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many applications, for instance, when 
the intended use is to carry loading that 
requires different stiffness and strength 
in different directions. While many mate-
rials might have the required stiffness 
and strength, an anisotropic material 
might display higher strength to weight 
ratio along preferential directions.[1] Bone 
tissue, wood, nacre, and muscles, are all 
examples of anisotropic materials.[1–3] 
These examples from nature follow Neu-
mann’s principle,[4] which states that to 
achieve anisotropic responses, the mate-
rial microstructures should possess less 
geometric symmetry. Following advances 
in manufacturing, researchers have been 
able to mimic natural materials by cre-
ating mechanical metamaterials with engi-
neered subscale microstructures, offering 
a variety of special and unusual proper-
ties,[5–12] such as negative thermal expan-
sion,[13,14] negative Poisson’s ratio,[15–17] 
vanishing shear modulus,[18] and shear-
normal coupling.[19,20] However, most 
existing designs of mechanical metama-
terials have properties that are limited to 
either isotropic or orthotropic symmetries. 
The full spectrum of anisotropic responses 
is yet to be explored. For instance, it is 

unclear how common properties defined under isotropic or 
orthotropic symmetry could be generalized, and how tradition-
ally independent properties would couple with each other, in 
systems with less or zero symmetries.

Geometrical-frustration-induced anisotropy and inhomogeneity are explored 
to achieve unique properties of metamaterials that set them apart from 
conventional materials. According to Neumann’s principle, to achieve aniso-
tropic responses, the material unit cell should possess less symmetry. Based 
on such guidelines, a triclinic metamaterial system of minimal symmetry is 
presented, which originates from a Trimorph origami pattern with a simple 
and insightful geometry: a basic unit cell with four tilted panels and four cor-
responding creases. The intrinsic geometry of the Trimorph origami, with its 
changing tilting angles, dictates a folding motion that varies the primitive vec-
tors of the unit cell, couples the shear and normal strains of its extrinsic bulk, 
and leads to an unusual Poisson effect. Such an effect, associated with revers-
ible auxeticity in the changing triclinic frame, is observed experimentally, and 
predicted theoretically by elegant mathematical formulae. The nonlinearities 
of the folding motions allow the unit cell to display three robust stable states, 
connected through snapping instabilities. When the tristable unit cells are tes-
sellated, phenomena that resemble linear and point defects emerge as a result 
of geometric frustration. The frustration is reprogrammable into distinct stable 
and inhomogeneous states by arbitrarily selecting the location of a single or 
multiple point defects. The Trimorph origami demonstrates the possibility of 
creating origami metamaterials with symmetries that are hitherto nonexistent, 
leading to triclinic metamaterials with tunable anisotropy for potential applica-
tions such as wave propagation control and compliant microrobots.

Research Article

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adma.202107998.

1. Introduction

Anisotropic materials have properties that vary with respect 
to different spatial directions. Such feature is preferred in 
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Among different types of unit cell symmetries for a periodic 
system, the triclinic symmetry is the one that yields fully aniso-
tropic properties.[1,21,22] The triclinic symmetry describes a peri-
odic system whose primitive vectors are of unequal length, and 
the angles between these vectors are all different and may not 
even include 90°. Due to its rich design space, origami struc-
tures have been a major source of inspiration for creating meta-
material microstructures with various symmetry types.[23–30] In 
the literature, some tubular origami-based metamaterials have 
been created to achieve triclinic symmetry.[31] However, the dis-
advantage of tubular designs is that their unit cell geometry 
and configuration space are typically intricate, involving several 
parameters. Consequently, the energy landscapes of their tes-
sellations are usually difficult to program,[32] which is critical 
for generating reprogrammability. Conversely, in this work, we 
introduce a simple and effective origami pattern composed of 
degree-4 unit cells (consisting of four tilted panels and four cor-
responding creases), which is assembled into a class of triclinic 
mechanical metamaterials displaying reprogrammable defects, 
with neither rotational nor reflective symmetry.

The aforementioned origami, named the Trimorph pattern, 
can be continuously folded into three distinct modes along the 
kinematic path and two flat-folded states, allowing the meta-
material unit cell to reconfigure itself and hence significantly 
change all the Bravais lattice parameters of the triclinic crystal 
family (three angles and three lengths). Consequently, the 
elastic properties of the metamaterial are tunably anisotropic, 
leading to unusual Poisson’s effect and shear-normal coupling 

in the changing triclinic frame. By tuning the fold energy 
parameters, we can show that the unit cell has three stable 
states, each residing in a different mode. Zooming out from 
the unit cell to 1D, 2D, and 3D assemblies, we show that the 
resultant metamaterial can switch reversibly among different 
frustrated states, causing an initially homogeneous system to 
have intended inhomogeneity, as shown in Figure 1. As the first 
report of this triclinic metamaterial, we would mainly focus on 
the behavior of the Trimorph unit cell and resulting 2D tessel-
lations. However, 3D assemblies are possible by stacking the 
2D tessellations, as shown in Figure  1H,I, whose mechanical 
behavior is largely inherited from their 2D parents.

In summary, we investigate the Trimorph pattern through 
mathematical analyses, numerical simulations, and experi-
mental validation, including both rigid and nonrigid behav-
iors. We propose a theory to quantify the Poisson’s effect in the 
changing triclinic frame through the lattice Poisson’s ratio. To 
quantify the unusual Poisson’s effect experimentally, we estab-
lish both a manufacturing technique for this nondevelopable 
pattern, and an experimental device named the Saint-Venant 
setup. According to the Saint-Venant principle,[33] extra zones 
near the boundary of a tested sample must be excluded when 
evaluating the properties of the material, which leads to a need 
for large enough samples in conventional mechanical testing 
to ensure a uniform deformation in the central portion of the 
sample. We demonstrate that the Saint-Venant setup alleviates 
the influence of unwanted boundary effects, leading to precise 
and reliable measurements on relatively small samples that 
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Figure 1.  Trimorph origami-based triclinic metamaterials. A) A piece of metamaterial based on 2D tessellation of the Trimorph origami. B–G) Different  
self-stressed stable configurations of the metamaterial shown in (A). H) A 3D metamaterial assembly obtained by stacking the 2D metamaterial.  
I) A different stable configuration of the 3D metamaterial, in analogy to state (D) of the 2D metamaterial. Scale bar: 20 mm.
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represent the physics of the parent periodic system. We fur-
ther observe that the Trimorph metamaterial displays equal 
but opposite Poisson’s ratio under stretching and bending by 
our generalized lattice-based definition (this was previously 
observed in standard origami metamaterials only when their 
lattice and principal Poisson’s ratios coincide, that is, under 
strict orthotropic symmetry conditions[17,34,35]). We discover the 
existence of line and point defects in the multistable Trimorph 
based metamaterial, and study their scaling effect, which is rel-
evant for actual applications. We identify that the point defect 
causes significant frustration of the metamaterial. As both the 
line and point defects are recoverable, we can control the loca-
tion of the defects in a piece of metamaterial, and thus repro-
gram its frustrated state(s). As the aforementioned manufac-
turing technique allows precise control of the properties of 
each folding hinge, we are able to observe and demonstrate the 
defects on physical samples extracted from periodic systems.

2. Triclinic Configuration Space

To understand the mechanical behavior of the triclinic meta-
material, we start by examining the geometry of the Trimorph 

origami. A Trimorph unit cell consists of four rhombus panels, 
as shown in Figure 2A,B. We denote the vertices as O1 to O9, 
the folding angles as γ1 to γ4, and the two angles between oppo-
site creases as φ and ψ. The four panels are characterized by 
angles α, δ, and uniform side length a. Compared to the well-
known Miura-ori and eggbox patterns,[34–36] the Trimorph pat-
tern distinguishes itself by having a triclinic symmetry, which 
means that the bounding box of a Trimorph unit cell is com-
posed of nonorthogonal faces, as shown in Figure  2C. Taking 
the parallelogram O1O7O9O3 as a base, if O1O7 is placed along 
the x-direction, O7O9 is not parallel to the y-axis. The folding 
kinematics of a Trimorph unit cell is described by an implicit 
function of the opposite crease angles φ and ψ

( , ) 4 cos cos 4(cos cos )

16 (cos cos ) 8 cos cos 0

2 2 2 2

1 2 3

φ ψ φ ψ φ ψ
ξ φ ψ ξ φ ψ ξ

= − +
+ + − − =

f
� (1)

The coefficients are given by

cos cos1
2ξ α δ= � (2)

(cos2 cos )2
2ξ α δ= + � (3)

Adv. Mater. 2022, 2107998

Figure 2.  Geometry of the Trimorph unit cell. A) Schematic with notation of vertices, panel angles, and folding angles. B) Sketch of a Trimoprh unit 
cell in the Cartesian frame. C) The triclinic bounding box of the Trimorph unit cell. D) The kinematic path that shows all configurations during folding. 
The colors of the panels in the insets consistently follows the color code in (A) and (B). E,F) Variations of the kinematic path due to change of the 
defining angles of the Trimorph pattern, that is, α and δ. G) Relationships between the folding angles: γ1 versus γ2 and γ3 versus γ4. (H) The triclinic 
lattice angle η1 versus folding angle γ3. I) η2 versus γ3 and η3 versus γ3.



© 2022 Wiley-VCH GmbH2107998  (4 of 11)

www.advmat.dewww.advancedsciencenews.com

sin 2 cos (4 8cos2 )3
2 2ξ δ δ α= + + � (4)

Clearly, f(φ,ψ) = f(ψ,φ), which reflects an algebraically sym-
metric role of φ and ψ, as plotted in Figure 2D.

Different ranges of φ and ψ lead to three modes of the Tri-
morph unit cell, which are: Miura mode—type I, eggbox mode, 
and Miura mode—type II. The eggbox mode has four moun-
tain folds (inset (4) in Figure 2D). The two Miura modes have 
three mountain folds and one valley fold, similar to the well-
known Miura-ori pattern. The two Miura modes are different as 
in type I, O5O6 is a valley fold with π < γ3 < 2π (insets (1), (2) in 
Figure 2D); while in type II, O5O8 is a valley fold with π < γ4 < 
2π (insets (6), (7) in Figure  2D; also, see Figure 3). The three 
modes are topologically different in terms of their Gauss maps, 
as shown in Figure 3. While the eggbox mode projects a convex 
spherical quadrilateral, the two Miura modes project spherical 
bow-ties in two different orientations. The two transition states 
between the three modes have degenerate creases (either O5O6, 
or O5O8) that become flat (insets (3), (5) in Figure  2D). The 
Trimorph unit cell has two flat folded states, as shown by the 
insets (1), (7) in Figure 2D, with distinct orders of folded panels. 
Varying the values of design variables α and δ, we obtain dif-
ferent shapes of the implicit function f (φ,ψ) (Figure  2E,F). 
When α = 90°, the Trimorph pattern becomes the Barreto Mars 
pattern[37] with the eggbox mode vanishing; when δ  = 0°, the 
Trimorph pattern degenerates to the standard eggbox pattern 
with the two Miura modes vanishing. These are particular 

cases obtained from the intrinsic geometric parameterization of 
the pattern.

The folding angles can be derived using spherical trigonom-
etry from φ and ψ (Supporting Information). Their mutual 
relationships are plotted in Figure 2G. To describe the folding 
kinematics of a Trimorph unit cell, both φ and ψ are needed, 
because only using either one of the two leads to ambiguous 
situations. Therefore, we typically use γ3 (or γ4) to parameterize 
the kinematic path, because throughout the range of folding, 
the angle γ3 (or γ4) has a unique value for each configuration. 
In each mode, the Trimorph unit cell display distinct folding 
motion, which leads to different mechanical properties of the 
tessellated metamaterial, such as the sign of Poisson’s ratio 
and shear-normal coupling coefficient. Therefore, we can 
regard each mode as the fundamental structure of different 
material phases.

The triclinic bounding box of a Trimorph unit cell is char-
acterized by the three angles: η1, i2, η3, as shown in Figure 2C. 
The value of η1, the projected angle onto the xy-plane, as 
a function of γ3 is plotted in Figure  2H. For most range of 
folding, η1 stays close to 90°, especially in the eggbox mode 
and when δ is small. Hence, it can be difficult to notice this 
nonorthogonality on physical models. Similarly, the variation 
of angles η2 and η3 are plotted in Figure 2I. They play impor-
tant roles when we tessellate the pattern in three dimensions. 
Unlike η1, the other two triclinic angles often deviate signifi-
cantly from 90°.

Adv. Mater. 2022, 2107998

Figure 3.  Spherical polygon and Gauss map representations of the three characteristic modes of the Trimorph unit cell. This figure connects the math 
of spherical trigonometry and the programmable states of matter.
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3. Results

3.1. Geometric Mechanics of the 2D Assembly

As the system folds across various modes, its properties vary 
significantly at each folded state. The geometrically dependent 
mechanics of the Trimorph metamaterial can be captured 
through the linearized response at an arbitrary folded state. In 
this work, we mainly discuss two geometry induced mechanical 
properties: 1) the in-plane stretching and out-of-plane bending 
responses of the Trimorph metamaterial that are characterized 
by the corresponding Poisson’s ratios; 2) the shear-normal cou-
pling effect that is characterized by the shear coupling coeffi-
cient defined as the ratio of the shear strain to a normal strain.

We consider a 2D tessellation of the Trimorph unit cell with 
lattice vectors W (O1O7) and L (O7O9). Uniform folding of all 
the unit cells in a tessellation results in in-plane strains of the 
Trimorph metamaterial. Typically, for isotropic or orthotropic 
materials, such deformation is characterized by Poisson’s ratio, 
which can be defined as the negative ratio of instantaneous 
infinitesimal strains along two orthogonal directions.[17,35] For 
the triclinic Trimorph metamaterial, we define a lattice Pois-
son’s ratio (LPR) to characterize its in-plane deformation, which 
is defined as the negative ratio of the normal, or extensional, 
strains along the two lattice directions (i.e., the L and W direc-
tions). Mathematically, this ratio relates the relative differential 
change of the angles φ and ψ, and is given by

d /

d /

tan( / 2)

tan( / 2)

d

d
WL

L

W

ν ε
ε

ψ
φ

φ
ψ

= − = − = −

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


L L

W W
� (5)

Due to the single degree of freedom nature of the system, we 
have νLW = 1/νLW. As can be noted from Figure 2D, the slope of 
the curve (given by the ratio dφ/dψ) is negative for the eggbox 
mode and positive for the two Miura modes. Therefore, from 
Equation  (5), the stretching Poisson’s ratio is positive for the 
eggbox mode and negative for the Miura modes. By traversing 
through the complete kinematic path, the Trimorph pattern 
takes on values for the lattice Poisson’s ratio from the entire set 
of real numbers, hence displaying reversible auxeticity. Taking 
a total differentiation of Equation (1), a closed-form expression 
for the in-plane stretching Poisson’s ratio can be derived as 
(Supporting Information)
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This expression indicates that the Poisson’s ratio for the Tri-
morph metamaterial is purely a geometric quantity depending 
only on α, δ, and the folded state, independent of the length 
scale as well as the constituent material of the system.

Contrasting the in-plane stretching behavior, out-of-plane 
bending of the Trimorph metamaterial requires the panels to 
undergo nonrigid deformation, that simultaneously induces 
curvatures along the lattice directions. The geometry of the 
unit cell that corresponds to bending of the system is obtained 
by imposing quasi-periodicity and frame constraints (Sup-
porting Information). The out-of-plane deformation response 
is then characterized by the bending-induced lattice Poisson’s 

ratio, which is defined as the negative of the ratio of normal 
curvatures along the W and L  directions in the bent configu-
ration. For conventional continuum material, the stretching-
induced and bending-induced Poisson’s ratio yield same 
values.[38] However, in line with a few studies on origami 
metamaterials in recent years,[17,35,36] we also find that the Tri-
morph metamaterial satisfies the property that the Poisson’s 
ratio in bending and stretching are equal in magnitude but 
opposite in sign.

Since the primitive vectors are nonorthogonal for the triclinic 
metamaterial, then the Poisson effects discussed above deviate 
from the conventional definition of Poisson’s ratios. To address 
this aspect, we also study the conventional Poisson’s ratios 
along principal directions. Specifically, we define the stretching 
Poisson’s ratio as the negative of the ratio of principal strains, 
and the bending Poisson’s ratio as the negative of the ratio of 
principal curvatures, which result in evaluations measured 
along orthogonal directions. We find that the Poisson’s ratios 
defined along the principal directions and the lattice directions 
are almost the same. Interestingly, however, the principal Pois-
son’s ratios in bending and stretching are not exactly equal and 
opposite (Supporting Information).

An interesting biproduct of the nonorthogonal primitive 
vectors is the shear-normal coupling effect, which relates the 
shear strain with normal strains. Such effect is useful in some 
mechanical devices, where the metamaterial is used to trans-
form forces and motions, as a scale-free alternative to traditional 
mechanisms.[19,20] A coupling coefficient ζ is defined to charac-
terize this effect. Denoting εWL as the half shear strain induced 
by normal strain εW, we obtain (Supporting Information)

2
2cotWL

W
1ζ ε

ε
η= − = � (7)

with

cos
cos (cos 1)

2sin( /2)sin( /2)
1η α δ

φ ψ
=

− � (8)

In the eggbox mode, ζ stays close to zero, implying a nearly 
orthotropic symmetry of the Trimorph metamaterial.

To verify the reversible auxeticity and shear normal coupling 
of the Trimorph metamaterial, we perform uniaxial tension 
and compression tests on a physical prototype composed of 
7 × 4 unit cells, and tracked the deformations of a sub-region 
as shown in Figure 4. For such experiments, we create a new 
experimental setup, the Saint-Venant setup (Figure  4A–D), to 
alleviate the influence of artificial boundary effect in the tra-
ditional setup (Figure 4E–H) that leads to inaccuracy of meas-
urements (Figure  S12, Supporting Information). Compared to 
the traditional setup,[39] where the sample is clamped by two 
smooth plates, in the Saint-Venant setup, the sample is con-
strained by a linear slide system that comprises several sliders 
inserted into a rail, namely the Saint-Venant fixture, which 
allows for a completely free sample deployment. By eliminating 
the negative impact of the dog-bone shape on the measurement 
of Poisson’s ratio, the Saint-Venant fixture notably improves 
the agreement between experiments and theory, as plotted 
in Figure  5. In summary, the Saint-Venant setup permits the 

Adv. Mater. 2022, 2107998
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testing of relatively small samples, which are reliable in the 
sense of representing a true periodic system without violating 
the underlying theoretical hypothesis.

According to Figure 5, the experimentally measured lattice 
Poisson’s ratio (LPR) and coupling coefficient match with the 
theoretically predicted values, under both tensile and compres-

Adv. Mater. 2022, 2107998

Figure 4.  The experimental setup for characterizing the mechanical properties of the Trimorph assembly. A) Photo and zoom-in details of the Saint-
Venant setup. B,C) Design of the Saint-Venant setup in lateral and top views, respectively. D) A snapshot of a sample under testing in the Saint-Venant 
setup. Scale bar: 20 mm. E–H) The photo, design, and sample under testing of the basic setup, which is often used in conventional mechanical testing. 
The nonuniform transverse deformation caused by the basic setup reduces the accuracy of the experimental measurements and resulting Poisson’s 
ratio. Scale bar: 20 mm.
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sion testing conditions. We successfully observed the transi-
tion of the lattice Poisson’s ratio from positive to negative on 
the changing triclinic frame. To assert the quality of our fab-
rication method, we also report the load–displacement curve 
of the sample, which agrees with the theoretically predicted 
curve based on rigid origami assumption. The derivation of 
the theoretical curve is elaborated upon in Supporting Infor-
mation. To assess the theoretical formulae (Poisson ratio’s, 
shear-coupling coefficient, load vs. displacement) in predicting 
the observed data, we have computed the mean coefficient 
of determination R2 and its standard deviation for all the 
experiments reported in Figure 5 (see Section B4, Supporting 
Information for the details). A coefficient of determination 
R2 equal to 1 indicates the limit case of perfect agreement 
between theory and experiments. For all cases, the values of 
R2 indicate a good match between our theory and the experi-
ments, as listed in the caption of Figure 5. Video recording of 
the experiments performed with the Saint-Venant setup and 

the basic setup are provided as Movies S1 and S4, Supporting 
Information, respectively.

3.2. Reprogrammable Frustration

The intrinsic geometry of the Trimorph origami allows for real-
ization of multistability. We model the stored energy EV of a 
Trimorph origami unit cell with torsional springs in the folding 
hinges as

1

2
( )V

1

4

F,
2∑ γ γ= −

=

E K
i

i i i
� (9)

where {KF,i} are the rotational stiffness and {γ i } are the rest 
angles. This is a theoretical model that follows the rigid origami 
assumption, which assumes that the origami panels do not 
deform. When { γ i } do not reside on the rigid folding kinematic 

Adv. Mater. 2022, 2107998

Figure 5.  Geometric mechanics of the Trimorph origami-based assembly (2D). A,B) The lattice Poisson’s ratio (LPR) νWL versus average unit cell length 
W, measured in tension and compression tests, respectively. The same sample is tested three times, and the results are shown by different markers. 
The evaluated coefficients of determination R2 = 0.984 ± 0.007 (tension) and R2 = 0.982 ± 0.003 (compression) indicate an excellent agreement between 
theory and experiments. C,D) The shear-normal coupling coefficient ζ versus average unit cell length W. In this case, R2 = 0.812 ± 0.059 (tension) and 
R2 = 0.78 ± 0.070 (compression). E,F) Nonlinear mechanics behavior through load–displacement diagram. The displacement is defined as the total 
extension of the entire sample, as illustrated in the insets. Here, R2 = 0.90 ± 0.021 (tension) and R2 = 0.92 ± 0.020 (compression).
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path (Figure 2G), we observe multiple minima of stored energy 
on the kinematic path.[29]

We design a tristable case for the Trimorph unit cell,[40] so 
that there is one local energy minimum in each of the three 
folding modes. The merit of having each stable state in a dif-
ferent folding mode is that the topological difference between 
modes leads to significantly different mechanical properties, 
and thus we can reprogram the properties of the resultant 
metamaterial by mechanical snapping. To simplify the design 
and manufacturing, we assign both O5O6 (γ3) and O5O8 (γ4) 
hinges to be free of rotational stiffness (i.e., KF,3  = KF,4  = 0). 
In addition, we restrict hinges O5O4 (γ1) and O5O2 (γ2) to have 
the same rotational stiffness (i.e., KF,1 = KF,2), so that the energy 
contour on the γ1 versus γ2 diagram is circular. Normally, such 
strong simplification will not allow multistability to appear. 
However, the special folding kinematics of the Trimorph ori-
gami makes it possible. Examining the kinematic path of γ1 and 
γ2, as shown in Figure 6A, we can assign 1γ  and 2γ  at a cen-
tral point such that the circular energy contour intersects the 
kinematic path at three tangent points. Due to the symmetry 
of the kinematic path, ( ,1 2γ γ ) must reside on the symmetry 
axis of the path. Therefore, the two energy minima (1′) and 
(3′) become symmetric, each within Miura mode type-I and 
Miura mode type-II, respectively. The other energy minimum 
(2′) in the eggbox mode happens at the special occasion when 
γ1 = γ2. The change of stored energy in the system is plotted in 
Figure 6B with respect to γ3. We note that the tristable unit cell 
is in a self-stressed state, such that system never rests at a zero-
energy state, which can be seen from the nonzero base energy 
in Figure 6B. We can clearly identify three local minima, at the 
configurations (1′), (2′), and (3′), which are the tangent points 
in Figure 6A. The peaks of energy occur at configurations (4′), 
(5′), (6′), and (7′), among which, (5′) and (6′), (4′) and (7′), share 
the same stored energy (EV). We stress that although configu-
rations (4′) and (7′) are represented at the same point on the 
kinematic path, they are not the same as the vertex is flat folded 
in different orderings.

To study the transition from one stable configuration to 
another, we conduct nonlinear structural analyses using the 
bar-and-hinge model (Movie S3, Supporting Information), and 
consider nonrigid deformations of the panels, that is, nonrigid 
origami.[41] The numerical implementation is detailed in Experi-
mental Section. In the numerical simulation, we apply force to 
push the Trimorph unit cell from the stable configuration (2′) 
to (1′). Because of symmetry, we only perform simulation for 
the (2′) to (1′) transition. The stored energy during the snap 
through process agrees well with the analytical curve, as shown 
in Figure 6B. Overall, the nonrigid numerical model is slightly 
more compliant than the theoretical rigid origami model.

To validate our theory, we fabricate physical models (Movie 
S2, Supporting Information). We first make a unit cell com-
prising of four rigid panels jointed together by four hinges, two 
free and two elastic, as shown in Figure  6C. Details about the 
fabrication are elaborated upon in the Experimental Section and 
the Supporting Information. We observed three stable configura-
tions with the physical model, two Miura modes and one eggbox 
mode (Figure 6C and Movie S2, Supporting Information).

When the tristable unit cell is tessellated into a 2D assem-
blage, the resultant metamaterial displays multiple stable 

states, as shown in Figure 1. In the 2D tessellation, each row (a 
strip of unit cells along the x-direction) can transition between 
the eggbox mode and Miura mode type I, or each column (a 
strip of unit cells along the y-direction) can transition between 
the eggbox mode and Miura mode type II. This morphing 
behavior leads to lines of irregular vertices in the tessellation, 
resembling a line defect from a crystallographic point of view. 
The Miura mode changes the primitive vectors of the metama-
terial such that the regions in eggbox mode on both sides of a 
Miura mode strip do not share the same base plane anymore 
(Figure S6, Supporting Information).

This phenomenon exists robustly also for nonrigid origami. 
We display six out of many possible stable states in Figure 6D. 
Assuming rigid origami, as we have shown in the analysis of 
the unit cell configuration space, the two Miura modes cannot 
commute without passing through the eggbox mode. There-
fore, if one row of unit cells are in Miura mode type-I, and one 
column of unit cells are in Miura mode type-II, their inter-
secting unit cell must be within these two modes at the same 
time, which is forbidden. However, if we consider compliant 
panels, “line defects” in rows and columns would be able to 
occur simultaneously, as demonstrated by configurations (3*) 
to (6*). This is possible by having an intersection unit cell that 
involves not only energy trapped in the folding creases, but 
also in bent and stretched panels. That is why we need a paper 
made model to show this scenario, and cannot do the same 
with the plastic model that is nearly rigid origami. The intersec-
tion unit cell is almost crushed and overlaid onto another unit 
cell, analogous to an interstitial point defect in crystals.

To understand the formation of the “point defect,” we per-
form nonlinear structural analyses (Movie S3, Supporting 
Information). We first simulate the process of forming a “line 
defect” in a row (x-direction), that is, transitioning from con-
figuration (1*) to (2*) (Figure  6E). Then, based on the config-
uration (2*), we fold one column to its corresponding Miura 
mode, that is, transitioning from configuration (2*) to (3*) 
(Figure  6E). As shown in Figure  6F, both processes display 
snap-through behavior. Examining the stored energy in the 
system during the entire process from (1*) to (2*) to (3*), we 
observe from Figure  6G that configuration (3*) stores signifi-
cantly more energy than (1*) and (2*). This is mainly caused 
by the non-rigid origami deformation of the intersection unit 
cell, where the “point defect” happens. Figure 6H suggests that 
this unit cell is forced to deviate from its normal kinematic path 
into a state that significantly deforms the panels, comprising 
both bending and stretching (Figure  6G) deformations. As 
shown in Figure 6D, the frustration can be reprogrammed into 
different states.

We perform extra numerical simulations to study the scaling 
effect of the line and point defects. In addition to the Trimorph 
pattern consisting of 5 × 5 unit cells in Figure 6, we have added 
simulations on 3 × 3 and 4 × 4 patterns. We observe that the 
line defects exist (without external forces) for all samples sizes, 
regardless of the number of unit cells. This is owing to the fact 
that the line defect is a linear combination of natural stable 
states of the unit cells. However, in our numerical study, the 
point defect does not appear for 3 × 3 and 4 × 4 patterns. At 
the point defect, the unit cell is forced into a highly deformed, 
frustrated state[28] that is not a natural stable state, storing a 
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notable amount of elastic energy. Hence, it can only maintain 
its local high energy state owing to the kinematic constraints 
from surrounding unit cells in a tessellation. The effectiveness 

of such kinematic constraints is a function of the number of 
unit cells in the corresponding line defects radiating from the 
point defect. When the constraints from surrounding unit cells 

Adv. Mater. 2022, 2107998

Figure 6.  Multistability and reprogrammable frustration of the Trimorph origami. A) Emergence of tristability. The energy contour has three tangent 
points with the kinematic path, which indicates three local minima of stored energy. B) The elastic energy as a function of folding angle γ3. The dashed 
line shows the result from numerical simulation. C) Photos of the three stable states of a physical model of the Trimorph unit cell. D) Representative 
states of a 2D Trimorph assemblage (paper model). The dashed boxes highlight the rows and columns that are “defected.” Configuration (1*) is the 
homogeneous state, which marks the ground energy state of the tessellation; Configuration (2*) has one “line defect.” Configuration (3*) is a frustrated 
state with two intersecting “line defects” and a “point defect” at the intersection; Configuration (4*) is another frustrated state with the “point defect” 
at a different location. Configurations (5*) and (6*) are different frustrated states derived from state (4*), each has two “point defects.” E) Mechanics 
setup for numerical simulation of the snapping transitions from state (1*) to (2*), and then to (3*). The dots and arrows show the degrees of freedom 
that are being traced in the corresponding diagrams. F) Force versus displacement curves in the transition from (1*) to (2*), and (2*) to (3*). Notice 
that the displacement in each diagram is measured on a different degree of freedom, and the inset on the second diagram shows an instance of 
snap-back. The forces and displacements are normalized. G) The variation of elastic energy stored in the assemblage during the transition processes. 
The symbols EF, EB, ES denote the stored elastic energy caused by folding, bending, and stretching, respectively. H) The changes of γ1 and γ2 of the 
star-marked unit cell in (E), that is, the “point defect,” during the transition processes, compared to the kinematic path of a rigid origami Trimorph 
unit cell. Scale bar: 20 mm.
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are not strong enough, the point defect cannot sustain itself 
without external forces—it is an unfavorable frustrated state.

To unfold each point defect, the unfolding order must 
exactly reverse the folding order. For example, if a point defect 
is formed by first folding a line defect in the x-direction and 
then another in the y-direction, this point defect can only be 
unfolded by first resolving the y-direction line defect and then 
the x-direction. This is because the folding order of the unit 
cell at the point defect becomes different for different forming 
sequences, as seen from states (1) and (7) of Figure 2D. Due to 
contact of panels, there is no feasible path to transition from (1) 
to (7) or vice versa, unless the pattern is unfolded through the 
entire folding range. In other words, the point defects can lock 
the pattern if one tries to resolve them in wrong orders. Instead 
of taking this phenomenon as an disadvantage, we believe that 
it may become useful for encoding hysteresis information, as 
mechanical memory for applications in mechanical logic/com-
puting devices.[42]

4. Conclusion

The Bravais lattices (in general) and the triclinic system (in 
particular) offer great freedom to create origami-based archi-
tected programmable metamaterials. Owing to the folding of 
the origami, the resultant metamaterial can change the six lat-
tice parameters of its triclinic geometry. This change of lattice 
symmetry leads to coupled normal strains and shear strain. We 
have demonstrated how origami can be exploited to create ani-
sotropic and inhomogeneous metamaterials, which have prop-
erties that are functions of space, orientation, and folding state, 
resulting in highly tunable responses. By tailoring local folding 
energies, we create a metamaterial that has multiple stable 
states with distinct configurations, which allows encoding of 
various phases of matter (see Figure  3). As a result, it transi-
tions from an initially homogeneous tessellation to different 
inhomogeneous assemblages, as a result of geometric frus-
tration. These phenomena are verified experimentally with a 
standardized manufacturing procedure, showing great poten-
tial for engineering applications.

Beyond the elastostatic properties considered in this paper, 
there are other aspects of this triclinic metamaterial system 
worth of investigation. For example, material failure behavior 
such as fracture pattern, elastodynamic properties such as 
bandgaps and wave speed, and multiphysical responses 
such as stimuli responsive actuation, could be addressed in 
future investigations.

5. Experimental Section
Sample Fabrication: Different types of unit cells were designed to 

create: i) the multistable 2D tessellation shown in Figure1A–G, ii) 
to carry out the Poisson’s ratio experiments reported in Figure  4, 
and iii)  to realize the 3D metamaterials depicted in Figure  1H,I. The 
multistable unit cells comprise four rigid panels milled with a CNC 
milling machine from a 2  mm thick polycarbonate sheet jointed 
together by four hinges, two elastic (realized by cutting a silicon rubber 
solid) and two free (milled from a polypropylene sheet). The unit cells 
composing the 2D tessellation and the 3D metamaterial were obtained 
by milling a 1 mm thick polypropylene sheet. They consisted of a single 

piece of polypropylene folded from its flat configuration and closed 
with just one bond. Please see details in Supporting Information. The 
paper model reported in Figure  S6, Supporting Information is made 
with Canson Mi-Teintes paper (Canson SAS, France), and a Silhouette 
CAMEO machine (Silhouette America Inc., Utah) was used to cut the 
perforated patterns.

Mechanical Characterization: The reversible auxeticity of the 2D 
tessellation was verified using the experimental setup reported in 
Figure  4A. The compression/tensile experiments were performed by 
imposing a constant speed of 1.5 mm s−1 at one end of the sample with a 
μ-strain testing machine. Four black markers (1 mm in diameter), located 
along the sides of a rectangular region in the middle of the sample 
(Figure 4A), were used to determine the Poisson’s ratio of the tessellation. 
The displacements of each marker were determined by a post-processing 
analysis of the records of the experiments. The compression/tension 
experiments were performed by imposing a constant speed of 1.5 mm 
s−1 at one end of the sample with the testing machine. Such a speed was 
carefully chosen, combining the need to ensure the quasi-static condition 
and the requirement to reduce the stick and slip phenomena between 
the sample and the testing Teflon platform. In particular, a higher speed 
would have affected the measurements with spurious inertia contribution. 
Please see details in the Supporting Information.

Numerical Simulations: The numerical simulations were performed 
using the MERLIN software.[43] The software implemented the bar-and-
hinge model for discretization of origami structures. The N5B8 model 
was adopted,[44] which discretized each quadrilateral panel into four 
triangles, and represented the origami behavior by bars and torsional 
springs, which captured three essential deformation modes: folding, 
panel bending, and stretching. The elastic energy stored in the bars and 
hinges composed the system elastic energy. The quasi-static response 
of the structure was then obtained by finding the stationary states of 
the system energy, using the modified generalized displacement control 
method. It was shown by experiments that the accuracy of the bar-and-
hinge model was surprisingly good. In this work, the folding stiffness 
parameter KF was taken to be 1/10 of the bending stiffness parameter KB, 
which represented a typical nonrigid origami. Other input information 
such as the detailed boundary conditions for the simulations in this 
paper can be read from the input files to the MERLIN software (version 
2), shared in the Supporting Information.
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Supporting Information is available from the Wiley Online Library or 
from the author.
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