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need to support a multitude of mechanical 
and biological functions (e.g., enabling 
fluid transport, facilitating regrowth and 
repair, and resisting uncertain and tem-
porally-varying mechanical demands).[1–3] 
The Wolf–Roux (mechanostat) law, which 
suggests that bone is deposited or resorbed 
in response to changes in mechanical 
demands,[1,4,5] states that optimization 
plays a role in natural design of multiscale 
materials and structures. Thus, structural 
optimization is an attractive strategy for 
pursuit of biomimetic engineered systems 
with optimized performance; however, the 
range of functionality observed in nature 
is exceedingly difficult to fully integrate 
into an optimization-based engineering 
design process. Here, we endow a struc-
tural optimization approach with spinodal 
architected materials that mimic several 
microstructural characteristics observed 

in nature such that we directly target stiffness and lightweight-
ness in design and indirectly promote other mechanical and 
biological functions that are facilitated by spinodal porosity and 
randomness at the microscale.

Figure 1 shows microstructures observed in several biolog-
ical systems with varying pore size, pore shape, density, and 
directional preference—features that can be readily imitated 
by spinodal architected materials. Spinodal architected mate-
rials are obtained by interpreting one phase in a spinodal phase 
decomposition as a microstructural-material. Their unstruc-
tured, stochastic, microstructural features have been shown 
to contribute to desirable engineering properties (e.g., high 
mechanical resilience,[9] high energy absorption,[10] and insen-
sitivity to imperfections[11]) that often exceed those of structured 
architected materials (e.g., truss and plate lattices). Further-
more, a functional approximation of the spinodal phase decom-
position, in the form of a Gaussian random field (GRF),[12,13] 
enables broad tunability of microscale anisotropy and porosity 
for significant microarchitecture design freedom.[6] The under-
lying functional representation also makes it trivial to transi-
tion between different spinodal classes (e.g., the isotropic, 
cubic, lamellar, and columnar architectures shown in Figure 1) 
with arbitrary orientation and porosity. Thus, spinodal archi-
tected materials provide an avenue toward engineered parts 
with embedded, spatially-varying microscale features that have 
increased engineering performance and enhanced manufactur-
ability relative to structured architected materials.

The manufacturing versatility of spinodal architected  
materials also enables a return to the classical multiscale  

Spinodal architected materials with tunable anisotropy unify optimal design 
and manufacturing of multiscale structures. By locally varying the spinodal 
class, orientation, and porosity during topology optimization, a large portion 
of the anisotropic material space is exploited such that material is efficiently 
placed along principal stress trajectories at the microscale. Additionally, the 
bicontinuous, nonperiodic, unstructured, and stochastic nature of spinodal 
architected materials promotes mechanical and biological functions not explic-
itly considered during optimization (e.g., insensitivity to imperfections, fluid 
transport conduits). Furthermore, in contrast to laminated composites or peri-
odic, structured architected materials (e.g., lattices), the functional representa-
tion of spinodal architected materials leads to multiscale, optimized designs 
with clear physical interpretation that can be manufactured directly, without 
special treatment at spinodal transitions. Physical models of the optimized, 
spinodal-embedded parts are manufactured using a scalable, voxel-based 
strategy to communicate with a masked stereolithography (m-SLA) 3D printer.

1. Introduction

The great diversity of microarchitectures in biological materials 
(see Figure 1) are both the result of formation processes and the 
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(homogenization-based) topology optimization formulation pro-
posed in 1988 by Bendsøe and Kikuchi,[14] which incepted the 
modern field of topology optimization, but has had limited suc-
cess in practice due to manufacturing considerations (e.g., con-
nectivity of locally oriented microarchitectures). Since then, sev-
eral dehomogenization techniques have been pursued to map the 
oriented microarchitectures onto a smoothly-varying field,[15–17]  
or alternatively, several variations of multiscale topology optimi-
zation have been proposed that circumvent the need to orient 
the microarchitectures (e.g., concurrent approaches that simul-
taneously optimize the micro- and macroscale geometries[18,19]). 
Spinodal architected materials provide a means to obtain solu-
tions with clear physical interpretation directly from Bendsøe 
and Kikuchi’s original approach, without the need for laborious 
dehomogenization procedures; however, their integration with 
topology optimization has not been explored for design of 3D 
engineered parts with high levels of geometric complexity at 
multiple scales and manufacturing of such parts has yet to be 
demonstrated. These issues are addressed in the present work.

We pursue an extended version of Bendsøe and Kikuchi’s 
original formulation that not only accommodates multiple 
candidate spinodal realizations, but also optimization of their 
locally-varying microscale orientation and density, as illustrated 
in Figure  2. In contrast to a recent data-driven approach that 
aims to span the entire space of spinodal architected materials 
for design of 2D structures,[20] we achieve a sufficiently rich 
design space by considering only one microarchitecture from 
each of the four anisotropic spinodal classes defined in Figure 1 

and demonstrate the ability of spinodal embedding (in 3D) to 
outperform designs based on standard, density-based topology 
optimization (i.e., considering a single, solid, isotropic mate-
rial). Each candidate spinodal architected material is character-
ized by a pre-defined restriction of the space of wave vectors 
defining the underlying GRF, but porosity and orientation are 
free to vary. The theoretical relevance of the approach is verified 
with a simple cantilever beam in which the selected spinodal 
microarchitectures align with the principal stress trajectories 
as predicted by Michell in 1904.[21] The practical relevance of 
the approach is demonstrated by designing and prototyping a 
stiff and lightweight jet-engine bracket and a porous craniofa-
cial implant[22–24] that not only provides necessary mechanical 
function, but could also be used to promote bone regenera-
tion with the use of biocompatible materials that stimulate cell 
growth.[7,25,26] Finally, making use of the functional representa-
tion of spinodal architected materials, the physical relevance of 
the approach is demonstrated by using a scalable, voxel-based 
method to translate the optimized, spinodal-encoded parts into 
manufacturable representations with seamless microscale-tran-
sitions and obtaining physical realizations using masked ste-
reolithography (m-SLA) 3D printing.

2. Results and Discussion

Using a GRF to define the phase field of a spinodal archi-
tected material (see Equation  (S2), Supporting Information) 
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Figure 1.  Spinodal architected materials with tunable anisotropy enable biomimicry of mechanical and biological function in engineered systems. 
Isotropic, cubic, lamellar, and columnar spinodal architected materials,[6] which bear similarities to, for example, the microstructures of a sand dollar, 
trabecular bone, wood, and the horn of a bighorn sheep, respectively, are optimally distributed and oriented during topology optimization of mechanical 
parts. Stiffness and weight are explicitly targeted in design, while other mechanical and biological functions are promoted implicitly through porosity 
and randomness of the spinodal features (e.g., increased buckling resistance, bone scaffolding for re-growth and repair). Microstructure images repro-
duced with permission: sand dollar[7] copyright 2010, Springer Nature; trabecular bone[8] copyright 2010, John Wiley and Sons; wood[2] copyright 2010, 
Cambridge University Press; horn[3] copyright 2010, Elsevier. All other images are original or free license.
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provides a convenient avenue for: 1) tuning the anisotropy of 
various candidate spinodal architected materials; 2) aligning the 
variable-porosity microarchitectures along principal stress tra-
jectories during topology optimization; 3) manufacturing spa-
tially-varying microarchitectures without special treatment at 
transitions between different spinodal classes, orientations, or 
porosities; and 4) establishing a scalable, multiscale manufac-
turing framework in which macro and microscale features can 
be scaled independently and arbitrarily to satisfy requirements 
on separation of length scales, manufacturing constraints, or 
application-specific multiscale features.

The GRF is defined by a set of wave vectors defined on a unit 
sphere. By manipulating the stochastic distribution of the wave 
vectors, we can tune the resulting spinodal microarchitectures 
and associated constitutive behavior.[6] Figure  3a shows four 
particular distributions of the wave vectors (restricted according 
to cone angles, θ1, θ2, θ3, as highlighted in colored patches on 
the unit sphere) that define one spinodal architected material 
from each of the four spinodal classes considered here (see 
Equation  (S4), Supporting Information). Figure  3b illustrates 
how the mechanical properties of these spinodal architected 
materials vary with spinodal density, ρ, (i.e., the solid volume 
fraction of the spinodal microarchitecture) via components of 

the associated stiffness elasticity tensor, DDH, where the super-
script, H, indicates that the mechanical properties are deter-
mined using computational homogenization[27] as discussed 
in Section  S1.2, Supporting Information. As illustrated by the 
directional variation of their tensile modulus in Figure 3c, the 
isotropic class has equal stiffness in all directions, the cubic 
class has high stiffness along the three coordinate axes, the 
lamellar class has high stiffness in a single plane, and the 
columnar class has high stiffness along a single axis. Smaller 
cone angles increase directional bias of the spinodal archi-
tected materials and potentially allow for more efficient mate-
rial use at the microscale, but also limit manufacturability 
(especially for the lamellar case) by reducing the connectivity 
of the spinodal microscale features. Nevertheless, with freedom 
to arbitrarily orient them and tune their porosity, these four 
choices of spinodal architected materials cover a wide range 
of the anisotropic microstructural-material space and facilitate 
spinodal topology optimization for increased optimality in mul-
tiscale, biomimetic structures.

The classical homogenization-based topology optimization 
formulation[14] is integrated with a recent multi-microstruc-
tural-material formulation[28] to simultaneously determine the 
macroscale geometry and the local existence, orientation, and 
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Figure 2.  The spinodal topology optimization formulation pursued here consists of selecting a spinodal architected material from a subset of spinodal 
classes that cover a wide range of the anisotropic material space and choosing their porosity and orientation to promote stiffness and lightweightness.
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porosity of m candidate spinodal architected materials in order 
to minimize the structural compliance, f, with limited material 
volume (here m = 4, for the four candidate spinodal architected 
materials defined in Figure  3). For this purpose, five sets of 
design variables are defined at Ne design points in the domain. 
The spinodal selection design variables, ZZ [0,1]N me

∈ × , control 
the local presence or absence of each spinodal architected 
material; the spinodal density design variables, [ , ]N

e

ρ ρ ρ∈ , 
control their local solid volume fraction; and the spinodal ori-
entation design variables, , , [ , ]N

e

α β γ π π∈ − , control their local 
orientation. Note that the orientation design variables, which 
are used to locally orient the spinodal wave vectors associated 
with the underlying GRF, are defined using modular arith-
metic with a period of 2π such that their domain is topologi-
cally equivalent to a circle and they can traverse directly from π 
to −π. Additional details of the spinodal topology optimization 

formulation and solution scheme are provided in Section  S2, 
Supporting Information.

Our homogenization-based approach enables us to perform 
topology optimization on a much coarser mesh than is required 
to define the spinodal features with sufficient detail and sepa-
ration of scales. Note that the build volume of the m-SLA 3D 
printer used here can be thought of as a 3D matrix of pixels 
(pixel grid). During printing, each pixel is filled with material or 
no material based on a binary pixelated image projected to the 
underside of the resin vat for each layer of the part. Thus, the 
minimum length scale of the spinodal features is dictated by 
the resolution of the 3D printer’s pixel grid, which can be much 
finer than the mesh used for topology optimization.

To decode the microscale features from the coarse 
topology optimization mesh, the design variables are pro-
jected to the fine pixel grid to obtain ZZ [0,1]N

p

∈ , [ , ]N
p

ρ ρ ρ∈ ,  
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Figure 3.  Definition of the isotropic, cubic, lamellar, and columnar candidate spinodal architected materials. a) Restricted space of wave vectors, ni,  
defined by cone angles, θ1, θ2, θ3. Regions indicated by color are those on the surface of the unit sphere where the wave vectors defining a given spinodal 
architected material can fall. b) Components of the homogenized stiffness elasticity matrix, DH, as a function of spinodal density, ρ, in the manufac-
turable range. The data points for ρ = 0.3, 0.4, 0.5, 0.6, 0.7 are mean values obtained from the results of computational homogenization on fifteen 
realizations of each spinodal architected material. The curve fits are based on fourth-order polynomials. c) Idealized representation of each spinodal 
microarchitecture for ρ = 0.3 and ρ = 0.7 and associated elastic surfaces indicating the directional dependence of the tensile modulus.
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and , , [ , ]N
p

α β γ π π∈ −



 , where Np, is the number of pixels 
falling within the macroscale boundary defined in topology 
optimization by ZZ. Then a discretized set of phase fields, 

xx( , , , ), 1, , , 1, ,0 N i mi
pφ α β γ = =� � � � � �� � � � � , that capture the locally-

varying spinodal orientation (via orientation of the GRF’s wave 
vectors) are computed for each spinodal architected material 
using Equation  (S31), Supporting Information. The union of 
these phase fields does not guarantee well-connected spinodal 
features from one pixel to the next, but connectivity can be 
enforced by interpolating them according to the functional 
representation,
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where iM is the set of pixels in which spinodal architected mate-
rial i dominates, dH is the Hausdorff distance, and Rφ is the 
radius of the interpolated phase field that dictates the length scale 
of spinodal transitions, and ℓ = 1, …, Np. The interpolation func-
tion in Equation  (1) generates a smooth transition between the 
locally-varying spinodal architected materials, their orientations, 
and their densities (more detail is provided in Section S5.1 and 
Figure S5, Supporting Information). A discrete level set function,

�
� �

� � �1 if
0 otherwise

cutxx xxχ φ φ ρ( )( ) ( )= ≥



�
(2)

defines the final solid-void assignment of each pixel 
according to the spinodal density, ρ . Finally, 2D, binary, pix-
elated images corresponding to each layer of the spinodal-
embedded topology-optimized part are obtained directly 
from the discrete level set field and sent to the 3D printer. 
A flowchart of the entire process from optimization-based 

design to additive manufacturing is provided in Figure  S6, 
Supporting Information.

As a demonstration, a spinodal tiling is generated in 
Figure 4 from patches of phase fields associated with the four 
spinodal architected materials considered here. Only one of 
the four spinodal architected materials exists in each patch and 
the interpolation function in Equation (1) creates a single, con-
nected field. The level set function in Equation  (2) is defined 
from the interpolated phase field according to a linearly-var-
ying spinodal density, 0.3 ≤ ρ ≤ 0.7, as indicated in Figure 4a. 
The bounds on spinodal density, 0.3ρ =  and 0.7ρ = , ensure 
that the microstructure remains bicontinuous to avoid iso-
lated solids at low spinodal densities and enclosed voids at 
high spinodal densities, which inhibit manufacturability.[13,29] 
A numerical and a physical (manufactured) representation of 
the spinodal tiling are shown in Figure 4a,b, respectively, where 
we observe that the transitions between the different spinodal 
architected materials are undetectable in the manufactured 
part. Note that the underlying GRF introduces randomness to 
the spinodal architected materials and Figure 4 only shows one 
specific realization.

2.1. Spinodal Architected Materials along Principal  
Stress Trajectories

The spinodal topology optimization formulation is first 
explored considering a cantilever beam for which we can 
readily make sense of the optimized solutions. Considering the 
design domain and boundary conditions defined in Figure 5a, 
the macroscale geometry of the cantilever beam is deter-
mined simultaneously with the spinodal class, orientation, and 
porosity at each point, with total material volume limited to 

0.05v =  of the domain volume (see Equation  (S5), Supporting 
Information). The candidate spinodal architected materials are 
limited to those defined in Figure 3 with orientation free to vary 
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Figure 4.  Tiling of the four spinodal architected materials illustrating seamless transitions between them. a) Numerical idealization and b) physical 
(manufactured) spinodal microstructures with undetectable transitions. The physical model in (b) has the exact geometrical features as those shown 
in the numerical idealization in (a).
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arbitrarily in 3D space and spinodal density is limited to ρ = 0.3 
in Figure 5a–c and 0.3 ≤ ρ ≤ 0.7 in Figure 5d–f. The value, f/f0, 
indicates the ratio of the compliance objective function values 
of the spinodal solution (f) to the standard topology optimiza-
tion solution (f0) considering a single, solid, isotropic material 
(the standard (solid) solution and associated f0 is provided in 
Figure S3, Supporting Information).

When the spinodal density is limited to ρ = 0.3, high porosity 
enables the shell-like solution shown in Figure 5a. In contrast, 
when the spinodal density is free to vary in the manufactur-
able range, 0.3 ≤ ρ ≤ 0.7, higher densities are preferred and the 
truss-like solution shown Figure 5d is needed to meet the mac-
rostructural minimum length scale established by the density 
filter used in topology optimization (see Equation  (S6), Sup-

porting Information). Within the restrictions of the topology 
optimization formulation considered here (e.g., macrostructure 
minimum length scale, prescribed spinodal microscale topolo-
gies, spinodal density bounds), the spinodal solutions approxi-
mate Michell’s solutions in which material optimally aligns 
along principal stress trajectories.[21] Note that both spinodal 
solutions select only the columnar spinodal microarchitec-
ture and align its stiff axis along the principal stress trajecto-
ries of the macrostructure as indicated by the streamlines in 
Figure  5b,e, which are instantaneously tangent to the locally 
oriented x3 axis of the columnar elastic surface (refer to the 
coordinate frame in Figure 3). By aligning the columnar axis of 
high stiffness with the principal stress trajectories, a shear-free 
stress state is obtained in regions of the beam where shear is 

Adv. Mater. 2022, 2109304

Figure 5.  Optimized spinodal cantilever beams. a) Design domain, boundary conditions, and numerical solution for the cantilever beam with spinodal 
density limited to ρ = 0.3. Streamlines indicating the orientation of columnar spinodal microarchitecture’s stiff axis and the manufactured part are 
provided in (b) and (c), respectively, for the ρ = 0.3 solution. d) Numerical solution for cantilever beam with spinodal density limited to 0.3 ≤ ρ ≤ 
0.7. Streamlines indicating the orientation of columnar spinodal microarchitecture’s stiff axis and the manufactured part are provided in (e) and (f), 
respectively, for the 0.3 ≤ ρ ≤ 0.7 solution. The objective function value of the standard (solid) solution is f0 and f/f0 > 1 indicates that the ρ = 0.3 
spinodal solution is inferior to the standard (solid) solution and f/f0 < 1 indicates that the 0.3 ≤ ρ ≤ 0.7 spinodal solution outperforms the standard 
(solid) solution. Dimensions of the manufactured part agree with those indicated in (a).
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typically expected. In the truss-like solution, the stiff axis of the 
columnar spinodal architected material is locally oriented along 
the axes of the truss members to efficiently take the expected 
tension and compression.

With more freedom in spinodal density, the truss-like solu-
tion outperforms the standard solid solution as indicated by 
f/f0  < 1. This result highlights a benefit of spatially-varying 
spinodal architected materials over widely-used lattice micro-
architectures. Due to limited tunability of anisotropic properties 
and difficulty in guaranteeing connectivity for oriented lattices, 
lattice-embedded parts tend to have degraded mechanical per-
formance relative to the standard solid solution.[28] As shown 
in Figure  S4a, Supporting Information, over 60% of the solu-
tion with f/f0 < 1 contains spinodal density in the range 0.65 ≤  
ρ  ≤ 0.7 and just under 20% contains spinodal density in the 
range 0.3 ≤ ρ ≤ 0.35. In pursuit of high porosity, the objective 
function value of the shell-like solution is sacrificed and per-
formance is worse than that of the standard (solid) solution 
(i.e., f/f0 > 1). Nevertheless, higher porosity may be of interest 
to satisfy design requirements not explicitly integrated into 
the topology optimization statement (e.g., biological function, 

buckling resistance). It is also noted that, although not enforced 
explicitly in design, the spinodal-embedded truss members 
may be more adept at resisting load and geometry uncertain-
ties as a result of the stochastic nature of spinodal microarchi-
tectures. The manufactured shell-like and truss-like solutions 
are provided in Figure  5c,f, respectively. Each manufactured 
beam has length 14.4 cm and close-up views of the embedded 
spinodal microarchitectures illustrate agreement between the 
streamlines and local material alignment.

2.2. Optimal Design and Spinodal Embedding of GE Jet  
Engine Bracket

The spinodal architected materials defined in Figure 3 are also 
considered in the design of a jet engine bracket from General 
Electric (GE) in pursuit of a lightweight part.[30] The design 
domain and boundary conditions are provided in Figure  6a. 
Here, two load cases are considered and the objective function, f, 
is taken as the sum of compliance associated with each load case. 
Spinodal density is allowed to vary in the full manufacturable  

Figure 6.  Optimized spinodal GE jet engine bracket. a) Design domain and boundary conditions. b) Numerical solution with idealized spinodal archi-
tected materials embedded. c) Spinodal-embedded manufactured part. The value f/f0 < 1 indicates that the spinodal solution outperforms the standard 
solid solution. Dimensions of the manufactured part agree with those indicated in (a).
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range, 0.3 ≤ ρ ≤ 0.7, and the total material volume of the struc-
ture is limited to 0.075v =  of the domain volume.

The much more complex design domain and loading 
conditions considered here lead to selection of more than 
one spinodal architected material during optimization (see 
Figure  6b). Again, the columnar spinodal microarchitecture 
tends to locally align its stiff axis along the truss-like legs of the 
structure, but the lamellar and isotropic spinodal microarchitec-
tures are also used in regions that may be subjected to loading 
in multiple directions. The constitutive behavior of the isotropic 
and cubic spinodal architected materials in Figure 3b explains 
why the cubic spinodal architected material is not used any-
where in the part. The cubic spinodal architected material has 
slightly higher stiffness than the isotropic in directions aligned 
with the coordinate axes, but is less stiff in all other directions. 
Thus, if multiple, non-orthogonal components of loading are 
present at a design point, isotropic will be preferred over cubic. 
The variation of spinodal density for the GE bracket design is 
provided in Figure S4, Supporting Information. Spinodal densi-
ties near the bounds are preferred, but slightly more interme-
diate values are used in comparison to the cantilever problem. 
Again, the freedom in spinodal density leads the spinodal solu-
tion to outperform the standard (solid) solution as indicated 
by f/f0  < 1 (the standard (solid) solution, considering a single, 
solid, isotropic material, and the associated f0 are provided in 
Figure S3, Supporting Information).

The manufactured GE bracket shown in Figure  6c has 
dimensions consistent with those indicated in Figure  6a. The 
insets in Figure 6b,c show the well-connected interface between 
the lamellar and columnar spinodal microarchitectures and the 
agreement between the expected and manufactured spinodal 
features. Due to dimensional limitations of the 3D printer, the 
spinodal-embedded GE bracket was printed in two parts and 
assembled. Decomposition of the part was facilitated by the 
functional representation of the spinodal features. A standard 
additive manufacturing procedure would require cutting a 
spinodal-embedded surface representation (STL). Not only 
would the spinodal-embedded STL with the desired micro-
scale resolution be excessively memory intensive, ensuring that 
the decomposed STLs are watertight and that they fit together 
for assembly is nontrivial. On the other hand, the proposed 
approach enables us to simply increase the number of pixels 
in the pixel grid, decode the spinodal features onto it, and then 
divide the pixel grid into subsets that coincide with our 3D 
printer’s capabilities.

2.3. Optimal Design and Spinodal Embedding of Porous  
Craniofacial Implant

Topology optimization has been used to design patient-spe-
cific craniofacial implants for those suffering from traumatic 
facial injuries.[22,23] Previous work in topology optimization 
focused on obtaining the shape needed to fill the space and 
support mechanical loads (e.g., masticatory forces), but did not 
attempt to provide the porosity needed to promote bone regen-
eration. On the other hand, spinodal microarchitectures have 
been found more capable of promoting bone re-growth than 
other architected materials.[26] Here, a craniofacial implant is 

designed using spinodal topology optimization considering 
the four spinodal architected materials shown in Figure 3 such 
that both mechanical demands and porosity are targeted in 
design. The design domain shown in Figure 7a was provided by  
Dr. Tomás Zegard and corresponds to the dimensions of his 
own face.[24] The total material volume is limited to 0.05v =  of 
the domain volume.

Several researchers have found that bone formation is pro-
moted when the scaffold porosity and pore size are 50–90% 
and 100–400 μm, respectively.[31,32] Porosity can be controlled 
directly in the topology optimization formulation by setting the 
spinodal density bounds. Pore size can be controlled during 
manufacturing by selecting the wavelength parameter of the 
GRF, κ (see Equations (S2) and (S31) and Figure S1, Supporting 
Information). In Figure 7b, solutions considering two different 
sets of spinodal density bounds are compared. The numerical 
solutions and additional details of the manufactured parts 
are provided in Figure  7c,d. The solution in Figure  7c aims 
for the highest achievable porosity of around 70% by setting 
the spinodal density to the smallest value that ensures a well 
connected microarchitecture (ρ  = 0.3). This solution has the 
desired porosity, but performs worse than the standard (solid) 
solution as indicated by f/f0 > 1 (see standard (solid) solution in 
Figure S3, Supporting Information). The solution in Figure 7d 
with spinodal density, 0.3 ≤ ρ ≤ 0.7, leads to a design with better 
mechanical performance (f/f0  < 1), but the average porosity is 
40%, which is outside of the desired range (see spinodal density 
variation in Figure S4, Supporting Information). Both solutions 
make use of only the columnar and lamellar spinodal micro-
architectures, and although they contain the same volume of 
the bulk material, the increased porosity in the ρ = 0.3 solution 
leads to a bulkier design than that of the 0.3 ≤ ρ  ≤ 0.7 solu-
tion. The desired scaffold pore size (100–400 μm) is close to the 
achievable resolution of the 3D printer. For demonstration pur-
poses, the pores are printed at more than twice the desired size 
by choosing κ = 4 cm−1, but this value can be tuned depending 
on the manufacturing platform and the specific application.

Although only designed for stiffness and weight, the 
spinodal-embedded craniofacial implants could be explored 
with biocompatible materials for use as prosthetics or bone 
scaffolds that also promote regeneration and repair. The ability 
to carefully control porosity and pore size by tuning para
meters of the spinodal phase field and/or the optimization 
problem, serves to expand the application space and enhance 
customization capabilities.

3. Conclusion

We unified optimal design and manufacturing of spinodal-
embedded multiscale structures by integrating spinodal 
architected materials with tunable anisotropy into a spinodal 
topology optimization framework. In this way, we simulta-
neously find an optimized macroscale geometry and the dis-
tribution of different spinodal architected materials at the 
microscale, with freely-varying orientation and porosity. In the 
resulting designs, microscale features tend to align with prin-
cipal stress directions for efficient material use in supporting 
mechanical demands. In addition to improving the target 
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mechanical performance, the porosity and randomness of the 
spinodal architected materials also indirectly endow the struc-
tures with various other mechanical and biological functions 
(e.g., tunable pores that can promote bone regeneration and 
re-growth). At the same time, the functional representation 
of spinodal microarchitectures leads to a clear physical inter-
pretation that can be manufactured directly, without special 
treatment at spinodal transitions and that provides significant 
freedom to independently tune the macro and micro length 
scales for application-specific or other practical considerations.

Looking forward, we anticipate that spinodal topology opti-
mization and additive manufacturing may have even greater 
impact in problems like energy absorption, thermal control, 
fluid flow, acoustic filtering, and wave scattering than in the stiff-
ness maximization problem pursued here, which will require 
integration with other physics and more sophisticated homo
genization techniques. Even within the scope of elastostatics, it 
is necessary to investigate the effect of the transitions between 
the spinodal classes, orientations, and porosities; the appro-
priate separation of length scales; and whether the spinodal 
material properties (insensitivity to imperfections and high 
energy absorption[10,11]) transfer to the macroscale structure.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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Figure 7.  Optimized spinodal craniofacial implants. a) Design domain and boundary conditions. b) Comparison of solutions with spinodal density 
limited to ρ = 0.3 and 0.3 ≤ ρ ≤ 0.7 on the left and right, respectively. The numerical solution with idealized spinodal architected materials embedded 
and spinodal-embedded manufactured part are provided in (c) and (d) for the ρ = 0.3 and 0.3 ≤ ρ ≤ 0.7 solutions, respectively. Dimensions of the 
manufactured parts agree with those indicated in (a), which are based on measurements of Dr. Tomás Zegard’s face.[24]
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