies inside the domain �, d�(x) is minus the
distance of x to the closest boundary point. The following
characterizations are immediate from this definition:

� =
{

x ∈ R
2 : d�(x) ≤ 0

}
,

∂� =
{

x ∈ R
2 : d�(x) = 0

}
(3)

In our meshing algorithm, we need to determine if a candi-
date point (seed) x lies in the interior of domain �. With an
explicit representation of �, based on parametrization of its
boundary, this may be difficult as it requires counting the
number of times a ray connecting x and some exterior point
intersects the boundary (Osher and Fedkiw 2003). Given
the signed distance function, we recover this information
by evaluating the sign of d�(x) (see Fig. 1).

Other useful information about the domain geometry is
provided by the signed distance function. Its gradient, ∇d�,
gives the direction to the nearest boundary point. If � has
smooth boundary and x ∈ ∂�, then ∇d�(x) is the unit vec-
tor normal to the boundary. In general, for almost every
point x ∈ R

2, we have:

‖∇d�(x)‖ = 1 (4)

It is possible that the distance function exhibits kinks even
when ∂� is smooth. In particular, if x is equidistant to
more than one point of ∂�, then ∇d�(x) fails to exist. As
illustrated in Fig. 2b, the variation of the distance function
changes depending on which boundary point is approached.
In such a case, numerical differentiation may result in
‖∇d�(x)‖ �= 1.

In the proposed algorithm, we use the property of the
gradient to find the reflection of x about the closest bound-
ary point. Denoting the reflection by R�(x), we have (cf.
Fig. 2a):

R�(x) = x − 2d�(x)∇d�(x) (5)

Note that this expression is valid for both interior and
exterior points, i.e., for any x ∈ R

2.
We can see from the discussion so far that when � is

characterized by its signed distance function, a great deal

PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 311

(a) (b) (c)

Fig. 1 a Explicit parametrization of domain boundary: the ray connecting point x̃ to point o, known to lie outside the domain, intersects ∂� an
even number of times, indicating x̃ /∈ �; b Implicit representation of the domain: the sign of the distance function d�(x) determines if x lies inside
the domain; c Surface plot of the signed distance function: note that ∂� is given by the zero level set of d�

of useful information about � can be readily extracted. An
essential task then is to construct d� for a given domain
� that we wish to discretize. For many simple geometries,
the signed distance function can be readily identified. For
example, if � is a circle of radius r centered at point xo, its
distance function is given by:

d�(x) = ‖x − xo‖ − r (6)

Moreover, set operations such as union, intersection, and
complementation can be used to piece together and com-

bine different geometries. Given domains �1 and �2, the
expressions

d�1∪�2(x) = min
(
d�1(x), d�2(x)

)
d�1∩�2(x) = max

(
d�1(x), d�2(x)

)
dR2\�1

(x) = −d�1(x) (7)

capture the “sign” property of the distance function for the
combined geometry, as illustrated in Fig. 3. However, we
note that the “distance” property may not necessarily hold

(a) (b)

Fig. 2 a For x ∈ R
2, the direction to the closest boundary point, xb, is given by ∇d�(x), which can be used to compute the reflection R�(x); b

The distance function exhibit kinks at points that are equidistant to more than one boundary point. Here ∇d�(x) denotes the one-sided gradient at
such a point x

312 C. Talischi et al.

Fig. 3 Correspondence between set operations and the sign of distance
functions

everywhere.1 A reference commonly cited in conjunction
with these equations is the work of Ricci (1973) but there the
implicit functions do not carry the distance property. In our
meshing algorithm, we require access to the distance func-
tions of the constituent domains, in part, to address this issue.

Transformations such as rotation and translation can also
be incorporated to obtain desired geometries. For example,
if Tθ is the matrix for rotation by angle θ about the origin, the
signed distance function for rotated domain �θ is given by:

d�θ (x) = d�(T−1
θ x) (8)

Also, a signed distance function can be obtained from the
level sets of a given implicit function by solving a nonlin-
ear system of equations (cf. Persson and Strang 2004) or
more generally using marching algorithms (see, for exam-
ple, (Sussman et al. 1998; Sethian 1999; Osher and Fedkiw
2003; Zhao 2004)). We will revisit the issue of computing
distance functions in relation to our meshing algorithm and
later through examples.

3 Voronoi diagrams, CVTs, Lloyd’s algorithm

The concept of Voronoi diagrams plays a central role in
our meshing algorithm. Given a set of n distinct points or
seeds P, the Voronoi tessellation2 of the domain � ⊂ R

2 is
defined by:

T (P; �) = {
Vy ∩ � : y ∈ P

}
(9)

1For example, consider �1 = {
(x1, x2) ∈ R

2 : x1 < 0
}

and
�2 = {

(x1, x2) ∈ R
2 : x2 < 0

}
. The formula d�1∪�2 (x) =

min
(
d�1 (x), d�2 (x)

)
has incorrect distance “value” in the third quad-

rant, i.e., for x1 < 0, x2 < 0. In this region, the closest boundary point
is the new corner x = (0, 0) formed by the union operation.
2A tessellation or tiling of � is a collection of open sets Si such that
∪i Si = � and Si ∩ S j = ∅ if i �= j .

where Vy is the Voronoi cell associated with point y:

Vy =
{

x ∈ R
2 : ‖x − y‖ < ‖x − z‖ , ∀z ∈ P\ {y}

}
(10)

Therefore Vy consists of points in the plane closer to y than
any other point in P. To simplify the notation for the mesh-
ing algorithm, we are defining the cells over the entire R

2,
while it is common in the literature to define Vy ∩ � to be
the Voronoi cell (see Fig. 4).

The properties of Voronoi diagrams have been stud-
ied extensively and we refer the reader to review paper
(Aurenhammer 1991) on the topic. One relevant property
in two dimensions is that if a Voronoi cell is bounded, it
is necessarily a convex polygon since it is formed by finite
intersection of half-planes (each of which is a convex set).
Hence, as we shall see in the next section, our meshing
algorithm produces discretizations consisting only of convex
polygons. This is pertinent to the isoparametric formulation
for polygonal finite elements which requires convexity of
all the elements in the mesh (Sukumar and Tabarraei 2004;
Sukumar and Malsch 2006; Talischi et al. 2010).

The regularity of Voronoi diagrams is determined
entirely by the distribution of the generating point set. A
random or quasi-random set of generators may lead to a
discretization not suitable for use in finite element analy-
sis. Therefore, we restrict our attention to a special class
of Voronoi tessellations that enjoy a higher level of regular-
ity. A Voronoi tessellation T (P; �) is centroidal if for every
y ∈ P:

y = yc where yc :=
∫

Vy∩�
xμ(x)dx∫

Vy∩�
μ(x)dx

(11)

and μ(x) is a given density function defined over �. Hence,
in a Centroid Voronoi Tessellation (CVT), each generating
point y coincides with the centroid yc of the corresponding
region (i.e., Vy ∩ �).

An alternative variational characterization of a CVT is
based on the deviation of each Voronoi region from its gen-
erating seed, measured by the following energy functional:

E(P; �) =
∑
y∈P

∫
Vy(P)∩�

μ(x) ‖x − y‖2 dx (12)

Note that the energy depends on points in P not only through
the appearance of y in the integral but also the Voronoi cells
in domain of the integral. Critical points of E(P; �) are
point sets that generate CVTs since the gradient of energy
functional with respect to a given y ∈ P is given by (Du
et al. 1999; Liu et al. 2009):

∇yE = 2my (y − yc) where my =
∫

Vy∩�

μ(x)dx (13)

PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 313

Fig. 4 a Voronoi diagram and
its dual, the Delaunay
triangulation; b Illustrating the
difference between Vy, defined
in (10) as the Voronoi cell, and
Vy ∩ �, as the regions making
up the Voronoi tessellation of �

(cf. 9)

(a) (b)

Clearly ∇yE = 0 when relation (11) holds. Moreover, CVTs
can be further classified based on the minimization of the
energy functional. The CVTs corresponding to saddle points
of E are called unstable while local and global minimizers

(for fixed number of seeds) of the energy functional are
known as stable and optimal CVTs, respectively (Du and
Wang 2005; Liu et al. 2009). The CVTs in the latter groups
form a more compact tessellation of the domain and due

Fig. 5 a Random initial point
set P1 and the corresponding
Voronoi diagram; b First
iteration of Lloyd’s method: the
Voronoi diagram generated by
P2 = L(P1), i.e., the centroids
of the Voronoi cells of P1; c
Distribution of seeds and the
diagram after 80 iterations (d)
Monotonic convergence of the
energy functional and decay in
the norm of its gradient

(a) (b)

(c) (d)

314 C. Talischi et al.

to this property find many applications in areas other than
mesh generation—see Du et al. (1999) for a survey on the
topic.

A simple but powerful method for computing CVTs is the
Lloyd’s algorithm, which iteratively replaces the given gen-
erating seeds by the centroids of the corresponding Voronoi
regions. Lloyd’s algorithm can be thought of as a fixed point
iteration for the mapping L = (

Ly
)T

y∈P : R
n×2 → R

n×2

where each component function is given by:

Ly(P) =
∫

Vy(P)∩�
xμ(x)dx∫

Vy(P)∩�
μ(x)dx

(14)

Therefore, L maps the point set P to the set of centroids
of the Voronoi cells in T (P; �). Given an initial point set
P1, the Lloyd’s method produces point set Pk+1 = L(Pk)

at the kth iteration. From the above relation, it is clear that
a fixed point of this map, i.e., one that satisfies P = L(P),
forms a CVT. In Du et al. (2006), it is shown that the energy
functional decreases in consecutive iterations of Lloyd’s
algorithm, that is,

E(Pi+1; �) ≤ E(Pi ; �) (15)

which means that the Lloyd’s algorithm can be viewed as a
descent method for the energy functional. This property is
illustrated in Fig. 5. As discussed later, Lloyd’s algorithm
is incorporated in our meshing algorithm to construct more
uniform polygonal meshes.

4 Voronoi meshing

Before discussing the details of the proposed meshing algo-
rithm, we illustrate the main ideas based on the concepts
developed so far. As shown by Bolander et al. (Bolander
and Saito 1998; Yip et al. 2005), a polygonal discretization
can be obtained from the Voronoi diagram of a given set of
seeds and their reflections.

4.1 Explanation of the approach

Assume � ⊂ R
2 is a bounded convex domain with smooth

boundary and P is a given set of distinct seeds in �. To
construct a polygonal discretization of �, we first reflect
each point in P about the closest boundary point of � and
denote the resulting set of points by R�(P):

R�(P) := {R�(y) : y ∈ P} (16)

Convexity of � ensures that all of the reflected points lie
outside of �. We then construct the Voronoi diagram of
the plane by including the original point set as well as its

reflection. In other words, we compute T (P ∪ R�(P); R
2).

If the Voronoi cells of a point y and its reflection have a com-
mon edge, i.e., if Vy ∩ VR�(y) �= ∅, then this edge is tangent
to ∂� at the yb (see Fig. 6). Therefore, these edges form an
approximation to the domain boundary and a reasonable dis-
cretization of � is given by the collection of Voronoi cells
corresponding to the points in P. For a given point set P,
such a discretization is uniquely defined and is denoted by
M�(P). Thus, we have:

M�(P) =
{

Vy ∈ T (P ∪ R�(P); R
2) : y ∈ P

}
(17)

We further note that the convexity of � implies that the
boundary edges lie on the exterior of the domain and so the
discretization M�(P) covers �.

Clearly a better approximation is obtained if the points in
P are distributed more “evenly” in �. In our algorithm, we
will incorporate Lloyd’s iterations to obtain a point set P that
produces a CVT. Since optimal CVTs consist of Voronoi
cells that are congruent to a basic cell (and thus are uniform
in size) (Du and Wang 2005), it is expected ∪V ∈M�(P)V ≈
� especially for a large number of generating points. This
gives a systematic and consistent approach for discretizing
� under the given assumptions.

4.2 Algorithm

The basic ideas laid out in the previous section can be
extended for discretization of more general domains, in par-
ticular those that are non-convex and have piecewise smooth
boundaries (e.g. ∂� has corner points where there is a jump

Fig. 6 Illustration of the meshing approach: the Voronoi edges shared
between seeds and their reflection approximate the boundary of the
domain. Note that the reflections of the interior seeds “far” from the
boundary (e.g. point z in the figure) do not contribute to the final mesh

PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 315

Fig. 7 To accurately capture a corner, nearby seeds need to be reflected about both boundary segments incident on that corner

in the normal vector). These features lead to a number
of complications that require (minor) modifications of the
previous approach. For example, reflecting a point about
the nearest boundary point may not be sufficient to cap-
ture a nearby corner (see Fig. 7). We resolve this issue by
reflecting the seeds about both boundary segments incident
on the corner. Similarly, for non-convex domains, reflection
of a seed far from the boundary may land inside the domain
or interfere with the reflection of another seed (Fig. 8). We
check the sign and value of the distance function to exclude
such a scenario. Finally, as seen in Fig. 6, the reflection
of most of the seeds in the interior of the domain has no
effect on the approximation of the boundary. Thus, we add
a condition to reflect only seeds that are in a band near

Fig. 8 In this non-convex domain, the reflection R�(y) is closer to
the boundary of the domain than the seed y itself, i.e., |d�(R�(y))| <

|d�(y)|. Not only this reflection does not contribute to the approxima-
tion of the boundary, it causes interference with seed z

the boundary. This significantly reduces the computational
cost and improves the robustness of algorithm by alleviating
the problem of interference, which is important in dealing
with complex non-convex domains (Fig. 9). Based on these
considerations, the following algorithm is proposed.

We consider domains � that are formed by finite
union, intersection and/or difference of smooth but perhaps
unbounded regions �i , i = 1, . . . , m. Using formulas in
(7), the distance function associated with � can be written
as a function of d�i :

d�(x) = F(d�1(x), . . . , d�m (x)) (18)

It is expected that �i ’s and operations represented by F are
defined in such a way that distance to the every boundary
segment of � can be found among the values of d�i .

The first step in the algorithm is to generate an initial set
of points P. Algorithm 1 shows the basic steps for obtaining
a random point set of n size. The implementation of random
seed generation is simplified by specifying a bounding box
B = [xmin, xmax] × [

ymin, ymax
]

that contains �. A random
seed y ∈ B is accepted only if it lies inside the domain and
this is determined by evaluating the sign of the d�(y).

Algorithm 1 Initial random seed placement
input: B, n %%B ⊃ � is the bounding box and n is

the desired number of seeds
set P = ∅
while |P| < n do

generate random point y ∈ B
if d�(y) < 0 then

P ← P ∪ {y}
end if

end while
output: P

316 C. Talischi et al.

Fig. 9 In the algorithm, only the seeds in band of length α(n, �) near
the boundary (shaded area in the figure) are reflected

As discussed above, the set of reflections must be chosen
carefully in order to deal with possible non-convex and non-
smooth features of �. In (17), R�(P) may not be sufficient
for producing a good discretization M�. The procedure for
computing the new set of reflections, denoted by R(P), is
outlined in Algorithm 2. A seed y ∈ P is reflected about
boundary segment ∂�i provided that:∣∣d�i (y)

∣∣ < α(n, �) (19)

where α(n, �) is a distance value proportional to the width
of an element:

α(n, �) := c

(|�|
n

)1/2

(20)

We choose the constant of proportionality c to be greater
than 1 so that α is larger than the average element width.
Note that convex corners are captured as nearby seeds are
reflected about both boundary segments incident on these
corners.

The reflection y = R�i (y) is accepted if it lies outside the
domain, i.e., d�(y) > 0. Moreover, the following criterion
is added to avoid interference with the reflection of other
seeds:

|d�(y)| > η
∣∣d�i (y)

∣∣ (21)

where 0 < η < 1 is a specified parameter to adjust for
numerical errors (round-off and numerical differentiation).
Figure 8 illustrates the idea behind this criterion. In the case
of a convex domain, |d�(y)| = ∣∣d�i (y)

∣∣ so no difficulty will
occur. In general, however, the reflection may be closer to a
boundary segment of �, other than the one that generated it
(i.e., �i), in which case the reflection will not help with the
approximation of the boundary and may possibly interfere
with the reflection of another seed. In particular, we expect
an interference when d�(y) < −d�i (y). Hence we exclude
this possibility by accepting only the reflections that satisfy
the condition in (21).

Algorithm 2 Reflection
input: P, α, η

R(P) = ∅
for each y ∈ P do

if |d�(y)| < α then
for i = 1 to m do %% m is the number of regions

if
∣∣d�i (y)

∣∣ < α then
let y = R�i (y)

if d�(y) > 0 and |d�(y)| > η
∣∣d�i (y)

∣∣ then
R(P) ← R(P) ∪ {y}

end if
end if

end for
end if

end for
output: R(P)

Once the set of reflections are determined, the Voronoi
diagram of the P ∪ R(P) is constructed. For each y ∈ P,
we compute the centroid of Voronoi cell Vy to complete the
first iteration of the meshing routine. Following the idea of
Lloyd’s algorithm, the set of centroids Pc will replace P in
the next iteration until convergence is achieved. The con-
vergence criterion is based on the magnitude of the gradient
of the energy functional. In particular, the algorithm should
terminate when ‖∇E‖ ≈ 0. Recalling (13), the norm of the
gradient is given by:

‖∇E‖:=
⎛
⎝∑

y∈P

∥∥∇yE
∥∥2

⎞
⎠

1/2

=
⎛
⎝∑

y∈P

m2
y ‖y − yc‖2

⎞
⎠

1/2

(22)

We can see that this quantity is in fact a measure of
the movement of the seeds in two consecutive iterations,
weighted by the “size” of their Voronoi cells through terms
my. To identify the appropriate convergence tolerance,
we note:

my ∝ 1

n

∫
�

μ(x)dx, ‖y − yc‖2 ∝ ∣∣Vy
∣∣ ∝ |�|

n
(23)

and so the norm of the gradient scales as:

‖∇E‖ ∝
[

n

(
1

n

∫
�

μ(x)dx
)2 |�|

n

]1/2

= |�|1/2

n

∫
�

μ(x)dx (24)

We define the following “non-dimensional” error
parameter:

Er := n ‖∇E‖
|�|1/2 ∫

�
μ(x)dx

(25)

PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 317

Algorithm 3 Main function
input: n, M , εtol %%number of seeds n, max. number

of iterations M, tolerance εtol

generate P, a random point set of size n
i ←0, Er ←1, Pc ←P %Initialization of variables
while i ≤ M and Er ≥ εtol do

P ← Pc

compute reflections R(P)

construct diagram T (P ∪ R(P); R
2)

calculate Pc ← {yc : y ∈ P}
compute Er using Equation (27)
i ← i + 1

end while
output: M̃�(P) := {

Vy ∈ T (P ∪ R(P); R
2) : y ∈ P

}

Thus convergence is established when:

Er < εtol (26)

Here 0 < εtol � 1 is the specified convergence tolerance. The
pseudo-code for the main routine is shown in Algorithm 3.
Note that the mesh is still defined by expression (17) with
R�(P) replaced by R(P).

4.3 Remarks on min/max formulas

We conclude this section with a remark regarding min/-
max formulas in (7) and implicitly used in (18) and their
influence on the behavior of the meshing algorithm. As
mentioned before, these expressions may produce incor-
rect distance values in certain regions of the plane. A close
inspection of the algorithm shows that the magnitude of d�

generated by (18) is used only in the evaluation of inter-
ference criterion (21). Elsewhere—in generating an initial
point set, checking condition (19), or computing reflection
of a seed—we either use the sign of d� or the distance val-
ues of the constituent domains. The requirement on F and
the structure of min/max formulas implicitly used in F guar-
antee that |d�(y)| = ∣∣d� j (y)

∣∣ for some index j . Here d�

denotes the distance function generated by F , which may be
different from the exact distance functions associated with
� in some regions of the plane. In such a case, the violation
of condition (21) implies

∣∣d� j (y)
∣∣ = |d�(y)| ≤ η

∣∣d�i (y)
∣∣ <

∣∣d�i (y)
∣∣

for some j �= i and so the reflection y = R�i (y) is “cor-
rectly” rejected because it is expected to cause interference
with approximation of � j . In fact, in this algorithm, we do
not need the exact distance function associated with �. The
need for d�i ’s is primarily due to the issue of corners and
capturing non-convex features.

5 Matlab implementation

In this section, we explain the details of the Matlab code for
polygonal mesh generator. We begin by describing the struc-
ture of the code, the input and output parameters and the
user-defined Domain function that characterizes the mesh-
ing domain. Next we make some comments on the routines
inside the meshing kernel.

5.1 Structure of the code: meshing kernel and input data

The kernel of the mesh generator is implemented in the
PolyMesher function. The following variables are the
user inputs to this function:

[Node,Element,Supp,Load,P]

= PolyMesher(@Domain,NElem,MaxIter,P)

Domain This is a Matlab function defining the domain.
As shown above, a handle to this function (e.g.,
@MichellDomain) is passed to the kernel, providing
access to information about domain geometry (i.e., the sign
distance function), the bounding box B (see Section 4.2),
and the boundary conditions. The details of this function
are discussed later in this section.

NElem This is an integer that represents the desired num-
ber of elements in the mesh. When an initial point set P is
specified, NElem is replaced by the number of elements
in P.

MaxIter This integer specifies the maximum number of
Lloyd’s iterations. By setting MaxIter to zero and pro-
viding an initial point set, the user can obtain/recover the
Voronoi mesh produced by that point set.

P The user has the option of inputting an initial set of
seeds through the array P, in which the kth row repre-
sents the coordinates of the kth seed. If no such input is
passed to the code, an initial random point set is generated
(see description of the function PolyMshr_RndPtSet
below).

The PolyMesher function computes and returns the
Voronoi discretization along with the final set of seeds
and the boundary conditions arrays (Supp and Load as
described below). The mesh is represented by the com-
monly used data structure in finite element community,
namely a node list and an element connectivity matrix. The
node list, Node, is a two-column array whose i th row repre-
sents the coordinates of the node with index number i . The
connectivity Element is stored inside a Matlab cell of size
NElem. The kth entry of the cell contains the indices of

318 C. Talischi et al.

Table 1 Various uses and commands for the Domain function

Use Input Output

Bounding box Domain(‘BdBox’) Coordinates of bounding box [xmin,xmax,ymin,ymax]

Distance values Domain(‘Dist’,P) (m + 1) × n matrix of distance values for point set P consisting of n points

Boundary conditions Domain(‘BC’,Node) Cell consisting of Load and Supp arrays

the nodes incident on the kth element in counter-clockwise
order.3

All the domain-related information is included in
Domain defined outside the kernel. This provides more
flexibility for generating meshes for new domains and elim-
inates the need for the repeated modifications of the kernel.
The domain function is used in the kernel for three distinct
purposes: (1) retrieving the coordinates of the bounding
box for the domain, (2) obtaining the distance of a given
point set to the boundary segments, and (3) determining the
boundary condition arrays for a given node list. In the sam-
ple domain functions, the input string Demand specifies
the type of information requested. Table 1 summarizes the
different input and output choices.

Within the Domain function, the user must define the
distance function of the meshing domain. This function,
called DistFnc in the sample domain functions, accepts
the coordinates of a point set P and return a matrix of
(m + 1)×n distance values. The entry located at i th column
and j th row represents the signed distance value d�i (P j),
while the last column is the signed distance for the entire
domain �. If d is a matrix of distance values, this last
column can be quickly accessed by command d(:,end).

The user also defines the function that returns the lists of
nodal loads and supports given the node list for the mesh.
The nodal support array Supp has three columns, the first
holds the node number, the second and third columns give
support conditions for that node in the x- and y-direction,
respectively. Value of 0 means that the node is free, and
value of 1 specifies a fixed node. The nodal load vector
Load is structured in a similar way, except for the values in
the second and third columns that represent the magnitude
of the x- and y-components of the force.

5.2 Comments on the functions in the kernel

We now proceed to discuss some of the details of the imple-
mentation of the kernel and comment on its functions. We
remark that in this implementation, it is assumed μ(x) ≡ 1

3The cell structure allows for storing vectors of different size and is
therefore suitable for connectivity of polygonal elements with different
number of nodes.

so yc is the centroid of a polygon, my = ∣∣Vy
∣∣ and the

expression for the error is simplified as:

Er = n

|�|3/2

⎛
⎝∑

y∈P

∣∣Vy
∣∣2 ‖y − yc‖2

⎞
⎠

1/2

(27)

PolyMesher The main function follows closely the
pseudo-code in Algorithm 3. On line 7, we check to see if an
initial point set is provided by the user. The variable NElem
is updated on line 8 to make sure it is consistent with size of
P. The iteration counter It and error value Err are ini-
tialized such that the while-loop is executed at least once.
Upon the first execution, line 15 recovers the initial points
in variable P. The area of the domain, needed for comput-
ing Er and α, is initially set to the area of the bounding box
on line 11. This value is updated when the centroids of the
elements are computed.4

Since the output of the Matlab voronoin command
on line 17 is the set of vertices and connectivity of the
entire Voronoi diagram (i.e., with all the cells in T (P ∪
R(P); R

2)) and the discretization is composed only of the
cells in M�, we need to extract the nodes and connectivity
of these cells. This is done in the PolyMshr_ExtrNds
function (line 24). The mesh is updated once more in
PolyMshr_CllpsEdgs to remove small edges that can
appear in a CVT (line 25). Furthermore, since resulting
node numbering and connectivity are random (as a con-
sequence of random placement), the bandwidth of finite
element stiffness matrix may be too large. This issue is
addressed in the PolyMshr_RsqsNds function (line 26).
The main function ends with obtaining the boundary condi-
tion arrays from the domain function (line 27) and plotting
the final mesh (line 28).

PolyMshr_RndPtSet This function generates an ini-
tial random point set of size NElem. A candidate point set
Y of size NElem is generated using the coordinates of the
bounding box and rand function in Matlab (lines 33–34).
Only seeds in Y that lie inside the domain are accepted.
The variable Ctr counts the number of seeds accepted so
far. The while-loop terminates when the desired number of
seeds is reached.

4This small overhead can be removed after a few iterations once a good
estimate value is obtained.

PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 319

PolyMshr_Rflct The implementation of this func-
tion follows Algorithm 2 in Section 4.2. The gradient of
the distance function is computed by means of numerical
differentiation:

n := ∇d�i (y)

≈ ε−1
d

(
d�i (y + (εd , 0)) − d�i (y),

d�i (y + (0, εd)) − d�i (y)
)

(28)

Here εd is a small positive number, set to 10−8 by default on
line 43. We compute the normal vector for the entire point
set at once on lines 46 and 47, where n1 and n2 denote
the first and second components of the normal, respectively.
The logical array index I, computed on line 48, is then
used to identify and reflect the seeds only about the nearby
boundary segments, i.e., those within distance of α. In order
to compute the reflections R_P at once, the point set P is
extended, by repeating its columns, to two matrices of the
same size as n1 and n2 on lines 49 and 50. Once the candi-
date set of reflections R_P of the boundary-adjacent seeds
are obtained (lines 51–52), the two conditions for accepting
the reflections are enforced on line 55 by means of another
logical array index J.

PolyMshr_CntrdPly This function returns the areas
and centroids of the first NElem cells in the mesh. Since the
density is assumed to be constant, we can compute the area
and centroid of each cell using the available formulae for
polygons. The signed area for an 	-sided polygon is given by:

A = 1

2

	∑
k=1

(
v[k]

x v[k+1]
y − v[k+1]

x v[k]
y

)
(29)

where (v
[k]
x , v

[k]
y) is the coordinates of the kth vertex of

the polygon, k = 1, . . . , 	. In the above equation, we

are defining (+ 1)th vertex to be the same as the first.
Similarly, The formula for computing the centroid is:

cx = 1

6A

	∑
k=1

(
v[k]

x + v[k+1]
x

)

×
(
v[k]

x v[k+1]
y − v[k+1]

x v[k]
y

)
(30)

cy = 1

6A

	∑
k=1

(
v[k]

y + v[k+1]
y

)

×
(
v[k]

x v[k+1]
y − v[k+1]

x v[k]
y

)
(31)

PolyMshr_ExtrNds The original discretization is
passed to this function through variables Element0 and
Node0. The connectivity of the Voronoi cells that make up
the mesh are stored in the first n arrays of the cell vari-
able Element0 as a result of passing the seeds P in the
first block of the input to Matlab function voronoin on
line 17. However, the vertices of these cells are not nec-
essarily stored in the first block of rows of Node0. The
extraction of the additional nodes requires modification of
both the node list and the connectivity matrix. The func-
tion PolyMshr_ExtrNds first creates a one-dimensional
array, map, containing the indices of the nodes that must
remain in the mesh (the Matlab function unique is used
to remove the appearance of duplicate nodes). The array
cNode, needed for updating the node list and element con-
nectivity matrix, is constructed on lines 69–70. By setting
the entries of cNode that correspond to the nodes that
must be removed to the maximum value in map (which
is necessarily the index of a node that will remain in the
node list) on line 70, we ensure that they are removed
in PolyMshr_RbldLists function (see below for the
description of this function).

PolyMshr_CllpsEdgs This function addresses the
issue of appearance of small edges in the centroidal Voronoi

Fig. 10 Small edges can form
in elements near a curved
boundary since the generating
seeds are not the same distance
from that boundary. The issue
can be addressed by a
post-processing step of
collapsing these edges onto
single nodes

320 C. Talischi et al.

Fig. 11 Illustration of small interior edges in a CVT and definition of
angle β in (32)

meshes, which can occur around the boundary of the domain
or in the interior. In former case, such phenomenon is due
to the use of numerical differentiation to compute the gradi-
ent of the distance function and unequal distance of seeds
to curved boundaries, as illustrated in Fig. 10. A small
interior edge can also form when four seeds are almost
co-circular (see Fig. 11). A simple remedy, implemented
in PolyMshr_CllpsEdgs function, is to collapse the
edges that are small compared to the element size into a
single node. This operation does not distort the mesh topol-
ogy (elements remain to be convex polygons) and ensures
a uniform quality of the mesh. An alternative penalization
approach is discussed in (Sieger et al. 2010). In our imple-
mentation, we search all the edges in the mesh by looping
over all the elements (for-loop in lines 76–84). Given an
edge of an element, we compute the angle between the vec-
tors connecting the center (the location with mean value of
the coordinates of the nodes) of the element and the vertices
forming the edge (lines 79–80). The edge will be collapsed
into a single node when

β < εa

(
2π

	

)
(32)

Here 	 is the number of vertices of the element and εa

is a user-defined tolerance. To update the node list and
element connectivity matrices, the set of edges that needs to
be collapsed is stored in array cEdge (line 86). The input
cNode is defined on line 89 such that the two nodes at
the end of a tagged edge are replaced by a single node in
PolyMshr_RbldLists.

PolyMshr_RsqsNds The Reverse Cuthill–McKee
(RCM) algorithm (Cuthill and McKee 1969) is used to
renumber the nodes once more in order to reduce the band-
width and profile of the stiffness matrix for the mesh. Note
that other resequencing algorithms may be used as well,
e.g. (Paulino et al. 1994a, b). In the present function, the
sparsity pattern of the corresponding stiffness matrix is first
computed (lines 98–104). The assembly of this pseudo-
stiffness matrix K is carried out by the use of Matlab’s
sparse assembly function (on line 105). The Matlab function
symrcm returns the reverse Cuthill-McKee ordering, stored
in variable p, which is then used to compute the cNode
array passed to PolyMshr_RbldLists function. The
reader is referred to the Matlab documentation on func-
tions sparse and symrcm for further information of this
implementation.

PolyMshr_RbldLists This auxiliary function is
used in all three mesh modification functions (PolyMshr_
ExtrNds, PolyMshr_CllpsEdgs, and PolyMshr_
RsqsNds) for updating the node list and element connec-
tivity according to the information contained in the input
array cNode. This is an array of integer with the same
length as the input node list Node0. If the i th entry of
cNode is set to have value k, then after the update, the
i th node, Node0(i), is replaced by the coordinates of
kth node, Node0(k). For example, in order to collapse
nodes i and j, we can set cNode(i)=j (see line 89
in PolyMshr_CllpsEdgs function). Similarly, if we
wish to remove the node with index i from the node list
(which is the case in PolyMshr_ExtrNds function), we
set cNode(i) to be the highest index of the nodes that
will remain in the mesh after the modification. On line
112, we use the unique function in Matlab to identify
the duplicate nodes and the resulting index array ix allows
us to extract the desired nodal coordinates from Node0.
When reducing the node list size we need to make sure
that the last mapped node is the maximum node of the
input map cNode (line 113). The connectivity Element is
updated on line 116 while lines 117–119 guarantee that final
arrangement of nodes in the connectivity cell Element is
ordered counter-clockwise. Note that the voronoin does
not necessarily store the nodes in the connectivity cell in a
counter-clockwise order requiring this correction.

PolyMshr_PlotMsh This function plots the mesh
and boundary conditions. In order to use the Matlab
patch function to plot the entire mesh at once, we
create an element connectivity matrix ElemMat that is
padded with NaNs. This matrix has NElem rows and

PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 321

MaxNVer columns (as computed on line 125, MaxNVer
is the maximum number of vertices of elements in the
mesh). The location of support and loads are also marked
provided that Supp and Load arrays are passed to the
function.

6 Examples

In this section, we will present several examples to illus-
trate the use of the code. In particular, we show how
an appropriate distance function can be constructed using

(a) Domain of the MBB beam

(b) Domain of the Michell cantilever problem

(c) Horn geometry

(d) Wrench geometry

Fig. 12 Distance functions (left) and sample meshes (right) for various domains. a Domain of the MBB beam; b Domain of the Michell cantilever
problem; c Horn geometry; d Wrench geometry

322 C. Talischi et al.

(a) (b)

Fig. 13 Suspension triangle a geometry and b discretization

the library of distance functions. The Domain functions
for these example geometries and the library of distance
functions are provided as supplementary material. Figures 12
and 13 show the contour plot of the distance function and a
sample mesh for each example. In all the cases, the default
values of c = 1.5, εa = 0.1 and εtol = 5 × 10−3 were
used.

6.1 MBB beam

The domain is a rectangular box with width of 3 and height
of 1, and bottom left corner located at the origin. The
distance function is simply given by:

d = dRectangle(p,0,3,0,1)

and the bounding box is the entire domain, i.e., BdBox =
[0 3 0 1]. The boundary conditions for the MBB prob-
lem are specified by searching the nodes located along the
left edge and bottom corner. The following command was
used to generate the result in Fig. 12a:

[Node,Element,Supp,Load,P]

= PolyMesher(@MbbDomain,200,100);

6.2 Michell cantilever

The second example is the extended domain for the Michell
cantilever beam problem. The support is a circular hole and
the a vertical load is applied at midspan of the free end. The
distance function is constructed as follows:

d1 = dRectangle(p,0,5,-2,2)

d2 = dCircle(p,0,0,1)

d = dDiff(d1,d2)

The mesh shown in Fig. 12b consists of 1000 elements, and
was constructed to be symmetric about horizontal axis
(located at the midspan). The initial point set was restricted

Fig. 14 Uniform discretizations of the MBB beam domain obtained
from appropriate placements of the seeds

PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 323

to the upper half of the domain by modifying line 36 as
follows:

I = find(d(:,end)<0 & Y(:,2)>0);

Also during the iterations that point set was reflected about
the x-axis to obtain the complete set of generating seeds. In
particular, we replaced P = Pc on line 15 by the following
line of code:

P = [Pc(1:NElem/2,:);[Pc(1:NElem/2,1),

-Pc(1:NElem/2,2)]];

6.3 Horn

The third example has the geometry of a horn, which
comes from the difference of two half-circles. The distance
function is computed by:

d1 = dCircle(p,0,0,1)

d2 = dCircle(p,-0.4,0,0.55)

d3 = dLine(p,0,0,1,0)

d = dIntersect(d3,dDiff(d1,d2));

The mesh in Fig. 12c consists of 500 elements.

6.4 Two more examples

The construction of the distance functions for the last two
example involves several geometries and set operations.
The first is an extended domain for the design of a socket

wrench and the other is domain for a suspension triangle
which is presented as an industrial application of topology
optimization in Allaire and Jouve (2005). The constituent
domains of the suspension triangle are shown in Fig. 13a.
The meshes in Figs. 12d and 13b are both made up of 1,000
elements.

6.5 Uniform meshes

The proposed algorithm can also be used to generate certain
uniform meshes (regular tessellations), as shown in Fig. 14
for the MBB domain. The user must specify the set of seed
P and turn off the Lloyd’s iterations by setting MaxIter
to zero. The following set of seeds generates a uniform
rectangular mesh with nelx elements in the x-direction
and nely elements in the y-direction for the MBB beam
problem:

dx = 3/nelx; dy = 1/nely;

[X,Y] = meshgrid(dx/2:dx:3,dy/2:dy:1);

P = [X(:) Y(:)];

7 Conclusions and Extensions

The present meshing paper was motivated by the desire to
present a complete, self-contained, efficient and useful code
in Matlab, including domain description and discretization
algorithms. The code is based on the concept of Voronoi dia-
grams, which offers a simple and effective approach to dis-
cretize two-dimensional geometries with convex polygons.

Fig. 15 In the left figure, the
reflection of point y1 has
interfered with the
approximation of the horizontal
boundary by seeds z and y2. In
the right figure, seeds y1, y2 and
y3 are fixed in such way that
they all have y as the reflection

324 C. Talischi et al.

Fig. 16 Sample graded meshes:
the left figures show the initial
distribution of seeds generated
using a mesh size function and
rejection method and the right
figures show the final mesh
after Lloyd’s iterations. a MBB
domain; b Horn domain

(a) MBB domain

(b) Horn domain

Its range of applications is broad, including optimization
(shape, topology, etc), and other applications (Raghavan
et al. 2004).

We conclude this paper by discussing a few extensions
of our meshing algorithm, which were left out of the Matlab
code for the sake of simplicity and clarity. The first is related
to the approximation of certain non-convex corners, which
may not be adequately captured with the reflection criteria
described above. An example of a domain that exhibits such
geometry is the L-shaped domain shown in Fig. 15. Since
the seeds near the non-convex corner are placed indepen-
dently (during the Lloyd’s iterations), their reflections may
interfere with each other. One possible solution is to place
some seeds at an equal distance from the corner and fix them
during the Lloyd’s iteration. This process can be made sys-
tematic by choosing, as the fixed seeds, the reflections of
appropriately places seed outside such a corner (e.g. point y
in Fig. 15).

The second extension is regarding the generation of
non-uniform meshes. The Lloyd’s algorithm with constant
density function, μ(x), leads to a uniform distribution of
seeds and subsequently a Voronoi discretization that is uni-
form in size over the entire domain. It is possible to generate
non-uniform meshes with desirable gradation by selecting
an appropriate density function, which biases the placement
of points in certain regions (see the effects on varying den-
sity function in Du et al. (1999)). Note that, to generalize
the code further in this direction, an integration scheme
for convex polygons is needed to compute the centroids.
Alternatively, we can choose an initial distribution of seeds

such that regions that need refinement contain more seeds.
Persson and Strang (2004) and Persson (2006) employed a
rejection method that relies on defining a mesh size func-
tion h(x) over the domain. Figure 16 shows examples of
graded meshes that can be generated by the algorithm pre-
sented in this work in conjunction with the rejection method.
Note that CVT iterations naturally lead to a smooth grada-
tion in the mesh. Although not explored, it is also possible to
combine the two approaches and specify suitable and related
density and mesh size functions.5

We hope that the engineering community will make use
of the present mesh generator in ways that we cannot antic-
ipate. Because the source code is provided and explained in
detail, the realm of applications of this mesh generator is
boundless.

Acknowledgments The first and second authors acknowledge the
support by the Department of Energy Computational Science Gradu-
ate Fellowship Program of the Office of Science and National Nuclear
Security Administration in the Department of Energy under con-
tract DE-FG02-97ER25308. The third and last authors acknowledge
the financial support by Tecgraf (Group of Technology in Computer
Graphics), PUC-Rio, Rio de Janeiro, Brazil. The authors also acknowl-
edge the insightful comments of the two anonymous reviewers which
contributed to improving the manuscript further.

5Since the gradation in mesh is often dictated by the geometry of the
domain, it is natural that both μ and h be defined based on the distance
function d�.

PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 325

Appendix A: PolyMesher
1 %------------------------------ PolyMesher -------------------------------%
2 % Ref: C Talischi, GH Paulino, A Pereira, IFM Menezes, "PolyMesher: A %
3 % general-purpose mesh generator for polygonal elements written in %
4 % Matlab," Struct Multidisc Optim, DOI 10.1007/s00158-011-0706-z %
5 %---%
6 function [Node,Element,Supp,Load,P] = PolyMesher(Domain,NElem,MaxIter,P)
7 if ~exist('P','var'), P=PolyMshr_RndPtSet(NElem,Domain); end
8 NElem = size(P,1);
9 Tol=5e-3; It=0; Err=1; c=1.5;

10 BdBox = Domain('BdBox');
11 Area = (BdBox(2)-BdBox(1))*(BdBox(4)-BdBox(3));
12 Pc = P; figure;
13 while(It≤MaxIter && Err>Tol)
14 Alpha = c*sqrt(Area/NElem);
15 P = Pc; %Lloyd's update
16 R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha); %Generate the reflections
17 [Node,Element] = voronoin([P;R_P]); %Construct Voronoi diagram
18 [Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);
19 Area = sum(abs(A));
20 Err = sqrt(sum((A.^2).*sum((Pc-P).*(Pc-P),2)))*NElem/Area^1.5;
21 fprintf('It: %3d Error: %1.3e\n',It,Err); It=It+1;
22 if NElem≤2000, PolyMshr_PlotMsh(Node,Element,NElem); end;
23 end
24 [Node,Element] = PolyMshr_ExtrNds(NElem,Node,Element); %Extract node list
25 [Node,Element] = PolyMshr_CllpsEdgs(Node,Element,0.1); %Remove small edges
26 [Node,Element] = PolyMshr_RsqsNds(Node,Element); %Reoder Nodes
27 BC=Domain('BC',Node); Supp=BC{1}; Load=BC{2}; %Recover BC arrays
28 PolyMshr_PlotMsh(Node,Element,NElem,Supp,Load); %Plot mesh and BCs
29 %--- GENERATE RANDOM POINTSET
30 function P = PolyMshr_RndPtSet(NElem,Domain)
31 P=zeros(NElem,2); BdBox=Domain('BdBox'); Ctr=0;
32 while Ctr<NElem
33 Y(:,1) = (BdBox(2)-BdBox(1))*rand(NElem,1)+BdBox(1);
34 Y(:,2) = (BdBox(4)-BdBox(3))*rand(NElem,1)+BdBox(3);
35 d = Domain('Dist',Y);
36 I = find(d(:,end)<0); %Index of seeds inside the domain
37 NumAdded = min(NElem-Ctr,length(I)); %Number of seeds that can be added
38 P(Ctr+1:Ctr+NumAdded,:) = Y(I(1:NumAdded),:);
39 Ctr = Ctr+NumAdded;
40 end
41 %--- REFLECT POINTSET
42 function R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha)
43 eps=1e-8; eta=0.9;
44 d = Domain('Dist',P);
45 NBdrySegs = size(d,2)-1; %Number of constituent bdry segments
46 n1 = (Domain('Dist',P+repmat([eps,0],NElem,1))-d)/eps;
47 n2 = (Domain('Dist',P+repmat([0,eps],NElem,1))-d)/eps;
48 I = abs(d(:,1:NBdrySegs))<Alpha; %Logical index of seeds near the bdry
49 P1 = repmat(P(:,1),1,NBdrySegs); %[NElem x NBdrySegs] extension of P(:,1)
50 P2 = repmat(P(:,2),1,NBdrySegs); %[NElem x NBdrySegs] extension of P(:,2)
51 R_P(:,1) = P1(I)-2*n1(I).*d(I);
52 R_P(:,2) = P2(I)-2*n2(I).*d(I);
53 d_R_P = Domain('Dist',R_P);
54 J = abs(d_R_P(:,end))≥eta*abs(d(I)) & d_R_P(:,end)>0;
55 R_P = R_P(J,:); R_P = unique(R_P,'rows');
56 %-- COMPUTE CENTROID OF POLYGON
57 function [Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem)
58 Pc=zeros(NElem,2); A=zeros(NElem,1);
59 for el = 1:NElem
60 vx=Node(Element{el},1); vy=Node(Element{el},2); nv=length(Element{el});
61 vxS=vx([2:nv 1]); vyS=vy([2:nv 1]); %Shifted vertices
62 temp = vx.*vyS - vy.*vxS;
63 A(el) = 0.5*sum(temp);
64 Pc(el,:) = 1/(6*A(el,1))*[sum((vx+vxS).*temp),sum((vy+vyS).*temp)];
65 end
66 %--- EXTRACT MESH NODES
67 function [Node,Element] = PolyMshr_ExtrNds(NElem,Node0,Element0)
68 map = unique([Element0{1:NElem}]);
69 cNode = 1:size(Node0,1);
70 cNode(setdiff(cNode,map)) = max(map);
71 [Node,Element] = PolyMshr_RbldLists(Node0,Element0(1:NElem),cNode);
72 %--- COLLAPSE SMALL EDGES

326 C. Talischi et al.

73 function [Node0,Element0] = PolyMshr_CllpsEdgs(Node0,Element0,Tol)
74 while(true)
75 cEdge = [];
76 for el=1:size(Element0,1)
77 if size(Element0{el},2)<4, continue; end; %Cannot collapse triangles
78 vx=Node0(Element0{el},1); vy=Node0(Element0{el},2); nv=length(vx);
79 beta = atan2(vy-sum(vy)/nv, vx-sum(vx)/nv);
80 beta = mod(beta([2:end 1]) -beta,2*pi);
81 betaIdeal = 2*pi/size(Element0{el},2);
82 Edge = [Element0{el}',Element0{el}([2:end 1])'];
83 cEdge = [cEdge; Edge(beta<Tol*betaIdeal,:)];
84 end
85 if (size(cEdge,1)==0), break; end
86 cEdge = unique(sort(cEdge,2),'rows');
87 cNode = 1:size(Node0,1);
88 for i=1:size(cEdge,1)
89 cNode(cEdge(i,2)) = cNode(cEdge(i,1));
90 end
91 [Node0,Element0] = PolyMshr_RbldLists(Node0,Element0,cNode);
92 end
93 %--- RESEQUENSE NODES
94 function [Node,Element] = PolyMshr_RsqsNds(Node0,Element0)
95 NNode0=size(Node0,1); NElem0=size(Element0,1);
96 ElemLnght=cellfun(@length,Element0); nn=sum(ElemLnght.^2);
97 i=zeros(nn,1); j=zeros(nn,1); s=zeros(nn,1); index=0;
98 for el = 1:NElem0
99 eNode=Element0{el}; ElemSet=index+1:index+ElemLnght(el)^2;

100 i(ElemSet) = kron(eNode,ones(ElemLnght(el),1))';
101 j(ElemSet) = kron(eNode,ones(1,ElemLnght(el)))';
102 s(ElemSet) = 1;
103 index = index+ElemLnght(el)^2;
104 end
105 K = sparse(i,j,s,NNode0, NNode0);
106 p = symrcm(K);
107 cNode(p(1:NNode0))=1:NNode0;
108 [Node,Element] = PolyMshr_RbldLists(Node0,Element0,cNode);
109 %-- REBUILD LISTS
110 function [Node,Element] = PolyMshr_RbldLists(Node0,Element0,cNode)
111 Element = cell(size(Element0,1),1);
112 [foo,ix,jx] = unique(cNode);
113 if size(Node0,1)>length(ix), ix(end)=max(cNode); end;
114 Node = Node0(ix,:);
115 for el=1:size(Element0,1)
116 Element{el} = unique(jx(Element0{el}));
117 vx=Node(Element{el},1); vy=Node(Element{el},2); nv=length(vx);
118 [foo,iix] = sort(atan2(vy-sum(vy)/nv,vx-sum(vx)/nv));
119 Element{el} = Element{el}(iix);
120 end
121 %-- PLOT MESH
122 function PolyMshr_PlotMsh(Node,Element,NElem,Supp,Load)
123 clf; axis equal; axis off; hold on;
124 Element = Element(1:NElem)'; %Only plot the first block
125 MaxNVer = max(cellfun(@numel,Element)); %Max. num. of vertices in mesh
126 PadWNaN = @(E) [E NaN(1,MaxNVer-numel(E))]; %Pad cells with NaN
127 ElemMat = cellfun(PadWNaN,Element,'UniformOutput',false);
128 ElemMat = vertcat(ElemMat{:}); %Create padded element matrix
129 patch('Faces',ElemMat,'Vertices',Node,'FaceColor','w'); pause(1e-6)
130 if exist('Supp','var')&&~isempty(Supp)&&~isempty(Load)%Plot BC if specified
131 plot(Node(Supp(:,1),1),Node(Supp(:,1),2),'b>','MarkerSize',8);
132 plot(Node(Load(:,1),1),Node(Load(:,1),2),'m^','MarkerSize',8); hold off;
133 end
134 %---%

PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 327

Appendix B: Library of distance functions

1 %---%
2 function d = dRectangle(P,x1,x2,y1,y2)
3 d = [x1-P(:,1), P(:,1)-x2, y1-P(:,2), P(:,2)-y2];
4 d = [d,max(d,[],2)];
5 %---%
6 function d = dCircle(P,xc,yc,r)
7 d=sqrt((P(:,1)-xc).^2+(P(:,2)-yc).^2)-r;
8 d=[d,d];
9 %---%

10 function d = dLine(P,x1,y1,x2,y2)
11 % By convention, a point located at the left hand side of the line
12 % is inside the region and it is assigned a negative distance value.
13 a=[x2-x1,y2-y1]; a=a/norm(a);
14 b=[P(:,1)-x1,P(:,2)-y1];
15 d=b(:,1)*a(2)-b(:,2)*a(1);
16 d=[d,d];
17 %---%
18 function d = dUnion(d1,d2) % min(d1,d2)
19 d=[d1(:,1:(end-1)),d2(:,1:(end-1))];
20 d=[d,min(d1(:,end),d2(:,end))];
21 %---%
22 function d = dIntersect(d1,d2) % max(d1,d2)
23 d=[d1(:,1:(end-1)),d2(:,1:(end-1))];
24 d=[d,max(d1(:,end),d2(:,end))];
25 %---%
26 function d = dDiff(d1,d2) % max(d1,-d2)
27 d=[d1(:,1:(end-1)),d2(:,1:(end-1))];
28 d=[d,max(d1(:,end),-d2(:,end))];
29 %---%

References

Allaire G, Jouve F (2005) A level-set method for vibration and multiple
loads structural optimization. Comput Methods Appl Mech Eng
194(30–33):3269–3290. doi:10.1016/j.cma.2004.12.018

Allaire G, Pantz O (2006) Structural optimization with FreeFem++.
Struct Multidisc Optim 32(3):173–181. doi:10.1007/s00158-006-
0017-y

Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O
(2011) Efficient topology optimization in MATLAB using 88
lines of code. Struct Multidisc Optim 43(1):1–16. doi:10.1007/
s00158-010-0594-7

Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental
geometric data structure. ACM Comput Surv 23(3):345–405

Bolander JE, Saito S (1998) Fracture analyses using spring net-
works with random geometry. Eng Fract Mech 61(5–6):569–591.
doi:10.1016/S0013-7944(98)00069-1

Challis VJ (2010) A discrete level-set topology optimization code
written in matlab. Struct Multidisc Optim 41(3):453–464.
doi:10.1007/s00158-009-0430-0

Cuthill E, McKee J (1969) Reducing the bandwidth of sparse sym-
metric matrices. In: Proceedings of the 24th national confer-
ence. ACM Press, New York, NY, pp 157–172. doi:10.1145/
800195.805928

Du Q, Gunzburger M (2002) Grid generation and optimization based
on centroidal Voronoi tessellations. Appl Math Comput 133(2–
3):591–607. doi:10.1016/S0096-3003(01)00260-0

Du Q, Wang DS (2005) The optimal centroidal Voronoi tessella-
tions and the Gersho’s conjecture in the three-dimensional space.
Comput Math Appl 49(9–10):1355–1373

Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi tessellations:
applications and algorithms. Siam Rev 41(4):637–676

Du Q, Gunzburger M, Ju L (2003) Constrained centroidal Voronoi
tessellations for surfaces. Siam J Sci Comput 24(5):1488–1506

Du Q, Emelianenko M, Ju LL (2006) Convergence of the Lloyd
algorithm for computing centroidal Voronoi tessellations. Siam
J Numer Anal 44(1):102–119. doi:10.1137/040617364

Huang Y, Qin H, Wang D (2008) Centroidal Voronoi tessellation-
based finite element superconvergence. Int J Numer Methods Eng
76(12):1819–1839. doi:10.1002/nme.2374

Ju L, Gunzburger M, Zhao W (2006) Adaptive finite element meth-
ods for elliptic PDEs based on conforming centroidal Voronoi-
Delaunay triangulations. Siam J Sci Comput 28(6):2023–2053

Langelaar M (2007) The use of convex uniform honeycomb tessella-
tions in structural topology optimization. In: 7th world congress
on structural and multidisciplinary optimization, Seoul, South
Korea, 21–25 May 2007

Liu Y, Wang W, Levy B, Sun F, Yan D, Lu L, Yang C (2009)
On centroidal Voronoi tesselleations–energy smoothness and fast
computation. ACM Trans Graph 28(4):101:1–17

Liu Z, Korvink JG, Huang R (2005) Structure topology optimization:
fully coupled level set method via FEMLAB. Struct Multidisc
Optim 29:407–417

Osher S, Fedkiw R (2003) Level set methods and dynamic implicit sur-
faces. Applied mathematical sciences, vol 153. Springer-Verlag,
New York

Paulino GH, Menezes IFM, Gattass M, Mukherjee S (1994a) Node
and element resequencing using the laplacian of a finite ele-
ment graph: part I—general concepts and algorithm. Int J Numer
Methods Eng 37(9):1511–1530. doi:10.1002/nme.1620370907

Paulino GH, Menezes IFM, Gattass M, Mukherjee S (1994b) Node
and element resequencing using the laplacian of a finite ele-
ment graph: part II—implementation and numerical results.
Int J Numer Methods Eng 37(9):1531–1555. doi:10.1002/nme.
1620370908

Persson P (2006) Mesh size functions for implicit geometries and PDE-
based gradient limiting. Eng Comput 22(2):95–109

Persson P, Strang G (2004) A simple mesh generator in MATLAB.
Siam Rev 46(2):329–345

http://dx.doi.org/10.1016/j.cma.2004.12.018
http://dx.doi.org/10.1007/s00158-006-0017-y
http://dx.doi.org/10.1007/s00158-006-0017-y
http://dx.doi.org/10.1007/s00158-010-0594-7
http://dx.doi.org/10.1007/s00158-010-0594-7
http://dx.doi.org/10.1016/S0013-7944(98)00069-1
http://dx.doi.org/10.1007/s00158-009-0430-0
http://dx.doi.org/10.1145/800195.805928
http://dx.doi.org/10.1145/800195.805928
http://dx.doi.org/10.1016/S0096-3003(01)00260-0
http://dx.doi.org/10.1137/040617364
http://dx.doi.org/10.1002/nme.2374
http://dx.doi.org/10.1002/nme.1620370907
http://dx.doi.org/10.1002/nme.1620370908
http://dx.doi.org/10.1002/nme.1620370908

328 C. Talischi et al.

Raghavan P, Li S, Ghosh S (2004) Two scale response and dam-
age modeling of composite materials. Finite Elem Anal Des
40(12):1619–1640

Ricci A (1973) A constructive geometry for computer graphics.
Comput J 16(2):157–160

Saxena A (2008) A material-mask overlay strategy for continuum
topology optimization of compliant mechanisms using honey-
comb discretization. J Mech Des 130(8):082304. doi:10.1115/
1.2936891

Sethian JA (1999) Fast marching methods. Siam Rev 41(2):199–
235

Sieger D, Alliez P, Botsch M (2010) Optimizing Voronoi diagrams
for polygonal finite element computations. In: Proceedings of the
19th international meshing roundtable

Sigmund O (2001) A 99 line topology optimization code written in
Matlab. Struct Multidisc Optim 21(2):120–127

Sukumar N, Malsch EA (2006) Recent advances in the construction of
polygonal finite element interpolants. Arch Comput Methods Eng
13(1):129–163

Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements.
Int J Numer Methods Eng 61(12):2045–2066. doi:10.1002/
nme.1141

Suresh K (2010) A 199-line matlab code for Pareto-optimal trac-
ing in topology optimization. Struct Multidisc Optim 42(5):665–
679. doi:10.1007/s00158-010-0534-6

Sussman M, Fatemi E, Smereka P, Osher S (1998) An improved level
set method for incompressible two-phase flows. Comput Fluids
27(5–6):663–680

Talischi C, Paulino GH, Le CH (2009) Honeycomb Wachspress finite
elements for structural topology optimization. Struct Multidisc
Optim 37(6):569–583. doi:10.1007/s00158-008-0261-4

Talischi C, Paulino GH, Pereira A, Menezes IFM (2010) Polygonal fi-
nite elements for topology optimization: a unifying paradigm. Int
J Numer Methods Eng 82(6):671–698. doi:10.1002/nme.2763

Talischi C, Paulino GH, Pereira A, Menezes IFM (2011) PolyTop:
a Matlab implementation of a general topology optimization
framework using unstructured polygonal finite element meshes.
doi:10.1007/s00158-011-0696-x

Yip M, Mohle J, Bolander JE (2005) Automated modeling
of three-dimensional structural components using irregular
lattices. Comput-aided Civil Infrastruct Eng 20(6):393–407.
doi:10.1111/j.1467-8667.2005.00407.x

Zhao H (2004) A fast sweeping method for Eikonal equations. Math
Comput 74(250):603–627

http://dx.doi.org/10.1115/1.2936891
http://dx.doi.org/10.1115/1.2936891
http://dx.doi.org/10.1002/nme.1141
http://dx.doi.org/10.1002/nme.1141
http://dx.doi.org/10.1007/s00158-010-0534-6
http://dx.doi.org/10.1007/s00158-008-0261-4
http://dx.doi.org/10.1002/nme.2763
http://dx.doi.org/10.1007/s00158-011-0696-x
http://dx.doi.org/10.1111/j.1467-8667.2005.00407.x

	PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab
	1 Introduction
	2 Distance function and implicit representation
	3 Voronoi diagrams, CVTs, Lloyd's algorithm
	4 Voronoi meshing
	4.1 Explanation of the approach
	4.2 Algorithm
	4.3 Remarks on min/max formulas

	5 Matlab implementation
	5.1 Structure of the code: meshing kernel and input data
	5.2 Comments on the functions in the kernel
	PolyMshr_RbldLists
	PolyMshr_PlotMsh

	6 Examples
	6.1 MBB beam
	6.2 Michell cantilever
	6.3 Horn
	6.4 Two more examples
	6.5 Uniform meshes

	7 Conclusions and Extensions

