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Rate-dependent fracture processes can be investigated by means of cohesive zone models
(CZMs). For instance, one approach enhances existing CZMs with phenomenological
expressions used to represent the fracture energy, cohesive strength, and/or maximum
crack opening as a function of the crack opening rate. Another approach assumes a vis-
coelastic CZM in front of the crack tip. Although computationally less expensive, the former
approach misses most of the physics driving the rate-dependent fracture process. The lat-
ter approach better represents the physics driving the rate-dependent fracture process, yet
it is computationally more expensive. This work presents a methodology for studying
mixed-mode rate-dependent fracture that is both efficient and approximates the viscoelas-
tic material behavior in front of the crack tip. In this mixed-mode approach, we approxi-
mate the viscoelastic behavior in front of the crack tip using two rate-dependent springs.
One spring acts in the normal direction to the crack plane, while the other acts in the tan-
gential direction. In order to mimic a viscoelastic CZM, we assume that the stiffness of each
spring is a function of the crack opening rate and enforce that their tractions are continu-
ous with respect to changes in the crack opening rates. To account for damage, we scale the
tractions from the rate-dependent springs using two damage parameters extracted from
the Park-Paulino-Roesler (PPR) cohesive fracture model. The rate-dependent model is
implemented as a user defined element (UEL) subroutine in Abaqus. While attaining a high
level of accuracy, the present approach allows for significant savings in computational cost
when compared with a CZM based on fractional viscoelastic theory.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Significant theoretical developments to understand fracture in viscoelastic solids were introduced between the 1960s and
1980s. Schapery [1] developed a thermodynamics-based theory to analyze the thermo-mechanical behavior of viscoelastic
solids, including a model for isothermal crack propagation that is based on an energy functional. Williams [2] proposed an
extension of the Griffith fracture criterion for linearly viscoelastic solids that includes viscous dissipation. Wnuk and Knauss
[3] studied propagation of a penny-shaped crack in a viscoelastic material by modeling the material in front of the crack tip
using a viscoplastic cohesive-type model. The rate-dependent plastic model indicated that the time at which failure occurs is
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smaller than that predicted by rate-independent plasticity. Mueller and Knauss [4] studied crack propagation on an infinitely
long viscoelastic strip. Their work, which is an extension of the Irwin fracture criterion for linearly viscoelastic materials, led
to predictions of crack propagation speeds which are in good agreement with experimental measurements. Schapery [5–7]
studied crack initiation and growth in linearly viscoelastic media using a model based on the concept of cohesive zone mod-
els for both linear materials [8,9] and viscoelastic materials [3,4,10,11]. The study by Schapery found that crack growth was
affected by the fracture energy and stress distribution in the fracture process zone, both of which can be rate-dependent.
Schapery [12] used the correspondence principle to develop a time-dependent version of the J integral [13] that is applicable
to nonlinear viscoelastic solids. These classical works have set the stage for more recent developments focused on numerical
investigation of rate-dependent fracture phenomena.

Cohesive zone models (CZMs) have been applied to numerically investigate the rate-dependent fracture process of many
materials. For instance, CZMs have been used for rate-dependent fracture simulations of polymers [14,15], acrylics [16],
adhesives [17–20], asphalt concrete [21–23], and concrete [24]. These fracture simulations are typically conducted using
the finite element (FE) method, such that CZMs are used to represent the nonlinear behavior in front of the crack tip by
means of zero-thickness cohesive elements that follow a governing traction-separation relation [25]. To accurately model
rate-dependent fracture processes, it is important that the traction-separation relation adequately represents the rate-
dependent bond-breakage in front of the crack tip. Developing rate-dependent traction-separation relations is typically
achieved using two approaches. The first approach consists of using phenomenological expressions that express the fracture
energy, cohesive strength and/or maximum crack opening as a function of the crack opening rate [16–18,20,23,26–32], while
the second approach consists of using a viscoelastic material model to represent the material in front of the crack tip
[14,19,21,33–37]. The former approach, although computationally less expensive, ignores most of the underlying physical
mechanisms causing the fracture process to be rate-dependent. The latter approach is more expensive, yet it more accurately
approximates the physics of rate-dependent fracture.

A rate-dependent CZM that is both efficient and able to accurately approximate the physics of rate-dependent fracture is
of primary interest to the computational fracture mechanics community. In order to derive a model with these two qualities,
we analyze the behavior of CZMs that use a viscoelastic material in front of the crack tip and then mimic the behavior of this
material using a simplified model. An example of a viscoelastic CZM is that proposed by Bažant and Li [38,39]. In their study,
they present a rate-dependent CZM using a nonlinear Kelvin-Voigt model, in which the elastic spring is replaced by a non-
linear softening spring. Other CZMs have used a standard linear solid (SLS) model to represent the material in the fracture
process zone (FPZ) [19,34,35,40]. The model by Xu et al. [34,35] replaces the elastic arm of the SLS model with a nonlinear
spring with exponential softening. Their model predicts that both the cohesive strength and fracture energy grow as the
crack opening rate increases. Another model using a SLS model in front of the crack tip was presented in a study by Musto
and Alfano [19]. In their work, they use a scalar damage parameter consistent with a bilinear CZM to scale the undamaged
tractions from a SLS model. Using their CZM, they were able to approximate experimental results obtained from double can-
tilever beam (DCB) tests performed at several constant loading rates. After comparing their numerical and experimental
results, Musto and Alfano [19] found that their model approximated the experimental only for a narrow range of loading
rates. Recently, Musto and Alfano [36] improved their previous model [19] by using a version of a SLS model based on frac-
tional viscoelastic theory [41]. After comparing their numerical and experimental results, Musto and Alfano [36] found that
with their new model they were able to accurately capture the experimental data for a range of loading rates that spanned
around six orders of magnitude.

Cohesive zone models such as that presented in the work by Musto and Alfano [36] predict that both the local fracture
energy and cohesive strength grow as a sigmoidal function of the crack opening rate. This sigmoidal behavior has been
experimentally observed by Marzi et al. [18] in rate-dependent debonding tests performed on a structural adhesive. The
same sigmoid-like behavior for the fracture energy and cohesive strength is observed in a recent study by Giraldo-
Londoño et al. [42]. In their study, they extend the work by Musto and Alfano [36] to account for mixed-mode fracture. Their
study also considers the shape of the traction-separation relation, which is important in fracture simulations because the
shape of the CZM can significantly affect the simulated global fracture behavior in the structure [43,44]. To account for
the shape of the CZM, the model by Giraldo-Londoño et al. [42] uses damage parameters [45] extracted from the Park-
Paulino-Roesler (PPR) cohesive zone model [46]. The ability to control the softening shape of the traction-separation rela-
tions under mixed-mode conditions allows their model to be general enough to model the fracture behavior of an arbitrary
material [47].

The mixed-mode rate-dependent CZM presented by Giraldo-Londoño et al. [42] has shown promise to accurately model
rate-dependent fracture phenomena for a wide range of loading rates. The ability of their model to accuracy simulate rate-
dependent fracture relies on the fractional viscoelastic model. However, obtaining the tractions from a fractional viscoelastic
model becomes computationally expensive because one has to evaluate a convolution integral at each time step [41], which
becomes more expensive as the number of time steps increases. Although several numerical methods have been proposed to
solve equations involving fractional differential operators [e.g., see 48–54], due to the non-locality of fractional derivatives,
their numerical computation has, thus far, been expensive. To circumvent this issue, we present an approach in which we
approximate the response of the fractional viscoelastic model [42] in a simplified way that requires no evaluation of convo-
lution integrals.

More specifically, this paper presents a mixed-mode rate-dependent CZM that approximates the behavior of a viscoelastic
media in front of the crack tip using two rate-dependent springs, one acting in the normal and the other in the tangential
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direction to the crack plane. To resemble the viscoelastic material behavior, the traction-separation relations of the springs
are forced to be continuous with respect to changes in the crack opening rates. To account for softening, the tractions
obtained from the rate-dependent springs are scaled by two damage parameters that are obtained from the Park-Paulino-
Roesler CZM [45,46]. The damage parameters are such that they increase monotonically, a condition that must be met if
no self-healing takes place during the fracture process [55–58]. We demonstrate that the present model possesses a level
of accuracy that is comparable to more sophisticated formulations based on viscoelastic models of fractional order
[36,42], yet it is computationally efficient. Specifically, the savings in computational cost are achieved by avoiding evaluation
of the convolution integrals, as in the case of the aforementioned fractional viscoelastic cohesive models.

The remainder of this paper is organized as follows. The derivation of the mixed-mode rate-dependent CZM is outlined in
Section 2. Two comprehensive examples are discussed in detail in Section 3, followed by an analysis of the computational
cost of the model in Section 4. Finally, the conclusions from this work are reviewed in Section 5.
2. Formulation of the rate-dependent CZM using sigmoidal functions

This section outlines the derivation of our proposed rate-dependent CZM, which is formulated in the framework of dam-
age mechanics [59,60]. First, we derive undamaged tractions Sk from a rate-dependent spring model. Then, we scale the
undamaged rate-dependent tractions using damage parameters dk that are obtained from the PPR CZM. This yields rate-
dependent cohesive tractions Tk, wherein the subscript k in the following derivation of the model takes values n and t to refer
to the normal and tangential directions, respectively. The rate-dependent cohesive tractions are obtained as follows:
1 Alth
respons

2 The
Tk DkðtÞ; _DkðtÞ
� �

¼ 1� dkðjn;jtÞ½ �Sk DkðtÞ; _DkðtÞ
� �

: ð1Þ
The undamaged tractions and damage parameters in Eq. (1) are discussed in detail in the following two subsections.
2.1. Undamaged tractions

The undamaged tractions, Sk, are derived from a model using two rate-dependent springs.1 One of the springs acts in the
direction normal to the crack face and the other in the direction tangential to the crack face. For both rate-dependent spring
models, we enforce the tractions to be continuous with respect to changes in the crack opening rates. We enforce the continuity
condition, as illustrated in Fig. 1, to mimic the behavior of a viscoelastic material. From the continuity condition, the undamaged
traction in the normal and tangential directions take the form
Sk DkðtÞ; _DkðtÞ
� �

¼
Z t

0

_DkðsÞ~Ek
_DkðsÞ
��� ���� �

ds; ðk ¼ n; tÞ; ð2Þ
or in a discrete form2
Sk DkðtÞ; _DkðtÞ
� �

¼ Sk DkðtN�1Þ; _DkðtN�1Þ
� �

þ ~Ek
_DkðtÞ
��� ���� �

DkðtÞ � DkðtN�1Þ½ �; ðk ¼ n; tÞ; ð3Þ
where the values evaluated at tN�1 correspond to the tractions at the previous time increment (in a nonlinear FE context)
[61]. The form of the tractions given by Eq. (3), indicates that only tractions and displacements from the previous time step
are required to compute the tractions at the current time step. This saves significant computational cost compared to vis-
coelastic CZMs such as those in Refs. [36,42] (details of the model in Ref. [42] are summarized in Appendix A).

To complete our rate-dependent spring model, we need an expression for the rate-dependent spring stiffness, ~Ek. In this
work, we propose the stiffness of the springs to be defined by the following sigmoidal functions of the crack opening rates:
~Ek
_DkðtÞ

� �
Ek

¼ f k _DkðtÞ
� �

¼ 1þ ðbk � 1Þ
_DkðtÞ= _Dk0

� �p
1þ _DkðtÞ= _Dk0

� �p
2
64

3
75; ðk ¼ n; tÞ; ð4Þ
where Ek are the slow-limit stiffness, bk are the fast-to-slow limit stiffness ratios, bkEk are the fast-limit stiffness, _Dk0 are ref-
erence rates, and p is an exponent indicating the rate at which the respective stiffness transitions from slow-limit to fast-
limit behavior. The terms slow-limit and fast-limit refer to the behavior as _Dk ! 0 and _Dk ! 1, respectively. The rate-
dependence of stiffness given by Eq. (4) is depicted in Fig. 2. As will be discussed in Section 2.3, the stiffness ~Ek given by
Eq. (4) leads to a sigmoidal form for the fracture energy and cohesive strength, in accordance with previous studies [36,42].
ough the term ‘‘spring” is typically used to represent responses of the form force vs. displacement, such term is used in this study to represent a
e of the form traction vs. crack opening displacement (e.g., see Fig. 1).
discrete form given by Eq. (3) is obtained by applying the backward Euler method to the time derivative of Eq. (2).
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2.2. Normal and tangential damage parameters

To account for damage, the undamaged tractions given by Eq. (3) are scaled by two damage parameters dk. We obtain the
damage parameters from the PPR cohesive zone model [46], as presented by Spring et al. [45]:
dk jn;jtð Þ ¼ 1� T̂k jn;jtð Þ
Ekjk

; ðk ¼ n; tÞ: ð5Þ
The terms T̂kðjn;jtÞ are the rate-independent normal and tangential cohesive tractions from the original PPR model [46],
i.e.,
T̂nðjn;jtÞ ¼ Cn

dn
m 1� jn

dn

� �a m
a
þ jn

dn

� �m�1

� a 1� jn
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� �a�1 m
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� �m
" #
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b
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: ð7Þ
As discussed by Spring et al. [45], the values of En and Et correspond to the initial normal and tangential stiffness of the
PPR cohesive model, respectively. That is,
En ¼ @T̂n

@jn
ð0;0Þ ¼ �Cn

d2n

m
a

� �m�1
mþ að Þ Ct

n
b

� �n

þ /t � /nh i
� �

; ð8Þ
Et ¼ @T̂t

@jt
ð0;0Þ ¼ �Ct

d2t

n
b

� �n�1

nþ bð Þ Cn
m
a

� �m
þ /n � /th i

� �
: ð9Þ
The PPR parameters a and b control the shape of the normal and tangential softening portions of the PPR cohesive trac-
tions, respectively. Note that a P 1 and b P 1. The terms m and n depend on a and b and the two initial slope indicators, kn
and kt , as follows:
m ¼ a a� 1ð Þk2n
1� ak2n
	 
 ; n ¼ b b� 1ð Þk2t

1� bk2t
	 
 : ð10Þ
The initial slope indicators, kn and kt , are given by
kn ¼ dnc=dn; kt ¼ dtc=dt ; ð11Þ

where dnc and dtc are the crack opening widths at which the peak tractions in the normal and tangential directions are
reached, and dn and dt are
dn ¼ /n

rmax
aknð1� knÞa�1 a

m
þ 1

� � a
m

kn þ 1
� �m�1

; ð12Þ

dt ¼ /t

smax
bktð1� ktÞb�1 b

n
þ 1

� �
a
n
kt þ 1

� �n�1
: ð13Þ
From the original presentation of the PPR model [46], when the normal and tangential fracture energies are different
(/n – /t), the energy constants Cn and Ct are given by
Cn ¼ �/nð Þh/n�/ti=ð/n�/tÞ a
m

� �m
; Ct ¼ �/tð Þh/t�/ni=ð/t�/nÞ b

n

� �n

; ð14Þ
and when the normal and tangential fracture energies are the same (/n ¼ /t), these energy constants are given by
Cn ¼ �/n
a
m

� �m
; Ct ¼ b

n

� �n

: ð15Þ
where the Macaulay bracket �h i is defined as
xh i ¼ 0 x < 0
x x P 0

:

�
ð16Þ
We use two kinematic quantities jn and jt in the calculation of the damage parameters, dk, in Eq. (5). The values of jn and
jt represent the historic maximum normal crack opening width, and the historic maximum absolute tangential crack open-
ing width, respectively. As discussed by Spring et al. [45], these kinematic quantities must satisfy



Fig. 1. Two rate-dependent springs (left) are used to obtain the undamaged tractions, Sk (right). As observed on the right side of the figure, the tractions Sk
are assumed to be continuous with respect to changes in the crack opening rates, _Dk . The subscript k in the figure takes the values k ¼ n and k ¼ t to refer to
the normal and tangential directions, respectively.

Fig. 2. Stiffness of the springs as a function of the crack opening rates. Two springs are used, one in the normal direction (k ¼ n) and one in the tangential
direction (k ¼ t). The horizontal axis is in logarithmic scale.
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jN
n ¼ max jN�1

n ;DN
n

n o
and jN

t ¼ max jN�1
t ; DN

t

��� ���n o
; ð17Þ
to guarantee a monotonic increase of the damage parameters throughout the loading history. This is a required condition if it
is assumed that no self-healing occurs during the fracture process. The superscripts N � 1 and N represent the solutions at
increment N � 1 and N in a nonlinear FE analysis. Although it is beyond the scope of the current work, healing can be added
to the proposed framework using a healing variable such as that in used in Ref. [62]. Healing is an important mechanism to
consider when modeling some time-dependent materials, such as asphalt [62–64] and polymers [65–68].

2.3. Rate-dependent cohesive tractions and fracture energy

To obtain expressions for the mixed-mode rate-dependent cohesive tractions, we substitute Eqs. (3) and (5) into Eq. (1),
yielding
Tk DkðtÞ; _DkðtÞ
� �

¼ T̂k jn;jtð Þ
Ekjk

Sk DkðtN�1Þ; _DkðtN�1Þ
� �

þ ~Ek
_DkðtÞ
��� ���� �

DkðtÞ � DkðtN�1Þ½ �
n o

: ð18Þ
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Analytical expressions for the normal and tangential fracture energy and cohesive strength, as a function of the crack
opening rate, can be directly obtained from Eq. (18). For instance, if one assumes monotonic loading conditions and constant
crack opening rates, Eq. (18) simplifies to
Tk Dn;Dtð Þ ¼ f k _Dk

� �
T̂kðDn;DtÞ: ð19Þ
This simplification is possible because the kinematic quantities and the undamaged tractions become jk ¼ Dk and

Sk ¼ f k _Dk

� �
EkDk, respectively, where f k _Dk

� �
is obtained from Eq. (4). Because the rate dependent tractions given by Eq.

(19) are equal to a scalar multiple of the PPR cohesive tractions, T̂k, we are able to obtain analytical expressions for the frac-
ture energy and cohesive strength for any constant crack opening rate. The resulting fracture energies are
Gk
_Dk

� �
¼ f k _Dk

� �
/k; ð20Þ
and cohesive strengths are
Tmax
k

_Dk

� �
¼ f k _Dk

� �
Tmax
k0

; ð21Þ
where /k (k ¼ n; t) are the rate-independent cohesive fracture energies [46]. Moreover, the values of Tmax
k0

are equal to the

rate-independent cohesive strengths from the PPR cohesive model, i.e., Tmax
n0

¼ rmax and Tmax
t0

¼ smax [46].
The mode I fracture energy and cohesive strength from Eqs. (20) and (21) are compared with the values obtained from the

fractional viscoelastic CZM presented by Giraldo-Londoño et al. [42], for a wide range of crack opening rates, in Fig. 3. An
overview of the fractional model by Giraldo-Londoño et al. [42] is provided in Appendix A. To obtain the fracture energy
and cohesive strength using the fractional CZM [42], the cohesive tractions were calculated via Eq. (45) using 200 time incre-
ments between t ¼ 0 and t ¼ tc , where tc is the time at which the tractions vanish. The fracture energies were obtained by
numerical integration (using the trapezoidal rule) and the cohesive strengths were obtained as the maximum traction under
the traction-separation curves. From Fig. 3a and b, it is observed that the fracture energy and cohesive strength calculated via
Eqs. (20) and (21) are very close to those obtained from the fractional viscoelastic CZM [42]. The accuracy of the computed
fracture energies and cohesive strengths is measured using relative percent error values. The percent error for fracture
energy and cohesive strength are obtained as
�ðGnÞ ¼ Gsigmoidal
n � Gfractional

n

Gfractional
n

� 100; and �ðTmax
n Þ ¼ Tmax;sigmoidal

n � Tmax;fractional
n

Tmax;fractional
n

� 100; ð22Þ
respectively. From Fig. 3c, we find that the maximum difference between both models is less than 1.2%. The computed per-
cent differences are assessed relative to another model and not to experimental results. Therefore, the 1.2% in relative error is
interpreted as a verification of accuracy of the model. The ability of the model to predict experimental results will be
assessed in Section 3.1.

We further verify the accuracy of the model by comparing the cohesive tractions predicted by the model against those
from the cohesive zone model of Ref. [42] (see Appendix A) for a general crack opening path. For simplicity purposes, the
crack faces are assumed to remain parallel. The normal and tangential crack opening widths are assumed to be independent
of each other, and follow the relations
DnðtÞ ¼ t½1� cosð15tÞ�; and DtðtÞ ¼ 1:5t sinð10tÞ: ð23Þ

The normal and tangential crack opening widths given in Eq. (23) are illustrated in Fig. 4 for time t 6 3 s. This time inter-

val is chosen to ensure that the crack opening widths are large enough to produce complete failure of the cohesive element.
The cohesive tractions obtained for the crack opening path given by Eq. (23) are illustrated in Fig. 5. Note that the cohe-

sive tractions obtained from the present formulation are very close to those obtained from the fractional viscoelastic model
in [42], which reassures the accuracy of the present rate-dependent CZM. To find the rate-dependent cohesive tractions
using our CZM, we only need to store the tractions obtained from the previous time step, in contrast to more accurate CZMs
based on fractional viscoelastic theory [36,42], in which we often need to store the tractions from all previous time steps in
order to find the tractions in the current time step. Savings in storage are an advantage of the present formulation, as it can
be implemented to solve large-scale problems involving a large number of cohesive elements with a relatively lower com-
putational cost.

2.3.1. Some comments on the rate dependence of fracture energy
Rate dependency can affect different materials in different ways. For instance, the fracture energy in rubbery materials

increases with an increase in rate, while glassy materials may exhibit a decrease in fracture energy with an increase in rate.
Several studies have shown that the fracture energy in elastomeric and other soft materials increases exponentially with
crack speed. For instance, Zhou et al. [16] present experimental results for high-speed crack propagation of pre-strained
PMMA plates showing an exponential growth of the fracture energy as the crack speed increases. Nearly exponential growth
of fracture energy was also reported by Gent [69] during peeling tests conducted on polybutadiene elastomers in a rubbery
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state (which was numerically verified by Rahul-Kumar et al. [15]), and by Kazerani et al. [29] during fracture tests of PMMA
plates. Marzi et al. [18] show that the fracture energy in structural adhesive joints increases in a sigmoid-like fashion after
performing several experiments over a wide range of strain rates. This sigmoidal behavior has also been observed
analytically [36,40]. In addition, a recent study by Giraldo-Londoño et al. [42], used a fractional calculus based viscoelastic
CZM that predicts a sigmoid-like behavior for both the mode I and II fracture energies and cohesive strengths. In agreement
with experimental and numerical observations for rubbery materials, Eqs. (20) and (21) lead to a sigmoid-like shape for the
fracture energies and cohesive strengths, justifying the use of Eq. (4) to define the stiffness of the rate-dependent springs for
these types of materials.

Although the sigmoid-like behavior for the fracture energy that is predicted by our model is useful to simulate fracture in
rubbery materials, it may be inadequate to simulate the fracture behavior of glassy polymers. The main reason for the inad-
equacy is that in glassy polymers the fracture energy has been observed to be non-monotonic with respect to the crack open-
ing rates. That is, in glassy polymers the fracture energy may increase up to a certain value of crack opening rate and
decrease afterwards. For some materials, such as asphalt concrete, which becomes glassy at low temperatures and high load-
ing rates, experimental results have shown that fracture energy decreases with increasing loading rate [70]. Several authors
have given different interpretations to the non-monotonic behavior of fracture energy versus crack opening rate that occurs
in glassy polymers. For example, Williams [71] studied thermomechanical effects on crack propagation in PMMA and pro-
posed that the non-monotonicity could be attributed to thermal softening in the fracture process zone. Thermal softening
can be caused by increasing temperatures in front of the crack tip, which become more prominent as the crack speed
increases. Johnson and Radon [72], explained the non-monotonicity in PMMA in the context of molecular kinetics. In their
study, they indicated that the non-monotonic behavior of fracture energy was attributed to mobility changes in parts of the
polymer molecule, which can be attributed to an adiabatic fracture behavior as the crack speed increases. Maugis [73] attrib-
uted the non-monotonic rate-dependent response of the fracture energy to viscoelastic losses at the crack tip, which are
related to the loss modulus of the material in the fracture process zone. Such a model can be used to explain stick-slip
motion, which is observed in glassy materials.
Fig. 3. Mode I fracture energy (a) and cohesive strength (b) obtained from Eqs. (20) and (21), respectively, are compared against those obtained from the
fractional viscoelastic CZM [42]. The percent error between the sigmoidal model (present) and the fractional model (c) are below 1.2% for both fracture
energy and cohesive strength. The cohesive parameters used for the cohesive model in [42] are: /n ¼ /t ¼ 2:8 N=mm, rmax ¼ smax ¼ 1:2 MPa,
a ¼ b ¼ 3:5; kn ¼ kt ¼ 0:45; v̂ ¼ 0:3; c ¼ 8:5, and k̂n ¼ k̂t ¼ 3:5, while the properties used for the present formulation are: /n ¼ /t ¼ 2:8 N=mm,
rmax ¼ smax ¼ 1:2 MPa, _Dn ¼ _Dt ¼ 0:0184 mm=s, bn ¼ bt ¼ 9:5, and p ¼ 0:3.
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Alternatively, Webb and Aigantis [74] associated the non-monotonic fracture energy behavior to the stick-slip phe-
nomenon, which is characterized by sudden changes in crack tip velocities during a fracture test. Due to the sudden changes
in crack velocity, Webb and Aigantis [74] include inertial effects in front of the crack via a material inertial shielding term
that multiplies the static equilibrium fracture energy. In a study by de Gennes [75], he indicated that the non-monotonous
behavior of the fracture energy in a finite viscoelastic specimen was attributed to the viscous dissipation around the crack
tip. To explain this, de Gennes [75] divided the region around the crack tip into three zones: an unrelaxed, glassy zone; a
viscous dissipation zone; and a fully relaxed, rubbery zone. When the specimen is of infinite size, the volume of the viscous
dissipation zone can grow indefinitely (which Hui et al. [76] had previously demonstrated) as the crack speed increases,
allowing the fracture energy to increase with crack speed. However, when the size of the specimen is finite, the volume occu-
pied by the viscous dissipation zone is limited, leading to a non-monotonic fracture energy versus crack-opening rate behav-
ior. This behavior was verified computationally by Rahul-Kumar [15].

The observations above can be used to extend the present formulation to model the rate-dependent fracture for both rub-
bery and glassy polymers. Following the observations by Williams [71] and Johnson and Radon [72], one possible way of
extending the present formulation is by incorporating thermomechanical effects in the CZM, allowing for thermal softening
of the rate-dependent spring model introduced in Section 2.1. Another possible extension of the present model can be
achieved by modifying the damage parameters to be rate-dependent. One way of achieving rate-dependence in the damage
parameters follows from a study by Park et al. [77], who used the Schapery correspondence principle [12] to show experi-
mentally that damage depends on both strain and strain rate. Our model can be reformulated by using a suitable version of
the Schapery correspondence principle and by prescribing the evolution of damage parameters in terms of pseudo-crack-
openings. Although such model extension is achievable, it is outside the scope of the present study.

2.4. Material tangent matrix

Implementing the current rate-dependent model within the FE framework requires the derivation of the consistent mate-
rial tangent matrix. This is achieved by computing the first variation of the cohesive tractions, Tk, from Eq. (19) as follows
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The material tangent matrix takes the form
DðDn;DtÞ ¼
Dtt Dtn

Dnt Dnn

� �
; ð26Þ
Fig. 4. Normal crack opening (a) and tangential crack opening (b) obtained from Eq. (23).



Fig. 5. Rate-dependent cohesive tractions obtained for the general crack opening path given by Eq. (23). The normal cohesive tractions (a) and tangential
cohesive tractions (b) obtained from the present formulation correlate well with those obtained from the fractional viscoelastic CZM [42].

O. Giraldo-Londoño et al. / Engineering Fracture Mechanics 192 (2018) 307–327 315
where the terms Dnn and Dnt in Eq. (26) are given by the first and second terms in square brackets from Eq. (24). Similarly, the
terms Dtn and Dtt in Eq. (26) are obtained from the first and second terms in square brackets from Eq. (25). Assuming a back-
ward finite difference approximation for the normal and tangential opening rates, and substituting Eq. (18) into Eqs. (24) and
(25) yields:
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The terms D̂tt; D̂tn; D̂nt , and D̂nn in Eqs. (27)–(30) are the components of the material tangent matrix from the PPR cohesive
zone model [78] evaluated at the kinematic quantities jn and jt , as shown below:
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For further details on the finite element implementation for a two-dimensional linear cohesive element, the interested
reader is referred to Ref. [78]. Similarly, the implementation details for three-dimensional cohesive elements can be found
in Ref. [79].

Notice that a single set of Eqs. (27)–(30) is used to define all possible loading-unloading-reloading scenarios. All loading
scenarios are implicitly defined in terms of the values of @jn=@Dn and @jt=@Dt . For instance, @jn=@Dn ¼ 0 and @jn=@Dn ¼ 1
indicate unloading-reloading and loading conditions in the normal direction, respectively. Similarly, @jt=@Dt ¼ 0 and
@jt=@Dt ¼ Dt= j Dt j indicate unloading-reloading, and loading conditions in the tangential direction, respectively. The value
Dt= j Dt j is used to determine the sign of @jt=@Dt . These derivatives are obtained from Eq. (17) and are shown below
Fig. 6.
During
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The values of @jn=@Dn and @jt=@Dt (for positive values of Dt) are illustrated in Fig. 6, in which three unloading/reloading
scenarios are indicated by the gray regions. For instance, partial unloading/reloading occurs in the light gray regions, while
pure unloading/reloading occurs in the dark gray region. The white region constitutes pure loading conditions.
3. Examples and discussion

This section presents and discusses two examples to verify and validate the mixed-mode rate-dependent CZM. The first
example compares the results from the present model with experimental results available in the literature [36]. The second
example illustrates the ability of the model to simulate mixed-mode rate-dependent delamination problems, where the
effects of the input parameters are investigated through a parametric analysis.
3.1. Double cantilever beam test

This example investigates the rate-dependent debonding behavior of a rubber interface through a double cantilever beam
(DCB) test. The numerical results obtained from the present model are compared with experimental results available in
Ref. [36]. The DCB test geometry consists of two steel arms that are partially bonded with a rubber interface. The steel arms
are 200 mm long, 8 mm thick, and 25 mmwide. The geometric configuration and load application points for the DCB test are
illustrated in Fig. 7. For each test, the load application points are displaced at a constant rate in the direction indicated by the
Given the maximum normal and tangential crack opening during the loading history (reference point), four possible loading scenarios may occur.
pure loading (white region), both @jn=@Dn ¼ 1 and @jt=@Dt ¼ 1; if partial unloading conditions occur (light gray regions), @jn=@Dn ¼ 1 and

t ¼ 0, when Dn > jn and Dt < jt , and @jn=@Dn ¼ 0 and @jt=@Dt ¼ 1, when Dn < jn and Dt > jt; and during pure unloading (dark gray region), both
n ¼ 0 and @jt=@Dt ¼ 0. This illustration only shows positive values of Dt , therefore the values of @jt=@Dt shown here need to be multiplied by
.



Fig. 7. Geometry and load application points for the double cantilever beam tests (all dimensions are in mm).

O. Giraldo-Londoño et al. / Engineering Fracture Mechanics 192 (2018) 307–327 317
arrows on the left end of the beams (see Fig. 7). Several opening rates are used in the tests, (0.01, 0.1, 1, 10, 100, and 500 mm/
min), spanning several orders of magnitude.

The steel arms are discretized using 800 bilinear quadrilateral plane strain elements. Each element is 2 mm � 2 mm, as
illustrated in Fig. 8. As shown in this figure, we simulated the entire geometry instead of invoking symmetry, which we did
for the purposes of this verification and model efficiency study. The material used to model the steel arms is linear elastic,
with a Young’s modulus of 200 GPa and a Poisson’s ratio of 0.3. The rubber interface is discretized using 60 rate-dependent
cohesive elements with zero thickness. The cohesive elements are modeled using the rate-dependent cohesive model formu-
lation. A set of fracture parameters that leads to a reasonable agreement between the numerical and experimental results is
summarized in Table 1. We determined the values shown in Table 1 by trial an error until the results from our simulations
agreed reasonably well with the experimental results from the DCB tests.

From our simulations, we obtain load-displacement curves for each of the opening rates and compare them against those
obtained from the experimental DCB tests, as illustrated in Fig. 9. The results show that the applied load predicted by the
model approximates well the experimental behavior for opening rates of 1 mm/min or less. However, as the opening rate
increases beyond 10 mm/min, the load predicted by our model slightly overestimates that from the experiments. In partic-
ular, the peak load predicted by our model overestimates the experimental peak load by about 5% for opening rates of 10
mm/min or more. We believe that some of the difference between our numerical and experimental results is due to the
parameters chosen for the cohesive elements (shown in Table 1), which were found by trial and error. An additional source
of error is due to the constitutive model that defines the rate-dependent behavior of the cohesive elements, which neglects
viscous dissipation.

3.2. Rate-dependent mixed-mode bending test

This example investigates the rate-dependent mixed-mode delamination behavior of a specimen through the mixed-
mode bending (MMB) test. The parameters defining the rate-dependent spring (see Section 2.1) are discretely varied within
predefined ranges. The results from the rate-dependent model are compared with those from the rate-independent PPR
cohesive model [46,78]. The geometry of the MMB test is illustrated in Fig. 10, where L ¼ 51 mm, c ¼ 60 mm,
h ¼ 1:56 mm, B ¼ 25:4 mm, and a0 ¼ 33:7 mm. The force P, applied on the rigid lever, is evaluated as the reaction force gen-
erated after moving point A at a constant speed in a downward direction.

To perform the FE analyses, the bulk domain is discretized using 19,570 bilinear quadrilateral elements, and 683 cohesive
elements are inserted along the horizontal direction in front of the notch tip to capture the debonding behavior. The rigid
lever is explicitly defined as a rigid element, where constraints to the displacements at points B and C (see Fig. 10) are
Fig. 8. Finite element mesh and boundary conditions for the double cantilever beam example.

Table 1
Properties of the cohesive elements used to model the rubber interface in the DCB
tests.

Mode I and II fracture energies, /n ¼ /t (N/mm) 2.8
Normal and tangential cohesive strengths, rmax ¼ smax (MPa) 1.2
Non-dimensional shape parameters, a ¼ b 3.5
Initial slope indicators, kn ¼ kt 0.45
Exponent of the sigmoidal function, p 0.3
Stiffness indicator parameters, bn ¼ bt 9.5

Reference rates, _Dn0 ¼ _Dt0
0.0184



Fig. 9. Load versus Cross-head displacement curves for the double cantilever beam test at different applied opening rates. Experimental results are obtained
from Ref. [36].

Fig. 10. Geometry and loads for the mixed-mode bending (MMB) test.
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imposed to simulate the rigid lever as simply-supported on the beam. The constraints are applied such that points B and C
resemble a roller and a pin, respectively. Furthermore, the bulk material is modeled as a linear elastic material with a Young’s
modulus of 122 GPa and a Poisson’s ratio of 0.25, while the cohesive elements are modeled using the rate-dependent formu-
lation described in Section 2. The fracture properties used for the cohesive elements are listed in Table 2. Parameters
/n; /t; rmax; smax; a; b; kn, and kt , which govern the behavior of the damage element, are chosen from Ref. [78], while
parameters p; bn; bt ;

_Dn0 , and _Dt0 , which govern the behavior of the rate-dependent spring model, are arbitrarily chosen
to study their effect on the rate-dependent fracture response. To understand the effect of each parameter in the cohesive
model on the global response, we vary the values of the fast-to-slow limit stiffness parameters, bk, the reference rates,
_Dk0 , and the exponent of the sigmoidal function, p, between predefined values.

Fig. 11 shows the results obtained for different applied displacement rates. We observe that, as the applied displacement
rate increases, both the peak force and global fracture energy captured by our rate-dependent cohesive model also increase,
which is consistent with the increase in cohesive strength and fracture energy given by Eqs. (20) and (21). In addition, as the
applied displacement rate approaches zero the results from the model approach those from the rate-independent PPR cohe-
sive zone model [78].

Fig. 12 shows the results obtained for different fast-to-slow limit stiffness parameters bk. Note that as the parameter bk

increases, the force P increases. This is because, as bk increases the rate-dependent spring becomes more sensitive to the
crack opening rate. As expected, when bk ¼ 1 the result from the rate-independent PPR cohesive zone model is recovered
[78]. This is because the rate-dependent model becomes rate-independent after setting bk ¼ 1 in Eq. (4). In fact, under these
circumstances, the rate-dependent model reduces to the rate-independent version of the PPR cohesive model presented in
the study by Spring et al. [45].

The behavior obtained for different reference rates _Dk0 is plotted in Fig. 13. It is observed that as _Dk0 increases, the force P

decreases. Moreover, when _Dk0 is large, the response obtained with the rate-dependent model approaches that of the rate-

independent one. This behavior can be explained by Eq. (4), where the terms _Dk= _Dk0 become smaller (for the same applied

displacement rate) as _Dk0 increases.



Table 2
Material properties for the rate-dependent cohesive elements used in the
MMB tests.

Mode I fracture energy, /n (N/mm) 0.5
Mode II fracture energy, /t (N/mm) 1
Normal cohesive strength, rmax (MPa) 20
Tangential cohesive strength, smax (MPa) 100
Non-dimensional shape parameters, a ¼ b 3
Initial slope indicators, kn ¼ kt 0.02
Exponent of the sigmoidal function, p 0.1–0.5
Fast-to-slow limit stiffness parameters, bn ¼ bt 1–3

Reference rates, _Dn0 ¼ _Dt0 (mm/s) 10�3-102

Fig. 12. Effect of the fast-to-slow limit stiffness parameters, bk , on the response of the MMB test. The results in this figure are for Rate ¼ 10 mm=min,
_Dn0 ¼ _Dt0 ¼ 2� 10�2 mm=s, and p ¼ 0:3. As bk ! 1 the solution from the present model approaches that of the rate-independent PPR CZM [46].

Fig. 11. Effect of the loading rate on the response of the MMB test. The results in this figure are for bn ¼ bt ¼ 3; _Dn0 ¼ _Dt0 ¼ 2� 10�2 mm=s, and p ¼ 0:3. As
the loading rate decreases, the solution from the present model approaches that of the PPR CZM [46].
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Finally, the response obtained by varying the exponent p of the sigmoidal expression is plotted in Fig. 14. The results show
that, as the parameter p increases, the tractions decrease. This is counterintuitive, because it is expected from Eq. (4) that the
transition from slow-limit to fast-limit behavior occurs faster if p is larger. Following this line of thought, it would be
expected that a model using a larger value of p is more sensitive to the applied displacement rate, however the opposite
is observed from the results. The reason for this unexpected behavior is that for most of the loading history, the crack open-
ing rate in most of the cohesive elements lies below _Dk0 . Hence, the terms _Dk= _Dk0 in Eq. (4) become smaller as p increases.



Fig. 13. Effect of the reference rate, _Dk0 , on the response of the MMB test. The results in this figure are for Rate ¼ 10 mm=min, bn ¼ bt ¼ 3, and p ¼ 0:3. As
_Dk0 increases, the effects of the loading rate vanish, and it is expected that as _Dk0 ! 1 the solution from the present model approaches that of the rate-
independent PPR CZM [46].

Fig. 14. Effect of the exponent, p, on the response of the MMB test. The results in this figure are for Rate ¼ 10 mm=min, _Dn0 ¼ _Dt0 ¼ 2� 10�2 mm=s, and
bn ¼ bt ¼ 3.
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4. Computational cost analysis

This section evaluates the computational efficiency of the rate-dependent cohesive model presented in this study. First,
we analyze the computational cost for the rate-dependent DCB example of Section 3.1. Next, we analyze the computational
cost for the MMB test of Section 3.2. Finally, we go in more depth and study the efficiency of the proposed model using a
simplified three-point bending test.
4.1. Double cantilever beam test example

For the double cantilever beam test in Section 3.1, the average CPU time spent in the analysis is 15.2 s for the first four
opening rates (i.e., for v ¼ 0:01, 0.1, 1, and 10 mm/min), and 20.0 s for the last two opening rates (i.e., for v ¼ 10 and 100
mm/min). The last two opening rates took longer, due to the large nonlinear behavior, as observed in Fig. 9. The same models
were studied in Ref. [42] using the fractional viscoelastic model discussed in Appendix A. In their study, the average CPU time
was 117.7 s for the first four opening rates and 125.6 s for the last two opening rates. Notice that the computational cost
using the cohesive model in [42] is 7.7 times greater for the first four opening rates and 4.5 times greater for the last two
opening rates. The reason being that the cost per iteration is larger for the model in [42] than it is for the present model
(sigmoidal), as will be discussed in detail later.

A better comparison between the present rate-dependent model and the fractional model in Ref. [42] is obtained for each
case by normalizing the total CPU time by the number of Newton-Raphson iterations. This leads to an average CPU time per
Newton-Raphson iteration of about 0.1 and 0.2 s for the presentmodel (sigmoidal) and the fractional model [42], respectively.
Comparing these two values, we can determine that, for this example, the cost per iteration for the fractional model is about 2
times higher than that for the present model.



Fig. 15. Simplified three-point bending model geometry used for the computational cost analysis.

Table 3
Properties of the rate-dependent cohesive elements used in the computational cost analysis.

Parameters for damage element (both models) Mode I and II fracture energies, /n ¼ /t (N/mm) 0.8
Normal cohesive strength, rmax ¼ smax (MPa) 10
Non-dimensional shape parameters, a ¼ b 3.5
Initial slope indicators, kn ¼ kt 0.15

Parameters for rate-dependent spring (sigmoidal model) Exponent of the sigmoidal function, p 0.3
Fast-to-slow limit stiffness parameters, bn ¼ bt 9.5

Reference rates, _Dn0 ¼ _Dt0 (mm/s) 0.015

Parameters for springpot (fractional model [42]) Order of the fractional derivative, v̂ 0.3
Stiffness parameter, c 8.5

Springpot viscosity parameters, k̂ ¼ ĝn=ðcEnÞ ¼ ĝt=ðcEtÞ 3.5
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4.2. Mixed-mode bending test example

For the mixed-mode bending test in Section 3.2, the average CPU time required to run these models is 14.2 min. After
normalizing the computational time with respect to the total number of Newton-Raphson iterations required by each model,
the average CPU time per Newton-Raphson iteration for all the models in this example is about 2 s. This average CPU time
per iteration is slightly larger than that of the thermodynamically consistent PPR model [45], which reported less than 2 s.
Based on these results, we found that the present rate-dependent model requires approximately 16% more CPU time per iter-
ation than the rate-independent PPR model in [45].

4.3. Simplified three-point bending test

Here, the computational efficiency is assessed by determining the cost per Newton-Raphson iteration for the simplified
three-point bending model illustrated in Fig. 15. This simple model consists of two four-node plane strain quadrilateral ele-
ments of dimension b ¼ 1 m, connected by a rate-dependent cohesive element. The nodes at the top center of the model are
moved vertically at a constant speed v ¼ 1 mm=s in the direction indicated by the arrow, until a deflection of 0.1b is reached.
The FE model shown in Fig. 15 resembles a three-point bending test that allows us, without loss of generality, to assess the
computational efficiency of the present rate-dependent CZM. The efficiency of the present model is compared with that of
the fractional CZM presented in Ref. [42] (see Appendix A). The computational costs in this section were obtained from a
Matlab implementation of both the present (sigmoidal) model and the fractional model in Ref. [42].

The properties used for the cohesive element in Fig. 15, for both the sigmoidal model (present formulation) and the frac-
tional model [42], are shown in Table 3. The bulk elements in Fig. 15 are modeled as linear elastic with a Young’s modulus of
E ¼ 70 GPa and a Poisson’s ratio m ¼ 0:25.

Fig. 16 shows the average computational cost per Newton-Raphson iteration for an increasing number of load steps, for
both the sigmoidal model (present formulation) and the fractional cohesive model of Ref. [42]. The average computational
time for a given number of load steps is depicted as the average of four separate analyses. For each analysis, the computa-
tional cost corresponds to the time per Newton-Raphson iteration spent by each model to assemble the stiffness matrix and
the load vector for the cohesive element only. The computational analysis was conducted on a computer with an Intel(R)
Core(TM) i7-6600U CPU 2.60 GHz processor and 20 GB installed RAM memory.

The results illustrated in Fig. 16 show that the computational cost per iteration for the sigmoidal model is approximately
equal to 8� 10�4 s, and is practically independent of the number of load steps used. However, this is not the case for the
fractional model, in which the computational cost increases exponentially as the number of load steps increases. The reason



Fig. 16. Average computational cost per Newton-Raphson iteration obtained for a three-point bending test consisting of two four-node plane strain
quadrilateral elements bonded by either the present rate-dependent cohesive element or the fractional viscoelastic cohesive element of Ref. [42]. The
average computational times are obtained using a computer with an Intel(R) Core(TM) i7-6600U CPU 2.60 GHz processor and 20 GB installed RAMmemory.
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for this increase is that, in order to find the viscoelastic traction at each load step the fractional model [42] needs to compute
an integral over all previous time increments, as indicated by Eqs. (36) and (37).

The fact that the computational cost per iteration for the present formulation is always smaller than the computational
cost for the fractional CZM [42], highlights the gain in computational cost achieved with the present CZM. The savings in
computational cost is much higher as the number of cohesive elements increase, not only because the cost of computing
the integrals in Eqs. (36) and (37) is avoided, but also because there are significant savings in storage due to the fact that
one need not store the entire history of tractions and displacements at each Gauss point for each cohesive element, as is
the case in the fractional model presented in Ref. [42].
5. Summary and conclusions

This study presents an efficient mixed-mode rate-dependent cohesive fracture model that approximates the behavior of
fractional viscoelastic models using two rate-dependent springs, aligned perpendicular and parallel to the crack plane, to
account for fracture in modes I and II, respectively. The traction-separation relation for each spring is forced to be continuous
with respect to changes in the crack opening rates, resembling the behavior of viscoelastic materials. The proposed cohesive
model is framed in the context of damage mechanics, where two scalar damage parameters are used to scale the undamaged
tractions obtained from the rate-dependent spring models. The scalar damage parameters are consistent with the PPR cohe-
sive fracture model [46] and take the form developed by Spring et al. [45]. The evolution laws for the damage parameters are
such that they satisfy the second law of thermodynamics.

The simplified formulation in this study demonstrated a level of accuracy that can be compared to that from a more
sophisticated fracture model such as that presented in Ref. [42]. Moreover, the results from this investigation show that
the present formulation is computationally more efficient and demonstrates savings in computational cost that can reach
an order of magnitude compared to the fractional model in Ref. [42]. Specifically, the savings in computational cost were
more pronounced as the number of load steps increased. The present model is computationally more efficient, because it
is formulated in such a way that the undamaged tractions from the rate-dependent springs can be obtained without com-
puting convolution integrals involving the entire history of crack opening displacements and tractions, as is the case of the
fractional model [42].

The present model can open new avenues to simulate rate-dependent crack propagation problems in an efficient manner,
while maintaining a similar level of accuracy as that of more sophisticated models. However, we recognize that the model
has room for improvement. For example, the stiffness of the rate-dependent springs could be enhanced by additional inter-
nal state variables to account for viscous dissipation [80]. Moreover, the present formulation can be extended to a cohesive-
frictional model using, for example, some ideas from the studies by Ruina [81], Serpieri et al. [82], Parrinello et al. [83,84],
and Spring and Paulino [85,86]. Finally, to model the fracture behavior of glassy polymers, the model can be enhanced to
include thermo-mechanical effects based upon the work by Williams [71] or reformulated in terms of a pseudo-energy func-
tional, following the study by Park et al. [77].
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Appendix A. Rate-dependent cohesive zone model based on fractional viscoelasticity [42]

The rate-dependent CZM presented in Ref. [42] uses a viscoelastic model based on a fractional standard linear solid (SLS)
model in series with a damage element that is compatible with the PPR CZM [45] (see Section 2.2). A rheological represen-
tation of the fractional SLS used in Ref. [42] is illustrated in Fig. 17. Each of the diamond-shaped elements in Fig. 17 is
referred to as a springpot. A springpot is an element that is more general than a spring or a dashpot and whose constitutive

equation uses a differential operator of fractional order, Dv̂
t ð�Þ, as follows:
rkðtÞ ¼ ĝkD
v̂
t dkðtÞ; ð36Þ
where
Dv̂
t dkðtÞ ¼

1
Cð1� v̂Þ

Z t

0

_dkðsÞ
ðt � sÞv̂

; 0 < v̂ < 1 ð37Þ
is the Caputo fractional derivative of order v̂ 2 ð0;1Þ [41]. Parameters ĝk are viscosity-like parameters, and dkðtÞ are the
deformations of the springpot in the normal (k ¼ n) and tangential (k ¼ t) directions, respectively. A constitutive relationship
similar to that in Eq. (36) was proposed in 1947 by Scott-Blair [87] to represent a material that behaves between a Hookean
solid and a Newtonian fluid. Because Eq. (36) is defined in terms of a fractional differential operator of order v̂ 2 ð0;1Þ, a
material governed by this constitutive relation will behave as a spring if v̂ ! 0 or as a dashpot if v̂ ! 1.

The normal and tangential cohesive tractions derived in [42] are computed as
Tk ¼ ð1� dkÞSk; ðk ¼ n; tÞ; ð38Þ
where dk are damage parameters obtained from the PPR cohesive zone model [46], cf. Eq. (5), and Sk are undamaged cohesive
tractions obtained from the solution of the fractional differential equations
Sk þ k̂k0D
v̂
t Sk ¼ EkDk þ ĉk0Dv̂

t Dk; ðk ¼ n; tÞ; ð39Þ
where
k̂k ¼ ĝk=ðcEkÞ; and ĉk ¼ ĝkð1þ cÞ=c: ð40Þ

The fractional differential Eqs. (39) govern the response of each of the fractional standard SLS models in Fig. 17 (neglect-

ing the damage elements). The derivation of the fractional differential equations for a fractional SLS model is standard, and
can be obtained using a similar procedure as that used to obtain the differential equation for a SLS model that uses a dashpot
instead of a springpot [e.g., see 41].
Fig. 17. Mixed-mode rate-dependent CZM based on a fractional standard linear solid model as presented in Ref. [42].
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To calculate the undamaged tractions, Sk, one must solve the fractional differential Eqs. (39) numerically. In order to do so,
the Caputo fractional derivatives are approximated. The Caputo fractional derivative at time t ¼ tN of a given function f ðtÞ is
approximated as
0D
v̂
t f ðtNÞ ¼

1
Cð1� v̂Þ

Z tN

0

_f ðsÞ
ðtN � sÞv̂

ds � 1
Cð1� v̂Þ

XN
j¼1

f ðtjÞ � f ðtj�1Þ
tj � tj�1

Z tj

tj�1

ðtN � sÞ�v̂ds: ð41Þ
The Caputo fractional derivative approximation on the right hand side of Eq. (41) is achieved by replacing the integral on
the left hand side by a sum of piecewise integrals, each evaluated on a time interval ðtj�1; tjÞ; j ¼ 1; . . . ;N. In each of the time

intervals, the value of _f ðsÞ is replaced by its backward finite difference approximation. Using the approximate Caputo
derivative (41) to approximate the fractional derivatives of both tractions Sk and crack opening displacements Dk in
Eq. (39) yields
SkðtNÞ ¼ ÊkDk þ DSHk ; ðk ¼ n; tÞ; ð42Þ

where
Êk ¼ 1þ ck̂k
k̂k þ Cð2� v̂ÞDtv̂N

 !
Ek; DSHk ¼ k̂kSSk � ĉkSDk

k̂k þ Cð2� v̂ÞDtv̂N
; ð43Þ
and
SSk ¼ Sk tN�1ð Þ þ
XN�1

j¼1

SkðtjÞ � Skðtj�1Þ
� 


Aj;

SDk
¼ Dk tN�1ð Þ þ

XN�1

j¼1

DkðtjÞ � Dkðtj�1Þ
� 


Aj:

ð44Þ
The terms DSHk in Eq. (42) are interpreted as history variables because they account for the history of previous stresses and
crack opening displacements up to time t ¼ tN�1. The rate-dependent cohesive tractions, as presented in Ref. [42], are
obtained after substituting Eqs. (5) and (42) into Eq. (38), yielding
Tk ¼ T̂k jn;jtð Þ
Ekjk

ÊkDk þ DSHk
� �

; ðk ¼ n; tÞ: ð45Þ
Appendix B. Nomenclature
a
 parameter controlling the shape of the cohesive softening curve in the normal direction

�dn
 conjugate normal final crack opening width

�dt
 conjugate tangential final crack opening width

b
 parameter controlling the shape of the cohesive softening curve in the tangential direction

bn
 fast-to-slow limit stiffness ratio in the normal direction

bt
 fast-to-slow limit stiffness ratio in the tangential direction

dnc
 normal crack opening width at the peak normal traction in the original PPR model

Dn
 normal separation along the fracture surface

dn
 normal final crack opening width
DNþ1
n

normal separation along the fracture surface at time increment N þ 1
DN
n

normal separation along the fracture surface at time increment N
dtc
 tangential crack opening width at the peak normal traction in the original PPR model

Dt
 tangential separation along the fracture surface

dt
 tangential final crack opening width
DNþ1
t

tangential separation along the fracture surface at time increment N þ 1
DN
t

tangential separation along the fracture surface at time increment N

_Dn0
normal reference separation rate for the rate-dependent spring model

_Dt0
tangential reference separation rate for the rate-dependent spring model
Cn
 energy constant in the PPR model

Ct
 energy constant in the PPR model
D̂nn; D̂nt
 normal components of the material tangent stiffness matrix from the original PPR model
D̂tn; D̂tt
 tangential components of the material tangent stiffness matrix from the original PPR model
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T̂n
 normal cohesive traction in the original PPR model
T̂t
 tangential cohesive traction in the original PPR model
jn
 kinematic quantity defining the maximum normal crack opening width in the history of loading

jNþ1
n
 maximum normal crack opening width at time increment N þ 1
jN
n
 maximum normal crack opening width at time increment N
jt
 kinematic quantity defining the maximum absolute tangential crack opening width in the history of loading

jNþ1
t

maximum absolute tangential crack opening width at time increment N þ 1
jN
t
 maximum absolute tangential crack opening width at time increment N
kn
 parameter controlling the hardening slope of the PPR model in the normal direction

kt
 parameter controlling the hardening slope of the PPR model in the normal direction

�ð Þ
 time derivative

�h i
 Macauley bracket

D
 material tangent stiffness matrix

/n
 fracture energy in the normal direction (with zero tangential separation)

/t
 fracture energy in the tangential direction (with zero tangential separation)

rmax
 cohesive strength in the normal direction from the original PPR model

smax
 cohesive strength in the tangential direction from the original PPR model

~En
 stiffness of the rate-dependent spring model in the normal direction

~Et
 stiffness of the rate-dependent spring model in the tangential direction

Dnn;Dnt
 normal components of the material tangent stiffness matrix for the rate-dependent CZM

dn
 normal scalar damage parameter consistent with the PPR model

Dtn;Dtt
 tangential components of the material tangent stiffness matrix for the rate-dependent CZM

dt
 tangential scalar damage parameter consistent with the PPR model

En
 initial stiffness parameter for the PPR model in the normal direction

Et
 initial stiffness parameter for the PPR model in the tangential direction

Gn
 rate-dependent fracture energy in the normal direction

Gt
 rate-dependent fracture energy in the tangential direction

m
 nondimensional exponent in the PPR model

n
 nondimensional exponent in the PPR model

p
 exponent of the sigmoidal function for the rate-dependent spring model

Sn
 normal undamaged traction from rate-dependent spring model

St
 tangential undamaged traction from rate-dependent spring model

Tn
 rate-dependent cohesive traction in the normal direction

Tmax
n
 rate-dependent cohesive strength in the normal direction
Tt
 rate-dependent cohesive traction in the tangential direction

Tmax
t
 rate-dependent cohesive strength in the tangential direction
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