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Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible
fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture
is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is
the precise determination of the traction-separation relation. Yet it is usually determined empirically, by
using calibration procedures combining experimental data, such as load–displacement or crack length
data, with finite element simulation of fracture. Thanks to the recent progress in image processing,
and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displace-
ments across the fracture process zone using for instance Digital Image Correlation (DIC). The rich infor-
mation provided by correlation techniques prompted the development of versatile inverse parameter
identification procedures combining finite element (FE) simulations and full field kinematic data. The
focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive
zone models. In particular, the analysis is developed in the framework of the variance based global sen-
sitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through
the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity
analysis can help to ascertain the most influential cohesive parameters which need to be incorporated
in the identification process. In addition, it is shown that suitable displacement sampling in time and
space can lead to optimized measurements for identification purposes.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

Interfaces play a significant role on the overall mechanical
performance of adhesive bonded joints in a variety of applications,
including aerospace, electronics, construction and solar energy
(Adams et al., 1997; Kinloch, 1987; Sridharan, 2008). These struc-
tures show a rich array of potential fracture mechanisms, but inter-
facial debonding of the adjacent layers is the most widely
encountered in actual applications (Sridharan, 2008). Interfacial
adhesion, and in turn susceptibility to debonding, is intimately
connected to sources of energy dissipation occurring at different
length-scales, such as the breakage of intrinsic adhesion forces at
the nano-scale (e.g., primary bonds and physical interactions),
micro-scale fibrillation in the vicinity of the crack tip (van den
Bosch et al., 2008), and macro scale bulk plasticity in the bonded
substrates (Alfano et al., 2011). As a result joint failure often occurs
concurrent with the development of large scale bridging (or
cohesive) zone. In these circumstances, the magnitude of cohesive
tractions across the adhesive layer plays a significant role on the
overall deformation of the system and the small scale yielding con-
ditions breaks down. Since linear elastic fracture mechanics is no
longer fully adequate (Cavalli and Thouless, 2001), the analysis of
damage and fracture in adhesive bonded structures is effectively
carried out using the cohesive zone model (CZM) (Dugdale, 1960;
Barenblatt, 1962).

Several recent contributions, which reviewed advantages and
limitations of the CZM approach, have highlighted that the crucial
aspect of the methodology is the determination of the traction-
separation relation1 Park and Paulino, 2013. This theme has been
vigorously pursued in recent times. Earlier works focused on semi-
empirical calibration procedures combining experimental testing
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performed on beam-like adhesive bonded samples (e.g. Double Can-
tilever Beam Alfano et al., 2011, End Notch Flexure Lee et al., 2010)
and finite element (FE) simulations of fracture. Typical experimental
data employed in the calibration include point data, such as the
load–displacement curve, sample deflection and crack opening pro-
file (Alfano et al., 2011; Yang et al., 1999; Yang et al., 2001; Yang and
Thouless, 2001; Sun et al., 2008; Alfano et al., 2011; Gowrishankar
et al., 2012). On the other hand, recent progress in image correlation
enabled relatively accurate and low cost measurements of full field
kinematic data by using Digital Image Correlation (DIC) (Sutton
et al., 2009). A correlation algorithm compares the local features of
a pair of digital images searching for the displacement field which
provides the best match between pixel intensities. Compared to clas-
sical measurement devices (e.g. extensometers), DIC can resolve a
very large number of kinematic unknowns. Abanto-Bueno and
Lambros (2005) and Tan et al. (2006) employed DIC to measure
the displacement field across the fracture process zone in photode-
gradable copolymers and bulk explosives (PBX 9501), respectively.
Model traction separation relations were determined by correlating
the calculated opening stress with the measured opening displace-
ments across the fracture plane. Specifically, the crack opening pro-
file was extracted from the measured displacement field, while
cohesive tractions were estimated through the derived strain field
and bulk constitutive material properties. The usefulness of this
method is essentially limited to materials displaying linear elastic
bulk behavior; moreover, it is not readily adaptable to bonded
samples. Alternative full field techniques could be also employed,
however, recent works mostly focused on DIC because it does not
require costly hardware or complicated procedures and provides
accurate results. Specifically, it is often assumed that when the dis-
placement field is measured by DIC the primary sources of errors are
from digital image resolution and the DIC algorithm itself. Image res-
olution depends on the acquisition device. Usually the quality that
can be guaranteed with modern CCD or CMOS sensors, in conjunc-
tion with high magnification lens, is in the scale of 100–102 microns
per pixel (Shen et al., 2010). Resolution of the DIC software is mea-
sured as a fraction of pixel, and sub-pixel precision can be also
achieved. The combined effect can lead to maximum errors in order
of tens of microns for accurate measurements, that is quite satisfac-
tory for a reliable determination of cohesive fracture properties
(Shen et al., 2010).

The rich information provided by DIC prompted the develop-
ment of additional inverse techniques. These have been recently
reviewed in Avril et al. (2008), and include the finite element
model updating method (FEMU), the constitutive equation gap
method (CEGM), the virtual fields method (VFM), the equilibrium
gap method (EGM) and the reciprocity gap method (RGM). The
FEMU approach combines finite element (FE) simulations and full
field kinematic data. In this method, a least squares norm, which
quantifies the discrepancy between experimental data and the cor-
responding finite element counterpart, is minimized so as to get
the unknown material parameters. This technique was initially
deployed in order to identify elastic, elasto- plastic and viscoelastic
bulk constitutive material properties (Avril et al., 2008; Pottier
et al., 2011; Lubineau, 2009; Florentin and Lubineau, 2010;
Blaysat et al., 2012; Moussawi et al., 2013). Subsequently, it was
also used to supplement the existing methods for the determina-
tion of cohesive fracture properties, see Shen et al. (2010), Shen
and Paulino (2011), Gain et al. (2011), Fedele et al. (2009),
Valoroso and Fedele (2010) and Fedele and Santoro (2012) to list
a few. In these simulation-based identification frameworks, cohe-
sive properties were iteratively adjusted in order to minimize the
difference between computed and measured surface displace-
ments across sample surface (Shen and Paulino, 2011; Gain et al.,
2011) or a suitable sub-region (Fedele et al., 2009; Valoroso and
Fedele, 2010). These works have shown that the determination of
cohesive models poses challenges both in terms of measurement
and identification. Primarily, the quantity (and quality) of experi-
mental data obtained using DIC have to be carefully taken into
account. A large set of data with low sensitivity not only adversely
affects the identification process, but also increases the problem
size and computational cost owing to the accumulation of unre-
solved residuals (Valoroso and Fedele, 2010). Therefore, the actual
sensitivity of the measured displacement fields to variation of
cohesive zone parameters has a key role on the outcome of the
identification process.

From this standpoint, the information provided by a sensitivity
analysis (SA) may allow one to recognize the most informative
measurable quantities (over space and time) for identification
purposes. In other words, the results of a SA can be employed to
perform an effective time–space displacement sampling which
can ultimately improve the whole identification process. Sensitiv-
ity analyses can be roughly divided in local and global analyses
(Saltelli et al., 2008). Local sensitivity analyses allow one to study
the fluctuations of the output variables as a consequence of small
variations of the input data near a given observation point. Local
sensitivity analyses have been carried out in previous related
works concerning the identification of cohesive zone models in
adhesive joints (Fedele et al., 2009; Valoroso and Fedele, 2010;
Fedele and Santoro, 2012). However, local SA is not able to explore
the whole space of the input factors, but only selected base points.
On the other hand, global sensitivity analysis deals with the vari-
ability of the output due to the fluctuations of the input data
throughout the potential domain of variation – which is often ide-
alized as a hypercube. It is worth noting that in the case of linear
problems, local and global approaches provide essentially similar
results. However, for highly non linear models the sensitivity can
largely vary from point to point and, as a result, a local approach
may not be appropriate. In these cases, a global sensitivity analysis
prevails over other methods (e.g. sigma-normalized derivatives,
standardized regression coefficients, as it is more effective in han-
dling complex non-linear models. The Sobol variance-based global
analysis is a very popular global sensitivity analysis method which
allows one to quantify the amount of variance that each input
parameter (e.g. cohesive strength) contributes to the unconditional
variance of the model output (e.g. surface displacements or a
suitable cost function thereof). The Sobol method makes use of
the Monte-Carlo simulation framework to compute sensitivity
indexes. The values of the input variables are sampled using a
quasi random sequence. If compared to other distributions (e.g.
gaussian, uniform), it allows one to explore, in a more uniform
fashion, the whole range of variability of the input parameters.
With such sampling, a reduced number of model evaluations are
needed and a reasonable convergence speed is therefore ensured.
In this work, the Sobol method has been employed to perform a
sensitivity analysis in the identification of selected cohesive zone
models using full field kinematic data. As the focus herein is on
mode I fracture, the analysis is carried out considering a model
Double Cantilever Beam (DCB). A cost function is defined in terms
of the residual between computed and experimental surface dis-
placement data. Displacement data concern a suitable region of
interest (ROI) across the fracture process zone which includes por-
tions of the joined substrates close to the adhesive layer. The global
sensitivity analysis is carried out to assess the sensitivity of the
objective function to displacement sampling in time (i.e. selected
loading step) and space (i.e. size of the ROI). The first order sensitiv-
ity indexes (Saltelli et al., 2008) are calculated for the cohesive frac-
ture properties pertaining to various cohesive models, including
bilinear, trapezoidal and potential based models (Alfano et al.,
2009; Park et al., 2009). The influence of cohesive strength, cohe-
sive energy and other parameters are considered simultaneously.
As it will be shown in this paper, selecting the most informative



Fig. 1. Fracture boundary conditions for the cohesive zone models employed in the present study (BLN: bilinear model; TPZ: trapezoidal model; PPR: Park–Paulino–Roesler
potential based model).

2 The material is no longer able to sustain any load beyond this displacement level.
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measurable quantities in space and time has a strong influence on
the resulting sensitivity indexes.

The paper is organized as follow. Section 2 summarizes the
cohesive models analyzed in the paper and provides details con-
cerning the studied cost function. Section 3 briefly introduces the
finite element model. Section 4 deals with the identification
problem. Section 5 provides the theoretical background on the
Sobol global sensitivity analysis approach and its practical
implementation. In Section 6 the obtained results are presented
and discussed. Finally, Section 7 concludes the paper and provides
suggestions for future works.

2. Cohesive models analyzed in the present work

In the cohesive zone model approach, material failure is char-
acterized by a traction-separation relation which links the cohe-
sive traction and the relative displacement across cohesive
surfaces. The peak stress and the area enclosed by the traction-
separation relation are often referred to as the cohesive strength
and cohesive energy, respectively. As reviewed in Park and
Paulino (2013), several cohesive constitutive relationships have
been proposed in the last several decades. These can be classified
as either non potential-based models or potential-based models.
Non potential-based cohesive models are relatively simple to
develop, because a symmetric system is not required. In the case
of potential-based models, the traction-separation relationships
across fracture surfaces are obtained from potential functions. In
order to perform the sensitivity analysis, classical bilinear and
trapezoidal (e.g. Alfano et al., 2009) non potential-based models,
as well as the PPR potential-based model (Park et al., 2009) have
been considered. The corresponding mode I traction-separation
relations, which are displayed in Fig. 1, are now briefly
summarized.

2.1. Bilinear model

In the bilinear cohesive model, the evolution of the normal
cohesive interaction, TðDnÞ, with opening displacement, Dn, is given
as follows:
TðDnÞ ¼

rmax
Dn

k1df
; Dn < k1df ; ð1aÞ

rmax
df�Dn

df ð1�k1Þ
; k1df 6 Dn < df ; ð1bÞ

0; Dn P df ; ð1cÞ

8>><>>:
where, rmax is the cohesive strength, k1 is a parameter which con-
trols the initial slope (i.e. the stiffness) of the model, df is the final
opening width,2 while the area under the traction-separation rela-
tion is the cohesive fracture energy, /n. In turn, there are three inde-
pendent cohesive parameters that fully define the cohesive
interaction: XT ¼ ½/n;rmax; k1].

2.2. Trapezoidal model

The trapezoidal cohesive model is characterized by the presence
of a plateau and the evolution of cohesive interaction is given as
follows:

TðDnÞ ¼

rmax
Dn

k1df
; Dn < k1df ; ð2aÞ

rmax; k1df 6 Dn < k2df ; ð2bÞ
rmax

df�Dn

df ð1�k2Þ
; k2df 6 Dn < df ; ð2cÞ

0; Dn P df ; ð2dÞ

8>>>>><>>>>>:
where the parameters k1 and k2 dictate the extension and position
of the plateau, while all the other parameters have already been
defined in the previous section. In this case, there are four indepen-
dent cohesive parameters that fully define the cohesive interaction:
XT ¼ ½/n;rmax; k1; k2].

2.3. Potential-based model

The PPR potential represents the distribution of fracture energy
in conjunction with separation of fracture surfaces. The traction
separation model is obtained from the first derivative of the poten-
tial with respect to the normal opening displacement and, neglect-
ing mixed mode effects, is given by:



(a) (b)
Fig. 2. (a) Schematic of the DCB sample showing details of the finite element mesh. (b) Typical pseudo-experimental global response of the DCB obtained in the forward
analysis showing the loading steps at which displacement data are sampled within the ROI. m = 8 measurement instants have been employed in the present analysis. Points 1
to 4 are taken in the pre-peak region, while 5 to 8 are taken in the post-peak region. Cohesive elements employed in the forward problem to generate the global response
shown here embed the PPR potential based traction–separation relation.
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TðDnÞ¼
/n
dn

a
m

� �m 1�Dn
dn

� �a�1
m
aþ

Dn
dn

� �m�1
ðaþmÞDn

dn
; Dn6 df ; ð3aÞ

0; Dn > df ; ð3bÞ

8<:
where Dn is the opening displacement, /n is the mode I fracture
energy, a is a parameter which controls the shape of the model
(see Fig. 1) and dn is the final crack opening width:

dn ¼
/n

rmax
aknð1� knÞa�1 a

m
þ 1

� � a
m

kn þ 1
� �m�1

; ð4Þ

where kn is the slope indicator and rmax is the cohesive strength,
and m the non-dimensional exponent:

m ¼ aða� 1Þk2
n

1� ak2
n

� � : ð5Þ

Therefore there are four independent cohesive parameters which
need to be determined in order to fully define the cohesive interac-
tion, i.e. XT ¼ ½/n;rmax;a; kn].

3. Finite element model

The sensitivity analysis has been developed considering a
model Double Cantilever Beam made up of steel substrates bonded
with an epoxy adhesive. A schematic depiction of the sample is
given in Fig. 2. Finite element simulations of debonding were
carried out using ABAQUS/Standard and a model of the DCB
was prepared assuming that (i) the material behavior outside the
cohesive zone is dominated by linear elasticity, and that (ii) the
cohesive zone is localized on the crack surfaces. Sample substrates
were modeled using four-node continuum elements and assuming
plane-stress conditions. It is then assumed that the in-plane
surface displacement field can represent the in-plane displacement
through the material depth.

The whole adhesive layer was replaced by a single row of
cohesive elements with a finite thickness equal to the nominal
adhesive layer thickness.3 Similarly to previous related works
3 The size of cohesive elements was chosen observing that for element sizes
60.1 mm the total dissipated fracture energy (area under the global load–displace-
ment curve) was mesh independent. Therefore, element size was set equal to 0.1 mm
throughout the numerical simulations.
(Alfano et al., 2011; Yang et al., 1999; Yang et al., 2001; Yang
and Thouless, 2001; Sun et al., 2008), it is then assumed that the
role of the adhesive layer is to provide a traction-separation rela-
tion across the interface between the two adherents. As a conse-
quence, the macroscopic constitutive behavior of the adhesive is
expressed as a function of the opening displacement Dn and is cap-
tured through the cohesive interaction TðDnÞ. This simplified mod-
eling enforces constant peel deformation through the thickness of
the layer (Yang et al., 1999; Fedele et al., 2009). The area under
the traction–separation relation mimics the energy dissipated
within the adhesive layer and represents the bond toughness of
the joints. The plane model adopted to describe the deformation
of the sample was made of 43,000 continuum elements (CPS4),
and the adhesive layer was modeled using 1200 cohesive elements.
Details concerning the finite element mesh are displayed in Fig. 2.
The method was formulated resorting to the principle of virtual
work:
Z
X

BT EBdX�
Z

Rc

NT
c
@T
@D

Nc dRc

� �
d ¼

Z
R

NT PdR; ð6Þ
where N and Nc are matrices of shape functions for bulk and cohe-
sive elements, respectively; B is the derivative of N; d are nodal dis-
placements, E is the material stiffness matrix for the bulk elements,
@T
@D is the stiffness matrix for cohesive elements and P is the external
traction. The stiffness matrix and load vector of the cohesive ele-
ments are assembled in a user-defined subroutine (UEL) within
ABAQUS/Standard. An intrinsic4 CZM implementation was previ-
ously employed by the authors to solve non-linear fracture problems
and simulate crack propagation (e.g. Alfano et al., 2009). Finally, con-
cerning model boundary conditions, the left hand side of the struc-
ture was set free, whereas at the right hand side an increasing
opening displacement was applied at the centroid of the upper and
lower beams.
4 In the intrinsic implementation of CZM cohesive elements are inserted from the
beginning of the analysis along the path of potential crack propagation. In extrinsic
approaches cohesive elements are inserted once the interface has been predicted to
fail based on a selected external criteria.
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4. Identification of cohesive models using full-field kinematic
data

Previous works have shown that the identification of cohesive
model parameters (X̂) based on full field kinematic data is typically
carried out by minimizing a proper cost function which quantifies
the residual between computed and measured surface
displacements across a selected ROI (Shen et al., 2010; Shen and
Paulino, 2011; Gain et al., 2011; Fedele et al., 2009; Valoroso and
Fedele, 2010; Fedele and Santoro, 2012). Displacement data, which
are usually extracted at selected measurement instants during the
experiments, are such that they overlap with the finite element
model nodal coordinates. Each loading step corresponds to a
selected point over the sample load–displacement global
response.5 An objective function U2ðXÞ : Rp ! R, is then minimized
through an iterative process, such that:

X̂ ¼ arg min
X2Rp

fU2ðXÞg; X 2 XX; ð7Þ

where p is the number of input cohesive fracture properties and XX

is the feasible domain for a physically valid cohesive zone model. In
the present paper, the data set of the identification process is repre-
sented by a time–space sampling of surface displacements concern-
ing a suitable ROI that is monitored during the test. The following
cost function has been selected for the sake of the sensitivity
analysis:

U2ðXÞ ¼
Xm

i¼1

xiðXÞ ¼
Xm

i¼1

ku�y � uyðXÞk2

maxju�yj � ju�yjave

 !
i

; ð8Þ

where m are the available measurement instants (i.e. loading
steps); u�y are the experimentally measured surface displacements;
uyðXÞ are the corresponding finite element displacement data6 and
k � k is the L2 norm of a vector. For any given measurement instant i,
the residuals are normalized by scaling them with the difference
between the maximum vertical displacement (in absolute value)
and the average displacement within the ROI.7 The ith residual is
based on nu nodal values and m measurements instants. The contri-
bution of the m residuals are additively included in the scalar func-
tion U2ðXÞ. The global load–displacement point data have not been
included in U2ðXÞ. As already discussed in previous related works
(Alfano et al., 2011, 2009; Valoroso and Fedele, 2010), an identifica-
tion based on the use of the global response allows the estimation of
cohesive energy, but does not provide a reliable identification of
other parameters, such as the cohesive strength. For instance, it
was shown in Valoroso and Fedele (2010) that including the global
response in the objective function does not improve the sensitivity
to the initial stiffness of the model.

Since the focus of this work was to effectively perform a global
sensitivity analysis, input data were represented by pseudo-
experimental displacements generated by means of finite element
analyses. Therefore, a forward problem was firstly solved, where
the cohesive parameters were set equal to arbitrary true values
5 Notice that loading steps are usually selected from post-peak region; global
response curve is not always employed in the inverse identification (i.e. is not
included in the cost function) (Shen et al., 2010; Shen and Paulino, 2011; Gain et al.,
2011).

6 Additional simulations, not reported herein for brevity, have shown that adding
surface displacement in the x-direction does not modify the results quoted in the
paper.

7 In a preliminary stage we assessed different objective functions by essentially
using different norms (e.g. L1 and L2) as well as different scaling quantities to get non-
dimensional residuals. Specifically, /n and rmax were varied in ranges centered
around a set of true cohesive properties, i.e. input properties employed to generate
synthetic experimental data. Therefore, several values of the objective function were
obtained. Surface plots of these data have shown that the selected objective function
is ‘‘sharper’’ around the minimum value.
(~X) and pseudo-experimental displacement maps were generated
(i.e., u�y ¼ uyð~XÞ). In particular, displacements maps were generated
for the selected cohesive models, and using the following input
parameters: ~XBLN ¼ ½0:05 N=mm; 20 MPa; 0:1�T ; ~XTPZ ¼ ½0:05 N=mm;
20 MPa; 0:01; 0:5�T and ~XPPR ¼ ½0:05 N=mm; 20 MPa; 6; 0:1�T . In
turn, by varying the input cohesive fracture properties, different
values of the objective function were obtained to perform the
computation of the sensitivity indexes – which is described in
the next section. Notice that the output from each analysis was the
displacement field within the ROI at the selected loading steps. Each
forward analysis required approximately 100 s on a workstation
(2.8 GHz Intel Core i7, 16 Gigabyte RAM). Parameter assignment in
FE simulations was made by an automated shell script which
generated individual external files with updated cohesive properties
which are then recalled by the main job file. Input properties file
generation, job submission, data analysis and SA were all made in
MATLAB environment.

5. Global sensitivity analysis

Let’s consider a mathematical model leading to a deterministic
function f, with a set of input data X, such that:

f : Rp ! R; ð9Þ

X! Y ¼ f ðXÞ: ð10Þ

The function f can be very complex and, in practice, is often evalu-
ated through a numerical tool, such as a finite element program. For
our current application, vector X groups all the model’s parameters,
i.e. the cohesive properties shown earlier, which we assume to be
independent. The model output, Y, is supposed to be reduced to
one single scalar variable, i.e. the cost function. In order to appreci-
ate the importance of an input variable Xi on Y, one can assess how
the variance associated to the model output is reduced when Xi is
given a fixed value x�i , that is VðYjXi ¼ x�i Þ. The latter represents
the conditional variance of Y, i.e. the variance on Y taken over all fac-
tors excepts Xi. The conditional variance may embed information
concerning the sensitivity, since the smaller it is, the greater will
be the influence of the variable Xi. However, VðYjXi ¼ x�i Þ varies with
the choice of x�i ; one can solve this issue by considering the expec-
tation of the conditional variance over the whole domain of defini-
tion of the input x�i , i.e. E½VðYjXi ¼ x�i Þ�. However, invoking the
theorem of the total variance (Saltelli et al., 2008), which reads:

V ¼ VðYÞ ¼ E½VðY jXiÞ� þ V½EðYjXiÞ�; ð11Þ

(where x�i has been dropped for conciseness), we can use as an indi-
cation of the sensitivity of Y to Xi the variance of the expectation of
Y conditional to Xi. The more relevant the effect of Xi is, the more
the previous quantity will increase. We can now define the first
order Sobol sensitivity index of Y to Xi as follows:

Si ¼
Vi

V
¼ VðE½YjXi�Þ

V
; ð12Þ

that is always between 0 and 1, and the bigger it is the higher will
be the influence of Xi. Computation of sensitivity indexes has been
performed using Sobol decomposition, Monte Carlo integrals and
quasi random sampling; further details concerning the computa-
tional procedure are given in the appendices.

6. Results and discussion

The global response of the DCB sample, obtained running a for-
ward analysis, is shown in Fig. 2. Analytical solutions for pre-peak
and post-peak regions, stemming from beam theory and linear
elastic fracture mechanics, are also superimposed (Alfano et al.,
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2011). Notice that fracture energy controls the descending part of
the load–deflection curve of the DCB while the initial slope is
mostly dictated by cohesive stress (Alfano et al., 2009). It is then
expected that the sensitivity of U2 to cohesive fracture properties
will be affected not only by displacement sampling in space, i.e.
size of the region of interest (ROI), but also by sampling in time,
i.e. the selected loading steps used as input. The influence of both
parameters will be therefore investigated. The m loading steps at
which surface displacements maps are extracted from FE analyses
to build-up pseudo experimental data are also shown in Fig. 2.
These are evenly distributed in the two above mentioned regions.
Concerning the selection of the ROI size, the main physical require-
ment is that it needs to embed the fracture process zone (FPZ)
behind the advancing crack tip at the m loading steps included in
the objective function. It is in this region that the displacement
field is expected to be sensitive to the details of the traction distri-
bution within the cohesive zone. For the present work we found
that a maximum size of the ROI (L) equal to 1/10 the overall length
(l) of the sample provided satisfactory results (see Fig. 2) since the
FPZ was always inside the region of interest in all the selected
loading steps. Notice that the ROI size could vary lengthwise as
schematically shown in Fig. 3. In particular, an abscissa x� was
defined such that the size of the ROI could range from its maxi-
mum length L, when x� ¼ 0, to L–L1, when x� = L1. Length L1 is an
arbitrarily selected parameter which has been chosen such that
at least 1/8 of the maximum size of the ROI is included in the
objective function. It is worth noting that the size of the FPZ
depends on the specific material properties of the sample, i.e. stiff-
ness of the substrates, and the adopted cohesive properties. In
other words, different combinations of cohesive properties (i.e. dif-
ferent material systems in actual experiments) may require the use
of ROI with different (maximum) size, which therefore should be
chosen according to the problem at hand. In principle, even the
whole sample surface could be employed from a technical view-
point, and this is something that has been done in previous works
(Shen et al., 2010; Shen and Paulino, 2011; Gain et al., 2011). While
this strategy would certainly require a much higher computational
Fig. 3. Region of interest selected to extract surface displacements at m measurement ins
that its extension in the x-direction ranges from L–L1 for x� = L1 to L for x� = 0. The arrow
effort, advantages in term of sensitivity are not guaranteed. Indeed,
it might be possible that large areas far away from the FPZ are
included in the objective function. These areas contribute to the
computational expenditure (e.g. storage and manipulation of large
arrays of displacement data) but do not necessarily carry over
useful information for the identification process.

As a result the pseudo-experimental kinematic data u�y have
been assembled in a ðnu �mÞ-dimensional matrix containing the
nu nodal displacements within the ROI for each measurement
instant i (i = 1, . . . ,m) which have been additively included in the
cost function U2ðXÞ. In the present work the overall (maximum)
number of input displacements in the ROI is equal to around
35,000 while m = 8 measurement instants have been considered.
In order to assess the effect of data sampling, both figures have
been varied in the sensitivity analysis. Specifically, the effect of
time sampling has been studied by performing the sensitivity
analysis for different combinations of loading steps. In a similar
manner, the effect of space sampling (i.e. the number of nodal dis-
placements included in the ROI) has been analyzed by progres-
sively decreasing its length as illustrated in Fig. 3 and discussed
earlier in this section.

6.1. Graphical representation through scatter plots

A visualization of the sensitivity of the model output to changes
in cohesive zone properties can enhance results interpretation. The
results can indeed be represented graphically through scatter plots.
These last are obtained by performing model evaluations for the
quasi random sequence of N parameters sets (X) and projecting
the results on a specific plane to yield a cloud of points. A sample
size of N = 750 was used to assess the first order sensitivity effect of
the p input parameters associated to the selected cohesive models.
Analyses carried out with samples of higher dimensions (N = 1500)
have shown results essentially similar to that reported later in the
paper. Therefore, p graphs of one-dimensional slices of the
response surface are constructed, each representing the global
sensitivity of the model to a specific parameter. Notice that the
tants; the current size of the ROI is determined by the abscissa x� (0 6 x� 6 L1) such
s point to the approximate location of the fracture process zone.



Fig. 4. Scatter plots obtained using the bilinear model (BLN). The objective function includes the full set of displacement data extracted at measurement instants 1 to 8. Input
cohesive fracture properties for generating pseudo-experimental data were: ~X = [0.05 N/mm; 20 MPa; 0.1]. The effect of /n and rmax is apparent since the data is aggregated
around the input values employed to generate synthetic data. The effect of k1 seems to be negligible.
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points in the scatter plots are always the same though sorted dif-
ferently. This graphical representation can quickly reveal the mar-
ginal influence of one or more parameters on the model output.
Indeed, if the points are randomly spread over the parameter
range, this can indicate that the parameter does not influence the
model output. On the contrary, if a pattern is observed in the
scatter plot, in turn the parameter influences the model output
to some extent.

The scatter plots pertaining to the analyzed cohesive models are
reported in Figs. 4–6. In all cases, the full size of the ROI and m = 8
number of loading steps have been considered. The results, clearly
show that for the problem addressed herein, parameters which
control the initial stiffness and the shape of the model (i.e.
k1; k2; a and kn) do not sensitively affect the displacement field
and, in turn, the objective function.8 On the other hand, displace-
ment field in the ROI looks to be mostly sensitive to cohesive energy
and cohesive strength. The data points are indeed always distributed
around the input cohesive properties employed to generate the
pseudo experimental displacement maps, i.e. /n = 0.05 N/mm and
rmax = 20 MPa. These results suggest that, for the given set of exper-
imental data (surface displacements), cohesive parameters other
than energy and strength can be hardly determined.

Given the similarity of the obtained results among the different
cohesive models, in the remainder of the paper only the results
pertaining to the PPR model will be presented and discussed. In
order to highlight the effect of time sampling, two additional scat-
ter plots have been generated considering a reduced number of
loading steps. In particular, Fig. 7 shows the scatter plots for the
PPR model when feeding the objective function U2 with loading
8 The Y data is uniformly distributed over the slices, therefore this is not an
important factor.
steps 1 to 4 (pre-peak region). It is apparent, that eliminating data
from the post-peak region, greatly affect the sensitivity to /n, since
the data distribution is now pretty uniform over the whole range of
this parameter. On the other hand, the sensitivity to rmax seems to
be improved since the shape of the corresponding plot is such that
the data is more distributed around the input value of rmax

employed to generate synthetic data. Fig. 8 now shows the oppo-
site case, i.e. eliminating data from the pre-peak region of global
response. As expected, the data points in the /n plot are now
shaped so that the peak occurs around the input cohesive energy.
However, the sensitivity to rmax seems to be lost since the data is
evenly spread over the whole parameter range. These results stress
the importance of data sampling in time.
6.2. Effect of displacement sampling in time and space

As mentioned earlier, the basic outcome of the present Sobol SA
are the first order sensitivity indexes associated to the cohesive
fracture properties, i.e. Si. The variation of sensitivity to displace-
ment sampling in time and space is now assessed on quantitative
ground through the analysis of the obtained Si. The variation of Si

for different choices of time sampling is shown in Fig. 9. In partic-
ular, the objective function is progressively fed with a decreasing
number of loading steps from the post-peak region. Accordingly,
the sensitivity to cohesive stress increases while that to cohesive
energy decreases and becomes negligible when the loading steps
from the post-peak region are no longer included in the cost func-
tion. Notice that Sa and Skn are always very low, and this was some-
what expected based on the observation of the scatter plots
presented in the previous section. In a similar fashion, by including
more steps from the post peak region it introduces a greater sensi-
tivity to cohesive energy rather than cohesive strength. This is



Fig. 6. Scatter plots obtained using the PPR model. The objective function include the full set of displacement data extracted at measurement instants 1 to 8. Input cohesive
fracture properties for generating pseudo-experimental data were: ~X = [0.05 N/mm; 20 MPa; 6; 0.1]. The effect of /n and rmax is apparent since the data is aggregated around
the input values employed to generate synthetic data while a and kn seems to be of secondary importance.

Fig. 5. Scatter plots obtained using the trapezoidal model (TPZ). The objective function include the full set of displacement data extracted at measurement instants 1 to 8.
Input cohesive fracture properties for generating pseudo-experimental data were: ~X = [0.05 N/mm; 20 MPa; 0.01; 0.5]. The effect of /n and rmax is apparent since the data is
aggregated around the input values employed to generate synthetic data while k1 and k2 seems to be of secondary importance.
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illustrated by Fig. 10 where the objective function is fed with an
increasing number of loading steps from the post-peak region. It
is apparent that the sensitivity to cohesive energy is improved,
although that to cohesive stress decreases. On the basis of these
results, in principle, it could be possible to tailor the content of
the objective function so that to balance the sensitivity to cohesive
energy and cohesive strength. This is shown by the bar diagrams of
Fig. 11. By properly combining intermediate loading steps (from 2
to 6) a nearly equal sensitivity to /n and rmax is achieved. We
finally discuss the effect of displacement sampling in space. To this



Fig. 8. Scatter plots obtained using the PPR model. The objective function include the full set of displacement data extracted at measurement instants 4 to 8. The sensitivity to
cohesive stress decreases because the data in the scatter plot pertaining to cohesive stress have uniform distribution over the whole range. On the other hand the sensitivity
to cohesive energy improved. Sensitivity to the other parameters remains low.

Fig. 7. Scatter plots obtained using the PPR model. The objective function include the full set of displacement data extracted at measurement instants 1 to 4. The sensitivity to
cohesive energy decreases because the data in the scatter plot pertaining to cohesive energy have uniform distribution over the whole range. On the other hand the sensitivity
to cohesive stress improved. Sensitivity to the other parameters remains low.
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purpose, ROI size has been progressively reduced lengthwise, as
already explained earlier in the paper, and the sensitivity indexes
have been computed for each updated size of the ROI. The results
are shown in Fig. 12. For a given number of input loading steps,
a smaller ROI enhances the sensitivity to cohesive stress, but
decreases that to cohesive energy.
6.3. Discussion

The global sensitivity analysis (SA) can help to ascertain which
are the most influential parameters of a model to determine which
of them should be incorporated in the identification process. The
results of the SA have shown that surface displacements in the



Fig. 11. Bar diagrams illustrating a potential tailoring of the data set to be included
in the cost function in order to balance the sensitivity to cohesive energy and
cohesive stress. For the problem analyzed herein, it is apparent that combining
kinematic from the intermediate steps can lead to nearly equal sensitivity to
cohesive energy and cohesive strength.

Fig. 10. Bar diagrams showing the evolution of the sensitivity indexes for an
increasing number of loading steps included in the objective function. Notice that
the inclusion of loading steps from the post-peak region progressively enhances the
sensitivity to cohesive energy.

Fig. 9. Bar diagrams showing the evolution of the sensitivity indexes for a
decreasing number of loading steps included in the objective function. Notice that
loading steps from the post-peak region are progressively reduced. Accordingly the
sensitivity to cohesive energy is reduced.
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DCB model are primarily dependent on cohesive energy and cohe-
sive strength, while the effect of model shape appears to be not sig-
nificant on the outcome of the model. It is then concluded that the
full set of cohesive properties is not always obtainable from the
available kinematic data. As a consequence, it is not needed to
include all model parameters to obtain an efficient identification.
Moreover, displacement sampling in time and space have been
found to have a different impact on the estimation of /n and
rmax. Their identification may be not equally accurate and robust
depending on the amount of data included in the objective func-
tion. In particular, the obtained results suggest that alternative
identification strategies could be devised on the basis of a proper
use of the information provided by a global SA. For example, con-
sidering the specific problem addressed in the paper, one could
develop a two-step identification approach where the post-peak
steps are employed to identify cohesive energy, and subsequently
use the pre-peak steps only to identify cohesive strength.

It is worth emphasizing that the low sensitivity to parameters
related to the shape of the model may be related to the specific
problem analyzed herein, that is the analysis of a DCB sample
made up of stiff substrates bonded with an adhesive (i.e. a classical
adhesive joint design). Although representative of a multitude of
practical material systems, this choice does not promote the sensi-
tivity to the details of the traction profile across the interface.
Cohesive zone size should be first of all relatively large, so that
there is more substrate material near the cohesive zone to be
directly affected. However, if the ratio of cohesive strength to bulk
elastic modulus is not large enough, the displacement field can be
smeared by the rigidity of the substrate. This limitation is directly
related to the resolution of the displacement field, indeed higher
displacement resolution would allow the identification of the full
set of properties, even for shorter cohesive zone and lower
cohesive traction.
7. Concluding remarks

In this paper a global (Sobol) sensitivity analysis in the identifi-
cation of the cohesive zone model using full-field kinematic data
was made for the first time. The Sobol analysis technique is based
on variance decomposition and is able to handle non-linear and
non-monotonic models. In general, the results have shown that
the use of Sobol analysis can highlight which parameters can be
determined with the available experimental data. As a result, the
so obtained sensitivity indexes can be effectively used for both
factor fixing and factor prioritization in view of the identification
process. The graphical representations by means of scatter plots
gave meaningful insights on the influence of the input parameters
on the model output. Clear trends were observed for (highly) influ-
ential parameters, such as cohesive energy and cohesive strength,
which appeared to have the most important first order effect on
the cost function. Moreover, the approach proposed herein, which
makes use of FE simulations driven by a MATLAB script, is quite
flexible and, as such, is prone to generalizations to different geom-
etries and loading conditions (i.e. mixed mode), and can include
nonlinearities in the bulk material with minor modifications. From
this standpoint, the use of a similar framework for the identifica-
tion of mode II and mixed mode cohesive models is certainly
possible. However, in the case of mixed mode fracture, possible
interactions among variables must be taken into account by
including the computation of second order indexes.

Finally, it is recognized that in real measurements, spatial
resolution, noise and other experimental errors, such as out-of-
plane displacements and missing data points, strongly influence
the identification process. The performed sensitivity analysis aims
to study how variations in the displacement field in the monitored



Fig. 12. Distribution of the first order sensitivity indexes for varying dimensions in the x-direction of the ROI. The dimension decreases for increasing values of x�/L. The
arrows pointing upward denote an increase in the number of loading steps included in the objective function. In all the results the input displacement data are alway taken
from the pre-peak region and progressively include the subsequent remaining steps.
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subdomain (ROI), can be attributed to variations in the input
cohesive properties. The sources of error outlined above represent
additional (interfering) inputs to which the output is unintention-
ally sensitive. Including these inputs in the sensitivity analysis
would be certainly possible (i.e. it would imply the use of an addi-
tional variable in the SA). However, this would not change the key
conclusions of the paper, i.e. for the problem at hand some param-
eters of the models cannot be identified using full field data. Future
investigations will be devoted to results validation based on use of
truly experimental data. From this standpoint, a data selection
strategy based on the so obtained sensitivity indexes will be
devised since it appears to be the most appropriate basis for data
sampling in time and space to be included in the cost function.
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Appendix A. Sobol decomposition

In order to compute the sensitivity indexes, Sobol suggested to
decompose the function f into summands of increasing dimension-
ality. Specifically, assuming that the input variables belong to the
interval ½0;1�p, the function f(X1, . . .,Xp) was decomposed as
follows:

f ðX1; . . . ;XpÞ ¼ f0 þ
Xp

i¼1

fiðXiÞ þ
X

16i<j6p

fi;jðXi;XjÞ þ � � �

þ f1;2;...;pðX1; . . . ;XpÞ;
where f0 is a constant and the functions of the decomposition verify
the conditions:Z 1

0
fi1 ;...;is ðxi1 ; . . . ; xis Þdxik ¼ 0; ðA:1Þ

8k ¼ 1; . . . ; s and 8fi1; . . . ; isg 2 f1; . . . ;pg. The existence and the
uniqueness of the solution are guaranteed by conditions (A.1). In
this framework, decomposition (A.1) is called the Analysis of Vari-
ance (ANOVA) decomposition. The immediate consequence of this
decomposition is an orthogonality property; indeed, provided that
at least one index is not shared among subsets ½i1; . . . ; is� and
½j1; . . . ; jt�, it follows thatZ 1

0
fi1 ;...;is ðxi1 . . . ; xis Þfj1 ;...;jt ðxj1 . . . ; xjt Þdx ¼ 0: ðA:2Þ

Then, one can use conditions (A.1) step by step to get by integration
over all the variables:Z 1

0
f ðxÞdx ¼ f0: ðA:3Þ

By integration over all the data, except Xi (since Xvi is the vector of
all the variables except i):Z 1

0
f ðxÞdxvi ¼ f0 þ fiðXiÞ; ðA:4Þ

by integration over all the variables, except Xi and Xj:Z 1

0
f ðxÞdxvij ¼ f0 þ fiðXiÞ þ fjðXjÞ þ fi;jðXi;XjÞ; ðA:5Þ

and so on. Thus, one gets the elementary functions of the
decomposition:

f0 ¼
Z 1

0
f ðxÞdx; ðA:6Þ
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fiðXiÞ ¼
Z 1

0
f ðxÞdxvi � f0; ðA:7Þ

fi;jðXi;XjÞ ¼
Z 1

0
f ðxÞdxvij � f0 � fiðXiÞ � fjðXjÞ; ðA:8Þ

etc. The previous decomposition can be interpreted using the com-
mon terminology of expectation and variance, and the equations
can be rewritten as follows:

f0 ¼ E½Y �; ðA:9Þ
fiðXiÞ ¼ E½YjXi� � E½Y �; ðA:10Þ
fi;jðXi;XjÞ ¼ E½Y jXi;Xj� � E½YjXi� � E½YjXj� þ E½Y�: ðA:11Þ

It is relatively straightforward to prove that the variance of function
Y can also be divided according to the ANOVA decomposition. The
variance of the model (under the assumption that the data are inde-
pendent) can be divided into:

V ¼
Xp

i¼1

Vi þ
X

16i<j6p

Vij þ � � � þ V1...p; ðA:12Þ

where

Vi ¼ VðE½YjVi�Þ; ðA:13Þ
Vij ¼ VðE½YjVi;Vj�Þ � Vi � Vj; ðA:14Þ
Vijk ¼ VðE½Y jVi;Vj;Vk�Þ � Vij � Vik � Vjk � Vi � Vj � Vk: ðA:15Þ

Using that decomposition, the first-order sensitivity indices (Si) can
be obtained as shown in Section 5, while the second-order sensitiv-
ity indices are:

Sij ¼
Vij

V
; ðA:16Þ

which represents the sensitivity of the variance of Y due to the
interaction between the variables Xi and Xj. When these sensitivity
indexes are calculated theoretically, they verify the following prop-
erties: (1) they are all positive (2) their sum is equal to 1 (3) the
influence of the associated variable increases as the value of the
Sobol index approaches 1.

Appendix B. Monte Carlo integrals and Sobol quasi-random
sampling

Sensitivity indexes can be determined provided the function f is
known analytically and it is relatively simple. However, for the
problem considered herein, the cost function may be quite com-
plex and highly non-linear and its analytical equation is not
known. In this case, the sensitivity indexes are estimated using
Monte Carlo integrals. Indeed, deterministic numerical integration
algorithms work well provided the number of dimensions in the
problem is small. For increasing number of dimensions, function
evaluations increase quickly. Monte Carlo methods are useful in
such cases, and allow to estimate the integrals by randomly select-
ing N points over the p-dimensional space9. Let consider a
N-dimensional sample of the input parameters of the model, i.e.
(X1, . . . ,Xp), such thateX ðNÞ ¼ ðxk1; xk2; . . . ; xkpÞk¼1...N; ðB:1Þ

the expectation of Y, E½Y � ¼ f0, and the variance, VðYÞ can be
estimated using Monte Carlo integrals such that:

f̂ 0 ¼
1
N

XN

k¼1

f ðxk1; xk2; . . . ; xkpÞ; ðB:2Þ
9 Given the Theorem of the Central Limit, this method displays 1=
ffiffiffiffi
N
p

convergence
rate.
V̂ ¼ 1
N

XN

k¼1

f 2ðxk1; xk2; . . . ; xkpÞ � f̂ 2
0: ðB:3Þ

Sobol proposed to estimate the first order sensitivity index as
follows:

Si ¼
V̂i

V̂
¼
bUi � f̂ 2

0

V̂
; ðB:4Þ

where bUi is estimated as a classical expectancy:

bUi ¼
1
N

XN

k¼1

f xð1Þk1 ; . . . ; xð1Þkði�1Þ; xki; x
ð1Þ
kðiþ1Þ . . . ; xð1Þkp

� �
� f xð2Þk1 ; . . . ; xð2Þkði�1Þ; xki; x

ð2Þ
kðiþ1Þ . . . ; xð2Þkp

� �
ðB:5Þ

but keeping xki fixed within the two calls to the function f. Monte
Carlo methods featuring random sampling is the basic route to
compute Monte Carlo integrals. However, a wide range of alterna-
tive sampling techniques are available to increase the convergence
rate. In this paper, a quasi random sequence (namely Sobol
sequence) has been employed. These sequences make use of a base
of two to form successively fine uniform partitions of the unit inter-
val. Finally, coordinates in each dimension are reordered. By using
pseudo-random sampling, the convergence rate is faster than other
methods (Saltelli et al., 2008).
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