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As a ubiquitous paper folding art, origami has promising applications in science and engineering.
Many software and parameterized methods have been proposed to draw, analyze and design origami
patterns. Here we focus on the shape grammar formalism and the Shape Machine, a shape grammar
interpreter that has managed to automate the seamless shape calculations that the shape grammar
formalism advocates. Different from other origami pattern generation methods, shape grammars gen-
erate origami patterns through recursive applications of shape rewriting rules using lines and curves.
Based on this concept, the transformations between some common origami patterns are reorganized
following visual cues and reasoning. Four examples of generating origami pattern are presented to

show the capability of Shape Machine in origami design, including construction, modification and
programming of an origami pattern. The new origami designs inspired by this work prove that shape
grammars and Shape Machine provide a perspective and modeling technique for creating origami

tessellation patterns.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Non-representational origami, e.g. origami tessellation, has a
deep history in various fields including art [1], design [2], ar-
chitecture [3], computational geometry [4] and mathematics [5].
Classic origami tessellations, such as the Miura-ori [6], the Resch
pattern [7] and so forth, routinely appear in several pattern books
showcasing focused studies in the architecture of form. A sample
of such origami tessellations is shown in Fig. 1 all generated
within the Shape Machine, the formal modeling system discussed
in this paper.

The scientific study of the origami tessellation can be traced
back to the study of the origami design, itself kicked off af-
ter the pioneering work of the computer scientist and artist
Ron Resch [7,8] who began designing and folding paper forms
using mathematical and computational algorithms. Since then,
scientists and engineers have been following his paradigm and
have established origami research as a growing body of research
with its own structures, forms and mathematical laws govern-
ing origami design [4,5,9,10] as well as a growing number of
novel applications in various fields and primarily in science and
engineering. Examples of such applications of the geometry of
origami includes the design of metamaterials [11,12], the DNA
folding in nanotechnology [13,14], origami acoustic metamateri-
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als [15], graphene folding in nanotechnology [ 16], deformable op-
toelectronic and thermoset shape-memory polymer applications
[17,18], tunable structures [15,19], and deployable structures
[20,21]. As the applications of origami design get broader expo-
sure, advances in origami mathematics and origami computation
technologies bring the contemporary design of such patterns to a
new level of complexity.

Current software developed for origami design and analysis
include the Treemaker [22], Freeform Origami [23], and Merlin [24],
among others. The software TreeMaker is based on the powerful
design techniques of circle-river packing. It can construct the full
crease pattern for a wide variety of origami bases. The patterns
constructed in TreeMaker are commonly the most efficient solu-
tions possible for a given tree figure. Freeform Origami enables a
freeform variation of rigid-foldable structure by introducing bidi-
rectionally flat-foldable planar quadrilateral (BDFFPQ) meshes. It
can also generate the initial pattern suited for almost any target
3D form [10]. Merlin is a software for nonlinear structural analysis
of both rigid and non-rigid origami assemblages. Based on the
nonlinear mechanics, it uses the bar-and-hinge model for origami
discretization.

Powerful as they may be, these formal representations of
origami models are primarily analytical or numerical, and they do
not lend themselves easily in the creation of origami designs or
the comparative generation and evaluation of classes of origami
designs. Take for example, the criteria for folding of a flat pattern
without self-intersections: Such rigidly flat foldable tessellations
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Fig. 1. Physical models of origami tesselations designed in the Shape Machine. (a) Flower pattern; (b) Miura-ori pattern; (c) Barreto pattern; (d) Quadrilateral
mesh pattern; (e) Miura-ori pattern with gadget; (f) Gadget pattern; (g) Arc pattern or Chicken-wire pattern; (f) Huffman grid pattern; (i) Yoshimura pattern;

(j) Dodecagon ring pattern.

can be evaluated using several theorems including the Maekawa-
Justin Theorem, the Kawasaki-Justin theorem, the Even Degree
Theorem, the Local Min Theorem and the fold-angle multiplier, all
used to evaluate the foldability of a single vertex [4]. For a simple
degree-4 vertex, all possible assignments of mountain and valley
creases can be enumerated and tested if the given assignment is
valid. However, the situation becomes much more complicated
when the networks of creases consist of multiple vertices. Be-
cause different vertices may place contradictory conditions upon
other creases, several collisions between layers of paper may hap-
pen. In this case, additional mathematical arguments such as the
Justin Isometry Theorem, the Justin Non-twist Theorem, vector
formulations and the local Flat-foldability Graph [5], may need
to be deployed to decide whether locally flat foldability can be
obtained. And still, there is no guarantee that the entire creased
pattern folds flat without self-intersection. As the origami folding
process involves non-rigid deformation and curve creases, the
mathematical laws become much more complicated, and most of
the times, no final analytical results can be found.

A very different approach emphasizing the constructive speci-
fication of origami designs employs symbolic grammars or rewrite
production systems, such as the L-system (Lindenmayer sys-
tem) [25], a production system that captures the generation of
plant cells and self-similar fractals and periodic topology [26].
Specific classes of origami patterns, for example, the Heighway
dragon curve origami pattern, can be generated by a set of parallel

rewrite rules in the manner of an L-system simulating a fractal-
like folding of a strip of paper [27]. Still, useful as this specification
may be, it requires facility with computer programming and
remains inaccessible to those who are not familiar with Python
or other programming languages.

A different approach focuses on the comparative study of the
geometry of classes of origami designs and tessellations [28]. This
approach gives an organization of several rigidly foldable origami
tessellations and examines how they are related. Because of the
periodicity of origami tessellation, only one or two basic units
of an origami pattern need to be illustrated and the rest can be
derived from them: ‘Vertex mirror symmetry’, ‘Vertex inversion’
or ‘collapse to degree six vertices’ are frequently mentioned to
transform one pattern to another [28]. Still, to designers without
an engineering background, it is difficult to clearly understand the
transformation through geometric modification. A typical trans-
formation from an Arc pattern to a Miura-ori pattern is shown as
an example, in Fig. 2. Both patterns are well defined in origami
mathematics to ensure the rigidly flat foldability of the plane [9].
Based on the given geometry, the injunction ‘Add vertices inver-
sion’ means that the points A, B and C in the Arc pattern should
be moved to the points A’, B’ and C’, which are symmetric about
an axis MM'. This also means that the corresponding mountain
and valley assignments have to be changed. In all, the represen-
tation, interpretation and evaluation of such new origami designs
through this geometric method still require a deep sophistication
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Fig. 2. Transformation from Arc patterns to Miura-ori patterns (a) Geometry of Arc pattern; (b) Geometry of Miura-ori; (c) Add ‘Vertex inversion’ from Arc pattern

to Miura-ori.

Source: Credit: Parts (a) and (b) of the figure are adapted from Gattas et al. [9].

in geometric modeling techniques and the validity of the results
is not guaranteed. We need an alternative perspective to rethink
origami pattern.

The methods mentioned above generate origami patterns,
mathematically and parametrically. These methods are powerful
and efficient, but require complex modeling methods and a steep
learning curve to understand the appropriate tools and method-
ologies. More detrimentally, any changes and modifications to
the original design require a complete restructuring of the whole
pattern. As the origami system becomes non-flat foldable and
non-rigid, the design process becomes cumbersome, difficult and
uncertain. Still, since rational thought cannot predict everything
in advance, seeing and drawing may work perfectly for origami
pattern generation. In other words, if we consider origami pat-
terns as shapes (arrangements of lines and arcs), the description,
interpretation and evaluation of origami design can all be done
by visual reasoning. Here, shape grammars [29-33] are adopted
to design origami patterns.

Shape grammars are production systems using shape rewrit-
ing rules to perform computations with shapes. Their uniqueness
with respect to all formal approaches in computational design
is that they operate exclusively with shapes rather with some
other symbols i.e. numbers, text, or symbolic instructions in some
programming language. Their formidable formalism relying on
the algebras of shapes Uj, the algebras of labeled shapes Vj;,
and the algebras of weights Wj;, for i < j and j < 3, and the
intuitive construct of a visual rule in the form of a pair of shapes,
labeled shapes or weights defined in any of the algebras above,
have provided a strong foundation for formal studies in design,
and an unwavering commitment to visual reasoning. Their very
reliance on visual aspects of form - and the ways these enter in
visual calculations - has made them one of most accessible and
intuitive formalisms to use in formal studies in design. Several
applications have been developed in various fields over the years
including architectural design [34], landscape architecture [35],
engineering [36], painting [37], furniture design [38], ornamental
design [39], origami design [40], and others. Still, this resolute
commitment of shape grammars in shapes and shape rules does

not come without its toll: shapes consisting of lines, planes and
solids fuse every time they are combined in a calculation to
produce new and unexpected results and despite a long and sus-
tained effort to produce a shape grammar interpreter to perform
in a computer system the shape calculations that are possible
with a pencil and a paper, all efforts have been inconclusive.

A sophisticated, but ultimately severely constrained, approach
using a combinatorial calculation of the boundaries of the shapes
to predict emergent shapes, has provided some useful appli-
cations, albeit all failing to provide a general solution to the
problem [41]. Still, the situation is not as grave as it may seem.
The single major obstacle to take on is the implementation of
shape embedding [42], that is, the implementation of the math-
ematical concept of the “part relation” between two shapes, and
it appears that the riddle has finally been solved: the very first
software technology that has successfully managed to put the
formalism in practice is the Shape Machine [43], a new compu-
tational technology that features a new way to specify the way
geometric shapes are digitally represented, indexed, queried and
operated upon. In this work, existing and new origami patterns
are modeled, modified and programmed in Shape Machine and
along the way some preliminary thoughts are discussed on the
future of this technology in origami design.

2. Shape grammars and Shape Machine

A shape grammar performs computations by applying shape
rules. A computation in a shape grammar begins with a starting
shape called the initial shape. A shape rule has the form A — B,
which means that a shape A is rewritten as a shape B. A shape
rule A — B is applied to a shape C, when there is a geometric
transformation t that makes the shape t(A) part of the shape C
— or alternatively, when there is a transformation t that embeds
the shape t(A) in C. The resulting computation identifies the
instance of the shape t (A) in the shape C and replaces it with the
corresponding instance of the shape t(B) to generate a new shape
C’ = C—t (A)+t(B). A shape computation is a sequence of shapes
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Fig. 3. Shape rules and shape computation. (a) Shape rule; (b) Initial shape; (c) Shape computation.

in which each shape, except for the first shape, is generated from
the previous shape by shape rules.

A shape computation based on one shape rule applied multiple
times is shown in Fig. 3. The rule in Fig. 3(a) specifies that a square
A is rewritten as a translated square B along a distance equal
to the half of its diagonal +/2/2. The initial shape C in Fig. 3(b)
consists of two squares in a spatial relation sharing a vertex along
their colinear diagonals. The shape rule applies in Fig. 3(c) under
an isometric transformation t; to pick up the upper left square
ti(A) and replace it with the square t;(B) that lies in a distance
V2 /2 towards its lower left side of the original square t;(A). The
new shape C’ consists now of three squares, the original two
plus a new emergent smaller square in the center. The shape rule
applies again in C’ but this time around under a similarity trans-
formation ¢ to pick up the emergent smaller central square t;(A)
and replace it with the square t,(B) that lies in a distance f2/2
towards the lower right side of the square t;(A). The new shape C”
consists now of two squares, the smaller one that emerged after
the first application of the rule (a) and an even smaller square that
emerged after the second application of the rule (a) — along with
some more exotic shapes including an octagonal concave polygon
and an L-shape among others. The shape rule applies yet again in
the shape C” under a similarity transformation t;(A) to pick up
the emergent smaller lower right square t;(A) and replace it with
the square t,(B) that lies in a distance ﬁ/Z towards the lower
right side of the square t;(A) and to produce a shape C”” where
all squares, except the very last ts(B), have vanished. Clearly, there
are several options about the specific transformation under which
the rule may apply and this choice is typically made by the user
during the design process. In shape grammar productions when
a specific result is targeted, the shapes are typically labeled in
specific ways to disambiguate their symmetries and the ways
they interact, and the shape calculations are made in algebras of
labeled shapes [44].

Note that during the shape computation in Fig. 3, new shapes
are created ad hoc and they can all be found and transformed
by applying a shape rule during the computation. As in visual
computation any combination of shapes produces a complexity of
different topologies and shapes that were not used in the original
combination. Although it is straightforward to accomplish the
shape computation by human vision, it is very challenging to
implement shape grammar by machine. Finding the embedded
shape and enabling parametric rules are two fundamental prob-
lems. Specific software designed to deal with these issues include
the SGI [45], GEdit [46], Grape [47], and Sortal [48]. However,
all these shape grammar interpreters are relying on commercial
software for representing the data structure of the shape and
because of the multidimensional data structures of these libraries,
the programming of shapes in terms of these alternative data
structures is not straightforward and not conducive to a general

solution for shape computation. This problem has been taken into
account in Shape Machine, featuring a new data structure fully
supporting shape recognition for all Euclidean transformations.

Shape rules can be generalized to parametric shape rules and
even more to rule schemata of the form x — y consisting of
predicates, variables and sets of variables [29]. The significance
of predicates and variables becomes evident when a rule is given
in a recursive form. More specifically, if the variables of the
parametric shapes x and y are associated through some design
operation f, then y becomes a function f(x) and the rule schema
can be rewritten in the form x — f (x) for f any operation in
design. Examples of design operators include the transformation
operation T, the boundary operation B, the part operator P, the
division operator D and so forth, and they can all be combined
with one another through compositions and products to yield
complex symbolic schemata capturing compositional processes
in design [32]. There is a nice symmetry between the two ap-
proaches: for example, the rule (a) that substitutes a square A
with a square B in Fig. 3 can be understood as a shape rule cast
in the rule schema x — T(x) for T a translation. Note though
that the transformation T in the rule schema is different from the
transformation t under which a rule applies.

3. Rethinking origami pattern using shape grammars and Shape
Machine

There exists a wide audience of designers who are eager
to engage with the expressive medium of folding and origami
construction. Here, a visual recursive approach based on shape
grammars is suggested to provide an alternative method for
constructing origami designs that potentially can fill in the gap
between visual design and mathematical analysis and seamlessly
integrate computer models with evaluation modules in mathe-
matical analysis. Visual reasoning cannot guarantee the rigidity
or flat foldability of a surface, but the patterns generated in the
shape machine can be readily exported and tested in origami
software and imported back again in the shape machine for a
new design cycle of generation and evaluation. Both non-rigid
and curve folding may be involved in those new patterns. In
a way, what is proposed here is an alternative construction of
the ‘learning by doing’ approach [8], whereas existing and new
origami designs can be described, interpreted and evaluated. A
series of brief modeling studies follows below to begin to explore
this territory.

3.1. Modeling an origami tessellation in Shape Machine
The first study takes on the formal specification of an existing

origami tessellation in terms of shapes found in the tessellation
and spatial relations between these shapes. The given tessellation,
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Fig. 4. An unfolded origami tessellation.

when folded, evokes the geometry of a flower and consists of a set
of solid and dotted lines simulating the characteristic features of
mountains and valleys of an origami construction. The geometry
of this foldable origami tessellation is given in Fig. 4.

The formal specification of this origami tessellation is given
in the form of a shape grammar modeled after of the ice-ray
grammar [49], a type of shape grammars that have been designed
to capture the structure of traditional Chinese lattice designs [50].
The original ice-ray grammar generates a periodic structure con-
sisting of squares, each exhibiting alternating dihedral symmetry
of order 2, and then modifies this structure with a spatial motif.
Here, this ice-ray grammar is reworked to produce a regular
lattice design to comply within the conventions of origami design.
In Fig. 5, the labeled shape rules (1)-(5) for the addition of the
lattice squares remain identical with the initial ice-ray grammar
while the initial labeled shape of a 4 x 4 grid is slightly smaller
than the original one. The new rule in the grammar is rule (6),
a rule that complies with the condition of foldability of origami
design featuring two lines on the RHS of the rule drawn as dash
lines to fulfill the ‘Maekawa-Justin Theorem’, ‘Kawasaki-Justin
theorem’, and the ‘Even Degree Theorem'. The two different types
of the labels of the origami grammar are used in the shape rules
to ensure the desired transformation under which the rules apply
and the right ordering of the execution of the rules. Applying
shape rules (1) to (5) in the schema x — x + T(x), that is,
applying rules one by one adding each time to the square (x)
of the left-hand-side (LHS) of the rule a reflected copy T(x) to
the right-hand-side (RHS) of the rule, produces a periodic design
constructed in a boustrophedon manner from left to right in the
first row, right to left in the second row, left to right in the third
row, and finally right to left in the last row. The rule (6) applies in
the schema x — ) T(x) to the complete set of available labeled
squares in the lattice and generates the complete design.

Note that the application of rule (6) in the schema x —
x + T(x), could not produce this design because the structure
of the lattice of the squares would have been changed after the
first application of the rule and it would have been impossible
to continue the execution of the labeled shape rules. Still, de-
spite the apparent visual interest of the generated lattice, the
particular design generated by rule (1) to (6) does not qualify
yet as an origami design because as is, it cannot be folded. In
origami design, the single vertex foldability does not guarantee
global foldability. The assignment of mountains and valleys is
a ‘NP-hard’ problem [4]. Rule (7) is introduced to change some
assignments of the mountain and valley labels in the design
and to produce the origami design which can be folded to a
flower-like configuration. The shape rules, initial shape and the
production of the flower origami tessellation are given in Fig. 5.
A physical model of this origami flower is shown in Fig. 1(a).

Computer-Aided Design 137 (2021) 103029

3.2. Modeling classes of origami tessellations in Shape Machine

The second study takes on the formal specification of classes
of origami tessellations through the comparative deformations of
their geometrical periodic units [28]. These comparative specifi-
cations include transformations of one origami to another through
a ‘vertex mirror symmetry’, ‘vertex inversion’, ‘collapse to degree
six vertices’ and more. A series of origami tessellations featuring
such invariant periodic units is shown in Fig. 6. It is proposed
here that these origami patterns can be generated using only vi-
sual reasoning without explicit mathematical formulae, and even
more, that these origami patterns can all be visually generated
from transformed versions of the ice-ray lattice grammar used in
the first study.

The Miura-ori and the Arc pattern can be generated by a
straight forward variation of the original ice-ray lattice grammar
featuring a different labeling scheme of the basic structural shape
rules for the generation of the underlying square lattice and
different terminating shape rules. The shape rules, initial shape,
and the production of these two origami patterns are given in
Fig. 7. In this new grammar, the labeling of the square reduces
its symmetry to 1 — the identity symmetry element of the cyclic
group of order 1. This reduction of symmetry is achieved here
by the simple translation of the label in any other portion of the
shape of the square such that it will not overlap to any of the 8
elements of the symmetry group of the square [51]. The resulting
effect is that the symmetry of the labeled square becomes equal
to 1. The rest of the rules of the shape grammar follow the
same structure as the initial one enumerating all possible ways
of adding a reflected copy T(x) of the square x on the LHS of the
rule to the RHS of the rule and erasing the terminating label of
the initial shape. The two key rules that capture the structures
of the Miura-ori and the Arc pattern are the rules (6) and (7) in
Fig. 7(a), respectively. Note that the shape rules of the grammar
(1)-(5) apply as before in the schema x — x+T(x) while the rules
(6) and (7) apply in the schema x — >_ T(x) to the complete set
of available labeled squares in the lattice. The physical models of
the Miura-ori and the Arc pattern are shown in Fig. 1(b) and (g),
respectively.

For the Barreto pattern, as many as four labels have been used.
The rules of the Barreto pattern grammar are necessarily more
than the previous ones to capture both the emergent spatial re-
lations between the labeled squares and the different terminating
spatial motifs, here consisting of one pair of squares and one pair
of rhombi. As before, the shape rules of the grammar (1)-(7) apply
as before in the schema x — x + T(x) while the rules (8)-(10)
apply in the schema x — Y T(x) to the complete set of available
labeled squares in the lattice. The shape rules, initial shape and
the production of the Barreto pattern are given in Fig. 8(a), (b)
and (c), respectively. The physical model of this pattern is shown
in Fig. 1(c).

The quadrilateral mesh origami grammar can be generated
along the same lines of the Barreto pattern using a variation of the
original ice-ray lattice grammar including four different labeling
schemes for the basic structural shape rules and four different
terminating shape rules. The four labels of the squares here are
disposed in yet one more setting to account for the emergent
symmetry properties of the tessellation and for the bookkeeping
of the portions of the shapes to be deleted. The terminal rules
for the four labeled squares here feature four distinct quads with
specific geometric features to account together for the specific
properties of the emergent translated concave decagon upon a
pair of squares. As before, the shape rules of the grammar (1)-
(9) apply as before in the schema x — x + T(x) while the rules
(10)-(14) apply in the schema x — )_T(x) to the complete set
of available labeled squares in the lattice. The shape rules, initial
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Fig. 5. An origami flower. (a) Shape rules (1) to (5) generate the underlying grid, and shape rules (6) and (7) replace the grid with the new motifs; (b) Initial shape;
(c) Production of the flower pattern.
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Fig. 6. Five origami tessellations featuring transformed variations of an underlying quadrilateral. (a) Miura-ori pattern; (b) Arc pattern; (c) Barreto pattern; (d)

Quadrilateral mesh pattern; and (e) Huffman grid pattern.
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Fig. 7. Two origami tessellations featuring an identical configuration of an underlying lattice square grid. (a) Shape rules (1) to (5) generate the underlying grid, and
shape rules (6) and (7) replace the grid with the new motifs; (b) Initial shape; (c) Production of Miura-ori pattern and Arc pattern.

shape and the production are given in Fig. 9. The physical model
of the quadrilateral mesh pattern is shown in Fig. 1(d).

The Huffman grid pattern presents a more interesting problem
in the sense that the glide reflectional symmetries of the original
underlying square lattice need to be dropped to accommodate the
rotational repositioning of the four versions of the quadrilaterals
that all have symmetry of 1 — the identity symmetry element of
the cyclic group of order 1. In this sense, the recursive generation
of a labeled square lattice to provide a labeled configuration for

the application of terminating labeled shape rules would not do
it. Instead, we need a different underlying lattice — here, a par-
allelogram lattice or a rhombic lattice that will be labeled in such
a way so that the reflections of the rhombi will be dropped and
the overall pattern will show local and global half-turn rotations.
This transformed version of the original ice-ray grammar suggests
a whole new way to look at the recursive generation of origami
tessellations by combining lessons learned from the geometric
transformations between origami patterns with the symmetry



Y. Yu, T.-CK. Hong, A. Economou et al.

Computer-Aided Design 137 (2021) 103029

(a) (b)
o - o =} =
I P
-, 5 @ Bl [
a o o
) - (7) > .
+ + + (=] =]
P
o o -
3, - ®) - -
+ + \
o —
T
(4) -] =2 o 9 o -]
+ + : ©) + = + \\\
o o ) (10) . ° -> .
(5) =
+ +
(c)
L ¥ s
o o o =] o o o =]
T
_. b~
b , /
(DH~(7)| e o ° (8) [o _fo o _fo
= o o o :)K o \n\t o \n\'
V. = 7~
=] =] o o L ° 7D/L o 7
o~ o~J

Fig. 8. The shape grammar for generating Barreto pattern. (a) Shape rules (1) to (7) generate the lattice square grid; shape rules (8) and (9) replace the grid with
new motifs and shape rule (10) deletes the underlying grid; (b) Initial shape; (c) Production of the Barreto pattern.

theory of wallpaper configurations and even more with the five
regular systems of lines [52] and the corresponding five Dirichlet
domains of the two-dimensional Euclidean space [53]. The trans-
formational ice-ray grammar, initial shape and production of the
Huffman grid pattern are shown in Fig. 10. The physical model of
the Huffman grid pattern is shown in Fig. 1(h).

3.3. Transforming origami designs using Shape Machine

The real power of a shape grammar specification of an origami
tessellation in the Shape Machine appears in the editing of the
model in a CAD system. Currently, any modification of an origami
model in a CAD system is bounded by the parametric definition
of the model itself. Any modification of an element or a feature of
the model not specified in the system requires the redefinition of
the complete model. Although a human can use visual reasoning
to see emergent possibilities in a design process, it is impossible
for a machine to do so with a pre-defined data structure. Shape
Machine is a geometric modeling system that can achieve these

changes of data in design flows and execute commands without
pre-definition of these parts of the shape in the initial structure.
Moreover, Shape Machine can bundle any series of executable
shape rules effectively proposing a completely new programming
language to generate new shapes that can readily be tested for
compatibility in origami design engineering. A series of three
computations is given below to show the usage of Shape Machine
in the editing of origami designs in an increasing degree of
complexity.

The first example takes on the possibility of defining an origami
pattern in terms of an existing one. This modeling technique
differs significantly from the previous ones discussed so far that
produced origami patterns from scratch in terms of an underlying
labeled tessellation and substituting shapes consisting of solid
and dotted lines to produce foldable designs. Moreover, this
transformative modeling is not trivial because the transformation
of an origami to another one often requires a change of the
topology of the corresponding underlying patterns of the origami
designs — a formidable task for current origami modelers if
these instructions are not explicitly encoded in the system. An
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Fig. 9. The shape grammar for generating quadrilateral mesh pattern. (a) Shape rules (1) to (9) generate the lattice-square grid, shape rules (10) to (13) replace the
grid with new motifs, and shape rule (14) deletes the underlying grid; (b) Initial shape; (c) Production of the quadrilateral mesh pattern.

example to illustrate this seamless transformation of the topology
generation in Shape Machine is given below in Fig. 11. In this
example, the Arc pattern is used to generate in a transformational
and generative way the Yoshimura pattern. As mentioned above,
Evan et al. [28] describe this process as ‘collapse to degree six
vertices’, which means that a four-crease vertex becomes a six-
crease vertex. Applying the shape rule (1) shown in Fig. 11(a) to
the Arc pattern in Fig. 11(b) in the schema x — )_ T(x) replaces
the set of quadrilaterals in the Arc pattern with the corresponding
set of isosceles triangles to produce the Yoshimura pattern. The
prototype of Yoshimura pattern is shown in Fig. 1(i).

The challenge of defining an origami design from one type of
pattern to another becomes significantly harder when the new
transformed origami pattern has points and edges that are not
registered in the database of the original one. Two examples
are given below to show how an existing origami design can
be seamlessly modified without interfering with the underlying
structure of the origami model.

The first computation proposed is based on the existing def-
inition of an “origami gadget” as a localized section of crease
pattern that can replace an existing patch to add functionality
or otherwise modify the pattern [28]. The geometric conditions
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Fig. 10. The shape grammar for generating the Huffman grid pattern. (a) Shape rules (1) to (5) generate the rhombus-grid, and shape rule (6) replaces the grid with

a new motif; (b) Initial shape; (c) Production of the Huffman grid pattern.
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©)

Fig. 11. Shape computation from Arc pattern to Yoshimura pattern. (a) Shape
rule; (b) Initial shape; (c) Production of Yoshimura pattern.

shown in Fig. 12(a) preserve the flat-foldability and deployability
of the original pattern after adding the gadget. Adding gadgets
to an existing Miura-ori pattern requires that the crease in the
previous pattern be split. Reconstruction of the whole structure
is unavoidable in the design process. The visual computation in
Shape Machine bypasses all this restructuring of the parametric
model and instead replaces a whole unit with the Miura-ori
pattern with gadgets. The local crease pattern can be straight-
forwardly embedded in the Miura-ori pattern in the form of two
shape rules to account for the different orientations of the crease.
Both rules apply in the schema x — " T(x) to the complete sets
of the available types of the ¥-shapes shown in Fig. 12(c). Shape
Machine will find the specific positions of the embedded shapes
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and make the change at all matching positions. In this way, the
remodeling of the whole pattern is avoided. The physical model
of Miura-ori pattern with gadget is shown in Fig. 1(e).

The second computation takes on the type of transformation
of movement between the two patterns and significantly adds
an expressive power in the transformative generation of new
origami patterns from existing ones. In the previous example,
the gadget adding in the Miura-ori pattern is a rigidly foldable
gadget and will not modify the motion of the Miura-ori pattern.
By observing the crease pattern of Miura-ori with gadget and
playing with the physical model, new questions readily arise:
What would happen if the crease lines of the Miura-ori pattern
are removed? What happens if the gadgets connect to each other?
Will these processes form a new pattern? Is the pattern foldable?
It is suggested here that a new origami pattern can be generated
by removing the crease lines between gadgets. Because the mo-
tion of each embedded gadget is coordinated with the original
Miura-ori unit, the creases between the gadgets remain parallel to
each other in two directions. Removing these creases introduces
translation transformations other than rotation to each gadget
and the motion coordination is not broken. Fig. 13 shows the
shape computation of a new pattern with only gadgets, named
as “gadget pattern”. The initial shape is still a Miura-ori pattern.
To connect the gadgets together, the original Miura-ori pattern
has to be elongated comparing to the initial shape in Fig. 12(d).
Otherwise, more shape rules will be needed. This transformation
is encoded in terms of two pairs of shape rules that both apply
in the schema x — > T(x) to change the topology of the pattern
in its body and its boundaries respectively. Rule (1) and rule (2)
change the topology of the vertices at the second to the fourth
rows into gadgets; Rules (3) and (4) change the topology of the
vertices at the first and the fifth rows into gadgets. Lines between
the gadgets disappear and a new topology around the vertices
appears. Although the gadget in this pattern is generated from the
Miura-ori, there is no Miura-ori structure in this pattern anymore.
A parallelogram is formed inside four connected gadgets, which
increases the complexity of the crease pattern. The new gadget is
flat foldable and has a negative Poisson’s ratio. Its physical model
is shown in Fig. 1(f).
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Fig. 12. Shape computation of the Miura-ori pattern with symmetric corner gadgets. (a) Original Muria-ori vertex; (b) A gadget vertex is flat-foldable and deployable
for 7/2 < @ < B < m; (c) Shape rules; (d) Initial shape; (e) Production of the Miura-ori pattern with gadget.

4. Discussion

In this work, a formal description of origami tessellation pat-
terns is presented using the shape grammar formalism imple-
mented within the Shape Machine interpreter. We consider the
origami pattern as a combination of different shapes in spatial
relations and we construct and modify origami patterns visually
by instantiating, modifying and applying shape rules defined
directly in terms of shapes and spatial relations. A general way of
constructing an underlying square tessellation is presented and
various families and types of origami tessellations are produced
by alternative labelings of the square cells and the shapes that
substitute them. Moreover, the power of creating origami tes-
sellations in terms of two-dimensional visual rules is contrasted
with current approaches in mathematical modeling of origami
and the emphasis is given in the computations in Shape Ma-
chine that allow seamless translations between geometries and
topologies of origami patterns without requiring any reworking
on the representation of the spatial elements that constitute the
patterns.

All examples have been given so far in the form of a shape
grammar with a set of shape rules and an initial shape upon
which the shape rules apply to make the production of the design.
Still, there is no need for the production to require always an
initial shape. In fact, the initial conditions for the setup of the
production can be encoded in the shape rules themselves and the
process can start from scratch. An example inspired by a 17-gon
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ring pattern [54] is given below to illustrate the serial application
of shape rules starting with a shape rule that features an empty
shape on its LHS. Any type of regular polygons on the RHS would
do. In this example a 12-gon origami ring pattern is generated.
The complete set of shape rules of the 12-gon origami ring pattern
is shown in Fig. 14. Rule (1) specifies the initial shape of the
computation, a 12-gon; its LHS is the empty shape and its RHS
is the instance of the 12-gon. Rule (2) offsets a 12-gon to define
the outer 12-gon of the origami. The first rule applies in the rule
schema x — y, for x the empty shape and y the 12-gon; the
second rule applies in the rule schema x — x + T(x), for x the
12-gon and T(x) its enlarged, offset copy. Rule (3) subdivides the
region between the two 12-gons into 12 wedges. Rules (4) and
(5) specify the skeleton outline of the pattern and rules (6) and
(7) specify the second round of the pattern. Shape rules (3)-(7)
are applied in the schema x — ) T(x) to all twelve parts of the
design. The physical model of the 12-gon ring pattern is shown in
Fig. 1(j).

Significantly, all examples discussed in the paper are given
in three rule schemata, namely, x — y, x — x + T(x), and
x — Y_T(x) applying to all possible matching parts of the design.
In either case and for any shape rules defined within these three
schemata, the shape rule executes till there are no other matching
parts in the design and then the production continues to the
next rule till all the shape rules in the shape grammar have been
executed to make the design. In other words, every grammar
produces a single design; a change in one of the shape rules of
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Fig. 13. Shape computation of the Gadget pattern. (a) Shape rules; (b) Initial shape; (c) Production of the gadget pattern.

the grammar readily produces a new instance of a design. This
type of design inquiry is straightforwardly generalized in the form
of programming language whereas the collections of shape rules
can be compiled in a shape script that automates the production
of an origami tessellation in a single execution of the complete
program.

Additional fronts to tackle are readily within reach: New
classes of origami patterns generalizing the flower-like pattern
in Fig. 1(a) and the gadget pattern in Fig. 1(j); additional rule
schemata, including divisional operators and boundary operators
[25,29] to allow for a greater expressiveness in the specification
of the shape rules; additional transformations under which shape
rules apply, including affine and linear transformations, to allow
for even more flexibility and expressiveness in the modeling
and modification of shape rules; additional programming con-
structs in a software package implementation module to allow
for iterative loops, conditions and so forth for more variability in
the specification of the origami patterns at each stage of a rule
set; and a closer integration with current mathematical origami
modelers to allow for the seamless evaluation and analytical
analysis and insight of origami characteristics within the Shape
Machine itself. The designs presented in this work are meant
to draw attention to a different way of thinking and designing
origami pattern. It is suggested that shape grammars and Shape

12

Machine can provide a new perspective of constructing, editing
and ultimately designing origami tessellation patterns.
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