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Abstract
We present a virtual element method (VEM)-based topology optimization framework using polyhedral elements, which
allows for convenient handling of non-Cartesian design domains in three dimensions. We take full advantage of the VEM
properties by creating a unified approach in which the VEM is employed in both the structural and the optimization phases.
In the structural problem, the VEM is adopted to solve the three-dimensional elasticity equation. Compared to the finite
element method, the VEM does not require numerical integration (when linear elements are used) and is less sensitive to
degenerated elements (e.g., ones with skinny faces or small edges). In the optimization problem, we introduce a continuous
approximation of material densities using the VEM basis functions. When compared to the standard element-wise constant
approximation, the continuous approximation enriches the geometrical representation of structural topologies. Through two
numerical examples with exact solutions, we verify the convergence and accuracy of both the VEM approximations of
the displacement and material density fields. We also present several design examples involving non-Cartesian domains,
demonstrating the main features of the proposed VEM-based topology optimization framework. The source code for a
MATLAB implementation of the proposed work, named PolyTop3D, is available in the (electronic) Supplementary
Material accompanying this publication.
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1 Introduction

Topology optimization is a powerful computational tool to
design optimal structures under given loads and bound-
ary conditions. Since the seminal work of Bendsøe and
Kikuchi (1988), the field of topology optimization has expe-
rienced tremendous growth and had a major impact on
several areas of engineering, science and technology. For
an overview of this field, we refer the interested readers
to available textbooks (Christensen and Klarbring 2009;
Haftka and Gürdal 2012; Bendsoe and Sigmund 2013) and
a review paper (Rozvany 2009). Among various topol-
ogy optimization approaches, the density-based approach is
commonly adopted, in which the geometry is parametrized
by a material density function and the displacement field
is discretized by, for example, by finite elements. Because
of its simplicity and efficiency, the choice of piece-wise
constant density parametrization, where each finite element
is assigned with a constant density, is typically employed
in conjunction with a lower-order Lagrangian-type dis-
placement approximation. However, this choice of density
parametrization suffers from numerical instabilities, such
as checkerboard patterns and one node connections (Diaz
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and Sigmund 1995; Sigmund et al. 1998). In a gen-
eral setting, Jog and Haber (1996) formulated topology
optimization as a mixed variational problem and demon-
strated how different choices of displacement and density
interpolations affect the appearance of numerical instabili-
ties. Along this direction, different choices of displacement
and density approximations were investigated. One popu-
lar choice is to approximate material density fields with
nodal design variables. For instance, Matsui and Terada
(2004) and Rahmatalla and Swan (2004) employed contin-
uous approximations of the density fields interpolated by
Lagrangian finite element basis functions. This approach,
sometimes known as continuous approximation of material
distribution (CAMD), is effective in preventing the checker-
board patterns but may lead to other forms of numerical
instabilities such as “islanding” and “layering” with linear
finite elements (Rahmatalla and Swan 2004). Guest et al.
(2004) introduced nodal design variables and employed
a projection map with an embedded length scale to con-
struct an element-wise constant density field. Belytschko
et al. (2003) proposed a formulation in which implicit
functions are used to describe topologies of the designs.
The implicit functions are descirbed by their nodal val-
ues and interpolated by C0 finite element shape functions.
Alternatively, Kang and Wang (2011) proposed to decou-
ple the approximations of density and displacement fields
into two independent discretizations. In their approach, the
density field is interpolated from nodal design variables
using non-local Shepard interpolants, and the displacement
field is approximated using standard finite elements. This
feature helps the method to better handle problems with
complex design domains and allows for flexible adaptive
representation of the structural topologies (Wang et al.
2013). Other related choices also include the use of higher-
order displacement approximations (Diaz and Sigmund
1995; Matsui and Terada 2004; Groen et al. 2017), non-
conforming elements (Jang et al. 2003; Jang et al. 2005),
and approximating density and displacement fields on dif-
ferent discretizations (Paulino and Le 2009; Guest and
Smith 2010). The multi-resolution topology optimization
approaches (see, e.g., Nguyen et al. (2010, 2012); Filipov
et al. 2016; Groen et al. 2017) belong to the last family. In
addition to various types of numerical instabilities, topol-
ogy optimization is typically performed on structured finite
element meshes (e.g., uniform grids), which may lead to
mesh-dependent solutions (Antonietti et al. 2017) and lim-
ited ability to discretize complex design domains.

In recent studies, polygonal finite elements have been
shown to be effective in suppressing checkerboard patterns
and reducing mesh dependency in the solutions of topol-
ogy optimization (Talischi et al. 2009, 2010 2012a; Gain
et al. 2015; Antonietti et al. 2017). Moreover, as compared
to standard finite element method (FEM) on uniform grids,

polygonal elements are more versatile in discretizing complex
domains. To this effect, a robust mesh generator named
PolyMesher, able to discretize arbitary 2D domains with
polygonal elements, has been developed (Talischi et al.
2012b). Other efforts in developing polygonal and polyhe-
dral meshers include the works by Abdelkader et al. (2018)
and Pouderoux et al. (2017). In addition, the geometrical
flexibility of polygonal finite elements also makes them
attractive for mesh adaptation in topology optimization (see,
e.g., Nguyen-Xuan (2017) and Hoshina et al. (2018)). How-
ever, most of the aforementioned investigations are in 2D and
efficient extensions to 3D problems poses several challenges.

The first challenge comes from the difficulties of
polyhedral FEM (Hormann and Sukumar 2018). For a major
difficulty is associated with obtaining the shape functions
and their gradients. Although several shape functions exist
in the literature with closed-form expressions, most of
them are limited to certain classes of element geometry.
For example, the Wachspress shape functions only work
with strictly convex and simple polyhedra (meaning the
collection of faces that include each vertex consists of
exactly three faces) (Floater et al. 2014), and the mean
value coordinates are mainly applicable to polyhedra with
simplicial faces (Floater et al. 2005). Those limitations in
the element geometry could potentially affect the accuracy
of the polyhedral FEM when dealing with degenerated
elements, such as the ones with skinny faces or small
edges. Other types of shape functions, such as harmonic
(Martin et al. 2008; Bishop 2014) and max-entropy (Arroyo
and Ortiz 2006; Hormann and Sukumar 2008), allow for
more general polyhedra (e.g., concave ones); however,
their values and gradients at integration points can only
be computed numerically, which could be undesirable
from a computational perspective, especially for large-scale
problems. Another difficulty of the polyhedral FEM is
associated with numerical integration (Talischi and Paulino
2014; Manzini et al. 2014; Bishop 2014). Because there is
no iso-parametric mapping for polyhedral finite elements,
numerical integration needs to be performed in the physical
domain. Due to the non-polynomial nature of their shape
functions, efficient yet consistent numerical integration
rules are difficult to construct on general polyhedral finite
elements. In general, a prohibitively large number of
integration points in each element is required to ensure
convergence of the numerical solution (see Talischi et al.
(2015) and Chi et al. (2016, 2015) for some recent research
attempting to overcome this difficulty).

In this work, we identify another major challenge to use
polyhedral meshes in 3D topology optimization, which is
related to computational efficiency. As mentioned in the pre-
ceding paragraphs, typically topology optimization adopts
an element-wise constant density approximation and a
lower-order displacement approximation with the degrees
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of freedom (DOFs) located at the vertices of the mesh. As
a polyhedral mesh (e.g., centroidal Voronoi tessellation
(CVT)) usually contains significantly more vertices than
elements, this typical choice of density and displacement
approximations becomes considerably less computationally
economical on polyhedral meshes. In particular, when com-
pared to uniform grids with a similar number of elements
(thus similar number of densities and design variables),
we need to solve a much larger structural system in each
optimization step if a polyhedral mesh is considered.

The virtual element method (VEM) (Beirão da Veiga
et al. 2013) is a recently proposed approach that has the
potential to overcome the difficulties of the polyhedral
FEM. The VEM can be viewed as a generalization of the
FEM that is able to effectively handle arbitrary polygonal
and polyhedral meshes. One main feature of the VEM is
that its shape functions are defined implicitly through a
suitable set of partial differential equations (PDEs). Instead
of solving the PDEs for the values of shape functions and
their gradients at the integration points, the VEM constructs
a set of projection operators which project the shape
functions and their gradients onto polynomial functions of
suitable orders (Beirão da Veiga et al. 2013, 2014). By
construction, these projections can be exactly computed
using only the DOFs of the unknown fields. Another major
feature of the VEM is that it decomposes the weak form
into consistency and stability terms, both of which can be
directly formed using the projections of the shape functions
and their gradients as well as the DOFs of the unknown
fields (Beirão da Veiga et al. 2013). As a result, for
any element geometry, the VEM only needs to integrate
polynomials (and not non-polynomials as in the polyhedral
FEM). For lower-order VEM, which is the focus of this
paper, no numerical integration is needed. Because of such
attractive features, the VEM has gained significant visibility
in the computational mechanics community. For instance,
the VEM has been developed for linear elasticity (Beirão
da Veiga et al. 2013; Gain et al. 2014; Artioli et al. 2017),
small deformation non-linear elasticity and inelasticity
(Beirão da Veiga et al. 2015; Artioli et al. 2017; Taylor
and Artioli 2018), finite deformation elasticity and elasto-
plasticity (Chi et al. 2017; Wriggers et al. 2017, 2018;
Wriggers and Hudobivnik 2017), plate bending (Brezzi and
Marini 2013; Antonietti et al. 2018; Mora et al. 2018; Zhao
et al. 2016), and damage and fracture problems (De Bellis
et al. 2018; Benedetto et al. 2018), to name a few. We
also remark that the VEM has been adopted to solve the
state equations in topology optimization on unstructured
polygonal (Antonietti et al. 2017) and polyhedral (Gain
et al. 2015) meshes as well as on Escher-based tessellations
(Paulino and Gain 2015).

In this work, we propose a VEM-based topology opti-
mization framework on general polyhedral discretizations.
To address the aforementioned challenges of efficiently for-
mulating topology optimization on polyhedral meshes, we
adopt the VEM in both the structural and the optimization
problems. Similarly to Gain et al. (2015), we use the VEM
to solve the elasticity equation in the structural problem. The
capability of the VEM in handling arbitrary element geometry
allows us to solve the structural problem more efficiently
(i.e., no numerical integration is needed) and robustly
(i.e., with respect to degenerated elements) on polyhedral
meshes. Exploiting the flexibility of VEM in defining local
spaces, this work also introduces an enriched continuous
approximation of material densities using nodal VEM basis
functions. As compared to the standard element-wise con-
stant density approximation, the continuous approximation
contains a greater number of DOFs for any given polyhe-
dral mesh and can thus improve the quality of structural
topology parameterizations. Moreover, this work explores
various approaches of discretizing complex domains in 3D,
including regular polyhedra-dominated and unstructured
polyhedral meshes, and investigates their influences on the
quality and the numerical stability of solutions in the topol-
ogy optimization. Several design examples are presented
on non-Cartesian domains to demonstrate the main features
of the VEM-based topology optimization framework. To
complement the library of educational codes (e.g., Sigmund
(2001), Andreassen et al. (2011), Talischi et al. (2012a),
Liu and Tovar (2014), Pereira et al. (2016), Wei et al.
(2018), and Sutton (2017)) in the topology optimization and
VEM literature, the source code for a MATLAB imple-
mentation, named PolyTop3D, is provided as (electronic)
Supplementary Material.

The ideation of this paper is motivated by the pioneering
work of Prof. Luiz Eloy Vaz, who contributed to advance
the fields of numerical analysis and optimization (Argyris
et al. 1978; Vaz and Hinton 1995). The remainder of this
paper is organized as follows. Section 2 provides an
overview of the theory and implementation of VEM for
3D linear elasticity problems. Section 3 introduces the
proposed VEM-based topology optimization together with
a simple numerical example comparing the performance
of the proposed continuous density parametrization with
the standard element-wise constant one. In Section 4, we
present a set of design examples featuring non-Cartesian
domains to highlight the main features of the proposed
VEM-based topology optimization framework. Section 5
contains concluding remarks and future research directions.
In the Appendix, the implementation of the PolyTop3D is
presented and the computational efficiency of the computer
code is demonstrated.
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2 VEM basics: theory and implementation

We consider an elastic solid � ∈ R
3 with its boundary

denoted by ∂�. The solid is subjected to a prescribed
displacement u0 on one portion of the boundary �u and a
traction t on the other portion �t, such that �u ∪ �t = ∂�

and �u ∩ �t = ∅. In the interior of �, the solid is subjected
to a body force f. For a given displacement field u, the
linearized strain tensor ε(u) is obtained as ε(u) = 1/2[∇u+
(∇u)T ], where∇ stands for the gradient operator. The stress
tensor is given by means of the constitutive relationship:

σ = Cε, (1)

where C is the usual elasticity tensor.
The weak form of the elasticity problem consists of

finding the displacement u in the space K of kinematically
admissible displacements:

a(u, v) = �(v), ∀v ∈ K0, (2)

where

a(u, v)=
∫

�

[Cε(u)] : ε(v)dx �(v)=
∫

�

f·vdx+
∫

�t
t·vds,

(3)

and K0 stands for the space of kinematically admissible
displacements that vanish on �u.

2.1 Virtual spaces on polygonal and polyhedral
elements

For a general polyhedral element E consisting of planar
faces, this subsection describes the construction of the local
virtual space V(E) following the technique introduced in
Beirão da Veiga et al. (2018) and Ahmad et al. (2013).
Accordingly, the construction of the virtual space for E

depends on the virtual spaces on the faces of E. Therefore,
before introducing the construction of the virtual space onE,
we will first describe the construction of virtual spaces on
faces of E. We also note that, in the literature, there exist
different approaches to construct local virtual spaces on general
polyhedral elements. The interested readers are referred to
Ahmad et al. (2013), Beirão da Veiga et al. (2017), Gain
et al. (2014), and Chi et al. (2017) for further information.

2.1.1 Virtual space on polygonal faces

Here, we introduce the definition of the virtual space V(f )

on a generic face f of E, which is assumed to be a planar
polygon. The basic idea is to first introduce a preliminary
space denoted by Ṽ(f ) as:

Ṽ(f )=
{
v∈H1(f ) : v|e ∈P1(e) ∀e∈f, �v∈P0(f )

}
, (4)

where e denotes a generic edge of face f and Pk(·) is the
polynomial space of order k. For the preliminary space,
Ṽ(f ), a set of DOFs consists of:

• the values of v at vertices of f, (5)

• the mean value of v over f, i.e.
1

|f |
∫

f

vdx, (6)

where |f | stands for the area of face f . By the following
identity:

2
∫

f

vdx =
∫

f

vdiv xf dx = −
∫

f

∇v·xf dx+
∫

∂f

v xf ·nds,
(7)

we can, equivalently, replace the DOF (6) by the following
integral (Beirão da Veiga et al. 2017):∫

f

∇v · xf dx, (8)

where xf .=x−xf
c with xf

c being the centroid of the face f . In
fact, once we know the above integral, we can compute the
mean valueof v overf using theDOFs (5) and the identity (7).

Having defined the preliminary virtual space Ṽ(f ), we
can define the formal virtual space V(f ) ⊂ Ṽ(f ) on face f

such that:

V(f ) =
{
v ∈ H1(f ) : v|e ∈ P1(e) ∀e ∈ f, �v ∈ P0(f ),

and
∫

f

∇v · xf dx = 0

}
. (9)

By definition, we can show that P1 ⊆ V(f ) and that (5)
constitutes a complete set of DOFs of V(f ). Using this set
of DOFs, we can exactly compute the moment of v on f

according to the identity (7) as:∫
f

vdx = 1

2

∫
∂f

vxf · nds = 1

2

∑
e∈∂f

∫
e

v xf · neds, (10)

where ne denotes the outward normal vector of edge e.
Noticing that xf ·ne = (x−xf

c ) ·ne takes constant value for
any points on the edge e (which is assumed to be straight),
we can simply evaluate it at any point ae on e, i.e., xf ·ne =
(ae − xf

c ) · ne, ∀ae ∈ e.

2.1.2 Virtual space on polyhedra

Once we know the virtual space on each face f , we are ready
to define the virtual element space V(E) onE. Following the
same concept above, we define the virtual space V(E) as:

V(E) =
{
v ∈ H1(E) : v|f ∈ V(f ) ∀f ∈ ∂E,

�v ∈ P0(E),

∫
E

∇v · xEdx = 0

}
, (11)

where xE .= x − xE
c with xE

c being the centroid of E. Simi-
larly to V(f ), we can define the set of DOFs of V(E) as the
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values of its functions on the vertices of E. Because V(E)

includes the polynomial space P1(E), i.e., P1(E) ⊆ V(E),
we can define a projection operator �∇

E : V(E) → P1(E)

such that for any v ∈ V(E):
∫

E

∇
(
�∇

Ev
)

· ∇p1dx =
∫

E

∇v · ∇p1dx ∀p1 ∈ P1(E)

and
∑
xv∈E

v(xv) =
∑
xv∈E

�∇
Ev(xv), (12)

where we use xv to denote the position vector of a generic
vertex in E. Because both ∇�∇

Ev and ∇p1 are constant
vectors, the first condition in (12) can be simplified as:

∇(�∇
Ev) = 1

|E|
∫

E

∇vdx = 1

|E|
∑

f ∈∂E

∫
f

v nf df, (13)

where |E| denotes the volume of element E and nf is
the (constant) outward unit normal vector of face f . This
condition ensures that the gradient of the projection �∇

Ev

equals the average gradient of v over E. Recall from
the definition of V(f ) that, given the value of v at the
vertices of f , we can compute the moment of v over f

(see (10)), and consequently, we can explicitly compute
the boundary integral on the right hand side of (13) using
the DOFs of v and geometric information of E. On the
other hand, the second condition in (12) determines the
constant component of the projection by ensuring that, when
evaluated at the vertices of E, the average value of �∇

Ev is
equal to the average value of v. Furthermore, making use of
the following identity:

3
∫
E

vdx=
∫
E

vdiv xEdx=−
∫
E

∇v·xEdx+
∫
∂E

v xE ·nds, (14)

and the definition of V(E), we can express the moment of v

over E as:∫
E

vdx = 1

3

∑
f ∈∂E

∫
f

vxE · nf df . (15)

Realizing that xE · nf = (
x − xE

c

) · nf is constant for any
points x on planar f , we can simply evaluate this quantity at
any point af on face f , i.e. xE = (af − xE

c ) ·nf , ∀af ∈ f .
Thus, we can compute the moment of v over E exactly as:
∫

E

vdx = 1

3

∑
f ∈∂E

(
xE · nf

) ∫
f

vdf, (16)

using only the DOFs of v (recall (10)).

2.1.3 Some implementation details

Consider a polyhedronE consisting ofm vertices numbered
as x1, ..., xm and denote Fi as the set of faces that are
connected to the ith vertex. Suppose that a face f ∈
Fi ∈ R

3 has mf vertices xf

j , j = 1, ..., mf , we locally
renumber those vertices in a counterclockwise fashion with
respect to the outward normal nf which points out of the
element. We also utilize a map Gf to denote the relation
between the global numbering and local numbering of
the vertices on the face f . If the ith vertex of E (under
global numbering) is numbered as the j th vertex of f

(under local numbering), we write j = Gf (i). Figure 1
shows an illustration of the above notation. Following
this notation, this subsection provides the implementation
details to construct the virtual space V(E). In particular, we
focus on the procedures of calculating the projection �∇

Eϕi

and the moment
∫
E

ϕi , where ϕi is the basis function of
V(E) associated with the ith vertex. For vertex i, ϕi is
defined to be a function which belongs to V(E) and takes 1
at the ith vertex and 0 at the other vertices of E.

Based on the definition of the projection operator �∇
E in

(12), we can express �∇
Eϕi as:

�∇
Eϕi =

(
∇�∇

Eϕi

)
·
(
x − x̂E

)
+ 1

m
, (17)

where x̂E .= 1/m
∑m

j=1xi is the algorithmic mean of the
position vectors of the vertices of E. To compute this

Local NumberingGlobal Numbering
Global Numbering

L
o
c
a
l 
N
u
m
b
e
r
in
g

Fig. 1 Illustration of the global and local numbering convention and the mapping, Gf (i), on a regular hexahedral element
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projection, we first need to know the moment of ϕi on
f, ∀f ∈ Fi . Using relation (10) and realizing that ϕi varies
linear on ∂f , we can compute the moment of ϕi on f as:

∫
f

ϕidf = 1

2

∑
e∈∂f

(xf · n)e
∫

e

ϕids

= 1

2

∑
e∈∂f

(
xi − xf

c

)
· (ne

∫
e

ϕids)

(evaluate xf =x − xf
c at vertex xi)

= 1

4
(xGf (i)+1−xGf (i)−1) ∧ nf ·

(
xi − xf

c

)
, (18)

in which ∧ stands for the cross product, where the following
convention is used: Gf (·) + 1 = 1 whenever Gf (·) = mf ,
and Gf (·) − 1 = mf whenever Gf (·) = 1. Substituting the
above relation into (13), we can show that:

∇�∇
Eϕi = 1

|E|
∑
f ∈Fi

∫
f

ϕi nf df = 1

4|E|
∑
f∈Fi

(
xi − xf

c

)

∧(xGf (i)+1 − xGf (i)−1) (19)

and, by (17), we finally arrive at the following expression:

�∇
Eϕi = 1

4|E|
∑
f∈Fi

(xi − xf
c ) ∧ (xGf (i)+1 − xGf (i)−1)

·(x − x̂E) + 1

m
. (20)

Moreover, since �∇
Eϕi ∈ P1(E) ⊆ V(E), the set of

basis function ϕi can interpolate any linear function exactly,
namely, 1 = ∑m

i=1ϕi and x = ∑m
i=1ϕixi . Therefore, we

can rewrite the relation (20) as a linear combination of the
set of basis functions ϕ1, ..., ϕm as:

�∇
Eϕi = 1

4|E|
∑
f∈Fi

(xi − xf
c ) ∧ (xGf (i)+1 − xGf (i)−1)

·
⎛
⎝ m∑

j=1

ϕjxj −
m∑

j=1

ϕj x̂E

⎞
⎠ +

∑m
j=1ϕj

m

=
m∑

j=1

⎧⎨
⎩

1

4|E|
∑
f∈Fi

(
xi −xf

c

)
∧(xGf (i)+1 − xGf (i)−1)

·(xj − x̂E) + 1

m

⎫⎬
⎭ϕj . (21)

The above expression can be further simplified in matrix
form as:

�∇
Eϕi =

m∑
j=1

PE
(ij)ϕj , (22)

where PE
(ij)

is the (i, j)th components of the matrix PE ∈
R

m×m of the form:

PE
(ij) = 1

4|E|
∑
f ∈Fi

(xi − xf
c ) ∧ (xGf (i)+1 − xGf (i)−1)

·(xj − x̂E) + 1

m
. (23)

In terms of implementation, we form PE using matrix
multiplication as follows. We first define GE ∈ R

m×3 as a
matrix collecting the information of ∇�∇

Eϕi , i = 1, ..., m,
i.e.:

GE =

⎡
⎢⎢⎢⎣

∂�∇
Eϕ1

∂x

∂�∇
Eϕ1

∂y

∂�∇
Eϕ1
∂z

...
...

...
∂�∇

Eϕm

∂x

∂�∇
Eϕm

∂y

∂�∇
Eϕm

∂z

⎤
⎥⎥⎥⎦ , (24)

and compute PE as

PE =
⎡
⎢⎣

x1− 1
m

∑m
i=1xi y1− 1

m

∑m
i=1yi z1− 1

m

∑m
i=1zi 1

...
...

...
...

xm− 1
m

∑m
i=1xi ym− 1

m

∑m
i=1yi zm− 1

m

∑m
i=1zi 1

⎤
⎥⎦

× [
GE 1

m
1
]T

, (25)

where 1 ∈ R
m×1 is a column vector with all components

equal to 1.
For later use, we also provide the expression to compute

the moment of ϕi over E, which, according to expressions
(16) and (18), takes the form:∫

E

ϕidx= 1

3

∑
f ∈Fi

(xE · nf )

∫
f

ϕidf

= 1

3

∑
f ∈Fi

[
(xi − xE

c ) · nf
] ∫

f

ϕidf

(evaluate xE = x − xE
c at vertex xi)

= 1

12

∑
f∈Fi

[
(xi −xE

c )·nf
][

(xGf (i)+1−xGf (i)−1)∧nf

·(xi − xf
c )

]
(using (18))

= 1

12

∑
f∈Fi

(xGf (i)+1−xGf (i)−1)∧(xi −xE
c )·(xi−xf

c ).

(26)

2.2 VEM approximations for 3D linear elasticity

We consider a discretization, denoted by �h, of the solid �

into non-overlapping polyhedra consisting of planar faces,
where h denotes the average element size. We denote �t

h

and �u
h as the portions of the mesh boundary where the

traction and displacement boundary conditions are applied,
respectively.
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2.2.1 Theoretical background

We define the discrete global displacement space Kh ⊂ K
as:

Kh
.=

{
vh ∈ K : vh|E ∈ [V(E)]3

}
. (27)

Over each element E, the local displacement v =
[vx, vy, vz]T belongs to the vectorial space [V(E)]3, having
three displacement DOFs for each vertex of E. In the
following discussion, we define the projection operator for
vector fields �∇

E : [V(E)]3 → [P1(E)]3 as the action of
�∇

E on every component of the vector field, e.g., �∇
Ev =

[�∇
Evx, �∇

Evy, �∇
Evz]T .

Having introduced the discretization, we can decompose
the continuous bilinear form (i.e. bilinear form with exact
integration) a(uh, vh) into the summation of element-level
contributions:

a(uh, vh) =
∑
E

aE(uh, vh) =
∑
E

∫
E

ε(uh) : [Cε(vh)]dx.

(28)

By exploiting the property that the projection �∇
Ev satisfies

the following orthogonality condition:

aE
(
p1, v − �∇

Ev
)

= 0 ∀p1 ∈ [P1(E)]3 and v ∈ [V(E)]3,
(29)

then we can decompose aE(uh, vh) as:

aE(uh, vh) = aE
(
�∇

Euh, �∇
Evh

)

+ aE
(
uh − �∇

Euh, vh − �∇
Evh

)
. (30)

Because both of its arguments are linear functions, we can
evaluate the first term exactly as:

aE(�∇
Euh, �∇

Evh) = |E|ε(�∇
Euh) :

[
Cε(�∇

Evh)
]
. (31)

The second term, on the other hand, involves higher order
displacement components and is typically evaluated numeri-
cally. In the VEM framework, this term is approximated by:

aE
(
uh − �∇

Euh, vh − �∇
Evh

)

≈ αESE
(
uh − �∇

Euh, vh − �∇
Evh

)
, (32)

where SE(·, ·) is a bilinear form that is inexpensive to
compute and satisfies the coercivity condition; and αE is a
scaling parameter that scales SE(·, ·) to the same order of
magnitude as aE(·, ·). Typical choices of SE(·, ·) and αE

take the form:

SE(uh, vh) = hE

∑
xv∈E

uh(xv) · vh(xv) and

αE = traceC
9

= Cijij

9
(in indical notation), (33)

where hE
.= |E|1/3 represents the size of element E and xv

stands for the vertices that belong to E. This gives the final
form of the element-level discrete bilinear form as:

aE
h (uh, vh) = |E|ε

(
�∇

Euh

)
:
[
Cε

(
�∇

Evh

)]

+αESE
(
uh − �∇

Euh, vh − �∇
Evh

)
. (34)

The first and second terms of aE
h (uh, vh) are respectively

known as the consistency and stability terms, and they are
responsible for the satisfaction of the two key conditions,
namely consistency and stability, respectively, to ensure the
convergence of the VEM approximation (Beirão da Veiga
et al. 2013).

On the other hand, we approximate the continuous
loading term (i.e., the loading term with exact integration)
�(vh) as (Chi et al. 2017):

�h(vh) =
∑
f ∈�t

h

|f |t
(
xf
c

)
·
(
�∇

f vh

) (
xf
c

)

+
∑

E∈�h

f
(
xE
c

)
·
(
�∇

Evh

)(
xE
c

)
, (35)

where�∇
f vh is the projection of vh|f onto [P1(f )]3 defined

in the same way as �∇
Evh; and t

(
xf
c

)
and f

(
xE
c

)
are the

values of traction and body forces evaluated at x = xf
c and

x = xE
c , respectively (we recall that xf

c and xE
c are the

centroids of face f and element E, respectively). The above
approximation essentially utilizes one-point rules on face f

and element E, both of which are exact for integrating any
linear function.

We are now ready to state the final form of the VEM
approximation for 3D linear elasticity problems, which
consists of finding uh ∈ Kh such that:

ah(uh, vh) =
∑
E

aE
h (uh, vh) = �h(vh) ∀vh ∈ K0

h, (36)

where K0
h is a subspace of Kh with functions that vanish on

�u
h .

2.2.2 A few implementation details

For a given element E, we consider a set of basis functions,
ϕ1, ..., ϕ3m, for the local displacement space [V(E)]3 of the
form

ϕ3i−2 = [ϕi, 0, 0]T , ϕ3i−1 = [0, ϕi, 0]T ,

ϕ3i = [0, 0, ϕi]T , i = 1, ..., m (37)

where we recall that ϕ1, ..., ϕm is the set of basis functions
for V(E). With the basis functions, any displacement field
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v = [vx, vy, vz]T ∈ [V(E)]3 can be interpolated using its
DOFs (the values at the vertices) as:

v =
m∑

i=1

[
ϕ3i−2vx(xi) + ϕ3i−1vy(xi) + ϕ3ivz(xi)

]
. (38)

Moreover, by definition, the projection �∇
Eϕj , j =

1, ..., 3m is given by:

�∇
Eϕ3i−2 = [�∇

Eϕi, 0, 0]T , �∇
Eϕ3i−1 = [0, �∇

Eϕi, 0]T ,

�∇
Eϕ3i = [0, 0, �∇

Eϕi]T , i = 1, ..., m. (39)

According to (34), we evaluate the (j, k)th component of
the element stiffness matrix kE ∈ R

3m×3m as:

kE
(jk) = aE

h (ϕj , ϕk) = |E|ε
(
�∇

Eϕj

)
:
[
Cε

(
�∇

Eϕk

)]

+αESE
(
ϕj − �∇

Eϕj , ϕk − �∇
Eϕk

)
. (40)

More specifically, we can define matrice BE ∈ R
6×3m and

D ∈ R
6×6 of the form

BE=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂�∇
Eϕ1

∂x
0 0 . . .

∂�∇
Eϕm

∂x
0 0

0
∂�∇

Eϕ1
∂y

0 . . . 0
∂�∇

Eϕm

∂y
0

0 0
∂�∇

Eϕ1
∂z

. . . 0 0
∂�∇

Eϕm

∂z
∂�∇

Eϕ1
∂y

∂�∇
Eϕ1

∂x
0 . . .

∂�∇
Eϕm

∂y

∂�∇
Eϕm

∂x
0

0
∂�∇

Eϕ1
∂z

∂�∇
Eϕ1

∂y
. . . 0

∂�∇
Eϕm

∂z

∂�∇
Eϕm

∂y
∂�∇

Eϕ1
∂z

0
∂�∇

Eϕ1
∂x

. . .
∂�∇

Eϕm

∂z
0

∂�∇
Eϕm

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 C1112 C1123 C1113

C2222 C2233 C2212 C2223 C2213

C3333 C3312 C3323 C3313

C1212 C1223 C1213

symm. C2323 C2313

C1313

⎤
⎥⎥⎥⎥⎥⎥⎦

, (42)

and rewrite the first term of (40) in matrix form as:

|E|ε
(
�∇

Eϕj

)
:
[
Cε

(
�∇

Eϕk

) ]
= |E|(BE)T DBE . (43)

For the second term of (40), we express it in matrix notation
as:

αESE
(
ϕj −�∇

Eϕj , ϕk−�∇
Eϕk

)
=αE

(
I−SE

)T(
I−SE

)
, (44)

where SE ∈ R
3m×3m is given by

SE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PE
(11) 0 0 . . . PE

(1m) 0 0
0 PE

(11) 0 . . . 0 PE
(1m) 0

0 0 PE
(11) . . . 0 0 PE

(1m)
...

...
...

. . .
...

...
...

PE
(m1) 0 0 . . . PE

(mm)
0 0

0 PE
(m1) 0 . . . 0 PE

(mm) 0
0 0 PE

(m1) . . . 0 0 PE
(mm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

with PE defined in (25).

Having computed the local stiffness matrix for each
element, we can obtain the global stiffness matrix K =∑

E kE through the standard assembly procedure and solve
the linear system of equations:

KU = F (46)

for the nodal displacement vector U, where F is the external
force vector. For a given discretization, the external force
vector F contains the nodal loads computed from applied
traction t and body force f based on (35).

2.3 Assessment of the VEM approximation for linear
elasticity

Here, the performance of the VEM approximations on
convergence and accuracy is assessed through a benchmark
problem. In the assessment, we evaluate two error measures
of the displacement and stress solutions. The measure of
error in the displacement solution is defined as:

εu =
√√√√ ∑

E∈�h

∫
E

(̃uh − u) · (̃uh − u)dx, (47)

where u is the exact displacement solution and ũh denotes
the displacement field obtained by interpolating the VEM
DOFs using the 3D Wachspress shape functions (Floater
et al. 2014). On the other hand, we also define the L2 norm
of the stress error as:

εσ =
√√√√ ∑

E∈�h

∫
E

(σ h − σ ) · (σh − σ )dx, (48)

where σ is the exact stress solution and σ h is a piecewise
constant stress field defined such that:

σ h|E = Cε
(
�∇

Euh

)
. (49)

For both error measures, the integrals are evaluated using a
fourth-order integration rule on each tetrahedral subdivision
of E.

We consider a boundary value problem inwhich a cantilever
beam is loaded by end shear. As described in Fig. 2 (a), the
beam occupies the domain � = (−1, 1)× (−1, 1)× (0, 10)
and is subjected to a constant traction t = [0, −τ, 0]T on its
top surface. According to Barber (2010), the stress solution
of such a problem is given by the following expressions:

σxx = σyy = σxy = 0, σzz = 3τ

4
yz

σxz = 3τ ν

2π2(1 + ν)

∞∑
n=1

(−1)n

n2 cosh(nπ)
sin(nπx) sinh(nπy)

1096



Virtual elementmethod (VEM)-based topology optimization: an integrated framework

Fig. 2 a Problem description of
a cantilever beam loaded by end
shear. b An example of the mesh
consisting of regular hexahedra.
c An example of the mesh
consisting of truncated
octahedra. d An example of the
mesh consisting of rhombic
dodecahedra. e An example of
the standard CVT mesh

y

z

x

(a) (b) (c)

(d) (e)

σyz= 3τ(1−y2)

8
+ τν(3x2−1)

8(1+v)

− 3τ ν

2π2(1+ν)

∞∑
n=1

(−1)n

n2 cosh(nπ)
cos(nπx) cosh(nπy), (50)

where EY and ν are Young’s modulus and Poisson’s ratio,
respectively. For the stress solution, we verify that the beam
is traction-free on its four lateral surfaces. Additionally, the
displacement solution that corresponds to the above stress
distributions, up to the addition of a rigid body motion, is
given by:

ux = − 3τν

4EY

xyz

uy = τ

8EY

(3νz(x2 − y2) − z3)

uz = τ

8EY

[
3yz2 + νy(y2 − 3x2)

]
+ 2(1 + ν)

EY

w(x), (51)

where w(x) is the anti-derivative of σyz with respect to y. In
our numerical study, the material properties of the solid are
taken to be EY = 25 and ν = 0.3, and the magnitude of the
shear load is chosen to be τ = −0.1.We apply the analytical
displacement field given in (51) on the bottom surface and
analytical traction (calculated from (50)) on the top surface.
Three families of structured meshes made up of regular
space-filling polyhedra (i.e. regular hexahedra, truncated
octahedra and rhombic dodecahedra), and an additional
family of CVT meshes are considered, as shown in Fig. 2
b–e.

The convergence of both displacement error, εu, and
stress error, εσ , as functions of the average mesh size h,
is depicted in Fig. 3 a and b, respectively. The results
confirm that optimal convergence rates are obtained for both
displacement and stress errors – the rate of convergence for
εu is 2 and that for εσ is 1 (as expected).
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Fig. 3 Convergence of the L2

norms of the c displacement
error εu and d stress error εσ

when traction is applied on the
top boundary and displacement
is applied on the bottom
boundary of the domain

Regular hexahedron

Truncated octahedron

Rhombic dodecahedron

CVT

Regular hexahedron

Truncated octahedron

Rhombic dodecahedron

CVT

2 1

hh

(a) (b)

3 VEM-based topology optimization using
Polytopes

This section introduces a VEM-based topology optimization
framework on polyhedral meshes, which features continu-
ous design and material density functions. We shall focus on
the classic compliance minimization problems and remark
that the proposed framework is readily applicable to other
optimization formations (although further investigation is
warranted). We also note that, from now on, the body force
f is neglected.

For a given discretization �h consisting of non-
overlapping polyhedra, the topology optimization formula-
tion for the minimum compliance problems is stated as:

inf
ρh∈Ah

∫
�t

h

t · uh

s.t.
1

|�h|
∫

�h

ρh − V ≤ 0

with a
ρ
h (uh, vh) = �h(vh) ∀vh ∈ K0

h, (52)

where ρh is a material density function, Ah is the space
of admissible designs and V is the allowable volume

fraction. To regularize the formulation, the material density
function ρh is defined as the image of a design function
ηh under a map Fh (e.g., the density filter) and the
DOFs of the design function ηh are the design variables
(DVs). Moreover, a material interpolation function mS(ρh)

is employed to relate the material stiffness to the value of
ρh at any given point. For instance, if the SIMP model is
used (Bendsøe (1989), Rozvany et al. (1992), and Bendsøe
and Sigmund (1999)), we have mS(ρh) = ε + (1 − ε)ρ

p
h ,

where ε is the Ersatz parameter and p is the penalization
parameter. Incorporating the spatially varying stiffness
mS(ρh), aρ

h (uh, vh) is the discrete bilinear form constructed
using VEM.

As indicated in the introduction, the topology opti-
mization formulation (52) can be viewed as a two-field
mixed approximation problem involving a discrete displace-
ment space Kh and a discrete design space Ah (Jog and
Haber 1996). The standard (i.e. FEM-based) density-based
topology optimization framework in the literature typically
employs a continuous displacement field, whose DOFs
are the displacements at the vertices of the mesh, and a
piecewise-constant design function, whose value in each
element is the associated DV. The material density within

Fig. 4 a Illustration of the
“mixed” elements adopted in the
standard topology optimization
framework. The displacement
DOFs are located at the vertices
and each element contains one
DV representing the constant
design field. b The total number
of DVs as function of the total
number of displacement DOFs
for various discretizations of a
unit cube
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each element takes a constant value as well. Several exam-
ples of “mixed” elements of this type are shown in Fig. 4a.
Roughly speaking, for a given discretization, the number
of DVs governs the “resolution” of the topology whereas
the number of the displacement DOFs (the size of the state
equation) dictates the computational cost. If we consider
a unit cube and discretize it with the “mixed” elements
shown in Fig. 4a, we can then plot in Fig. 4b the total
numbers of DVs as function of the total number of displace-
ment DOFs when those meshes are refined. We observe
that those functions are close to linear and their slopes
can be used to quantify the computational efficiency of
the topology optimization framework on various discretiza-
tions: the larger the slope is, the more computationally
efficient the discretization is. As shown from the slopes in
Fig. 4b, the “mixed” approximation in the standard topology
optimization framework leads to considerably more displace-
ment DOFs than DVs on various discretizations, which
is undesirable from a computational efficiency perspective.
Moreover, Fig. 4b also suggests that polyhedral discretiza-
tions yield smaller slopes as compared to the hexahedral
ones. This observation indicates that, although polyhe-
dral discretizations exhibit several geometric advantages in
topology optimization (Gain et al. 2015), they are less com-
putationally efficient than hexahedral ones in the standard
topology optimization framework.

Motivated by the above observations, we propose an
approximation of the design function (as well as the mate-
rial density function) for topology optimization on gen-
eral polyhedral meshes. The basic idea is to consider a
more enriched local design space with continuous design
functions in each element. In terms of DVs, they are
placed at the vertices as well as the mid-edge nodes of
the meshes. On the other hand, the displacement approx-
imation is kept the same as in the standard case. This
leads to a new “mixed” approximation for topology opti-
mization on general polyhedral meshes. We note that the

idea of enriching the design space is conceptually similar to
the multi-resolution methodologies (Nguyen et al. 2010) in
topology optimization. An illustration of several new
“mixed” elements of this type is shown in Fig. 5a. Again,
considering a unit cube discretized with those “mixed” ele-
ments, we plot in Fig. 5b the total numbers of DVs as
functions of the total numbers of displacement DOFs with
mesh refinement. By comparing the slopes of those func-
tions in Figs. 4b and 5b, we conclude that the proposed
“mixed” approximation improves computational efficiency
as compared to the standard topology optimization frame-
work. More specifically, for a given discretization with a
fixed number of displacement DOFs (thus, with a roughly
fixed computational cost), the proposed “mixed” approxi-
mation yields an enriched design field and, thus, produces
topologies with potentially improved resolutions.

3.1 VEM-based topology optimization framework

This subsection formalizes the proposed topology opti-
mization framework. In this framework, both the discrete
displacement and design fields are constructed using the
VEM. As we can see, because of its flexibility in handling
any element geometry as well as local spaces, the VEM
provides an efficient platform to formulate the proposed
topology optimization framework.

To introduce the new topology optimization framework,
we define the spaceAh for admissible density function ρh as:

Ah = {ρh = Fh(ηh) : 0 ≤ ρh ≤ 1, ρh|E ∈ V(E),

and 0 ≤ ηh ≤ 1, ηh|E ∈ V(E), ∀E ∈ �h} . (53)

In the above definition, we assume that both density
function ρh and design function ηh are continuous functions
with their DOFs being their values at vertices as well as mid-
edge nodes of the mesh. The density function ρh is defined
as themap of a design function ηh by the density filterFh(·).

Fig. 5 a Illustrations of new
“mixed” elements proposed in
this work. The displacement
DOFs are located at the vertices
and the DVs are assigned to the
vertices as well as mid-edge
nodes of each element. b The
total number of DVs as function
of the total number of
displacement DOFs for various
discretizations of a unit cube
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For a discretization�h consistingofM elements andND DVs,
we henceforth introduce two vectors, z = [z1, z2, ..., zND]T
and y = [y1, y2, ..., yND]T , where zi and yi are values of ηh

and ρh at the ith DOF of ηh and ρh, respectively.
Since both functions ρh and ηh can be characterized by

their DOFs, we adopt the following approach to construct
the density filter map Fh(·) between ρh and ηh, which is
based on their DOFs and the associated position vectors.
If we denote by S(i) the set of the indices of DOFs
whose positions fall within a sphere of prescribed radius R

centered at xi (the position vector associated with DOF i),
yi (the ith DOF of the density field ρh) is computed as:

yi =
∑

j∈S(i)zj (1 − ||xi − xj ||/R)q∑
k∈S(i)(1 − ||xi − xk||/R)q

, (54)

whereq is the order of the density filter (Bourdin2001; Zegard
and Paulino 2016). Figure 6 illustrates this density filter on
a 2D mesh patch. For easier implementation, we express the
density filter mapping between ρh and ηh in matrix form as:

y = PFz, (55)

where PF is a constant and sparse matrix with its (i, j)th
component given by

PF(ij) = max(0, (1 − ||xi − xj ||/R)q)∑
k∈S(i)(1 − ||xi − xk||/R)q

. (56)

Moreover, within each element E (assuming E has m

vertices), the density function ρh belongs to the VEM space
V(E) defined in (11). Likewise, if we use yE

i to denote the
ith DOFs of ρh in E, we can express ρh|E in terms of the
set of basis functions for V(E), ϕ1, ..., ϕm, as:

ρh|E =
m∑

i=1

ϕiy
E
i . (57)

The volume constraint function in (52) can then be recast as:∫
�h

ρh

|�h| − V =
∑

E∈�h

∑m
i=1(

∫
E ϕi)y

E
i∑

E∈�h
|E| − V , (58)

where we recall from the (26) that
∫
E

ϕi , i = 1, ..., m

can be exactly computed by definition of V(E). To assist
with implementation, we also express the volume constraint
function in matrix notation as:

∫
�h

ρh

|�h| − V = VT PVy
VT 1

− V = VT PVPFz
VT 1

− V , (59)

where V = [|E1|, |E2|, ..., |EM|]T is a vector collecting
element volumes and PV is a constant matrix with its (i, j)th
component being:

Fig. 6 An illustration of a
quadratic (i.e. q = 2) density
filter mapping for a 2D mesh
patch. The DVs with solid
markers are within the filter
radius R and thus have non-zero
weights

PV(ij) =
{ 1

|Ei |
∫
Ei

ϕj if node j ∈ element Ei

0 otherwise

=
{

1
12

∑
f ∈Fj ⊂Ei

(xGf (j)+1 − xGf (j)−1) ∧ (xj − xE
c ) · (xj − xf

c ) if xj ∈ Ei

0 otherwise
. (60)

We also note from the above definition that matrix PV is
sparse, and thus it is formed and stored as a sparse matrix in
our implementation.

In the state equation, the interpolated stiffness function
mS(ρh) is utilized, which is assumed to be an element-wise
constant functions, such that within elementE,mS(ρh)|E .=

mS(< ρh >E), where< ρh >E denotes the volume average
of ρh over E:

< ρh >E= 1

|E|
m∑

i=1

(∫
E

ϕi

)
yE
i . (61)
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Having defined the form of the stiffness interpolation
function, we incorporate it in the element-level discrete
bilinear form (34) as follows:

a
ρ,E
h (uh, vh)=

∫
E

ε(�∇
Euh) :

{
[mS(<ρh >E)C]ε(�∇

Evh)
}

+mS(<ρh >E)αESE(uh−�∇
Euh, vh−�∇

Evh). (62)

Notice that the first term (the consistency term) on the right-
hand size of the above equation is now a constant function
of the form:

a
ρ,E
h (uh, vh)=|E|mS(< ρh >E)ε(�∇

Euh) :
[
Cε(�∇

Evh)
]

+mS(< ρh >E)αESE(uh − �∇
Euh, vh − �∇

Evh).(63)

Furthermore, we can pull mS(< ρh >E) out of the above
element-level bilinear form and get the global discrete
bilinear form a

ρ
h (uh, vh) as:

a
ρ
h (uh, vh) =

M∑
i=1

mS(< ρh >Ei )a
ρ,Ei

h (uh, vh). (64)

Similarly, we introduce a vector s in the implementation
whose ith component si is the value of mS(< ρh >E) for
element Ei . Utilizing the matrix PV , the vector s can be
expressed as:

s = mS(PVy) = mS(PVPF z). (65)

We can then compute the global stiffness matrix for
a

ρ
h (mS(ρh), uh, vh) as:

Kρ =
M∑
i=1

sikEi . (66)

Finally, we arrive at the topology optimization formulation
considering nodal densities as:

min
z∈[0,1]ND

∫
�t

h

t · uh = min
z∈[0,1]ND

FT U

s.t.
VT PVPFz

VT 1
− V ≤ 0

with KρU=F. (67)

We next describe how to compute the gradients of the
objective and volume constraint functions with respect to
the design variable z. For the objective function, we first
compute its gradient with respect to the vector s as:

∂C

∂sj
= −UT ∂Kρ

∂sj
U = −UT kEjU, j = 1, ..., M, (68)

and then, using the chain rule, we arrive at:

∂C

∂z
= (PVPF )T JmS (P

VPFz)
∂C

∂s
, (69)

where JmS (y)
.= diag(m′

S(y1), ..., m′
S(yND)) is the Jacobian

matrix of the stiffness interpolation function mS . The

Fig. 7 a Problem description of a unit cube embedded with two hollow
tubes. b Geometrical parametrization of a tube. c An example of the
mesh consisting of regular hexahedra. d An example of the mesh

consisting of truncated octahedra. eAn example of the mesh consisting
of Rhombic dodecahedra. f An example of the standard CVT mesh
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gradient of the volume constraint function can be simply
obtained as:

∂g

∂z
= (PF )T (PV )T V

VT 1
. (70)

We conclude this subsection by noting that, even with
an enriched space for design and material density functions,
the proposed formulation (67), which is formulated in the
VEM context using local projections, can be implemented in
a similar code structure to the PolyTop software (Talischi
et al. 2012b).

3.2 A verification example

In this subsection, we verify the proposed continuous density
approximation through a simple numerical example and com-
pare its performance with the standard element-wise density
approximation. In particular, we want to compare how
these two approximations perform in terms of capturing the
varying density in a simple boundary value problem.

The setup of the boundary value problem is shown
in Fig. 7a, where we consider a unit cube � with two

hollow (ρ = 0) tubes. The remainder of the cube is solid
(ρ = 1). The tube whose central axis passes through
points [0.22, 0.4, 0]T and [1, 0.7, 0.78]T has a radius of
R1 = 0.13, and the other one whose central axis passes
through [0.5, 0, 0.3]T and [0.3, 0.6, 1]T has a radius of
R2 = 0.06. For this setup, we introduce a continuous
parametrization ρ(x) of the material density over � using a
smooth Heaviside function:

ρ(x) = 1

1 + e−200(r1(x)−R1)
+ 1

1 + e−200(r2(x)−R2)
+ ε − 1,

(71)

where ε is a small positive number assigned to ensure the
positivity of ρ(x), and r1(x) and r2(x) are the distances of a
given point x to the central axes of the first and second tubes,
respectively. As illustrated in Fig. 7b, for a tube whose
central axis passes through two given points x1 and x2, r(x)
is given by:

r(x) = ||(x − x1) ∧ (x − x2)||
||x1 − x2|| , (72)

Fig. 8 Convergence of both L2

and H1 displacement errors as
function of the average mesh
size h when the standard and
proposed “mixed” elements are
used for: a regular hexahedral
meshes; b truncated octahedral
meshes; c rhombic dodecahedral
meshes; and d standard CVT
meshes
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where || · || stands for the Euclidean norm. Making use
of ρ(x), we obtain the (continuous) distribution of the
elasticity modulus in �, which is given by C(x) =
ρ(x)C0, where C0 is the elasticity modulus tensor of the
solid material. In the present study, the solid material is
considered to be isotropic with Young’s modulus EY = 25
and Poisson’s ratio ν = 0.3.

Adopting the method of manufactured solutions, we
assume an exact displacement solution u of the form:

ux = z2exy uy = 2y2z3 + zx4 and uz = z sin(2πx)ey,

(73)
which is prescribed on the entire boundary of the cube.
Accordingly, a body force, which is computed using the
exact displacement solution u and stiffness distribution
C(x), is prescribed in the interior of �. Four families of
polyhedral meshes are considered: hexahedral, truncated
octahedral, rhombic dodecahedral, and standard CVT; and
their examples are shown in Fig. 7c–f, respectively. To
assess the accuracy of the solution, we make use of the
L2 error of the displacement defined in (47), and the H1

displacement error, which is defined as:

εu,1 =
√√√√ ∑

E∈�h

∫
E

(∇(�∇
Euh) − ∇u) · (∇(�∇

Euh) − ∇u)dx,

(74)

where the integral is evaluated using the same fourth-order
integration rule on each tetrahedral subdivision of E.

In the numerical simulations, the material distribution
ρ(x) needs to be approximated in order to compute the
stiffness matrix. We consider two approaches here. The first
approach assigns a constant density to each element with
the value of ρ(x) evaluated at the centroid of that element.
This approach resembles the situation in the standard
density-based topology optimization where element-wise
constant densities are used. On the other hand, the second
approach evaluates ρ(x) at the vertices and mid-edge nodes,
and interpolates them using VEM basis functions. This
approach resembles the situation in the proposed topology
optimization framework where the DVs are located at the
vertices as well as mid-edge nodes of the mesh. Once the
material distribution is approximated, the stiffness matrix of
the discretized system for both approachescan be constructed.
For the former approach, the stiffness matrix is constructed
using the standard procedure, whereas, in the latter
approach, the stiffness matrix is formed following (64).

Figure 8 a–d show the convergence of both L2 and
H1 displacement errors as functions of mesh size h for both
approaches on the four families of meshes. The standard
elements represent the first approach and the new elements
represent the second approach. As we can see from the
comparison, the second approach (corresponding to the

Fig. 9 a The geometry, load and
boundary conditions of the shear
loaded disc problem.
b Hexahedral-dominated mesh
consisting of 31,791 nodes and
12,180 elements. c Truncated
octahedral-dominated mesh
consisting of 65,418 nodes and
10,808 elements. d Rhombic
dodecaheral-dominated mesh
consisting of 52,606 nodes and
12,264 element. e Standard
CVT mesh consisting of 64,097
nodes and 10,000 elements
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Table 1 Statistics of the
meshes for the shear loaded
disc problem

Mesh # Nd # El. # DV (proposed) # DV (standard)

Hexahedral 31,791 12,180 104,166 12,180
CVT 64,097 10,000 191,256 10,000
Trun. octahedral 65,418 10,808 196,329 10,808
Rhom. dodecahedral 52,606 12,264 171,275 12,264

proposed topology optimization framework) always gives
more accurate displacement solutions than the first approach
(corresponding to the standard density-based framework) on
a given mesh. This in turn implies that the material densities
interpolated from values on both vertices and mid-edge
nodes provide better approximations of the exact density
distribution ρ(x) than the one constructed from element-
wise constant values. Based on such observation, we argue
that, in this topology optimization setting, the proposed
material density approximation is favored because it gives
a better parametrization of the density distribution of the
varying topologies. We also remark that, although Fig. 8 a–d
suggest that the regular hexaheral and CVT meshes produce
more accurate displacement solutions than the other two
families of meshes, this conclusion could be problem-
dependent and might not hold for other density distributions
different from the one defined by (71).

4 Numerical examples

We present several examples involving non-Cartesian
design domains to demonstrate the effectiveness and ver-
satility of the proposed VEM-based topology optimization
framework. For all the design examples, we select the Ersatz
parameter as ε = 10−9 and take Young’s modulus and
Poisson’s ratio of the solid phase to be EY = 100 and
ν = 0.3, respectively. During optimization, the optimality
criterion (OC) (Christensen and Klarbring 2009) is cho-
sen as the design-variable update scheme with the damping

parameter and move limit being η = 0.5 and move = 0.3.
The maximum tolerance for the change of design variables
in the convergence criterion is taken to be 0.1%. More-
over, a continuation scheme of the penalization parameter
p is adopted here. We start with p = 1 and increase
it every (maximum) 20 optimization iterations by 1 until
p = 3. When p reaches 3, we then set the maximum
allowable optimization iteration number to be 150. For com-
parison purposes, the topologies obtained by the standard
topology optimization framework (Gain et al. 2015) with
element-wise constant densities are also provided. The same
VEM formulation is used to solve the state equation in the
standard framework as in the proposed framework. Unless
otherwise stated, the final topologies are plotted using iso-
surface with the cutoff value being 0.5. To distinguish
the topologies obtained using the standard framework and
the proposed one, we plot the results obtained using the
standard framework in blue and those obtained using the
proposed framework in red. We also point out that, for a
fixed mesh and fixed set of parameters, the computational
time of both proposed and standard frameworks are closely
identical because the discretized size of state equations are
the same.

4.1 Shear loaded disk problem

The first design example is the shear loaded disc problem.
As shown in Fig. 9, the design domain is a disc with an
outer radius of 6 and an inner radius of 1. The thickness
of the disk is taken to be 2. Fixed on the inner surface, the

Fig. 10 The final topologies obtained from the proposed topology optimization without the density filter on a the hexahedral-dominated mesh;
b the truncated octahedral-dominated mesh; c the rhombic dodecahedral-dominated mesh; and d the CVT mesh
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Fig. 11 The final topologies obtained from the standard topology opti-
mization without the density filter on a the hexahedral-dominated
mesh; b the truncated octahedral-dominated mesh; c the rhombic

dodecahedral-dominated mesh; and d the CVT mesh. In the designs,
those elements whose densities are above 0.01 are plotted

circumference of this disk is subjected to eight equidistant
shear loads of uniform magnitude 1. A volume fraction of
10% is prescribed.

In order to provide a thorough assessment of the performance
of the proposed framework on various types of meshes, we
consider four meshes in this design example: a hexahedral-
dominated mesh, a truncated octahedral-dominated mesh, a
rhombic dodecaheral-dominated mesh, and a standard CVT
mesh, as shown in Fig. 9b–e, respectively. The first three
meshes consist of regular space-filling polyhedra in the
interior of the design domain and unstructured polyhedra in
the near-boundary regions, while the standard CVT mesh is
made up of unstructured polyhedra inside the entire design
domain. The mesh statistics are provided in Table 1. Notice
that the four meshes have similar numbers of elements.

We first design the shear loaded disk problem without
applying the density filter. Figures 10 and 11 show

the final topologies obtained from the proposed and the
standard frameworks, respectively, on the four meshes.
Notice that, for the results obtained with the standard
topology optimization framework, we get almost black and
white designs for all the four meshes. Thus, for those
results, instead of showing the iso-surface plots of the final
topology, we simply plot those elements whose densities are
above 0.01. In the topology optimization literature, it is well
known that, without density or sensitive filters, quadrilateral
or hexahedral meshes will produce checkerboard patterns
in the standard framework (e.g., see Fig. 11a). For general
discretizations, a previous work has demonstrated that 2D
regular hexagonal (Talischi et al. 2009) and 2D and 3D CVT
meshes (Talischi et al. 2010, 2012a; Gain et al. 2015) are
free of checkerboard patterns. From our numerical results in
Fig. 11c for truncated octahedral and Fig. 11d for rhombic

Fig. 12 The final topologies obtained from the proposed topology optimization with a quadratic density filter of radius R = 0.45 on a the
hexahedral-dominated mesh; b the truncated octahedral-dominated mesh; c the rhombic dodecahedral-dominated mesh; and d the CVT mesh
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Fig. 13 The final topologies obtained from the standard topology optimization with a quadratic density filter of radius R = 0.45 on a the
hexahedral-dominated mesh; b the truncated octahedral-dominated mesh; c the rhombic dodecahedral-dominated mesh; and d the CVT mesh

dodecahedra, we observe that, unlike the regular polygonal
discretization in 2D, regular polyhedral discretization
in 3D tends to generate patterns indicating numerical

instability. Those patterns provide artificial stiffness and
are impractical from a manufacturing perspective. On
the contrary, with the proposed topology optimization

Fig. 14 The convergence
history of objective functions for
both proposed and standard
frameworks on: a hexahedral-
dominated mesh; b truncated
octahedral-dominated mesh;
c rhombic dodecahedral-
dominated mesh; and d CVT
mesh. Both frameworks deliver
almost identical convergence
rates. We also emphasize that it
is unfair to compare the absolute
values of objective functions
between the two frameworks
because different density
approximations are adopted
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Fig. 15 a The geometry, load
and boundary conditions of the
hook problem. b Hexahedral-
dominated mesh consisting of
134,634 nodes and 63,350
elements. c Hexahedral-
dominated mesh generated by
rotating the seeds of the mesh
counterclockwise 60◦ in the
x − y plane. The resulting mesh
contains 132,457 nodes and
63,320 elements

framework, we obtain physical designs on all the four
meshes considered, which resemble a flower, although their
iso-surface plots exhibit rough boundaries because of the
absence of regularization from the density filter.

We then apply a quadratic density filter (i.e., q = 2)
with a radius of R = 0.45, and keep the other parameter set-
tings unchanged. The results obtained are shown in Figs. 12
and 13 using the proposed and standard frameworks, respec-
tively. A few observations can be made. First, compared
to the designs obtained from the standard framework, the
ones obtained from the proposed framework display iso-
surface representation with greatly improved smoothness.
This is because, with the proposed framework, we have
more DVs as compared to the standard framework on the
same discretization, as shown in Table 1. Second, unlike
the topologies obtained using the standard framework, the
ones obtained using the proposed framework exhibit similar
results on all meshes, suggesting that the proposed frame-
work is less sensitive to mesh types than the standard
framework. Moreover, Fig. 14 a–d depict the convergence
history of the objective functions for both the proposed and
standard frameworks on hexahedral-dominated, truncated
octahedral-dominated, rhombic dodecahedral-dominated,
and CVTmeshes, respectively. The comparison in those fig-
ures suggests that the proposed and standard frameworks
deliver almost identical convergence rate on various types
of polyhedral meshes. Because, for any given mesh, the size
of the stiffness matrix is identical for both frameworks, the
major computational costs for the standard and proposed
frameworks are identical as well. However, as shown in
Table 1, the proposed framework can handle a significantly
larger number of design variables than the standard one on
all the meshes considered. Finally, we emphasize that it is
unfair to compare the absolute values of the objective func-
tion between the standard and proposed frameworks. Even

on the same mesh, different approximations of the den-
sity field (especially for cases where the SIMP penalization
factor p > 1) will surely yield different displacement solu-
tions and, eventually, lead to different absolute values of the
objective function.

4.2 Hook design

Having investigated the performance of the proposed
topology optimization framework through the last design
example, we now apply it to several problems involving
complex design domains that are non-Cartesian. Let us first
look at the hook problem. As shown in Fig. 15a, the design
domain in this problem is fixed on the upper half of the
circle and is subjected to a uniformly distributed line load in
the negative z direction. The volume fraction of this problem
is set as V = 15% and the radius of the quadratic density
filter is R = 2.5. Through this design problem, we aim to
quantify the mesh bias in both the standard and proposed
topology optimization frameworks, and to demonstrate that
the proposed one is less biased to the initial mesh than the
standard one.

To that end, we consider two similar polyhedral meshes
of the design domain. The first mesh, shown in Fig. 15b, is
generated using the Voronoi seeds with Cartesian alignment;
and the second mesh, shown in Fig. 15c, is generated using
the seed alignment obtained by rotating the seeds of the
first mesh counterclockwise 60◦ in the x − y plane. For
both meshes, the seeds in regions near the boundary are
then updated using Lloyd’s algorithm (Thedin et al. 2014)
in order to capture the boundary geometry of the design
domain. As a result, both meshes are made up of regular
hexahedra in the interior and unstructured polyhedra in
regions near the boundary, and contain similar number of
nodes and elements, as summarized in Table 2. However,

Table 2 Statistics of the two
hexahedral meshes for the hook
problem

Mesh # Nd # El # DV (proposed) # DV (standar d)

Original 134,634 63,350 455,586 63,350
60◦ rotated 132,457 63,320 449,375 63,320
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the two meshes possess different preferred orientations, as
shown in Fig. 15b and c.

In Fig. 16a and b, we show the converged designs
from both the proposed and standard topology optimization
frameworks for the original and rotated meshes, respec-
tively. Our main conclusion from comparing Fig. 16a and b
is that the designs obtained from the proposed framework
are less biased to the initial meshes than the standard
framework. To visualize the bias, let us compare the fan
regions of the designs obtain from the two frameworks.
For the designs obtained by the proposed framework on
both original and rotated meshes, the fan regions resem-
ble the one obtained from a 2D analogue of this problem
(Talischi et al. 2012b). The orientation of the members
in the fan regions seem to be not influenced by the pre-
ferred orientations of the initial meshes. In contrast, for
the designs obtained by the standard framework, it is clear
that the orientation of the members in the fan regions
are biased toward the preferred orientations of the initial
meshes. For example, the original mesh has preferred orien-
tation along the x and y axes. As shown in blue design

Fig. 16 a The final topologies for the hook problem obtained from
both the proposed and standard frameworks on the original mesh (c.f.
Fig. 15b). b The final topologies for the hook problem obtained from
both the proposed and standard frameworks on the rotated mesh (c.f.
Fig. 15c)

in Fig. 16a, several members in the fan region of its design
are clearly biased toward these two orientations. In addition,
comparing the final designs obtained by the standard and
proposed frameworks, we also notice that the ones obtained
from the proposed framework possess smoother iso-surface
representations than the ones obtained from the standard
framework.

4.3 Wrench design

We investigate the design of a wrench problem. The design
domain of this problem is depicted in Fig. 17a. In the
domain, the bigger circle is fixed and half of the other circle
is subjected to a distributed line load along the negative y

direction. Here, we consider two CVT meshes, a coarse one
and a refined one, whose statistics are given in Table 3.
Again, a quadratic density filter is applied with a radius
of R = 0.05 and the volume fraction is prescribed as
V = 15%. In this design example, we prescribe another
requirement that the final topology has to be symmetric. To
achieve this, we use a matrix PS introduced in Talischi et al.
(2012b), which is given by:

PS(�k) =
{
1 if 1) the y coordinate of the kth DOF is non-negative; and 2) k=� or the kth and �th DOFs are y -symmetric
0 otherwise

(75)

and the vectors y and s are then given by:

y = PSPFz and s = mS(PVPSPFz) (76)

respectively. As we can see, the matrix PS enforces
symmetry through mapping the admissible topologies in the
design space to symmetric configurations.

Figure 18 a and b show the final topologies obtained
using the proposed and standard frameworks, respectively,
for the coarse CVT mesh; and Fig. 19 a and b show
the ones for the refined CVT mesh. As an immediate
observation, the proposed and standard frameworks yield
symmetric1 designs similar to each other for both the coarse
and refined meshes. With the coarse mesh, the proposed
framework yields a clearer (and manufacturable) design,
which resembles the 2D optimization result in Talischi et al.
(2012b), than the standard framework, indicating that the

1Although the CVT meshes are generated from reflected seeds to
ensure their symmetry, certain regions on the mesh boundaries,
especially near the two circles, are not fully symmetric due to the
limitation of the meshing software used by Thedin et al. (2014)
in representing curved boundaries. Hence, results obtained from the
proposed framework (i.e. Figs 18 and 19a) are slightly asymmetric in
those regions. However, we note that this minor issue will not affect the
overall quality of the designs (and can be resolved when an improved
version of meshing software is used).
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Fig. 17 a The geometry, load
and boundary conditions of the
wrench problem. b A relatively
coarse CVT mesh consisting of
68,339 nodes and 12,000
elements. b A relatively refined
CVT mesh consisting of 349,748
nodes and 60,000 elements.
Both meshes are symmetric with
respect to the x axis and
obtained by reflecting the
Voronoi seeds along the x axis

Table 3 Statistics of the mesh
for the wrench problem Mesh # Nd # El # DV (standard) # DV (proposed)

CVT (coarse) 68,339 12,000 205,724 12,000

CVT (refined) 349,748 60,000 1,052,109 60,000

Fig. 18 The final topologies for
the wrench problem obtained
from the a proposed and b
standard frameworks. Both
topologies are obtained on the
coarse CVT mesh with a
quadratic density filter of radius
R = 0.05 and prescribed
volume fraction of V = 15%

Fig. 19 The final topologies for
the wrench problem obtained
from the a proposed and b
standard frameworks. Both
topologies are obtained on the
refined CVT mesh with a
quadratic density filter of radius
R = 0.05 and prescribed
volume fraction of V = 15%
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Fig. 20 a The geometry, load
and boundary conditions of the
serpentine problem. b A regular
hexahedral-dominated mesh
consisting of 75,624 nodes and
33,520 elements. c The final
topologies for the serpentine
problem obtained from the
proposed framework with a
quadratic density filter of radius
R = 0.4 and prescribed volume
fraction of V = 10%

proposed framework is more effective on relatively coarser
meshes.

4.4 Serpentine design

In the final design example, we perform topology optimiza-
tion in a serpentine domain. As shown in Fig. 20a, the ser-
pentine domain is fixed on its left face and is subjected
to a point load along the negative z direction in the mid-
dle of the lower edge of the right face. A volume fraction
of V = 10% is prescribed and a quadratic density filter of
radius R = 0.4 is used. As in the hook example, we con-
sider a mesh composed of regular hexahedra in the interior
and unstructured polyhedra in regions near the boundary.
The mesh is plotted in Fig. 20b and its statistics is pre-
sented in Table 4. In Figs. 20c and 21, we show both the
final design produced by the proposed framework and the
manufactured design using FDM (Fused Depositon Model-
ing) 3D printing, respectively. This example demonstrates
that the proposed topology optimization framework can lead
to designs that are directly manufacturable (Zegard and
Paulino 2016).

Table 4 Statistics of the mesh for the serpentine problem

Mesh # Nd # El # DV (standard)

Hexahedral 75,624 33,520 253,675

5 Concluding remarks

This work establishes a 3D VEM-based topology optimiza-
tion framework on general polyhedral discretizations. The
unique feature of this work is that it takes full advantage
of the VEM and applies it to both structural and optimiza-
tion problems. In terms of structural problems, the VEM
is adopted to solve the state equation efficiently and effec-
tively. Because VEM does not require explicit computation
of the shape functions and their gradients, it does not need
numerical integration and is less sensitive to degenerated
polyhedra (e.g., ones with skinny faces or small edges) as
compared to the FEM. In terms of optimization problems,
exploiting the great flexibility of VEM in element geome-
tries and local space definitions, we introduce an enhanced
VEM space for the continuous design and material density

Fig. 21 Printed model of the serpentine design using the FDM 3D
printing
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functions, which contain DOFs at the vertices as well as
the mid-edge nodes of the mesh.2 The total volume of any
topologies in this design space can be computed exactly
using a properly defined VEM projection operator. As a
result, for a given mesh and under a similar computational
cost, the proposed VEM-based topology optimization is
shown to produce designs with improved geometrical res-
olution as compared to the standard topology optimization
framework with element-wise constant DVs and material
densities. We also demonstrate that the VEM-based topol-
ogy optimization framework can be implemented in a simi-
lar code structure to the PolyTop software (Talischi et al.
2012a). In terms of discretizing complex domains in 3D,
this work explores two approaches: unstructured polyhedral
(i.e., CVT) meshes and regular polyhedra- (i.e., hexahedra,
truncated octahedra, and rhombic dodecahedra) dominated
meshes.

Both VEM approximations for the displacement field and
the material density function are verified through numeri-
cal examples. The convergence of the VEM in solving the
state equations is verified via a benchmark problem involv-
ing beam bending. Through a simple example, we also
compare the performance of the proposed continuous den-
sity parametrization with the commonly used element-wise
constant one in terms of approximating varying material
density distributions. Moreover, several design examples
involving non-Cartesian domains are presented, showcasing
that the proposed VEM-based topology optimization frame-
work produces designs with improved quality and achieves
higher computational efficiency. In terms of design qual-
ity, we demonstrate through the hook and wrench design
examples that the proposed framework is less biased to
the initial mesh (see the results in Fig. 16) and can pro-
duce designs with smoother iso-surface representations,
especially for coarser meshes (e.g., see the comparison
results in Fig. 18). In terms of computational efficiency, we
demonstrate that the proposed framework delivers the same
convergence rate as the standard one on various types of dis-
cretizations (see Fig. 14). For a given mesh, because the size
of the stiffness matrix is identical for both frameworks, the
proposed framework is able to consider a significantly big-
ger number of design variables than the standard one with
almost identical computational effort, and thus achieves a
higher efficiency. Additionally, we show that the proposed
framework is flexible in imposing various pattern and layout
constraints (i.e., symmetry constraints shown in Figs. 18 and
19), and can lead to designs that are directly manufacturable
by 3D printing (see Fig. 21).

2Such mixed elements deserve further theoretical investigation to
address their stability and the balance between the discrete spaces for
the displacement field and the density field (see, for example, Jog and
Haber 1996; Chi et al. 2016).

Finally, we remark that the proposed VEM-based
topology optimization offers an effective tool for mesh
adaptation in topology optimization. The potential of
this research includes developing efficient mesh adaption
strategies for topology optimization by exploiting the
advantages of polyhedral elements.
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Appendix PolyTop3D: an efficientMATLAB
implementation of the proposed VEM-based
topology optimization framework

An implementation of the proposed VEM-based topology
optimization framework into a modular MATLAB code
named PolyTop3D, which can handle any non-Cartesian
design domains (specified by the users) on general poly-
hedral discretizations (both structured and unstructured), is
available in the Electronic Supplementary Material accom-
panying this publication. The PolyTop3D is modularized
in a similar manner to the PolyTop code, presented in
Talischi et al. (2012b), together with a similar naming con-
vention for its variables. Thus, we refer the readers to
Talischi et al. (2012b) for a thorough introduction of the
structure of the code. We hope that the modularity and flex-
ibility offered by PolyTop3D will motivate the community
to explore the proposed VEM-based framework in other
topology optimization problems.

In the sequel, we demonstrate the efficiency of the
PolyTop3D code by benchmarking it with the Top3D
code by Liu and Tovar (2014). For purpose of comparison,
the cantilever example, presented in Table 4 of Liu and
Tovar (2014), is solved on a set of three regular hexahedral
meshes whose statistics are shown in Table 5. Each element
in those meshes is a unit cube. Throughout this study, the
filter radius is set as R = 1.5 and the volume constraint is
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Table 5 Statistics of three
meshes for the cantilever
problem

Meshes Dimensions # Nd # El # DV (PolyTop3D) # DV (Top3D)

Mesh 1 48 × 16 × 12 10,829 9,216 41,625 9,216

Mesh 2 72 × 24 × 18 34,675 31,104 135,013 31,104

Mesh 3 96 × 32 × 24 80,025 73,728 313,649 73,728

Table 6 Total runtime
comparison of PolyTop3D
with the Top3D code

Mesh 1 Mesh 2 Mesh 3

PolyTop3D 340.48 2275.20 13517.09

Top3D 296.22 2085.20 12797.00

The times are reported in seconds for 200 optimization iterations

Table 7 Breakdown of the
PolyTop3D run time from
200 optimization iterations

Mesh 1 Mesh 2 Mesh 3

Forming PF and PV 7.66 (2.25%) 144.02 (6.33%) 766.34 (5.67%)

Forming VEM shape func. 23.31 (6.85%) 82.53 (3.63%) 199.47 (1.48%)

Assemble Kρ 124.13 (36.46%) 434.55 (19.10%) 1174.41 (8.69%)

Solving KρU = F 156.20 (45.88%) 1508.18 (66.29%) 11097.56 (82.10%)

Compliance sensitivity 22.73 (6.68%) 79.034 (3.47%) 210.53 (1.56%)

OC update 2.15 (0.63%) 12.61 (0.55%) 31.46 (0.23%)

The times are in seconds with percentage of total runtime provided in parentheses

taken to be V = 15%. For both computer codes, a constant
penalty parameter of p = 3 is used and 200 optimization
iterations are carried out on a desktop computer with an
Intel(R) Xeon(R), 3.00 GHz processor and 256 GB of RAM
running MATLAB R2016a. For all the meshes, the two
codes produce almost identical final topologies and thus are
not shown here for the sake of conciseness.

In Table 6, we present a comparison of the total runtimes
of PolyTop3D and Top3D for the three meshes. In
addition, Table 7 shows the breakdown of the total runtime
of the PolyTop3D code into major steps. One immediate
conclusion from Tables 6 and 7 is that the PolyTop3D
code is able to achieve similar efficiency to the Top3D code
using more than four times the number of DVs. The major
runtime difference of the two codes comes from the steps of
forming projection matrices, PF and PV (c.f. (56) and (60)),
and VEM shape functions ϕi .
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