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In this paper, we present the implementation of a small library of three-dimensional
cohesive elements. The elements are formatted as user-defined elements, for compatibility
with the commercial finite element software ABAQUS. The PPR, potential-based traction–
separation relation is chosen to describe the element’s constitutive model. The intrinsic
cohesive formulation is outlined due to its compatibility with the standard, implicit finite
element framework present in ABAQUS. The implementation of the cohesive elements is
described, along with instructions on how to incorporate the elements into a finite element
mesh. Specific areas of the user-defined elements, in which the user may wish to modify
the code to meet specific research needs, are highlighted. Numerical examples are provided
which display the capabilities of the elements in both small deformation and finite
deformation regimes. A sample element source code is provided in an appendix, and the
source codes of the elements are supplied through the website of the research group of
the authors.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The use of cohesive elements within the framework of the finite element method has proven to be a powerful tool to
model the fracture and fragmentation of materials. The concept of the cohesive zone model was presented over half a
century ago by Dugdale [1] and Barenblatt [2]. They proposed modeling the inelastic zone in front of a macrocrack with a
traction–separation relationship. Thus, as the crack separates, a softening traction is applied to the surrounding bulk
material. There have been a variety of traction–separation relations proposed, including linear, bilinear, trilinear, trapezoidal,
polynomial, and exponential softening models. A review of some of the significant traction–separation relations can be found
in the work by Park and Paulino [3].

When using cohesive elements, the material model chosen for the bulk elements is independent of that chosen for the
cohesive elements. For example, the bulk elements may be linear elastic, viscoelastic, hyperelastic, etc. In this publication
we will present examples which use both linear elastic and hyperelastic material models. For the hyperelastic material,
we use the Neo-Hookean material model; with corresponding stored-energy function, W [4]:
W Fð Þ ¼ l
2

I1 � 3½ �: ð1Þ
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Nomenclature

B global displacement–separation relation matrix
Dlocal local tangent stiffness matrix of the cohesive zone model
F½ �el internal force vector of a cohesive surface element
K½ �el tangent matrix of a cohesive surface element

m; n non-dimensional exponents in the PPR model
Ni cohesive element shape functions
R rotational matrix of nodal displacements
Tc cohesive traction vector
Text external traction vector
Tn; Tt normal and tangential cohesive tractions
Tv

n ; Tv
t normal and tangential cohesive tractions for the unloading/reloading relation

du virtual displacements
a; b shape parameters in the PPR model
av ; bv shape parameters in the unloading/reloading relation
C boundary of external traction
Cc boundary of cohesive fracture surface
Cn; Ct energy constants in the PPR model
dn; dt normal and tangential final crack opening widths
�dn; �dt conjugate normal and tangential final crack opening widths
Dn; Dt normal and tangential separations along the fracture surface
Dnmax ; Dtmax maximum normal and tangential separations along the fracture surface
kn; kt initial slope indicators in the PPR model
E Green strain
S 2nd Piola–Kirchhoff stress
rmax; smax normal and tangential cohesive strengths
/n; /t normal and tangential fracture energies
W potential function for cohesive strength
X domain
�h i Macauley bracket

tlocal local force vector of the cohesive model
I identity matrix
�n vector normal to the cohesive element midplane
�t1; �t2 vectors tangent to the element midplane
Dnn; Dnt; Dtn; Dtt components of the local tangent stiffness matrix
D1; D2; D3 opening components of cohesive element
Dv

nn; Dv
nt; Dv

tn; Dv
tt components of the local tangent stiffness matrix for unloading/reloading

F deformation gradient
l material shear modulus
I1 first invariant of the deformation gradient ðF � FÞ
dD virtual separation of cohesive element
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where F is the deformation gradient, l is the initial shear modulus of the rubber, and I1 ¼ F � F is the first principal invariant
of the deformation gradient. Since the two constitutive models (bulk and cohesive) are independent, the modeling of
functionally graded materials will require modifications to both the bulk and cohesive formulations. A means for modifying
cohesive element formulations to allow for graded properties will be presented.

Currently, the built-in traction–separation relations for cohesive elements in the commercial software ABAQUS [5] have
limitations. The available traction–separation relations typically consist of a linear hardening region, and either a linear or
exponential softening region. The traction–separation relationship used in this paper is the consistent, potential-based
model presented by Park et al. [6] in 2009. This model has been implemented in the Warp3D software [7], and in the Finite
Element All-Wheel Drive (FEAWD) software [8–10], but it’s use in ABAQUS has been limited to two-dimensional fracture
problems. The intrinsic model will be presented here, the extended details of the model, and the extension of the model
to an extrinsic formulation may be found in the principal publication. This work is an extension of a previous publication;
in which the authors present the two-dimensional user defined element (UEL) for use in ABAQUS [11]. The requests, from
users of that UEL, for the corresponding extension to three-dimensions, has been the motivation behind the present
publication.
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This paper aims to provide an educational look at the implementation of cohesive elements into a finite element mesh, in
accordance with their use in ABAQUS or a similar commercial software with support for user-supplied subroutines. In the
following section, we present related work and discuss potential applications of the cohesive model. In Section 3 the formu-
lation of the three-dimensional UEL is outlined, and its use in ABAQUS explained. In Section 4, the intrinsic formulation of the
Park–Paulino–Roesler (PPR) cohesive model is presented. It is understood that research, by its very nature, is diverse and
ever changing. In order to aid in the removal of the black-box nature of many codes, and to make this work more adaptable
to its user, Section 5 describes areas of the code which may be of interest to the readers, to modify and incorporate into their
own work. Section 6 presents some relevant examples which make use of the 3D elements. Finally, a discussion of the work
is presented, and a representative implementation (interface cohesive elements between linear tetrahedral bulk elements) is
included in an Appendix.
2. Related work

Since its conception, the cohesive zone model has been used to describe the fracture and fragmentation of a variety of
complex problems. Cohesive elements have been used extensively to model the fracture of concrete and asphalt [12]. In
1976, Hillerborg et al. [13] used cohesive elements with a linear softening relationship to study the fracture of plain concrete
beams. Following the work of Hillerborg, Petersson [14] implemented a bilinear softening model to simulate the fracture of
concrete and other quasi-brittle materials. More recently, Song et al. [15–17] used intrinsic cohesive elements to simulate
crack propagation in asphalt concrete beams. They tailored both bilinear softening and exponential softening relations to
asphalt to capture the behavior of the beams. Spring [18] used a graded bilinear softening relationship to investigate the fail-
ure of functionally graded concrete slabs. Park et al. [19] developed a trilinear softening relationship to model the fracture of
functionally graded, fiber reinforced concrete beams. By accounting for the added fracture energy due to the inclusion of
fibers, they displayed excellent agreement between numerical and experimental results.

There has also been a substantial amount of work done that uses cohesive elements in the simulation of impact damage
and fragmentation. For instance, Camacho and Ortiz [20] employed a linear softening relation to model the pervasive frac-
ture behavior which occurs during impact damage in brittle materials. They study the problem of a steel pellet impacting a
ceramic plate (an important problem in armor and turbine blade design), and capture results consistent with experiments. In
1998, Espinosa et al. [21] combined cohesive elements with a continuum damage model to capture the fragmentation of
ceramic rods under dynamic impact. Pandolfi et al. [22] used cohesive elements to model the fragmentation of radially
loaded, expanding rings. More recently, Mota et al. [23] studied the fragmentation of a human cranium due to a firearm
injury. They used cohesive elements with a linear softening relation, combined with three-dimensional finite element sim-
ulations, to capture behavior observed experimentally. In 2010, Caballero and Molinari used the same model as Camacho and
Ortiz to study the fracture and fragmentation of kidney stones under impact. Their findings lead to the design of a new sur-
gical tool to optimize the efficiency of kidney stone dissipation [24].

In general, the numerical simulation of dynamic crack propagation has been a popular application for cohesive elements.
In 1999, Ortiz and Pandolfi [25] used effective-displacement three-dimensional cohesive elements to model dynamic frac-
ture. They considered quadratic cohesive elements with an irreversible cohesive law, and were able to capture the correct
crack trajectory in a drop-weight dynamic fracture test. Ruiz et al. [26] looked at the failure of a three-point-bend concrete
beam under dynamic loading. They simulated the fracture using three-dimensional cohesive elements with a linear soften-
ing relation. More recently, Zhang and Paulino [27,28] were able to capture the microbranching phenomenon in dynamic
fracture simulations using a linear softening relationship, they studied materials with both homogeneous and graded prop-
erties. In fracture simulations, particularly dynamic fracture simulations, it is important to take into consideration the effect
of finite deformations. When cohesive elements are inserted into a model they initially have zero thickness, but once fracture
progresses they separate and rotate. By not taking into consideration the rotation of these fracture surfaces, the physics of
the problem may not be accurately captured.
3. UEL formulation

Three different cohesive element formulations are developed. As illustrated in Fig. 1, the three elements allow for com-
patibility with both linear brick and linear tetrahedral bulk elements, as well as with quadratic tetrahedral bulk elements.1

As discussed previously, the material model used for the bulk elements is independent of that used for cohesive elements.
Intrinsic cohesive elements are inserted a priori into a finite element mesh. Initially, the intrinsic cohesive elements have

zero thickness and, upon separation, impart a traction to the adjacent bulk elements. There are two common approaches to
inserting cohesive elements into a mesh. One may either insert the cohesive elements along a pre-selected fracture path,
restricting the crack to propagate where the user has specified, or one may insert cohesive elements between all bulk ele-
ments in a region of a mesh, allowing fracture to propagate freely within that region. When cohesive elements are inserted
throughout a region of a mesh, the elements may introduce an artificial softening into the overall model, effectively distort-
ing the bulk material properties [29,30]. In addition, if cohesive elements are inserted between all bulk elements in a region
1 It is important to note that, at the time of publication, ABAQUS does not have a built-in cohesive element that is compatible with quadratic elements.



(a) (b) (c)

Fig. 1. Cohesive elements compatible with (a) linear brick, (b) linear tetrahedral and (c) quadratic tetrahedral elements. Cohesive elements, highlighted
in red, are of initially zero thickness. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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of the mesh, the solution becomes highly non-convergent, and additional numerical measures need to be included in the
solution scheme to account for these instabilities [31,32]. An alternative method for allowing fracture to propagate freely
would be to use extrinsic cohesive elements [25,33].

Prior to insertion of cohesive elements, the standard finite element formulation may be described mathematically, using
the principle of virtual work [34]:
Wint ¼
Z

X
dE : SdV ¼

Z
C

du � Text dC ¼Wext ð2Þ
where E is the Green strain tensor in the domain X and du is the virtual displacement on the boundary C. Moreover, Text

denotes the external traction, and S is the 2nd Piola–Kirchhoff stress tensor. When cohesive elements are included in the
formulation, they contribute an additional term to the internal work:
Z

X
dE : SdV þ

Z
Cc

dD � Tc dCc ¼
Z

C
du � Text dC ð3Þ
where Tc is the cohesive traction, along the fracture surface Cc , corresponding to the virtual separation dD. Using the Galerkin
method [34], we discretize the contribution from the cohesive elements:
K½ �el ¼
Z 1

0

Z 1

0
BT RT DlocalRBJ dndg ð4Þ

F½ �el ¼
Z 1

0

Z 1

0
BT RT tlocal J dndg ð5Þ
where ðn;gÞ denote intrinsic coordinates and J the Jacobian. In order to accurately incorporate a user defined cohesive ele-
ment into the existing ABAQUS framework, we must provide the element stiffness matrix ð K½ �elÞ and force vector ð F½ �elÞwithin
the user-defined element (UEL). The global displacement–separation matrix, B, is a 3� N matrix (where N is the number of
shape functions) that computes the relative opening of the crack at any point in the cohesive element. The rotational matrix,
R, transforms from global to local coordinates. The local constitutive matrix, Dlocal, and the local force vector, tlocal, are func-
tions of the particular choice of cohesive model, and will be outlined below for the PPR cohesive model.

The B matrix is computed from the shape functions Ni ði ¼ 1;2; :::NÞ, and the identity matrix I:
B ¼ N1I3�3jN2I3�3j � � � jNNI3�3½ � I3N�3Nj � I3N�3N½ �: ð6Þ
The rotational matrix, R, is a function of the normal vector ð�nÞ and two perpendicular tangential vectors ð�t2;�t3Þ which form
the basis of the midplane of the cohesive element, as illustrated in Fig. 2.
R ¼
�nT

�tT
2

�tT
3

2
64

3
75: ð7Þ
The local constitutive matrix, specific to the PPR model, is defined as:
Dlocal ¼
Dnn DntD2=Dt DntD3=Dt

DtnD3=Dt DttD
2
2=D

2
t þ TtD

2
3D

3
t DttD2D3=D

2
t � TtD2D3=D

3
t

DtnD3=Dt DttD2D3=D
2
t � TtD2D3=D

3
t DttD

2
3=D

2
t þ TtD

2
2=D

3
t

2
64

3
75 ð8Þ
where Dnn;Dnt;Dtn, and Dtt are derived from the PPR model and are included in Appendix A. The variables D2 and D3 corre-
spond to the crack opening widths in the plane perpendicular to the normal direction ðD1Þ, as illustrated in Fig. 3. The local
force vector, tlocal, for the PPR model is:
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Fig. 2. A cohesive element in (a) its initial configuration with zero thickness and (b) its deformed configuration, depicting the normal and tangential vectors
on the midplane of the element.

Fig. 3. Definition of opening directions in a typical element configuration.
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tlocal ¼
Tn

TtD2=Dt

TtD3=Dt

8><
>:

9>=
>; ð9Þ
where we have considered the tangential opening directions to be coupled through the relationship Dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

2 þ D2
3

q
, on the

fracture plane. The traction components ðTn and TtÞ are derived from the cohesive potential and will be defined for the PPR
model in Section 4.1.

4. Cohesive model

The cohesive model, chosen independent of the bulk model, determines the cohesive behavior in the inelastic region in
front of the crack tip. There have been many models proposed (see [3] for a recent review of some of the prominent models),
most of which suffer from deficiencies when trying to satisfy boundary conditions or which require non-physical input
parameters. The PPR model is an adaptable cohesive model that was designed with the goal of overcoming the deficiencies
suffered by previous models. The PPR model is able to capture both intrinsic and extrinsic fracture behavior [6], but the
present implementation in ABAQUS focuses on the use of the intrinsic model. The extrinsic model is outlined in the principal
publication [6]. Below we outline the formulation of the intrinsic softening model, as well as the choice of unloading/
reloading and contact relations used in this work.

4.1. Intrinsic PPR model

The PPR model is potential-based. Such models have an advantage over non-potential-based models, in that their
traction–separation relations are determined by taking the derivative of the potential with respect to the normal and tan-
gential opening displacements. Similarly, the second derivative of the potential provides the consistent (material) tangent
matrix. The potential for the PPR model is described as:
WðDn;DtÞ ¼ minð/n;/tÞ þ Cn 1� Dn

dn

� �a m
a
þ Dn

dn

� �m

þ /n � /th i
� �

Ct 1� Dtj j
dt

� �b n
b
þ Dtj j

dt

� �n

þ /t � /nh i
" #

ð10Þ
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where Dn and Dt are the normal and tangential opening tractions, respectively. There are eight user inputs to the model, a
feature that allows for a very adaptable model that can capture a variety of responses. The eight inputs are: normal and tan-
gential fracture energies ð/n;/tÞ, normal and tangential cohesive strengths ðrmax; smaxÞ, normal and tangential shape param-
eters ða; bÞ, and normal and tangential initial slope indicators ðkn; ktÞ. All parameters have physical interpretation. The shape
parameters control the softening slope of the traction–separation relations. If a or b is set equal to 2, the relation is almost
linear, whereas if they are less than or greater than 2, the relation is concave or convex, respectively. The initial slope indi-
cators correspond to the ratio of the peak crack opening width to the final crack opening width. Thus, the smaller the initial
slope indicator, the greater the initial slope in the traction–separation relation. The potential is defined over a domain of
dependence; which is bounded by the normal final crack opening ðdnÞ and the tangential final crack opening ðdtÞ:
Fig. 4.
ð/t ¼ 2
dn ¼
/n

rmax
akn 1� knð Þa�1 a

m
þ 1

� � a
m

kn þ 1
� �m�1

; dt ¼
/t

smax
bkt 1� ktð Þb�1 b

n
þ 1

� �
b
n

kt þ 1
� �n�1

: ð11Þ
The corresponding traction–separation relations, Tn and Tt , determined by taking the derivative of the above potential with
respect to Dn and Dt respectively, are described as:
TnðDn;DtÞ ¼
@W
@Dn

¼ Cn

dn
m 1� Dn

dn

� �a m
a
þ Dn

dn

� �m�1

� a 1� Dn

dn

� �a�1 m
a
þ Dn

dn

� �m
" #

� Ct 1� Dtj j
dt

� �b n
b
þ Dtj j

dt

� �n

þ /t � /nh i
" #

; ð12Þ

TtðDn;DtÞ ¼
@W
@Dt

¼ Ct

dt
n 1� Dtj j

dt

� �b n
b
þ Dtj j

dt

� �n�1

� b 1� Dtj j
dt

� �b�1 n
b
þ Dtj j

dt

� �n
" #

� Cn 1� Dn

dn

� �a m
a
þ Dn

dn

� �m

þ /n � /th i
� �

Dt

Dtj j
: ð13Þ
These traction components are used to determine the local force vector, as per Expression (9). Representative traction–sep-
aration relations are plotted in Fig. 4.

The energy constants Cn and Ct are related to the normal and tangential fracture energies. When the normal and tangen-
tial fracture energies are different ð/n – /tÞ, the energy constants become:
Cn ¼ �/nð Þh/n�/ti=ð/n�/tÞ a
m

� �m

; Ct ¼ �/tð Þh/t�/ni=ð/t�/nÞ b
n

� �n

: ð14Þ
When the normal and tangential fracture energies are equal ð/n ¼ /tÞ, the energy constants become:
Cn ¼ �/
a
m

� �m

; Ct ¼
b
n

� �n

ð15Þ
where the non-dimensional exponents, m and n, are evaluated from the shape parameters ða; bÞ and the initial slope indi-
cators ðkn; ktÞ:
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m ¼ a a� 1ð Þk2
n

1� ak2
n

	 
 ; n ¼ b b� 1ð Þk2
t

1� bk2
t

	 
 : ð16Þ
The traction–separation relations are valid in a domain of dependence. The domain for the normal traction is bounded by the
final crack opening width in the normal direction ðdnÞ and the conjugate final crack opening width in the tangential direction
ð��dtÞ. Similarly, the domain for the tangential traction is bounded by the final crack opening width in the tangential direction
ð�dtÞ and the conjugate final crack opening width in the normal direction ð�dnÞ. The conjugate final crack opening width in the
tangential direction ðDt ¼ �dtÞ is the solution of the following nonlinear equation:
ft Dtð Þ ¼ Ct 1� Dt

dt

� �b n
b
þ Dt

dt

� �n

þ /t � /nh i ¼ 0; ð17Þ
which is unique between 0 and dt . Likewise, the conjugate final crack opening width in the normal direction ðDn ¼ �dnÞ is the
solution of the following nonlinear equation:
fn Dnð Þ ¼ Cn 1� Dn

dn

� �a m
a
þ Dn

dn

� �m

þ /n � /th i ¼ 0; ð18Þ
which is unique between 0 and dn. The resulting domains of dependence are illustrated in Fig. 5.
In order to implement these elements into ABAQUS, we also need to consider the consistent tangent matrix, Dlocal. This is

calculated by either taking the second derivatives of the potential function (10), or the first derivatives of the traction rela-
tions (12) and (13), with respect to the normal and tangential separations ðDn and DtÞ. The components of the consistent tan-
gent matrix are combined to form the local constitutive matrix through Expression (8), and are given in Appendix A.
4.2. Choice of unloading/reloading relation

The unloading/reloading relationship used in this model is uncoupled, in the sense that the unloading in the normal direc-
tion is viewed as independent of that in the tangential direction. The unloading relationship is activated when the normal or
tangential separation is past the peak cohesive strength of the element, and effects both the traction vector and the tangent
matrix. The current unloading/reloading relationship in the model is linear to the origin, as illustrated in Fig. 6. This is a very
common approach to modeling unloading/reloading in cohesive elements [35,36], and will likely satisfy the expectations of
the user. If an alternative unloading/reloading relationship is desired, we outline a possible replacement in Section 5.2 and
specify the portions of the UEL which will need to be updated.
4.3. Choice of contact formulation

The contact formulation chosen for this work is based on the penalty stiffness approach. As the normal separation
becomes negative, the resisting force increases linearly in accordance with a corresponding stiffness. The modulus of this
stiffness is chosen to correspond to the slope of the hardening curve as it approaches zero opening displacement. Alterna-
tively, other contact formulations could be used, such as the ones found in references [37,38]. We will discuss the modifi-
cations necessary to alter the contact formulation in Section 5.4.
5. Implementation and user modifications

In order to make this work as useful as possible, in this section we first describe how to implement the cohesive elements
into a model, then we outline the sections in the code that the users may chose to modify, to suit their specific needs. This
section provides the basis for other modifications (not anticipated in this paper).
(a) (b)

Domain of dependence for each cohesive interaction ðTn; TtÞ, bounded by the final crack opening widths ðdn; dtÞ and the conjugate final crack opening
ð�dn; �dtÞ.
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Fig. 6. Depiction of the linear unloading/reloading relations for the (a) normal traction and (b) tangential traction.
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5.1. Implementing elements into an ABAQUS input file

In order to insert the cohesive zone element (CZE) into a finite element mesh, the input file should refer to the CZEs using
the following commands. In the case of the CZE with 8 nodes:

*USER ELEMENT, TYPE = U1, NODE = 8, COORDINATES = 3, PROPERTIES = 8, VARIABLES = 14

1, 2, 3

*ELEMENT, TYPE = U1, ELSET = ELSET_NAME

where the VARIABLES parameter indicates the number of solution-dependent state variables which are stored in each ele-
ment [5]. For our purposes, these variables track the maximum opening at each Gauss point in the element to determine if
the element is opening or closing. The main difference, for the other elements, is the number of nodes and variables. For the
CZE with 6 nodes; NODE = 6 and VARIABLES = 8, and for the CZE with 12 nodes; NODE = 12 and VARIABLES = 8.

Below these input lines, the user specifies the element number and the node numbers corresponding to these elements.
Nodes are numbered in the order shown in Fig. 7. To assign properties to the elements, one needs to include the following
lines to the input file:

*UEL PROPERTY, ELSET = ELSET_NAME
100, 200, 30, 40, 2, 5, 0.1, 0.2

where we have chosen, for example, /n ¼ 100 N=m;/t ¼ 200 N=m;rmax ¼ 30 MPa;smax ¼ 40 MPa;a ¼ 2; b ¼ 5; kn ¼ 0:1 and
kt ¼ 0:2, respectively. Note that the units are important, and the values here assume that the dimensions of the mesh are
given in meters, and any force boundary conditions are given in Newtons. Finally, when running this problem on a linux
machine, the following command line prompt will run the problem:

abaqus job = job_name user = 3DpprBrick.f

where ‘job_name’ is the name of the input file.

5.2. Modifying the unloading/reloading relation

The current unloading/reloading relationship in the model is linear to the origin, as illustrated in Fig. 6. Some users may
wish to modify this; which may be done by altering only a few lines in the UEL. Unloading effects the traction vector and the
tangent matrix, both of which will need updating. For purposes of illustration, we outline the steps necessary to implement a
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Fig. 7. Node numbering for (a) a CZE with 8 nodes, (b) a CZE with 6 nodes and (c) a CZE with 12 nodes.
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Fig. 8. Depiction of the power-law unloading/reloading relations for the (a) normal traction and (b) tangential traction. When av or bv > 1, we get a convex
unloading/reloading relation, when av or bv < 1 we get a non-convex unloading/reloading relation.
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power-law unloading/reloading relation. Assuming a power-law relation, the corresponding tractions during the unloading
phase are reformulated as:
Tv
n Dn;Dtð Þ ¼ Tn Dnmax ;Dtð Þ Dn

Dnmax

� �av

Tv
t Dn;Dtð Þ ¼ Tt Dn;Dtmaxð Þ Dtj j

Dtmax

� �bv Dt

Dtj j
ð19Þ
where av and bv determine the shape of the unloading curve, as shown in Fig. 8. Similarly, the tangent matrix components
become:
Dv
nn ¼ Tn Dnmax ;Dtð Þ av

Dnmax

Dn

Dnmax

� �av�1

; Dv
nt ¼ Dnt Dnmax ;Dtð Þ Dn

Dnmax

� �av

ð20Þ

Dv
tt ¼ Tt Dn;Dtmaxð Þ bv

Dtmax

Dtj j
Dtmax

� �bv�1

; Dv
tn ¼ Dtn Dn;Dtmaxð Þ Dtj j

Dtmax

� �bv

ð21Þ
To implement these changes into the UEL, we must first introduce additional input parameters, let’s call them alphaV

and betaV. This can be done in the input portion of the code (lines 35–42):

alphaV = PROPS (9)

betaV = PROPS (10)

We then need to pass these variables into the subfunction k_cohesive_law. In order to update the normal unloading
traction, we need to modify line 255 to the following:

*(popn/pmax)**alphaV

Similarly, to modify the tangential unloading traction, we need to change line 272 to:

*(popt/tmax)**betaV

The process of updating the consistent tangent matrix follows in the same manner as the tractions. Updating is required
to the variables Dnn;Dnt;Dtt and Dtn on lines 307, 314, 348 and 355, respectively. In the order they appear, these lines need to
be changed to:

307: *(alphaV/pmax)*(popn/pmax)**(alphaV-1)

314: *(popn/pmax)**alphaV

348: *(betaV/tmax)*(popt/tmax)**(betaV-1)

355: *(popt/tmax)**betaV

respectively. It is important to note that, since the unloading/reloading relation is not derived from a potential, the resulting
system is not guaranteed to be symmetric.

5.3. Modifications for material gradation

There are multiple ways in which one may chose to grade their material properties [39,40]. This section will outline the
modifications necessary to implement a graded normal fracture energy in the z-coordinate direction, based on the method
proposed by Kim and Paulino [40]. Based on this simple exercise, we hope that the users will be more familiar with the UEL,
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and more adept at making their own modifications. In order to allocate the range and region of gradation, we need more user
inputs; which may be included in the input section of the code (lines 35–42):

Gfn_min = PROPS (9)

Gfn_max = PROPS (10)

Zmin = PROPS (11)

Zmax = PROPS (12)

where Gfn_min, Gfn_max, Zmin and Zmax correspond to the minimum and maximum value of the fracture energy and to the
minimum and maximum z-coordinates in the model, respectively. The remainder of the modifications need to occur prior to
the first use of the fracture energy (on line 105). To compute the total change in the fracture energy, we include the line:

del_Gfn = Gfn_max-Gfn_min

Finally, assuming a linear variation of fracture energy, we include the lines:

Gfn1 = Gfn_min+((Zmax-co_de_m (3,1))/(Zmax-Zmin))*del_Gfn
Gfn2 = Gfn_min+((Zmax-co_de_m (3,2))/(Zmax-Zmin))*del_Gfn
Gfn3 = Gfn_min+((Zmax-co_de_m (3,3))/(Zmax-Zmin))*del_Gfn
Gfn4 = Gfn_min+((Zmax-co_de_m (3,4))/(Zmax-Zmin))*del_Gfn
Gfn = sf (1)*Gfn1 + sf (2)*Gfn2 + sf (3)*Gfn3 + sf (4)*Gfn4

after we call the subfunction k_shape_fun on line 99, and before we determine the inputs to the cohesive model on line 103.
The resulting cohesive model will have a varying final crack opening width, and corresponding softening curve, based on the
variation of fracture energy. This method, although presented for variation of fracture energy in the z-direction, can be
extended to other parameters (including multiple parameters) in any direction, such as that illustrated in Fig. 9 for the case
of graded shape parameter, a.

5.4. Modifying the contact relation

The current UELs are implemented with the common penalty stiffness approach to contact. The slope of the stiffness is in
accordance with that of the initial hardening slope at the initiation of the intrinsic formulation. There is much research into
the appropriate method of accounting for contact in a cohesive element formulation; which could be a desired modification
to the formulation [37,38]. In order to change the contact formulation, the user needs to modify the corresponding part of the
code in which contact is handled. In the subfunction k_cohesive_law the user needs to modify the section of the code in
which the normal opening displacement is negative (line 279):

if (delu (3).LT. 0.0) then
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Fig. 9. Effect of varying a on the traction–separation relation in the normal direction. Notice the effect on both the shape of the softening curve and on the
final crack opening width.
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The users have complete freedom within this section, and may include any additional variables external to this statement
as they wish.

In addition to the contact condition considered within the element itself, one may choose to use the surface contact con-
ditions built into ABAQUS [5]. The surface contact conditions use the master–slave surface relationship to prevent element
interpenetration. This condition is suitable for situations in which the fracture surfaces are predefined, but would be very
difficult to implement if the intrinsic cohesive elements are inserted throughout a region. This method essentially requires
one additional step in the analysis. One must define two surfaces, corresponding to the two fracture surfaces that make up
the facets in which the cohesive elements are inserted. More information on how to implement this method may be found in
the ABAQUS users manual [5].
6. Three-dimensional example problems

Some of the capabilities of the elements will be demonstrated here. The following problems are presented and discussed:
(1) the mixed-mode bending (MMB) test problem, (2) the small deformation of a coated particle debonding from a matrix,
and (3) the finite deformation debonding of a rigid particle reinforced elastomer.

6.1. Mixed-mode bending specimen

The mixed-mode bending problem is chosen as a simple example to compare the three cohesive elements to one another.
The geometry of the problem is illustrated in Fig. 10. This is a popular test specimen to estimate fracture energies under
mixed-mode loading conditions [41]. Its Cartesian geometry can be represented in a two-dimensional plane, and thus has
received a lot of interest in fracture related publications [42–44,46]. Adding to its popularity is the presence of an analytical
solution. The analytical solution consists of three separate components [45,6]. Initially, the response is linear, and can be
compared with results from linear beam theory. However, once fracture initiates, the response follows that derived from lin-
ear elastic fracture mechanics. The elastic beam has a modulus of 122 GPa, and a Poisson’s ratio of 0.3.

We consider two different scenarios for the cohesive properties. In both scenarios, the shape parameters ða; bÞ and initial
slope indicators ðkn; ktÞ are set equal to 3.0 and 0.02, respectively. The first scenario considers a fracture energy of 500 N/m in
both the normal and tangential directions, and equivalent cohesive strengths in each direction. The influence of the magni-
tude of the cohesive strength is investigated, and the results are illustrated in Fig. 11(a). Similar behavior is observed for each
element type (see Fig. 1), thus only the results using linear tetrahedral bulk elements are shown. As the cohesive strengths
increase, the numerical solution approaches the analytical solution. The second scenario considers different fracture energies
in the normal ð/n ¼ 500 N=mÞ and tangential ð/t ¼ 500 N=mÞ directions. The cohesive strength in the normal direction is set
as 20 MPa and the strength in the tangential direction is varied. As the tangential cohesive strength increases, the results
approach the analytical solution, as illustrated in Fig. 11(b). As expected, the present results for the three-dimensional prob-
lem are essentially the same as those obtained by Park and Paulino for an equivalent two-dimensional problem [11].

6.2. Small deformation coated particle debonding

The following example is that of a single coated particle imbedded in an elastic matrix. In composite materials, such as
this, the micro-geometry and interface conditions have a significant influence on the macroscopic behavior [47–50]. The
computational study is conducted on a single coated particle, embedded in a matrix. The model is simplified by only con-
sidering a single octant of the particle, with symmetric boundary conditions, as illustrated in Fig. 12. The particle has a radius
of 1 mm, the coating has a thickness of 0.2 mm, and the particle volume fraction is 40%. Linear, eight-node brick (B8) ele-
ments are used to discretize the domain. Mesh refinement studies on the model indicate that meshes with approximately
150,000 bulk elements produce accurate results, and is the level of refinement used in this example, as illustrated in
Fig. 12(b). With this level of refinement, 3230 cohesive elements are inserted between the coating and the bulk matrix to
account for the debonding behavior. The composite structure is loaded hydrostatically through displacement boundary
Fig. 10. Geometry and boundary conditions of the MMB beam. L ¼ 51 mm; c ¼ 60 mm; B ¼ 25:4 mm; h ¼ 1:56 mm; a0 ¼ 33:7 mm;P ¼ 850 N.
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Fig. 12. Coated particle model. Debonding occurs between coating and matrix. (a) Geometry and (b) mesh.
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conditions applied to the exterior surface of the model. The particle and the matrix have an elastic modulus of 100 MPa, with
a Poisson’s ratio of 0.25. The coating is assumed to be stiffer, and has an elastic modulus of 200 MPa, with a Poisson’s ratio of
0.25. The cohesive fracture energy, /n, is varied, while the cohesive strength ðrmaxÞ, shape parameter ðaÞ and initial slope
indicator ðknÞ are set as 10 MPa, 3.0 and 0.005, respectively.

The results are illustrated in Fig. 13. The initial hardening slope is that of the combined, perfectly bonded structure. At
large macroscopic strains, complete separation occurs and the load is carried entirely by the matrix shell. The transition
between the initial and final hardening slopes is a function of the cohesive fracture energy. As the cohesive fracture energy
increases, the transition becomes more gradual; which is consistent with the trends that Ngo et al. [51] observed for particles
without coatings.
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Fig. 13. Macroscopic stress vs. strain response of particle debonding under hydrostatic loading.



Fig. 14. Representative volume element with rigid particle inclusions. (a) Geometry and (b) mesh.
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6.3. Finite deformation particle debonding

Recent studies suggest that the inclusion of particles in an elastomer acts to greatly increase the stiffness of these com-
posite materials. The behavior at the interface of such composite materials is an important area of current research
[47,52,53]. There are two commonly accepted phenomena which occur when particles are included in an elastomer. First,
the particles influence the microstructure of the bulk material, and second, the particles may debond from the bulk material
under finite deformations. This example proposes using cohesive elements to capture the particle debonding behavior under
finite deformations. Under consideration is a cubic representative volume element (RVE) with 80 randomly placed polydis-
perse particles imbedded in the RVE; making up a total volume fraction of 10%, as illustrated in Fig. 14(a). The polydisperse
particles have three different radii, as suggested by Lopez-Pamies et al. [54]. There are 10 particles with a 10 lm diameter, 10
particles with a 7.95 lm diameter, and 60 particles with a 4.4 lm diameter. The RVE is periodic, with periodic boundary con-
ditions, meaning that the complete microstructure of the material can be obtained by translating the RVE in the three Carte-
sian directions [55,56]. The finite element mesh consists of approximately 100,000 quadratic tetrahedral elements, and is
generated using the automatic mesh generator NETGEN [57]. A section of the mesh is shown in Fig. 14(b).

The matrix is modeled as an incompressible Neo-Hookean material with a shear modulus of l ¼ 1:0 MPa. The stored-
energy function for Neo-Hookean rubber is expressed in Eq. (1). The particles are also modeled using an incompressible
Neo-Hookean material, with a shear modulus of l ¼ 10;000 MPa. The large difference between the moduli for the matrix
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Fig. 15. Deformation behavior of the RVE under uniaxial stretch. (a) Deformed shape, illustrating the concurrent separation of the particles from the matrix
and (b) stress–strain response of the RVE in comparison to the same RVE without the inclusion of particle debonding.
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and the particles results in the particles acting rigidly. The fracture energies ð/n;/tÞ, cohesive strengths ðrmax; smaxÞ, shape
parameters ða; bÞ, and initial slope indicators ðkn; ktÞ are set as 1.0 N/m, 0.5 MPa, 3 and 0.2, respectively. The deformed shape,
illustrated in Fig. 15(a) illustrates the concurrent debonding of all the particles from the matrix. The constitutive response of
the composite is illustrated in Fig. 15(b). The RVE undergoes a much higher strain, under the same imposed stress, when
debonding is considered; demonstrating the importance and significance of including particle debonding in such composite
materials. Notice that Fig. 15(b) provides a global (aggregated) response of the RVE under uniaxial stretch. Locally, one can
observe finite cohesive displacements on the interfaces and finite strains in the matrix (see Fig. 15(a)).

7. Concluding remarks

This paper outlines the implementation of a three-dimensional cohesive zone element into a user defined subroutine for
use in ABAQUS. In total, three different cohesive elements are implemented; which are compatible with linear brick, linear
tetrahedral and quadratic tetrahedral bulk elements (see Fig. 1). The constitutive model for the cohesive elements is inde-
pendent of that for the bulk elements. The selected constitutive model for the cohesive elements is the intrinsic PPR model. A
linear unloading/reloading relation and a penalty stiffness approach to contact are chosen. The modulus of the penalty stiff-
ness is set equal to the initial hardening slope at the initiation of the intrinsic formulation.

In addition to the base formulation, a series of suggested modifications is presented. These modifications highlight the
sections of the code which require changing if the user chooses to implement alternate unloading/reloading and contact con-
ditions. As well, the modifications necessary to implement graded cohesive elements are presented. In order to present the
varied possible applications, three numerical examples are presented: the mixed-mode bending beam, the small deforma-
tion debonding of a coated particle and the finite deformation debonding of multiple particles embedded in an elastomer.
This paper is written from an educational perspective, and is aimed at promoting the use of cohesive elements to model
the fracture and failure of materials using either commercial finite element software, such as ABAQUS; or research oriented
software.
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Appendix A. Tangent stiffness matrix

The local constitutive matrix, specific to the PPR model, is expressed in Eq. (8), where the components Dnn;Dnt;Dtn, and Dnn

are calculated as:
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Appendix B. ABAQUS: User Defined Subroutine2
2 The source code provided in this appendix, compatible with the linear tetrahedral element, can be downloaded from the url http://ghpaulino.com. The
source code for the other elements of Fig. 1 (linear brick and quadratic tetrahedral) can also be downloaded from this url.

http://ghpaulino.com
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